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Automated Classification for Visual-Only
Post-Mortem Inspection of Porcine Pathology

Stephen McKenna, Senior Member, IEEE, Telmo Amaral, and Ilias Kyriazakis

Abstract—Several advantages would arise from the automated
detection of pathologies of pig carcasses, including avoidance of
the inherent risks of subjectivity and variability between human
observers. Here, we develop a novel automated classification
of two porcine offal pathologies at abattoir: a focal, localized
pathology of the liver and a diffuse pathology of the heart, as
cases in point. We develop a pattern recognition system based on
machine learning to identify those organs that exhibit signs of
the pathology of interest. Specifically, deep neural networks are
trained to produce probability heat maps highlighting regions
on the surface of an organ potentially affected by a given
condition. A final classification stage then decides whether a
given organ is affected by the condition in question based on
statistics computed from the heat map. We compare outcomes of
automated classification with classification by expert pathologists.
Results show classification of liver and heart pathologies in
agreement with an expert at levels comparable to, or exceeding,
inter-expert agreement. A system using methods such as those
presented here has potential to overcome the limitations of
human-based abattoir inspection, especially if this is based on
visual-only inspection, and ultimately to provide a new gold
standard for pathology.

Index Terms—Agriculture; Food industry; Machine vision;
Neural network applications

NOTE TO PRACTITIONERS

The motivation for this paper reflects the current require-
ment for visual only inspection of livestock carcasses at
slaughter houses and the need to provide a gold standard for
recognition of carcass pathologies. Visual only inspection is
motivated by the need to reduce cross contamination between
carcasses by manual palpation, but this leads to substantial
variability in detection accuracy both within and between
inspectors. This has significant public health implications.
Here we present a system that comprises hardware to capture
images of pig offal and software to analyse those images
and identify cases of liver milk spots and hearts affected
by pericarditis. It can classify high proportions of offal with
accuracy comparable to that of veterinarians with extensive
experience in pig pathology, thus demonstrating the potential
to overcome the limitations of human-based abattoir inspection
(especially if it is visual-only) and ultimately to provide a new
gold standard. Our work is the first to address the automation
of pig offal inspection, thus shedding light on the challenges
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associated with both appropriate image capture and successful
image analysis, such as the need to cope with wide variations
in the appearance of both normal and diseased organs, as
well as different types of lesions and their impact on how
much effort is required from experts in order to produce data
needed to train the system. Future directions of work should
include extending the system to identify more pathologies and
implementing a real-time system to cope with production line
speed.

I. INTRODUCTION

THE main purpose of meat inspection is to assure con-
sumers about the safety, hygiene and nutritional value

of their food. Meat inspection can also help detect and
prevent public health hazards such as food-borne pathogens
or chemical contaminants in food of animal origin [1]. Under
more detailed examination [2] carcass inspection post-mortem
can provide information about underlying conditions that may
affect pig performance on farm, but do not manifest as
clinical disease, as in the case of Holt et al. [3] who found
associations between prevalence of respiratory lesions and
respiratory pathogens in the herd. Such information can assist
the development of on farm health control plans.

Because meat inspection relies heavily on human observa-
tion, it carries inherently the risks of subjectivity and variabil-
ity between observers who have limited time to observe indi-
vidual carcasses within an abattoir production line. In the case
of pig meat inspection, the situation is further complicated by
two additional factors: (i) there is a move towards visual only
inspection of pig carcasses and offal, without any involvement
of palpation, on the grounds of minimizing the risk of cross
contamination between carcasses. This has been the case in
the European Union since 2014 [1]. (ii) There is disagreement
in the evaluation schemes of pathologies between countries
and states, as has been shown by Steinmann et al. [4] for
the detection of respiratory lesions of pig carcasses within
the EU. The latter authors have found that current evaluation
and recording of lesions by authorized meat inspectors are not
reliable and produce signicant inter-rater disagreement. These
limitations may be overcome through the use of automated
inspection systems, with the additional advantage of detecting
a greater number of pathologies than currently observed by
meat inspectors, due to time limitation [3].

