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Summary

There is increasing recognition that exposures to infectious agents evoke fun-
damental effects on the development and behaviour of the immune system.
Moreover, where infections (especially parasitic infections) have declined,
immune responses appear to be increasingly prone to hyperactivity. For
example, epidemiological studies of parasite-endemic areas indicate that pre-
natal or early-life experience of infections can imprint an individual’s immu-
nological reactivity. However, the ability of helminths to dampen pathology
in established inflammatory diseases implies that they can have therapeutic
effects even if the immune system has developed in a low-infection setting.
With recent investigations of how parasites are able to modulate host
immune pathology at the level of individual parasite molecules and host cell
populations, we are now able to dissect the nature of the host–parasite inter-
action at both the initiation and recall phases of the immune response. Thus
the question remains – is the influence of parasites on immunity one that
acts primarily in early life, and at initiation of the immune response, or in
adulthood and when recall responses occur? In short, parasite immunosup-
pression – sooner or later?
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Introduction

The ability of infectious agents to regulate the immune
system of their host is an increasingly fascinating topic. In
particular, the question is often raised as to whether the ‘dis-
eases of modernity’ (such as allergies, autoimmunity and
the metabolic syndrome) are a consequence of our altered,
and diminished, exposure to infectious diseases [1–3]. Fol-
lowing a wide range of studies in humans and model
systems, good evidence has now emerged that both
microbes and macroparasites can sufficiently distract or
depress immune reactivity to alleviate allergic and autoim-
mune pathologies [4–7].

The ‘hygiene hypothesis’ takes a number of forms which
are not exclusive, but have yet to be articulated as a unifying
concept. An inverse relationship between parasite infection

and immune disorders was first suggested by Greenwood,
who noted the low incidence of rheumatoid arthritis in
West Africa [8], and then showed that mice and rats
infected with rodent malaria were protected from autoim-
mune disease [9,10]. Subsequently, the hygiene hypothesis
became linked explicity to the setting of more developed
countries when Strachan postulated that early-life expo-
sure to common childhood infections protected younger
siblings in larger families from developing allergies such as
hay fever [11,12]. At that time, soon after the emergence of
the paradigm of opposing T helper type 1 (Th1) and Th2
arms of the immune system [13], this finding was inter-
preted as Th1-promoting viral and bacterial infections ‘edu-
cating’ the young immune system away from excessive and
allergy-promoting Th2 responses. The core concept of
infections imprinting the developing immune system has
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become embedded in most versions of the hygiene hypoth-
esis, but the mechanistic explanation of opposing Th1/Th2
lineages has, over time, proved untenable.

In contrast to the Th2-mediated allergies [mediated
through immunoglobulin (Ig)E, mast cells and eosino-
phils], other modern maladies such as type I diabetes, mul-
tiple sclerosis and Crohn’s disease are driven by Th1
responses, or by the more recently defined Th17 cells [14].
Critically, these Th1/17 conditions have been increasing in
prevalence in high-income countries as sharply as Th2-
dependent allergies. For example, the incidence of type I
diabetes is increasing year-on-year at the rate of 3·4% [15],
in tandem with the rise in asthma [16]. Tellingly, the age of
diabetes onset has become significantly younger, indicating
that this disease is gaining in force within the population.
Similar patterns have been observed for multiple sclerosis
and Crohn’s disease, and it is difficult to reconcile the
accentuation of these diseases with reduced exposure to
Th1-stimulating microbes in early life.

Globalization of the hygiene hypothesis

A new perspective on the original hygiene hypothesis was
introduced by a study of children in Gabon. In this West
African country there is a high prevalence of schistosomiasis,
a helminth worm disease which drives a strong Th2 pheno-
type in the infected host [17]. Remarkably, schoolchildren
carrying this infection showed lower levels of allergic reactiv-
ity than their uninfected classmates, although both the para-
site and the allergen evoke Th2 responsiveness [18]. A key
pointer from this study was that the infected children gener-
ated high levels of an immunosuppressive cytokine, interleu-
kin (IL)-10, when their peripheral T cells were challenged
with antigen from the Schistosoma parasite. Numerous other
studies, such as those in Brazilian children infected with
schistosomes [19] and Ecuadorians with soil-transmitted
nematodes [20], support the conclusion that helminth infec-
tions in many – but not all [21,22] – settings are associated
with suppression of allergic reactivity.

