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ABSTRACT 17	

The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are 18	

interlinked, opposing signalling pathways involved in sensing availability of nutrients and energy, 19	

and regulation of cell growth. AMPK (Yin or the “dark side”) is switched on by lack of energy or 20	

nutrients and inhibits cell growth, while TOR (Yang or the “bright side”) is switched on by nutrient 21	

availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in 22	

almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. 23	

During the development of multicellularity, an additional tier of cell-extrinsic growth control arose 24	

that is mediated by growth factors, but these often act by modulating nutrient uptake, so that AMPK 25	

and TOR remain the underlying regulators of cellular growth control. In this review we discuss the 26	

evolution, structure and regulation of the AMPK and TOR pathways, and the complex mechanisms 27	

by which they interact. 28	
29	
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All eukaryotic cells are now thought to have arisen via a single endosymbiotic event when an 30	

archaeal host cell engulfed bacteria that were capable of oxidative metabolism, the latter eventually 31	

becoming mitochondria (Lane, 2006; Sagan, 1967). This event was followed by the transfer of most 32	

of the genes from the genome of the endosymbiont to that of the host - it has been argued that this 33	

separation of energy-generating capacity from gene expression allowed a large increase in the 34	

energy available per gene, thus permitting a major expansion in gene number in the host (Lane and 35	

Martin, 2010). This may in turn have enabled major enhancements in the complexity of eukaryotic 36	

cells compared with their prokaryotic counterparts, including the development of endomembrane 37	

systems such as lysosomes or vacuoles (de Duve, 2005), and the associated trafficking of materials 38	

between these internal compartments and the plasma membrane via membrane-bound vesicles. 39	

New cellular functions this led to were phagocytosis and pinocytosis, used by many protists today 40	

as mechanisms of feeding, and autophagy, used by all eukaryotic cells for recycling of cellular 41	

components that are damaged or surplus to requirements, or as an emergency measure during 42	

nutrient starvation. Phagocytosis, pinocytosis and autophagy deliver proteins, lipids and 43	

carbohydrates, or even whole organelles such as mitochondria, to lysosomes or vacuoles; the latter 44	

are acidic compartments where the engulfed materials are broken down to recycle their components 45	

either for catabolism or re-use. Lysosomes or vacuoles can therefore be considered to be the “gut” 46	

or digestive systems of unicellular eukaryotes, particularly in amoeboid protists that feed by 47	

phagocytosis or pinocytosis. They would therefore have been a major source of nutrients and appear 48	

to have developed into hubs for nutrient sensing, as discussed below. 49	

 As these processes were evolving, early eukaryotes would have needed signalling pathways that 50	

could monitor the function of their new internal organelles and regulate cell growth and 51	

proliferation accordingly. For example, there would have been a need to monitor the output of ATP 52	

by mitochondria, and to up-regulate their ATP-generating capacity if or when the supply of ATP 53	

was insufficient; this is now a major function of the AMPK (AMP-activated protein kinase) 54	

signalling pathway. In addition, there would have been a requirement to monitor the supply of 55	

nutrients such as amino acids and glucose produced at the lysosome by phagocytosis, pinocytosis or 56	

autophagy, and to up-regulate cell growth when these nutrients were available; this is now a key 57	

function of the TOR (target-of-rapamycin) pathway. We propose that these two opposing pathways, 58	

which are present in almost all present-day eukaryotes, are the descendants of ancient nutrient 59	
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sensing and signalling pathways that arose very early during eukaryotic evolution. AMPK 60	

represents the Yin (“dark” or “passive”) side that signals lack of nutrients or insufficient ATP and 61	

inhibits cell growth, whereas TOR represents the Yang (“bright” or “active”) side that signals 62	

availability of nutrients and promotes cell growth. Just as in the Chinese philosophy of Taoism from 63	

which the Yin-Yang concept is derived, an appropriate balance between these two opposing 64	

elements ensures homeostasis and thus a healthy cell or organism. 65	

 In present-day unicellular eukaryotes, including fungi such as Saccharomyces cerevisiae, growth 66	

and proliferation is regulated almost entirely by nutrient availability, and the orthologs of AMPK 67	

and TOR play crucial roles in this.  However, during the development of multicellular organisms, 68	

the uptake (and hence the intracellular availability) of nutrients has become modulated by an 69	

additional tier of cell-extrinsic regulation mediated by growth factors and cytokines (Palm and 70	

Thompson, 2017). It can be argued that these cell-extrinsic factors “license” or allow cells to take 71	

up nutrients, but that the AMPK and TOR pathways, which sense intracellular nutrient availability, 72	

remain the primary internal regulators of cell growth and proliferation. Interestingly, most of the 73	

mutations that cause cancer in multicellular organisms appear to affect the higher-level, cell-74	

extrinsic regulation of cell growth. Such mutations allow cancer cells to become “rebels” that have 75	

partially reverted to their unicellular origins and that switch over to using cell-intrinsic growth 76	

control, based on nutrient availability and controlled by the AMPK and TOR pathways. 77	

Yin: the structure and regulation of AMPK/SNF1 complexes 78	

Subunit structure and evolution 79	

AMPK appears to occur universally as heterotrimeric complexes comprising catalytic a subunits 80	

and regulatory b and g subunits (Ross et al., 2016b). Genes encoding all three subunits are readily 81	

found within the genomes of almost all eukaryotes (Table 1 and Fig. 1). However, the orthologs in 82	

budding yeast (S. cerevisiae) and plants are not allosterically activated by AMP and were 83	

discovered independently of mammalian AMPK by genetic approaches (Alderson et al., 1991; 84	

Celenza and Carlson, 1986). They are therefore not usually referred to as AMPK but instead in 85	

yeast as Snf1 complexes (SNF1 being the gene encoding the catalytic subunit), and in plants as 86	

Snf1-related kinase-1 (SnRK1) complexes. 87	
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 Interestingly, the only eukaryotes known to lack AMPK subunit orthologs are parasites that 88	

spend all or most of their life cycle living inside other eukaryotic cells, including Encephalitozoon 89	

cuniculi and Plasmodium falciparum, the latter being the causative agent of human malaria (Fig. 1). 90	

These parasitic eukaryotes appear to have undergone stringent selection for small genome size, with 91	

E. cuniculi having one of the smallest known genome of any eukaryote, encoding only 29 92	

conventional and 3 atypical protein kinases (compared with >500 in humans) (Miranda-Saavedra et 93	

al., 2007). Ancestors of these organisms most likely did have AMPK genes, but the modern-day 94	

descendants may have been able to dispense with them because the host cell would provide AMPK 95	

that regulates cellular energy balance on their behalf. Consistent with this, species closely related to 96	

P. falciparum that cause malaria in birds (P. gallinaceum and P. relictum) do still have 97	

conventional AMPK genes (Bohme et al., 2018). Interestingly, TOR genes are missing in E. 98	

cuniculi and P. falciparum (Fig. 1) but are also absent in P. gallinaceum and P. relictum. 99	

 Mammals, including humans, have two genes encoding isoforms of AMPK-a (a1 and a2), two 100	

encoding AMPK-b (b1 and b2) and three encoding AMPK-g (g1, g2 and g3) (Table 1). These 101	

multiple isoforms appear to have arisen during the two rounds of whole genome duplication that 102	

occurred during the early evolution of vertebrates (Ross et al., 2016b). All twelve combinations of 103	

these subunit isoforms are able to form heterotrimeric complexes, although it is not certain that all 104	

combinations exist in vivo. Structures for several almost complete human AMPK heterotrimers, i.e., 105	

a2b1g1 (Xiao et al., 2013), a1b1g1 (Calabrese et al., 2014), a1b2g1 (Li et al., 2015) and a2b2g1 106	

(Ngoei et al., 2018), have been obtained via X-ray crystallography. The complexes were all 107	

crystallized in active conformations and their structures are very similar; a schematic representation 108	

of a generalized AMPK heterotrimer based on these structures is shown in Fig. 2. 109	

Structure of AMPK and canonical adenine nucleotide (energy)-sensing mechanism 110	

Although the main theme of this review is nutrient sensing, we will first discuss the classical or 111	

“canonical” mechanism by which AMPK responds to the changing energy status of cells. The 112	

catalytic a subunits of AMPK contain, at their N-termini, conventional serine/threonine kinase 113	

domains with a small N-lobe and larger C-lobe, and the catalytic site in the cleft between them. As 114	

with many other members of the ePK (eukaryotic protein kinase) family, AMPK complexes are 115	

only significantly active when phosphorylated at a critical residue within the activation loop, a 116	
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stretch of ≈20 amino acids in the C-lobe between the highly conserved DFG and APE motifs. In 117	

AMPK the critical phosphorylation site is a threonine, usually referred to as Thr172 after its 118	

position in the rat a2 sequence where originally mapped (Hawley et al., 1996). Thr172 is not 119	

phosphorylated by AMPK itself but by upstream kinases, principally by LKB1 (liver kinase B1) 120	

(Hawley et al., 2003; Shaw et al., 2004; Woods et al., 2003), the active form of which is a 121	

heterotrimeric complex also containing STRAD-a or –b, and the scaffold protein MO25-a or –b 122	

(Zeqiraj et al., 2009). LKB1 was originally identified as the product of the tumour suppressor gene 123	

STK11, which is mutated in Peutz-Jeghers Syndrome (an inherited susceptibility to cancer) as well 124	

as in some sporadic (i.e., non-inherited) cancers, especially lung adenocarcinomas (Alessi et al., 125	

2006; Ji et al., 2007; Sanchez-Cespedes et al., 2002). Although LKB1 was subsequently shown to 126	

phosphorylate and activate twelve other kinases with kinase domains related to AMPK (the AMPK-127	

related kinase family (Jaleel et al., 2005; Lizcano et al., 2004)), AMPK was the first downstream 128	

target for LKB1 to be identified, and this introduced an intriguing connection between AMPK and 129	

cancer. Indeed, it is now clear that AMPK can also act as a tumor suppressor, at least in certain 130	

animal models of cancer (Vara-Ciruelos et al., 2019). 131	

 A summary of the canonical and non-canonical mechanisms that activate AMPK, and selected 132	

downstream targets involved in its promotion of catabolic processes, inhibition of anabolic 133	

processes and effects on DNA replication, are shown in Fig. 3. In the canonical mechanism that is 134	

enshrined in its name, AMPK is activated by binding of 5'-AMP, with activation occurring not by 135	

one but three mechanisms: (1) allosteric activation of AMPK already phosphorylated on Thr172 136	