In this paper we develop a methodology for the visual-
only, automated classification of pathologies of pig carcasses
at abattoir. We concentrate on the challenge of detecting
pathologies on pig red offal [5], as most conditions that pose
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health hazards are associated with that part of the pig [3]. Pig
red offal is made up of inter-connected organs that belong
to the pig’s non-digestive tract, primarily the heart, lungs,
diaphragm and liver. This group of organs is termed a pluck.
In the abattoir, the pluck from each pig hangs from a hook
in the production line. Fig. 1 shows an example pluck image
and the areas occupied in it by each organ. We focus on the
detection of pathologies on pig livers and pig hearts. The main
liver pathologies involve the presence of lesions that result
from the infiltration of lymph cells in reaction to parasite
infection, and are commonly encompassed by the term milk
spots1. Pericarditis is an inflammation of the pericardium, the
membrane that encloses the heart, which becomes thickened
by fibrous tissue and adheres to the heart [6]. From a technical
perspective, these two conditions are of interest as they rep-
resent the two extremes of what an automated detector may
have to deal with: very localized lesions (milk spots) and very
diffuse lesions covering most of the surface of the affected
organ (pericarditis).

The method we propose uses deep convolutional neural net-
works [7] to assign pathology probabilities to image locations.
The resulting image of probabilities can be visualised as a
heat map that highlights regions on the surface of an organ
potentially affected by a given condition. A final classification
stage then decides whether a given organ is affected by the
condition in question, based on statistics computed from that
organ’s heat map. Results show that this approach enables
classification of livers as to the presence of milk spots, and
hearts as to the presence of pericarditis, in agreement with
an expert at levels comparable to, or exceeding, inter-expert
agreement. Our work is the first to address the automation of
pig offal inspection, thus providing insight into the technical
challenges associated with both capture and analysis of these
types of image.

II. RELATED WORK

Automated image analysis has been quite widely applied
to the assessment of meat quality and safety. Ma et al. [8]
provide a short review of some of these applications. Craigie
et al. [9] review the use of image analysis for evaluation of
beef carcasses specifically. Xiong et al. [10] review the range
of non-invasive imaging technologies that have been applied.
These include thermal, hyperspectral, fluorescene, magnetic
resonance, x-ray, and ultrasound imaging.

The use of computer vision at abattoir has been investigated
for inspection of limited pathologies of broiler chickens;
specifically, a system for inspection of footpad dermatitis has
been evaluated [11] and a method for classifying broiler livers
has been proposed [12], [13]. Segmentation of organs was
attempted using colour thresholding and active contours in
the case of poultry viscera [14]. However, the use of modern
machine learning methods is promising for such tasks and has
been reported for poultry viscera [15] and in our own research
on porcine offal [16]. Less recent work on poultry carcasses
includes the detection of abnormal livers and hearts [17],
diseased air sacs [18], and splenomegaly [19].

1http://www.nadis.org.uk/bulletins/ascariasis.aspx

(a) (b)

Fig. 1: (a) Example image of “pluck”. (b) Regions occupied
by different organs.

Computerised image analysis of pathology is extensively
addressed in the field of human medicine where parallels might
be drawn with the expansion of whole-slide digital pathology
driving development of systems for high-throughput, system-
atic, and reproducible analysis of these large datasets [20],
[21]. Analysis of macroscopic visible light images includes
extensive work on polyp detection from colonoscopy [22], [23]
and classification of skin lesions [24], [25].

III. IMAGE ACQUISITION

Images used in this paper were captured by a solution
that was designed by Hellenic Systems Ltd. It incorporated
two area-scan colour cameras acquiring images from different
viewpoints at high-resolution (4000× 5120 pixels) as exem-
plified in Fig. 2. Cameras and LED tube lighting were housed
in a stainless steel canopy-shaped structure installed on the
production line. Both cameras and tube lights were fitted
with polarising filters which reduced the effect of specular
reflections on the surface of the organs. The cameras were
protected from the harsh environment using custom-made
enclosures to IP68 standard with polycarbonate viewports.
Cameras were triggered automatically using a PLC controller
and proximity switches each time a pluck, hanging from a
hook, passed through the canopy structure. Images were then
processed by local control systems for sortation and storage
before being passed to a central server.

