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Abstract  

Foods of plant origin are recognised as a major source of food-borne pathogens, in 

particular for Shigatoxigenic Escherichia coli (STEC). Most work for STEC and plant-based 

fresh produce has focused on the most prevalent outbreak serogroup, O157. However, non-

O157 STEC are an emerging hazard, and as such it is important to characterise aspects 

within this group that reflect their ability to colonise alternative hosts and habitats relevant to 

horticultural production. Growth kinetics were quantified for a diverse set of clinical 

enterohaemorrhagic E. coli isolates in extracts made from different tissues of spinach, 

lettuce or sprouted seeds, or from soil, to represent association with ready-to-eat fresh 

produce production. For leafy vegetables, spinach apoplast supported the fastest rates of 

growth and lettuce root extracts generated the slowest growth rates. Growth rates were 
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similar for the majority of isolates in fenugreek or alfalfa sprouted seed extracts. 

Monosaccharides were the major driver of bacterial growth. No correlations were found for 

growth rates between different serotypes or for Shigatoxin gene carriage. Thus, growth rates 

varied in a plant-dependent and isolate-dependent manner, for all plant or soil extracts 

tested, indicative of isolate-specific differences in metabolic flexibility. These findings are 

relevant for risk assessment of non-O157 STEC. 

Introduction 

Fresh produce is a major vehicle of transmission of Shigatoxigenic Escherichia coli STEC, 

where foods of plant origin account for the majority of E. coli and Shigella outbreaks in the 

USA (Painter 2013) and are second only to beef/other meat globally (Hoffmann 2017) . 

Fresh produce is often eaten raw or minimally processed and leafy vegetables such as 

spinach and sprouted seeds have accounted for major outbreaks (Jay 2007, Buchholz 

2011). STEC can use plants as secondary hosts (Holden 2015), which has implications for 

assessing the risk of infection from pre-harvest or post-harvest contaminated produce 

(Koseki, Isobe 2005, Huang 2012, Perez-Rodriguez 2014, Jensen 2015).  

The ability of bacteria to grow in media containing plant tissue is important for assessing risk, 

and proliferation is influenced by a number of physio-chemico factors (Buchanan, Klawitter 

1992). STEC growth capability on plant hosts is governed by several factors, including 

growth kinetics, biofilm formation and interaction with the plant defence response (Holden 

2009). Our recent work showed a correlation between maximum growth rates in sprouted 

seed extracts and growth on sprouts for two STEC O157:H7 isolates, but not for leafy 

vegetables spinach and lettuce, where the plant tissue type had a major impact on growth 

rates and biofilm formation (Merget 2019). Risk assessments for STEC on fresh produce 

have been carried out, but the impact of plant tissue type is not normally included (Franz 

2010, Danyluk, Schaffner 2011, Pang 2017).  
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The E. coli sub-species group of STEC comprise a diversity of genotypes and pathotypes, 

characterised by the presence of one or more bacteriophage that encode Stx toxin genes 

(Vila 2016). Recent work has shown that the presence of the Stx phage imposes a growth 

burden under certain conditions and transient metabolic rewiring. This occurred from 

introduction of two different Stx2a phages, O104 from a O104:H4 serogroup strain and 

PA8 from a O157:H7 serotype strain, into the E. coli K-12 laboratory strain MG1655 

(Berger 2019). Although non-O157 isolates are often associated with fresh produce (Feng), 

e.g. O104 with fenugreek sprouts (Buchholz 2011), less is known about their ecology outside 

human hosts and how they may adapt their metabolism, than their O157 counterparts (Valilis 

2018). This raises the question about capabilities of non-O157 STEC isolates to use 

environmentally derived substrates and proliferate in different hosts and habitats, as well as 

any influence or burden from carriage of the Stx bacteriophage. Therefore, we aimed to 

determine growth kinetics from a set of 12 non-O157 clinical enterohaemorrhagic E. coli 

