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Abstract 
 
The N-end rule pathway of proteolysis targets proteins for destruction based 

on the nature of their N-terminus. I have shown that the N-end rule pathway in 

Arabidopsis regulates the ‘Methionine-Cysteine (MC)-initiating’ protein 

VERNALIZATION2 (VRN2). VRN2 functions to coordinate cold-responsive 

flowering and has several other key developmental roles. VRN2 is one of 

three plant homologues of the Drosophila protein SUPPRESSOR OF 

ZESTE12 (Su(z)12), which functions as part of the polycomb repressive 

complex2 (PRC2), a conserved eukaryotic complex that regulates the 

epigenetic silencing of genes through depositing the Histone 3 Lysine 27 tri-

methylation (H3K27me3) repressive mark to chromatin. Here I provide in vitro 

and in vivo evidence that VRN2 is a physiological substrate of the N-end rule 

pathway. VRN2 is stabilised under hypoxia and NO-limited conditions and 

post-translational accumulation of VRN2 during vernalization is linked to its 

regulation by the N-end rule. One hypothesis to explain VRN2 stabilisation is 

that cold-induced VERNALIZATION INSENSITIVE3 (VIN3) shields the MC 

terminus to prevent it being targeted for degradation by the E3 ligase 

PROTEOLYSIS6 (PRT6). However, in vitro and via inducible VIN3 transgenic 

lines VRN2 is still degraded in the presence of VIN3. Additionally, this project 

demonstrates that the destabilising N-terminus of VRN2 likely arose following 

gene duplication and N-terminal truncation of an ancient homologue of 

EMBRYONIC FLOWER2 (EMF2), providing new insight into how proteins can 

become co-opted to the N-end rule pathway during evolution to provide new 

functions. Finally, I have found that EMF2c in Barley is also a substrate of the 

N-end rule pathway and may represent a functional homologue of VRN2. 
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1.1 Project Introduction 

 

Regulation of cellular protein levels is essential for all organisms in order to 

control their development in response to environmental stimuli. Targeted 

protein degradation (proteolysis), autophagy and the endosomal system are 

mechanisms that have evolved to allow cells to alter regulatory protein levels, 

rapidly respond to change via protein signaling and also to break down mis-

folded or damaged proteins (Schrader et al., 2009). AAA proteases are a 

conserved class of ATP-dependent proteases that mediate the degradation of 

membrane proteins in bacteria, mitochondria and chloroplasts (Langer, 2000). 

One method of targeted protein degradation in eukaryotes is the ubiquitin 

proteasome system (UPS). This project will look in detail at one particular 

branch of the UPS, the N-end rule pathway (Varshavsky, 2011).  

 

The N-end rule pathway is a specific branch of the UPS that is directed by 

which amino acid is present at the N-terminus (Gibbs et al., 2014a). It is a 

proteolytic system whereby proteins undergo post-translational modifications.  

There is more than one route to the pathway (discussed in section 1.3) but 

this project will focus on the arginylation part of the N-end rule pathway.  The 

N-end rule is responsible for the plant response to hypoxia where cysteine is 

the destabilizing N-terminal residue called the N-degron (Gibbs et al., 2011). 

Known targets of the N-end rule pathway in plants include the Met-Cys 

initiating proteins called Group 7 ethylene response factors (ERFVII 

transcription factors) involved in oxygen and nitric oxide sensing ((Gibbs et al., 
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2011, Licausi et al., 2011, Gibbs et al., 2014b). Direct transcriptional response 

to O2/NO is mediated by the proteolytic control of ERFVIIs by the N-end rule 

pathway. Proteins are targeted for destruction based on the distinctive N-

degron Met-Cys- (MC-) and in the presence of O2/NO the proteins are 

degraded. If O2/NO availability is reduced then the proteins accumulate and 

subsequently their downstream genes are activated (Gibbs et al., 2014b). 

This is a direct mechanism for perceiving and transducing gaseous signals 

found in plants. Recent work in the Gibbs lab (Gibbs et al., 2018) has found 

that VRN2 is an MC-initiating protein that is an O2/NO regulated substrate of 

the N-end rule pathway but instead of acting as a transcription factor, it is 

known to act as part of the polycomb repressive complex 2 (PRC2), a 

chromatin modifying complex that regulates the epigenetic repression of gene 

expression. When O2/NO levels are low VRN2 accumulates and therefore 

may act within the PRC2 complex to conditionally catalyzes the deposition of 

the repressive H3K27me3 mark to chromatin.  

 

This project will focus on the hypothesis that VRN2 is a novel gas regulated 

target of the N-end rule pathway that links O2/NO perception to global 

chromatin dynamics to control downstream developmental and environmental 

responses. The project aims to advance our understanding of signal 

perception and integration in plants and with potential to identify new targets 

for the development of improved crops. The following sections of this 

introduction will describe in detail the N-end rule pathway, VRN2 and the 

process of vernalization, PCR2 complexes, what might affect the stability of 

VRN2 and how VRN2 may have evolved. 
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1.2 Targeted protein degradation 

 

Cellular regulation of growth and development in all organisms is dependent 

on the regulation of protein abundance and function. This can be at the 

transcriptional level where genes are expressed or suppressed according to 

cell signaling mechanisms or epigenetic responses. It can be at the 

translational level where mRNA can be modified and splice variants of 

proteins can be created. It can also be at the post-translational level where 

proteins can be modified and various tags added to them to control protein 

activity and stability. All eukaryotes use the ubiquitin/26S proteasome 

pathway as a way of degrading specific proteins when signals determine that 

it is required. Plants have a large proportion of their genes that encode 

proteins that are components of this regulatory pathway (Hellmann and 

Estelle, 2002, Sadanandom et al., 2012). Targeted protein degradation 

enables tight control of cell signaling and protein levels.  

 

1.2.1 Ubiquitylation 

 

Ubiquitin is a highly conserved 76 amino acid adapter protein found in 

eukaryotes. Ubiquitylation is a type of post-translational modification where 

ubiquitin is conjugated to specific Lysine (Lys) residues in a selected protein 

to form chains of one or more ubiquitin subunits. Ubiquitin conjugation not 

only controls protein degradation but also affects protein sorting, enzymatic 

activity and protein-protein interactions. (Hershko and Ciechanover, 1998). 

Three classes of enzyme are involved in a cascade in order for ubiquitylation 
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to occur; the ubiquitin-activating (E1), the ubiquitin-conjugating (E2) and the 

substrate specific ubiquitin-protein ligase (E3) enzymes (Ciechanover, 1998, 

Komander and Rape, 2012). An additional conjugation factor (E4) has been 

shown to be involved in ubiquitin chain assembly in yeast and humans (Koegl 

et al 1999). ATP is required to first form a bond between a ubiquitin monomer 

and an E1 ligase (FIGURE 1.1). The ubiquitin is then transferred to an E2 by 

trans-esterification. At the same time an E3 will bind to a specific protein 

substrate and the E3 mediates the transfer of the ubiquitin from the E2 to the 

protein substrate. An isopeptide bond is catalyzed between the C-terminal 

carboxyl group of ubiquitin to a Lys within the protein substrate (Zimmerman 

et al., 2010). Mono-ubiquitylation can regulate gene expression and 

membrane trafficking (Hicke, 2001). Multi-ubiquilylation is where ubiquitin is 

added to a protein at multiple Lys sites and is related to DNA repair and 

endocytosis. Repeated ubiquitylation is called poly-ubiquitylation and occurs 

when ubiquitin monomers are added first to the substrate and then to each 

other to form a branched or single poly-ubiquitin chain. Single poly-ubiquitin 

chains can act as a signal for the protein to be degraded by the proteasome 

(Gibbs et al., 2014a, Gibbs et al., 2016).  

 

1.2.2 E3 ubiquitin ligases 

 

E3 Ubiquitin ligases can be classified into single or multi subunit enzymes. 

Single subunit E3s can be further divided into HECT (Homology to E6-AP C-

terminus) domain proteins and RING (Really interesting New Gene)/U-box 

proteins (Pickart, 2001). These are examples of single subunit E3s and bind 
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to both the E2 and the target substrate. HECT E3s bind to the E2 and the 

ubiquitin binds directly to the E3 before transferring to the protein substrate. 

RING single-subunit E3s bind to both the E2 and substrate and catalyze the 

ubiquitin transfer directly from the E2 to the substrate without binding to 

ubiquitin itself (Jackson et al., 2000). The multi subunit E3s are often referred 

to as CULLIN-RING ligases as they comprised of a CULLIN protein and a 

RING protein (Zimmerman et al., 2010). The number of subunits and the type 

of CULLIN they associate with can vary (Petroski and Deshaies, 2005a). The 

anaphase promoting complex (APC), essential for mitotic progression in 

eukaryotic cells (Peters, 2002), and SKP1-CULLIN1-F-box (SCF), involved in 

phosphorylation-mediated proteolysis of developmental proteins (Deshaies, 

1999, Petroski and Deshaies, 2005b), are other examples of multi-subunit E3 

ubiquitin ligases. 

 

In Eukaryotes some E3 ubiquitin-ligase enzymes act as an N-recognins. N-

recognins are specific binding proteins that contain specialized binding sites 

for recognition of Type I and Type II primary destabilizing residues in 

substrates targeted for degradation by the N-end rule pathway. Some E3 

ligases interact with other proteins via internal domains, whereas the N-

recognin selectively interacts with the N-terminus of the target protein via 

specific recognition domains and provides specificity to the N-end rule 

pathway of proteolysis. The N-recognin is typically a single subunit enzyme 

that interacts with an E2 enzyme and specific N-terminal (Nt) - residues of 

target protein substrates, in contrast to multi-subunit E3 ligases that require 

interaction with multiple proteins for ubiquitylation (Deshaies and Joazeiro, 
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2009). Once the ubiquitin has bound to the substrate, the substrate is then 

degraded by the 26S proteasome. 

 

1.2.3 The 26S Proteasome 

 

The 26S proteasome is an ATP-dependent protease. It is a large complex 

made of multiple proteins (FIGURE 1.2). The two main components are the 

20S core particle (CP) and two 19S regulatory particles (RPs) that are found 

at either end of the 20S CP as a lid and a base (Gallastegui and Groll, 2010). 

The lid of the proteasome recognizes proteins with poly-ubiquitin chains. The 

protein is de-ubiquitylated and then unfolded. The protein travels through the 

alpha subunits of the 20S that act as a gated channel. The beta subunits of 

the 20S depend on ATP to cleave the substrate into small fragments. 

Degradation products are released from the 19S base and the ubiquitin 

monomers are recycled.  
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FIGURE 1.1 The polyubiquitin reaction cascade 
 
Ubiquitylation of a protein involves the ubiquitin activating E1, the ubiquitin 
conjugating E2 and the ubiquitin-protein ligase E3 enzymes (Ciechanover, 
1998). 
1) ATP is required for the formation of a bond between E1 and a ubiquitin 
monomer. 
2) The activated ubiquitin is then transferred to the E2 by transesterification. 
3) E3 catalyzes the conjugation of ubiquitin to the protein substrate. 
4) Ubiquitylation of the protein substrate continues in an iterative manner. 
5) The polyubiquitylated protein is targeted for destruction by the 26S 
proteasome. 
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FIGURE 1.2 the 26S proteasome 
 
The 26S proteasome is made of 2 β subunits in the centre and 2 α subunits 
either side of those. These 4 subunits make the core particle (CP). On each 
end of the CP are 19S regulatory particles. The RP catalyzes the 
deubiquitylation and unfolding of protein substrates, directing them through 
the centre of the CP where they are cleaved to small pieces and released. 
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1.3 The N-end rule pathway 

1.3.1 The N-end rule pathway - Eukaryotes 

The N-end rule pathway was first discovered in yeast Saccharomyces 

cerevisiae (Bachmair et al., 1986) where it was observed that the stability of 

ubiquitin β galactosidase reporter proteins was affected following de-

ubiquitylation according to which Nt-residue was exposed (Sriram et al., 2011, 

Gibbs et al., 2014a). De-ubiquitylating enzymes cleave the ubiquitin at the N-

terminus of proteins in yeast. Once cleaved, this exposes a new N-terminus. 

Proteins are degraded or stabilized according to the amino acid residue 

present at the n-end of the protein. With arginine at the N-terminus the protein 

was relatively unstable with a half-life of 2 minutes compared to alanine at the 

N-terminus where the reporter protein was stable for 20 minutes. As well as 

being present in yeast, the N-end rule is also found in mammals, plants and 

bacteria (although it is not ubiquitin related in prokaryotes). Ubiquitylation on a 

protein induces selective proteolysis by forming part of a degradation signal 

called a degron. A degron is a region of a protein sufficient to target the 

protein for destruction by the 26s proteasome (Petroski and Deshaies, 

2005a). In the N-end rule pathway the N-terminus of N-end protein substrates 

have a particular N-terminal amino acid residue that is post-translationally 

modified and acts as destabilizing N-degron. N-degrons comprise a 

destabilizing Nt-residue, a Lys site for ubiquitylation and an N-terminal protein 

structure that exposes the N-terminus on the outside of the protein for 

interaction with other proteins (Gibbs et al., 2014a). In eukaryotes the poly-

ubiquitin chain, when conjugated to a lysine in the N-degron, targets the 

protein for destruction by the 26s proteasome (Sriram et al., 2011). 
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1.3.2 The Arg/N-end rule 

 

Nt-residues were first classified as stabilizing or destabilizing (Bachmair et al., 

1986) Proteins are synthesized with a methionine at the N-terminus but post-

translational modifications usually reveal new Nt-amino acids. Proteins can be 

cleaved internally by endopeptidases (Piatkov et al., 2014) or the Nt-

methionine can be removed co-translationally by methionine amino 

peptidases (MetAPs) depending on the size of the second residue (Giglione et 

al., 2004). The newly exposed Nt-residue can be defined as stabilizing or 

either a primary, secondary or tertiary destabilizing residue. There are now 

sub-categories of primary destabilizing residue: type I basic residues or type II 

hydrophobic residues (Tasaki et al., 2012). Type I residues include arginine 

(R), lysine (K) and histidine (H). Type II residues include leucine (L), 

isoleucine (I), phenylalanine (F), tryptophan (W) and tyrosine (Y). In plants 

and animals, under certain conditions, tertiary destabilizing residues are 

modified to secondary destabilizing residues. One example in plants of a 

tertiary destabilizing residue is where cysteine (C) is oxidized by plant 

cysteine oxidases (PCOs). Post-translational cysteine oxidation in animals 

does occur but via reactive oxygen species (ROSs) from sources such as 

mitochondria and NADPH oxidases and this oxidation can regulate enzyme 

activity, metal binding and protein turnover (Reddie and Carroll, 2008). 

Another example of tertiary destabilizing residues are asparagine (N) and 

glutamine (Q) which are then modified via Nt-deamidation to secondary 

destabilizing residues aspartic acid (D) and Glutamic acid (E) respectively (An 

et al., 2006, Tasaki et al., 2012). Secondary destabilizing residues are then 
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modified to primary destabilizing residues via Nt-arginylation by arginyl-tRNA 

transferases (ATEs) (Varshavsky, 1996).  

 

In eukaryotes N-recognins (E3 ubiquitin ligases) recognize the N-degrons and 

bind directly to primary destabilizing residues, catalyzing the addition of a 

polyubiquitin chain to a lysine a short distance from the N-terminus, targeting 

the protein for destruction by the 26S proteasome (Varshavsky, 2011). Gid4, 

a subunit of the GID ubiquitin ligase in yeast, is a pro/N-recognin that has 

been found to target gluconeogenic enzymes. (Chen et al., 2017). There is a 

pro/N-end rule pathway in yeast that targets proteins for destruction through 

their N-terminal proline (Dougan and Varshavsky, 2018). Yeast has a single 

N-recognin ubiquitin system recognition component 1 (UBR1) that recognizes 

both type I and type II primary destabilizing residues in the Arg/N-end rule 

pathway (Garzon et al., 2007). In mammals several isoforms of this N-

recognin are encoded. There are at least four N-recognin proteins UBR1, 

UBR2, UBR4 and UBR5 shown to bind with N-degrons and one common 

feature of these is a Cys/His rich domain termed the UBR box (Tasaki et al., 

2009). There could potentially be up to seven N-recognins in mammals as 

UBR3, UBR6 and UBR7 also contain the 70-residue UBR box substrate 

recognition domain (Tasaki et al., 2005). Of the two N-recognins that have 

been identified in plants, PROTEOLYSIS1 (PRT1) and PROTEOLYSIS6 

(PRT6), only PRT6 contains the UBR box (Holman et al., 2009). PRT1 

recognizes type II basic primary residues and PRT6 recognizes type I 

aromatic primary residues (Potuschak et al., 1998, Stary et al., 2003, Garzon 

et al., 2007). As this pathway in plants involved the addition of arginine (Arg or 
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R) to the N-terminus that is recognized by N-recognins, this branch of the N-

end rule pathway is known as the Arg/N-end rule (FIGURE 1.3). The 

deamidases, ATEs and N-recognins are functionally conserved in eukaryotes 

(Graciet et al., 2010). Where the primary destabilizing residue is cysteine 

(Cys) this branch of the N-end rule pathway is known as the Cys/Arg N-end 

rule pathway (FIGURE 1.6) and will be the focus of this project. 
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FIGURE 1.3 The Arg/N-end rule pathway  

A schematic representation of N-terminal (Nt) processing events leading to 
degradation of proteins via the Arg(R)/N-end rule pathway: Single letter 
amino-acid codes are used to represent Nt-residues. Specific N-terminal 
methionine excision requires methionine amino peptidase (MAP) activity, 
exposing tertiary Nt-residues: Cys (C), Asn (N) and Gln (Q). Cysteine is 
oxidized by plant cysteine oxidase (PCO) (denoted in red). N and Q are 
deamidated to Asp (D) and Glu (E) by N-terminal amidohydrolases (NTAN1 
and NTAQ1- denoted in blue). C* indicates oxidized Cys. C*, D and E are 
secondary residues. An arginyl group (R) is added by the arginyl-tRNA-
transferases (ATEs) to the secondary residues. R is a Type-I primary residue 
as well as Lys (K) and His (H). Leu (L), Phe (F), Trp (W), Tyr (Y) and Ile (I) are 
type-II primary residues. The E3 ubiquitin-ligases recognize specific proteins 
via the primary residue as part of the N-degron and catalyze the addition of 
ubiquitin. The protein is then degraded by the 26S proteasome.  
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1.3.3 The Ac/N-end rule 

 

Acetylation occurs in the majority of Eukaryotic proteins (Arnesen et al., 

2009). The Ac/N-end rule pathway was discovered in yeast and although 

acetylation has classically been viewed as a stabilizing modification, the Ac/N-

end rule pathway uses acetylation to mark proteins for degradation (Hwang et 

al., 2010). Protein targets of this pathway are modified co-translationally 

(sometimes post-translationally) and acetylation is believed to be irreversible 

(Varshavsky, 2011). Nt-acetyltransferases (NATs) associate with ribosomes 

as proteins are being translated. An acetyl group from acetyl-coenzyme A is 

transferred to the Nt-amino acid of the protein, catalyzed by a NAT enzyme. 

The NAT has specificity for which protein to acetylate based on the nature of 

the Nt. Methionine (M), Alanine (A), Valine (V), Serine (S), Cysteine (C) and 

Threonine (T) are all residues that are targeted for Nt-acetylation (FIGURE 

1.4). The acetylated protein can then, in some cases, be recognized by an N-

recognin and is selectively degraded. In yeast there are two confirmed N-

recognins of the Ac/N-end rule pathway: degradation of alpha 10 (DOA10) or 

the negative regulator of transcription 4 (NOT4). Functions of the Ac/N-end 

rule include regulation of protein stoichiometry and degradation of mis-folded 

or damaged proteins (Hwang et al., 2010, Shemorry et al., 2013). The NAT 

enzymes are highly conserved in eukaryotes (Arnesen et al., 2009, Starheim 

et al., 2012) and homologs of DOA10 and NOT4 exist in animals and plants. 

Therefore the Ac/N-end rule pathway may be important in multicellular 

organisms such as plants but further studies are needed to confirm its 

function and role in proteolysis beyond yeast and animals (Gibbs et al., 
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2014a). Some proteins with Nt-Met followed by a hydrophobic residue can be 

destabilizing if unacetylated. Selective acetylation of these proteins can 

determine if the protein is degraded by the Ac/ or Arg/N-end rule pathways 

(Kim et al., 2014). This means that almost all of the possible range of proteins, 

with their various Nt-residues, can potentially lead to degradation by the N-

end rule pathway but this is conditional and dependent on certain 

environmental cues. There is also evidence to suggest crosstalk between the 

Ac/ and Arg/N-end rule pathway between each other (Kim and Hwang, 2014). 