IV. PATHOLOGY IDENTIFICATION BY EXPERTS

Two veterinarians with expertise in pig pathology and
previous experience of working on the British Pig Health
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Fig. 2: Overview of pattern recognition system for organ classification

Scheme (KY and JW) identified and labelled those images
in which pathologies of interest were visible. KY had 14
years of experience in pig health, including pathology and
production; JW had 39 years of experience in veterinary
practice, specializing exclusively in pigs, including routine
slaughter surveys and involvement in BPHS surveys from 2005
until 2016.

Both images (two viewpoints) per pluck were inspected.
Each pluck’s images were inspected for a range of conditions.
Images were labelled by categorising the organs into three
classes: positive (showing signs of the condition in question),
negative, or invalid (either due to unfocused or badly lit image,
or because it was impossible to determine whether or not the
condition was present). Here, we focus on pericarditis and milk
spots. Images with no conditions (normal cases) were sampled
from the available data to form reasonably balanced datasets.

The labelling process was performed by viewing images one
at a time on ultra-high resolution monitors (Dell P2715Q) with
in-plane switching (IPS) technology which allowed the moni-
tors to be positioned in portrait orientation while preserving a
good horizontal viewing angle. This enabled a full resolution
image to be viewed without the need for zooming in and out
to observe details.

The time taken to inspect images varied with the number
and combination of lesions present on a pluck. It averaged
approximately one image per minute. Both veterinarians took
short breaks from the task after each session of approximately
45 minutes.

A. Reliability of Identification by Experts

The reliability with which the expert veterinarians classi-
fied the images was investigated. Repeatability (intra-observer
variation) was analysed by comparing classifications made by
KY on two separate occasions. Specifically, KY classified 392

TABLE I: Confusion matrices for intra-observer and inter-
observer reliability of two observers (coded KY and JW).

KY2
Neg Pos Inv

KY1

Neg 190 3 2
Pos 46 142 9
Inv 0 0 0

(a) Liver (milk spots): intra-observer

KY2
Neg Pos Inv

KY1

Neg 290 6 2
Pos 8 188 4
Inv 0 2 1

(b) Heart (pericarditis): intra-observer

JW
Neg Pos Inv

KY1

Neg 46 2 2
Pos 25 88 1
Inv 0 0 0

(c) Liver (milk spots): inter-observer

JW
Neg Pos Inv

KY1

Neg 115 0 1
Pos 47 60 6
Inv 1 0 0

(d) Heart (pericarditis): inter-observer

livers and 501 hearts for a second time after a minimum
of two months had elapsed, with order of presentation re-
randomised and KY blinded to her initial classifications.
Tables I(a) and I(b) give the intra-observer confusion matrices
for liver classification (milk spots) and heart classification
(pericarditis), respectively. It can be observed from these
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matrices that heart classification had a high intra-observer
repeatability while that of liver classification was somewhat
lower. In the latter case, the observer appears to have shifted
propensity to assign negative versus positive labels.

Reproducibility in terms of inter-observer variation was
analysed by comparing classifications made by KY and JW.
Specifically, JW classified 164 livers and 230 hearts from
those data that had been classified twice by KY. JW was
blinded to KYs classifications. Tables I(c) and I(d) give inter-
observer confusion matrices for liver classification (milk spots)
and heart classification (pericarditis), respectively. Both inter-
observer classification matrices suggest that JW uses the
negative classes more frequently than KY. Agreement on how
to use the invalid class seems weak, although such images
were relatively rare in this dataset.

These qualitative remarks are supported by descriptive
statistics and statistical test results computed from the confu-
sion matrices and provided in Table II. The specific agreement,
i.e., the proportion of agreement specific to each class, is
given in the final column. We tested for marginal homogeneity,
i.e. lack of significant differences between row proportions
and column proportions in the confusion matrices. Marginal
homogeneity indicates that classes are being used with similar
propensity. The Bhapkar test (df=2) was used to test for
marginal homogeneity for all three classes simultaneously.
Differences were significant in all experiments except for intra-
observer variation on heart classification. Marginal homogene-
ity was also tested for each class separately using McNemar
tests. (An exact test was used in some cases where the number
of images in disagreement was small). Again significance
was obtained (after Bonferroni correction) in all experiments
except intra-observer variation on heart classification.

