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Abstract: This paper constructs an Environmental Sustainability index in order to investigate regional 

efficiency in China between 2000 and 2012. The Environmental Sustainability index consists of a 

Production Efficiency index and an Eco-efficiency index. A multiplicative relational network data 

envelopment analysis model is applied, and a window analysis is conducted to capture the efficiency 

trends over time. The results reveal significant heterogeneity among Chinese provinces for the 

Environmental Sustainability and the Eco-efficiency indices, while there is a high level of Production 

Efficiency across all provinces. Furthermore, there are large differences among geographical areas. 

Specifically, high Production Efficiency levels are reported for the eastern area, whereas, high Eco-

efficiency levels are reported for the western area. The reported results provide valuable insights to 

decision makers, revealing a high potential for improvement in the overall Environmental Sustainability 

score, especially for the eastern and middle areas. In addition, regional heterogeneity should be taken 

into account when considering new legislation. 
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1. Introduction 

The greenhouse effect is one of the major environmental challenges faced by countries in modern society. 

At the centre of public dialogue is international cooperation, which is vital in order to tackle this 

challenge. Starting with the Kyoto Protocol, countries cooperate under the United Nations Framework 

Convention on Climate Change (UNFCCC). The newly sealed Paris Agreement aims at reducing the 

carbon emissions and the average temperature, which meanwhile has been risen by 2 degrees Celsius 

above the pre-industrial levels.  

As one of the largest countries in the world, the reduction of carbon emission in China has a 

prominent role on the global environmental agenda. In 2016, total carbon dioxide emissions of China 

accounted for the 29% of the global emissions (Olivier et al., 2017). In line with the sustainable 

development principals, China has already promised to reduce its carbon intensity by 40%-45% by 2020 

and 60%-65% by 2030, compared to the 2005 levels. The sustainability of the Chinese economy relies 

heavily on energy consumption (Wu et al., 2017), which not only leads to soaring energy prices, but also 

causes air pollution (Chen et al., 2013, 2016). In addition, the dependence of energy consumption on the 

fossil fuels triggers negative health effects (Tanaka, 2015). Furthermore, economic growth has been 

slowed down after the global financial crisis, which can also be attributed to the ageing population, the 

declining rural workforce, and substantial energy and environmental issues. As a result, China is trying 

to shift its strategy of economic development from the gross domestic product (the “Old Normal Growth”) 

to a holistic economic development, which includes economic, political, cultural, social and 

environmental development. This new phase of economic development has been described as the “New 

Normal”. 

There is a growing interest on the sustainable development across the literature. The concept of 

sustainability as depicted by Brundtland (1987) is the “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs”. Sustainable 

development drew the attention of the academic literature after the UN World Commission on 

Environment and Development in 1978. Our study considers the aforementioned issues and contributes 

to the sustainable development literature by proposing an innovative methodological framework in order 

to study Chinese regions over time. An Environmental Sustainability Index (ESI) is constructed, using a 

network data envelopment analysis (DEA) model. The ESI is decomposed into two sub-indices, the 

Production Efficiency Index (PEI) in the first stage and Eco-Efficiency Index (EEI) in the second stage.  
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The contribution of this paper is two-fold. As for the methodological contribution, we extend 

the multiplicative network DEA model of Kao and Hwang (2008) to account for multiple time periods, 

using window analysis (Charnes et al., 1994). To the best of our knowledge, this is the first time that the 

multiplicative network DEA model is extended to a window analysis framework. Regarding our 

empirical contribution, we study the environmental sustainability of Chinese regions during 2000-2012, 

taking into account both the production efficiency and the eco-efficiency dimensions. This is in line with 

the “New Normal” strategy for the economic development of China. In addition, we take into account 

the geographical location, as well as the implementation of environmental regulations for each region. 

The remainder of this paper is organized as follows: Section 2 presents the literature review, 

and Section 3 demonstrates the methodology. Section 4 describes the data and discusses the empirical 

analysis for the Chinese provinces and Section 5 provides our conclusions. 

 

2. Literature Review 

The possible synergies between economic and environmental performance have been examined across 

the literature (Huppes and Ishikawa, 2011; Wang et al., 2018). The concept of sustainable development 

encompasses both the economic and the environmental aspects. Kuosmanen and Kortelainen (2005) 

suggested that a significant tool towards sustainability is eco-efficiency, which has the objective to 

maximize the economic production with the least possible environmental impact. Moreover, Huppes and 

Ishikawa (2005) describe four different ways eco-efficiency can be defined. In line their definitions, this 

study adopts the definition of eco-efficiency as the ratio of environmental pressure to production output, 

which is described as an “environmental intensity” index. According to Wusthorn et al. (2011) an 

environmental intensity index has the attractive feature of decoupling, since it examines the capacity of 

the economy to grow without hampering the environment. Decoupling is a significant concept towards 

sustainability (Lu et al., 2015). 

DEA is considered an important tool for the assessment of environmental efficiency (Flamos et 

al., 2004; Peng et al., 2017; Song et al., 2017). The most challenging aspect in defining an environmental 

DEA model is the modelling of undesirable outputs (Aparicio et al., 2019). According to the traditional 

axioms by Shephard (1970), (i) inputs are strongly disposable, meaning that the same amount of good 

and undesirable outputs can be produced using more inputs, (ii) good outputs are strongly disposable, 

meaning that a lower amount of good outputs can be produced using the same amount of inputs and 
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undesirable outputs. However, the problem arises in the case of undesirable outputs, because assuming 

strong disposability of undesirable outputs would lead to costless reduction (Førsund, 2009). 

Several approaches have been suggested to tackle this issue which can be divided into two 

groups (Scheel, 2001). The first group applies a data transformation on undesirable outputs and includes 

them in the model as good outputs, keeping the traditional axioms by Shephard (1970) intact. The 

undesirable outputs can be transformed by using either the inverse of the output (Lovell et al., 1995) or 

a translation vector (Seiford and Zhu, 2002, 2005). Imposing strong disposability on the transformed 

variable does not lead to a costless reduction (Hampf, 2018). The second group modifies the disposability 

assumptions. The most prominent approach in this group imposes weak disposability on undesirable 

outputs and assumes the joint production of good and undesirable outputs (Färe and Grosskpof, 2003; 

Kuosmanen, 2005). Under this approach, undesirable outputs can be decreased only if a simultaneously 

decrease of the good outputs takes place. Hampf (2018) includes in this group the studies which use 

undesirable outputs as inputs, an approach which was introduced by Hailu and Veeman (2001).  

Our modelling framework is in line with Zaim (2004), who applied a directional distance 

function approach assuming weak disposability of undesirable outputs, to construct an economic index 

and an environmental index. The ratio of the two indices can be considered as an environmental intensity 

index. Different from Zaim (2004), this paper uses a network DEA framework; therefore, it is able to 

consider both production efficiency and the eco-efficiency dimensions at the same time, and estimate an 

overall ESI. Since the final outputs in our modelling framework are only undesirable outputs, weak 

disposability and null-joint production can no longer apply. Therefore, we choose the data translation 

approach in order to handle undesirable outputs (Seiford and Zhu, 2002, 2005).  

As the environmental and energy issue has become an increasing concern for China’s economic 

development and social welfare, the related research on the sustainable efficiency or eco-efficiency is 

growing rapidly, especially during the recent years (See Table 1). However, the majority of these studies 

employ the conventional DEA model to analyse the eco-efficiency, without considering possible network 

structures.  