This demonstrates the complexity and significance of the N-end rule pathway 

in controlling of protein levels in cells. 
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FIGURE 1.4 The Ac/N-end rule pathway 

A schematic representation of the Ac/N-end rule pathway. Single letter amino-
acid codes are used to represent N-terminal (Nt) residues. Methionine is 
cleaved by methionine amino peptidase (MAP), exposing Ala (A), Val (V), Ser 
(S), Thr (T) or Cys (C) residues. The exposed residues are then acetylated by 
Nt-acetyltransferases (NATs). The acetylated Nt-residue is recognized by an 
N-recognin, which targets the protein for destruction by the 26S proteasome. 
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1.3.4 N-end in prokaryotes 

Prokaryotes have a variation on the N-end rule pathway that is different to that 

in eukaryotes, as they lack ubiquitin and the UPS, and they have fewer 

destabilizing residues (Darwin, 2009). Prokaryotic proteins can have varied 

amino acids at the Nt due to endopeptidase cleavage exposing residues and 

protein transferases adding amino acid residues. Lysine (K) and arginine (R) 

are secondary destabilizing residues. Methionine can also be a destabilizing 

residue.  Many bacterial proteins have formyl-methionine (fMet) at the Nt. In 

degradation of these bacterial proteins with Nt-fMet, formylation occurs by 

peptide deformylase. Then methionine this is cleaved to reveal the next amino 

acid residue at the N-terminus (Frottin et al., 2006). It is thought that MetAP 

removes the Met in a similar way to eukaryotes, however it may not be the 

only process in prokaryotes that forms N-degrons due to MetAP specificity 

(Mogk et al., 2007). Primary destabilizing residues Leucine (L), Phenylalanine 

(F),  Tyrosine (Y) and tryptophan (W) can also be added to Nt-Methionine by 

tRNA-protein-transferase (Dougan et al., 2010). Proteins with primary 

destabilizing residues bind to an adapter protein ClpS (caseinolytic protease) 

(FIGURE 1.5). ClpS is the only N-recognin found in bacteria. Plant 

chloroplasts have their own n-end rule pathway Clp protease system similar to 

prokaryotes and ClpS1 is the N-recognin that recognizes substrates in this 

protein degradation system (Nishimura et al., 2013). In bacteria, one region of 

the ClpS recognizes N-degrons and another region binds to the ClpAP 

protease complex where the protein is then degraded (Tobias et al., 1991, 

Schuenemann et al., 2009). ClpS recognizes the type II hydrophobic 

destabilizing residues and not type I basic residues (Schmidt et al., 2009, 
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Dougan et al., 2010), suggesting the type I and type II branches of the n-end 

rule pathway might be phylogenetically separable (Mogk et al., 2007, Sriram 

et al., 2011). As a variation of the N-end rule pathway is present in bacteria, it 

suggests that it is an ancient pathway for regulating protein degradation and 

has been coopted to the UPS during evolution of Eukaryotes (Gibbs et al., 

2014a). An equivalent of the N-end rule pathway has also been found in 

organelles of eukaryotic cells thought to derive from bacteria, in the 

chloroplasts of plant species and in yeast mitochondria (Lupas and Koretke, 

2003, Vogtle et al., 2009). 
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FIGURE 1.5 The N-end rule pathway in prokaryotes 

Formylation occurs on formyl-methionine (fM). Peptide deformylase can 
remove this. Then methionine amino peptidase (MetAP) can remove the N-
terminal methionine. Primary (leucine (L), phenylalanine (F), tyrosine (Y) and 
tryptophan (W)) and secondary (arginine (R), lysine (K) and methionine (M)) 
destabilizing amino acid residues are exposed by other amino peptidases. 
Primary destabilizing residues are added to the secondary destabilizing 
residues by L/F-tRNA-protein transferase (LFTR). When a primary 
destabilizing residue is at the N-terminus this is recognized by the caseinolytic 
protease (ClpS) and then the protein is targeted for destruction by the ClpAP 
protease complex. 
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1.3.5 Known substrates and the roles of the N-end rule pathway 

 

A number of different substrates of the N-end rule pathway are known in 

different kingdoms. In Drosophila the N-end rule is known to have a role in the 

regulation of apoptosis (Piatkov et al., 2012a) as INHIBITOR OF APOPTOSIS 

1 (IAP1) has been found to be a substrate (Ditzel et al., 2003, Tasaki and 

Kwon, 2007). The N-end rule pathway also has a role in apoptosis in bacteria 

through regulation of the substrate PUTRESCINE AMINOTRANSFERASE 

(PATase), which maintain homeostasis of the toxic chemical putrescine in 

bacterial cells, preventing apoptosis (Ninnis et al., 2009, Schmidt et al., 2009). 

In yeast, the N-end rule pathway has role in chromosome stability as 

endopeptidases were found to expose destabilizing residues in the substrate 

SISTER CHROMATID COHESION 1 (SCC1) (Rao et al., 2001). UBR1, the 

sole E3 ubiquitin ligase in yeast, recognizes the transcriptional repressor 

CUP9 by its internal degron (Turner and Varshavsky, 2000). The control of 

peptide movement is N-end regulated as CUP9 represses the peptide 

transporter PTR2 (Du et al., 2002). Mutations in E3 ligases could mean its 

substrates would become stable. Mutations in UBR1 in humans have been 

shown to be the cause of Johanson-Blizzard syndrome (Zenker et al., 2005), 

meaning a functioning N-end rule is linked to the prevention of symptoms 

such as mental retardation, physical abnormalities and pancreatitis.  

 

UBIQUITIN-SPECIFIC PROTEASE 1 (USP1) in mammals is a substrate of 

the N-end rule pathway and regulates genomic stability and DNA repair (Yan 

et al., 2006, Piatkov et al., 2012b). Also in mammals, the N-end rule has been 
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linked to neurodegenerative disorders (Brower et al., 2013). PINK1 is 

degraded by the N-end rule which is a protein associated with Parkinson’s 

disease (Yamano and Youle, 2013). The N-end rule has functions in 

regulating autophagy (Kim et al., 2013), the sensing of heme (Hu et al., 2008), 

detecting misfolding of proteins (Eisele and Wolf, 2008, Heck et al., 2010, 

Sultana et al., 2012) and BRCA1 tumour suppressor protein is regulated by 

the N-end rule pathway (Xu et al., 2012).  

 

The REGULATOR OF G PROTEIN SIGNALLING (RGS) is a known substrate 

of the Cys branch of the Arg/N-end rule pathway in mammals (Lee et al., 

2005). Cell signalling by substrate G-protein regulators RSG4 , RGS5 and 

RGS16 links the Cys/Arg N-end rule to  gas-sensing and cardiovascular 

development (Kwon et al., 2002). In plants the Arg/N-end rule pathway 

regulates seed germination (Holman et al., 2009), seedling establishment, 

shoot and leaf development (Graciet et al., 2009), leaf senescence (Yoshida 

et al., 2002) pathogen responses and response to abiotic stress (Sriram et al.,  

2011). The transcription factors, the group VII ethylene response factors 

(ERFVIIs) demonstrate that the N-end rule has a role in gaseous sensing in 

plants as they become stable in hypoxia and low nitric oxide (similar to the 

RGSs in mammals) and ERFVIIs are substrates of the Cys branch of the 

Arg/N-end rule pathway (Gibbs et al., 2011, Licausi et al., 2011, Gibbs et al., 

2014a).  

 

1.3.6 Oxygen and nitric oxide sensing via the N-end rule 

Most eukaryotes rely on oxygen for growth and metabolic processes including 
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aerobic respiration and the production of energy in the form of ATP. If oxygen 

levels are depleted (hypoxia) then eukaryotic cells can respond by altering 

gene transcription levels in order to sustain ATP production anaerobically and 

to avoid any negative effects of low energy production (Gibbs et al., 2011, 

Licausi, 2011). Nitric oxide is an important signaling molecule in plants (Gibbs 

et al., 2014b). Plants rely on nitric oxide for is involvement in stress responses 

to pathogens and developmental processes such as seed 

germination/dormancy, stomatal closure, hypocotyl elongation and flowering 

(Mur et al., 2013). The N-end rule pathway has been shown to be the first 

oxygen and nitric oxide sensing mechanism discovered in plants, functioning 

by regulating key transcription factors in Arabidopsis thaliana. The Cysteine 

division of the Arg/N-end rule branch where the N-terminus begins with 

methionine and cysteine (MC) is present in plants and is a conserved method 

of gaseous signal transduction (Hu et al., 2005) (FIGURE 1.6). Cys is a 

primary destabilizing residue in eukaryotes other than yeast, with an in vitro 

half-life of approx. 1.2h (Gonda et al., 1989). The stability of substrates of the 

Cys-Arg/N-end rule pathway is related to oxygen and Nitric oxide (NO) 

availability. Exposure of Cys in an unacetylated protein in plants allows 

oxygen-dependent oxidation of Cys by PCOs. PCO1 and PCO2 are induced 

by hypoxia and are known to redundantly repress the anaerobic response and 

transcription mediated by the ERFVIIs (Weits et al., 2014).  PCOs have 

specific affinity to N-terminal Cys and they catalyze the conversion of Cys to 

Cys-sulfinic or Cys-sulfonic acid by the incorporation of two oxygen to the thiol 

group of cysteine (Weits et al., 2014, White et al., 2017). Oxygenated Cys is 

then arginylated by the ATEs (Ikeuchi et al., 2015).  
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FIGURE 1.6 The Cys/Arg N-end rule pathway of proteolysis 
 
A schematic representation of N-terminal processing events leading to 
degradation of Met-Cys- (MC)-proteins via the Arg(R)/N-end rule pathway: 
Single letter amino-acid codes are used. Methionine is cleaved by MAP 
methionine amino peptidase. Cysteine is oxidized by PCO plant cysteine 
oxidase. C* indicates oxidized Cys. An arginyl group (R) is added by the 
arginyl transferases. The E3-ligase PRT6 PROTEOLYSIS6 adds a 
polyubiquitin chain to the protein. The protein is then degraded by the 26S 
proteosome. Red box is the gas sensing step - as oxygen and nitric oxide 
(NO) are required for this stage to take place.  
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The nitric oxide and oxygen dependent step of the n-end rule pathway was 

first identified in mammals, where it was shown in conditions of hypoxia or 

lack of NO that the substrates RGS4, RGS5 and RGS16 levels increased (Hu 

et al., 2005). When oxygen was higher through vasodilation and nitric oxide 

levels were high through production by endothelial nitric oxide synthase, the 

RGS proteins were degraded. The conditional stability of RGS proteins 

regulate G protein signaling in the development of the cardiovascular system 

in mammals (Lee et al., 2012, Jaba et al., 2013). Hypoxia inducible factor 

1alpha (HIF1α) is a subunit of hypoxia inducible factor 1 (HIF-1); a 

transcriptional regulator of cellular and developmental response to hypoxia, 

that has been shown in mammals to regulate transcription levels according to 

oxygen availability (Kaelin and Ratcliffe, 2008). Recently the N-end rule has 

been linked to oxygen and NO sensing in plants due to the discovery that the 

ERFVII transcription factors are substrates of the Cys-Arg/N-end rule pathway 

(Gibbs et al., 2011, Licausi et al., 2011). HIF1α is absent from plants and 

instead, the N-end rule controls the hypoxia response in plants via the ERFVII 

transcription factors. The ERFVIIs are constitutively degraded due to the Met-

Cys (MC) initiating Nt.  

 

Plants may experience hypoxic conditions during their normal development, 

especially in certain tissues such as the meristem (Considine et al., 2017). 

Oxygen enter plant tissues by simple diffusion, meaning the most internal 

areas may not get as much oxygen as surface tissues, meaning the 

meristems may naturally be hypoxic. Plants may also experience 
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waterlogging during flood in their natural environment, causing hypoxia in 

certain plant tissues. The plant senses the environment around it and 

responds to the hypoxic conditions via the N-end rule pathway because 

without the oxygen and nitric oxide step the ERFVIIs are stabilized. The 

ERFVIIs can then promote the expression of hypoxia response genes. The 

PCOs are only found in plants and are hypoxia response genes (i.e. they are 

up-regulated under hypoxic conditions), meaning ERFVIIs and other N-end 

rule substrates become stable. PCOs are required in this step because they 

oxidize the Cys residue using oxygen before the arginylation step of the 

pathway (Weits et al., 2014).  

 

Nitric oxide (NO) is available in plants through nitrate reductase enzyme 

reactions (Gibbs et al., 2014b). Nitric oxide is also required in this gas-sensing 

step because it serves as a signaling molecule in plants (Mur et al., 2013), 

however whether it is directly involved in the oxidation of Cys or indirectly via 

other factors is currently unknown (Gibbs et al., 2018). By mutation of 

components of the Arg/N-end rule pathway, it has been found that Nitric oxide 

is involved in the regulation of development, breaking seed dormancy, 

elongation of the hypocotyl, in stomatal closure responses to the environment 

and in stress responses (Gibbs et al., 2014b). Nitric oxide promotes ERFVII 

degradation via the N-end rule pathway but whether NO affects Cys oxidation 

directly or acts indirectly is currently unknown.  

 

As the mammalian RGSs and the plant ERFVIIs have been shown to be 

important regulatory substrates of the Arg/N-end rule, and they are both MC 
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initiating proteins it is interesting to speculate how many other MC initiating 

substrates there are that may also have important roles in gas sensing and in 

regulating proteins essential for plant development. The MC N-terminus of a 

protein is only one part of the N-degron, the lysine residue and tertiary 

structure exposing the N-terminus are also required. Nonetheless, one can 

hypothesize that other MC proteins across eukaryotes may be substrates of 

the Arg/N-end rule pathway (Gibbs et al., 2014a). One likely candidate 

investigated in this project is the MC initiating protein VERNALIZATION2 

(VRN2), which has several known developmental functions, including seed 

development where it prevents cell differentiation (Roszak and Kohler, 2011, 

Ikeuchi et al., 2015), but it is best characterized as a positive regulator of 

flowering (Gendall et al., 2001). VRN2 is involved in vernalization; the process 

of flowering after experiencing prolonged cold conditions. 
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1.4 Vernalization 

 

Vernalization is an adaptation of plants to delay flowering until a plant has 

overwintered. Plants can monitor the environment in which they grow to 

enable them to coordinate their growth and developmental changes so they 

coincide with seasonal cues (Song et al., 2012). The vernalization pathway 

and photoperiod pathway promote flowering in plants by integrating 

environmental cues to control when flowering occurs. The autonomous and 

gibberellin pathways also promote flowering but they act independently of 

photoperiod, temperature or other external signals (Gendall et al., 2001). A 

fifth pathway has also been identified related to flowering and that is the aging 

pathway (Srikanth and Schmid, 2011). The flowering time pathways control 

the expression of the floral pathway integrators SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), FLOWERING LOCUS T 

(FT) and LEAFY (LFY), and these genes then encode proteins that activate 

the floral meristem identity (Henderson and Dean, 2004). 

 

A prolonged period of low temperatures is required for vernalization and this is 

normally experienced during winter but the process of vernalization is distinct 

from freezing tolerance and the acclimation response (Gendall et al., 2001).  

Only the shoot apical meristem needs to be exposed to low temperatures for 

all of the dividing cells in the whole plant to undergo vernalization and 

vernalization is mitotically stable, persisting throughout the plants 

development (Burn et al., 1993, Gendall et al., 2001, Song et al., 2012).  



Chapter	1	Introduction	
	

	 29	

Vernalization occurs during mitosis but not meiosis so the epigenetic state is 

reset each generation and each generation requires vernalization (Sheldon et 

al., 2008, Choi et al., 2009, Crevillen et al., 2014). Vernalization is an 

epigenetic ‘memory’ where a plant ‘remembers’ it has experienced the cold 

and will then transition from a state of vegetative growth to a state of 

reproduction and floral promotion (Gendall et al., 2001), although there is a 

temporal separation between the environmental cue and the response. This 

adaptation allows a plant to be able to flower and produce seed in more 

favourable conditions generally experienced in spring (Song et al., 2012). 

 

1.4.1 Vernalization Requirement in Arabidopsis thaliana 

Many temperate plants require vernalization in order to delay flowering until 

they experience favourable growing conditions and this process has evolved 

independently between monocots and dicots (Michaels and Amasino, 1999). 

In this project we work with Arabidopsis thaliana (hereafter referred to as 

Arabidopsis). Arabidopsis, a member of the Brassicaceae family, is a small 

flowering plant that is widely used as a model organism in plant biology. Its 

whole genome has been sequenced and a collection of natural accessions, 

transgenics and mutant lines is available from the Arabidopsis Biological 

Resource Centre (ABRC) and the Nottingham Arabidopsis Stock Centre 

(NASC). Arabidopsis naturally grows around the world in variable climates 

and so native populations are exposed to different environmental conditions 

across the species’ geographical range (Korves et al., 2007). This causes 

natural variation in Arabidopsis plants due to the differences in selection 

pressures. Some natural populations (ecotypes/accessions) have adaptations 



Chapter	1	Introduction	
	

	 30	

to the particular climate they are from and this includes variation in alleles 

controlling the requirement for vernalization. Some commonly used ecotypes 

that are frequently used in research that provide different genetic 

backgrounds to work with are Columbia (Col), Landsberg erecta (Ler) and 

Wassilewskija (Ws).  

 

In naturally occurring Arabidopsis accessions the FRIGIDA (FRI) and 

FLOWERING LOCUS C (FLC) genes determine flowering time variation and 

the requirement for vernalization (Gendall et al., 2001). The FRI gene 

encodes a protein that increases the mRNA level of FLC. FLC encodes a 

highly expressed MADS box transcriptional repressor protein, which 

negatively regulates genes that promote flowering, thus represses flowering 

(Gendall et al., 2001). During vernalization FLC is repressed and therefore 

flowering occurs (Michaels and Amasino, 1999, Sheldon et al., 1999). Some 

Arabidopsis accessions have evolved so they do not require vernalization. 

One of these is Columbia-0 (Col-0) that evolved in warmer climates where the 

plant does not naturally experience cold. The cause of variation in 

vernalization requirement between Arabidopsis accessions is the allelic 

variation at FRI  (Nappzinn, 1957). Col-0 has two, naturally occurring null 

deletion alleles of FRI, where the FRI gene has become non-functional. Non-

functional FRI alleles will allow a plant to flower rapidly without the need for 

vernalization because FLC expression is low (Johanson et al., 2000). These 

plants are termed rapid-cycling or summer annual backgrounds, where the 

plants flower early and reproduce without the need for cold (Henderson and 

Dean, 2004). Ler is another ecotype that does not require vernalization. 
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However, Stockholm and San Felieu2 (Sf2) ecotypes do respond to 

vernalization (Diallo et al., 2010) and these ecotypes have a dominant, 

functional FRI allele. A functional FRI allele will cause plants to delay 

flowering if they have not experienced vernalization (Nappzinn, 1957). These 

plants are late flowering, require vernalization and termed winter annual 

backgrounds (Henderson and Dean, 2004). Summer annuals will generally 

have fewer leaves when flowering and winter annuals will have many leaves if 

they have not experienced vernalization (FIGURE1.7). If winter annuals do 

experience vernalization the rosette leaf number will be similar to that of 

summer annuals at bolting. 
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FIGURE 1.7 Flowering behaviour of summer and winter ecotypes of 
Arabidopsis thaliana 
 
The summer ecotype Col-0 flowers rapidly without the need for vernalization 
due to a recessive FRIGIDA allele that has a 16 bp deletion. The winter 
ecotype Col-0 FRI-Sf2 flowers late with no vernalization but flowers rapidly if 
vernalized due to having an active, dominant FRI allele. 
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1.4.2 The Process of Vernalization in Arabidopsis 

In Arabidopsis, vernalization causes epigenetic silencing of the key floral 

repressor gene FLC (Song et al., 2012) and this is partly controlled by the 

VERNALIZATION2 (VRN2) gene (accession no.AF284500). It is thought 

epigenetic repression is limited to FLC and this process is quantitative 

because flowering becomes progressively earlier when increasing the 

duration of the cold exposure (Sheldon et al., 1999, Sheldon et al., 2000, 

Gendall et al., 2001, Song et al., 2012). The reduction in FLC expression 

remains stable, as levels remain low after the cold exposure and when the 

plant is returned to optimal temperatures (Gendall et al., 2001). The VRN2 

gene encodes a zinc finger protein that is found in the nucleus (Gendall et al., 

2001). VRN2 is antagonistic to FRI because VRN2 epigenetically maintains a 

decrease in FLC mRNA (via FLC histone methylation) and therefore promotes 

flowering, whereas FRI increases the mRNA level of FLC, delaying flowering. 

The longer the vernalization conditions, the less FLC is expressed and the 

faster the flowering time. In vrn2 mutants the FLC mRNA will still decrease 

during cold treatment but when plants are returned to normal temperatures 

the FLC mRNA levels increase again. VRN2 is not the cause of the reduction 

in FLC mRNA but is responsible for its stable repression and cellular ‘memory’ 

of vernalization (Gendall et al., 2001). VRN2 is constitutively expressed in the 

presence or absence of vernalization conditions but the VRN2 protein 

accumulates to high levels only during the cold (Wood et al., 2006). This 

suggests that VRN2 is regulated post transcriptionally at the protein level and 

not at the gene expression level. 
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1.4.3 Polycomb Group Proteins and The Polycomb Repressive 

Complex2 

 

Polycomb group (PcG) proteins are essential epigenetic regulators of gene 

expression, which function as multiprotein complexes to remodel chromatin 

and silence their target genes via histone methylation (Simon and Kingston, 

2009, Schwartz and Pirrotta, 2013, Derkacheva and Hennig, 2014).  PcG 

proteins were initially identified in Drosophila, however PcG proteins are part 

of a general regulatory mechanism in controlling gene expression of key 

developmental genes in all eukaryotes (Butenko and Ohad, 2011). The highly 

conserved PcG proteins were discovered in plants in 1997 (Hennig and 

Derkacheva, 2009). Gene expression controlling developmental pathways 

throughout the life cycle of an organism is controlled by PcG proteins due to 

their effect on transcription of their target genes. PcG proteins form large 

protein complexes that work in plants to maintain cell identity, fate and normal 

development. PcG proteins form multi-subunit complexes and examples of 

these include polycomb repressive complex 1 (PRC1), polycomb repressive 

complex 2 (PRC2) and polycomb-like PRC2 (pcl-PRC2).  

 

In plants, PRC2 activity takes a role in numerous developmental processes 

such as the control of cell identity, flowering, seed development, shoot 

meristem development, root patterning and the establishment of 

environmental memory (Margueron and Reinberg, 2011, Butenko and Ohad, 

2011, Mozgova et al., 2015). The PRC2 complex is highly conserved among 

plants and animals. The Drosophila PRC2 complex contains four subunits: 
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ENHANCER OF ZESTE (E(z)), EXTRA SEX COMB (ESC), SUPPRESSOR 

OF ZESTE (Su(z)12) and the p55 protein (Margueron and Reinberg, 2011, 

Schwartz and Pirrotta, 2013). Plants have one homologue of ESC and one 

homologue of p55 which are FERTILIZATION INDEPENDENT ENDOSPERM 

(FIE) and MULTICOPY SUPPRESSOR OF IRA1 (MSI1) respectively. Plants 

encode multiple copies of the other PRC2 subunits allowing formation of 

functionally distinct complexes. The Arabidopsis genome encodes for three 

E(z) homologues: CURLY LEAF (CLF), SWINGER (SWN) and MEDEA 

(MEA) (Butenko and Ohad, 2011). VRN2 is a homologue of (SU(z)12) 

(accession no. AF149047) (Birve et al., 2001, Song et al., 2012). Two other 

homologs of SU[Z]12 in Arabidopsis are EMBRYONIC FLOWER2 (EMF2) 

(accession no. AB023044) (Yoshida et al., 2001) and FERTILIZATION 

INDEPENDENT SEED2 (FIS2) (accession no. AF096096) (Luo et al., 1999).  

