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ABSTRACT 44 

Objective 45 

To show how a simple Bayesian analysis method can be used to improve the evidence base 46 

in patient populations where recruitment and retention are challenging.  47 

Methods 48 

A Bayesian conjugate analysis method was applied to binary data from the Thermal testing 49 

in Bone Pain (TiBoP) study: a prospective diagnostic accuracy/predictive study in patients 50 

with cancer-induced bone pain (CIBP).   This study aimed to evaluate the clinical utility of a 51 

simple bedside tool to identify who was most likely to benefit from palliative radiotherapy 52 

(XRT) for CIBP.  53 

Results 54 

Recruitment and retention of patients was challenging due to the frail population, with only 55 

27 patients available for the primary analysis. The Bayesian method allowed us to make use 56 

of prior work done in this area and combine it with the TiBoP data to maximise the 57 

informativeness of the results. Positive and negative predictive values were estimated with 58 

greater precision, and interpretation of results was facilitated by use of direct probability 59 

statements. In particular, there was only 7% probability that the true positive predictive 60 

value was above 80%.  61 

Conclusions 62 

Several advantages of using Bayesian analysis are illustrated in this article. The Bayesian 63 

method allowed us to gain greater confidence in our interpretation of the results despite 64 

the small sample size by allowing us to incorporate data from a previous similar study. We 65 

suggest that this method is likely to be useful for the analysis of small diagnostic or 66 

predictive studies when prior information is available. 67 
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 72 

INTRODUCTION 73 

 74 

The TiBoP study was concerned with improving outcomes for patients with cancer-induced 

bone pain (CIBP). CIBP is a consequence of metastases to bone; and can have a major 

impact on day-to-day function and quality of life.[1] Currently, the gold standard treatment 

is palliative radiotherapy (XRT), although only approximately half of patients will achieve 

satisfactory pain relief, and this may take up to six weeks to work properly.[2,3]  

 75 

Somatosensory testing, used to define pain mechanisms in individual patients, has shown 76 

some promise in predicting treatment response in neuropathic pain.[4] Our previous pilot 77 

work demonstrated sensory changes in CIBP, with alterations in skin sensation overlying the 78 

area of CIBP.[1] This pilot work suggested that altered thermal sensitivity on the skin 79 

overlying the site of painful bone metastases might have value in predicting an increased 80 

likelihood of a good outcome from XRT.[5]  81 

 82 

Therefore, the Thermal testing in Bone Pain (TiBoP) study was carried out to assess the 83 

performance of a simple thermal sensitivity measure that could be used by non-specialists 84 

in the community, to identify who was most likely to get analgesic benefit from XRT for 85 
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CIBP. The study faced challenges with recruitment and retention of patients, and the final 86 

study sample size was small. Conducting research in palliative care can be challenging due to 87 

the frailty of the patient population making it difficult to establish a robust evidence base. 88 

There is need for using innovative methods to deal with this challenging research 89 

environment. 90 

 91 

 92 

This short report shows how a simple Bayesian analysis can be used to maximise the value 93 

of small diagnostic studies by allowing previous data to bolster the results.  94 

 

 

METHODS 95 

 96 

The TiBoP study 97 

The TiBoP study was a prospective exploratory study, carried out in two centres (Edinburgh 98 

and Dundee) and approved by South Central - Oxford C Research Ethics Committee 99 

No:16/SC/0260.  All patients gave written informed consent to take part in the study. 100 

 101 

The thermal sensitivity tool evaluated in this study involved using warm (40°C) and cool 102 

(25°C) thermal rollers (Rolltemp, Somedic, Sweden, CE marked) to assess the thermal 103 

sensitivity of the skin overlying the painful bone metastasis in comparison to a 104 

corresponding unaffected (control) area. 105 

 106 

4



Eligible patients were adults (aged 18 or older) scheduled for palliative XRT for treatment of 107 

CIBP. A convenience sample of eligible patients were recruited between October 2016 and 108 

May 2018; and all were  tested using the thermal sensitivity tool prior to receiving XRT. The 109 

primary endpoint was pre-specified to be worst pain score at six weeks post-XRT, using the 110 