IL-10 is one of two central mediators, together with trans-
forming growth factor (TGF)-β, which act to dampen and
down-regulate the immune system [23,24]. While each can
be produced by a range of cell types, they are particularly
associated with a T cell subset that was defined between 1995
and 2000, the regulatory T cell (Treg) [25,26]. Significantly,
Tregs and their products (including IL-10 and TGF-β) were
found to control both Th2 allergies [27,28] and the Th1/17
suite of autoimmune and inflammatory pathologies [29].
Hence, the hygiene hypothesis has been modified and
updated to posit that infections, and infection experience,
may set the balance between Tregs, on one side, and active
Th1, Th2 and Th17 populations on the other [1,6,30,31].

This emerging paradigm has been strengthened by a
study of multiple sclerosis patients in Argentina, 12 of
whom were found to have adventiously acquired asympto-

matic gastrointestinal helminth infections. All 12 remained
in remission for 5 years, while uninfected patients with
similar disease severity at the outset of the study suffered
multiple relapses [32]. Infected patients showed strong
IL-10 and TGF-β responses, unlike the relapsing uninfected
individuals, but production of these cytokines declined in
four patients subsequently given anthelminthic treatment
who went on to develop exacerbation of disease [33]. In a
related example, an ulcerative colitis patient who deliber-
ately self-infected with the human whipworm, Trichuris
trichiura, reported significant alleviation of pathology [34].
These reports have fuelled greater interest in the possibili-
ties of therapy of inflammatory disorders with live
helminths, or with products derived from these parasites, as
discussed further below.

Other key studies have reported that anthelmintic treat-
ment of children in parasite-endemic countries increases
their allergic sensitivity, providing a causal link between
helminth infection and protection of allergy [35]. Although
autoimmune disease has a relatively low incidence in these
countries, measurements of anti-nuclear autoantibody in
serum (a precursor but not a determinant of overt autoim-
munity) showed reduced reactivity in schistosome-infected
individuals and an increase following curative drug therapy
[36].

Reports such as these have taken the hygiene hypothesis
onto a global stage, and highlighted the contrast in immu-
nological status and reactivity between the affluent devel-
oped world and the low-income countries in which
helminth parasites are still highly prevalent. Furthermore,
although more than 25% of the world’s populations are
infected with helminth parasites [37], it should be remem-
bered that until the last century most humans would have
frequently carried helminth parasites and that our immune
system has intimately co-evolved with these organisms, a
point we will return to subsequently.

Helminths and regulation of the immune system

The finding that helminth infection is associated with
reduced allergic reactivity chimed with a range of immuno-
logical studies on both mice and humans which demon-
strated enhanced activity of Tregs in infected hosts. Humans
carrying long-lived chronic infections with schistosomes or
mosquito-borne filarial nematodes displayed a clear pheno-
type of immunological down-regulation, with high levels of
IL-10 [38] and stronger suppressive activity of Tregs [39]. In
particular, asymptomatic carriers who were effectively
immunologically tolerant to the parasite presented a ‘modi-
fied’ Th2 in which IL-4 is produced but the pro-
eosinophilic cytokine IL-5 is suppressed [40]. However, in
cases which do not tolerate helminths well, and which pro-
gress to various forms of pathology, Tregs are deficient and
Th1/17 dominates [41].

FOCUS ON HYGIENE HYPOTHESIS AND APPROACHES TO MODULATING THE MICROBIOME

Helminth regulation: sooner or later?

39© 2014 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society
for Immunology, Clinical and Experimental Immunology, 177: 38–46



The implication that the ability of helminths to suppress
immunopathologies is mediated by Tregs has been validated
in experimental animals. Mice infected with the intestinal
nematode Heligmosomoides polygyrus show expanded Treg

numbers and function [42–45] and are resistant to allergic
pathology in mouse models [46]. Moreover, protection
against allergy can be transferred by Tregs from an infected
animal into uninfected but allergen-sensitized hosts [46,47].
Just as humans appear to be protected from autoimmunity
as well as allergy by some helminth infections, so too do
mice show diminished levels of colitis [48,49] and type I
diabetes [50–52] when carrying schistosome or intestinal
nematode infestations.