(Carling et al., 1987; Ferrer et al., 1985; Yeh et al., 1980); (2) enhanced Thr172 phosphorylation by 137	

the LKB1 complex (Hawley et al., 1995); and (3) protection against Thr172 dephosphorylation by 138	

protein phosphatases (Davies et al., 1995). All three effects are due to binding of AMP to AMPK, 139	

not to the upstream kinase or phosphatase, and this tripartite mechanism ensures that the system 140	

responds to small increases in AMP in a very sensitive manner. Although there is general 141	

agreement that only AMP binding causes effect #1 above, ADP binding similarly triggers effects #2 142	

and #3 (Oakhill et al., 2011; Xiao et al., 2011). However, most AMPK complexes (apart from those 143	

containing the g2 isoform) are about 10-fold more sensitive to AMP than ADP, suggesting that 144	

increases in AMP are the primary activating signal, although increases in ADP may contribute 145	
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(Ross et al., 2016a). All of the activating effects of AMP and ADP are antagonized by binding of 146	

ATP, so that the AMPK system effectively monitors cellular AMP:ATP and ADP:ATP ratios. 147	

 Where are the regulatory binding sites where these adenine nucleotides are sensed? The g 148	

subunits contain four tandem repeats of a sequence termed a CBS (cystathionine b-synthase) motif 149	

(Bateman, 1997). These occur, usually as just two tandem repeats, in about 75 proteins in humans, 150	

and are also found in archaea and bacteria. Single pairs of tandem CBS repeats associate into 151	

pseudodimers (termed Bateman modules), potentially creating two pseudo-symmetrical ligand-152	

binding sites in the intervening cleft, although in many cases only one is utilized. These sites 153	

usually bind ligands containing adenosine or (less often) guanosine (Anashkin et al., 2017; Scott et 154	

al., 2004). The two Bateman modules in each AMPK-g subunit associate head-to-head to form a 155	

flattened disk with four potential binding sites for adenine nucleotides in the center (Fig. 2). 156	

However, only three are utilized, i.e. CBS3, which is accessible from one face of the g subunit, and 157	

CBS1 and CBS4, accessible from the other. The critical site appears to be CBS3; the a-linker, a 158	

flexible region of the a subunit that connects the a-AID (a-auto-inhibitory domain) and a-CTD (a-159	

C-terminal domain), wraps around the face of the g subunit containing CBS3, contacting its bound 160	

AMP (Fig. 2). This interaction is not thought to occur when ATP is bound at CBS3 instead of 161	

AMP, and the consequent release of the a-linker from the g subunit is proposed to allow the a-AID 162	

to rotate back into its inhibitory position behind the kinase domain (Chen et al., 2009; Chen et al., 163	

2013; Li et al., 2015; Xiao et al., 2011; Xin et al., 2013); this model thus explains allosteric 164	

activation by AMP as well as its antagonism by ATP. At the same time, the resulting 165	

conformational changes may alter the accessibility of Thr172 for phosphorylation and/or 166	

dephosphorylation, although those aspects of the mechanism are less well understood. The 167	

functions of the CBS1 and CBS4 sites are less clear, although they are close to the CBS3 site in the 168	

centre of the CBS repeats, where the three sites interact. One proposal is that CBS1 binds ATP 169	

permanently, while CBS4 binds AMP permanently, and that these constitutive binding events alter 170	

the conformation of the CBS3 site such that it has a higher affinity for AMP than ADP or ATP (Gu 171	

et al., 2017b). This helps to explain how AMPK achieves the difficult task of sensing changes in 172	

AMP in the 30-300 µM range despite the presence of mM concentrations of ATP (Gowans et al., 173	

2013). An additional explanation is that only Mg2+-free ATP competes with AMP at the CBS3 site 174	

(Pelosse et al., 2019), although 90% of intracellular ATP is thought to be present as the Mg.ATP2- 175	
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complex. According to this model, the ATP and AMP constitutively bound at the CBS1 and CBS4 176	

sites, respectively, act essentially as regulatory co-factors. This explains why a functional CBS4 site 177	

is required for activation even when overall AMP levels remain at the basal level (Zong et al., 178	

2019a). 	179	

 Although the sequences of the a, b, and g subunits are well conserved, the regulation by adenine 180	

nucleotides of AMPK orthologs from eukaryotes other than mammals is much less well studied. As 181	

mentioned earlier, neither Snf1 complexes from S. cerevisiae (Wilson et al., 1996) nor SnRK1 182	

complexes from plants (Mackintosh et al., 1992) appear to be allosterically activated by AMP, 183	

although the dephosphorylation of the threonine residues equivalent to Thr172 were reported to be 184	

inhibited by ADP in S. cerevisiae (Mayer et al., 2011) and by AMP in plants (Sugden et al., 1999a). 185	

Allosteric activation by AMP has been reported, although not well studied, using the complexes 186	

from D. melanogaster (Pan and Hardie, 2002), C. elegans (Apfeld et al., 2004) and S. pombe (Forte 187	

et al., 2019). It seems possible that allosteric activation, which is physiologically significant in 188	

intact cells (Gowans et al., 2013), was a later evolutionary refinement that increased the overall 189	

sensitivity of the system to small changes in AMP. 190	

Non-canonical activation of AMPK by ligands binding at the ADaM site 191	

The heterotrimeric AMPK complex contains other ligand-binding sites whose physiological 192	

function remains less clear. One is the glycogen-binding site on the b-CBM (b-carbohydrate-193	

binding module), which is present in the b subunits of all eukaryotes and in mammalian cells causes 194	

a proportion of AMPK to bind to glycogen (Hudson et al., 2003; Polekhina et al., 2003; Polekhina 195	

et al., 2005). Intriguingly, as well as a conventional CBM on the b subunit, many higher plant 196	

SnRK1 complexes also contain a second CBM fused at the N-terminus of the g subunit, forming a 197	

so-called bg subunit (Lumbreras et al., 2001; Zhao, 2019). Although it has been proposed that the 198	

single CBM of mammalian AMPKs may allow them to sense the structural state of glycogen 199	

(McBride et al., 2009), more work is required to confirm that hypothesis. Another ligand-binding 200	

site lies in a cleft (termed the ADaM site) between the other face of the CBM (i.e., opposite to the 201	

glycogen-binding site) and the N-lobe of the kinase domain on the a subunit (Fig. 2). Several 202	

ligands that bind in this site cause a dramatic allosteric activation of AMPK with, usually, a more 203	

modest effect to promote net Thr172 phosphorylation (Goransson et al., 2007; Sanders et al., 2007; 204	
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Scott et al., 2014; Yan et al., 2019). However, a curious feature is that, with the exception of 205	

salicylate (a natural product of plants, but not animals) (Hawley et al., 2012), all of the compounds 206	

currently known to bind there are synthetic molecules that emerged from high-throughput screens 207	

searching for allosteric activators of AMPK [e.g., (Cokorinos et al., 2017; Cool et al., 2006; Myers 208	

et al., 2017)]. This binding site is therefore a type of “orphan receptor”, and many researchers in the 209	

field suspect that there is a unidentified metabolite occurring in animal cells that binds to it, hence 210	

the acronym ADaM (Allosteric Drug and Metabolite) site (Langendorf and Kemp, 2015). 211	

Non-canonical activation of AMPK by Ca2+ and by DNA damage 212	

Thr172 can also be phosphorylated by alternate upstream kinases, including the Ca2+/calmodulin-213	

dependent kinase, CaMKK2 (Hawley et al., 2005; Hurley et al., 2005; Woods et al., 2005) and 214	

TAK1 (Transforming growth factor-b-Activated Kinase-1) (Momcilovic et al., 2006). The 215	

physiological importance of TAK1 as a means of AMPK activation is not well established, although 216	

there is one report that it is involved in AMPK activation in response to TRAIL (Tumor necrosis 217	

factor-Related Apoptosis-Inducing Ligand) (Herrero-Martin et al., 2009). By contrast, there is good 218	

evidence that AMPK can be activated by the CaMKK2 pathway in response to hormones or growth 219	

factors that trigger release of Ca2+ from the endoplasmic reticulum (Fig. 3). This includes hormones 220	

acting at G protein-coupled receptors linked via Gq/G11 to release of the Ca2+-mobilizing messenger 221	

IP3 (inositol-3,4,5-trisphosphate), such as thrombin acting at protease-activated receptor-1 in 222	

endothelial cells (Stahmann et al., 2006), acetylcholine acting at M3 muscarinic receptors in various 223	

cell types (Jadeja et al., 2019; Merlin et al., 2010; Thornton et al., 2008; Xue et al., 2016) and 224	

ghrelin acting at GHSR1 receptors in neurons of the hypothalamus (Yang et al., 2011). AMPK is 225	

also activated via a Ca2+/CaMKK2-dependent mechanism by the growth factor VEGF (vascular 226	

endothelial growth factor) acting at the tyrosine kinase-linked VEGF receptor in endothelial cells, 227	

which triggers release of IP3 via activation of PLCg (phospholipase C-g) (Reihill et al., 2007; 228	

Stahmann et al., 2010). 229	

 Another non-canonical AMPK activation mechanism occurs in response to DNA damage and/or 230	

replicative stress (Fig. 3), which can be induced by etoposide, hydroxyurea, aphidicolin or ionizing 231	

radiation (Fu et al., 2008; Li et al., 2019b; Sanli et al., 2010). Interestingly, the effects of etoposide, 232	

hydroxyurea or aphidicolin require CaMKK2 but not LKB1, correlate with increases in nuclear 233	
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Ca2+, only activate AMPK in the nucleus and (at least for etoposide) only activate the a1 isoform 234	