 

Table 1 about here 
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3. Methodology 

Starting with the pioneer work of Färe and Grosskopf (1996), network data envelopment analysis (DEA) 

opens the “black box” inside the Decision Making Unit (DMU). Instead of considering only the inputs 

which enter the system in the beginning of the process and the final outputs at the end of the process, 

network DEA allows the DMU to consist of two or more stages.  The stages can either be connected in 

series with intermediate variables as links, or operate in parallel. Intermediate variables serve as outputs 

in one stage and inputs in another stage. Kao and Hwang (2010) classify these models into three 

categories: independent, connected and relational. This paper uses the relational network DEA approach, 

which considers the interactions among the stages due to intermediate variables, consequently it is able 

to calculate stage efficiencies and assumes a mathematical relationship among them. 

 

3.1 The multiplicative efficiency decomposition approach  

This section presents the network DEA model of Kao and Hwang (2008) which assumes a multiplicative 

relationship between the two stages. For the jth DMU (𝑗 = 1, … , 𝑛)  we define 𝑥𝑖𝑗   (𝑖 = 1, … , 𝑚)   𝑧𝑑𝑗 

(𝑑 = 1, … , 𝐷)  and 𝑦𝑟𝑗  (𝑟 = 1, … , 𝑠)  as the ith input  the dth intermediate variable and the rth output 

respectively and 𝑣𝑖  𝑤𝑑 and 𝑦𝑟 as their respective multipliers. The overall efficiency for DMU 0 is as 

follows: 

 𝐸0 =
∑ 𝑢𝑟

∗𝑦𝑟0
𝑠
𝑟=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

≤ 1, 𝐸0
1 =

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

≤ 1, 𝐸0
2 =

∑ 𝑢𝑟
∗𝑦𝑟0

𝑠
𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

≤ 1 
(1)  

Under the multiplicative efficiency decomposition approach  the overall efficiency can be calculated as 

the product of the first and second stage efficiencies: 𝐸0 = 𝐸0
1 × 𝐸0

2 . It should be noted here that 

following Kao and Hwang (2008) the multipliers of the intermediate variables are the same for the first 

and second stage  an assumption which connects the two stages and allows the fractional model to convert 

into a linear one. It has been argued that the multiplicative network DEA model cannot be extended to 

the case of variable returns to scale (VRS) (Chen et al.  2009). However  Wang and Chin (2010) 

demonstrated an approach to extend Kao and Hwang’s (2008) model to VRS. Note that 𝑢1 and 𝑢2 are 

free variables which account for the variable returns to scale. 

 

 

𝐸0 = 𝑚𝑎𝑥𝐸0
1 × 𝐸0

2 = [
∑ 𝛾𝑟𝑦𝑟0

𝑠
𝑟=1 + 𝑢2

∑ 𝜔𝑖𝑥𝑖0
− 𝑢1𝑚

𝑖=1

] 
  

(2)  

s.t. ∑ 𝛾𝑟𝑦𝑟j

𝑠
𝑟=1

∑ 𝜔𝑖𝑥𝑖j
− 𝑢1𝑚

𝑖=1

≤ 1, 
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 ∑ 𝛾𝑟𝑦𝑟j
+ 𝑢2𝑠

𝑟=1

∑ 𝜔𝑖𝑥𝑖j

𝑚
𝑖=1

≤ 1, 
 

 𝛾𝑟 , 𝜇𝑑, 𝜔𝑖 ≥ 0  

 𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠 

𝑢1 and 𝑢2 are free in sign 

 

 

Using the Charnes and Cooper (1965) transformation  model (2) is equivalent to: 

 

 

𝐸0 = 𝑚𝑎𝑥 ∑ 𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

+ 𝑢2 
  

(3)  

s.t. 
∑ 𝜔𝑖𝑥𝑖0

− 𝑢1 = 1

𝑚

𝑖=1

 
  

 

∑ 𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝜔𝑖𝑥𝑖𝑗
+ 𝑢1 ≤ 0

𝑚

𝑖=1

, 
 

 

∑ 𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

+ 𝑢2 ≤ 0, 
 

 𝛾𝑟 , 𝜇𝑑, 𝜔𝑖 ≥ 0  

 𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠  

 𝑢1 and 𝑢2 are free in sign  

In case the solution and multipliers in (3) are not unique, an additional linear program is needed 

in order to calculate the stage efficiencies. Following Kao and Hwang (2008), we decide which of the 

two stages has a priority and we solve the linear program for that stage first, keeping the overall efficiency 

at the same level as calculated in (3)1.  

 

 

𝐸0
2 = 𝑚𝑎𝑥 ∑ 𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

+ 𝑢2 
  

(4)  

s.t. 

∑ 𝜇𝑑𝑧𝑑0
= 1

𝐷

𝑑=1

 

  

                                                 
1 In this study, priority is given to the efficiency of the second stage because we primarily want to focus 

on the environmental intensity index and the relationship between economic production and 

environmental pollution. 



7 

 

 
∑ 𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

− 𝐸0 ∑ 𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

+ 𝐸0 ∙ 𝑢1 + 𝑢2 = 0, 
 

 

∑ 𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝜔𝑖𝑥𝑖𝑗
+ 𝑢1 ≤ 0

𝑚

𝑖=1

, 
 

 

∑ 𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

+ 𝑢2 ≤ 0 

 

 𝛾𝑟 , 𝜇𝑑, 𝜔𝑖 ≥ 0  

 𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠 

𝑢1 and 𝑢2 are free in sign 

 

We can calculate the efficiency of the first stage using the optimal solutions from (3) and (4): 

 
𝐸0

1 =
𝐸0

𝐸0
2 

(5)  

 

3.2 Window analysis of the multiplicative efficiency decomposition approach 

DEA window analysis, which originates at the seminal work of Charnes and Cooper (1984), is able to 

handle data which varies over time and is based on moving averages. Specifically, this approach 

evaluates the efficiency of a DMU against the efficiency of other DMUs in the same and other periods 

and also against its own performance over other periods. According to Asmild et al. (2004), window-

based DEA analysis captures the efficiency trends over time. Alternative models for the performance 

analysis over time, such as the global meta-frontier model (Kao and Liu, 2014) which is widely used for 

the eco-efficiency analysis (Zhang and Chen 2017), treat an additional time period differently. While the 

addition of a new time period in window analysis will not have an effect on previous performance 

changes, in the global-meta frontier model the re-estimation of all performance changes will be required, 

including for previous periods (Pastor et al. 2011). 