(EHEC) isolates in the context of plant extracts from leafy vegetables (lettuce and spinach) 

and sprouted seeds (fenugreek and alfalfa sprouts), and soil extracts, to represent 

metabolism in a range of plant hosts and soil habitats, respectively. The EHEC group were 

selected on the basis of sequence types (ST) and included representative Stx positive and 

Stx negative isolates and an O104:H4 serotype Stx negative representative, to allow 

comparisons between different STs and between Stx phage carriage. Utilisation of clinical 

isolates generates relevant data, with added value over model or reference isolates that may 

have become lab-adapted.  

Materials and Methods 

Bacteria and defined media 

The term EHEC refers to clinical isolates, while STEC includes all isolates that encode stx 

genes. The 12 clinical EHEC isolates (Table 1) were handled under BSL3 conditions 

throughout. Bacteria were cultured overnight in Lysogeny-broth medium (LB) at 37 °C 

(Bertani 2004), with shaking at 200 rpm. The overnight culture was inoculated 1:100 in 25 ml 
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rich defined 3-(N-morpholino)propanesulfonic acid (MOPS) medium (Neidhardt 1974) with 

0.2 % glycerol and essential and non-essential amino acids, termed ‘rich defined MOPS 

glycerol’ (RDMG), for 24 h at 25 °C and 200 rpm. Bacteria were adjusted to the required 

starting optical density (OD) 600 nm prior to experiments. Defined artificial ‘lettuce apoplast’ 

or ‘sprout extract’ media was generated by adding each group of constituents to a base 

minimal MOPs medium (MMM) without carbon source and amino acids, exactly as described 

previously (Merget 2019), reproduced in Supplementary Table 3. Three variants were made 

each with reduced concentrations of each component group, by dilution of one major group 

at a time: 1:50 monosaccharides (MS), 1:10 amino acids (AA) or 1:20 organic acids (OA), 

while the other groups were at 1:1. Viable counts were determined by diluting samples in 

PBS, plating the dilutions on MacConkey (MAC) agar, incubation overnight at 37 °C and 

counted manually the next day. The experiments were conducted in triplicate. Viable counts 

and OD600 nm were plotted in Graphpad Prism (v8). 

Plant and soil extracts  

Leaf lysate, root lysate and apoplastic washings were generated from lettuce (Lactuca 

sativa) var. All Year Round and spinach (Spinacia oleracea) var. Amazon, while whole 

sprout lysates were generated from fenugreek (Trigonella foenum-graecum) and alfalfa 

(Medicago sativa). All plants were propagated and extracts made exactly as described 

previously (Merget 2019). Soil extract medium (SEM) was produced as described previously 

(Brennan 2010) from a Scottish soil sourced from a James Hutton Institute mixed arable and 

livestock farm, and subject to elemental analysis (gley soil type: organic C = 10.48 %, N = 

0.70 %; Supplementary Table 1 for inorganic analysis). A slurry was made at a soil:buffer 

ratio of 4:9 with McIlvaine’s medium (18 mM citric acid; 5 mM K2HPO4; 0.4 mM 

MgSO4*7H2O; 56.6 mM Na2HPO4; 7.6 mM (NH4)2SO4; 3 μM thiamine, 6 μM 

(NH4)2SO4*FeSO4*6H2O; 0.4 % (w/v) glycerol), manually shaken by inverting for 5 min, 

autoclaved for 1 h at 121°C, and allowed to settle overnight. The supernatant was then 

removed, centrifuged at 5,000 x g for 15 min, re-autoclaved for 20 min at 121°C.  
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Bacterial growth rates 

Growth dynamics were assessed at 25 C, which is relevant to plant growth in the Northern 

temperature zone, using a high-throughput plate reader. The E. coli isolates were grown as 

described above, adjusted to an OD600 of 0.05 in PBS (~ 2.1 x 107 cfu ml-1) and inoculated at 

a 1:10 dilution (i.e. 20 μl) in plant or soil extracts (at 1:20 w/v in dH2O) or defined media 