 

VRN2, EMF2 AND FIS2 (Su(z)12-like proteins) associate with the other core 

protein components to make different PRC2 complexes (FIGURE 1.8). FIS2-

PRC2 inhibits seed development in the absence of fertilization (Yadegari et 

al., 2000). The EMF2-PRC2 complex suppresses flowering by repressing 

FLOWERING LOCUS T (FT) and AGAMOUS-LIKE 19 (AGL19) (Yoshida et 

al., 2001, Hennig and Derkacheva, 2009). The VRN2 protein is part of the 

VERNALIZATION (VRN) complex that is a PRC2-like complex controlling the 

pathway that allows flowering after vernalization by the silencing of FLC 

(Gendall et al., 2001, Hennig and Derkacheva, 2009). The EMF and VRN2 

complexes both control flowering but the pathways they use are distinct (Jiang 

et al., 2008). As vernalization requires cells that are dividing by mitosis 
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(Wellensiek, 1962), this could be the mode of establishing stability of FLC 

repression during DNA replication because there is stability in the PcG 

epigenetic silencing of FLC (Hennig and Derkacheva, 2009). In the VRN2-

PRC2 complex the VRN2 protein associates with CLF/SWN, FIE and MSI1 

proteins (Wood et al., 2006, De Lucia et al., 2008). The complex functions by 

performing the methylation of lysine 27 of histone H3 (H3K27) on FLC 

chromatin (Margueron and Reinberg, 2011, Mozgova et al., 2015). This 

association of VRN2-PRC2 with the FLC locus is independent of exposure to 

cold, however during vernalization the amount of VRN2 that associates with 

FLC increases because VRN2 levels increases and the repressive 

H3K27me3 epigenetic mark spreads along the whole locus (Gendall et al., 

2001, De Lucia et al., 2008, Hennig and Derkacheva, 2009). A plant 

homeodomain (PHD) protein VERNALIZATION INSENSITIVE 3 (VIN3) is 

known to associate with VRN2 as part of the PRC2 complex to form a PHD-

PRC2 complex and VIN3 is required in the repression of FLC during 

vernalization (Sung and Amasino, 2004a). 
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FIGURE 1.8 Polycomb Repressive Complex 2 (PRC2) variations 
 
The Drosophila PRC2 complex contains four subunits: ENHANCER OF 
ZESTE (E(z)), EXTRA SEX COMB (ESC), SUPPRESSOR OF ZESTE 
(Su(z)12) and the p55 protein (Margueron and Reinberg, 2011, Schwartz and 
Pirrotta, 2013). In Arabidopsis VRN2, EMF2 AND FIS2 (Su(z)12-like proteins) 
associate with the other core protein components to make different PRC2 
complexes. In the VRN2-PRC2 complex the VRN2 protein associates with 
SWINGER (SWN), FERTILIZATION INDEPENDENT ENDOSPERM (FIE) 
and MULTICOPY SUPPRESSOR OF IRA1 (MSI1) proteins (Wood et al., 
2006, De Lucia et al., 2008). Blue double-ended arrows indicate either of the 
three proteins can be substituted into the complex (there are 4 proteins in the 
PRC2 complex in total). 
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1.4.4 The evolution of VRN2 

 

Vernalization and flowering are characterized developmental pathways that 

may help characterize how genes and gene networks function throughout 

evolution to modern day plants. Su(z)12 in animals is typically only single 

copy but in plants there are three Su(z)12-like genes. VRN2 plays a major 

role in epigenetic regulation of gene expression along with its homologs EMF2 

and FIS2 by silencing MADS-box genes. VRN2, EMF2 and FIS2 genes have 

co-evolved to be part of the PCG multi-protein complexes but they target 

different gene networks; vernalization-mediated flowering, vegetative 

development and seed development, respectively. All three of these genes 

share a VEF domain that is conserved in plants and animals (Chen et al., 

2009). They also all share a C2H2 zinc finger domain. VRN2 is likely to have 

evolved from an EMF2-like ancestor and ancient land plant. When aligned, 

45% of VRN2 and EMF2 amino acids are similar and the N-terminal domain 

sequence aligns, with the exception of the N-terminal cap (Chen et al., 2009) 

(FIGURE 1.9). The N-terminal cap of EMF2 is the sequence of amino acids 

from the first to the second Met (amino acid 21). It is possible that these 

genes have come about as a result of a historic gene duplication event and 

subsequent divergence has led to them becoming co-opted to different 

pathways and with different roles. Hypothetically, a gene duplication of an 

ancient EMF2-like protein led to the removal of the N-terminal cap, the 

removal of the E5-10 domain and the addition of the C-terminal repeat, 

resulting in VRN2.  
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FIGURE 1.9 Alignment of Arabidopsis thaliana EMF2 and VRN2 protein 
sequences 
Sequence alignment of EMF2 and VRN2 proteins from A. thaliana. Numbers 
refer to amino acid number. The VRN2 MC N-terminus aligns with an internal 
MC in the EMF2 proteins highlighted in yellow. Blue highlights N-terminal cap 
in EMF2 that is not present in VRN2. Green highlights a putative nuclear 
localization signal. Red highlights the zinc finger motif. 
Black and grey shading denotes identical and similar amino acids 
respectively. Sequences were obtained from NCBI. Alignments were 
conducted at Clustal Omega using the default settings. 
https://www.ebi.ac.uk/Tools/msa/clustalo/  
Alignments were then converted to this output using Boxshade 3.21, with 
fractional sequences that must agree for shading set at 1.  
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1.4.5 VRN2 in monocots and gymnosperms 
 

Grasses developed 70 million years ago as part of the tropical forest 

understory but in modern times they have now diversified and adapted to cool 

climates (Kellogg, 2001) and cereals are now an economically important food 

crop (Woods et al., 2016). The VRN2 gene in cereals is unrelated to the 

VRN2 gene in Arabidopsis but it has the same name as they are both 

involved in vernalization. Wheat VRN2 is involved in vernalization requirement 

and Arabidopsis VRN2 in the vernalization response. Homologs of Su(z)12 

have however been identified in grasses including wheat (Triticum eastivum) 

and barley (Hordeum vulgare) (Chen et al., 2009). These core Pooideae have 

been characterized as vernalization responsive (Heide, 1994) and it is 

hypothesized that the vernalization response evolved when the grasses 

started to grow in more temperate climates (Fjellheim et al., 2014). VRN2 and 

EMF2 homologs have been observed in the ancient angiosperm  -the poplar 

tree (Populus trichocarpa) but the most ancient homologs have been found in 

the gymnosperms spruce Picea engelmannii and pine Pinus taeda, the 

lycophyte spike moss Selaginella moellendorffii and the moss Physcomitrella 

patens (Chen et al., 2009).  
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1.5 AIMS 

This study aims to provide information on how plants detect the environment 

in order to make developmental changes. Here, the molecular basis behind 

the increase in VRN2 during vernalization will be investigated. The hypothesis 

that VRN2 is a substrate of the N-end rule pathway will be tested and its 

stability will be monitored in various ‘N-end’ mutant backgrounds. VRN2 

stability will also be monitored during vernalization treatments to test the 

hypothesis that VRN2 becomes stable in cold conditions. The localization of 

VRN2 will also be observed to confirm that VRN2 is found in the nucleus. 

Phenotypic analysis will be performed to see if VRN2 regulation of flowering 

can be linked to the N-end rule pathway and to determine if there is a possible 

link to stress response pathways. If VRN2 is found to be a substrate of the N-

end rule, VRN2 stabilization will be investigated to implicate VIN3 association 

as a cause for VRN2 stability. Further, in this study I wanted to investigate the 

possible functional similarity of the monocot HvEMF2c and the dicot AtVRN2 

to gain insight into the developmental evolution of VRN2 in flowering plants. 

Finally, I will investigate the hypothesis that VRN2 evolved from EMF2 via 

gene duplication and a truncation event that removed the N-terminal cap.  
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2.1 Plant cultivation growth and harvesting 

Recipes for normal and selective growth media are found in Appendix I. 

 

2.1.1 Seed sterilization 

Sterilization solution (10 %) was prepared using 45 ml Sterile distilled water 

(SDW) and 5 ml of Parazone™ bleach. The required amount of seeds were 

placed into a 1.5 ml Eppendorf. Seeds were imbibed in 500 μL of the bleach 

solution and left for 5 min on a tilting tray. The bleach solution was then 

removed and the seeds were washed twice with 1 ml SDW. The SDW was 

removed with 50 μL remaining to cover the seeds. Seeds were plated onto ½ 

Murashige and Skoog (MS) agar (Murashige and Skoog, 1962) using a 20 μL 

micropipette, inside a sterile laminar flow hood, pre-cleaned with 70 % 

ethanol. The ½ MS was supplemented with selective agents where required 

(Appendix I). Plates were sealed with Microporous tape. 

 

2.1.2 Plant growth conditions 

The sterile plates of Arabidopsis thaliana seeds were stratified at 5 °C for 2-3 

days and then moved to the 22 °C Thermofrost Cryo constant temperature 

growth room 16h L: 8h D for 7 days. Square plates were stored vertically in 

the growth room, so the roots grew on the surface of the media whereas 

round plates were grown horizontally. 7-day old seedlings were transferred to 

soil (4:2:1 of Levington M3 compost: vermiculite: perlite) and grown in the 

glasshouse in a controlled environment of 20-22 °C, 16 h day length and with 

automatic watering each day. Plants were bagged with plant sleeves when 

they started to flower to prevent cross contamination. 
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2.1.3 Collecting seeds 

Seeds were collected once siliques had turned brown. The stalk was cut at 

the base with scissors and the plant material stored in labelled glassine bags 

at room temperature (RT).  

 

2.1.4 Crossing plants 

Two plants were chosen and all but 3 stems were removed from one of the 

plants (acting as the female plant) with small scissors. Then all siliques and all 

open buds were removed. Next, closed buds were removed leaving only three 

closed buds at the end of the stem. The three buds from the end of the stem 

were dissected: The sepals, petals and stamens were removed so only the 

style was remaining. Using forceps, a flower was removed from the other 

plant (acting as the male) plant and the stamens rubbed onto the female plant 

so the pollen could be seen to stick to the stigma under a binocular 

microscope. The crosses were labelled with masking tape and left to grow 

until the seeds were ready to harvest. Seeds from crosses were collected 

using scissors into a 1.5 ml Eppendorf.  
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2.1.5 Plant lines used 

Arabidopsis genetic resources were obtained from the National Arabidopsis 

Resource Centre. 

 
Table 1. Plant lines used to provide different mutant or allelic 
backgrounds for the study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene/mutant background 
Gene 
acronym gene ID SALK/SAIL code Source 

VERNALIZATION 2 vrn2-5 AT4G16845.1 SALK_201153 (Gibbs et al., 2018) 

PROTEOLYSIS 6 prt6-1 AT5G02310.1 SAIL_1278_H11 (Garzon et al., 2007) 

FRIGIDA FRI AT4G00650 n/a (not mutant) (Nappzinn, 1957) 

Columbia 0 FRIGIDA San Felieu2 Col-0 FRI-Sf2 AT4G00650 n/a (not mutant) (Johanson et al., 2000) 

ARGINYLTRANSFERASE 1 ate1 AT5G05700.1 SALK_069686 (Holman et al., 2009) 

ARGINYLTRANSFERASE 2 ate2 AT3G11240 SALK_040788 (Holman et al., 2009) 



Chapter	2	Materials	and	Methods	
	

	 46	

2.2 Plant manipulations 

 

2.2.1 Abscisic acid (ABA) treatment 

The germination test was performed by sterilizing freshly harvested seeds and 

plating them onto agar plates supplemented with ABA.  ABA was dissolved in 

methanol (MeOH) and then added to the ½ MS mixture to get concentrations 

of 0, 1, 2 and 5 µM ABA agar plates. Plated seeds were then stratified for 2 

days and placed at 22 °C as described in section 2.1. Germination and 

establishment were scored after 6 days. Germination was scored as when the 

endosperm had ruptured, and the radicle had emerged. Establishment was 

scored as when the cotyledons had turned green. 

 

2.2.2.1 Vernalization conditions 

Seeds were sterilized, plated and grown on ½ MS plates for 7 days as 

described in section 2.1. For treatment under vernalization conditions 

seedlings were then transferred from the growth room to an incubator at 5 °C 

and 8h days for the desired number of weeks. They were then either 

transferred to soil in the glasshouse at 22 °C or seedling samples were frozen 

in liquid nitrogen and stored at -80 °C for RNA and protein extractions. 

 

2.2.2.2 Flowering time assay  

Seeds were sterilized and plated onto ½ MS plates. They were stratified at 5 

C for 2 days and then grown at 22 C for 7 days. Seeds were then vernalized 

for 0, 1, 2, 3, 4 weeks at 5 °C and 8h days. After the required amount of 

vernalization plants were put onto soil in a staggered formation and placed at 
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22 C with 16 h days. The number of days to flowering was scored from the 

day of plating. In addition, the number of leaves at flowering was scored. 

Flowering was said to have occurred once the central bud was visible and the 

bolting shoot was 0.5 cm in length.  For leaf counting, the first two leaves (the 

cotyledons) were removed and all leaves were counted thereafter. Leaves 

from the rosette were removed one by one with forceps and care was taken 

not to include leaves originating from the main central stem or leaves from 

lateral shoots. 

 

2.2.3 Heat stress treatments 

Four thermotolerance assays were performed as in the recent paper by 

Vicente et al. (2017). For the basal thermotolerance (BT) assay, 5-day-old 

seedlings were treated for 23 min and 26 min at 44 °C and then moved back 

to 22 °C for 13 d. For short-term acquired thermotolerance (SAT) assay, 5-

day-old seedlings were acclimated for 1 h at 37 °C, recovered for 2 h at 22 

°C, treated for 170 min at 44 °C and returned to 22 °C for 8 d. For the long-

term acquired thermotolerance (LAT) assay, 5-day-old seedlings were placed 

at at 37 °C for 1 h, transferred to 22 °C for 2 d to recover. They were then 

treated for 60 min at 44 °C and then returned to 22 °C for 8 d. Seedling 

survival was scored after 8 days where the seedlings were established and 

green. 

 

2.2.4 Salt stress treatment 

Seeds were cleaned and plated on ½ MS, stratified and grown at 16 h light at 

22 °C. 7-day old seedlings were transferred to soil and grown at under the 
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same conditions for another 10 days. 600 ml of 200 mM Sodium chloride 

solution was used to water the seedlings twice a week. Any excess water was 

tipped off after soaking for 30 min. Control plants were irrigated with tap 

water. Seedling senescence and survival was observed. 

 

2.2.5 Plant transformation 

Agrobacterium tumefaciens were transformed by electroporation with the 

desired constructs (see section 2.7.9.2 and 2.7.10.2). A. tumefaciens 

containing constructs to be transformed to plants was used to inoculate 200 

ml LBB plus the appropriate selective agents and grown in a 1 litre conical 

flask with a foam bung and foil on the top. The ratio of bacteria to flask size 

was 1:5 to allow aeration of the culture. The flask was incubated at 28 °C and 

200 rpm overnight. The bacteria were poured into 500 ml plastic bottles and 

centrifuged at 4500 rpm for 10 min. The supernatant was discarded. The 

bacterial pellet was then re-suspended in 400 ml of 5 % sucrose solution and 

poured into 500ml glass bottles for transport to the glasshouse.  

 

Transgenic Arabidopsis seeds were sprinkled onto soil in 9 cm pots and 

grown at 22 °C in the glasshouse. Once established, plants were thinned out 

by removing them with forceps, until there were just four remaining in a pot. 

These plants were grown until they had flowers and then the stems were cut 

back to the base to promote more shoots. The plants were then allowed to 

grow until they had buds. Any flowers or open buds were removed the night 

before and the morning of dipping. Only closed buds were left. 80 μL of Siluett 

L77 (Wetting agent) was added to each re-suspension of the 400 ml of the 
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bacteria in sucrose (to 0.02 %). Plants were then dipped into the solution for 

5-10 seconds, making sure all the inflorescences were coated. The plants in 

their pots were then sealed in an autoclave bag and left on their side in low 

light in the glasshouse for ~24 h. The next day the plants were taken out of 

the bags and grown in normal glasshouse conditions until seeds were ready 

for harvest. Seeds were collected once mature so the transgenic plants could 

be selected. 

 

2.2.6 Plant selection 

The plant transformation of the desired vector inserts a hygromycin 

phosphotransferase (HTP) gene into plants, allowing for selection. 0.7 % MS 

agar was supplemented with appropriate selective agent (20 mg/ml 

Hygromycin), autoclaved and left to set. The desired numbers of seeds from 

sample lines for selection were added to 15 ml Falcon tubes. Then 0.6 % agar 

was made and autoclaved. Before the agar was set it was poured into the 

tubes and mixed with the seeds by inversion. The mixture was poured on top 

of the agar plates in a flow hood and left to set. Plates were then stratified at 5 

°C 3 days before placing in the 22 °C growth room. After 6 h at these 

conditions they were wrapped in a double layer of tin foil for 5 days to promote 

etiolation in order to differentiate transgenic seedlings more easily. The foil 

was removed and after a further 10 days the seedlings that had grown most 

were selected and planted into soil. Transgenic seedlings were green, healthy 

and etiolated. Seeds were collected from these and seedlings selected again 

on ½ MS supplemented with hygromycin. Lines showing 75 % seedling 

growth were grown on to the next generation. Of these, at least two 



Chapter	2	Materials	and	Methods	
	

	 50	

independent lines that had 100 % growth were homozygous and thus were 

used for further experiments. 

 

2.2.7 Estradiol induction of transgenes 

A solution of liquid MS was made, and this was autoclaved. 60 μL of a 10mM 

solution of β-estradiol was added to 100 ml ½ MS. 60 μL DMSO was added to 

another 100ml ½ MS as a control solution. 6 ml of the +/- estradiol solutions 

were added to wells of a 6 well plate. The seedlings were placed in the 

solutions and the plates were agitated gently on a rotary plate at RT. Seedling 

samples were taken and frozen after 24, 48 and 72 h of being soaked in the 

+/- estradiol solutions. These seedlings were then used for protein and RNA 

extractions. 
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2.3 Bacterial strains 

 

Escherichia coli DH5α™ cells (Thermofisher Scientific) 

F- φ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk - , mk +) phoA 

supE44 thi-1 gyrA96 relA1 λ- 

 

Escherichia coli ABLE® K cells (Agilent) 

E. coli C lac (LacZω–) [Kanr McrA– McrCB– McrF– Mrr– HsdR (rK– mK–)] 

[F´proAB lacIqZ∆M15 Tn10 (Tetr)].  

Genes listed signify mutant alleles. Genes on the F´ episome, however, are 

wild-type. These are kanamycin and tetracycline resistant cells.  

 

DB3.1 cells 

gyrA462 endA1 ∆(sr1-recA) mcrB mrr hsdS20 glnV44 (=supE44) ara14 galK2 

lacY1 proA2 rpsL20 xyl5 leuB6 mtl1 

These are streptomycin resistant and ccdB resistant. 

 

Agrobacterium tumefaciens GV3101 (GV3101pMP90) 

C58 (RIF R) Ti pMP90 (pTiC58DT-DNA) (gentR/strepR) Nopaline 
  
Disarmed Agrobacterium tumefaciens strain produced in a C58 background; it 

carries a rifampicin resistance gene on chromosome 1 and also harbours the 

disarmed pMP90 Ti virulence plasmid (pTiC5ΔT-DNA) that possesses the 

genes for T-DNA transfer but has no functional T-DNA region of its own. This 

Ti plasmid carries the gentamycin resistance genes (Koncz and Schell, 1986).		
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2.4 Bacterial growth conditions 

Recipes for normal and selective growth media are found in Appendix I. 

 

2.4.1 Glycerols of bacteria 

A 60 v/v glycerol solution was made by adding 60 ml glycerol to 40 ml SDW 

before autoclaving.  

300 μL glycerol solution and 900μL bacterial culture were added to a 1.5 ml 

Eppendorf to make the overall concentration of glycerol 15 %. The bacterial 

glycerol was then frozen immediately in liquid nitrogen and stored at -80 °C. 

 

2.4.2 E.coli 

One colony or sample from a bacteria glycerol stock (2.4.1) was streaked onto 

a plate or 100 ml of culture was spread onto a Lysogeny broth (LB) agar plate. 

Agar plates were inverted and left at 37 °C overnight for ~16 h. For liquid 

cultures, one colony or glycerol was picked using a cocktail stick and placed 

into 100ml LBB. E.coli liquid cultures were grown overnight for ~16 h at 37 °C 

on a rotary shaker at ~200 rpm.  All inoculations were made under aseptic 

conditions by a Bunsen burner or in a laminar flow hood. 

 

2.4.3 A. tumefaciens 

Liquid cultures were grown for ~48 h at 28°C on a rotary shaker at ~200 rpm. 

10ml of culture was grown in universal bottles and 100ml of culture was grown 

in sterile 1 litre conical flasks with a sponge bung wrapped in foil. Agar plates 

were inverted and left at 28°C for ~48 h. Inoculations of liquid culture and agar 
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plates were carried out under aseptic conditions. Liquid and ager media had 

rifampicin and gentamycin selection. 
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2.5 Cloning vectors 

 

pDONR™221 (Invitrogen) 

A Gateway® vector Including: Two recombination sites attP1 and attP2, for 

recombination cloning of the gene of interest from an attB PCR product. A 

kanamycin resistance marker for selection. M13 forward and reverse priming 

sites for sequencing of the insert. ccdB gene for negative selection. pUC 

origin for replication and maintenance of the plasmid in E.coli. 