V. AUTOMATIC CLASSIFICATION

We developed a pattern recognition system based on ma-
chine learning to automatically classify organs according to
whether or not they exhibit signs of a pathology of interest.
Different pathologies vary greatly in their appearance, spatial
distribution and extent. Fig. 2 shows an overview of the
system illustrated using the example of milk spots. It has
two main stages. The first stage classifies small patches of
image, computing for each of them the probability that that
patch is centred within a region of pathology. This is achieved
using a deep convolutional neural network (CNN) trained on
many patches. These probabilities can be visualized together
as a heat map, highlighting potential regions of pathology.
The second stage processes this map to compute an overall
classification for the organ as either normal or pathological.

The architecture of the patch classifiers is shown in Fig. 3.
This is a modification of the AlexNet architecture [26]. The
patch classifier takes as input a high-resolution colour image
patch of size 192 × 192. This is larger than nearly all liver
milk spots. (A random sample of 50 milk spots were manually
measured and had an average width of 70 pixels with standard
deviation of 40 pixels). Image patches were extracted from
the organ’s image at locations on a grid spaced 24 pixels
apart, both horizontally and vertically. Organ masks were

Fig. 3: Diagram of convolutional architecture used at the patch
classification stage.

morphologically eroded to avoid extracting patches containing
large portions of different organs or background. The CNN’s
first convolutional layer filters the patch using 96 kernels of
size 11× 11× 3 and a step of 4 pixels, resulting in 96 planes
of 48× 48 values. These planes were subjected to a max-
pooling operation using a 3× 3 neighbourhood and a step of
2 pixels, resulting in 96 planes of 24× 24 values. A second
convolutional layer (now using a step of 1 pixel) followed by
another max-pooling operation result in 256 planes of 12×
12 values. Three more convolutional layers were used and the
resulting 256 planes of 12× 12 values were flattened into a
vector of 36, 864 values. Two fully connected layers are used
to reduce these values to a single value, which was then passed
through a sigmoid function to output an estimated probability.

Finally, the organ was classified as positive (i.e. displaying
signs of the condition in question) or negative based the
heat map(s) of patch probabilities. We experimented with
two methods. The first method simply classifies patches by
thresholding the patch probability at 0.5 and then classifies
the organ by thresholding the proportion of patches classified
as positive in the two images of that organ. The second
method summarises heat-map statistics in the form of a 10-
bin histogram of the patch probabilities and then classifies
the organ using a support vector machine trained on such
histograms.

The SVM outputs a signed score. The magnitude of this
score can be taken as an indication of confidence in the
classification. We can opt to reject any low confidence images,
i.e. those with score magnitude below a threshold, and make
classification decisions for the remaining images.

Pericarditis typically affects the appearance of most of an
affected heart’s surface. Therefore, we trained a heart patch
classifier to classify heart patches into the following two
classes: a positive class, consisting of all patches from hearts
affected by periarditis, and a negative class, consisting of
all patches from hearts unaffected by pericarditis. On the
other hand, milk spots typically affect small localised regions
of an affected liver’s surface. Therefore, we trained a liver
patch classifier to classify liver patches into the following two
classes: a positive class consisting of patches centred near milk
spot centres, and a negative class consisting of all other liver
patches. Specifically, a liver patch was considered positive only
if its central 48× 48 -pixel portion contained the centre of a
milk spot.
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TABLE II: Reliability statistics for liver and heart classification

Condition Raters Over. hom. Cat. Marg. hom. Sp. agr.

Pericarditis KY1 v KY2 χ2 = 2.073
Neg χ2 = 0.000, p = 1.0000 0.973
Pos χ2 = 0.800, p = 0.3711 0.949

(n=501) p=0.3547 Inv exact p = 0.2891 0.200

Pericarditis KY1 v JW χ2 = 68.870
Neg χ2 = 45.082, p = 0.0000 * 0.824
Pos χ2 = 53.000, p = 0.0000 * 0.694

(n=230) p=0.0000 * Inv exact p = 0.0703 0.000

Milk spots KY1 v KY2 χ2 = 54.069
Neg χ2 = 32.961, p = 0.0000 * 0.882
Pos χ2 = 46.621, p = 0.0000 * 0.830

(n=392) p=0.0000 * Inv χ2 = 11.000, p = 0.0009 * 0.000

Milk spots KY1 v JW χ2 = 25.569
Neg χ2 = 15.207, p = 0.0001 * 0.760
Pos χ2 = 20.571, p = 0.0000 * 0.863

(n=164) p=0.0000 * Inv exact p = 0.2500 0.000

(a) (b) (c)

Fig. 4: Example annotations of (a) a heart, (b) a liver, and (c)
milk spots.