(RDMG), in 200 μl total volume, in multi-well plates. The EHEC isolates were grown at 25 C 

in a pre-warmed Infinite F200 Pro plate reader (Tecan, Switzerland) using 96-well multi-well 

plates. Samples were pipetted in duplicate in a randomised manner on the plate, with 

negative controls included. All growth curves in extracts were repeated independently three 

times (i.e. n = 6). Measurements (at 595 nm) were recorded every 15 min for 48 hours and 

multi-well plates were shaken for 60 seconds pre- and post-measurement. Results were 

exported from plate reader proprietary software as tab-delimited files. For model fitting, the 

replicates of each isolate and medium type were averaged (outliers that did not have the 

same growth dynamics were removed) and converted to viable counts log (cfu h-1), using a 

conversion factor of 4.2 x 108 cfu ml-1 and all growth curves were modelled using the DM-Fit 

add-in in MS Excel, as described previously (Merget 2019). A non-linear Baranyi model 

successfully fitted 96 % of the growth curves to an R2 value of at least 0.9 (Supplementary 

Table 2).  Statistical analysis (ANOVA, correlations) were carried out in GraphPad Prism (v8) 

and VSNI Genstat (v19) programs.  

Results 

E. coli growth rates in plant and soil extracts 

The EHEC isolate set comprises four pairs of the same sequence types (ST) in serogroup 

O26, O103, O121, O145 with Stx positive and Stx negative representatives; a pair in 

serogroup O26 with Stx1 and Stx1+2 representatives; a Stx negative representative of the 

O104:H4 serotype; and an additional O145:NM serotype Stx negative representative (Table 
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1). Growth dynamics of the EHEC isolates (Supplementary Table 2) were measured in the 

plant extracts from representative edible species: two leafy greens (lettuce, spinach) and two 

sprouted seeds (fenugreek, alfalfa) (summarised in Table 2). Plant tissues for the leafy 

greens of total lysates of leaves, total lysates of roots, and apoplastic washing recovered 

from leaves represented edible, non-edible and internalised tissues, respectively.  

In general, EHEC growth rates in the leafy vegetable extracts produced similar patterns 

between the isolates, but this was not as obvious in the sprouted seed extract (Fig. 1). 

Similar patterns of EHEC growth rates occurred in spinach and lettuce extract types, 

whereby apoplastic extracts supported the fastest growth rates while roots extracts 

generated the slowest growth rates. The highest growth rates occurred in spinach extracts 

compared to lettuce or the sprouted seeds (Fig. 1A ‘vs’ Fig. 1B, IC), with a significant 

difference between plant species types (p < 0.001: two-way ANOVA on isolates & all plant 

species). Differences between growth rates in the sprouted seed extracts had a higher 

dependence on the isolate than the extract / plant species type (Fig. 1C), with 8.80 % and 

4.47 % of variation from ‘isolates’ and ‘species’, respectively; p < 0.0001 for isolate, species 

or interaction (two-way ANOVA on and fenugreek/alfalfa). Growth rates in the no-extract 

control medium (RDMG) was relatively consistent between the isolates, ranging between 

0.069 – 0.112 cfu h-1 (Fig. 1D) and supported the highest growth maxima of the conditions 

tested, i.e. the upper asymptote of the sigmoid curve. The isolates exhibiting the highest 

growth rates were EHEC isolate 3905 (O145:NM Stx+) in spinach and lettuce extracts, while 

EHEC isolate 3907 (O145:NM Stx-) grew fastest in fenugreek spout extracts. The lowest 

growth rates were observed in lettuce root lysate from EHEC isolates 3905, 3917 (O121:H19 

Stx-) and 3900 (O26:NM Stx+).  