 

pDONR™zeo zeomycin M13 invitrogen 

A Gateway® vector Including: Two recombination sites attP1 and attP2, for 

recombination cloning of the gene of interest from an attB PCR product. A 

zeomycin resistance marker for selection. M13 forward and reverse priming 

sites for sequencing of the insert. ccdB gene for negative selection. pUC 

origin for replication and maintenance of the plasmid in E.coli. 

 

Per8GW /pB2GW7 

Used for transformation of estradiol inducible genes into plants (Coego et al., 

2014). A Gateway® compatible binary vector (Curtis and Grossniklaus, 2003). 

Contains attR1 and attR2 sites for recombination cloning and XVE estrogen 

receptor that mediates inducible gene expression (Zuo et al., 2000). Includes 

a hygromycin resistance marker. Contains the ccdB gene for negative 

selection. Has a LexA operator fused to a minimal promotor of Cauliflower 

Mosaic Virus 35S gene. Has the HTP gene, allowing for plant selection on 

hygromycin. 
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pTNT™ (Promega) 

Used with the in vitro rabbit reticulocyte lysate expression system. Includes a 

kanamycin resistance marker. Contains the SP6 and T7 promotors adjacent 

to a multiple cloning site. 

 

pE2c (Invitrogen) 

A Gateway® compatible vector for C-terminal 3x HA tag fusion with the gene 

of interest. Contains attR1 and attR2 sites for recombination cloning and 

includes a kanamycin resistance marker. 
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2.6 Isolation of nucleic acids 

Recipes for all solutions and buffers are in appendix II. 

 

2.6.1 Preparation of plasmid DNA from bacteria 

A QIAprep® Spin Miniprep Kit (Qiagen) was used to extract plasmid DNA 

from bacteria. The kits lyse the bacterial cells to extract the DNA plasmids. 

They then used a silica column to adsorb DNA in high salt conditions, the 

column is washed with ethanol and then the DNA is eluted with a base buffer. 

2 ml of bacterial overnight culture was pelleted by centrifugation at 17900 x G 

for 3 min at room temperature (RT). Sometimes 10 ml of culture was used 

and centrifuged for 10 min if a high yield of plasmid was required. The pellet 

was resuspended in 250 μL buffer P1 (50 mM Tris-HCl pH 8.0,10 mM EDTA, 

100 μg/ml RNaseA) and transferred to a 1.5 ml Eppendorf. 250 μL buffer P2 

(1% sodium dodecyl sulfate (SDS)(w/v) and 200mM NaOH) was added and 

mixed by inversion. The 350 μL buffer N3 (Guanidinium hydrochloride 25-

50%, Acetic acid 10-25%, pH 4.3) was added and mixed by inversion. The 

mix was centrifuged at 17900 x G for 10 min. 800 μL of the supernatant was 

applied to the QIAprep 2.0 spin column, centrifuged for 1 min at 17900 x G 

and the flow-through discarded. The column was washed with 750 μL buffer 

PE, centrifuged at 17900 x G for 1 min and the flow-through discarded. The 

column was centrifuged for a further minute to remove residual wash buffer. 

The column was placed into a clean 1.5 ml Eppendorf and the DNA was 

eluted in 50 μL of Buffer EB (10 mM Tris-Cl, pH 8.5). DNA was stored at -20 

°C.  
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2.6.2 Preparation of genomic DNA from plants 

A leaf samples from each plant was collected with forceps and placed into a 

1.5 ml Eppendorf. These could be frozen and the DNA extracted at a later 

date or used fresh. A GenElute™ Plant Genomic DNA miniprep kit (Sigma) 

was used to extract the DNA. 350 μL of lysis solution part A was added to the 

sample and the sample was ground using a sterile mini-pestle. 50 μL was 

added and the sample was vortexed. Samples were then incubated at 65 °C 

in a heat block for 10 min, inverting occasionally. 130 μL of precipitation 

solution was added, inverted and placed on ice for 5 min. Samples were 

centrifuged at 16000 x G for 5 min to pellet the cellular debris. The 

supernatant (approx. 530μL) was pipetted onto a GenElute™ filtration column 

at centrifuged at max speed for 1 min. The filtration column was discarded 

and 700 μL binding solution added to the flow through liquid and mixed by 

inversion. GenElute™ Miniprep Binding Columns were prepared by washing 

with 500 μL of column preparation solution and centrifuged at 12000 x G for 1 

min. 700 μL of the sample was added to the binding column and centrifuged 

at max speed for 1 min. The flow-through was discarded and the rest of the 

sample added to the binding column, centrifuged at max speed for 1 min and 

the flow-through discarded. The column was put into a fresh 2 ml collection 

tube and washed twice with 500 μL wash solution (containing ethanol). It was 

centrifuged first for 1 min at max speed and then 3 minutes to dry the column. 

The binding column was then placed into another fresh 2 ml collection tube. 

100 μL of pre-warmed (65 °C) elution solution (Tris) was placed on the 

column, left to stand for 1 min and centrifuged at max speed for 1 min to elute 

the DNA. Eluate was stored at -20 °C. 
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2.6.3 Preparation of total RNA from plants 

RNA was extracted from material that had been frozen in liquid nitrogen and 

stored at -80 °C. The RNA was extracted using the RNeasy® plant mini kit 

(Qiagen). For each sample, 4.5 μL β-Mercaptoethanol was added to 450 μL of 

RLT buffer (containing a high concentration of guanidine isothiocycanate, 

which supports the binding of RNA to the silica membrane). The sample was 

ground in the buffer mix using a micro-pestle, vortexed and kept on ice. The 

sample was placed on a lilac QIAshredder™ spin column and centrifuged at 

17900 x G for 2 min. The supernatant was transferred to a clean tube, 0.5 

volume of ethanol was added and mixed by pipetting. The sample was 

transferred to a pink column, centrifuged at 10 000 rpm for 15 s and the flow 

through discarded.  The column was washed with 700 μL RW1 buffer by 

centrifuging 10 000 rpm for 30 s. RW1 contains guanidine salt and ethanol 

and helps remove large molecules such as protein, carbohydrate and lipid 

from the membrane during the wash. The column was placed into a fresh 2ml 

tube. 500 μL RPE buffer was added, centrifuged as before and the flow 

through discarded. 500 μL RPE buffer was added again but this time 

centrifuged at 10 000 for 2 min and the flow through discarded. RPE removes 

salts from earlier washes in the protocol. The column was spun for a further 

minute to remove residual ethanol from the membrane. The column was 

placed into a clean 1.5ml Eppendorf and the RNA was eluted in 30 μL RNase-

free water. This was centrifuged for 1 min at 10 000 rpm, transferred to a 

microcentrifuge tube and frozen at -20 °C. 

 

 



Chapter	2	Materials	and	Methods	
	

	 59	

2.7 Nucleic acid manipulations 

 

2.7.1 Estimation of nucleic acid concentration 

DNA and RNA concentrations were determined using a nanodrop 

spectrophotometer (ND-1000; Labtech International). It measures absorbance 

rations at different wavelengths (260/280) and converts this into a nucleic acid 

concentration. 

 

2.7.2 Digestion of DNA with restriction enzymes 

Typically, a 20 μL reaction was used for each sample when checking the 

correct DNA had been inserted into a vector. In each reaction there was 10 μL 

plasmid DNA, 2 μL NE buffer 2.1, 2μL Bovine serum albumin (BSA), 0.5 μL 

BsrGI enzyme and 5.5 μL SDW. Reactions were incubated at 37 °C for 1.5 h. 

Plasmid DNA was incubated for a further 1 h after the addition of 1 μL calf 

intestinal phosphatase to dephosphorylate the vector in order to prevent self-

ligation. 2 μL of DNA loading buffer was added to the samples and then they 

were run on a 1 % gel by electrophoresis. MluI enzyme was used instead of 

BsrGI to digest pDONR.  

 

When digesting DNA fragments and vectors before ligation a 100 μL reaction 

was used. 40 μL of PCR product/vector were mixed with 10 μL buffer, 45 μL 

SDW and 2.5 μL of enzyme 1 and 2.5 μL enzyme 2. Enzymes 1 and 2 were 

either MluI and XbaI or EcoRI and KpnI. Different enzymes were used for 

each end of the DNA to prevent fragments inserting in an incorrect orientation. 

Restriction enzymes and the appropriate buffers were obtained from New 
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England Biolabs. Expected fragment lengths were found using Serial Cloner 

software.  

 

2.7.3 Agarose gel electrophoresis of DNA and RNA 

For RNA and DNA, 1 % (w/v) agarose gels were prepared in 1 X Tris-

borate/EDTA (TBE) buffer. For FRIGIDA (FRI) genotyping a 3 % gel was used 

so the small difference in size of fragments could be seen. 1 μl ethidium 

bromide (1.5 μm/ml) was added per 50 ml of the molten gel shortly before 

pouring in order to visualise the nucleotides. 5 μl of 1kb plus DNA ladder 

(Invitrogen) (20 μL Ladder, 20 μL of 1 X DNA loading buffer, 160 μL SDW) 

was used to estimate the DNA/RNA size and concentration. 10-15 μl each 

sample was loaded onto the gel in each well. Samples containing Red Taq 

were suitable to load directly but other samples needed 1 X DNA loading 

buffer. All gels were compared to a SDW control PCR reaction with no DNA 

template. A Bio-Rad gel electrophoresis tank and Bio-Rad Power/pac 300 

were used and gels were run at constant voltage of 100 V for 1 hour.  For FRI 

genotyping, gels were run at 80 V for 3 h. DNA was visualised on a 

ChemiDoc™ MP Imaging System (Bio-RAD) at 700 nm and images were 

taken using ImageLab software. 

 

2.7.4 cDNA synthesis 

First strand cDNA synthesis was performed using Superscript II Reverse 

Transcriptase (RT) (Invitrogen). A 20 μL reaction volume was used. 2000 ng 

of RNA was added to 1 μL of Oligo DT primers, 1μL dNTPs, and made up to 

12 μL volume with SDW. This was placed in a heat block at 65 °C for 5 min 
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then put onto ice. Then 4 μL 5 x first strand buffer, 2 μL 0.1M DTT and 1 μL 

RNase OUT were added and mixed by pipetting. This was placed at 42 °C for 

2 min. 1 μL Superscript II RT enzyme was added and the mixture returned to 

42 °C for 50 min. The mixture was finally placed at 70 °C for 15 min. The 

cDNA was amplified using PCR with gene specific primers and checked by 

gel electrophoresis. 

 

2.7.5 PCR product purification -PEG 

The attB sequences were incorporated onto genes to be cloned using 

primers. PCR products were purified to remove primer dimers and products < 

300 base pairs (bp). First, the PCR reaction was diluted 4-fold with TE (10 

mM Tris-HCl (pH 7.5-8), 1 mM EDTA). Then half volume of 30% PEG 

8000/30mM MgCl2 was added and the mixture vortexed. The mixture was 

centrifuged at 17 900 x G for 15 min and the supernatant removed. The pellet 

was then resuspended in 15 μL of TE. 

 

2.7.6 Gene cloning 

2.7.6.1 Extraction of digested DNA from agarose gels 

A 1 % gel was made with double wells to load samples into. Sample plasmid 

and insert DNA were pre-digested and the amount loaded was approximately 

500 μL. The gel was run at 100 V for 1 hour as in section 2.7.3. Bands were 

viewed using a UV light box and cut out using a scalpel. The DNA gel 

samples were weighed in 1.5ml Eppendorfs. The DNA was purified by 

adsorption to a silica column using a Qiagen gel extraction kit according to 

manufacturer’s instructions and eluted in 30 μL Elution Buffer. 3 μL of the 
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sample was run on another gel by electrophoresis to check the extraction was 

successful prior to being used in ligation reactions. 

 

2.7.6.2 Ligation into vector DNA 

This method was used to clone genes into the pTNT vector. Ligation reactions 

were carried out using T4 DNA-Ligase (New England Biolabs). 300ng of gene 

insert were mixed with 100ng of vector (a 1:3 ratio). (If this ratio was 

unsuccessful other ratios were used.) 2 μL T4 DNA ligase buffer, 1 μL T4 

DNA ligase and 5 μL SDW were then added to make the reaction volume 20 

μL. The reactions were kept at 16 °C overnight for ~16h and then this was 

used for transformation of chemically competent E.coli. 

 

2.7.6.3 Gateway recombination cloning 

2.7.6.3.1 BP reaction 

This method was used to clone genes into the pDONR vector. Cloning of the 

gene of interest into its vector was done using Gateway® BP Clonase™ II 

enzyme mix kit (Invitrogen). A 150 ng concentration of the attB-PCR product 

was added to 150 ng of the donor vector (pDONR221/pDONRzeo) and made 

up to 8 μL with TE buffer (pH8). 2 μL of the BP Clonase™ II enzyme mix was 

added to each sample. The mixture was vortexed and incubated at RT for 1 h. 

To terminate the reaction 1 μL Proteinase K was added and samples were 

placed at 37 °C for 10 min. The samples were stored at -20 °C until needed. 
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2.7.6.3.2 LR reaction 

Thermofisher Scientific Gateway® LR Clonase® II enzyme mix was used to 

transfer the gene from the entry vector to the destination vector. Typically, 150 

ng of all vectors (destination vector per8GW and the pDONR221/zeo entry 

vector) was used. This was made up to 8 μL volume with TE buffer pH8. 2 μL 

LR Clonase™ II enzyme was added to each reaction and the mix was 

incubated at RT for 1 h. 1 μL Proteinase K was added to each sample and 

incubated at 37 °C for 10 min to terminate the reaction. Samples were stored 

at -20°C until required for transformation into E.coli by heat shock. 

 

2.7.7 DNA sequencing 

Sequencing of DNA was carried out by the Functional Genomics Laboratory 

at the University of Birmingham. They use the dideoxy chain termination 

method of sequencing. 300ng of plasmid/PCR product was used for each 

sample as well as 1μL of 3.2 pmol of sequencing primer (see Appendix III for 

primers used). This was then made up to 10 μL with SDW and taken to the 

sequencing laboratory. Sequencing reagents were added to the samples by 

Roboseq 4204s and then placed in the Primus HT 96-well plate thermocycler 

(MWG Biotech) according to manufacturer’s instructions. Reactions were then 

purified, eluted in diformamide and sequenced in the ABI3700 sequencer 

(Applied Biosystems). 
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2.7.8 Polymerase chain reaction (PCR)  

2.7.8.1 Oligonucleotides 

The vrn2-5 and prt6-1 mutants were produced by the SALK institute using 

transfer DNA insertion mutagenesis (Baulcombe et al., 1986). Primers were 

designed for genotyping these mutants to the left and right border of the 

inserts and gene specific primers. Gene and plasmid sequences were used 

for cloning and sequencing. The Arabidopsis Information Resource (TAIR) 

was used to find coding DNA sequences for VRN2, PRT6, VIN3, FRI and 

EMF2. Primers were designed for genotyping, cloning and for sequencing 

using these sequences on the National Centre for Biotechnology Information 

(NCBI) website, reverse compliment website, OligoPerfect™ designer on the 

Thermofisher Scientific website, the Invitrogen perfect primer design tool 

online and using the Microsoft Word application. Eurofins supplied all primers. 

All primers and their uses can be found in Appendix III. 

 

2.7.8.2 PCR techniques 

PCR was used for amplifying gDNA when genotyping transgenic plants, 

amplifying plasmid DNA in cloning, adding restriction sites and recombination 

sites in cloning and in amplifying cDNA. The enzymes used were either 

Phusion® polymerase (New England Biolabs) or red Taq® PCR Ready Mix™ 

(Sigma-Aldrich), used according to manufacturers’ instructions. Reactions 

were set up according to manufacturer’s guidlelines using recommended 

buffers and volumes of reagents. PCR amplification was carried out in 0.2ml 

thermotubes. Primers were made up in SDW at an initial concentration of 

100μM and then diluted further, to 10 μM in a 100 μL volume. 
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A typical PCR mix for a reaction volume of 20μL would be:  

10 μL   red Taq Ready Mix,  

0.5 μL  Forward primer,  

0.5 μL  Reverse primer,  

1μL   DNA template,  

8μL SDW. 

 

A typical PCR mix for a reaction volume of 50μL would be: 

0.25 μL  Phusion polymerase (NEB),  

1 μL   Forward primer,  

1 μL   Reverse primer,  

1 μL   10mM dNTPs (Invitrogen),  

10   HF Buffer (NEB),  

1 μL   DNA,  

35.75 μL  SDW. 
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PCR cycling conditions 

If using Phusion® polymerase 98 °C is needed for denaturation, whereas with 

red Taq® PCR Ready Mix™ 95 °C is needed. Between 25-35 cycles were 

used. 

 

Typical PCR cycles using Phusion® would be as follows: 

gene VRN2   PRT6   FRI   
  temperature time temperature time temperature time 
initial 
denaturation 98 5min 98 30s 98 2min 
denaturation 98 30s 98 20s 98 30s 
annealing 60 30s 60 30s 60 30s 
extension 72 1min 72 2min 72 20s 
final extension 72 7min 72 5min 72 1min 
hold 10 Hold 10 Hold 10 Hold 

       
gene HvEMF2c   VIN3   ACTIN2   
  temperature time temperature time temperature time 
initial 
denaturation 98 30s 98 5min 98 5min 
denaturation 98 30s 98 30s 98 30s 
annealing 64 30s 60 30s 60 30s 
extension 72 40s 72 1min15s 72 40s 
final extension 72 7min 72 7min 72 7min 
hold 10 Hold 10 Hold 10 Hold 

 

Table 2. Typical PCR conditions used for amplifying genes of interest 

 

2.7.8.3 Single colony PCR 

A colony was suspended in 20 μL SDW using an inoculation loop. PCR was 

done with conditions described in 2.7.8.2. The PCR product was run on a 1 % 

gel by electrophoresis. The remainder of the re-suspended colony was used 

to inoculate an overnight culture and grown with appropriate antibiotics at 28 

°C 200 rpm.  

 



Chapter	2	Materials	and	Methods	
	

	 67	

2.7.9 Preparation of competent cells 

2.7.9.1 Preparation of chemically competent E.coli DH5α cells 

From the E.coli DH5α glycerol, bacteria were streaked onto an LB agar plate 

and grown at 37 °C for ~16 h. Then 10 ml of LB broth was inoculated with a 

single colony  and grown at 37 °C for ~16 h at 200 rpm. 2 ml of this culture 

was added to 200 ml of fresh LB broth in a 2 L flask and grown 2-3 h at 37 °C 

and 200 rpm until the optical density (OD600) was 0.5-0.6. At this point the 

cells were chilled on ice for 15 min in order for them to stop growing. The cells 

were then spun at 5000 X G at 4 °C for 10 min. The supernatant was 

discarded, the pellet was re-suspended in 80 ml of Tfb1 buffer and the cells 

kept on ice for 5 min. Cells were spun again at 5000 X G for 5 min at 4 °C, re-

suspended in 8ml of Tfb2 buffer and kept on ice for 15 min. 560 μL DMSO 

was added drop wise to the cells and mixed gently. The competent cells were 

moved to the 4 °C constant temperature room where the cells were snap 

frozen in 50 μL aliquots into pre-chilled Eppendorf tubes into liquid nitrogen. 

Cells were stored at -80 °C until needed.  

 

2.7.9.2 Preparation electrocompetent A. tumefaciens GV3101 cells 

From the glycerol stock, a 10 ml starter culture of A. tumefaciens was grown 

for ~48 h at 28 °C in LB broth with rifampicin and gentamycin selection. 5 ml 

of this culture was used to inoculate 200 ml of LB-rifampicin and gentamycin 

broth and grown at 28 °C, 200 rpm for 4-6 h until the OD600 reaches 0.5-0.8. 

celled were chilled on ice for 5 min. Then the cells were spun at 5000 X G for 

5 min at 4 °C and re-suspended in 10 % glycerol. The competent cells were 
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snap frozen in 100 μL aliquots in liquid nitrogen and stored at -80 °C until 

needed.  

 

2.7.10 Transformation of bacterial cells 

2.7.10.1 Transformation of E.coli by heat shock 

DH5α cells were thawed on ice for 10 min. (DB3.1 cells were used for 

transformation of empty vectors.) 5 μL of the vector (~100 ng) was added to 

the 50 μL aliquot of bacterial cells and this was left on ice for 30 min. The cells 

were shocked at 42 °C for 30 s then placed back onto ice for 2 min. 950 μL of 

LBB was added and the cells placed at 37 °C on a shaker ~200 rpm for 1 h. 

100 μL of the culture was plated on LBA with appropriate antibiotic selection. 

The remaining 900 μL was centrifuged at 17 900 x G for 2 minutes, the 

supernatant tipped off and the cells re-diluted with 100 μL LBB. The 

concentrated culture was also plated onto LBA using a sterile plastic spreader 

in a flow hood. Colonies that grew were selected and grown in LBB, with 

appropriate antibiotics overnight at 37 °C and 200 rpm. Plasmid DNA was 

then extracted from the overnight cultures. 

 

2.7.10.2 Transformation of A.tumefaciens by electroporation 

Aliquots (~100 μL) of Agrobacterium GV3101pMP90 competent cells were 

thawed on ice for 10 min. 1 μL of vector was added to one aliquot of cells and 

returned to ice. The mixture was transferred to a 0.2 cm electroporation 

cuvette and left on ice for 20 min. In the 5 °C constant temperature room the 

electroporator (BioRad Micropulser) settings were set for Agrobacteria to EC2 

(2.5 kV and 5-6 ms). The cuvette was tapped on the bench top to ensure cells 
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settle at the bottom and placed in the cradle of the electroporator. The pulse 

button was pressed for 1 s so electricity was passed through the sample. 

Following electroporation, 1 ml LBB was added to the cuvette and mixed by 

pipetting. The cells were then transferred to a clean 1.5 ml Eppendorf and 

recovered for 3-4 h at 28 °C 200 rpm. 100 μL of bacteria were then added to 

LBA plates using a sterile plastic spreader inside a flow hood. 300 μL 

Gentamycin, 1200 μL Rifampicin and 300 μL of antibiotics specific to the 

vector used were added to every 300 ml of LBA. Plates were inverted and left 

at 28 °C for 3 days. The same selection was used for overnights of these 

cultures.  
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2.8 Protein manipulations 

Recipes for solutions and buffers are found in appendix II. 