A. Image Annotation

Instances of hearts and livers, both with and without pathol-
ogy, were segmented by delineating their boundaries. These
boundaries were then filled to create organ masks. In some
cases the heart was only visible in one of the two images
due to occlusion by lungs. Fig. 4(a) shows an example pluck
in which the heart is annotated in each of the two views.
Similarly, Fig. 4(b) shows a liver annotated in its two views.
KY and TA provided the manual segmentations; TA was
trained to delineate organs by JW and IK (a veterinary surgeon
with more than 30 years experience in pig health, including
detection of diseases and production). In order to efficiently
obtain a large set of image pairs with accurately segmented
organs we adopted a semi-automatic procedure making use of
our previously developed method for automatic, simultaneous
segmentation of the heart, lungs, diaphragm and liver, as
well as the upper portion of the pluck [16]. The automatic
method was judged by the human annotator to have produced
an accurate segmentation of both the heart and liver for
183 plucks. The remaining organ instances were segmented
manually.

Individual milk spots were annotated to enable development
and validation of a milk spot detection algorithm. KY anno-
tated the locations of all milk spots in a set of images that had
been identified as containing liver affected by that condition.
A tablet computer with stylus was used to mark the perceived
centre of each milk spot. Fig. 4 shows detail from a liver region
in which the centres of two milk spots have been marked
(green dots).

B. Training and Validation

Data augmentation was used to increase the size and rep-
resentativeness of the set of positive liver spot patches. First,

we extracted a patch exactly centred on each manually marked
milk spot and obtained three additional versions of that patch
by rotating it 180 degrees and by flipping it vertically and
horizontally. These operations preserved the vertical orienta-
tion of the patch, which is potentially important, given that the
pluck hangs from a hook and is easily deformable. In addition,
from each of these four versions of the patch we created
nine additional versions by applying a translation randomly
sampled from a two-dimensional normal distribution.

Organ classifications provided by KY1 were used when
compiling datasets for CNNs. We used a dataset of 450
livers of which 221 livers did not have any milk spots. The
remaining 229 livers had a total of 1,748 milk spots that
were manually marked, resulting in 6,753 positive patches.
(Each milk spot centre results in multiple positive patches,
given that patches are sampled at every 24 pixels horizontally
and vertically). Data augmentation resulted in an additional
69,360 patches (i.e. an additional 40 patches per annotated
milk spot, excluding some off-boundary cases), for a total of
76,113 positive patches. Furthermore, 2,324,160 negative liver
patches were available. No data augmentation was used for
heart patches because large numbers of positive patches can
be readily sampled from heart images labelled as exhibiting
signs of pericarditis. The dataset of 382 hearts contained 166
hearts without any signs of pericarditis and 216 hearts affected
by pericarditis. This dataset yielded 215,498 positive patches
and 168,209 negative patches.

Performance was evaluated using ten-fold stratified cross-
validation. For each fold, three sets of patches were extracted
from the pool of non-test organs: a balanced training set of
48,000 patches, a balanced validation set of 16,000 patches,
and a uniformly sampled refinement set of 48,000 patches.
It should be emphasised that these training, validation and
refinement sets were all sampled from non-test data, so that
at each fold 10% of the data were reserved for testing.
At regular intervals during training (every 3 epochs) the
partially trained model was used to classify the patches in
the refinement set; misclassified refinement set patches were
then moved to the training set, replacing randomly selected
training patches. In this way the training set was regularly
refreshed with patches that are difficult to classify. After each
refinement step, discarded training patches and non-selected
refinement patches were merged with the pool of unselected
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Fig. 5: Example training and validation loss curves using the
training set refinement method.

non-test patches, and a refinement set was randomly drawn
again. This refinement procedure helps to avoid overfitting
and provides a mechanism for dealing efficiently with highly
unbalanced data; rather than undersampling the dominant class
at random, it samples disproportionately those examples that
are misclassified. Similar bootstrap methods for mining
‘hard’ samples are often used in the computer vision
literature to iteratively refine the training set either by
replacing part of it or augmenting it, e.g., [27], [28], [29],
[30]. Fig. 5 shows training and validation loss for an
example liver fold using this method.