Brief Pain Inventory (BPI) questionnaire. Specifically, the primary endpoint was defined as 111 

either (i) a 30% or higher reduction in worst pain score (Q3 of the BPI questionnaire), or (ii) a 112 

worst pain score of zero at six weeks. This mirrored the endpoint for pain response used in 113 

our previous study.[5,6] Our hypothesis was that patients experiencing “abnormal 114 

sensitivity” based on the thermal sensitivity test were more likely to achieve a response to 115 

XRT (i.e. pain reduction).  116 

 117 

Statistical methods 118 

 119 

The statistical analysis was concerned with making inference about the true values of the 120 

sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of 121 

the thermal sensitivity score with respect to experiencing a response to XRT. In practice, 122 

there were two components to the thermal sensitivity test: a test involving a warm roller 123 

and a separate test involving a cool roller. If patients reported abnormal sensitivity for both 124 

tests then the overall score was assumed to be “abnormal”. A separate analysis was 125 

conducted under the assumption that any of the two tests needed to be “abnormal” for the 126 

overall score to be “abnormal”. 127 

 128 

The primary analysis was conducted in a Bayesian framework, using Bayes’ theorem.[7-9] 129 

The key to understanding Bayesian analysis is that we begin with prior information 130 
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regarding the parameters of interest (e.g. sensitivity and specificity); and then we use Bayes’ 131 

theorem to update our prior information based on observed data.[9] In the case of the 132 

TiBoP study, prior information about the likely value of the proportions of interest was 133 

gathered from a previous pilot study conducted as part of an MD thesis.[6] In Bayesian 134 

analysis, prior information or beliefs are usually expressed as a range of possible values 135 

through specification of a probability distribution.[9] In our case, a beta distribution was 136 

used for the prior and binomial distribution to model the binary thermal sensitivity test data 137 

(e.g. “abnormal” response or not).  138 

 139 

After combining the model for the observed data with the model for the prior information 140 

using Bayes’ theorem, we obtain a “posterior distribution”, which gives us a probability 141 

distribution for the probability of the proportions given the observed data, which is what we 142 

are really interested in. In our case, we get a posterior distribution that has a beta 143 

distributional form just like our prior distribution. Formally, this is called a “conjugate 144 

analysis” [7] and we say that the beta distribution is “conjugate” to the binomial 145 

distribution.  146 

 147 

R software [10] was used to perform the analysis. Graphs of posterior distributions were 148 

generated for all diagnostic test statistics of interest (i.e. probability distributions for the 149 

true parameters of interest: NPV, PPV, sensitivity, specificity etc.), while posterior means 150 

and 95% highest posterior density (HPD) credible intervals were calculated to show the 151 

likely range of values for the true parameter (e.g. true NPV).  152 

 153 
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A specific (informative) prior was pre-specified based on the previous pilot study, but we 154 

also checked the sensitivity of the results to this prior by using a (i) a weakly informative 155 

prior and (ii) a flat completely uninformative prior (Beta(1,1)). This allowed us to compare 156 

our results with models for which the observed TiBoP study data dominated.  157 

 158 

Results were compared to the classical (frequentist) approach of calculating 95% confidence 159 

intervals around parameters without utilizing prior data. 160 

 161 

Further details of the statistical analysis are provided in the online supplementary file along 162 

with a mini-literature review suggesting that the use of this method is very uncommon in 163 

practice. 164 

 165 

RESULTS 166 

Forty patients were recruited to the study between October 2016 and April 2018 from two 167 

locations (34 from Edinburgh and six from Dundee, United Kingdom). Twenty-seven patients 168 

(67%) completed the primary outcome assessment at six weeks.  169 

 170 

Of the 27 patients recording primary outcome data, the mean age was 65 (SD 9.5, range 43 171 

to 84). Eleven patients (41%) were female. Thirteen had a primary diagnosis of prostate 172 

cancer (48%), eight had breast cancer (30%) and the remaining six patients (22%) had 173 

various other types of cancer. 174 

 175 

Considering the comparison of patients with both abnormal thermal sensitivity tests 176 

compared to those with at least one normal, the observed sensitivity, specificity, PPV and 177 
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NPV of the thermal sensitivity score (with corresponding exact binomial 95% confidence 178 

intervals) were calculated as 9/15 (60%, 95% CI 32% to 84%), 5/12 (42%, 95% CI 15% to 179 