 

2.8.1 Protein extractions from plants 

150μL of protein extraction buffer was added to each sample in a 1.5ml 

Eppendorf. The sample was ground with a micropestle and kept on ice. It was 

centrifuged at 13200 rpm for 30 min at 4 °C. 80μL of the supernatant was 

mixed with 20μL protein loading dye and this was placed in a heat block at 

95°C for 15 min. These samples could then be stored at -20°C for use in 

western blots. In addition, 4 μL of supernatant was added to 16 μL SDW and 

these samples were used to measure protein concentration. 

 

2.8.2 Estimating protein concentration 

Proteins were quantified using a Bradford Protein Assay. Known 

concentrations (0, 1.25, 2.5, 5, 10 ng/μL) of Bovine serum albumin were 

diluted in the same way as the proteins (by adding 4μL to 16μL of SDW), as a 

control. 3 x 4μL of the diluted controls/samples were pipetted into a 96 well 

plate. A spectrostar nanostar spectrophotometer was used to quantify the 

protein at 595nm optical density. Microsoft Excel was then used to get an 

average reading for each sample and comparing to the BSA control standard 

curve. Using this we could calculate how much protein sample to load in the 

Western Blot.  
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2.8.3 Sodium dodecyl sulphate - Polyacrylamide gel electrophoresis 

(SDS-PAGE) 

Proteins were analysed by SDS-PAGE using BioRad self-assembly kits. Gels 

were made according to the table in appendix IV. Most of the time a 10 % gel 

was chosen. The gel was held between two pieced of glass and was 1mm 

thick. A 10 or 15 well comb was used. The running gel was pipetted between 

the glass, levelled with saturated butanol and allowed to set. Then the 

stacking gel was pipetted on top, the comb inserted and allowed to set. If the 

gel was not used immediately it was stored at 5 °C in damp tissue and 

wrapped in cling film. Proteins to be loaded were mixed with 5 x protein 

loading buffer with β-mercaptoethanol and heated to 95 °C for 5 min prior to 

loading. 5 μL of protein ladder and the calculated amount of sample were 

loaded into the gel. Gels were run in Tris-glycine SDS (TGS) buffer (100 ml of 

10 x TGS, 900 ml SDW) at 120 V for 2 h. 

 

2.8.4 Western Blotting 

2.8.4.1 Protein transfer 

The gel was removed from the glass and the stacking gel was cut off the top. 

The gel was then placed onto Whatman™ blotting paper that had been 

soaked in Tris-glycine (TG) transfer buffer. Polyvinylidene difluoride (PVDF) 

transfer membrane (Hybond-P, Sigma-Aldrich) was dipped into methanol then 

SDW and placed on top of the gel, making sure the gel was covered. The gel 

and membrane were then covered with another piece of soaked blotting 

paper, sandwiched between two electroblotting pads (BioRad) and held in a 

plastic case. This was put in an electroblotting tank (BioRad) with a block of 
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ice. The tank was filled with TG buffer (200 ml of 10 x TG, 400 ml methanol, 

1400 ml SDW) and the gel was transferred to the membrane at 80 V for 2 h 

using BioRad powerpacks. The membrane was then removed and washed 

with milk wash solution (25 g Marvel milk powder, 500 ml Phosphate buffered 

saline (PBS), 500 μL Tween) for 1-2 h at 4 °C to block the membrane.  

 

2.8.4.2 Antibody probing 

The solution was removed, and 10 ml milk wash solution added to the 

membrane with the appropriate amount of primary antibody and rocked 

overnight at 4 °C. The antibodies and amounts used are shown below.  

αHA mouse (Sigma)  1:10000 

αFLAG mouse  1:1000 

αGFP rabbit   1:2000 

 

The primary antibody mix was removed, and the membrane was washed 

three times with milk wash solution for 10 min. 10ml milk wash solution was 

added to the membrane along with 1 μL of the secondary antibody (HRPα 

Mouse/Rabbit at a 1:10000 dilution) and rocked for 1 h at RT. The membrane 

was washed three times with a mix of 500ml 10% PBS and 500μL 1% Tween 

for 5 min. 

 

2.8.4.3 Enhanced chemiluminescence (ECL) detection 

A 50/50 mix of western blot substrate (Thermofisher) was made and 2ml 

added to cover each membrane to detect the secondary antibody. The 

membrane was placed face down on flat acetate with no creases or air 
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bubbles. This was taped into place in a cassette and developed in the dark 

room onto photographic film (Hyperfilm-ECL, Sigma-Aldrich). Developing 

times varied according to the strength/quantity of protein and ranged from 5s 

to 20min. Images were then scanned and analysed using Quantity One 

software (BioRad). Wherever comparisons of protein levels were determined, 

blots were exposed for the same length of time. 

 

2.8.4.4 Coomassie blue staining 

In a plastic dish Coommasie blue was poured to cover the membrane and 

washed for 20 min. This was tipped off and a destain added to cover the 

membrane and washed for 10 min on a tilting machine. The membrane was 

then left to air dry. The membranes were scanned and analysed using 

Quanity One software (BioRad). 

 
 
2.8.5 in vitro protein degradation assay 

The Rabbit Reticulocyte Lysate System (Promega L4960 and L4151) was 

used for the expression of the cloned gene of interest in vitro. For one 

reaction a mix of 12.5 μL Rabbit reticulocyte, 1 μL buffer, 0.5 μL T7 

polymerase, 0.25 μL leucine AA, 0.25 μL methionine and 0.5 μL RNase OUT 

were used. 15 μL of this mix was added to 10 μL of the DNA sample (the 

pTNT™ containing the gene of interest fused to HA). Reactions were 

incubated at 30 °C for 30 min. To stop the reaction 1 μL cyclohexamide (CHX) 

2.7 nM was added. 1 μL bortezomib was added (at the same time as CHX) as 

a control to inhibit the 26S proteasome, otherwise 1 μL SDW was added. 

Samples were kept at 30 °C and 6 μL was taken every 30 min (or every hour) 
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and added to protein loading buffer containing β-mercaptoethanol, mixed 

gently and kept on ice. 10 μL of these samples would then be loaded onto the 

SDS-PAGE gel and analysed using western blotting. 
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2.9 Microscopy 

2.9.1 GUS staining 

2.9.1.1 Staining 

12ml of GUS stain solution was made. To this 12 μL (1/100) of 100 mM 

potassium ferricyanide and 12 μL (1/100) of 100 mM Potassium ferrocyanide 

was added fresh. 1 ml of the GUS staining mixture was added to each well of 

a 12 well plate. 3 seedlings were placed in each well and then left to stain in 

the dark at 37 °C for 4 h and 24 h. 

 

2.9.1.2 Clearing and fixing 

The GUS staining mixture was removed from the seedlings by pipette and 1 

ml of fixative was added. The seedlings were left overnight on a rotary tilter at 

RT in natural light conditions. This process was repeated for 3-5 days until it 

was considered to be an appropriately cleared. The fixative was removed by 

pipette and 1 ml 50 % glycerol was added to cover the seedlings. The 

seedlings were then put on a glass slide in glycerol with a large cover slip. 

The seedlings were imaged using LAS EZ software. 

 

2.9.2 Imaging YFP lines by confocal microscopy 

Seedlings were grown on ½ MS for 3-5 days and placed on a slide with a 

coverslip in water. Immersion oil was put onto the slide. Seedlings were then 

viewed under the confocal microscope (Dig Sci DLight 2000 and Olympus 

BxUCB) to visualise the expression of VRN2-YFP in Col-0 and prt6-1 

backgrounds under the YFP excitation wavelength of ~514nm. Propidium 
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iodide was used to stain the cell walls. Smart capture software was used to 

take stacks of the seedlings and to edit the images. 
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2.10 Appendix I - growth media 

Bacterial growth media 

LB broth 

10 g/l tryptone 

5 g/l yeast extract 

10 g/l NaCl 

 

LB agar 

LB broth plus 15 g/l agar 

 

Bacteria and Plasmid Selection 

50 μL/ml Kanomycin was used with pDONR221 and pDEX.  

50 μL/ml Zeomycin was used with pDONRzeo (which was needed for entry 

into pDEX to avoid entry and destination vector having the same selection).  

50 μL/ml Spectinomycin was used with Ω35s, per8GW and PUBC. 

For A. tumefaciens 300 μL Gentamycin, 1200 μL Rifampicin and 300 μL of 

antibiotics specific to the vector used were added to every 300 ml of LBA. 

50 μg/ml rifampicin for A. tumefaciens 

50 μg/ml gentamycin for A. tumefaciens 

50 μg/ml Streptomycin for DB3.1 cells 

50 μg/ml Tetracyclin for ABLE® K cells 

50 μg/ml for pTNT vector 
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Plant medium 

½ Murashige and skoog (MS) agar 

To make 1% plates: 

1 litre of Sterile distilled water (SDW) 

2.2 g Murashige & Skoog (MS) powder.  

pH 5.7 with either 0.5 M HCL or 0.5 M KOH  

10 g of agar  

 

The mixture was then autoclaved and, once cool, it was poured into square 

Petri dishes to approximately 7.5 mm depth, inside a fume hood. 

 

Plant Selection 

0.7 % plates of Hygromycin ½ MS: 

600 ml SDW,  

1.32 g MS powder  

4.2 g agar 

600 μL Hygromycin to cooled media. 
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2.11 Appendix II - general solutions 

Nucleic acid gel electrophoresis solutions 

DNA loading buffer 

40 % (v/v) glycerol 

0.25 % bromophenol blue 

 

5 x TBE buffer 

0.45 M Tris 

0.45 M Orthoboric acid 

12.5 mM EDTA 

 

Competent E.coli cell solutions 

Tfb1 

30 mM potassium acetate 

10 mM rubidium chloride 

10 mM Calcium chloride 

50 mM Manganese chloride 

15 % (v/v) glycerol 

pH 5.8 

 

Tfb2 

10 mM MOPS 

75 mM Calcium chloride 

10 mM Rubidium chloride 

15 % glycerol 

pH 6.5 
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Protein electrophoresis and Western blotting solutions 

5 x SDS loading dye 

67.5 % (v/v) Tris-HCl (2M, pH 6.8) 

10 % (w/v) SDS 

50 % (w/v) glycerol  

5 % β-mercaptoethanol 

0.005 % (w/v) bromophenol blue 

 

Protein transfer buffer 

25 mM Tris 

190 mM glycine 

20 % methanol 

pH8 

 

Milk wash solution 

500 ml SDW 

5 x PBS tablets 

25 g Marvel milk powder 

500 μL Tween 

 

Coomassie stain 

0.1 % coomassie blue R-250 

45 % (v/v) SDW 

45 % (v/v) methanol 

10 % glacial acetic acid 
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Coomassie destain 

30 % (v/v) methanol 

10 % (v/v) glacial acetic acid 

 

Biochemistry solutions 

 

Protein inhibitor cocktail (PIC)  

1 x PIC tablet (Roche) 

1.5 ml SDW.  

 

Protein extraction buffer  

150 μL PIC 

100 μL 10% SDS  

50 μL Tris-HCl pH7.5  

700 μL SDW 

 

GUS Staining solutions 

GUS stain solution 

Mix 3.9 ml of 1 M Monosodium phosphate (A) and 6.1 ml of M Disodium 

phosphate (B) at a ratio of 39:61 (A: B). Add 90 ml of SDW to get 100mM of 

buffer pH7. Add 0.104 g of X-Gluc (5-bromo-4-chloro-3-indoyl-beta-D-

glucuronic acid) substrate and vortex until completely dissolved. Add 0.1 % 

(v/v) Triton X-100 by pipette and invert until completely mixed. 
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Fixing solution 

37.5 ml 100 % ethanol 

12.5 ml 100% glacial acetic acid 

500 μL Tween 
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2.12 Appendix III - PCR primers 

GENOTYPING  
  
vrn2 F GTTTGTTCATCATGACACCCC 
vrn2 R1 TTTGAGTCACTGGGATGATCC 
vrn2 SALK LBb1.3 ATTTTGCCGATTTCGGAAC 
prt6 F GGAGTTTTCTATGTCCAGTGAGAGTTT 
prt6 R GTCTCCAATGACACGTTCACTTGTCT 
prt6 BP GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC 
prt6 F2 AGTGGTTGAAATGCTTCTGGA 
prt6 R2 AACTCCCGGTGTTCATGTGT 
FRI_SF2_F AGATTTGCTGGATTTGATAAGG 
FRI_SF2_R ATATTTGATGTGCTCTCC 
vin3 F ATGCAAGCTGCTTCGCTCTC 
vin3 R ATGCCAAAGCTTGAGGCAG 
  
  
CDNA ANALYSIS  
  
vrn2 start ATGTGTAGGCAGAATTGTCGCGCG 
vrn2 stop TTACTTGTCTCTGCTGTTATTGTCC 
prt6 start ATGGAGACCAACTCTTCTCTTTTT 
prt6 stop TTAATGTAAGACGGCTCCAATTGTG 
VIN3START ATGAAGCTGCTTCGCTCTC 
VIN3STOP ATGCCAAAGCTTGAGGCAG 

  
actin2F ATGGCTGAGGCTGATGATATTC 
actin2R AGAAACATTTTCTGTGAACGATTC 
ACTIN7_F  CTGGAATGGTGAAGGCTGGT 
ACTIN7_R  GTGCCTAGGACGACCAACAA 
  
VRN2_YFP_F AGTCGATGACGATGTTGCAG 
VRN2_YFP_R TGGTGCAGATGAACTTCAGG 
YFP_F CCTGAAGTTCATCTGCACCA 
YFP_R GTTCACCTTGATGCCGTTCT 
VRN2_GUS_R TCATTGTTTGCCTCCCTGCT 
GUS_R TGCCCAACCTTTCGGTATAA 
VRN2_HA_R ATAGGATCCTGCATAGTCCG 
  
CLONING  
  
vin3attb1 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGCAAGCTGCTTC 
vin3attb2 GGGGACCACTTTGTACAAGAAAGCTGGGTCATGCCAAAGCTTGAG 
vin3HAattb2 GGGGACCACTTTGTACAAGAAAGCTGGGTCGGCGTAGTCGGGCAC 
vin3R1HA GGCGTAGTCGGGCACGTCGTAGGGGTAATGCCAAAGCTTGAGGCA 
HVEMF2C_MCF AAAAGAATTCATGTGCCGTCAACCGTCCACGCC 
HVEMF2C_MAF AAAAGAATTCATGGCCCGTCAACCGTCCACGCC 
HVEMF2C_R AAAAGGTACCGTACTGTCGGCGGTGTAAGATTGC 
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EMF2_MP_F AAAATGCCAGGCATTCCTCTTGTTAGTCGTG 
EMF2_MC_F AAAATGTGCGGCATTCCTCTTGTTAGTCGTG 
EMF2_TRUNCMC_F AAAAGAATTCATGTGCCATGAAGACTCCCGTC 
EMF2_TRUNCMA_F   AAAAGAATTCATGGCCCATGAAGACTCCCGTC 
EMF2_R                         AAAAGGTACCAATTTGGAGCTGTTCGAGAAAGG 
  
SEQUENCING  
  
vin3 seqR1 AAGCATCACAAGTAAGCCATAAACT 
vin3 seqF1 GCTTGTAGAGCTGCGCTTG 
vin3 seqF2 CCGTGAGAGTAGAAGAGATTCAAG 
vin3 seqF3 AAAGCAAGGAGGGAATAAAAGATT 
attb seq F AAGTTTGTACAAAAAAGCAGGC 
attb seq R ACTTTGTACAAGAAAGCTGGG 
M13 F GTAAAACGACGGCCAG 
M13 R CAGGAAACAGCTATGAC 
pTNTF TAAGGCTAGAGTACTTAATAC 
pTNTR CCCCAAGGGGTTATGCTA 

  
RESTRICTION 
ENZYME SITES 

 

 
MluI ACGCGT 
XbaI TCTAGA 
EcoRI GAATTC 
KpnI GATATC 
BsrGI TGTACA 
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2.13 Appendix IV - preparation of SDS-PAGE gels 

    Running gel   Stacking gel  
  10% 12% 15%    
SDW 4ml 3.3ml 2.3ml  3.4ml 
Acryl/Bisacryl 3.3ml 4ml 5ml  0.83ml 
Tris pH8.8 2.5ml 2.5ml 2.5ml Tris pH6.8 0.63ml 
SDS (10%) 0.1ml 0.1ml 0.1ml  0.05ml 
APS (10%) 0.1ml 0.1ml 0.1ml  0.05ml 
Temed 4uL 4uL 4uL   5uL 
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3 Investigating the relationship between the N-end Rule Pathway and 
VRN2 Function 
 

3.1 Introduction 

This project focuses on the post-translational modifications of proteins that 

control protein stability or degradation. As discussed earlier, the N-end rule 

pathway of targeted proteolysis is a specific branch of the ubiquitin 

proteasome system that targets proteins for destruction based on the nature 

of their N-terminus (the N-degron) (Bachmair et al., 1986). The N-terminus 

(Nt) can contain stabilizing or N-degron destabilizing amino acid residues 

(Varshavsky, 2005). The project focuses on cysteine as a destabilizing 

residue in proteins that begin with MC, that are the basis of the MC/Arg N-end 

rule pathway (FIGURE 1.6).  

 

It has previously been shown in animals and plants that the “Cys-Arg/” branch 

of the N-end rule pathway plays a key role in oxygen and nitric oxide (NO) 

sensing, through controlling the stability of proteins that initiate with the 

residues ‘Met-Cys’ (MC) (Kwon et al., 2002, Hu et al., 2005, Gibbs et al., 

2011, Licausi et al., 2011, Gibbs et al., 2014).  In plants, the only confirmed 

substrates of this pathway are the ERFVII transcription factors, which regulate 

the homeostatic transcriptional response to oxygen and NO availability (Gibbs 

et al., 2011, Licausi et al., 2011, Gibbs et al., 2014a). Under hypoxic or 

reduced NO conditions, Cys oxidation does not occur and thus ERFVIIs 

accumulate to initiate the low-oxygen transcriptional response. In this study it 

was hypothesized that there may be other MC-initiating proteins in plants that 
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are regulated by the Cys/Arg N-end rule pathway that may also act as oxygen 

and NO sensors.  

 

Su(z)12 is a PRC2 protein, identified in Drosophila, that epigenetically 

regulates gene expression (Birve et al., 2001). Arabidopsis VRN2 is a 

homologue of Su(z)12, containing the zinc finger domain for epigenetic gene 

suppression (Gendall et al., 2001).   MC-initiating Su(z)12 homologues (i.e. 

VRN2-like proteins) throughout the flowering plant lineage were identified by 

comparing all proteins that begin with MC. These VRN2 orthologous 

sequences were aligned using Clustal Omega (FIGURE 3.1) and this was 

used to form a probability plot (FIGURE 3.2).  From the alignments and 

probability plot it was observed that the MC N-terminus was highly conserved. 

More than 200 proteins have been found in Arabidopsis that have MC at the 

N-terminus (Gibbs et al., 2011) and of these, VRN2 was identified as an 

interesting potential candidate to be a substrate of the Cys/Arg N-end rule 

pathway as it has a role in vernalization and the control of flowering. This is 

because the MC N-terminus is evolutionally conserved and therefore of 

biological significance. There is also a highly conserved lysine at amino acid 

26 that could be a further indication that VRN2 may be a substrate of the N-

end rule because this could be ubiquilylated by the E3 ligase PRT6. The MC 

terminus would also have to be accessible by the N-recognin for VRN2 to be 

a substrate. VRN2 has previously shown to be degraded in an N-end rule 

system in vitro (Gibbs et al., 2011). The main purpose of this project was to 

test whether VRN2, and its homologues in plants, are in vivo gas sensors 
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regulated by the Cys/Arg N-end rule, linking stress perception to flowering and 

developmental control.  
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FIGURE 3.1 Alignment of VRN2 orthologous sequences representing 
diverse clades of flowering plants. 
 