The first step for the window analysis is to define the size of the rolling window, which is the 

number of years to be considered every time we run the model. In order to increase the credibility of our 

results, we choose a narrow three-years window (Asmild et al., 2004). Specifically, we consider n DMUs 

(𝑗 = 1, … , 𝑛) for Ψ periods (𝜓 = 1, … , 𝛹) where 𝑥𝜓
𝑗

= (𝑥1𝜓
𝑗

, 𝑥2𝜓
𝑗

, … , 𝑥𝑚𝜓
𝑗

)′ , 𝑧𝜓
𝑗

= (𝑧1𝜓
𝑗

, 𝑧2𝜓
𝑗

, … , 𝑧𝐷𝜓
𝑗

)′ 

and 𝑦𝜓
𝑗

= (𝑦1𝜓
𝑗

, 𝑦2𝜓
𝑗

, … , 𝑦𝑠𝜓
𝑗

)′ describe the input (𝑖 = 1, … , 𝑚), the intermediate variable (𝑑 = 1, … , 𝐷)  

and the output vector (𝑟 = 1, … , 𝑠)  of the jth DMU at time ψ. 
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Furthermore,  𝑤𝑞 with 𝑛 × 𝑞 observations define the window which starts at time w, 1 ≤ 𝑤 ≤

𝛹 and has a width of q, 1 ≤ 𝑞 ≤ 𝛹 − 𝑤. Then, matrix of inputs can be defined as:  

𝑋𝑤𝑞
= (𝑥𝑤

1 , … , 𝑥𝑤
𝑛 , 𝑥𝑤+1

1 , … , 𝑥𝑤+1
𝑛 , … , 𝑥𝑤+𝑞

1 , … , 𝑥𝑤+𝑞
𝑛 ) 

the matrix of intermediate variables can be defined as:  

𝑍𝑤𝑞
= (𝑧𝑤

1 , … , 𝑧𝑤
𝑛 , 𝑧𝑤+1

1 , … , 𝑧𝑤+1
𝑛 , … , 𝑧𝑤+𝑞

1 , … , 𝑧𝑤+𝑞
𝑛 ) 

and the matrix of outputs can be defined as:  

𝑌𝑤𝑞
= (𝑦𝑤

1 , … , 𝑦𝑤
𝑛 , 𝑦𝑤+1

1 , … , 𝑦𝑤+1
𝑛 , … , 𝑦𝑤+𝑞

1 , … , 𝑦𝑤+𝑞
𝑛 ) 

The VRS version of the multiplicative network DEA model can be represented as follows:  

  𝐸𝑤𝑞𝜓 = max 𝛾 ∙ 𝑦𝜓
′ + 𝑈2 (6)  

s.t. 𝜔 ∙ 𝑥𝜓
′ − 𝑈1 = 1  

 𝛭 ∙ 𝑍𝑤𝑞
− 𝛺 ∙ 𝑋𝑤𝑞

+ 𝑈1 ≤ 0  

 𝛤 ∙ 𝑌𝑤𝑞
− 𝛭 ∙ 𝑍𝑤𝑞

+ 𝑈2 ≤ 0  

 𝛾𝑟 , 𝜇𝑑, 𝜔𝑖 ≥ 0  

 𝑗 = 1, … , 𝑛 × 𝑞;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠  

Accordingly, the efficiency of the second stage is: 

 𝐸𝑤𝑞𝜓
2 = max 𝛾 ∙ 𝑦𝜓

′ + 𝑈2 (7) 

s.t. 𝜇 ∙ 𝑧𝜓
′ = 1   

 𝛾 ∙ 𝑌𝑤𝑞
− 𝐸𝑤𝑞

∙ 𝛺 ∙ 𝑋𝑤𝑞
+ 𝐸𝑤𝑞

∙ 𝑈1 + 𝑈2 = 0  

 𝛭 ∙ 𝑍𝑤𝑞
− 𝛺 ∙ 𝑋𝑤𝑞

+ 𝑈1 ≤ 0  

 𝛤 ∙ 𝑌𝑤𝑞
− 𝛭 ∙ 𝑍𝑤𝑞

+ 𝑈2 ≤ 0  

 𝛾𝑟 , 𝜇𝑑, 𝜔𝑖 ≥ 0  

 𝑗 = 1, … , 𝑛 × 𝑞;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠  

Finally, the efficiency of the first stage using the optimal solutions from (6) and (7) is: 

 
𝐸𝑤𝑞𝜓

1 =
𝐸𝑤𝑞𝜓

𝐸𝑤𝑞𝜓
2  

(8)  
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4. Empirical Analysis 

4.1 Variable and model description 

Our empirical application investigates the sustainability efficiency of the 30 Chinese provinces (or 

autonomous regions, municipalities)2 for the time period 2000-2012 based on the data availability. As 

most of the relevant data is missing, Tibet is dropped from the sample. Considering the particularity of 

Hong Kong, Macau and Taiwan, they are also excluded from the sample. The data is collected from the 

China Statistical Yearbook (National Bureau of Statistics of China, 2013a), China Environment 

Statistical Yearbook (National Bureau of Statistics of China, 2014) and China Energy Statistical 

Yearbook (National Bureau of Statistics of China, 2013b), dating from 2001 to 2013. 

The first stage of the decomposed sustainability efficiency measures the production efficiency, 

whereas, the second stage measures the eco-efficiency. Following Huppes and Ishikawa (2005), eco-

efficiency can be defined as environmental intensity and calculated as the ratio of the undesirable output 

which is the environmental pollutant to desirable output which is the economic production. The 

production process of each province consumes capital, labour and energy as inputs and produces GDP 

which is the intermediate variable. The eco-efficiency process uses GDP as input and produces CO2 and 

SO2 which are the final outputs. Note that the final outputs of the DMU are undesirable, meaning that a 

higher value of CO2 and SO2 should lead to a lower efficiency score. In order to accommodate for 

undesirable outputs, Seiford and Zhu’s (2002) transformation is applied following formula: 

 𝑓(U) = −U + 𝛽. (9)  

In equation (9), U represents the vector of the undesirable outputs, which is multiplied by -1. In addition, 

𝛽 represents a proper translation vector such that 𝑓(𝑈) > 0. Note that weak disposability is usually 

assumed for the environmental problems, since the reduction of an environmental pressure such as CO2, 

requires the reduction of the economic production (Färe and Grosskopf 2004). However, since the final 

outputs in our modelling framework are only undesirable outputs, weak disposability and null-joint 

production can no longer apply. Therefore, we choose the data translation approach in order to handle 

undesirable outputs (Seiford and Zhu, 2002, 2005). 

The general framework of our overall two-stage ESI is straightforward. Specifically, a high 

value of ESI means that the economy is able to expand (in the first stage) without hampering the 

                                                 
2 There are four municipalities, including Beijing, Shanghai, Tianjin and Chongqing. Meanwhile, there 

are five autonomous regions, including Xinjiang, Tibet, Inner Mongolia, Guangxi and Ningxia. They all 

have the same the administrative status with other provinces. 
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environment (in the second stage). Therefore, our overall ESI index satisfies the concept of sustainability 

and serves as a decoupling indicator (Wusthorn et al., 2011).  

In order to ensure the validity of the model specification, Avkiran (1999) suggested an 

isotonicity test, which was adopted by a number of studies across the literature (Mostafa, 2009; Tsolas, 

2015; Tsolas and Charles, 2015). This test investigates whether increasing amounts of inputs results in 

increasing amount of outputs, using the intercorrelations between inputs and outputs. All our variables 

in the first stage pass this test. Indeed, all the correlations among the three inputs and the one output are 

positive and significant. There is also one very high correlation coefficient (between capital and GDP). 

According to Charnes et al. (1994), inputs and outputs which are highly correlated do not have a 

significant effect on the DEA efficiency score, however, there is discrimination power is lower 

(Siriopoulos and Tziogkidis 2010). Regarding the second stage, the outputs are anti-isotonic (Dyson et 

al., 2001; Scheel, 2001) and they were handled using the translation vector (9). 

Regarding our modelling framework, we use a VRS model in order to catch any possible scale 

effects across the Chinese provinces. In order to use models (5)-(7) we need to specify the width of the 

window. According to Asmild et al. (2004) we choose a narrow 3-year window. Starting with the first 

window, it includes 2000, 2001 and 2002. Next, the second window excludes 2000 and includes 2003, 

keeping the width constant at 3 years, and the analysis continues until all the windows are formed. 