Growth dynamics were measured in soil extracts to mimic growth in soil and soil 

contaminated irrigation water. In general, the maximum growth rates of the clinical EHEC 

isolates was lower than that seen in the no-extract control medium (RDMG), but not 

universally (Fig. 1D). The highest growth rate was seen for isolate 3916 (O121:H19 Stx+) 
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and the lowest for isolate 3900 (O26:NM Stx+). The degree of variance between isolates 

(18.42 %) was similar to that for soil extract and RDMG media types (16.73 %: two-way 

ANOVA on isolates and SEM/RDMG). Growth maxima was significantly restricted in soil 

extracts (Supplementary Table 2) to an average of 8.41 log cfu (SD 0.08) compared to 9.05 

log cfu (SD 0.04) in RDMG for all isolates grouped together (p < 0.0001: one-way ANOVA 

on ‘media type’). 

Comparison of the growth rates of the EHEC clinical isolates in plant extracts with that of a 

set of reference E. coli isolates, including two in serogroup O157, measured in a previous 

study (Merget 2019), showed significantly lower growth rates for the EHEC clinical isolates 

(p < 0.0001: two-way ANOVA on ‘isolate’ and ‘media type’ factors). Comparisons between 

independent experimental set-ups were made possible from data normalised to cfu h-1 and a 

reference isolate (O157:H7 isolate Sakai) that was measured in both systems in no-extract 

medium (RDMG). There was no significant difference in µ for the reference (Sakai)  between 

either of the plate readers (Infinite F200 Pro, 0.098 ± 0.0024 log (cfu h-1) used here; 

Bioscreen C, 0.097 ± 0.0019 log (cfu h-1) used previously), showing that the difference with 

the EHEC clinical isolates was real.  

The influence of plant extract metabolites on E. coli growth 

To determine any influence of the major metabolite groups on growth rates of the isolates in 

the plant extracts, defined, ‘artificial’ growth media were generated that mimicked the main 

plant extract metabolites. The six principal metabolites were selected from lettuce apoplast 

or sprout extracts to represent contrasting metabolite profiles (Supplementary Table 3, taken 

from (Merget 2019)). The impact of the major groups of monosaccharides (MS), organic 

acids (OA) or amino acids (AA) were assessed separately from dilutions, to restrict their 

effect, i.e. 1:50 MS, 1:10 AA or 1:20 OA, while the other groups were at 1:1. Higher growth 

rates occurred in the sprout extract artificial medium compared to lettuce artificial medium (p 

< 0.0001: t-test on undiluted lettuce and sprout artificial media), and the growth rate patterns 

of the isolates were similar in both media types (Fig. 2). Restriction of amino acids or organic 
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acids in lettuce medium, or amino acids in sprouted seed medium had minimal or no impact 

on maximum growth rates, while restriction of the monosaccharide group (MS) resulted in ~ 

3-fold decrease in growth rate under all conditions tested (Fig. 2). The MS-dependent effect 

occurred for all EHEC isolates (39.04 % variation), although there were also significant 

isolate dependencies (4.75 % variation, p < 0.0001: two-way ANOVA on ‘isolate’ and all 

iterations of lettuce/sprout artificial media type). 

Influence of Stx phage on growth rates 

To determine the influence of the Stx phage on growth rates, ANOVA was carried out for the 

set of EHEC isolates grouped by Stx phage carriage (presence or absence). There was no 

significant difference in growth rates for the extracts except of lettuce root lysate, where the 

average growth rate was lower for isolates encoding Stx phage compared to those without 

Stx (0.0132 log cfu ‘vs’ 0.0231 log cfu: p 0.041; one-way ANOVA on ‘Stx carriage’). There 

was no difference in growth rates between Stx carriage for the artificial media types. Neither 

was there any difference in growth rates by serotype, for all of the media types tested. 

Therefore, difference in EHEC maximal growth rates did not vary on a toxin- or serotype-

group basis, rather on an individual isolate basis.  