Helminths are thought to promote Tregs to prolong their
own survival in the host by defusing key elements of the
immune system that would otherwise attack them [53]. To
test this supposition, strategies to experimentally deplete
Tregs in helminth-infected mice have been studied, showing
more rapid parasite killing following depletion [54,55]. In
addition, Treg depletion can result in more severe pathology
resulting directly from the presence of helminth worms in
the intestinal tract [56,57]. As well as Tregs, however,
helminths can drive regulatory B cell populations [58–60],
natural killer T cells [61,62] and suppressive macrophage
responses [63,64], each contributing to a profoundly down-
modulated state.

Early in life

The importance of early-life exposure in defining the set-
point of immunological reactivity of the individual is now
widely recognized [65]. The window of sensitivity extends
prenatally to the developing foetus, as the propensity of the
newborn to develop allergic eczema is altered by maternal
infection or exposure to probiotic bacteria. After parturi-
tion, exposure to microbial products from environmental
organisms may also be sufficient to limit allergic reactivity
[66].

Helminth parasites are certainly an important element of
the environmental education imparted to the developing
immune system. Offspring of mothers harbouring a filarial
infection (Wuchereria bancrofti) during pregnancy were
found in adulthood to be immunologically tolerant to the
parasite [67]. A broader effect, beyond antigen-specific tol-
erance, has now been reported in which helminth infection
during pregnancy protects the newborn from allergic
eczema in childhood [68,69]. It will be fascinating to follow
these cohorts of well-characterized children into adulthood,
to evaluate more clearly the relative importance of preterm,
infant and adult infectious exposure to the functioning of
the immune system.

It is important to take note of the harmful, as well as ben-
eficial, effects of helminth infection on the immune system
in early life. In helminth-endemic areas of developing coun-
tries, vaccination is less effective than in the developed

world, with the polio vaccine showing only 70–90% sero-
conversion rates in the former, compared to 97–100% in the
latter [70]. Furthermore, anthelmintic treatment of infected
populations prior to vaccination leads to increased efficacy
of the cholera and bacilli Calmette–Guérin (BCG) vaccines
[71–73]. To test if maternal imprinting was depressing
early-life responsiveness, anthelmintic treatment of preg-
nant mothers was combined with subsequent testing of vac-
cination responses in their offspring. However, maternal
treatment had no effect on vaccine efficacy in children [74],
implying that infections of children themselves are most
important for suppression of vaccine responses. In this
same trial, however, levels of childhood eczema were again
shown to increase in the children of anthelmintic-treated
mothers, implying a maternal imprinting role on the devel-
opment of allergic but not vaccine responses [75].

Later in life – helminth therapy

A distinct strand of the hygiene hypothesis has developed
which postulates that responses of the mature immune
system can also be modulated significantly by infectious
organisms, sufficiently so for particular commensal
microbes or organisms of limited pathogenicity to be con-
sidered as potential therapies or prophylactics. Most of the
experimental evidence for the hygiene hypothesis is also
derived from infections of adult animals prior to or during
the induction of an allergic or autoimmune inflammatory
disease.

The principle that infectious agents can dampen inflam-
mation in the adult immune system is currently being put
to the test with a number of clinical trials utilizing live
Trichuris suis or Necator americanus parasites for various
indications, including Crohn’s disease [76], coeliac disease
[77] and multiple sclerosis [78], among others. Not all trials
to date have proved successful, however, with treatment of
allergic rhinitis found to be not beneficial [79,80], and most
recently with Crohn’s disease reporting benefits for some
patients but failing to achieve statistical significance [81].
Similarly, while the human hookworm N. americanus was
found to dampen responses in coeliac disease patients, it
did not achieve a level that significantly alleviated symp-
toms [77,82]. While discouraging, these trials have been
carried out on unstratified patient groups and there may
well be subsets within each disease who are most likely to
show improvement during infection. In the longer term, it
may also prove desirable to identify immunosuppressive
molecules from these parasites that can serve as future drug
leads, thereby dissociating any beneficial properties of
helminths from the need to impose active infection on
patients.

An interesting parallel exists between the effect of hel-
minth infection and specific immunotherapy (SIT) in
which the patient is desensitized against particular allergens
[83]. In both, the immune response switches to the IgG4
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isotype [84,85]. Moreover, anthelmintic clearance of para-
sites results in rapid loss of IgG4 (and in other settings,
exacerbation of allergic and autoimmune reactivity). These
instances argue that the mode and degree of immune
responsiveness remains relatively plastic in adult life, and
that contemporary interactions with extant infection is as
much or more influential on disease outcome than histori-
cal experience.