Alignment of 49 VRN2-like proteins highlights the conserved MC N-terminus 
(Nt) (cysteine shown in yellow) and also a conserved lysine residue a short 
distance from the N-terminus where proteins could potentially be 
ubiquitylated. (Sequences obtained from the 1KP initiative. Alignments made 
with Clustal Omega.) 
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FIGURE 3.2 MC is conserved across angiosperms in VRN2-like proteins 
 
Sequence logo of the N-terminal region of VRN2-like proteins from all 
sequenced flowering plants shows 100% conservation of the N-terminal MC 
dipeptide. (Sequences obtained from the 1KP initiative.) There is also a 
conserved Lysine residue at amino acid position 26 where the proteins could 
potentially be ubiquitylated. Image generated using Weblogo. 
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3.2 Confirmation of VRN2 as an N-end rule substrate in vitro 

  

To confirm the hypothesis that VRN2 is regulated by the N-end rule pathway 

as observed in Gibbs et al., (2011), a rabbit reticulocyte lysate system was 

used (Lee et al., 2005) that contains all the components needed for 

transcription and translation of the VRN2 gene (tRNA, ribosomes, amino 

acids, initiation, elongation and termination factors). Components of the N-end 

rule such as ATE, MAP and E3 ubiquitin ligases are conserved in eukaryotes 

(Graciet et al., 2010) and so they are present in the system. Rabbit lysate was 

chosen as wheat germ lysate has been shown to not contain an active 

proteosomal system (Takahashi et al., 2009). VRN2 was cloned by ligation 

into the pTNT vector with a haemagglutinin (HA) tag at the C-terminus. The 

pTNT vector was chosen as it is designed for highly efficient synthesis of RNA 

using in vitro expression systems and it has a T7 polymerase promotor 

adjacent to the multiple cloning site. E.coli DH5α that had the vector 

containing the gene were selected for with Ampicillin. The plasmids were then 

used in an in vitro protein degradation assay (FIGURE 3.3). The reactants 

were incubated for 30 min and then cyclohexamide was added to all samples 

to block further translation of the gene. VRN2 stability was then measured by 

taking samples over a time course (0, 30 and 90 min). From an anti-HA 

western blot of the in vitro samples it was observed that WT MC-VRN2-HA 

levels decrease over time following CHX treatment, whereas if bortezomib 

was added, which inhibits the 26S proteosome, it was observed that MC-

VRN2-HA is stabilized. Lee et al. (2005) used a C2A point mutation in 

mammalian RGS proteins; the N-degron is removed and so the substrate of 
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the N-end rule pathway is stabilized. It is confirmed in this study that the 

instability of VRN2 is related to its N-terminus because a C2A point-mutation 

(i.e. MA-VRN2-HA) led to constitutive stabilization of VRN2 to similar levels as 

were observed for the bortezomib treatment. The Coomassie stain of the 

membrane shows that there was even loading, therefore the difference in 

protein level is due to degradation of protein and not how much protein was 

loaded onto the blot. This supports our hypothesis that VRN2 is a substrate of 

the N-end rule pathway and that it is regulated in the same way as the ERFVII 

transcription factors. The next step was to confirm further that it is a substrate 

by observing VRN2 stability in vivo and looking at VRN2 stability in different 

mutant backgrounds (prt6 and ate1ate2) that are components of the Cys/Arg 

N-end rule pathway. 
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FIGURE 3.3 VRN2 is a substrate of the Cys/Arg N-end rule pathway in 
vitro 
 
Western blot showing an in vitro cyclohexamide (CHX) chase of WT MC-
VRN2-HA and mutant (Ala2) MA-VRN2-HA (+/- bortezomib; BZ). MC-VRN2-
HA is degraded over time whereas MA-VRN2-HA is stable. Bortezomib 
causes MC-VRN2 HA to become stable. Coomassie blue staining was used 
as a loading control. 
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3.3 Confirmation of VRN2 as an N-end rule substrate in vivo 

 

WT MC-VRN2-HA was degraded in vitro over a 90 min time course, whereas 

MA-VRN2-HA was stable, but was this the case in vivo? It had previously 

been shown that VRN2-FLAG was unstable following CHX treatment in 

transgenic Arabidopsis seedlings but was stable following treatment by 

bortezomib (Gibbs et al., 2018). This indicated that in vivo, VRN2 protein 

degradation was regulated by the 26S proteasome. To confirm whether the 

protein stability was linked to the N-end rule pathway, Arabidopsis lines that 

have VRN2 fused to β-glucuronidase (GUS) at the C-terminus driven by 

approximately 2 kb of its native promotor were generated. Two independent 

plant lines were generated in the prt6-1 E3 ligase mutant and the ate1ate2 

mutant by crossing the VRN2-GUS transgene into the mutants. (Two 

independent lines would provide more conclusive evidence than a single line.) 

In addition, MC-VRN2 and MA-VRN2 stability was studied by creating 

transgenic plants in the Col-0 background of VRN2 fused to GUS with either 

the MC or MA N-terminus. Plants were grown for 7 days and protein extracts 

were prepared. From performing an anti-GUS western blot, it was observed 

that steady state levels of MA-VRN2-GUS were higher than MC-VRN2-GUS 

in Col-0 (FIGURE 3.4). This is in agreement to the in vitro results, which 

indicates the importance of the Cysteine as a tertiary destabilizing residue at 

the N-terminus and the presence of cysteine as a requirement of Cys/Arg N-

end rule substrates. In ate1ate2 mutants VRN2-GUS was more stable than 

MC-VRN2-GUS in Col-0. This is what is expected if VRN2 were a substrate of 

the N-end rule, as the ate1ate2 mutants lack the ability to arginylate the N-
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terminal oxidized Cys. VRN2 would therefore not be recognized by the N-

recognin and would not be able to be ubiquitylated and targeted for 

degradation. In the prt6-1 E3 ligase (N-recognin) mutant, WT VRN2-GUS was 

also significantly more stable than WT. This links the degradation of VRN2 

directly to PRT6, as expected for a target of the Cys/Arg N-end rule. 

Coomassie staining showed equal protein loading and there were no 

significant differences in mRNA levels between WT and the other 

backgrounds. Taken together, these results support the hypothesis that VRN2 

is regulated in vivo by the Cys/Arg N-end rule pathway. 
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FIGURE 3.4 MC-VRN2-GUS stabilization in vivo 
  
Western blot showing that MC-VRN2-GUS is unstable, whereas MA-VRN2-
GUS is more stable. MC-VRN2-GUS is stable in prt6-1 and ate1ate2, 
Coomassie staining shows equal loading. Numbers (1+2, 1+2, 5+6, 2+7) 
denote names of two independent lines of each genotype tested. 
 
PCR of cDNA synthesized from total RNA extractions shows transcription of 
VRN2 is similar between lines (although this is semi-quantitative as it is not 
qPCR). There is no PRT6 transcript in the prt6-1 mutant and ACTIN7 is used 
as a control. 
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To provide further evidence linking VRN2 stability to the N-end rule, 

histochemical staining of VRN2-GUS was performed, in order to visualize the 

spatial distribution of VRN2 stability in the different N-end rule mutant 

backgrounds. Seedlings were grown for 7 days and histochemically stained 

for GUS activity for 4 h and 24 h before fixing onto glass slides (FIGURE 3.5). 

In MC-VRN2-GUS Col-0 seedlings there was a lot less staining overall 

compared to the other lines and WT VRN2-GUS protein in Col-0 was 

restricted to the meristem and vasculature. This indicates that VRN2 is 

present at low levels in the seedlings except for the shoot meristem and the 

root tip. The meristems are thought to be areas of the plants that have low 

levels of oxygen (hypoxic) (Considine et al., 2017). If VRN2 is regulated by 

the N-end rule pathway, the gas-sensing step of the pathway would not be 

able to occur in these tissues and so VRN2 would be stable, which agrees 

with the results. In the MA-VRN2-GUS plants the staining is darker than in 

MC-VRN2-GUS and in the ate1ate2 and prt6-1 backgrounds staining is darker 

than the other lines, showing strong stabilization and accumulation of VRN2-

GUS present in all tissues throughout the seedling. These results confirm the 

observations made by western blotting, supporting the hypothesis that VRN2 

is regulated in vivo by the Cys/Arg N-end rule pathway. Furthermore, the 

distribution of the staining suggests that the N-end rule pathway restricts 

VRN2 to meristematic regions under normal growth conditions. 
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FIGURE 3.5 VRN2 is unstable in MC-VRN2-GUS except in the 
vasculature and meristem 
 
Histochemical staining of 7-day-old seedlings expressing MC-VRN2-GUS in 
Col-0, mutant (Ala2) VRN2-GUS in Col-0 and MC-VRN2-GUS in prt6-1 and 
ate1ate2. Stained for 4h and 24h. Images are representative of three repeat 
experiments. Scale bar 500µm. 
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3.4 VRN2 subcellular localization 
 
 

Results so far indicate that VRN2 is a substrate of the N-end rule pathway 

when using C-terminal HA and GUS tags attached. To provide further 

evidence, yellow fluorescent protein (YFP) fusions were used to confirm 

VRN2 as a substrate of the N-end rule pathway and to visualize the 

localization of VRN2 in the cell. PcG proteins share a conserved region in the 

N-terminus that contains a putative nuclear localization signal (NLS) and 

VRN2 has been found to be distributed unevenly in the nucleus but not 

throughout the nucleus (Gendall et al., 2001). Therefore, more work needs to 

confirm if it is only nuclear localized and whether the NLSs are functional. 

Gendall et al. (2001) used an Nt GFP::VRN2 fusion (instead of GFP fused to 

the C-terminus) so it is not known if this is actually true localization because 

the N-terminus has been altered, Further, the N-terminal residue of the protein 

would not have N-end rule regulation unless the GFP was cleaved. ERFVIIs 

are known to move between the cytosol and the nucleus (Licausi, 2011, 

Kosmacz et al., 2015), providing additional justification to study subcellular 

localization of VRN2. VRN2 has also been found to interact with LIKE 

HETEROCHROMATIN PROTEIN 1 (LHP1) in the nucleoplasm in vivo 

(Hecker et al., 2015). However, not a lot is known about the subcellular 

localization of VRN2 during its entire presence from translation to 

degradation. The work of Sung and Amasino (2004a) shows that VRN2 

represses transcription of FLC by chromatin modification, which is also 

consistent with VRN2 nuclear localization. 
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To conduct the VRN2 localization experiment Col-0 and prt6-1 lines were 

transformed with the MC-VRN2 fused to yellow fluorescent protein (YFP), 

driven by VRN2’s native promotor. Homozygous transformed lines were 

identified by selection with hygromycin. Seeds from the T3 lines with 100% 

germination were used in this experiment.  

 

Western blotting (FIGURE 3.6 A) confirms expression of the VRN2-YFP 

fusion protein and again indicates that there are higher levels of MC-VRN2-

YFP protein in the prt6-1 mutant than in Col-0. Ponceau staining of the 

membrane shows there was equal loading of the proteins. This is consistent 

with the earlier western blot results of VRN2-GUS (FIGURE 3.4) and also with 

the hypothesis that VRN2 is a substrate of the N-end rule because the prt6-1 

mutant lacks the E3 ligase cannot ubiquitylate VRN2 and so it is not labelled 

for destruction by the 26S proteasome. 

 

Confocal microscopy was used to visualize the localization of VRN2 in the 

roots of the MC-VRN2-YFP WT and prt6-1 lines. VRN2 was found to be 

localized in the nucleus of all root tips (FIGURE 3.6 B). VRN2 is known to put 

the H3K27me3 epigenetic mark onto chromatin (De Lucia et al., 2008) so it 

was expected that VRN2 would be a nuclear protein. VRN2 was also found in 

some nuclei further up the root (in the region of maturation) and on some 

images, it was observed that VRN2 was also cytosolic (FIGURE 3.6 B). The 

PCOs and the proteasomes are also found in the cytosol as well as the 

nucleus (Weits et al., 2014) and so it follows that VRN2 could be present in 

both also. However, this result was not conclusive, and one reason could be 



Chapter	3	The	relationship	between	the	N-end	rule	pathway	and	VRN2	function	
	

	 102	

because the Propidium iodide (PI) that was used to stain the cell walls emits 

light at ~625nm a similar wavelength to YFP at ~525nm and there could be 

some overlap of their emission wavelengths. It is therefore difficult to 

distinguish whether the emission is due to VRN2 being present in the cell wall, 

in the cytosol or whether it is actually due to the PI. This will need to be 

repeated by looking at seedlings with no PI staining and perhaps seedlings 

that have had their cells plasmolyzed so the cytosol would not be against the 

cell wall, or another option would be to separate protein from nuclear and 

cytosolic fractions and perform a western blot in order to detect VRN2-YFP 

(Kim and Michaels, 2006). If VRN2 present in the nucleus and cytoplasm it 

could mean that at different stages of development VRN2 may be in the 

PRC2 complex in the nucleus and at other times VRN2 may be free to move 

through the cell. VRN2 may therefore have other functions outside of the 

PRC2 complex that have not yet been discovered.  
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FIGURE 3.6 VRN2 is found in the nucleus 
 
(A) Western blot showing steady state MC-VRN2-YFP protein levels in Col-0 
and prt6-1. MC-VRN2-YFP is unstable in Col-0 whereas it is stabilized in the 
prt6-1 mutant. Ponceau staining of the membrane shows equal sample 
loading. 
(B) Confocal image showing MC-VRN2-YFP is localized to the nucleus in root 
tips of Col-0 and prt6-1 plants. Further up the root, in the region of maturation, 
VRN2 appears to be cytosolic as well as in the nucleus. Scale bar 50µm. 
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3.5 When is VRN2 stable? 

 

This study has shown that VRN2 is a substrate of the N-end rule pathway in 

vivo and that it can be found in the meristem and vasculature of seedlings and 

in the nucleus at the root tip under normal growth conditions (22 °C 16 h L: 8 

h D). The next step was to find out when VRN2 is expressed and when VRN2 

would be degraded or stabilized throughout the development of the plant. It is 

known that VRN2 becomes stabilized in the cold during vernalization (Wood 

et al., 2006). It was hypothesized that this cold-induced stabilization was 

related to the N-end rule. To test this hypothesis, the MC-VRN2-YFP 

transgenic WT and prt6-1 lines were used. Seeds were cleaned, plated and 

stratified for 2 days at 5 °C. Seedlings were then grown for 10 days at 22 °C 

16 h light (L), 8 h dark (D). Seedlings were then placed in vernalization 

conditions (5 °C, 8 h L: 16 h D) and seedlings were sampled over a time 

course of 0, 2, 4 weeks vernalization and also 4 weeks vernalization followed 

by 1 week back at 22 °C. Total protein was extracted from the samples and 

quantified using a Bradford assay. Western blotting showed VRN2 protein 

levels became more abundant with increased vernalization time in WT plants 

(FIGURE 3.7). MC-VRN2-YFP levels appeared low at 0 weeks, as there was 

a very faint band present. At 4 weeks, protein levels had increased, and a 

strong band could be observed. When plants were returned to 22 °C VRN2 

levels were depleted. VRN2 levels in the prt6-1 seedlings were higher than in 

WT at 0 weeks showing a similar level to 4 weeks in WT seedlings. There is a 

slight increase in VRN2 levels at 2 and 4 weeks and then at 4 + 1 weeks 

VRN2 levels deplete in a similar way to WT. This could mean that there is an 
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E3 ligase (other than PRT6) yet to be found that is able to ubiquitylate VRN2, 

leading to its degradation. The Coomassie stain of the membrane shows 

equal loading on the blot. The RT-PCR indicates the prt6-1 mutant is not 

expressing PRT6 and the ACTIN2 control shows that cDNA levels are 

consistent between lines. Gendall et al. (2001) found VRN2 gene expression 

is not altered by vernalization but it might be a low abundance transcript or 

expressed in a small subset of cells. The RNA analysis in this experiment also 

shows that VRN2 protein accumulates during vernalization in the absence of 

changes in mRNA levels, therefore transcription remains fairly constant 

throughout and it is the protein levels that are changing. This is consistent 

with the hypothesis that VRN2 protein is stabilized post-translationally in an N-

end rule dependent manner during vernalization.  

 

These data using MC-VRN2-GUS and MC-VRN2-YFP confirm similar results 

obtained using MC-VRN2-GUS, (data not shown); that VRN2 in prt6-1 is 

constitutively stable and does not change in response to cold treatments, 

suggesting that the N-end rule acts to restrict VRN2 protein localization to the 

meristem and vasculature under non-vernalized (warm) conditions. The 

spatial stabilisation of VRN2 protein during cold is opposite to that that seen 

for FLC promoter activity (Kim and Michaels, 2006), which correlates with its 

known function in the maintenance of reduced FLC expression. As it has now 

been shown that VRN2 is stabilized in an N-end rule dependent manner and 

that VRN2 levels increase in the cold, it was decided to investigate further, the 

functional relevance of this regulation in relation to flowering and stress 

responses.  
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FIGURE 3.7 VRN2 becomes stable with increased vernalization but is 
degraded when returned to optimal growing conditions 
 
Western blot showing VRN2-YFP stabilization and mRNA levels of WT VRN2-
YFP in vernalized Col-0 and prt6-1 seedlings.  MC-VRN2-YFP transgenic WT 
and prt6-1 lines were used. Seeds were cleaned, plated and stratified for 2 
days at 5 °C. Seedlings were then grown for 10 days at 22 °C 16 h light (L), 8 
h dark (D). Seedlings were then placed in vernalization conditions (5 °C, 8 h 
L: 16 h D) and seedlings were sampled over a time course of 0, 2, 4 weeks 
vernalization and also 4 weeks vernalization followed by 1 week back at 22 
°C.	 4+1 refers to 1 week ‘recovery’ at 22°C following vernalization. VRN2 
becomes stable with increased vernalization at 5 °C 8 h light: 16 h dark but is 
depleted on return to 22 °C 16 h light: 8 h dark. PCR of cDNA synthesized 
from total RNA extractions shows transcription of VRN2 is similar between 
lines. 	
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3.6 Functional relevance of VRN2 regulation by the N-end rule pathway 

 

The next aim of the project was to explore how regulation of VRN2 by the N-

end rule pathway contributes to the known function of VRN2 in coordinating 

cold-responsive flowering (vernalization). VRN2 and FLC play a key role in 

the vernalization response. FLC acts in the leaves and meristem by 

repressing genes such as FT and delaying flowering (Alexandre and Hennig, 

2008). As VRN2 is a substrate in the N-end rule pathway, it is ubiquitylated by 

the E3 ligase PRT6 and targeted for degradation by the 26S proteasome. 

However, when the plant experiences cold during vernalization, the VRN2 

protein accumulates. The VRN2 protein facilitates H3K27me3 of FLC, 

repressing FLC and therefore allowing the plant to flower (Gendall et al., 

2001). To investigate the functional relevance of VRN2 regulation by the N-

end rule pathway it was decided to generate mutant lines of vrn2, prt6-1 and 

the vrn2 prt6-1 double mutants in order to then perform flowering time assays. 

 

The first step to create the transgenic plants needed was to obtain 

homozygous vrn2 and prt6-1 single and double mutants in a Col-0 

background, (early flowering and not requiring vernalization). This is because 

the available T-DNA knockouts are only available in Col-0 accessions and 

because Col-0 is fast growing and can be easily checked for a mutation that 

produces complete gene knockouts. The T-DNA insert for prt6-1 allele is SAIL 

_1278_H11. The T-DNA insert for the vrn2 mutant is SALK_201153. The vrn2 

mutant is a new allele obtained from the SALK collection at the Arabidopsis 

stock centre that has been called vrn2-5 in this study and it has not been 
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published previously. FIGURE 3.8 (A) shows the gene map of the vrn2-5 

mutant. The SALK_201153 tDNA insertion site is at bp 993 in the CDS, 

corresponding to just after arginine (R) 331 in the protein. This disrupts the 

VEFS-box domain (aa 250-387), a conserved domain at the C-terminus, 

characterized by an acidic cluster and tryptophan/methionine rich sequence. 

 

Plants that were homozygous for vrn2 were crossed with homozygous prt6-1 

plants. The F1 seeds from the cross were collected, grown and genotyped for 

both T-DNA inserts by performing DNA extraction and PCR. The F1 

generation was found to be heterozygous for both genes. Heterozygous 

plants for prt6-1 and vrn2 were grown on to the next generation to also find a 

vrn2 prt6-1 homozygous double mutant. Plants were again genotyped using 

PCR on genomic DNA with primers designed either side of the T-DNA insert 

for each gene. The vrn2 homozygous mutant and the vrn2 prt6-1 homozygous 

double mutant were identified by PCR analysis of genomic DNA (FIGURE 3.8 

B). Total RNA was also extracted from the seedlings and cDNA generated 

using reverse transcriptase and Oligo dT primers. PCR was performed on the 

cDNA using primers specific for the VRN2 and PRT6 start and stop codons of 

the coding sequence. A longer extension time was used to enable 

amplification of the whole PRT6 gene (approximately 6000bp long). The 

cDNA analysis confirmed that the T-DNA insertion in the mutants produced a 

complete knockout of the genes (FIGURE 3.9 C). Once the lines had been 

generated, they could be used for phenotypic analysis to provide an insight 

into the functional relevance of VRN2 and its regulation by the N-end rule 

pathway. 



Chapter	3	The	relationship	between	the	N-end	rule	pathway	and	VRN2	function	
	

	 109	

	

	
	
 
FIGURE 3.8 Genotyping confirms vrn2-5 and prt6-1 single and double 
mutants in Col-0 plants 
 
(A) Schematic diagram of the VRN2 gene structure and SALK_201153 tDNA 
insertion site at bp 993 in the CDS, corresponding to just after arginine (R) 
331 in the protein. This disrupts the predicted VEFS-box domain (aa 250-
387), a conserved domain at the C-terminus characterized by an acidic cluster 
and tryptophan/methionine rich sequence. Black boxes denote exons. 
(B) PCR from genomic DNA confirming mutant lines for the vrn2-5 and prt6-1 
single and double mutants in the Col-0 background. 
(C) Full length RT-PCR from cDNA to confirm complete gene knockout.  
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3.6.1 Phenotypic analysis – ABA germination assay 

 

It has been shown previously that the N-end rule pathway has a function in 

seed after ripening, breaking dormancy, seedling establishment and abscisic 

acid (ABA) signalling through PRT6 and ATE1/2 (Holman et al., 2009, Gibbs 

et al., 2014b). ABA is known to repress germination and promote seed 

dormancy. PRT6 was shown to be implicated in the regulation of seed 

sensitivity to ABA and in seedling establishment from seed to seedling, 

indicating a role of the N-end rule pathway in germination (Holman et al., 

2009), where prt6-1 and prt6-4 mutants showed extreme hypersensitivity to 

ABA treatment, halting testa rupture and endosperm rupture. Gibbs et al. 

(2014b) showed prt6-1 hypersensitivity to ABA but remarkably, they found 

that the prt6-1rap2.1rap2.2rap2.3 (prt6-1, ERFVII) quadruple mutant showed 

reduced sensitivity to ABA, demonstrating that the ERFVIIs N-end rule 

substrates participate in the regulation of germination. As VRN2 has also 

been found to be an N-end rule substrate, it was hypothesized that VRN2 

might also contribute to the germination phenotype of prt6-1. Creating a vrn2 

prt6-1 double mutant should remove the hypersensitivity of prt6-1 if the 

hypothesis was correct. To test this hypothesis a germination assay was 

performed on 3 x 40 seeds of WT Col-0, vrn2, prt6-1 and vrn2prt6-1 lines on 

½ MS containing ABA hormone at concentrations of 0, 1, 2 and 5 µM. All 

seeds used were harvested from plants and grown at the same time so as to 

minimise differences in after ripening and dry storage time of seeds. All seeds 

were stratified at 5 °C for 2 days and then placed at 22 °C. Germination was 
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scored after 6 days, observing endosperm rupture, radicle emergence and 

how many seedlings established (i.e. cotyledons had turned green). 