72%), 9/16 (56%, 95% CI 30% to 80%), and 5/11 (45%, 95% CI 17% to 77%) respectively. 180 

These 95% confidence intervals were computed using the standard classical method 181 

ignoring prior data. 182 

 183 

The observed results with classical confidence intervals suggest that thermal sensitivity 184 

score is a poor predictor of positive response to XRT. PPV and NPV are close to 50% and 185 

specificity is very low. Confidence intervals were very wide, so there was a great deal of 186 

uncertainty associated with the estimates when just considering the current study data. 187 

 188 

After using results from the previous pilot study to inform the prior distribution, Bayes’ 189 

Theorem was used to produce plots of the posterior distributions for each diagnostic test 190 

statistic (see Figure 1).  191 

 192 

The posterior mean PPV (95% credible interval) was 70% (57% to 83%), suggesting that it is 193 

unlikely that the true PPV for the thermal sensitivity tool is above 83%. Indeed, the 194 

probability that the true PPV is above 80% was only 7% ( ℙ(𝑃𝑃𝑉 > 0.80) = 0.07 ). This 195 

means that the thermal sensitivity test is unlikely to be useful in accurately identifying 196 

patients who will go on to get a positive response to XRT at six weeks. The credible interval 197 

upper bound is similar to the classical frequentist confidence interval of 80%, but note that 198 

the interval is much narrower since we have combined with the previous data (PPV 199 

estimated as 81%) to increase the precision of estimation. Using a flat non-informative prior 200 

8



(i.e. ignoring the prior data we have), results in a credible interval from 33% to 77%, which is 201 

similar to that from the frequentist 95% CI as we might expect. 202 

 203 

For NPV, the posterior mean was 48%, but the 95% credible interval had a very wide range 204 

from 30% to 66% due to the low number of patients in this category. Note that this interval 205 

is also much narrower than the corresponding frequentist 95% confidence interval of 17% to 206 

77%. Indeed, it is true in general that precision of estimation will often be improved through 207 

using Bayesian methods, particularly if specific informative priors are used and the study 208 

sample size is small.  209 

 210 

To provide a more extreme example: only 3 patients had thermal test results which were 211 

both normal. Two of these did not show a positive response to XRT, and so the NPV under 212 

the “at least one abnormal” classification was calculated as 2/3 (67%). Naturally, the 213 

standard 95% CI for the NPV was extremely wide (9% to 99%). However, after combining 214 

with the prior information (NPV 3/4, 75%), the 95% HPD interval was 38% to 94%, which 215 

although still wide, does inform us that very high values of the NPV above 94% are unlikely. 216 

We can also calculate ℙ(𝑁𝑃𝑉 > 0.90) = 0.04 which supports this conclusion. 217 

 218 

In contrast, the PPV (“at least one abnormal” classification), was based on more substantial 219 

sample sizes (PPV was 14/24 (58%) for the current study and 28/38 (74%) in the previous 220 

study). In this example, the 95% HDP interval was 56% to 78% compared to a 95% CI of 57% 221 

to 87%. Thus, our interval upper bound reduces from 87% down to 78% with the addition of 222 

prior information. We can also calculate ℙ(𝑃𝑃𝑉 > 0.80) = 0.01, which shows there is only 223 

1% probability that the true PPV is above 80%. 224 
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 225 

For the above examples, the estimates based on the prior information are not too 226 

inconsistent with those from the present study. If hypothetically, the prior PPV was only 3% 227 

(1/38), then the 95% HPD interval becomes substantially different, 15% to 36%, albeit the 228 

interval is still much narrower than the corresponding 95% CI.  229 

 230 

The Bayesian results suggested that the thermal sensitivity tool alone is unlikely to be useful 231 

in practice for identifying patients who experience a response to XRT treatment. This was 232 

despite the use of an informative prior distribution based on promising results from an 233 

earlier study.[5,6]  234 

 235 

Full analysis results are provided in a supplementary file. 236 

 237 

 238 

DISCUSSION 239 

Bayesian analysis has some advantages over classical analysis. In particular: 240 