(Li et al., 2019b; Vara-Ciruelos et al., 2018). Studies with AMPK knockout cells reveal that they 235	

are hypersensitive to cell death induced by DNA damage or replicative stress (Vara-Ciruelos et al., 236	

2018), and this correlates with increased resection of replication forks as well as other chromosomal 237	

abnormalities (Li et al., 2019b). The defects in the knockout cells have been attributed, at least in 238	

part, to lack of phosphorylation by AMPK of the 5'-3' exonuclease EXO1, which normally causes 239	

its association with 14-3-3 proteins, thus restraining its ability to resect replication forks (Li et al., 240	

2019b). Since many of these genotoxic treatments are used in cancer therapy, it seems likely that 241	

they would be more efficacious if administered together with an AMPK inhibitor, thus preventing 242	

the protective effects of AMPK against cell death induced by DNA damage or replicative stress. 243	

Non-canonical activation of AMPK by glucose starvation 244	

Recent studies in mammalian cells have revealed, perhaps surprisingly, that activation of AMPK in 245	

response to glucose starvation can occur via a non-canonical, AMP-independent mechanism. The 246	

first clues came from administration of siRNAs targeting AXIN1 into the tail vein of mice, using 247	

adenoviral vectors that direct expression to the liver. After overnight starvation, animals receiving 248	

siRNA showed diminished AMPK activation and increased fat storage in liver. This led to the 249	

discovery that AXIN1, which was initially identified as a central scaffold protein for Wnt signalling 250	

(Zeng et al., 1997), binds constitutively to LKB1 and acts as an adapter for LKB1 to associate with 251	

and phosphorylate AMPK; this initial characterization of the role of AXIN1 was based on an in 252	

vitro reconstitution experiment where high levels of AMP were required for the interaction to occur 253	

(Zhang et al., 2013), which can now be classified as a cytosolic, AXIN/AMP-dependent mechanism 254	

(Zong et al., 2019b). A subsequent yeast two-hybrid screen searching for novel AXIN1-interacting 255	

proteins (Zhang et al., 2014) identified p18/LAMTOR1, a protein anchored to the lysosomal 256	

membrane by N-terminal myristoyl and palmitoyl modifications (Nada et al., 2009). 257	

p18/LAMTOR1 is a key component of the Ragulator complex, which (as will be discussed later) 258	

plays a central role in the activation of mTORC1 via interaction with the vacuolar ATPase (v-259	

ATPase) (Bar-Peled et al., 2012; Sancak et al., 2010; Zoncu et al., 2011). In LAMTOR1-null cells 260	

or cells with knockdown of the v0c subunit of the v-ATPase, AMPK activation induced by glucose 261	

starvation was no longer observed. In addition, AXIN1, in complex with LKB1, was found to 262	
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translocate to the lysosomal surface, forming a supramolecular complex with the Ragulator and v-263	

ATPase, which was not observed in LAMTOR1-null cells or cells with knockdown of the v-264	

ATPase v0c subunit (Zhang et al., 2014). By this mechanism, LKB1 is brought to the vicinity of a 265	

pool of AMPK that appears to permanently reside on the lysosomal membrane due to N-terminal 266	

myristoylation of the b subunit. This overall mechanism is now referred to as the lysosomal AMPK 267	

activation pathway (Fig. 3). 268	

 It should be noted that AXIN has two isoforms, AXIN1 and AXIN2, which are functionally 269	

redundant both in Wnt signaling (Chia and Costantini, 2005), and in the lysosomal AMPK 270	

activation pathway (Zong et al., 2019b). While AXIN1 is ubiquitously expressed, AXIN2 is mainly 271	

expressed in neuronal cells and some actively proliferating cells. For example, AXIN2 is not 272	

expressed in differentiated hepatocytes (Zong et al., 2019b), except for a small population of self-273	

renewing cells adjacent to the central vein in the liver lobule (Wang et al., 2015a). Similarly, while 274	

mouse embryo fibroblasts (MEFs) only express AXIN1, AXIN2 is also expressed in HEK293T 275	

cells, so that if AXIN1 expression is knocked out in HEK293T cells, the lysosomal AMPK 276	

activation pathway remains intact (Zong et al., 2019b). In addition, in some cell types that rely on 277	

glycolysis for ATP production, glucose starvation may also activate AMPK by the canonical AMP-278	

dependent pathway, rendering the lysosomal activation pathway redundant.  For example, in 279	

HEK293 cells (unlike in MEFs) there are rapid increases in cellular AMP:ATP and ADP:ATP 280	

ratios after glucose removal even when an alternative carbon source such as glutamine is provided 281	

(Zhang et al., 2017). In these cells, the canonical AMP-dependent pathway for AMPK activation 282	

operates independently of the lysosomal AMP-independent pathway in response to glucose 283	

starvation (Zong et al., 2019b). Thus, studies of the lysosomal pathway in some cell types or tissues 284	

need to take into account the possibility not only of expression of AXIN1 or AXIN2, but also of 285	

changing AMP levels.  286	

 Although the results of Zhang et al (2014) demonstrated that glucose starvation activated AMPK 287	

via the lysosomal pathway in mammals, it remained unclear how the presence or absence of glucose 288	

was sensed. Pursuing this, it became apparent that aldolase, the glycolytic enzyme that converts 289	

FBP (fructose-1,6-bisphosphate) into triose phosphates, which can also be associated with the v-290	

ATPase complex, is a direct (physical) sensor for FBP. When aldolase is unoccupied by FBP 291	

(whose levels rapidly decrease upon glucose deprivation) the v-ATPase complex undergoes 292	
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conformational changes that inhibit its activity as a proton pump (as suggested by increased pH 293	

levels in the lysosomal lumen (Zhang et al., 2017)) and also allow the AXIN1:LKB1 complex to 294	

interact with the v-ATPase and Ragulator. Multiple lines of evidence support the idea that aldolase 295	

is the direct sensor. Firstly, knockdown of all isoforms of aldolase caused constitutive activation of 296	

AMPK, even in high glucose. Secondly, in cells expressing the D34S mutant of aldolase, which has 297	

a greatly reduced kcat despite an almost unchanged Km for FBP (Morris and Tolan, 1993) (meaning 298	

that FBP will accumulate in the active site of aldolase even in low glucose), AMPK was not 299	

activated by glucose starvation (Zhang et al., 2017). Importantly, this mechanism for AMPK 300	

regulation by glucose can occur in the absence of any changes in adenine nucleotide ratios. For 301	

example, in MEFs transferred from medium with high glucose (25 mM) to medium containing 302	

glucose concentrations around 5 mM, or in livers of mice starved overnight (when blood glucose 303	

dropped from 9 to 3 mM), AMPK was activated without any associated changes in cellular 304	

AMP:ATP or ADP:ATP ratios. Interestingly, however, if glutamine (the other major carbon source 305	

in the medium) was removed from the medium as well as glucose, there was an additional, delayed 306	

(but ultimately larger) activation of AMPK that did correlate with increases in AMP:ATP and 307	

ADP:ATP ratios (Zhang et al., 2017). These results indicate that the non-canonical glucose-sensing 308	

mechanism for AMPK activation can act in parallel with the canonical AMP-dependent mechanism. 309	

In line with the concept that glucose availability can be sensed independently of cellular energy 310	

status, neither pyruvate nor glutamine, which both feed into the TCA cycle for ATP production, 311	

prevent lack of glucose from activating AMPK. Indeed, it is now clear that the AXIN/lysosome-312	

dependent and AMP–dependent mechanisms can co-exist, with their contributions to overall 313	

AMPK activation depending on the magnitude of any increases in AMP, as well as the subcellular 314	

location (Zong et al., 2019b).  315	

 Another recent study has uncovered the mechanism that signals the presence or absence of FBP 316	

in the active site of aldolase to the formation of the AXIN-LKB1-AMPK complex on the lysosomal 317	

membrane. It was demonstrated that TRPV (transient receptor potential V) channels located on the 318	

ER (endoplasmic reticulum) membrane are required for AMPK activation in response to low 319	

glucose. The current model is that aldolase that is unoccupied by FBP interacts with TRPV at 320	

lysosome:ER contact sites, inhibiting its Ca2+-releasing activity. Once the Ca2+ concentrations at the 321	

ER-lysosome contact sites falls below a certain level, TRPV gains affinity for the v-ATPase, re-322	
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configuring its association with aldolase and causing the formation of the AXIN-based complex to 323	

activate AMPK (Li et al., 2019a). It should be pointed out that the concentration of the TRPV-324	

released Ca2+ (<1 μM) is well below that required for activation of CaMKK2, which is not involved 325	

in the lysosomal AMPK activation mechanism. It has been proposed that the pool of Ca2+ at the 326	

ER-lysosome contact sites acts as a kind of buffer or damper, smoothing the output and thus 327	

preventing fluctuations in AMPK caused by rapid oscillations of FBP binding in the active site of 328	

aldolase (Li et al., 2019a). 329	

 Glucose starvation also causes rapid activation of the Snf1 complex in S. cerevisiae (Wilson et 330	

al., 1996; Woods et al., 1994a) and, intriguingly, complexes containing Sip1 (one of three b subunit 331	

orthologs in yeast) translocate to the vacuolar membrane upon glucose removal (Vincent et al., 332	

2001). However, the detailed mechanism appears to be different from that in mammalian cells 333	

because no clear AXIN orthologs are found in yeast. Once activated, the Snf1 complex 334	

phosphorylates the transcriptional repressor Mig1 (Smith et al., 1999; Treitel et al., 1998), 335	

triggering both its inactivation (Papamichos-Chronakis et al., 2004) and nuclear export (DeVit and 336	

Johnston, 1999). Mig1 binds to and inhibits the promoters of many glucose-repressed genes, 337	

including the SUC2 gene encoding a secreted invertase that is required to metabolize alternate 338	

carbon sources such as sucrose or raffinose (Hedbacker and Carlson, 2008). As in mammalian cells, 339	

the Snf1 complex also phosphorylates and inactivates acetyl-CoA carboxylase, potentially 340	

inhibiting fatty acid biosynthesis under glucose-limiting conditions (Mitchelhill et al., 1994; Woods 341	

et al., 1994b). 342	

 Although the effects of starvation for a carbon source are less well studied in plants, knockout or 343	

silencing of the genes encoding the AMPK-a orthologs in the moss Physcomitrella patens 344	