 

The vrn2-5 prt6-1 and prt6-1 show significant sensitivity to 2 µM ABA for 

germination, whereas the WT and vrn2-1 have significantly higher 

germination. This suggests VRN2 is not involved in the ABA response during 

germination. Results do however show that in fact the single vrn2-5 mutant 

had a significant delay in establishment relative to WT with 1 µM ABA 

treatment (FIGURE 3.9). vrn2-5 prt6-1 shows hypersensitivity to ABA, similar 

to prt6-1, in relation to establishment. This suggests that VRN2 and the N-end 

rule pathway do contribute to the regulation of establishment due to the prt6-1 

phenotype but VRN2 may not be the substrate involved. The double mutants 

behave similarly to the single prt6-1 mutant for germination and so the reason 

for the sensitivity cannot be due to VRN2 stabilization because there is no 

VRN2 present in the double mutant.  
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FIGURE 3.9 VRN2 is not involved in the ABA response during 
germination but may be involved in establishment 
 
Germination and establishment under abscisic acid (ABA) treatment. Seeds 
used were all the same age and were all stratified at 5 °C for 2 days. The 
vrn2-5 prt6-1 mutant shows a similar sensitivity to ABA as the prt6-1 single 
mutant suggesting that VRN2 is not involved in the ABA response during 
germination. vrn2-5 shows a significant decrease in establishment compared 
to WT at 1µM ABA, suggesting VRN2 may be involved in the ABA response 
during establishment. Germination was scored as radicle emergence through 
the endosperm. Establishment was recorded when cotyledons were fully 
expanded and green. Error bars indicate SEM and letters represent ANOVA 
(Tukey’s test). 
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3.6.2 Phenotypic analysis – Flowering time in Col-0  

Although the Col-0 ecotype does not require cold exposure in order to flower, 

developmental flowering time can still be monitored in Col-0 to see if there is 

an observable difference in flowering time between these available T-DNA 

mutant lines. Although the cold is not required for the plants to flower, there 

may still be an effect of VRN2 protein levels on flowering time. Seeds were 

sterilized and plated onto ½ MS and stratified at 4 °C, then seedlings were 

placed into soil. Flowering time was determined by counting the total leaf 

number in the rosette and also by counting the number of days until bolting. 

 

After examining the flowering phenotypes of the mutant lines in the Col-0 

background the general trend showed that without vernalization the vrn2-5 

mutant and double vrn2-5 prt6-1 mutant flowered later than the WT and later 

than prt6-1 when scoring days to flowering (temporal flowering time), although 

there was no statistically significant difference here (FIGURE 3.10). When 

measuring numbers of leaves (developmental flowering time) vrn2-5 had 

significantly fewer leaves than vrn2-5 prt6-1 at flowering, indicating the double 

mutant flowered significantly later than the single vrn2-5 mutant. The overall 

trend suggests that vrn2-5 prt6-1 flowers later than all other lines from the leaf 

number and days to flowering scores but more replication would be required 

to add confidence to this observation. These results highlight that the 

presence of VRN2 could be important for flowering time regulation but to test 

the true role of VRN2 it was decided to look at flowering in plants with a 

vernalization requiring background. 
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FIGURE 3.10 Flowering time of vrn2-5, prt6-1 and vrn2-5 prt6-1 mutants 
in the Col-0 ecotype 
 
Days to flowering and rosette leaf number at flowering of Col-0 Arabidopsis 
plants under long days 16 h Light: 8 h Dark conditions. The vrn2-5 prt6-1 
double mutant flowers later than the other lines when measuring flowering 
time (days) and significantly later when measuring rosette leaf number. Error 
bars indicate SEM and letters represent ANOVA (Tukey’s test). 
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3.6.2.1 Generation and confirmation of vrn2-5 and prt6-1 mutants in Col-

0 FRI-Sf2 background 

 

To perform true vernalization experiments and observe the role of the N-end 

rule pathway and VRN2 in flowering, the flowering time assays needed to be 

done in an ecotype that requires vernalization. In vernalization requiring plants 

FLC is activated by FRIGIDA (FRI) (Nappzinn, 1957). A dominant allele of FRI 

will transcriptionally activate FLC and so inhibit flowering (Michaels and 

Amasino, 1999, Sheldon et al., 1999). When the plant experiences cold during 

vernalization, VRN2 levels will increase and will overcome the effect of FRI by 

repressing FLC and allow flowering (Sung and Amasino, 2004a). 

Backgrounds such as fca-1 or fve-1 mutants are vernalization responsive 

genotypes (Gendall et al., 2001) but for this study it was decided to use a Col-

0 FRI-Sf2 background (Johanson et al., 2000); a Col-0 ecotype that has a 

dominant FRI allele from the naturally occurring Sf2 ecotype introgressed into 

it. It was used because this allowed us to utilize the mutants already isolated 

in the Col-0 background. Col-0 has the recessive allele of FRI and this 

recessive allele has a 16bp deletion, meaning the plants do not require 

vernalization to flower because this allele is inactive. The 16 bp difference 

was used to distinguish the Col-0 and Sf2 alleles of FRI using gel 

electrophoresis. 

 

Both vrn2-5 and prt6-1 were crossed into the Arabidopsis Col-0 FRI-Sf2 

ecotype. PCR was performed to genotype the F1 plants, amplifying the FRI 

alleles. Since there is only a 16bp difference between the dominant and 
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recessive FRI allele and the PCR product is small (Johanson et al., 2000), a 

3% gel was used and electrophoresis was performed at a low voltage to 

ensure distinction between plants with the dominant Sf2 FRI allele (larger 

band) or the recessive Col-0 FRI allele (Col-0). Single vrn2-5 or prt6-1 

mutants were identified. Individuals that were homozygous for FRI-Sf2, 

homozygous for one mutant gene and heterozygous for the other gene were 

taken forward and grown. From these F2 plants the vrn2 prt6-1 in the Col-0 

FRI-Sf2 background was identified and eventually all required homozygous 

mutants that necessitate vernalization were produced (FIGURE 3.11). cDNA 

analysis was not done here as it had already been shown that vrn2-5 and 

prt6-1 were full length gene knock outs. 
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FIGURE 3.11 Genotyping confirms vrn2-5 and prt6-1 single and double 
mutants in Col-0 FRI-Sf2 plants 
 
Ethidium bromide stained agarose gels of PCR products from genomic DNA 
confirming mutant lines for the vrn2-5 and prt6-1 single and double mutants in 
the Col-0 FRI-Sf2 background. The Col-0 FRI- amplicon is smaller than the 
Col-0 FRI-Sf2 allele due to a 16 bp deletion. 
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3.6.2.2 Phenotypic analysis – Flowering time in Col-0 FRI-Sf2 

 

Using the prt6-1 and vrn2-5 mutants generated in the vernalization-requiring 

Col-0 FRI-Sf2 background the flowering time assay was repeated. It was 

predicted that Col-0 FRI-Sf2 WT plants would flower late with no vernalization 

but flower earlier with increased vernalization as VRN2 becomes stable and 

accumulates, in accordance with previous studies in this line (Gendall et al., 

2001). vrn2-5 was predicted to flower later, even with vernalization due to the 

lack of the VRN2 protein. prt6-1 was predicted to flower earlier than WT 

because it lacks the E3-ligase to ubiquitylate VRN2 and target it for 

degradation, and so VRN2 levels would be high. For the vrn2-5 prt6-1 mutant 

the prediction was that it would most likely act as the vrn2-5 single mutant and 

flower later temporally (number of days) and developmentally (number of 

leaves) as there would be low VRN2 levels. It was also predicted that late 

flowering plants would have more leaves as it is well established that late-

flowering plants form more leaves at flowering time (Koornneef et al., 1991). 

The different vernalization lengths could be then used with the flowering 

responses over time in the four lines to provide a definitive link between the 

N-end rule, VRN2 and flowering. 

 

Seeds were cleaned and plated onto ½ MS and stratified at 5 °C. then 

seedlings were placed into soil. There were 6 plants of each genotype in each 

tray and 5 trays in total. Each tray of seedlings was grown under a different 

vernalization treatment, either 0, 1, 2, 3 or 4 weeks vernalization at 5 °C 

before moving to 22 °C with long days. Flowering time was estimated by 
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calculating the average total leaf number in the rosette and also by calculating 

the average number of days until bolting.  

 

Here, the increasing the length of vernalization treatments reduced the length 

of time plants took to flower in all four lines (FIGURE 3.12 A and B), however 

this response was slower in the vrn2-5 and vrn2-5 prt6-1 lines when 

compared to WT. The vrn2-5 prt6-1 plants showed a significant delay in 

flowering at 0 weeks vernalization when scoring days to flowering (FIGURE 

3.12 A). With 0 weeks vernalization prt6-1 showed a similar delay in days to 

flowering but as vernalization increased to 2 and 3 weeks the prt6-1 single 

mutant shows a significant decrease in flowering time to vrn2-5 with the vrn2-

5 prt6-1 double being somewhere in-between. The general trend observed is 

that vrn2-5 and vrn2-5 prt6-1 mutants flower later than prt6-1 and Col-0 FRI-

Sf2. The vrn2-5 prt6-1 mutants flowers at a significantly higher number of 

leaves than the other lines under non-vernalized long day conditions (FIGURE 

3.12 B). This result is similar to the vrn2-5 prt6-1 in Col-0 but in Col-0 FRI-Sf2 

the affect is more pronounced.  

 

Overall, the trend appears to be as predicted; that vrn2 and prt6-1 vrn2-5 

mutants flower later than Col-0 FRI-Sf2 and prt6-1 lines, although there is not 

a statistically significant difference between flowering with all treatments, 

possibly due to the number of plants used. A previous study showed that 

vrn2-1 in Col-0 FRI-Sf2 did not respond to vernalization treatments (Gendall 

et al., 2001) but in this experiment these plants still respond to vernalization, 

taking less time to flower with increased length of vernalization. The previous 
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study was on the mutant allele vrn2-1 but in this study we have identified the 

new mutant allele vrn2-5 which is in a similar location on the gene. As the 

plants in this experiment do respond to vernalization, this suggests that vrn2-5 

is not a complete functional knockout and there may still be some functional 

VRN2 (i.e. truncated) produced in these plant lines. 
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A. 

 
B. 

 
FIGURE 3.12 Flowering time of vrn2-5, prt6-1 and vrn2-5 prt6-1 plants in 
Col-0 FRI-Sf2 
 
Flowering time as measure by average number of days to flowering and 
average rosette leave number at flowering. Error bars indicate SEM and 
letters represent ANOVA (Tukey’s test). 
(A) Differences in rosette leaf number are more pronounced at 0 weeks where 
the vrn2-5 prt6-1 double mutant flowers significantly later than the other lines. 
(B) Flowering time is decreased with increased vernalization when scoring 
days to flowering. vrn2-5 and vrn2-5 prt6-1 plants flower significantly later 
than Col-0 and prt6-1 with 2 weeks vernalization.  
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3.6.3 Is VRN2 involved in abiotic stress responses? 
 
Plants are sessile organisms and are subject to fluctuations in their 

environment. Some environmental changes can be extreme or sudden and a 

plant has to sense and respond to these changes in order to survive. Abiotic 

stresses such as flooding, salt and heat can have a negative effect on the 

growth and development of plants, can cause premature flowering and can 

have a negative impact on the quality and yield of crops. Recent work has 

shown that the Cys/Arg N-end rule pathway is a general sensor of abiotic 

stress via its capacity to sense oxygen and NO (Vicente et al., 2017). It was 

shown that N-end rule regulation of the stabilization of ERFVII transcription 

factor substrates can regulate the stress response by interaction with 

chromatin remodelling proteins. As VRN2 is a sensor of oxygen and nitric 

oxide and is also regulated by the N-end rule pathway it was hypothesized 

that VRN2 might have a role in abiotic stress response and enhanced plant 

survival, similar to the ERFVIIs.  

 
3.6.3.1 Heat stress 
 
	
One stress a plant may experience is heat. A large number of genes that are 

induced or repressed by heat have been identified but uncovering heat stress 

response phenotypes has proved difficult (Yeh et al., 2012). The function of 

some heat stress response genes might be obscured due to gene redundancy 

problems, which prevents the identification of stress sensors (Zhu, 2016). 

Vicente et al. (2017) showed that increased thermotolerance caused by prt6 

was diminished by the removal of ERFVII (N-end rule substrate) function, 

demonstrating that ERFVIIs are required for the enhanced thermotolerance 
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shown in prt6. A potential role for the Cys/Arg N-end rule substrate VRN2 in 

abiotic stress tolerance was thus explored, initially testing heat stress 

tolerance. Plants have diverse mechanisms to respond to temperature 

changes in the environment and have a complex regulatory network of 

proteins in response to heat stress (Zhu, 2016). There is post-translational 

regulation of certain proteins, causing histone modifications and chromatin 

remodelling that enable plants to acquire thermotolerance and epigenetic heat 

stress ‘memory’ (Ohama et al., 2017). Four distinct types of plant 

thermotolerance have been identified which are Basal thermotolerance (BT), 

Short term acquired thermotolerance (SAT), Long-term acquired 

thermotolerance (LAT) and thermotolerance to moderately high temperatures 

(TMHT), suggesting diverse mechanisms are present in plants to respond to 

temperature changes (Yeh et al., 2012). Further motivation to investigate a 

potential role for VRN2 in heat responses, in addition to ERFVIIs, came from 

an accidental observation that vrn2-5 and vrn2-5 prt6-1 mutants had 

increased survival relative to prt6-1 when the growth chamber malfunctioned 

and overheated (to temperatures ~35 °C although the exact temperature was 

unknown) (FIGURE 3.13). It was therefore decided to investigate heat stress 

with the vrn2-5 and prt6-1 lines we had generated.  
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FIGURE 3.13 vrn2-5 and vrn2-5 prt6-1 mutants are more heat tolerant 
than prt6-1 
 
Image of heat-stressed mature plants when the incubator reached 
temperatures over 35°C for 3 days. Colored squares surround each plant line. 
Green – Col-0, yellow – vrn2-5, red – prt6-1, blue – vrn2-5 prt6-1. 
vrn2-5 and vrn2-5 prt6-1 plants are larger with green leaves whereas prt6-1 
plants are dry, brown and shriveled. 
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It was decided to first test Basal thermotolerance (BT) (the ability to withstand 

a non-lethal heat stress) in the four lines in the Col-0 FRI-Sf2 background. 

Seeds were surface sterilized and plated on ½ MS in round Petri dishes. 

Seedlings grown at 22 °C Long days for five days and then subject to 44 °C in 

an incubator for 26 min and then returned to the 22 °C growth chamber. 

Plants were scored after a further 13 days and were assessed to be alive if 

they were green and dead if they were bleached (FIGURE 3.14 B shows an 

example of green and bleached seedlings but there was high variability 

between plates). Although there was no significant difference between lines, 

the prt6-1 (where VRN2 protein levels would be high) appeared to show some 

indication of a tolerance to BT heat stress compared to vrn2-5 and vrn2-5 

prt6-1 (where there would be low VRN2 protein levels) (FIGURE 3.14 A). The 

results here show that the vrn2-5 and the vrn2-5 prt6-1 mutants had a lower 

BT and were sensitive to BT heat stress. This is a similar result to Vicente et 

al. (2017) where at 44 °C for 23 min and 26 min the prt6-1 and prt6-5 showed 

a very high BT. This result supports the hypothesis that stabilized N-end rule 

substrates such as VRN2 may have a role in heat stress tolerance because 

without the E3 ligase, high VRN2 levels could increase the BT in these plants. 

Although PRT6 does have the ERFVIIs and other unknown substrates, the 

trend in the data suggests a possible link between the N-end rule substrate 

VRN2 and abiotic stress tolerance. 

	
Although the BT test did not show statistically significant differences between 

genotypes, average survival still suggested some promise, so it was decided 

to continue further experiments to test the acquired thermotolerance. Due to 

time constraints only the SAT (the plant’s capacity to acquire thermotolerance 
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to a normally lethal heat stress by preconditioning with a milder heat stress) 

was tested with four repeats. Lines with the Col-0 background and lines with 

the Col-0 FRI-Sf2 background were tested. Seeds were cleaned and plated 

onto ½ MS round Petri dishes and grown under long days at 22 °C. They 

were then moved to 37 °C for 1 h, returned to 22 °C for 2 h to recover, placed 

at 44 °C for 170 min and then returned to 22 °C. The results were scored after 

a further 13 days. Plants were assessed to be dead if they were bleached. 

Remaining plants that were alive were divided into normal larger, green 

healthier plants and delayed plants that were green but smaller. A previous 

study by Vicente et al. (2017) showed that prt6-1 had a high SAT compared to 

a mutant lacking the ERFVII N-end rule substrates. In contrast, the results of 

this study showed that plants in the Col-0 FRI-Sf2 background lacking PRT6 

or VRN2 did not differ in SAT between lines (FIGURE 3.15 B). However, the 

trend for plants in the Col-0 background was that prt6-1 had a lower SAT 

compared to other lines and the N-end rule substrate vrn2-5 single and vrn2-5 

prt6-1 mutants had higher SAT, similar to WT (FIGURE 3.15 A). This would 

suggest that VRN2 has a negative effect on heat stress response for SAT 

because the plants not expressing VRN2 have higher survival percentages. 

This is in contrast to VRN2 having a possible positive role with BT but is 

possible, as the stress response in plants is so complex. These are however 

only preliminary results and further repeats need to be done with these 

experiments and also to investigate LAT and TMHT responses in these lines.  

 

 

 



Chapter	3	The	relationship	between	the	N-end	rule	pathway	and	VRN2	function	
	

	 127	

 

 

 

 

FIGURE 3.14 Basal thermotolerance response of Arabidopsis seedlings 
to heat stress treatment:  
 
BT, basal thermotolerance 44 °C for 26 min. 
(A) A graph showing prt6-1 plants have higher BT than the FRI-Sf2 WT, vrn2-
5 or vrn2-5 prt6-1 mutant plants. 
(B) Image showing 7-week-old seedlings put under heat stress of 44 °C for 26 
min. Green plants were scored alive and white plants were scored dead. In 
this example plate prt6-1 has more plants that survived the BT test. 
Error bars indicate SEM. 
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FIGURE 3.15 Short term acquired thermotolerance of Arabidopsis 
seedlings to heat stress treatments:  
 
(A) SAT (short-term acquired thermotolerance) in Col-0 background. prt6-1 is 
sensitive to the 44 °C heat stress whereas vrn2-5 and vrn2-5 prt6-1 mutants 
have on average a higher percentage of normal and delayed plants and 
therefore a higher SAT. 
(B) SAT in Col-0 FRI-Sf2 background. Plant lines show no statistical 
difference in SAT, as averages numbers of plants alive, delayed or dead are 
similar. 
Error bars indicate SEM. 
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3.6.3.2 Salt stress 
	
The salinity of the soil plants grow in has a great effect on their development 

(Ma et al., 2015). In many plant species flowering is delayed when the plant 

experiences salt stress (Van Zandt and Mopper, 2002) and it is known that 

high salt levels delay the onset of flowering in A. thaliana (Achard et al., 

2006), although the molecular mechanisms behind this remain largely 

unknown. The N-end rule has previously been linked to salt stress response 

via the ERFVIIs (Vicente et al., 2017) so here it was decided to see if VRN2 

was also involved. Salt stress was applied to WT, vrn2-5, prt6-1 and vrn2-5 

prt6-1 lines in Col-0 background to ascertain if there is a link between the N-

end rule regulation of VRN2 in tolerance to salinity stress.  

 

Seeds were sterilized, placed onto soil and grown under optimal conditions 

(22 °C, long days) for 12 days. For the initial experiment 6 plants were grown 

from each line and staggered across the tray so lines were spread evenly. 

One tray was then watered twice a week with 600 ml 200mM NaCl solution, 

whilst the other tray was watered as usual with water. Plants watered with 

water were all healthy, green and had started to flower. From the images 

taken of plants watered with salt water (FIGURE 3.16) it appeared that the 

vrn2-5 prt6-1 double mutants (highlighted in yellow) were more salt tolerant, 

as the general trend is that these plants are larger and greener. The vrn2-1 

single mutant plants (highlighted in blue) were larger but do show browning 

and drying of the leaves. erfvii were not salt tolerant, similar to (Vicente et al., 

2017). However, single prt6-1 mutants showed little to no tolerance to salt 

stress, in contrast to the results in Vicente et al. (2017) where they observed a 
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significant increase in prt6-1 seedling survival in the NaCl treated plants. It is 

unclear whether the salt tolerance in vrn2-5 prt6-1 is caused by VRN2, PRT6, 

or both, as there was no observable difference in tolerance between the 

single mutants. Further study needs to be done to see if this result can be 

repeated and to see if VRN2 does or does not have a role in the salt stress 

response. It is also difficult to see the differences between the WT and ERFVII 

lines by images alone, so further work is needed to produce quantifiable 

results perhaps by scoring conductivity (electrolyte leakage) of the leaves of 

these plants so they can be compared by statistical analysis.  
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FIGURE 3.16 vrn2-5 prt6-1 double mutants are more tolerant to salt 
stress 
 
An image of 4-week-old seedlings. Seedlings were watered twice a week with 
600 ml 200 mM NaCl. Orange tags – Col-0, Blue tags – vrn2, Green tags – 
prt6, Yellow tags – vrn2-5 prt6-1, Pink tags – ERFVII (rap2.12 rap2.2 rap2.3 
hre1 hre2) mutants. Green and large plants were considered tolerant, 
whereas brown withered seedlings were intolerant to salt. 
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3.7 Discussion 

 

Western blotting confirmed that VRN2 is stabilized in the presence of 

bortezomib in vitro, supporting the hypothesis that VRN2 is targeted by the 

26S proteasome. VRN2 was stabilized when the cysteine of the Nt MC is 

mutated to an alanine, highlighting the importance of cysteine as a 

destabilizing amino acid residue at the N-terminus in the Cys/arg N-end rule 

pathway. Stabilization of VRN2 in prt6-1 and ate1ate2 mutants in planta also 

supports the hypothesis that VRN2 is regulated by the N-end rule pathway.  

 

Histochemical staining of 7-day old seedlings demonstrated that VRN2-GUS 

is present at high levels in the vasculature and meristems of WT plants but is 

present throughout MA-VRN2-GUS, prt6-1 and ate1ate2 seedlings. 