Discussion 

The most common STEC associated with food-borne illness belong to serogroup O157, 

which has become the archetypal serogroup for research, yet the STEC sub-species 

includes a diversity of genotypes with an estimate 470 serotypes (FAO/WHO STEC Expert 

Group 2019). Non-O157 STEC serogroups have been associated with food-borne illness 

from plant-derived foods (Feng), including the very large-scale outbreak of serotype 

O104:H4 from fenugreek sprouts in 2011 (Buchholz 2011), and serogroup O26 associated 

more unusual vehicles such as flour (CDC 2019) (H-type not provided). Since the number of 

reported EHEC outbreaks from non-O157 STEC appears to be increasing (Valilis 2018), and 

foods of plant origin represent a major source of food-borne transmission (Hoffmann 2017) 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/advance-article-abstract/doi/10.1093/fem
sle/fnaa030/5739917 by guest on 25 February 2020



 

 

there is a requirement to investigate how non-O157 STEC are able to persist in alternative 

hosts and habitats in order to generate more robust risk assessments.  

Plant extracts are representative of damaged or injured plant tissue, which could occur pre-

harvest or during production and packaging, and growth rates in these tissues can be used 

to inform worst-case scenarios, like failures in critical control points (e.g. refrigeration). 

Equally, soil extracts are representative of soil-contaminated irrigation water and direct 

contamination of soil. Our previous work showed a correlation between the growth rates of 

O157:H7 STEC isolates in extracts from sprouted seeds (alfalfa or fenugreek) and growth on 

the growing sprouts (Merget 2019), but not for leafy vegetables (lettuce or spinach) as 

growth rates were restricted in the living plants. This indicated specificity in the interactions, 

and influence from the plant defence response. Here, a large degree of variation occurred 

between non-O157 clinical EHEC isolates in their capacity to grow in plant and soil extracts, 

with no apparent association with serotype or Stx carriage.  

Apoplast extracts, representative of the internal environment of leaves, tended to support the 

highest growth rates of the isolates, especially from spinach. This mirrored the situation for 

STEC serotype O157:H7 growth rates in spinach tissue, where the bacteria also exhibited 

an ability to internalise into leaves and roots of living spinach plants (Merget 2019). In 

contrast, the lowest growth rates tended to occur in root extracts, especially for lettuce. 

Edible lettuce is well-known for phenolic secondary metabolites, which are bitter-tasting and 

inhibitory to bacterial growth (Daglia 2012). Less is reported on the root tissue metabolite 

composition, but inhibitory intracellular compounds may have been released in the 

generation of the whole root lysate extracts, since in contrast, the rhizosphere of living 

lettuce plants enable STEC serotype O157:H7 to persist for at least 10 days (Wright 2017). 

Growth rates in sprouted seeds extracts varied between the isolates, and for most (9/12) 

there was little difference based on plant species (fenugreek ‘vs’ alfalfa), but for three 

isolates (in serogroup O145, O121) there were more marked differences, indicative of a 

degree of specificity.  
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In general, the patterns of growth kinetics of the non-O157 panel was similar to the O157 

isolates tested previously (Merget 2019), although the growth rates tended to be lower. The 

O157 isolates tested may have a comparatively enhanced metabolic capacity for plant-

derived substrates since they were from plant-associated outbreaks (white radish sprout; 

lettuce). The clinical E. coli O104:H4 isolate tested here (Zangari 2013) was collected in the 

same 2011 outbreak context as the isolate from fenugreek seeds (Buchholz 2011) and 

although a level of adaptation to fenugreek sprouts has been suggested for the O104:H4 

isolate (Juneja 2014, Grad 2012), there is also evidence to show that other serotypes (e.g. 

O157:H7) are more capable on plants, in terms of seed survival (Knodler 2016) and growth 

on sprouted seeds (Xiao 2014, Knodler 2016).  

Plant and soil extracts contain complex mixtures of metabolites, and it is most likely that 

differences in metabolic capacity between the isolates explain the growth rate differences. 