(Thelander et al., 2004) and the higher plant Arabidopsis thaliana (Baena-Gonzalez et al., 2007) 345	

causes failure to respond appropriately to periods of darkness, the equivalent of starvation in plants. 346	

In cells of A. thaliana the AMPK-a ortholog KIN10 is responsible for triggering extensive 347	

reprogramming of transcription affecting thousands of genes, some of which are required for 348	

adaptive responses such as starch breakdown during starvation (Baena-Gonzalez et al., 2007; 349	

Baena-Gonzalez and Sheen, 2008). SnRK1 complexes also phosphorylate and inactivate both 350	

sucrose phosphate synthase and HMG- (3-hydroxy-3-methylglutaryl-) CoA reductase, potentially 351	
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inhibiting the anabolic pathways of sucrose and sterol synthesis (Nukarinen et al., 2016; Sugden et 352	

al., 1999b).  353	

 Since activation by starvation for key carbon sources (especially glucose) appears to be a 354	

common feature of the AMPK orthologs from mammals, plants and budding yeast, yet they differ 355	

in their regulation by adenine nucleotides, it is tempting to speculate that sensing of glucose rather 356	

than energy may have been the ancestral role of the kinase. However, it remains unclear exactly 357	

how carbon starvation causes activation of the orthologs in plants and yeast. 358	

Downstream targets of AMPK 359	

AMPK phosphorylates downstream targets containing well-defined recognition motifs, and at least 360	

60 have now been well validated – a full discussion of these is beyond the scope of this article and 361	

readers are referred to a previous review (Hardie et al., 2016). In general, AMPK phosphorylates 362	

and activates proteins involved in catabolic pathways, thus enhancing ATP synthesis, while 363	

phosphorylating and inactivating proteins involved in anabolic (biosynthetic) pathways, thus 364	

inhibiting cell growth while conserving ATP. AMPK also causes a cell cycle arrest in G1 phase 365	

(Fogarty et al., 2016; Imamura et al., 2001), although in that case the direct downstream targets 366	

responsible for the effect are not clear. In this section, we will mention only a few key targets that 367	

are important for the effects of AMPK on catabolic and anabolic pathways. 368	

 Starting with effects on catabolism, in many cell types AMPK activation increases glucose 369	

uptake via effects on the trafficking of the glucose transporters, GLUT1 (Barnes et al., 2002) or 370	

GLUT4 (Kurth-Kraczek et al., 1999). This is achieved in part via phosphorylation and consequent 371	

degradation of TXNIP, an a-arrestin family member that normally promotes reuptake of GLUT1 372	

and GLUT4 from the plasma membrane by endocytosis (O'Donnell and Schmidt, 2019; Wu et al., 373	

2013). In the case of GLUT4, AMPK also phosphorylates TBC1D1, a GTPase activating protein 374	

(GAP) for members of the Rab family, causing dissociation of TBC1D1 from intracellular GLUT4-375	

storage vesicles (GSVs) with consequent conversion of Rabs to their GTP-bound forms, thus 376	

promoting trafficking of GSVs to the plasma membrane (Pehmoller et al., 2009). AMPK can also 377	

phosphorylate and activate 6-phosphofructo-2-kinase, the enzyme that generates fructose-2,6-378	

bisphosphate, a potent allosteric activator of the key glycolytic enzyme 6-phosphofructo-1-kinase. 379	

However, this effect is cell type-dependent because only the PFKFB2 (Marsin et al., 2000) or 380	
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PFKFB3 (Marsin et al., 2002) isoforms of 6-phosphofructo-2-kinase, which are not expressed 381	

ubiquitously, are direct targets for AMPK. AMPK also acutely promotes fatty acid oxidation by 382	

phosphorylating and inactivating the mitochondrial isoform of ACC2 (acetyl-CoA carboxylase-2), 383	

thus reducing the local pool of malonyl-CoA, an inhibitor of uptake of fatty acids into mitochondria 384	

via the transport system involving carnitine palmitoyl-CoA transferase-1 (Winder and Hardie, 385	

1996). 386	

 In the longer term, AMPK activation tends to promote the oxidative metabolism typical of 387	

quiescent cells, rather than the rapid glucose uptake and glycolysis typical of cells undergoing rapid 388	

proliferation, including tumor cells. Firstly, it promotes mitochondrial biogenesis (Zong et al., 389	

2002) as well as expression of oxidative enzymes (Winder et al., 2000), perhaps by direct 390	

phosphorylation (Jager et al., 2007) or deacetylation (Canto et al., 2009) of the transcriptional co-391	

activator, PGC-1a. Secondly, AMPK maintains the cellular content of functional, healthy 392	

mitochondria by promoting both mitophagy, via phosphorylation of the autophagy kinase ULK1 393	

(Unc-51-like kinase 1) (Egan et al., 2011b), and mitochondrial fission, perhaps via phosphorylation 394	

of proteins involved in mitochondrial fission such as MFF (mitochondrial fission factor) or 395	

MTFR1L (mitochondrial fission regulator-1-like)  (Ducommun et al., 2015; Schaffer et al., 2015; 396	

Toyama et al., 2016). Because mitochondria can exist in cells as elongated branching networks that 397	

can be of lengths close to that of the cell diameter, mitochondrial fission may be necessary to break 398	

these networks down into smaller segments suitable for mitophagy. Consistent with this, the 399	

phenotypes of muscle-specific double knockouts of a1/a2 (Lantier et al., 2014) or b1/b2 (O'Neill et 400	

al., 2011) in mice include exercise intolerance associated with the appearance in electron 401	

micrographs of mitochondria of abnormal size and morphology.  402	

 Along with these effects on catabolism, AMPK acutely switches off most anabolic pathways. It 403	

was discovered for its ability to phosphorylate and inactivate ACC1 (acetyl-CoA carboxylase-1) 404	

and HMG-CoA reductase, two key enzymes of fatty acid and cholesterol synthesis, respectively 405	

(Hardie et al., 1989). Indeed, phosphorylation of ACC1 at Ser80 (Ser79 in rodents), monitored 406	

using phosphospecific antibodies, remains the most widely used biomarker for AMPK activation in 407	

intact cells. Moreover, mice with knock-in Ser®Ala mutations of the AMPK sites on ACC1 and 408	

ACC2 (Fullerton et al., 2013) or HMG-CoA reductase (Loh et al., 2019) have elevated levels of 409	

triglycerides and cholesterol, respectively, demonstrating that these phosphorylation sites have 410	
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regulatory significance in vivo. AMPK also switches off glycogen synthesis via phosphorylation of 411	

the GYS1 (Jorgensen et al., 2004) and GYS2 (Bultot et al., 2012) isoforms of glycogen synthase, 412	

nucleotide synthesis via phosphorylation of the PRPS-1 and -2 isoforms of phosphoribosyl 413	

pyrophosphate synthetase (Qian et al., 2018), and ribosomal RNA synthesis via phosphorylation of 414	

TIF-1A/RRN3, a transcription factor for RNA polymerase-1 (Hoppe et al., 2009). Finally, AMPK 415	

switches off the elongation step of protein synthesis in part via phosphorylation of elongation 416	

factor-2 kinase (Johanns et al., 2017), an atypical Ca2+-dependent kinase that phosphorylates 417	

elongation factor-2 and causes pausing in elongation. Other effects on protein synthesis are 418	

mediated indirectly by inactivation of mTORC1, which is discussed in more detail in a separate 419	

section below. 420	

Yang – the structure and regulation of TOR complexes 421	

Subunit structure and evolution 422	

TOR is a serine/threonine protein kinase belonging to the PIKK (phosphatidylinositol kinase-related 423	

kinase) family, which also includes DNA-PK and ATM (Keith and Schreiber, 1995). TOR is 424	

conserved in all eukaryotes except (as for AMPK) in the case of a few obligate intracellular 425	

parasites such as E. cuniculi and P. falciparum (Tatebe and Shiozaki, 2017; van Dam et al., 2011) 426	

(Fig. 1), which may be able to exploit TOR signalling in the host cell. Whereas most eukaryotes 427	

contain a single TOR gene, a few possess more than one, for example budding yeast (S. cerevisiae) 428	

and fission yeast (S. pombe) have two (Shertz et al., 2010) (Table 1), while trypanosomes have up 429	

to four (Saldivia et al., 2013). Early eukaryotes presumably possessed a single TOR gene that was 430	

duplicated and/or lost multiple times during evolution (Shertz et al., 2010).  431	

 TOR was originally identified genetically in S. cerevisiae via mutations that render cells resistant 432	

to the growth-inhibitory properties of the antibiotic rapamycin (Heitman et al., 1991; Kunz et al., 433	

1993). It was identified in mammalian cells shortly thereafter (Brown et al., 1994; Chiu et al., 1994; 434	

Sabatini et al., 1994; Sabers et al., 1995), and the name mTOR (mammalian TOR) was eventually 435	

adopted based on the yeast precedent. More recently, the HUGO Gene Nomenclature Committee 436	

changed the definition of the mTOR acronym to “mechanistic TOR” in order to create a common 437	

nomenclature for TOR in vertebrates (Hall, 2013). However, this has led to TOR from nematodes 438	

or even yeast sometimes being referred to as mTOR.  439	
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 TOR forms two structurally and functionally distinct multiprotein complexes termed TOR 440	

complexes-1 and -2 (TORC1 and TORC2), of which only TORC1 is acutely sensitive to rapamycin 441	

(Loewith et al., 2002). The two TOR complexes, like TOR itself, are conserved from yeast to 442	

humans, although TORC1 appears to be absent from ciliates and TORC2 from plants (Tatebe and 443	

Shiozaki, 2017; van Dam et al., 2011) (Fig. 1). In mammals, mTOR and the adaptor protein mLST8 444	