CNN patch classifiers were trained for 27 epochs (with a
refinement step every 3 epochs) and the model stored after
each epoch. The model that achieved the lowest validation
error was then selected. Training was done by mini-batch
gradient descent, using mini-batches of 48 patches and cross-
entropy loss. The learning rate at each epoch was determined
by η = 0.01/(1+0.2× epoch ) and a weight decay of 0.0005
was used for regularisation. SVM organ classifiers with radial
basis function kernels were trained using the classifications
provided by KY1. The SVM penalty parameter C and kernel
coefficient γ were tuned via nested 5-fold cross-validation.

VI. RESULTS

Table III reports confusion matrices obtained when compar-
ing automatic classification using SVM with that of a human
expert (KY1). Table IV provides statistical analysis of these
confusion matrices. The specific agreements for each class are
given along with the result of McNemar tests for marginal
homogeneity. In the case of heart classification, the agreement
was better than in the inter-observer study. Furthermore, the
test for lack of marginal homogeneity indicated that the system
was using the classes with similar propensity to the human
expert. In the case of liver classification, the agreement was
comparable with the inter-observer study but the classes were
assigned with differing propensity. The relatively few instances
classified as invalid were excluded from this analysis for
simplicity.

Fig. 6 visualises the SVM score distributions as box and
whisker plots. The box extends from the lower to upper
quartile values with a line at the median. The class scores

TABLE III: Confusion matrices of milk spot and pericarditis
detection.

(a) Milk spots (b) Pericarditis
Predicted

Neg Pos

True Neg 191 30
Pos 52 177

Predicted
Neg Pos

True Neg 155 11
Pos 16 200

TABLE IV: Reliability statistics when comparing automatic
classification with an expert (KY1). SA denotes specific agree-
ment.

Condition McNemar test Class SA

Pericarditis (n=382) χ2 = 0.926, p = 0.3359
Neg 0.920
Pos 0.937

Milk spots (n=450) χ2 = 5.902, p = 0.0151 * Neg 0.823
Pos 0.812

are well separated, especially for heart classification. The
default classification rule was to decide the class based on
thresholding the score at zero (i.e. the sign of the score);
false positive and false negative errors can instead be traded
off against each other by varying the decision threshold.
Fig. 7 shows ROC curves thus obtained. The area under the
curve (AUC) was 0.958 for heart classification and 0.893
for liver classification. Also shown are the curves obtained
when, instead of an SVM, classification was performed by
thresholding the proportion of positive patches contained in the
heat map. In the case of heart classification, this gave a lower
AUC than the SVM of 0.923, and the SVM curve dominates
except at low false postive rates where the two methods are
comparable. In the case of liver classification it gave an AUC
of 0.892 and the ROC curves cross over.

We used heat maps to visualise patch probabilities as
grey levels ranging from black (denoting zero probability)
to white (denoting a probability of one). Fig. 9 shows some
example images along with their manual liver and liver spot
annotations (ground truth), and their automatically generated
liver spot heat maps. Two livers that were classified correctly
(as negative and positive respectively) and two that were
misclassified are shown. Fig. 10 similarly shows examples of
heat maps for four hearts. The two misclassified hearts shown
are instances that were misclassified with high confidence (i.e.,
with high magnitude SVM scores). Fig. 8 shows how, as the
score magnitude threshold is increased, misclassified organs
are disproportionately rejected.

Finally, we report results at the patch level for liver. As
explained previously, when the marked centre of a milk
spot falls within the central portion (48× 48 pixels) of a
given patch, that patch is considered positive. Thresholding
the patch probabilities acts as a liver spot detector. Table V
shows the confusion matrix for classification of the 2,330,913
patches located within the 450 livers (when probability was
thresholded at 0.5). The true positive rate (recall) was 0.843
and the false positive rate was 0.016. Precision was 0.132.
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Fig. 6: Box and whiskers plots of SVM scores (distance to
SVM decision boundary) for heart classification (top) and liver
classification (bottom).

TABLE V: Confusion matrix for liver patch classification.