This is supported by metabolic profiling of different STEC serotypes, which showed distinct 

clusters based on carbohydrate fermentation (Posse 2007), and restrictions in some 

metabolic pathways. Serogroup O26 were unable to ferment l-rhamnose, which is a major 

component of plant cell wall pectin, complexed as rhamnogalacturonan (Caffall, Mohnen 

2009). Similarly, some serogroup O103 and O26 isolates could not ferment l-arabinose, also 

a component of pectin, which could partly explain the lower growth rates of these isolates on 

lettuce root exudates, since pectin can be present in root mucilage (Caffall, Mohnen 2009). 

Freely available arabinose was detectable in all of the plant extracts, but at minimal levels 

compared to the major glycans of sucrose, glucose and fructose (Merget 2019). One of the 

most abundant glycans in lettuce root lysates is raffinose (Merget 2019), which was not 

fermented by the O145 serotypes (Posse 2007). However, the three O145 isolates tested 

here were not restricted for growth, with the exception of isolate 3905 in lettuce root lysates, 

indicative of redundancy in the inability to ferment raffinose. Some isolates of serogroup O26 

were restricted for growth in soil extracts, suggesting a common genetic component to 

metabolic pathway limitation. It was notable that the growth maxima was universally lower in 
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soil extracts than in RDMG or the sprouted seed extracts, implying earlier exhaustion of a 

key metabolite(s). Growth rates in the artificial media were only reduced when the 

monosaccharides were limited, showing a dominant effect over organic or amino acids, as 

for STEC O157 (Merget 2019). This suggests that the soil extracts were lacking in a 

saccharide component that reduced growth maxima.     

Carriage of the Stx bacteriophages did not show any impact on growth rates of the isolates 

under the conditions tested; although there was a reduction for the Stx-positive group in 

lettuce root lysates, growth rates in this media type were relatively low compared to other 

substrates. This contrasts with the restriction in growth rates observed following introduction 

of Stx2a into a non-STEC genetic background (Berger 2019). The difference is likely due to 

the complex complement of metabolites in the extracts compared to a minimal medium 

supplemented with a single metabolite, thereby resulting in redundancy in the response. 

Indeed, this is supported by the growth rates in diluted artificial media, where there is one 

example of enhanced growth rates for the Stx+ isolate (3903) compared to its Stx- 

counterpart (3904), in either lettuce or sprout artificial media restricted in monosaccharides. 

Therefore, carriage of the Stx phage did not appear to impose any disadvantage in growth in 

either plant extracts or soil extracts, for the non-O157 serogroups tested.  

STEC is classified for risk to human health on the basis of virulence gene carriage 

(FAO/WHO STEC Expert Group 2019), but serotype classification is useful for historical 

context. The group of isolates tested here represent of a diverse group of isolates associated 

with clinical enterohaemorrhagic disease, although the source attribution is unknown 

(Bielaszewska 2008), and could be meat / vegetable food or environmental. Here, we found 

that neither serotype nor carriage of the Stx virulence factor influenced their growth in soil or 

plant extracts, which was dependent instead on the specific isolate type and extract type. 

This implies that it is the metabolic flexibility of E. coli that allows certain isolates to inhabit 

alternative hosts and habitats.  
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Figure 1 Maximum growth rates (μ) of clinical EHEC isolates in plant extracts. 

Maximum growths rates (μ) expressed as log (cfu hr-1) calculated using the Baranyi model 

for the EHEC isolates in in spinach (A) or lettuce (B) extracts: aploplast (black squares), leaf 

lysates (green triangles) and root lysates (red diamonds) extracts; or in alfalfa (green 

diamonds) or fenugreek (red circles) sprouts lysate extracts (C); or in soil extract medium 

(SEM) (green squares) or in RDMG (red triangles) as no-plant extract control (D), at 25 °C. 