(mammalian lethal with SEC13 protein 8) are common to both TOR complexes. RAPTOR 445	

(regulatory-associated protein of TOR) is the defining subunit of mTORC1, whereas RICTOR 446	

(rapamycin-insensitive companion of mTOR) and mSIN1 (stress-activated MAP kinase interacting 447	

protein 1) define mTORC2. 448	

 The domain organization of TOR is also conserved. The C-terminal half of TOR contains a FAT 449	

(FRAP, ATM, and TRRAP) domain followed by the FRB (FKBP-rapamycin binding) domain, the 450	

catalytic kinase domain, and a C-terminal FAT domain termed FATC. Structural biologists often 451	

refer to the FAT, FRB, kinase and FATC domains collectively as the FATKIN region (Baretić et 452	

al., 2016; Imseng et al., 2018) (Fig. 4). FATKIN regions are found in all PIKK family members, 453	

although only the FRB domain in TOR binds the FKBP-rapamycin complex. All PIKKs contain 454	

long, N-terminal extensions that serve as docking surfaces for binding partners. The N-terminal half 455	

of TOR consists of tandem arrays of HEAT (Huntingtin, Elongation Factor 3, PP2A, and TOR) and 456	

TPR (tetratricopeptide) repeats. The HEAT repeats of mTOR bind RAPTOR (Hara et al., 2002; 457	

Kim et al., 2002), which also has several characteristic regions: the RAPTOR N-terminal conserved 458	

(RNC) CASPase-like domain, a central set of seven ⍺-helical repeats termed the armadillo (ARM) 459	

domain, and a C-terminal seven-bladed WD40 β-propeller (Hara et al., 2002; Kim et al., 2002). By 460	

contrast, mLST8 is a small protein consisting entirely of a WD40 β-propeller. 461	

Structure of the mTORC1 complex 462	

TORC1 architecture was solved by a combination of X-ray crystallography and cryo-EM (cryo-463	

electron microscopy) on truncated mTOR-mLST8 (Yang et al., 2013), RAPTOR from the fungus 464	

Chaetomium thermophilum (Aylett et al., 2016) or the plant A. thaliana (Yang et al., 2017), and 465	

TOR-Lst8 from the fungus Kluyveromyces marxianus (Baretić et al., 2016). These studies described 466	

mTORC1 at 4.4 Å (Yang et al., 2016) and 3.0 Å resolution (Yang et al., 2017), mTORC1 in 467	

complex with FKBP-rapamycin at 5.9 Å (Aylett et al., 2016), and mTORC1 bound to its activator 468	
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RHEB at 3.4 Å (Yang et al., 2017). 469	

 mTORC1 is a 1 MDa homodimer of heterotrimers (each of the latter containing mTOR, 470	

RAPTOR and mLST8) that adopts a rhomboidal (lozenge) shape with a large central cavity (Fig. 4).  471	

It exhibits two-fold (C2) symmetry with the axis of symmetry passing through the central cavity. 472	

The FATKIN region of each of the two copies of mTOR forms a compact unit located near the 473	

central cavity, on opposite sides of the C2 axis. The two FATKIN regions come close to each other 474	

but make little or no contact. Each kinase site is located at the bottom of a deep catalytic cleft that is 475	

partly obscured by surrounding structural elements, suggesting that the kinase activity is regulated 476	

by physically restricting access to the catalytic site (Yang et al., 2017; Yang et al., 2013). The 477	

HEAT repeats of each mTOR subunit form two distinct helical solenoids, one a low curvature 478	

bridge/M-HEAT (hereafter referred to as the “bridge”) and the second a high curvature 479	

horn/spiral/N-HEAT (hereafter referred to as the “horn”) peripherally linked to the bridge (Aylett et 480	

al., 2016; Baretić et al., 2016; Yang et al., 2017). The horn of one copy of mTOR packs against the 481	

bridge of the other to mediate dimerization and form the central cavity. The two-fold symmetry is 482	

likely conserved among TORC orthologs because: (i) there is a high degree of conservation 483	

throughout the HEAT repeat region of TOR; and (ii) TOR from K. marxianus (Baretić et al., 2016) 484	

and humans (Aylett et al., 2016) are architecturally identical. The horn and bridge, in addition to 485	

forming the dimer interface, are exposed, suggesting an additional role in binding regulatory or 486	

accessory proteins. mLST8 binds to the kinase domain of mTOR and thereby constitutes the ends of 487	

the short axis of the mTORC1 rhomboid. RAPTOR has an extended Z-like shape with the RNC 488	

domain and WD40 β-propeller located at opposite ends, connected by the ARM domain (Aylett et 489	

al., 2016; Yang et al., 2017). RAPTOR also contributes to the mTORC1 dimer interface, because 490	

the ARM domain of one RAPTOR binds the horn of one mTOR molecule and the bridge of the 491	

other, thereby linking the two copies of mTOR. The RAPTOR β-propeller domains are at the ends 492	

of the long axis of mTORC1. 493	

 Importantly, RAPTOR is also required for mTORC1 substrate recruitment. The region in 494	

RAPTOR responsible for substrate binding is in a cleft between the RNC and the ARM domains, 495	

located ≈65 Å from the catalytic site (Fig. 4) (Yang et al., 2017), via which RAPTOR binds a 496	

sequence of five amino acids termed the TOS (TOR signaling) motif. The TOS motif is defined as 497	

FXΦ[E/D]Φ, where Φ is a hydrophobic residue and X any residue (Gouw et al., 2018; Nojima et 498	
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al., 2003; Schalm and Blenis, 2002; Yang et al., 2017). TOS motifs are present in some TORC1 499	

substrates, such as ribosomal protein S6 kinase (S6K; TOS motif FDIDL) and eukaryotic 500	

translation initiation factor 4E binding protein (4EBP; TOS motif FEMDI) (Nojima et al., 2003; 501	

Schalm and Blenis, 2002; Schalm et al., 2003). However, the mTORC1 substrates ULK1 (Dunlop 502	

and Tee, 2013) and TFEB (transcription factor EB) (Roczniak-Ferguson et al., 2012; Settembre et 503	

al., 2012) interact with RAPTOR yet lack an obvious TOS motif. Furthermore, although the TOS-504	

binding region of RAPTOR is highly conserved from yeast to mammals, TORC1 substrates in 505	

lower eukaryotes seem to lack TOS motifs, so that it is unclear how TORC1 recognizes its 506	

substrates in those organisms. 507	

 Inhibition of TOR by rapamycin depends on the formation of a complex between rapamycin and 508	

the cytoplasmic immunophilin FKBP12 (FK506-binding protein of 12 KDa) (Benjamin et al., 509	

2011). An FKBP-rapamycin complex binds the FRB domain at the lip of the TOR catalytic cleft, 510	

forming a lid that physically prevents access of substrates to the catalytic site. FKBP-rapamycin 511	

does not induce a conformational change in mTOR, suggesting that FKBP-rapamycin indeed acts 512	

by obstructing substrate access (Aylett et al., 2016; Yang et al., 2017; Yang et al., 2013). TORC2 is 513	

not acutely inhibited by rapamycin, because the FKBP-rapamycin binding site in the TOR FRB 514	

domain in TORC2 is masked by RICTOR (Chen et al., 2018; Gaubitz et al., 2015; Karuppasamy et 515	

al., 2017; Stuttfeld et al., 2018). Cryo-EM studies have resolved S. cerevisiae (Karuppasamy et al., 516	

2017) and human (Chen et al., 2018; Stuttfeld et al., 2018) TORC2 at intermediate resolution. The 517	

two mTOR complexes share many features, including C2 symmetry, similar binding sites for 518	

RAPTOR and RICTOR, and a deep catalytic cleft. However, full structural interpretation of 519	

mTORC2 awaits higher resolution structural data. 520	

Regulation of mTORC1 by lysosomal recruitment and growth factors 521	

TOR controls cell growth and metabolism in response to nutrients, growth factors, and (in part 522	

through AMPK) cellular energy status. Nutrients, especially amino acids, are likely to be the 523	

ancestral TORC1 activating inputs, as they are sufficient to activate TORC1 in unicellular 524	

organisms such as yeast. However, in multicellular organisms, TORC1 activation requires 525	

additional input from growth factors. Mechanistically, amino acid and growth factor inputs 526	

converge on mTORC1 as follows: (i) amino acids stimulate translocation of mTORC1 from the 527	
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cytosol to the lysosome where it encounters the small G protein RHEB (RAS homologue enriched 528	

in brain), and (ii) growth factors activate lysosomal RHEB, enabling it to activate mTORC1 in turn 529	

(see below). 530	

 Amino acid availability is transmitted to TORC1 mainly via the RAGs (Ras-related family of 531	

small GTPases) (González and Hall, 2017; Nicastro et al., 2017; Wolfson and Sabatini, 2017) (Fig. 532	

5). There are four RAGs in mammals (RAGA through RAGD) and two in S. cerevisiae (Gtr1 and 533	

Gtr2) that form obligate heterodimers of RAGA or RAGB with RAGC or RAGD, and Gtr1 with 534	

Gtr2. RAGs are attached to the lysosome in mammalian cells through the pentameric Ragulator 535	

complex (Bar-Peled et al., 2012; Sancak et al., 2010), while the Gtr1-Gtr2 heterodimer is attached 536	

to the vacuole in yeast through the trimeric Ego complex (Kogan et al., 2010; Levine et al., 2013; 537	

Powis et al., 2015; Zhang et al., 2012). Clearly, the lysosome or vacuole is the TORC1 signalling 538	

hub in all eukaryotic cells. Amino acid sufficiency promotes the TORC1-activating conformation of 539	

the RAG-Gtr heterodimer (RAGA/B or Gtr1 loaded with GTP, and RAGC/D or Gtr2 loaded with 540	