 241 

(i) It makes full use of previous work done in the same area so that it informs the statistical 242 

analysis. The Bayesian argument is that no study happens in isolation, and that it makes 243 

sense to incorporate external information when performing statistical inference because 244 

scientific progress generally always involves building on what has been done before. 245 

(ii) In small studies, the informativeness of the results can be maximised through more 246 

precise estimates of diagnostic test measurements (e.g. NPV and PPV). 247 
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(iii) Interpretation of results is easier and more intuitive. For example, the true value lies 248 

within a 95% credible interval with 95% probability.  249 

(iv) Posterior distribution graphs of parameters can be generated from Bayesian analysis 250 

(see Figure 1) to provide helpful visual information regarding the likely true value. 251 

(v) In addition, direct probability statements can be made that are easier to interpret 252 

clinically.[11] As shown above, we can easily answer questions such as “What is the 253 

probability that the true negative predictive value is above 80%?” Whereas in classical 254 

analysis it is very difficult to answer such questions. 255 

(vi) Bayesian analysis is more ethical because it fully exploits the clinical experience of past 256 

patients to maximise the potential of a small sample size to generate meaningful 257 

results.[11] Even data from very small prior studies is not wasted and can contribute to 258 

the analysis.   259 

 260 

Bayesian analysis was particularly useful for the TiBoP example because data was available 261 

from a very similar previous study, the study was small (and so we could take full advantage 262 

of the improvement in precision resulting from incorporating prior data), and there was an 263 

ethical imperative to make maximal use of all data collected. These advantages more 264 

generally apply in studies in palliative care, where patients are frail, with life limiting disease 265 

and therefore it is especially important to ensure that precious data collected from patients 266 

is not wasted. In general patients are supportive of participating in clinical research, often 267 

for altruistic reasons, although naturally there may be burden placed on these patients 268 

when collecting data.[12]  269 

 270 

In the TiBoP study, there was a consistent gain in precision from using Bayesian methods: 271 

our 95% credible intervals were narrower than the corresponding 95% confidence intervals. 272 
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In some situations (e.g. in our NPV example), this enabled us to salvage data that may 273 

otherwise have been completely unusable due to the tiny sample size. However, there is a 274 

note of caution associated with this. As we saw in the PPV example, artificially changing the 275 

prior information led to a dramatic change in the values of the credible interval estimates. 276 

This was because we were using a specific informative prior to combine with the observed 277 

information, which places a high weight on prior information. This was justified in our case 278 

since the studies were very similar in design, with the same lead researchers and 279 

assessment approaches used for both studies, and the majority of patients recruited from 280 

the same centre (Edinburgh). However, it was still important for us to test the sensitivity of 281 

the results to the use of non-informative priors (see supplementary file). 282 

 283 

If on the other hand, the previous study was conducted under very different conditions, had 

a different patient population, or was more susceptible to bias, then less weight should have 

been placed on the prior information and it would have been necessary to use vague or 

non-informative priors for our primary analysis. However, collaterally we lose the advantage 

of improved precision from using Bayesian methods. 

 

Bayesian analysis may be less useful in circumstances which nullify some of the advantages 

listed above. For example, if our study has a large sample size with no similar previous 

studies, then finding suitable information to inform the prior distribution may be difficult 

and there may be little or no gain in precision from using a Bayesian approach. 

Nevertheless, some advantages of Bayesian analysis will still remain regardless of the 

context (e.g. the ability to make direct probability statements). 
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The methodology used in this study is particularly beneficial in settings where it is difficult to 

establish a robust evidence base (e.g. in frail populations or rare conditions) due to its ability 

to effectively assimilate prior data and enhance the value of information from small studies. 

 

 Acknowledgements 

The previous pilot study data used in this study was collected by Angela Scott for her MD 

thesis: "Cancer-Induced Bone Pain (CIBP): Clinical Characterisation and Biomarker 

Development" (http://hdl.handle.net/1842/24294), funded by the Translational Medicine 

Research Collaboration (TMRC). RP was partly supported in this work by NHS Lothian via the 

Edinburgh Clinical Trials Unit. PJH is supported by the NIHR Manchester Biomedical 

Research Centre. 