Individual isolate names are provided along with the relevant serogroup (O26; O103; O145; 

O121; O104) and red underlines indicate Stx+. Each point is the average rate (n = 6), with 

standard errors of the model fit indicated by bars. 
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Figure 2 Maximum growth rates (μ) in artificial media mimicking plant extracts. 

Maximum growths rates (μ) expressed as log (cfu hr-1) calculated using the Baranyi model 

for the EHEC isolates at 25 °C in artificial media mimicking (A) lettuce apoplast or (B) sprout 

lysates (a mixture of alfalfa and fenugreek sprout metabolites) at specified dilutions. The 

base minimal MOPS medium (MMM) was supplemented with monosaccharides (MS), 

organic acids (OA) or amino acids (AA) for lettuce (L) or sprout (S) media at the dilution 

specified (AA 1:10; OA 1:20; MS 1:50), or all three component undiluted (MMM:Lettuce; 

MMM:Sprouts). Individual isolate names are provided along with the relevant serogroup 

(O26; O103; O145; O121; O104) and red underlines indicate Stx+. Each point is the average 

rate with standard errors of the model fit indicated by bars. 
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Table 1  Clinical EHEC and EPEC isolates used in this study 

EHEC clinical isolates were used with permission from Prof. Dobrindt (University of 

Münster). ST = sequence type, Stx = Shiga toxin designation, FliC = flagella types (N.B. 

non-motile isolates still encode flagella), Patho = pathotype.  

Isolate Name Serotype FliC ST Stx Patho Reference 

3899 (2245/98) O26:H11 H11 21 Stx1 EHEC (Mellmann 2008) 

3900 (5080/97) O26:NM H11 21 Stx1+Stx2 EHEC (Mellmann 2008) 

3901 (1530/99) O26:H11 H11 29 Stx2 EHEC (Mellmann 2008) 

3902 (1676/99) O26:H11 H11 29 negative EPEC (Bielaszewska 2008) 

3903 (2969/99) O103:H2 H2 17 Stx2 EHEC (Unkmeir, Schmidt 2000) 

3904 (4931/00) O103:H2 H2 17 negative EPEC (Bielaszewska 2008) 

3905 (5122/99) O145:NM H28 32 Stx2 EHEC (Bielaszewska 2008) 

3906 (6519/95) O145:NM H28 32 negative EPEC (Bielaszewska 2008) 

3907 (488/99) O145:NM H28 32 negative EPEC (Bielaszewska 2008) 

3916 (2763/99) O121:H19 H19 655 Stx2 EHEC (Bielaszewska 2008) 

3917 (6316/94) O121:H19 H19 655 negative EPEC (Bielaszewska 2008) 

3918 (C227/11cu)  O104:H4 H4 678 negative EPEC (Zangari 2013) 
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Table 2 Growth media used in the study 

Name Components Use 

RDMG Rich defined MOPS glycerol Control medium for 

inoculation of bacteria into 

plant and soil extracts 

Leaf apoplast Apoplast washings from spinach or 

lettuce leaves 

Used neat 

Leaf lysate A whole cell lysate of spinach or lettuce 

leaves 

Used neat 

Root lysate A whole cell lysate of spinach or lettuce 

roots 

Used neat 

Sprout lysates A whole cell lysate of fenugreek or alfalfa 

sprouts 

Used neat 

Soil extract A McIlvaine’s medium-extract of Scottish 

soil 

Used neat 

MMM Minimal MOPS medium Base medium for generating 

artifical lettuce and sprout 

medium 

AA Amino acid mixture derived from lettuce 

or sprouts 

used to supplement MMM at 

neat or 1:10 dilution 

OA Organic acid mixture derived from lettuce 

or sprouts 

used to supplement MMM at 

neat or 1:20 dilution 

MS Monosaccharide mixture derived from 

lettuce or sprouts 

used to supplement MMM at 

neat or 1:50 dilution 
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