Therefore, there are 11 windows into the analysis and each of them consists of 90 DMUs (n×w= 

30×3=90), with a total of 990 DMUs. Descriptive statistics are presented at Table 2 and Figure 1 presents 

the visual illustration of the proposed model. 

 

Table 2 about here 

Figure 1 about here 

 

DEA models are deterministic in nature, which means that they do not allow any random noise and every 

deviation from the frontier is due to inefficiency. This results to a drawback of DEA models, which is 

the sensitivity to extreme values and outliers. Such extreme observations can impact the shape of the 

efficient frontier, while their isolated location casts doubt on the credibility of the data (Thanassoulis et 

al., 2011). The use of DEA window analysis greatly increases the number of observations, which leads 

to more robust results.  
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4.2 Empirical Results and discussion 

An illustrative example of the window analysis for the Guangdong Province, which is the biggest Chinese 

province in terms of population3, is provided at Table 3. The first part of Table 3 presents the overall 

ESI, the second part presents the PEI and the last part presents EEI. Our findings can be analysed either 

by investigating the Table’s rows or by investigating the Table’s columns. On the one hand, rows indicate 

the trend and the behaviour across the same window. On the other hand, columns demonstrate the 

efficiency of a specific year and its stability across different windows. We can observe that the scores of 

the ESI and the EEI are relative stable across the years, with a slight increase 3% over the entire period. 

On the same time, Guangdong Province achieves perfect score for the PEI across the entire period, which 

is consistent with the results of other scholars (Wang et al., 2013b). The high PEI can perhaps be 

explained by the intensive competition in the province, mainly due to multinational companies. In 

addition, Guangdong Province is the first pilot-reform area of "Open-up and reform" since 1978. The 

local economy has been booming with the international and FDI flowing into China. Plenty of private 

companies have been set up in the last decades. Moreover, the GDP of Guangdong Province has been 

ranked as the top one among all the China's provinces for about thirty years. Note that the last line of 

each part of Table 3 calculates the average results for each year. 

 

Table 3 about here 

 

 Table 4 presents the average results for each year for all Chinese provinces. The average results 

for the overall ESI reveal some heterogeneity among the Chinese provinces. All but three provinces range 

from 0.611 (Shanghai) to 0.779 (Gansu). Qinghai is the best performing province with an average 

efficiency of 0.999, closely followed by Hunan (0.971) and Ningxia Hui (0.946). Furthermore, the results 

are stable across the time period. The largest increase in terms of average annual growth was achieved 

by Beijing (0.55%) and the largest decrease by Inner Mongolia (0.69%). Figure 2 demonstrates the visual 

representation of the results4. 

                                                 
3 Similar tables have been created for all Chinese provinces and are available upon request. Here we 

present only one due to space restrictions. 
4 Bright green colour depicts the most efficient countries and red colour depicts the least efficient 

countries. The range among each class is 0.10 for all classes. Starting from the better classes in terms of 

efficiency scores they are classified as bright green, dark green, blue, light blue, turquoise, yellow, rose, 

pink, orange and red. 
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Table 4 about here 

Figure 2 here 

 

The average PEI scores are very high for all provinces across all years. Specifically, the scores 

range from 0.935 for Guizhou to perfect unity for Guangdong, Tianjin and Qinghai. The results are stable 

across time since the largest increase was only 0.20% (Jiangsu) and the largest decrease 0.47% (Guangxi 

Zhuang). Meanwhile, most of the provinces experienced a slight decrease of production efficiency, which 

is probably due to the global financial crisis. The average EEI scores are quite similar with the overall 

ESI scores. All but five provinces range from 0.614 (Guangdong) to 0.788 (Xinjiang). Qinghai is the best 

performing province with an average efficiency of 0.999, closely followed by Ningxia province (0.974) 

and Hunan province (0.973). In addition, two provinces achieved efficiency over 80% (Gansu 0.812 and 

Guizhou 0.814). The results are stable across the entire time period, showing a slightly growing trend for 

the majority of sample provinces. The largest increase in terms of average annual growth was achieved 

by Beijing (0.54%) and the largest decrease by Inner Mongolia (0.29%). As the overall ESI is mainly 

driven by the EEI, it is quite important to focus on the improvement of the latter one. The most developed 

provinces, like Beijing, Shanghai, Zhejiang, Shandong and Guangdong, all have displayed higher growth 

rate during the sample period. 

Referring to the literature, the 30 provinces are classified into different groups, in order to 

address the regional heterogeneity. First, they are divided into three groups, i.e. eastern, middle and 

western areas5, based on their location. According to Figure 3, the eastern area has the highest PEI, while 

the western region achieves best performance on the EEI. The China's eastern region experienced the 

most remarkable economic development during the last forty years, contributing 55.34% to the total GDP 

in 2014. The overall ESI is driven by the EEI, since they follow similar patterns. In addition, eastern and 

middle areas perform similarly, especially after 2005. Both of them have great potential to improve in 

terms of the overall ESI (by 30%). Meanwhile, the west region can improve its ESI by about 20% in 

order to reach the efficient frontier.  

                                                 
5 The eastern area includes the eight coastal provinces, Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, 

Fujian, Guangdong and Hainan, and the three municipalities of Beijing, Tianjin and Shanghai. The 

middle area consists of 10 inland provinces, Heilongjiang, Jilin, Inner Mongolia, Henan, Shanxi, Anhui, 

Hubei, Hunan, Jiangxi and Guangxi, it is the agricultural base for the country. The western area contains 

1 municipality and 9 provinces, Chongqing and provinces of Gansu, Guizhou, Ningxia, Qinghai, 

Shaanxi, Tibet, Yunnan, Xinjiang and Sichuan. 
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Furthermore, Figure 3 shows the dynamics of the three indicators during the sample period. In 

contrast to the EEI, which has an upward trend, the PEI decreased at the beginning of the sample period. 

Specifically, there was a sharp decrease on the PEI in the middle area starting in 2005. Owing to positive 

and negative effects being neutralized, the overall ESI displayed a stable pattern before 2009. After this 

point, the decrease rate of PEI exceeded the increase rate of EEI, leading to the decline of the overall 

ESI. 

 

Figure 3 about here 

 

The kernel density plots for overall ESI, PEI and EEI are shown in Figure 4. There are obvious 

differences in distribution patterns among the three areas, indicating regional heterogeneity. In addition, 

results in certain areas follow the bimodal distribution, suggesting that there is divergence in the specific 

groups. Meanwhile, the location does not imply a prior advantage on the performance of PEI, which 

contradicts the findings of previous studies (Wang et al., 2013a,b; Huang et al., 2014). 

 

Figure 4 about here 

 

Furthermore, the 30 provinces are further classified into two groups, based on the regulations 

on the SO2 emission6. There are 13 regulated provinces in the list of government. We first check whether 

there are any significant differences in the three indicators between the two groups, using the Wilcoxon-

Mann-Whitney rank-sum test. As shown in Table 5, all of the null hypotheses are rejected at the 10% 

significance level, which implies that the three indices behaved differently in the presence of 

government's regulation regarding the SO2 emissions.  