Early and late in the immune response

Immunopathologies require both initiation and sustenance
of the immune response against target allergens,
autoantigens or bystander antigens (such as those expressed
by harmless commensals). Hence, interventions may be
either or both prophylactic or therapeutic, and the appro-
priate choice depends on correctly identifying the initiating

factors (for example, antigen uptake) and those which
maintain responsiveness and are responsible for progressive
tissue damage (such as inflammatory cytokines).

Much interest is therefore focused on the cell type(s)
involved in kick-starting the inflammatory response, in par-
ticular the prototypical antigen-presenting cell, the
dendritic cell (DC) which, following infection, both takes
up pathogen products for presentation to T cells and
up-regulates a range of stimulatory molecules to drive T cell
activation (Fig. 1). However, helminths can interfere dra-
matically with this critical process, suppressing the matura-
tion of DCs following Toll-like receptor (TLR) ligation,
reducing their production of inflammatory cytokines and
reducing T cell responsiveness [86–88]. In the case of schis-
tosome egg antigen, this effect is due to omega-1, a glyco-
protein which degrades intracellular host RNA, resulting in
defective up-regulation of T cell-activating inflammatory
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Fig. 1. Sooner and later. The immediate response to immunological insult (in the form of injury, allergens or other toxic products) that causes

epithelial cell stress and death, is the release of damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP), dsDNA,

high-mobility group box 1 (HMGB1) and f-actin. Concurrently with, or consequent to DAMP release, the alarmin cytokines interleukin (IL)-1α,

IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are induced. Both DAMPs and alarmins result in activation of dendritic cells (DCs) and

group 2 innate lymphoid cells (ILC2). The responses occurring soon after immune stimulus are coloured green. ILC2 produce the type 2 cytokines

interleukin (IL)-4, IL-5 and IL-13, resulting in subsequent expansion of effector cell populations such as eosinophils and goblet cells which can

occur at both early (green arrows) and late (blue arrows) phases. ILC2-derived IL-13 also induces maturation and migration of DCs to the draining

lymph node, where DCs present antigen to naive T cells. Although ILC2 express major histocompatibility complex (MHC) class II, it is unknown

whether they present antigen directly to T cells in vivo. Through the combined efforts of ILC2 and DC, antigen-specific T helper type 2 (Th2) cells

differentiate, and produce type 2 cytokines, further stimulating, recruiting and activating type 2 effector cells, as well as IL-2, activating and

expanding ILC2 cells (blue arrows). Regulatory T cells (Tregs) produce immunosuppressive cytokines such as IL-10 and transforming growth factor

(TGF)-β, suppressing T cells and DC responses (blue solid line), and may also suppress ILC2 responses (blue dashed line). Helminths and their

products are known to suppress through at least five key mechanisms (indicated in numbered red circles): (1) secretion of apyrases, enzymes which

can degrade the inflammatory DAMP ATP to non-inflammatory adenosine monophosphate (AMP) [99,100]; (2) secreted products which inhibit

the release of IL-33 [96]; (3) a range of products suppress DC maturation to Toll-like receptor (TLR) signals [86–89]; (4) secretions induce Tregs

through the transforming growth factor (TGF)-β pathway [107]; and (5) secreted enzymes degrade eotaxin, a chemokine required for eosinophil

attraction [103].
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cytokines such as IL-12 [89]. Some helminths may divert
DC function entirely, as in the case of H. polygyrus infec-
tion, which expands a CD11cloCD103− dendritic cell pheno-
type which induces Tregs through retinoic acid release [90].
Helminth inhibition of DCs is thus a potent method to
block both initiation and recall of immune responses by
naive or memory T cells.

As well as DCs, the recent recognition of a new category
of immunocyte, the innate lymphoid cell (ILC), has
expanded our knowledge of immune response initiators.
While present in only small numbers, ILCs are capable of
initiating type 2 allergy (in the case of the ILC2) [91] or
type 1 colitis (in the case of ILC1/3 [92]). ILCs are activated
by early innate cytokines such as IL-12 and IL-18 (ILC1);
IL-25, IL-33 and TSLP (ILC2); and IL-1β and IL-23 (ILC3)
[93]. Their contribution forms part of an integrated sensory
system reliant on epithelial and stromal cell signalling,
which acts to raise the first alarm when the body is invaded
by pathogens or subject to other traumas. Recent data show
further that they can be integral to the initiation of T cell
responses through provision of IL-13 and DC recruitment
[91], as well as the amplification of T cell responses, as ILCs
are activated through T cell provision of IL-2 [94]. Further-
more, several authors have established that ILCs can express
class II major histocompatibility complex (MHC) and may
thereby be able to present antigen to T cells [94,95]. Thus,
the ILC2 compartment presents an important target for hel-
minth immunoregulation (Fig. 1).