GDP). In mammals, the active RAG heterodimer binds RAPTOR and thereby recruits mTORC1 541	

from the cytosol to the lysosomal surface, while in budding yeast TORC1 is constitutively bound to 542	

the vacuolar surface and the active Gtr1-Gtr2 heterodimer binds Kog1 (yeast ortholog of RAPTOR) 543	

to stimulate TORC1 via an unknown mechanism (Binda et al., 2009). From yeast two-hybrid 544	

experiments, it has been proposed that a region of Kog1 comprising amino acids 777-814 in the 545	

central ARM domain, interacts with Gtr1 (Sekiguchi et al., 2014). The region in Kog1 is conserved 546	

in RAPTOR (amino acids 777-814 in Kog1 correspond to amino acids 595-632 in RAPTOR). 547	

Consistent with this, recent structural analyses of RAGAGTP-RAGCGDP in complex with mTORC1 548	

(Anandapadamanaban et al., 2019) or with RAPTOR-Ragulator (Rogala et al., 2019) revealed that 549	

the region in RAPTOR comprising amino acids 546-650 binds RAGAGTP. Two additional regions 550	

of RAPTOR, located between the ARM and WD40 β-propeller domains, interact with RAGCGDP 551	

(Rogala et al., 2019). One region comprises amino acids 795-806 and the other amino acids 916-552	

937. The last has been referred to as the “RAPTOR claw” due to its shape (Rogala et al., 2019). 553	

Interestingly, it has been suggested that the stress-activated MAP kinase-related kinase NLK 554	

(Nemo-Like Kinase) phosphorylates RAPTOR at Ser863 thereby disrupting RAG-RAPTOR 555	

interaction and inhibiting mTORC1 (Yuan et al., 2015). Ser863 is in a structurally unsolved and 556	

thus presumably disordered linker region (residues 841 to 949) between the ARM and WD40 β-557	
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propeller domains that contains several phosphorylation sites (Foster et al., 2010; Wang et al., 558	

2009) (Fig. 4) (see below). 559	

 The nucleotide binding status of the RAGs is tightly regulated by conserved GAPs (GTPase 560	

activator proteins) and GEFs (guanine nucleotide exchange factors) (González and Hall, 2017; 561	

Nicastro et al., 2017; Wolfson and Sabatini, 2017) (Fig. 5). The heterotrimeric GATOR1 (GAP 562	

activity toward RAGs-1) complex is the GAP for RAGA/B, and thus negatively regulates mTORC1 563	

activity (Bar-Peled et al., 2013; Panchaud et al., 2013a; Shen et al., 2018; Shen et al., 2019). 564	

GATOR1 is tethered to the lysosomal surface by KICSTOR (KPTN, ITFG2, C12orf66, and SZT2-565	

containing regulator of mTORC1) (Peng et al., 2017; Wolfson et al., 2017). The heteropentameric 566	

GATOR2 complex activates mTORC1 by binding and negatively regulating GATOR1 via an 567	

undefined mechanism (Bar-Peled et al., 2013; Panchaud et al., 2013b). The lysosomal amino acid 568	

transporter SLC38A9 (Jung et al., 2015; Rebsamen et al., 2015; Wang et al., 2015b; Wyant et al., 569	

2017) acts as a GEF for RAGA (Shen and Sabatini, 2018). The Ragulator complex, which was 570	

initially described as the GEF for RAGA/B (Bar-Peled et al., 2012), is now proposed instead to 571	

activate mTORC1 by accelerating the release of GTP from RAGC (Shen and Sabatini, 2018), while 572	

the identity of the GEF for RAGC/D remains unclear. FLCN (folliculin) together with its binding 573	

partners FNIP1 and FNIP2 (folliculin-interacting protein 1 and 2) has been identified as the GAP 574	

for RAGC/D, and thus positively regulates mTORC1 (Petit et al., 2013; Tsun et al., 2013).  575	

 Upon amino acid starvation, the RAG heterodimer assumes an inactive configuration (RAGA/B 576	

loaded with GDP and RAGC/D with GTP) that is unable to recruit mTORC1 to the lysosomal 577	

surface, so that mTORC1 remains cytosolic and inactive. It has been proposed also that the 578	

“inactive” conformation of the RAG heterodimer recruits TSC2 (tuberous sclerosis complex 2) to 579	

the lysosome to inhibit mTORC1 (Demetriades et al., 2014; Demetriades et al., 2016; Menon et al., 580	

2014). In budding yeast, glucose withdrawal triggers a Gtr-dependent formation of a vacuole-581	

associated cylindrical filament of TORC1 molecules, termed a TOROID (TORC1 organized in 582	

inhibited domains). TOROID formation leads to TORC1 inactivation, and low-resolution cryo-EM 583	

reconstructions suggest that this oligomerization causes steric occlusion of the TORC1 active site 584	

(Prouteau et al., 2017). It is not known whether mTORC1 forms TOROID-like structures.  585	

 As discussed in the introduction to this review, it is thought that growth factor signalling co-586	

evolved with multicellularity, at which time it was grafted onto the ancestral nutrient-activated 587	
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TORC1 signalling pathway (Ben-Sahra and Manning, 2017; Guri and Hall, 2016; Kim and Guan, 588	

2019). Growth factors such as insulin bind to RTKs (receptor tyrosine kinases) to activate PI3K 589	

(phosphatidylinositol-4,5-bisphosphate 3-kinase) thereby generating PIP3 (phosphoinositide 3, 4, 5-590	

trisphosphate) (Fig. 5). PIP3 then co-recruits PDK1 (phosphoinositide-dependent kinase-1) and AKT 591	

via their PIP3-binding PH (pleckstrin homology) domains to the plasma membrane, where PDK1 592	

phosphorylates Thr308 in the activation loop of AKT. Activated AKT in turn phosphorylates TSC2 593	

on multiple sites to induce the release of the heterotrimeric TSC complex from the lysosome (Inoki 594	

et al., 2002; Menon et al., 2014). The TSC complex consists of TSC1, TSC2, and TBC1D7, and 595	

acts as a GAP towards RHEB (Dibble et al., 2012). Reduced TSC complex GAP activity at the 596	

lysosome leads to an increase in activated, GTP-loaded RHEB, which then binds the N-terminus 597	

and FAT domain of mTOR to allosterically realign residues in the catalytic site and activate 598	

mTORC1 (Chao and Avruch, 2019; Long et al., 2005; Yang et al., 2017).  599	

Amino acid sensors 600	

Leucine, arginine and glutamine are among the most effective amino acids for activation of 601	

mTORC1 (Fig. 5). The identity of the amino acid sensors upstream of TORC1 has begun to emerge 602	

recently (Wolfson and Sabatini, 2017). The cytoplasmic proteins SESTRIN2 (Chantranupong et al., 603	

2014; Kim et al., 2015; Parmigiani et al., 2014; Saxton et al., 2016b; Saxton et al., 2016c; Wolfson 604	

et al., 2016) and CASTOR (cellular arginine sensor for mTORC1) (Chantranupong et al., 2016; 605	

Saxton et al., 2016a; Xia et al., 2016) bind and transmit the availability of leucine and arginine, 606	

respectively, to mTORC1 via the GATOR complexes. Under conditions of leucine and arginine 607	

deprivation, SESTRIN2 and CASTOR1 bind and most likely inhibit GATOR2 upstream of 608	

mTORC1. However, growth-promoting levels of leucine and arginine disrupt the interactions of 609	

SESTRIN2 and GATOR2 (Wolfson et al., 2016) and CASTOR1 and GATOR2 (Saxton et al., 610	

2016a); this releases free GATOR2 and thereby activates mTORC1 (Fig. 5). SESTRINs may also 611	

inhibit mTORC1 by activating AMPK (Lee et al., 2016). However, budding yeast lacks SESTRIN 612	

and CASTOR orthologs (Wolfson and Sabatini, 2017). Whether and, if so, how arginine or leucine 613	

availability is transmitted to TORC1 in organisms lacking these proteins is not known. Leucine and 614	

glutamine can also activate mTORC1 via glutaminolysis and consequent production of  α-615	

ketoglutarate upstream of RAGs (Duran et al., 2013; Durán et al., 2012), while glutamine also 616	
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activates mTORC1 independently of the RAGs via the small GTPase ARF1 and the v-ATPase 617	

(Jewell et al., 2015). 618	

 It has been reported that LeuRS (leucyl-tRNA synthetase) acts as a cytoplasmic leucine sensor to 619	

activate mTORC1 via a RAG-independent mechanism. Leucine-bound LeuRS binds and activates 620	

the class III phosphoinositide kinase VPS34 that is present in non-autophagic structures. Active 621	

VPS34 stimulates PLD1 (phospholipase D1) thereby increasing phosphatidic acid levels which 622	

promote lysosomal activation of mTORC1 (Yoon et al., 2016; Yoon et al., 2011). 623	

 In some cell types, such as epithelial, glial and mesenchymal stem cells, leucine can activate 624	

mTORC1 via production of acetyl-CoA. Acetyl-CoA stimulates the acetyl transferase EP300 to 625	

acetylate RAPTOR at Lys1097, thereby promoting mTORC1 activity (Son et al., 2019). The 626	

acetylated residue is located in the WD40 β-propeller of RAPTOR, close to the ARM domain (Fig. 627	

4). It is unclear whether RAPTOR acetylation affects mTORC1 structure.  628	

 Finally, methionine signals to mTORC1 through synthesis of the methyl donor SAM. SAM 629	

availability is transmitted to mTORC1 via SAMTOR (SAM sensor upstream of mTORC1), with 630	

SAM inhibiting the interaction between SAMTOR and GATOR1, thereby activating mTORC1 (Gu 631	

et al., 2017a). 632	

Downstream targets of mTORC1 633	

TOR promotes cell growth by stimulating anabolic processes such as ribosome biogenesis and 634	

protein, lipid, and nucleotide synthesis, while repressing catabolic processes such as autophagy 635	

(Ben-Sahra and Manning, 2017; Saxton and Sabatini, 2017; Shimobayashi and Hall, 2014). 636	

mTORC1 promotes protein synthesis by phosphorylating: (i) S6K at Thr389 in its hydrophobic 637	

motif, to increase translation initiation and elongation, and: (ii) 4EBP, to promote cap-dependent 638	

translation. mTORC1 also induces purine synthesis via the tetrahydrofolate cycle (Ben-Sahra et al., 639	