 

Table 5 about here 

 

                                                 
6 According to the Air Pollution Prevention and Control Law, the government decided to restrict the SO2 

emissions in some provinces since 1998, including Beijing, Tianjin, Hebei, Jilin, Liaoning, Inner 

Mongolia, Shandong, Jiangsu, Henan, Shaanxi, Gansu, Ningxia and Xinjiang. As the regulation on 

carbon emission has not launched until the beginning of 21 century.  
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We further display the kernel density plots for the ESI in Figure 5, which indicates obvious 

differences in distribution patterns for the two groups. This further validates the results presented above. 

 

Figure 5 about here 

 

  Figure 6 presents the box plot of unregulated and regulated area for comparison. It appears that 

the regulated area has higher overall ESI and EEI in comparison to the unregulated area. Meanwhile, the 

regulated area's PEI seems slightly lower than its counterparty. Overall, the regulation on the SO2 

emissions improved the ESI of the Chinese provinces, despite a slightly decrease in PEI. 

 

Figure 6 about here 

 

The ESI trend for the two distinct groups is shown in Figure 7. The EEI has an increasing trend for both 

areas. Specifically, regulated area has a leading role in the EEI ever since 2000, which further justifies 

the effect of regulatory policy. With respect to the PEI, the regulated area displayed an insignificant 

disadvantage over the unregulated one. After 2005, the gap between the two has been increasing, which 

may have been caused by the regulatory constraints. Hence, the overall ESI has been worsened for the 

regulated area since 2005, due to the PEI.  

 

Figure 7 about here 

 

5. Conclusions and Policy implications 

As environmental and sustainable development issues have attracted increasing attention in China, the 

related research on sustainable efficiency and eco-efficiency is growing rapidly. Our study contributes 

to the sustainable development literature by proposing an innovative methodological framework to study 

Chinese regions over time. Specifically, this paper analyses the sustainability efficiency of the Chinese 

provinces during the period of 2000-2012, following a window-based multiplicative network DEA 

approach. An ESI is constructed, using a network DEA model. The ESI is decomposed into two sub-

indices, PEI in the first stage and EEI in the second stage. Different from previous studies, the network 

structure of the sustainability index takes into account both the production efficiency and the eco-
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efficiency dimensions. This is in line with the sustainability principals in general, and the “New Normal” 

strategy for the economic development of China in particular. 

Results show that the ESI of Chinese provinces has been significantly improved during the 

examined time period. Furthermore, the overall ESI reveals heterogeneity among the provinces. This is 

consistent with previous studies which found that the performance of Chinese regions is not uniform 

both in production and in environmental terms (Wang et al., 2013a,b; Huang et al., 2014). The mean 

score for the ESI is 0.723, which reveals a great potential for improvement. The PEI scores are quite high 

for all provinces across the entire time period under investigation, with an average score of 0.976. 

Meanwhile, the EEI scores are quite similar with the overall ESI scores, with a mean of 0.740.  

We further divide the provinces into different groups according to their geographical location 

as well as the environmental regulations. In the first case, the 30 provinces are divided into three areas, 

i.e. the eastern, middle and western. There is heterogeneity regarding the geographical location for the 

EEI and as a result the overall ESI. However, the results indicate that the location does not imply a prior 

advantage on the performance of PEI, which contradicts the findings of previous studies (Wang et al., 

2013a,b; Huang et al., 2014). The eastern area experienced the highest results in PEI, while the western 

area had the best performance in EEI. The eastern and middle areas had a similar performance in ESI, 

especially after 2005. Both of them have great potential to improve the overall efficiency up to 30%. 

Meanwhile, the west area can enhance its performance up to 20%. Furthermore, we classify the provinces 

into two groups based on the regulations for the SO2 emissions. The regulated area has a leading role in 

the EEI ever since 2000. However, the regulated area displays worse PEI than the unregulated one, 

especially after 2005 when the Chinese economic growth accelerated and the gap between the two has 

been increased. Due to the negative effect of regulation, the overall ESI has been worsened for the 

regulated area since 2005.  

There is large space for China to enhance its ESI, especially for the eastern and middle areas. 

When initiating reforms or regulations, the government should pay attention to the regional heterogeneity. 

Specifically, the government should aim to enact different sets of policies in east, central and west areas, 

in order to improve the environmental sustainability (Choi and Lee 2009). Therefore, each area should 

be considered as a separate case and based on its own characteristics, such as the level of economic 

growth, the social environment and the environmental needs (Yu and Choi, 2015). For the provinces 

located at the eastern and middle areas, their ESI is restricted by the EEI. Although some of the developed 
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provinces has already made progress on the EEI, they still need to accelerate the green economic growth, 

which aims for social equity and well-being, with diminishing environmental threats (Chao et al., 2012). 

Furthermore, the central government can take actions in order to transfer capital towards the deficit areas, 

aiming to improve environmentally friendly technologies and R&D (Yu and Choi, 2015). In addition, 

when launching emission regulations, the development of new industries should be encouraged, in order 

to offset the negative effects of restrictions on old industries. 

Further research is still needed on this area. The proposed framework is in line with the 

sustainability principals; therefore, it can be used to measure the performance of other countries, taking 

into account the production and the environmental dimensions. Furthermore, due to the availability of 

the carbon emission data, this paper has not focused on the environmental regulation during recent years. 

In addition, other environmental pollutants, such as the PM 2.5 and waste water, can also be considered 

into a future analysis.  
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Table 1: Literature on the eco-efficiency of different provinces in China 

Author Methodology Inputs and outputs Time Period Sample 

Zhang et al. 

(2008) 

DEA-CCR Input: Water resource, Raw mining 

resource, Energy 

Output: Value-added of industry, COD, 

NOX, SO2, Soot emission, Dust 

emission, Industrial solid wastes 

2005 30 provinces 

Li and Hu 

(2012) 

SBM Input: Capital, Labor, Energy 

Output: GDP, CO2, SO2 

2005-2009 30 provinces 

Wang et al. 

(2013a) 

RAM-DEA Input: Capital, Labor, Energy 

Output: GDP, CO2 

2006-2010 30 provinces 

Wang et al. 

(2013b) 

MEA Input: Capital, Labor, Energy 

Output: GDP, CO2 

1997-2010 30 provinces 

Wang et al. 

(2013c) 

non-radial DEA, 

DEA window 

analysis 

Input: Capital, Labor, Energy 

Output: GDP, CO2, SO2 

2000-2008 29 provinces 

Huang et al. 

(2014) 

GB-US-SBM 

model 

Input: Capital, Land, Labor and Energy 

Output: GDP, environment index 

2000-2010 30 provinces 

Yang et al. 

(2015) 

Supper-

efficiency DEA 

Input: Capital, Labor, Energy 

Output: GDP, CO2, SO2 

2000-2010 30 provinces 

Chu et al. 

(2016) 

Two-stage 

Network DEA 

Input: capital, Labor, Energy, Pollution 

control investments 

Intermediate: Waste Water, Waste gas, 

Solid Waste 

Output: GDP, Waste Water removed, 

Waste gas removed, Solid waste 

removed 

2013 30 provinces 

Zhang et al. 

(2016) 

SBM Input: Capital, Labor, Energy 

Output: GDP, COD, CO2, SO2 

2005-2011 30 provinces 
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Ren et al. 