A link between the ILC2 network and helminth
immunomodulation has emerged very recently through the
blockage of IL-33 production by secreted products of
H. polygyrus (HES; Fig. 1); as IL-33 is a key driver of ILC2
activation, its loss thereby ablates the immediately subse-
quent ILC response required for induction and amplifica-
tion of allergic responses [96]. Furthermore, both
H. polygyrus infection and HES induce the release of IL-1β
from macrophages, which counter-regulates IL-25 and
IL-33, resulting in diminished type 2 responses and greater
susceptibility to chronic helminth infection [97]. IL-33 itself
is induced by the damage-associated molecular pattern
(DAMP) extracellular adenosine triphosphate (ATP), which
is released from stressed and damaged cells [98]. Many
parasite secretions, including HES, contain multiple apyrase
enzymes [99,100] [which degrade inflammatory ATP to
non-inflammatory adenosine monophosphate (AMP)],
illustrating the multiple mechanisms through which
helminths may interfere with DAMP, alarmin and ILC
responses.

However, many questions remain as to the role of ILCs in
long-term allergic conditions (such as steroid-resistant
asthma), whether the ILC set-point is formed early in life
and whether there are regulatory ILCs as well as inducers.
The interdependence of T cell and ILC responses during
initiation and recall of the immune response also remain to
be elucidated: the potential role of ILC antigen presentation

and the potential role of Treg suppression on ILCs are as yet
unclear (Fig. 1), and may provide further insights into the
mechanisms of immune suppression used by helminth
parasites.

Downstream of the induction process, whether through
DCs and/or ILCs, the adaptive immune system is activated
and amplified, in turn stimulating key innate effector cell
populations such as neutrophils, macrophages and granulo-
cytes [53]. It appears that helminths are no less able to also
modulate these innate populations. For example, both the
dog hookworm Ancylostoma caninum and the livestock
parasite Haemonchus contortus export factors which inhibit
neutrophil activation [101,102]. Moreover, human hook-
worm products also cleave eotaxin, suppressing recruitment
of eosinophils [103]. Alternatively activated macrophages
differentiate in many helminth infection settings, and are
able to both directly suppress bystander T cell proliferation
[63] and to induce further forkhead box protein 3 (FoxP3+)
Treg differentiation [104]. These type 2 macrophages
mediate wound-healing effects [105] and quell inflamma-
tion in inflammatory conditions such as colitis [106].

Forward look

How do we now re-evaluate the hygiene hypothesis in the
light of the updated immunological picture? A number of
new conclusions can be drawn that will advance the discus-
sion of this stimulating concept. First, there is increasing
focus on the initial ‘spark’ that ignites the allergic and
inflammatory pathway. It seems likely that many infectious
organisms have evolved means to suppress early ‘alarm’
signals, such as IL-33, and so may minimize the likelihood
of a proinflammatory response being mounted.

Secondly, although this spark initiates a preliminary
round of cellular reactions from innate cells such as
monocytes and granulocytes, the response cannot take hold
without positive feedback and amplification through signals
and cytokines from the CD4+ T cell compartment. In this
sense, T cells remain in control of the outcome of all
immune responses, and promotion of anti-inflammatory
regulatory T cells is likely to remain a keystone of any
hygiene hypothesis formulation.

Thirdly, although effector T cell involvement supports a
more vigorous, extensive and long-lived reaction, this
inflammatory response is composed largely of innate cell
types ranging from eosinophils and other granulocytes
through to cells of the monocyte lineage. In many epide-
miological instances of infections modulating pathology,
underlying T cell phenotypes are not greatly altered but
there is a powerful dampening of innate effector popula-
tions that deserves further investigation.

Finally, if our understanding of the hygiene hypothesis is
to be translated into future therapies, these will largely need
to be applied to patients in whom inflammatory diseases
have already taken hold. Hence, a key factor is to consider
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the sustenance and ongoing aggravation of inflammatory
responses, and how infectious agents and their molecular
products can block or even reverse these pathways. In this
manner the hygiene hypothesis would be both validated
and transformed into a therapeutically valuable concept for
future medicine.
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