Predicted
Neg Pos

True Neg 2286801 37359
Pos 1062 5691

VII. ANALYSIS AND DISCUSSION

A. Analysis of Classification Results

Milk spots appear as blobs of milky colour that vary in ap-
pearance considerably. Liver surface regions free of milk spots
also vary, exhibiting textures and specular reflections that may
mimic milk spots in appearance (see Fig. 12). Fig. 9 shows an
example false positive classified with high confidence, a type
of misclassification that occurs mostly when there is surface
texture that the CNN mistakes for milk spots; in this example
the liver was covered with froth that accumulated in bright
blobs (see detail in Fig. 11(a)). Most false negatives were
livers with very few milk spots, as in the example in Fig. 9
which has a single annotated milk spot. At the patch level,
liver spot patches were detected with high recall but relatively
low precision (Table V). A few problematic livers gave rise

(a)

(b)

Fig. 7: ROC curves. (a) Heart (pericarditis) classification. (b)
Liver (milk spots) classification

to large numbers of false positive patches resulting in the
low overall patch precision. Nevertheless, patch probabilities
(heat maps) were sufficient to enable good organ classification
(AUC = 0.89) comparable with the human expert. Specific
agreements were 0.82 (negative class) and 0.81 (positive class)
whereas inter-rater specific agreements between the human
experts were 0.76 (negative class) and 0.86 (positive class).

Variability in appearance of hearts with and without peri-
carditis is illustrated in Fig. 13; hearts free from pericarditis
generally have a smoother, shinier surface. Fig. 11 shows detail
from images of the misclassified hearts in Fig. 10. The false
negative shown here had an unusually shiny surface for a
heart affected by pericarditis. The false positive displayed a
relatively milky surface for a heart that is healthy. It also had
an incision with associated clotted blood accidentally inflicted
during handling of the pluck which presumably contributed
to this misclassification. Overall, heart classification had high
accuracy (AUC = 0.96). Specific agreements were 0.92
(negative class) and 0.94 (positive class) which compare very
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(a)

(b)

Fig. 8: Plots of classification measures and proportion of
classified plucks against the SVM score magnitude threshold
used to reject low confidence images. (a) Heart. (b) Liver.

favorably with the inter-rater specific agreements between the
human experts of 0.82 (negative class) and 0.69 (positive
class). Sometimes hearts remain within their pericardial sac
(the healthy normal membrane around the heart) as abattoir
staff may not incise it. Such cases can be completely normal
but for the purposes of this study both observers classed them
as pericarditis although they obviously do not look like the
typical pericarditis cases.

In summary, automatic heart classification was in closer
agreement with the expert on which it was trained than the two
experts were with each other. Automatic liver classification
performed at a level similar to inter-expert agreement. In both
cases, classification agreement was somewhat lower than intra-
expert agreement. However, these intra-expert agreements con-
stitute a very demanding human reference. The expert pathol-
ogists were not time-restricted when carefully identifying the
pathologies of interest for this research. In a real abattoir
situation, a human inspector would have significantly less time
to visually inspect an offal, which would be expected to lead
to significantly lower inter-rater and intra-rater agreements.

We compared the use of SVM heat map classifiers to simply
thresholding the proportion of positive patches. For hearts,
SVM gave a higher AUC whereas for livers it gave no gain in
performance (Fig. 7). A measure of classification confidence
could be used to decide which organs to classify automatically
and which organs to refer for manual assessment by a human
inspector. Fig. 8(b) shows that, using SVM score magnitude as
confidence measure, rejection of cases with confidence below
0.3 resulted in 10.7% of livers being rejected (for manual
assessment). The remaining 89.3% of livers were classified
with an overall accuracy of 84.6%. This is the same level of
accuracy obtained in the intra-expert study albeit without a
rejection option (see Table I(a)).

B. Detecting different pathologies

We developed a methodology that enabled automated clas-
sification of two pathologies of interest in pig carcasses. The
two pathologies, namely liver milk spots and pericarditis, as
well as being significant from a public health perspective (e.g.
milk spots are the most common pathology identified on pig
carcasses [3]) were also used as a case in point of spot-
like and diffuse pathologies, respectively. In fact, many other
pathologies of interest on pig offal, for example inflammation
of the pleura, can be considered spatially diffuse, whereas
several types of lung inflammation, such as those resulting
from viral infection, may lead to multi-focal pathology2 [5].
Therefore, the framework can easily be extended to other
pathologies based on provision of labelled image sets for
training, validation and testing.