(2016) 

DEA-DDF Input: Energy, Labor, Land, Water 

Output: GDP, Industrial waste water, 

Chemical oxygen, SO2, Soot emission, 

Dust emission, solid waste 

2000-2013 30 provinces 

Yang and 

Zhang 

(2018) 

Global DEA, 

Malmquist-

Luenberger 

index 

Input: Capital stock, Labor, 

Construction land area, Water, Energy 

Output: GDP, Solid Waste emission, 

Waste Water, SO2, Household Refuse, 

Soot and Dust emission 

2003-2014 30 provinces 
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Table 2: Descriptive statistics 

  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Capital 

mean 7860.26 8802.88 9893.48 11256.01 12887.48 14906.78 17323.12 20148.95 23402.12 27421.90 32096.07 37311.49 43098.65 

Stdev 5059.46 5739.78 6517.13 7513.96 8687.58 10132.74 11768.52 13565.96 15517.59 17988.43 20775.13 23972.29 27035.02 

Min 1195.31 1368.19 1571.08 1808.51 2059.04 2338.17 2644.85 2987.68 3362.38 3882.35 4562.18 5392.49 6535.35 

Max 19945.72 22523.83 25474.13 29530.21 34005.36 39679.18 46059.69 53000.56 60804.50 71330.97 83356.20 96223.94 110064.98 

Labor 

mean 2095.18 2097.60 2121.69 2157.74 2205.81 2262.90 2318.09 2373.24 2426.36 2493.07 2555.31 2641.09 2663.03 

Stdev 1422.84 1419.69 1414.27 1432.98 1458.68 1509.50 1547.77 1587.67 1620.22 1662.03 1700.90 1710.59 1711.99 

Min 238.57 240.32 247.30 254.26 263.08 267.62 271.80 276.29 276.79 285.54 294.10 309.18 310.89 

Max 5571.67 5516.59 5522.00 5535.68 5587.45 5662.41 5717.70 5772.72 5835.45 5948.78 6041.56 6198.00 6288.00 

Energy 

mean 4949.40 5244.19 5649.67 6415.15 7432.88 8845.80 9718.07 10517.76 11038.67 11719.66 12674.83 14023.04 14328.53 

Stdev 3060.11 3255.10 3503.03 3975.43 4668.28 6120.00 6729.56 7228.63 7527.94 7774.99 8354.37 9157.12 9266.10 

Min 424.08 466.48 545.12 623.76 657.61 699.73 861.87 1001.01 1205.23 1288.69 1253.58 1381.52 1615.75 

Max 11970.47 12321.39 12194.96 14272.37 18052.62 26333.26 29442.20 32085.32 33423.48 34124.86 36987.29 38973.31 40630.76 

GDP 

mean 3279.58 3596.01 3987.21 4478.03 5089.77 5760.36 6556.44 7509.58 8402.18 9380.27 10610.43 11856.83 13069.41 

Stdev 2538.82 2799.32 3134.72 3578.10 4111.92 4702.23 5401.02 6195.51 6880.55 7612.50 8541.62 9397.35 10212.01 

min 263.68 294.56 330.14 369.30 414.62 465.21 521.96 587.21 661.78 728.62 840.10 953.51 1070.34 
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max 10741.25 11867.83 13336.29 15316.33 17581.26 20064.83 23035.81 26460.15 29221.18 32041.04 36030.23 39628.60 42860.33 

CO2 

mean 12934.88 13707.07 14809.62 16853.00 19590.54 23225.24 25527.02 27570.14 28998.25 30761.25 33300.06 36922.20 37684.20 

stdev 7903.79 8438.36 9185.73 10457.86 12311.16 16078.51 17723.15 19036.53 19949.57 20578.63 22145.10 24379.07 24617.79 

min 977.35 1066.24 1269.62 1472.99 1744.88 1872.27 2339.28 2560.55 2892.14 3262.02 3308.75 3629.54 4260.97 

max 30773.91 31367.55 32667.70 38048.88 47760.00 69261.08 77351.87 84115.31 88226.56 90102.81 97449.01 102411.23 10667.02 

SO2 

mean 64.84 62.57 62.60 71.96 75.17 84.78 86.21 82.26 77.36 73.81 72.29 73.82 70.47 

stdev 43.80 43.37 42.50 46.46 46.53 50.94 51.03 47.79 44.41 42.07 40.88 44.35 41.93 

min 2.00 2.00 2.20 2.30 2.30 2.20 2.40 2.56 2.20 2.20 2.88 3.26 3.41 

max 180.00 172.00 169.00 184.00 182.00 200.00 196.00 182.00 169.00 159.00 154.00 183.00 175.00 
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Table 3: A three-year window analysis for the Guangdong Province 

Overall 

efficiency  

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

W1 0.601 0.594 0.587           

W2  0.606 0.599 0.590          

W3   0.611 0.602 0.593         

W4    0.613 0.605 0.597        

W5     0.617 0.608 0.600       

W6      0.620 0.611 0.603      

W7       0.623 0.614 0.609     

W8        0.626 0.620 0.615    

W9         0.632 0.626 0.619   

W10          0.635 0.628 0.623  

W11           0.642 0.636 0.631 

Average 0.601 0.600 0.599 0.602 0.605 0.608 0.611 0.615 0.620 0.625 0.630 0.629 0.631 

Production 

efficiency              

W1 1.000 0.999 1.000           

W2  1.000 1.000 1.000          

W3   1.000 1.000 1.000         

W4    1.000 1.000 1.000        

W5     1.000 1.000 1.000       

W6      1.000 1.000 1.000      

W7       1.000 1.000 1.000     

W8        1.000 1.000 1.000    

W9         1.000 1.000 1.000   

W10          1.000 1.000 1.000  

W11           1.000 1.000 1.000 

Average 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Eco-efficiency              
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W1 0.601 0.594 0.587           

W2  0.606 0.599 0.590          

W3   0.611 0.602 0.593         

W4    0.613 0.605 0.597        

W5     0.617 0.608 0.600       

W6      0.620 0.612 0.603      

W7       0.623 0.614 0.609     

W8        0.626 0.620 0.615    

W9         0.632 0.626 0.619   

W10          0.635 0.628 0.623  

W11           0.642 0.636 0.631 

Average 0.601 0.600 0.599 0.602 0.605 0.608 0.612 0.615 0.620 0.625 0.630 0.629 0.631 
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Table 4: Efficiency scores over time 

Province 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Average 

Average 

Annual 

Growth 
Overall Sustainability efficiency index 

BJS 0.691 0.689 0.685 0.690 0.698 0.706 0.704 0.705 0.713 0.715 0.721 0.773 0.735 0.710 0.005526 

TJS 

0.749 0.745 0.741 0.742 0.748 0.754 0.750 0.750 0.748 0.748 0.748 0.757 0.745 0.748 

-

0.000428 

HEB 0.632 0.629 0.627 0.632 0.636 0.639 0.641 0.645 0.647 0.650 0.656 0.652 0.652 0.641 0.002594 

SAX 

0.730 0.725 0.721 0.724 0.727 0.728 0.726 0.724 0.725 0.725 0.726 0.720 0.717 0.725 

-

0.001498 

IMZ 

0.760 0.757 0.752 0.749 0.744 0.736 0.727 0.721 0.718 0.714 0.713 0.705 0.699 0.730 

-

0.006884 

LNS 0.655 0.656 0.656 0.661 0.663 0.666 0.667 0.668 0.667 0.670 0.673 0.669 0.668 0.665 0.001580 

JLS 

0.733 0.732 0.730 0.736 0.741 0.747 0.737 0.727 0.721 0.719 0.718 0.712 0.709 0.728 