2016) and pyrimidine synthesis by phosphorylating and activating CAD (carbamoyl-phosphate 640	

synthetase 2, aspartate transcarbamylase, and dihydroorotase) via S6K (Ben-Sahra et al., 2013; 641	

Robitaille et al., 2013). Furthermore, mTORC1 promotes lipogenic gene expression by activating 642	

the SREBP (sterol-regulatory element-binding protein) transcription factor (Ben-Sahra and 643	

Manning, 2017). mTORC1 also inhibits autophagy by phosphorylating the autophagy-inducing 644	

kinase ULK1 (Kim & Guan, 2011) and TFEB (transcription factor EB) (Martina et al., 2012; 645	
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Roczniak-Ferguson et al., 2012; Settembre et al., 2012). Phosphorylated TFEB remains cytosolic 646	

and inactive, thus failing to induce expression of genes required for autophagy and lysosome 647	

biogenesis (Puertollano et al., 2018b) (Fig. 5). 648	

 S6K has several substrates, including ribosomal protein S6 and insulin receptor substrate 1 649	

(IRS1). Phosphorylation of IRS1 by S6K inhibits IRS1, thereby forming a negative feedback loop 650	

acting on PI3K and mTORC2 (Shimobayashi and Hall, 2014). mTORC2 regulates cytoskeletal 651	

remodeling, proliferation, and survival by phosphorylating and activating AGC kinase family 652	

members such as AKT at Ser473, PKC (protein kinase C) and SGK (serum/glucocorticoid-653	

regulated kinase) (Guri and Hall, 2016). 654	

Yin-Yang: regulation of mTORC1 by AMPK 655	

If the energy status of cells is compromised, it would not be a sensible idea for them to grow or 656	

divide, even if nutrients were still available. It therefore makes sense that AMPK should switch off 657	

mTORC1. Indeed, AMPK activation switches off the mTORC1 complex by twin mechanisms: 658	

1. AMPK phosphorylates TSC2 at Thr1271 and Ser1387 (residue numbering from human isoform 659	

1 (NP_000539); these sites are referred to as Thr1227 and Ser1345 in the original paper (Inoki 660	

et al., 2003)). Mutation of these two sites was found to reduce the ability of the glycolytic 661	

inhibitor 2-deoxyglucose to inhibit S6K and 4EBP phosphorylation. This phosphorylation is 662	

sometimes assumed to promote the GAP activity of the TSC complex toward RHEB, although 663	

this has not been directly demonstrated. 664	

2. AMPK directly phosphorylates the RAPTOR component of mTORC1 at two sites, Ser722 and 665	

Ser792. Once again, mutation of these two sites was found to reduce the ability of the AMPK 666	

activators, AICAR or phenformin, to inhibit S6K and 4EBP phosphorylation (Gwinn et al., 667	

2008), although the detailed mechanism for this inhibitory effect remains unclear. Ser722 and 668	

Ser792 lie in a structurally uncharacterised, and likely disordered, region within the RAPTOR 669	

ARM domain (residues 687-805) (Fig. 4) - note that some publications incorrectly place 670	

Ser792 in the RAPTOR β-propeller. Curiously, PKA (cyclic AMP-dependent protein kinase) 671	

phosphorylates RAPTOR on Ser791, but not Ser792, and is reported to either inhibit (Jewell et 672	

al., 2019) or activate (Liu et al., 2016) mTORC1 - the reasons for this discrepancy are not clear. 673	

 These mechanisms may be at least partly conserved across eukaryotes. Although there appear to 674	
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be no direct orthologs of TSC2 in either budding yeast or plants, there is evidence that 675	

phosphorylation of the RAPTOR orthologs in S. cerevisiae (Hughes Hallett et al., 2015) and plants 676	

(Nukarinen et al., 2016) also leads to inactivation of TORC1 in those organisms. While these 677	

effects were dependent upon the AMPK orthologs, neither of the two well-defined sites for AMPK 678	

in mammalian RAPTOR (Gwinn et al., 2008) are conserved in S. cerevisiae, and only one is 679	

conserved in plants. The detailed mechanisms for these effects may therefore be different. 680	

 These results therefore show that activation of mammalian AMPK inhibits mTORC1 via two 681	

mechanisms, equivalent to the fail-safe method of using both “belt and braces” to hold up one’s 682	

pants! A major effect of mTORC1 activation is to promote translation, particularly of mRNAs 683	

encoding proteins required for rapid cell growth, including ribosomal proteins. Since protein 684	

synthesis accounts for as much as 20% of total energy turnover in rapidly growing cells (Buttgereit 685	

and Brand, 1995), switching it off would have a major effect to conserve energy. 686	

 Although it is therefore clear that AMPK inhibits mTORC1, very recently it has been reported, 687	

rather counter-intuitively, that it activates mTORC2 (Kazyken et al., 2019). Treatment of serum-688	

deprived mouse embryo fibroblasts, HEK293 cells or primary mouse hepatocytes with AMPK 689	

activators such as AICAR, biguanides or A-769662 was found to increase phosphorylation of the 690	

mTORC2 site on AKT, Ser473. Although these activators all have known “off-target” (i.e. AMPK-691	

independent) effects, and more specific AMPK activators are now available, their effects were 692	

reduced, although not eliminated, in cells with AMPK knocked out or knocked down, suggesting 693	

that they were at least partly mediated by AMPK. The effects were associated with phosphorylation 694	

of Ser1261 on mTOR and unidentified site(s) on RICTOR, although Ser1261 phosphorylation did 695	

not appear to be required for enhanced phosphorylation of AKT. The authors proposed that the 696	

activation of mTORC2 by AMPK represents part of the mechanism by which the latter increases 697	

cell survival during energetic stress, and in some circumstances may therefore paradoxically 698	

promote tumorigenesis (Kazyken et al., 2019). 699	

 In addition, there seems to be a dual “belt and braces” system to turn off mTORC1 when cells 700	

are facing shortage of glucose supply. Besides the above-mentioned mechanisms involving 701	

phosphorylation of mTORC1-related factors by AMPK, glucose deprivation can inactivate 702	

mTORC1 independently of AMPK. Mutations of RAGA/B that abolish GTPase activity completely 703	

abrogated inhibition of mTORC1 by glucose starvation, despite intact activation of AMPK, 704	
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suggesting that RAGs or RAG-interacting partners may play a more direct role in controlling 705	

mTORC1 in response to nutrients (Efeyan et al., 2013; Kalender et al., 2010). Indeed, in low 706	

glucose AXIN translocates to the surface of the lysosome and interacts with the v-ATPase and 707	

Ragulator, thereby facilitating the release of mTORC1 from the lysosomal surface (Zhang et al., 708	

2014). Additional evidence for AMPK-independent regulation is that mTORC1 suppression after 709	

glucose starvation occurs several hours later in AXIN-null compared to AXIN-wild type cells in 710	

which AMPKa1/a2 had been knocked out (Zhang et al., 2014). This additional device highlights 711	

the importance of inhibiting mTORC1 when glucose is absent. 712	

Antagonistic effects of AMPK and mTORC1 on autophagy and lysosome 713	

biogenesis 714	

Autophagy, of which mitophagy (discussed above) is a special case, is the process by which cellular 715	

contents that are surplus to requirements are engulfed into lysosomes where they are broken down 716	

to recycle their components for catabolism or re-use. By phosphorylating the autophagy-initiating 717	

kinase ULK1 at distinct sites, AMPK activates while mTORC1 inhibits autophagy (Egan et al., 718	

2011b; Kim et al., 2011). AMPK can therefore promote autophagy not only by direct 719	

phosphorylation of ULK1, but also indirectly by inactivating mTORC1 via mechanisms discussed 720	

in the previous paragraph. 721	

 One key downstream target of ULK1 is BECLIN-1, which forms a complex with VPS34, a class 722	

III phosphoinositide kinase that generates phosphoinositide-3-phosphate (PI3P) on intracellular 723	

membranes. PI3P recruits to those membranes proteins containing PI3P-binding domains, which 724	

mediate subsequent membrane-trafficking events. VPS34 occurs in several distinct complexes; 725	

AMPK appears to activate complexes involved in autophagy by phosphorylating BECLIN-1, while 726	

inhibiting those involved in other membrane-trafficking events by phosphorylating VPS34 itself; 727	

this switch depends on the presence of ATG14L in the former complex (Kim et al., 2013). Thus, 728	

AMPK may divert membrane traffic (an energy-requiring process) toward the autophagy/mitophagy 729	

pathway and away from other trafficking events that might be a luxury in cells experiencing glucose 730	

starvation or energy stress. 731	

 As well as their acute effects on autophagy, in the longer term AMPK and mTORC1 also act 732	

antagonistically via effects on the related transcription factors EB and E3 (TFEB and TFE3), which 733	
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induce genes involved in lysosome biogenesis and autophagy. mTORC1 directly phosphorylates 734	

TFEB and TFE3, and this promotes their retention in the cytoplasm, inhibiting their transcriptional 735	

functions (Puertollano et al., 2018a). By contrast, AMPK activation promotes dephosphorylation 736	

and nuclear translocation of TFEB, an effect that appears to be at least partially independent of 737	

mTORC1 (Collodet et al., 2019). One possible mechanism for increased transcription at 738	

TFEB/TFE3-regulated promoters in response to AMPK activation is the increased expression of 739	

CARM1 (coactivator -associated arginine methyltransferase-1) due to down-regulation of a E3 740	

ubiquitin ligase containing SKP2 (S-phase kinase-associated protein-2) (Shin et al., 2016). Another 741	

transcription factor, FOXO3a, is phosphorylated by AMPK at several sites (Greer et al., 2007), and 742	

this enhances its ability to repress SKP2 expression. The final link in this proposed chain of events 743	

is that CARM1 is recruited to promoters of genes involved in autophagy and lysosome biogenesis 744	

by TFEB, leading to methylation of Arg17 on histone H3 and consequent activation of transcription 745	

at those sites (Shin et al., 2016).  746	

Yang-Yin: regulation of AMPK by TORC1 and/or upstream pathways 747	

There is one report that rapamycin treatment of budding yeast, in wild type strains but not in strains 748	

expressing a TOR1 mutation that confers rapamycin resistance, increases phosphorylation of 749	