 

Licence for Publication 284 

The Corresponding Author has the right to grant on behalf of all authors and does grant on 285 

behalf of all authors, an exclusive licence (or non exclusive for government employees) on a 286 

worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be 287 

published in BMJ Supportive and Palliative Care and any other BMJPGL products and 288 

sublicences such use and exploit all subsidiary rights, as set out in our licence 289 

(http://group.bmj.com/products/journals/instructions-for-authors/licence-forms). 290 

 291 

Competing Interest 292 

Competing Interest: None declared. 293 

 

 

13



Funding 

The TiBoP study was funded by Marie Curie [MC grant reference MCCC-RP-15-A19005PI]. 294 

 

Data 

Requests for data sharing should be directed to:  ECTUdatashare@ed.ac.uk 

 

 

REFERENCES 

[1] Laird BJ, Walley J, Murray GD, et al. Characterization of cancer-induced bone pain: an 295 

exploratory study. Supportive Care in Cancer 2011; 19: 1393-401. 296 

 297 

[2] Pin Y, Paix A, Le Fèvre C, et al. A systematic review of palliative bone radiotherapy based 298 

on pain relief and retreatment rates. Crit Rev Oncol Hematol 2018; 123: 132-13. 299 

 300 

[3] Chow R, Hoskin P, Chan S, et al. Efficacy of multiple fraction conventional radiation 301 

therapy for painful uncomplicated bone metastases: A systematic review. Radiother Oncol 302 

2017; 122(3): 323-33. 303 

 304 

[4] Demant DT, Lund K, Vollert J, et al. The effect of oxcarbazepine in peripheral neuropathic 305 

pain depends on pain phenotype: a randomised, double-blind, placebo-controlled 306 

phenotype-stratified study. PAIN® 2014; 155(11): 2263-73. 307 

 308 

[5] Scott AC, McConnell S, Laird B, et al. Quantitative Sensory Testing to assess the sensory 309 

characteristics of cancer‐induced bone pain after radiotherapy and potential clinical 310 

biomarkers of response. European journal of pain 2012; 16(1): 123-33. 311 

 312 

[6] Scott AC. Cancer-Induced Bone Pain (CIBP): Clinical Characterisation and Biomarker 313 

Development. MD Thesis, University of Edinburgh, UK, 2010. 314 

(http://hdl.handle.net/1842/24294, 2010, accessed 9 September 2019) 315 

 316 

[7] Spiegelhalter DJ, Abrams KR, and Myles JP. Bayesian approaches to clinical trials and 
health-care evaluation. John Wiley & Sons, 2004. 
 317 

[8] Abrams KR. Bayes’ theorem. In: Everitt BS and Palmer CR (eds) Encyclopaedic Companion 318 

to Medical Statistics. Hodder Arnold, 2005, pp. 22-23. 319 

 320 

[9] Kirkwood BR and Sterne JA. Essential medical statistics. Second edition. Blackwell Science 
Ltd., 2003, pp. 388-389. 

14



 321 

[10] R Core Team. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria, 2019. URL { HYPERLINK "https://www.R-
project.org/" }. 
[11] Abrams KR. Bayesian Methods. In: Everitt BS and Palmer CR (eds) Encyclopaedic 322 

Companion to Medical Statistics. Hodder Arnold, 2005, pp. 23-27. 323 

 
[12] Todd AM, Laird BJ, Boyle D, et al. A systematic review examining the literature on 324 

attitudes of patients with advanced cancer toward research. J Pain Symptom Management 325 

2009; 37(6): 1078-85. 326 

 327 

 328 

FIGURE 329 

 330 

 331 

Figure 1: Plots showing the posterior distributions for the diagnostic test parameters 332 

under the strategy of using “at least one test abnormal” as the diagnostic test marker to 333 

predict positive response. Solid line indicates specific prior, dashed line is weakly specific 334 

prior, and dotted line is uninformative prior. 335 

 336 
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