-

0.002793 

HLJ 0.680 0.681 0.682 0.690 0.697 0.707 0.710 0.712 0.716 0.717 0.722 0.716 0.714 0.703 0.004087 

SHS 0.657 0.656 0.654 0.658 0.661 0.669 0.671 0.673 0.679 0.685 0.691 0.704 0.699 0.674 0.005181 

JSS 0.599 0.603 0.605 0.609 0.609 0.609 0.613 0.617 0.622 0.627 0.632 0.634 0.639 0.617 0.005412 

ZJS 0.626 0.623 0.624 0.629 0.628 0.628 0.629 0.631 0.637 0.641 0.646 0.646 0.649 0.634 0.003074 

AHS 0.688 0.686 0.685 0.691 0.696 0.706 0.705 0.704 0.705 0.707 0.711 0.706 0.702 0.699 0.001684 

FJS 0.677 0.677 0.675 0.679 0.686 0.692 0.691 0.689 0.693 0.693 0.696 0.692 0.692 0.687 0.001774 

JXS 

0.733 0.730 0.724 0.723 0.729 0.734 0.729 0.728 0.730 0.733 0.734 0.730 0.732 0.730 

-

0.000112 

SHD 0.603 0.599 0.597 0.600 0.602 0.604 0.606 0.611 0.617 0.622 0.626 0.629 0.633 0.611 0.004051 

HEN 0.637 0.635 0.633 0.638 0.641 0.642 0.642 0.641 0.640 0.640 0.642 0.638 0.646 0.640 0.001187 

HUB 0.657 0.655 0.653 0.659 0.664 0.672 0.672 0.674 0.678 0.680 0.684 0.679 0.677 0.669 0.002541 

HUN 0.677 0.674 0.672 0.678 0.682 0.687 0.688 0.688 0.691 0.692 0.694 0.689 0.690 0.685 0.001596 

GDS 0.601 0.600 0.599 0.602 0.605 0.608 0.611 0.615 0.620 0.625 0.630 0.629 0.631 0.614 0.004172 

GXZ 

0.730 0.727 0.724 0.730 0.735 0.740 0.734 0.729 0.728 0.726 0.721 0.710 0.704 0.726 

-

0.002899 

HAN 1.000 0.899 0.931 0.972 0.939 1.000 0.999 1.000 0.998 0.956 0.947 0.994 0.989 0.971 0.000071 

CQS 

0.741 0.738 0.732 0.741 0.745 0.747 0.744 0.745 0.736 0.740 0.744 0.737 0.738 0.740 

-

0.000252 

SCS 0.658 0.656 0.654 0.657 0.661 0.672 0.673 0.672 0.674 0.676 0.682 0.681 0.680 0.669 0.002745 

GZS 0.751 0.747 0.742 0.744 0.751 0.765 0.767 0.768 0.772 0.775 0.780 0.774 0.766 0.762 0.001737 

YNS 0.702 0.700 0.699 0.704 0.712 0.719 0.717 0.716 0.721 0.724 0.725 0.717 0.713 0.713 0.001344 

SNX 0.696 0.694 0.692 0.697 0.702 0.712 0.708 0.707 0.707 0.709 0.710 0.705 0.701 0.703 0.000710 
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GSS 

0.797 0.792 0.786 0.790 0.801 0.810 0.807 0.805 0.800 0.802 0.805 0.797 0.791 0.799 

-

0.000696 

QHS 1.000 0.994 0.996 1.000 0.998 1.000 1.000 1.000 1.000 0.996 1.000 0.998 1.000 0.999 0.000004 

NXZ 
0.968 0.961 0.952 0.952 0.957 0.960 0.954 0.950 0.947 0.929 0.934 0.920 0.918 0.946 

-

0.004376 

XJZ 0.728 0.726 0.724 0.728 0.735 0.743 0.740 0.741 0.747 0.753 0.760 0.755 0.750 0.741 0.002510 

Production efficiency index   

BJS 0.999 1.000 0.997 0.997 0.998 0.998 0.997 0.997 0.999 0.999 0.999 1.000 1.000 0.998 0.000115 

TJS 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000011 

HEB 

0.966 0.962 0.960 0.960 0.960 0.960 0.959 0.958 0.954 0.951 0.954 0.952 0.949 0.957 

-

0.001466 

SAX 

0.985 0.981 0.981 0.983 0.986 0.984 0.977 0.973 0.966 0.955 0.954 0.951 0.947 0.971 

-

0.003233 

IMZ 
1.000 1.000 1.000 0.998 0.996 0.992 0.983 0.976 0.973 0.968 0.965 0.960 0.953 0.982 

-

0.003986 

LNS 

0.993 0.994 0.996 0.997 0.994 0.992 0.989 0.987 0.980 0.980 0.980 0.978 0.975 0.987 

-

0.001566 

JLS 

0.997 0.997 0.995 0.996 0.996 0.993 0.983 0.973 0.964 0.959 0.954 0.951 0.950 0.978 

-

0.004020 

HLJ 0.983 0.985 0.988 0.992 0.996 0.999 1.000 0.999 0.999 0.996 0.997 0.994 0.990 0.994 0.000634 

SHS 0.999 0.999 0.998 0.997 0.998 0.996 0.997 1.000 1.000 0.999 1.000 0.999 1.000 0.999 0.000099 

JSS 0.973 0.979 0.985 0.985 0.981 0.976 0.977 0.980 0.982 0.983 0.985 0.990 0.996 0.983 0.001984 

ZJS 
0.979 0.977 0.981 0.985 0.979 0.972 0.970 0.968 0.969 0.967 0.968 0.969 0.970 0.973 

-

0.000787 

AHS 

0.984 0.982 0.982 0.982 0.985 0.983 0.982 0.980 0.977 0.977 0.979 0.977 0.973 0.980 

-

0.000911 

FJS 
1.000 1.000 0.998 0.998 0.997 0.993 0.995 0.993 0.993 0.989 0.990 0.986 0.987 0.994 

-

0.001049 

JXS 

1.000 0.997 0.991 0.986 0.983 0.980 0.976 0.973 0.975 0.976 0.975 0.975 0.978 0.982 

-

0.001858 

SHD 0.977 0.971 0.970 0.968 0.967 0.966 0.966 0.968 0.971 0.972 0.973 0.978 0.983 0.972 0.000545 

HEN 

0.974 0.972 0.969 0.968 0.969 0.966 0.962 0.956 0.949 0.943 0.940 0.937 0.948 0.958 

-

0.002264 

HUB 

0.963 0.960 0.958 0.958 0.959 0.960 0.960 0.960 0.961 0.961 0.963 0.961 0.960 0.961 

-

0.000284 

HUN 
0.992 0.990 0.986 0.987 0.987 0.982 0.981 0.980 0.979 0.978 0.977 0.973 0.976 0.982 

-

0.001408 
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GDS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000000 

GXZ 

1.000 0.996 0.995 0.994 0.990 0.988 0.984 0.978 0.975 0.970 0.961 0.951 0.945 0.979 

-

0.004740 

HAN 
1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.998 0.996 1.000 0.994 0.989 0.998 

-

0.000920 

CQS 

0.980 0.978 0.973 0.975 0.970 0.964 0.963 0.965 0.957 0.961 0.967 0.966 0.972 0.969 