Thr210 in Snf1 (equivalent to Thr172 in mammalian AMPK) (Orlova et al., 2006). Despite this, 750	

neither rapamycin nor the catalytic site inhibitor of mTOR, Torin1, affected AMPK activity in 751	

mouse embryonic fibroblasts (Zhang et al., 2014), and at this time there is no well-established direct 752	

mechanism by which AMPK is regulated by mTORC1. However, AMPK can be down-regulated by 753	

the upstream insulin signalling pathway that activates mTORC1. The insulin-stimulated protein 754	

kinase, AKT, phosphorylates Ser496 (human numbering, Q13131) in the a1 catalytic subunit of 755	

AMPK (Horman et al., 2006), and this down-regulates (while not completely abolishing) AMPK 756	

signalling by inhibiting the phosphorylation of Thr172 by LKB1 (Hawley et al., 2014). Ser496 in 757	

AMPK-a1 can also be phosphorylated by PKC (Heathcote et al., 2016), and PKA (Hurley et al., 758	

2006). Ser496 occurs in a serine/threonine rich sequence just prior to the C-terminal a-helix of 759	

AMPK-a1 that has been termed the “ST loop” (Fig. 2). A similar sequence is present in the a2 760	

isoform, although in that case the serine residue equivalent to Ser496 (Ser491) is a poor substrate 761	

for AKT and appears to be modified by autophosphorylation instead (Hawley et al., 2014) (it should 762	
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therefore not be assumed, as is often done, that the regulation of the two isoforms by ST loop 763	

phosphorylation is identical). Relevant to this, Ser491 in AMPK-a2 has been reported to be 764	

phosphorylated by S6K1 (Dagon et al., 2012), which is interesting because the latter is 765	

phosphorylated and activated by mTORC1. However, it is puzzling why there was no 766	

phosphorylation of Ser491 in the absence of S6K1 in this study (Dagon et al., 2012), when others 767	

have observed that Ser491 in a2 complexes undergoes rapid autophosphorylation (Hawley et al., 768	

2014). 769	

 The ST loop may be subject to multisite phosphorylation, because GSK3 has been reported to 770	

phosphorylate sequentially within the ST loop of a1 at Thr490, Ser486 and Thr482 (human 771	

numbering, Q13131), which was proposed to promote Thr172 dephosphorylation (Suzuki et al., 772	

2013). Interestingly, the ST loop is also present in AMPK-a orthologs from C. elegans and 773	

vertebrates but is absent in those from D. melanogaster and S. cerevisiae, suggesting that it is a 774	

regulatory sequence that has been inserted during evolution. In the currently available crystal 775	

structures of mammalian heterotrimers, the ST loop has either been deliberately deleted or is not 776	

resolved. However, the residues at either end of the missing loop lie just 20 and 40 Å from Thr172, 777	

suggesting that, once phosphorylated, the loop might interact with the kinase domain and physically 778	

block access to Thr172 (Fig. 2). Indeed, there is experimental support for this model (Hawley et al., 779	

2014). 780	

 Another potential “Yang-Yin” interaction involves the phosphorylation of AMPK by ULK1, the 781	

autophagy-regulating kinase that is inactivated/activated by phosphorylation at distinct sites by 782	

mTORC1/AMPK respectively (Egan et al., 2011a). ULK1 has been reported to phosphorylate 783	

Ser108 on AMPK-b1 but not -b2 (Dite et al., 2017). Phosphorylation of Ser-108 is known to 784	

stabilize the ADaM site (see above) by interacting with conserved threonine and lysine residues on 785	

the N-lobe of the a subunit kinase domain (Calabrese et al., 2014; Xiao et al., 2013), and is required 786	

for allosteric activation of AMPK by ADaM site ligands both with purified AMPK (Scott et al., 787	

2014) and in intact cells (Dite et al., 2017). However, understanding the significance of this requires 788	

further study, partly because Ser108 is also rapidly modified by AMPK itself by cis-789	

autophosphorylation (Scott et al., 2014), and partly because the natural ligands that bind to the 790	

ADaM site, if they exist, have not yet been identified. 791	
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Conclusions and Perspectives 792	

We have argued in this review that the AMPK and TOR pathways arose very early during 793	

eukaryotic evolution and may have been required to regulate cell growth in response to the 794	

availability of the energy or nutrients provided by some of the newly acquired subcellular 795	

compartments, such as mitochondria or lysosomes/vacuoles. The recent findings that 796	

lysosomes/vacuoles represent key hubs for nutrient sensing by both AMPK and TOR may reflect 797	

the fact that early unicellular eukaryotes utilized phagocytosis or pinocytosis for feeding, with 798	

nutrients being delivered initially to lysosomes or the vacuole, which in a unicellular eukaryote can 799	

therefore be considered to be equivalent to the gut. Just as the gut (and associated endocrine 800	

pancreas) of multicellular animals has become a hub for nutrient sensing and signaling, so perhaps 801	

did the lysosome or vacuole of unicellular eukaryotes. 802	

 AMPK can be regarded as representing the Yin or “dark” side of growth control that is activated 803	

by lack of energy or nutrients and switches off cell growth, while TOR represents the Yang or 804	

“bright” side that is activated by availability of nutrients and promotes cell growth. In general, TOR 805	

pathways promote anabolic activities, while AMPK pathways exercise a brake on them. These 806	

pathways clearly act in opposition to each other and it is not surprising, as discussed in this review, 807	

that there are complex interactions between them. As in Taoist philosophy, the exquisite balance 808	

between Yin and Yang ultimately ensures homeostasis and a healthy cell or organism. 809	

	  810	



	 30	

 811	

Figure legends 812	

Figure 1: Conservation of TOR and AMPK signalling components among eukaryotic 813	

species. Black boxes indicate presence, and white boxes absence, of the indicated 814	

genes/proteins in the corresponding organisms (Tatebe and Shiozaki, 2017; van Dam et 815	

al., 2011). Gray boxes indicate limited similarity to the human counterpart. There is no 816	

evidence that the S. cerevisiae Rheb regulates TORC1.  817	

 818	

Figure 2: Schematic view of the structure of the AMPK heterotrimer. The diagram is a 819	

composite derived from the structures of the human a2b1g1 (Xiao et al., 2013), a1b1g1 820	

(Calabrese et al., 2014) and a1b2g1 (Li et al., 2015) complexes, and is an active 821	

conformation with Thr172 phosphorylated and three molecules of AMP bound to the 822	

g subunit. The a subunit is shown in yellow (apart from the ST loop, in red), the b 823	

subunit in lilac and the g subunit in blue-green. The a-linker is depicted as a yellow 824	

chain connecting the a-AID and the a-CTD, and it contacts AMP bound in the CBS3 825	

site. The ST loop is not resolved in any of the structures and its exact positioning is 826	

speculative. The N-terminal regions of the b subunits, and the linker between the b-827	

CBM and the b-CTD, (not shown) are either absent or are not resolved in any of the 828	

structures. 829	

 830	
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Figure 3: Canonical and non-canonical mechanisms of AMPK activation. Proteins shown in 831	

green promote activation of AMPK, while proteins shown in red promote inhibition 832	

(aldolase is a positive effector when unoccupied by FBP). Canonical activation by 833	

energy stress requires LKB1, occurs in the cytoplasm and is triggered by increases in 834	

AMP:ATP or ADP:ATP ratios. By contrast, non-canonical activation by glucose 835	

starvation involves translocation of AXIN:LKB1 to the lysosome, where a pool of 836	

AMPK myristoylated on the b subunit resides permanently, and can occur in the 837	

absence of any changes in adenine nucleotides. Non-canonical activation by Ca2+ ions 838	

released from the ER or within the nucleus, triggered by hormones or DNA damage 839	

respectively, requires CaMKK2 and not LKB1. Note that the localized increase in Ca2+ 840	

caused by activation of TRPV channels is not sufficient to activate CaMKK2. See main 841	

text for details. 842	

Figure 4: Human mTORC1 architecture. A) Linear representation of the domain organization 843	

of mTOR, RAPTOR, and mLST8. The residue numbers indicate the domain 844	

boundaries. Grey areas in RAPTOR indicate regions presumed to be disordered linkers, 845	

comprising amino acids 687-805 and 841-949. B) Cryo-EM derived model of human 846	

mTORC1 (PDB: 6BCX) (Yang et al., 2017), with domains colored according to the 847	

primary structure scheme in A. Key residues for mTORC1 activation at the catalytic site 848	

(Asp2338, His2340, Asn2343, and Asp2357 (Yang et al., 2013)) are highlighted in red, 849	

while the two copies of the TOS peptide of 4EBP are shown in purple. A gray line 850	

indicates the RAG binding region. Gray dashed lines represent the two disordered linker 851	

regions in RAPTOR. AMPK, PKA and NLK phosphorylate RAPTOR at Ser722 plus 852	

Ser792, Ser791 and Ser863 respectively. EP300 acetylates RAPTOR at Lys1097 853	

(residue highlighted in magenta). RHEB binds the N-terminus and FAT domain of 854	

mTOR, distal to the catalytic site (not shown). See main text for details.  855	

 856	
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Figure 5: Cross-talk between mTORC1 and AMPK signalling pathways in mammals. 857	

Proteins shown in green promote activation of mTORC1 (blue box), while proteins 858	

shown in red promote its inhibition. Inputs into mTORC1 from AMPK signaling are 859	

shown in gray, because AMPK and mTORC1 would not be simultaneously active. 860	

Dashed lines indicate indirect interactions. Amino acids and growth factors activate 861	

mTORC1, which then promotes cell growth by stimulating anabolic processes.  Growth 862	

factor-stimulated PI3K activates mTORC2 (yellow box) by promoting its association 863	

with the ribosome. Active mTORC2 then promotes cell proliferation and survival. See 864	

main text for details. 865	
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