The main difficulty associated with training machine learn-
ing models to detect affected regions on the surface of the
organs is the fact that both negative (i.e. normal) and positive
regions vary widely in appearance. As a result, a large amount
of data is needed to successfully train the models to distinguish
positive and negative regions, meaning that many images of
organs have to be manually labelled by veterinary experts as
to the presence of the pathologies of interest. This process
is time-consuming and expensive, and could potentially be
compounded by the need to not only label organs but also
manually segment the lesions on their surfaces, to provide
positive training examples. In the case of pericarditis we
chose to dispense with manual segmentation of lesions, instead
opting to use the entire surface of affected hearts as source
of positive training data. This approximation enabled high
classification performance while avoiding the costs associated
with manual segmentation of lesions. In the case of liver milk
spots, given their extremely localised nature, we chose to
ask experts to mark the centres of milk spots, an approach
which was much less time-consuming than fully segmenting
milk spots by hand. The width of a small number of milk
spots was measured to help determine the appropriate size
for the individual image patches that were analysed, as well
as the overlap between adjacent patches. The application of
machine learning to classify pathologies that are more spatially
localised than pericarditis but not as localised as milk spots

2https://www.pig333.com/pathology-atlas/
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Fig. 9: Example heat maps obtained through liver patch classification with corresponding ground truth and original images.

might benefit from annotation of lesions’ spatial extent in the
form of closed polygons, for example.

C. Image capture

Successful analysis relies on images that capture the surface
of organs with fine texture detail. This in principle requires not
only high resolution cameras but also exposure with sufficient
depth of field, to keep as much of the surface of the organs
within focus. We found this to require a fine balance, as large
depths of field are typically attained by a combination of small
aperture and sufficient distance from the camera to the object
(possibly compensated by zooming). In practice, our image
capture equipment had to be installed in close proximity to
the human inspectors, precluding the use of strobe lighting
and therefore implying the use of relatively large apertures. In
addition, the requirement to keep lighting and cameras inside
of a canopy structure caused the cameras to be relatively
close to the offal. Another technical obstacle we faced was
the presence of large specular reflections from the lighting

sources on the surface of the organs, which appear in the
images as large areas of saturated luminance, containing no
textural information. We minimised this by fitting both light
sources and cameras with polarising filters.

D. Limitations

This paper explored automatic classification of segmented
organs. Currently, automatic organ segmentation operates well
under fixed lighting conditions but is not yet robust enough
for deployment; future work in that direction could usefully
explore structure learning [31] and end-to-end learning of
segmentation maps [32]. It is likely that using more cameras
to obtain more complete coverage of the offal could improve
accuracy of automated identification albeit at the expense of
additional computation and installation costs. Future work
could investigate global organ descriptors other than the
patch histograms used in this paper, perhaps incorporating
morphological information. Some misclassified instances had
unusual appearance suggesting that even larger, more repre-
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Fig. 10: Example heat maps obtained through heart patch classification with corresponding ground truth and original images.

(a) (b) (c)

Fig. 11: (a) Detail of false positive liver shown in Fig. 9. Detail of (b) false negative and (c) false positive hearts shown in
Fig. 10.
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(a) (b)

Fig. 12: Variability of appearance of (a) liver milk spots and (b) similarly sized regions without milk spots. (Images have been
gamma-adjusted for visualization)

(a) (b)

Fig. 13: Examples of hearts (a) with pericarditis and (b) without pericarditis.
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sentative labelled training datasets would be likely to improve
performance further. As the size of training sets grows,
bootstrapping methods that select more efficiently which
locations to consider could be worth adopting [33].

VIII. CONCLUSION

There has been a recent trend to move to visual-only
inspection of pig carcasses, to minimize the risk of cross
contamination between carcasses that may arise from palpation
or incision [1]. A system using methods such as those pre-
sented here has the potential to (i) comply with this trend, (ii)
overcome limitations that arise from human subjectivity, lack
of clarity in evaluating the pathologies and significant inter-
rater disagreement, and (iii) ultimately provide a new gold
standard for pathology. Although a first necessary step in the
development of a practical, automated system for screening
pig pathologies at abattoir, it holds promise, even if it is to be
used as the initial screening for affected offal that could then
be examined in greater detail by a meat inspector.
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