-

0.000711 

SCS 0.977 0.975 0.972 0.970 0.971 0.974 0.975 0.974 0.969 0.969 0.975 0.979 0.980 0.974 0.000273 

GZS 0.934 0.931 0.927 0.925 0.929 0.934 0.937 0.939 0.939 0.940 0.943 0.943 0.939 0.935 0.000439 

YNS 
0.957 0.954 0.953 0.952 0.954 0.949 0.947 0.945 0.947 0.947 0.944 0.940 0.937 0.948 

-

0.001780 

SNX 

0.936 0.935 0.937 0.938 0.939 0.940 0.938 0.938 0.937 0.937 0.937 0.936 0.934 0.937 

-

0.000154 

GSS 
0.995 0.992 0.988 0.987 0.990 0.991 0.990 0.987 0.977 0.975 0.974 0.971 0.967 0.983 

-

0.002411 

QHS 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999 1.000 0.998 1.000 1.000 0.000001 

NXZ 
0.988 0.987 0.985 0.982 0.977 0.974 0.973 0.971 0.971 0.956 0.961 0.954 0.958 0.972 

-

0.002516 

XJZ 

0.943 0.941 0.940 0.940 0.939 0.938 0.935 0.937 0.939 0.940 0.943 0.942 0.939 0.940 

-

0.000357 

Eco-efficiency index   

BJS 0.692 0.689 0.687 0.692 0.699 0.708 0.706 0.707 0.714 0.716 0.721 0.773 0.735 0.711 0.005405 

TJS 

0.749 0.745 0.741 0.742 0.748 0.754 0.750 0.750 0.748 0.748 0.748 0.757 0.745 0.748 

-

0.000440 

HEB 0.654 0.654 0.654 0.658 0.662 0.665 0.669 0.673 0.678 0.683 0.687 0.686 0.686 0.670 0.004064 

SAX 0.741 0.739 0.735 0.736 0.737 0.740 0.743 0.744 0.751 0.759 0.761 0.757 0.757 0.746 0.001752 

IMZ 

0.760 0.757 0.752 0.750 0.747 0.742 0.740 0.738 0.738 0.737 0.739 0.734 0.733 0.744 

-

0.002908 

LNS 0.660 0.660 0.659 0.663 0.667 0.671 0.675 0.677 0.681 0.684 0.687 0.684 0.685 0.673 0.003152 

JLS 0.736 0.734 0.733 0.738 0.744 0.752 0.750 0.748 0.748 0.750 0.753 0.749 0.747 0.745 0.001225 

HLJ 0.692 0.691 0.690 0.695 0.700 0.707 0.710 0.712 0.717 0.720 0.724 0.721 0.721 0.708 0.003447 

SHS 0.658 0.657 0.655 0.659 0.662 0.671 0.673 0.673 0.679 0.685 0.691 0.704 0.699 0.675 0.005085 

JSS 0.616 0.615 0.614 0.618 0.621 0.624 0.627 0.630 0.634 0.637 0.642 0.641 0.641 0.628 0.003429 

ZJS 0.639 0.638 0.636 0.639 0.642 0.646 0.649 0.652 0.657 0.663 0.668 0.667 0.669 0.651 0.003867 

AHS 0.699 0.699 0.698 0.704 0.707 0.717 0.718 0.718 0.721 0.724 0.726 0.722 0.721 0.713 0.002594 

FJS 0.677 0.677 0.676 0.680 0.688 0.697 0.695 0.694 0.697 0.700 0.703 0.702 0.700 0.691 0.002828 

JXS 0.733 0.732 0.730 0.733 0.741 0.749 0.747 0.748 0.749 0.751 0.753 0.749 0.749 0.743 0.001751 
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SHD 0.617 0.617 0.616 0.620 0.622 0.625 0.628 0.631 0.636 0.639 0.644 0.643 0.644 0.629 0.003503 

HEN 0.654 0.654 0.653 0.658 0.662 0.665 0.668 0.670 0.675 0.679 0.683 0.681 0.681 0.668 0.003463 

HUB 0.682 0.682 0.681 0.687 0.692 0.699 0.700 0.702 0.705 0.707 0.710 0.706 0.705 0.697 0.002821 

HUN 0.682 0.682 0.681 0.687 0.691 0.699 0.701 0.702 0.706 0.708 0.710 0.707 0.707 0.697 0.003008 

GDS 0.601 0.600 0.599 0.602 0.605 0.608 0.612 0.615 0.620 0.625 0.630 0.629 0.631 0.614 0.004172 

GXZ 0.730 0.729 0.727 0.734 0.742 0.749 0.746 0.745 0.746 0.748 0.750 0.747 0.746 0.742 0.001844 

HAN 1.000 0.899 0.931 0.972 0.939 1.000 1.000 1.000 1.000 0.959 0.947 1.000 1.000 0.973 0.001017 

CQS 0.755 0.754 0.752 0.760 0.768 0.775 0.772 0.771 0.769 0.770 0.769 0.762 0.759 0.764 0.000464 

SCS 0.674 0.673 0.672 0.677 0.681 0.690 0.690 0.690 0.695 0.697 0.699 0.695 0.694 0.687 0.002473 

GZS 0.804 0.802 0.800 0.805 0.809 0.819 0.818 0.817 0.822 0.825 0.827 0.820 0.816 0.814 0.001288 

YNS 0.733 0.734 0.733 0.739 0.746 0.758 0.757 0.757 0.762 0.765 0.768 0.763 0.761 0.752 0.003126 

SNX 0.744 0.742 0.739 0.743 0.748 0.757 0.755 0.754 0.755 0.756 0.758 0.753 0.751 0.750 0.000861 

GSS 0.801 0.798 0.796 0.800 0.809 0.818 0.815 0.816 0.818 0.822 0.826 0.821 0.817 0.812 0.001711 

QHS 1.000 0.994 0.996 1.000 0.998 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.999 0.000003 

NXZ 

0.980 0.974 0.967 0.970 0.980 0.986 0.981 0.979 0.975 0.972 0.972 0.964 0.958 0.974 

-

0.001863 

XJZ 0.772 0.771 0.771 0.775 0.783 0.793 0.791 0.791 0.795 0.801 0.806 0.801 0.799 0.788 0.002865 

 

  



31 

 

Table 5: Results of the Wilcoxon-Mann-Whitney Rank-Sum test 

Index Null Hypothesis (Ho) p-value 

Overall efficiency Mean(unregulated)= Mean(regulated) 0.07 

Production efficiency Mean(unregulated)= Mean(regulated) 0.01 

Eco-efficiency Mean(unregulated)= Mean(regulated) 0.06 
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Figure 1: Sustainability efficiency index 
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Figure 2: Map of Chinese provinces with overall sustainability efficiency scores 
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Figure 3: The sustainability efficiency dynamics of different areas. 

 

a. the overall efficiency 

 

b. the production efficiency 

 

c. the eco-efficiency 
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Figure 4: the distribution of different areas. 

a. overall efficiency 

 

b. production efficiency 

c. eco-efficiency 
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Figure 5: the distribution of unregulated and regulated area 

 

a. Overall efficiency b. Production efficiency 

c. Eco-efficiency 
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Figure 6: the box plots of unregulated and regulated area 
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Figure 7: The sustainability efficiency dynamics of regulated and unregulated area. 

 

a. overall efficiency 

 

b. production efficiency 

 

c. eco-efficiency 
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