Furthermore, VRN2-YFP confocal images show that VRN2 is located in the 

nucleus of roots tips in both the Col-0 and prt6-1 plants, which agrees with 

previous reports that VRN2 modifies chromatin by placing the H3K27me3 

mark on FLC and other targets. However, further work with VRN2-YFP lines 

needs to be carried out to confirm VRN2 localization in other plant tissues, as 

some images suggest that VRN2 may be cytosolic further from the root tip, 

but the results were not conclusive. There was also no clear difference 

between Col-0 and prt6-1 in the confocal images despite the differences being 

observed by western blot so future work could include quantification measure 

of YFP intensity.  
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VRN2 stability increases with increased length of vernalization treatment, but 

it was unstable when the plants were returned to optimal conditions. A new T-

DNA insertion mutant allele of VRN2 was isolated (vrn2-5) and this was used 

to generate vrn2-5, prt6-1 and vrn2-5 prt6-1 lines in a vernalization requiring 

background Col-0 FRI-Sf2 to examine the functional relevance of VRN2 

regulation by the N-end rule. Flowering time assays showed that in general 

the vrn2-5 and vrn2-5 prt6-1 lines flowered later than prt6-1 and WT plants in 

the Col-0 background. In addition, vrn2-5 and vrn2-5 prt6-1 plants also 

flowered later in the vernalization-requiring Col-0 FRI-Sf2 background. These 

results support the prediction that plants with low VRN2 levels would flower 

later and plants with high VRN2 levels would flower earlier than WT. All lines 

responded to vernalization although the general trend for but vrn2-5 and vrn2-

5 prt6-1 mutants was that they responded slower than Col-0 FRI-Sf2 or prt6-1 

plants. The fact that vrn2-5 mutants still respond to vernalization was not as 

predicted. This may mean that there is still functional VRN2 protein (perhaps 

truncated) present in the newly identified vrn2-5 mutant. More repeats need to 

be done on the flowering time experiment to see if this may be the case. More 

PCR and cDNA analysis in the Col-0 FRI-Sf2 plants can confirm if the gene is 

a complete knockout or if there are any truncated PCR products and therefore 

truncated protein fragments present with possible functionality. Although there 

were 6-10 plants per line in this experiment, more repeats need to be done to 

improve the statistical analysis. The initial results here support the hypothesis 

that VRN2 regulation by the N-end rule pathway is linked to its accumulation 

during vernalization and most likely its effect on flowering time, however the 

experiments should be repeated to confirm this.  
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Phenotypic analysis revealed that VRN2 was not involved in the ABA 

response during germination could be involved in establishment. Recent 

results comparing ERFVII N-end rule substrates and prt6-1 and prt6-5 

mutants by Vicente et al. (2017) showed a role of ERVII in heat stress 

tolerance (BT, SAT, LAT and TMHT). Conversely, we found the preliminary 

heat stress experiments showed almost opposite results in SAT heat stress 

experiments but similar results with BT suggesting VRN2 may have a role in 

heat stress tolerance, but further research needs to be undertaken to include 

more replicates and optimize the heat stress conditions. The preliminary salt 

stress experiment revealed that vrn2-5 prt6-1 mutants appeared more salt 

stress tolerant, but more repeats and quantitative experiments should be 

performed to confirm the link with N-end rule regulation of VRN2 and abiotic 

stress tolerance.  

 

Results in this chapter have confirmed VRN2 is a substrate of the N-end rule 

pathway and established that VRN2 is stabilized under cold vernalization 

conditions. The next aim of the project was to identify a potential mechanism 

causing VRN2 stabilization in the cold. VRN2 is expressed and degraded in 

normal conditions via the N-end rule pathway but in the cold it becomes 

stable. One mechanism could be a cold-specific shielding of the N-terminus 

that prevents post-translational modifications by components of the Cys/Arg 

N-end rule pathway that lead to its degradation. This mechanism and 

approaches use to test this hypothesis are discussed in the next chapter.  
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Investigating a mechanism for VRN2 stabilization 
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4.1 Introduction 
 
In the previous chapter it was determined that VRN2 is stabilized in cold 

conditions. However, the mechanism behind the switch from VRN2 being 

degraded, to VRN2 becoming stable during temperature decreases is 

unknown. An aim of this project was to see if a mechanism for VRN2 

stabilization could be found. Data in chapter 3 show VRN2 is a substrate of 

the N-end rule pathway but substrates of the N-end rule are often only 

targeted conditionally. Some proteins have been shown to be substrates 

usually but then become stable once associated with other proteins in a 

multisubunit protein complex. One such example is the component of 

oligomeric complex 1 (COG1) which is a subunit of the Golgi complex 

(Shemorry et al., 2013). Once in complex with other proteins, the N-terminus 

of COG1 is shielded and the protein is unable to be targeted by the N-end 

rule. When the protein dissociated the N-degron was exposed and so it was 

recognized by its N-recognin and it was degraded. In the case of VRN2, one 

hypothesis could be that another protein interacts with VRN2 and shields its 

N-terminus, stabilizing it during the cold. 

 

It is known that VRN2 suppresses and epigenetically maintains FLC 

repression (Gendall et al., 2001). Work by Sung and Amasino (2004b) 

identified seedlings from mutant screens that could not suppress and maintain 

FLC repression and has highlighted proteins other than VRN2 that are 

involved in vernalization. One of these proteins is VERNALIZATION 1 (VRN1) 

(Levy et al., 2002), a protein only found in plants that possesses DNA binding 

domains. Another protein known to be required in the repression of FLC 
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during vernalization is a plant homeodomain (PHD) finger protein, 

VERNALIZATION INSENSITIVE 3 (VIN3) (Sung and Amasino, 2004b). VIN3 

contains one PHD that is that is usually found in proteins that are involved in 

chromatin remodelling complexes structure (Aasland et al., 1995, Fair et al., 

2001). It has also shown previously that VIN3 interacts with VRN2 in the 

PRC2 complex and that the response to vernalization is blocked in vin3 

mutants, similar to vrn2-5 mutants (Wood et al., 2006). VIN3 also has a 

fibronectin type III domain and these are known to often be involved in 

protein-protein interactions (Main et al., 1992). It is possible therefore, that 

VIN3 shields the N-terminus of VRN2 through interaction during FLC 

suppression. 

 

Transcription of VIN3 is only induced during cold exposure but mRNA is not 

detectable when returned to warm temperatures (Sung and Amasino, 2004b, 

Alexandre and Hennig, 2008). This is similar to the pattern observed for VRN2 

protein stabilization (FIGURE 4.1). VIN3 first appears after 2 weeks of cold 

exposure and reaches a maximum level after 4 weeks of vernalization but is 

not detected in non-vernalized plants (Shindo et al., 2006). VIN3 is known to 

initiate the modification of chromatin structure in FLC and in vin3 knockouts 

FLC is not repressed during vernalization (plants will be late flowering) (Wood 

et al., 2006). However, the constitutive expression of VIN3 does not affect the 

flowering vernalization response phenotype without the cold, therefore other 

proteins must be involved. Epigenetic silencing of FLC requires VIN3, VRN1 

and VRN2 (Wood et al., 2006). It is proposed that VIN3 is responsible for the 

initial FLC suppression and the process to distinguish the length of exposure 
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to cold temperatures and works upstream from VRN1 and VRN2 (Sung and 

Amasino, 2004b). As VIN3 is expressed early in the vernalization response 

before VRN2 becomes stable, it follows that VIN3 could be the factor 

facilitating VRN2 stabilization.  

 

The induction of VIN3 occurs in the shoot and root apical meristems 

(Wellensiek, 1962, Michaels and Amasino, 2000). This correlates with the 

tissues in which VRN2 was found to be most stable (see Chapter 3 FIGURE 

3.6) and is also where FLC suppression occurs during vernalization (although 

FLC can be found in all tissues and then silenced throughout (Sung and 

Amasino, 2004b, Kim and Michaels, 2006, Mylne et al., 2006, Crevillen et al., 

2014)). The meristem was the location where vernalization was first 

recognised as an epigenetic memory (Lang and Melchers, 1947). Like VRN2, 

VIN3 also has a putative nuclear localization signal as part of its structure 

(Sung and Amasino, 2004a) so it is likely to be found in the nucleus at the 

same time as VRN2. Therefore, the cold-induced expression and the 

localization of VIN3 is consistent with the hypothesis that VIN3 has a role in 

VRN2 stabilization. Other findings have revealed that VIN3 interacts with the 

VRN2-PRC2 complex and that this complex is responsible for histone 

deacetylation by VIN3 of FLC (Sheldon et al., 2002, Sung and Amasino, 

2004a) and methylation at FLC by VRN2 (Wood et al., 2006). This is further 

evidence that supports the hypothesis that VIN3 could facilitate VRN2 

stabilisation. For these reasons VIN3 was chosen as a candidate gene to 

research in this study and it was hypothesised that VIN3 may act by shielding 

the N-terminus of VRN2 (FIGURE 4.2), preventing post-translational 
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modifications and thus preventing its degradation by the N-end rule pathway. 

The rest of this chapter will discuss the possibility of VIN3 being the cause of 

VRN2 stabilization. 
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FIGURE 4.1 VRN2 protein becomes stable in the cold at the same time 
VIN3 expression is increased 
 
During varying environmental conditions VRN2 expression remains constant 
and VRN2 protein is degraded via the N-end rule. During vernalization VRN2 
protein levels increase as it becomes more stable. Once returned to warm 
conditions the amount of VRN2 protein becomes unstable and returns to low 
levels. As VRN2 levels increase FLC expression decreases and is 
epigenetically supressed (Song et al., 2012). VIN3 expression increases 
during vernalization at the same time VRN2 becomes stable and it also 
decreases on return to warm conditions (Sung and Amasino, 2004b, Wood et 
al., 2006).  
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FIGURE 4.2 VIN3 interacts with the PRC2 complex in the cold 
 
In warm conditions VRN2 protein is degraded by the Cys/Arg N-end rule 
pathway, VIN3 is not expressed and FLC is active. In cold conditions VRN2 
forms part of a PRC2-like complex that also includes FERTILIZATION 
INDEPENDENT ENDOSPERM (FIE), CURLY LEAF (CLF) and SWINGER 
(SWN). This complex is thought to associate with VIN3 and is involved in 
H3K27me3 epigenetic silencing of the FLC locus (Wood et al., 2006). The 
hypothesis in this study is that when VIN3 interacts with the PRC2 it may 
shield the N-terminus of VRN2, causing VRN2 to become stable.	
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4.2 The effect of VIN3 on VRN2 stabilization in vitro 
 
 

To be a substrate of the Cys/Arg N-end rule pathway a protein must have MC 

amino acids at the N-terminus, a downstream lysine for ubiquitylation and the 

N-terminus needs to be easily accessible on the outside of the protein. I 

hypothesized that VIN3 might shield the N-terminus of VRN2, causing its 

stabilization. To test the effect of VIN3 on VRN2 stability, full length VIN3 

cDNA was cloned in order to co-express VIN3 and VRN2 together in the in 

vitro protein degradation assay.  

 

RNA was extracted from 2 wk vernalized seedlings as VIN3 is not expressed 

normally and cDNA was synthesized from this. Restriction cloning with MluI 

and XbaI was used to ligate VIN3 into pTNT for the in vitro protein 

degradation assay. Following digestion, bands of the correct size were 

observed by gel electrophoresis and sequencing confirmed full length VIN3 

had been cloned. 

 

VIN3-pTNT was co-expressed in vitro with the existing VRN2-pTNT construct 

in a protein degradation assay (Chapter 3, section 3.2) to test whether the 

presence of VIN3 would stabilize VRN2. 500ng each of VIN3 and VRN2 

constructs were mixed in vitro, expressed and translated into protein by 

incubating for 30min. VIN3 + empty pTNT and VRN2 + empty pTNT were also 

mixed and incubated as controls. Cyclohexamide (CHX) was then added (to 

inhibit any more protein synthesis) and samples were taken after 0, 60 and 

120 min. Western blotting with HA anitbody showed that when expressed 
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individually, VIN3-HA was stable over the time course whilst VRN2-HA was 

degraded over time, (confirming previous findings for VRN2 in chapter 3, 

FIGURE 3.4). When VIN3-HA and VRN2-HA were co-expressed then VRN2-

HA was again degraded over time (FIGURE 4.3). This suggests VIN3 is not 

the cause for VRN2 stability in vitro, as VRN2 is still unstable if VIN3 is 

present. However, it was difficult to make comparisons between the single 

and co-expression experiments. Bands were fainter after 120 min for VRN2 

but the extent of its degradation was not clear over that time period. To 

address this, the degradation assay was repeated over a longer time course 

in order to see more clearly if VRN2 degradation was affected by VIN3. VRN2 

with bortezomib (bort) was also included as a control to show that proteasome 

inhibition stabilizes VRN2. Samples were taken 0, 1, 2, 3 and 4h.  

 

The results (FIGURE 4.4) again showed that expressed alone, VRN2 

degrades over the time course, present at a high amount at 0 h and 

decreasing over the 4 hours. Once again, expressed alone, VIN3 levels 

remain constant over the time course. When VRN2 was co-expressed with 

VIN3, VRN2 levels still decreased over time, showing a faint band at 4 h 

compared to 0 h, whilst VIN3 levels remained constant. When bortezomib was 

added, VRN2 protein levels remained high in all experiments, confirming that 

the VRN2 depletion was due to proteasomal activity. These results suggest 

that although VIN3 interacts with VRN2 in the PRC2 complex, it does not 

cause VRN2 stability in vitro. The results do not support the hypothesis that 

VIN3 shield the MC terminus of VRN2, preventing ubiquitylation and 

degradation. However, the interaction between VRN2 and VIN3 may require 
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the presence of other proteins that are not present in this lysate system or 

may require specific environmental conditions to take place. 

 

As VIN3 and VRN2 co-expression did not produce conclusive results, another 

method was used for detecting a stabilizing effect of VIN3 on VRN2 in vitro. 

Firstly, VIN3 was expressed in vitro for 1 h in order to produce high levels of 

VIN3 protein present. The products of this reaction were then added to the 

VRN2pTNT reactants at the beginning of VRN2 incubation. This would ensure 

that VIN3 would be present right from the beginning of VRN2 synthesis to see 

if VIN3 has any effect post-translationally and would mimic natural VIN3 

expression upstream from VRN2 (Sung and Amasino, 2004b). The rabbit 

reticulocyte reaction containing VIN3-HApTNT or empty pTNT vector control 

reaction was incubated for 1h. Another reaction was then set up using 

VRN2pTNT and mixed with the pre-synthesized VIN3pTNT/empty PTNT 

reaction. This reaction was incubated for 30min before the addition of CHX 

and samples were taken at 0, 2 and 4h. Western blotting with HA antibodies 

showed that even though there were strong bands indicating high levels of 

VIN3, VRN2 levels still decreased over time, with decreasing abundance of 

protein present over the 4 h time course (FIGURE 4.5). In the control where 

pTNT only was added to VRN2, there was less VRN2 present to begin with 

but the results showed a similar pattern of VRN2 degradation over time. The 

Coomassie stain shows that the results are due to VRN2 depletion and not 

loading errors. These results do not support the hypothesis that VIN3 causes 

VRN2 stabilization in vitro. 
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FIGURE 4.3 VRN2 levels decrease irrespective of VIN3 co-expression in 
vitro 
 
Western blot with HA antibody showing an in vitro cyclohexamide (CHX) 
chase in a rabbit reticulocyte lysate system. VIN3-HA levels are consistent 
over the time course whereas VRN2-HA is degraded over time. When VIN3 
and VRN2 are in the same reaction VRN2 is still degraded, meaning it is 
unlikely VIN3 is the cause of VRN2 stability during vernalization. Coomassie 
shows equal protein loading. 
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FIGURE 4.4 VRN2 is degraded over a 4 hour period in the presence of 
VIN3 in vitro 
 
Western blot showing an in vitro cyclohexamide (CHX) chase. VIN3-HA levels 
are consistent over the time course whereas VRN2-HA is degraded over time. 
In the presence of bortezomib VRN2-HA becomes stable. When VIN3 and 
VRN2 are in the same reaction VRN2 is still degraded over the time course to 
low levels, indicating VIN3 does not affect VRN2 stability. Coomassie shows 
equal protein loading. VIN3-HA is 90kDa. VRN2-HA is 58kDa. 
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FIGURE 4.5 VRN2 is degraded over a 4 hour time course in vitro in the 
presence of high levels of pre-synthesized VIN3  
 
Western blot showing an in vitro cyclohexamide (CHX) chase. Pre-
synthesised VIN3 was added to the reaction from the beginning and empty 
pTNT vector was used in the control reaction. VIN3-HA levels are consistent 
over the time course whereas VRN2-HA is degraded over time. When VIN3 
and VRN2 are in the same reaction VRN2 is still degraded over the time 
course to low levels, indicating VIN3 does not affect VRN2 stability. 
Coomassie shows equal protein loading. VIN3-HA is 90kDa VRN2-HA is 
58kDa. 
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4.3 The effect of VIN3 on VRN2 stabilization in vivo 
 
 
Although VIN3 was not seen to stabilize VRN2 in vitro, it might not be the 

case in vivo. This could be due to limitations of the rabbit reticulocyte lysate 

system. The rabbit system enzymes are not identical to plant enzymes, thus 

plant PRT6 may be more sensitive to Nt-shielding, or VIN3 and VRN2 may 

require other protein modifications not present in this system for the 

interaction. The HA tags at the C-terminus of the proteins could block VIN3 

shielding of the VRN2 N-terminus and other PCR2 complex proteins may be 

required for VIN3 to shield the Nt-MC of VRN2. Therefore, the effect of VIN3 

on VRN2 stabilization was investigated in vivo. To do this an estradiol 

inducible VIN3 construct was produced. This enabled comparison of 

uninduced and induced plants to test the effect of conditional VIN3 expression 

on VRN2 stability in vivo.  

 

In order to clone VIN3, seedlings were exposed to 2 weeks of vernalization, 

since VIN3 is only induced in the cold, and the plant T-RNA was extracted for 

cDNA synthesis. PCR was used to add the attB sequence to the VIN3 coding 

sequence so it could be used in Gateway cloning (the addition of the HA tag 

by PCR was unsuccessful). The successful PCR amplicon was purified using 

PEG and the BP Gateway reaction was performed in order to insert VIN3 into 

the pDONR221 vector. The correct insert was confirmed by restriction digest 

with BsrGI restriction enzyme and also confirmed by sequencing using M13 F, 

M13 R primers. VIN3 was mobilized from pDONR221 into per8GW (Coego et 

al., 2014) by the LR reaction and correct constructs were confirmed with 
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restriction digest. The per8GW vector allows manipulation of VIN3 expression 

as it allows VIN3 expression to be induced by estradiol. The estradiol is a way 

of inducing VIN3 without needing cold treatment as the vector contains the 

XVE estrogen receptor that mediates inducible gene expression (Zuo et al., 

2000). 

 

The per8GW-VIN3 construct was transformed into Agrobacterium 

tumefaciens (strain GV3101pMP90) and then dipped into A. thaliana. 

Transgenic MC-VRN2-FLAG lines in a Ler vrn2-1 fca-1 background were 

used, as these contain FLAG-tagged VRN2 and would allow detection of 

VRN2 levels following VIN3 induction. The MC-VRN2-FLAG lines were 

selected until plants were homozygous for the VIN3 insert (see methods 

section 2.2.6). At least one individual from three different independent lines 

(1A, 2E, 5 B/C/E) showed 100 % hygromycin resistance. Seedlings of these 

lines along with VRN2-FLAG control were grown for 6 days and then treated 

with either DMSO control or with DMSO + estradiol in liquid MS for 24 h and 

then frozen in liquid nitrogen prior to protein extractions. Western blotting 

(FIGURE 4.6) showed that there was a possible stabilization of VRN2 in 

estradiol-treated plants in all lines, with 2E and 5E showing the most 

promising results. However, it was not conclusive as there was only slight 

variation in the intensity of the protein band for 1A, 5B and 5C for this 

preliminary blot, cDNA analysis was not done as this experiment was 

repeated for lines 1A, 2E and 5E with the inclusion of material collected for 

cDNA analysis to confirm VIN3 expression. 
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The estradiol treatment was repeated with lines 1A, 2E and 5E, collecting 

samples at 24, 48 and 72 h to see the effect of length of VIN3 induction on 

VRN2 stability. The samples were put on a moving plate to ensure even 

distribution of estradiol to all seedlings. Once again, seedlings were frozen in 

liquid nitrogen, this time samples were split into two, for protein and RNA 

extractions. There was no tag for the VIN3 so expression could only be 

detected by reverse transcription (RT)-PCR. cDNA was synthesized from 

RNA and PCR was performed using VIN3 specific primers to confirm VIN3 

induction by estradiol treatments.  

 

For 24 h estradiol treated seedlings the RNA analysis showed VIN3 

expression was not detected in untransformed VRN2-FLAG plants (FIGURE 

4.7). The VRN2-FLAG plants do not have VIN3 as they haven’t experienced 

cold. VIN3 transcript levels were similar in all estradiol-induced plants, 

although estradiol treatment did induce more VIN3 expression in lines 1A and 

2E compared to plants not treated. The transgenic plants containing the VIN3 

construct show VIN3 expression with or without estradiol treatment, indicating 

there is some ‘leaky’ expression of VIN3 at low levels all the time so it is 

difficult to assess if this is having an effect on VRN2. ACTIN2 and VRN2 were 

included as controls and bands shows consistency across treatments, so any 

effect on protein stability would be post-translational (i.e. not transcriptional). 

ACTIN2 expression appeared to be slightly varied but this could have been 

due to variations in cDNA production and the amount of template present. The 

western blot showed no difference in VRN2-FLAG stability between estradiol 

treated or non-treated seedlings, i.e. with or without VIN3 induction. In line 2E 



Chapter	4	Investigating	a	mechanism	for	VRN2	stabilization	
	

	 151	

there appeared to have some increased stability of VRN2 with estradiol. 

However, in the absence of the VIN3 construct VRN2 also appeared to 

increase with estradiol treatment (FIGURE 4.7), although the coomassie did 

show slightly more loading here. The results do not support the hypothesis 

that VIN3 is the cause of VRN2 stability. 

 

Finally, a cyclohexamide chase was conducted on the estradiol inducible 

VRN2 line 2E with VRN2-FLAG (with no inducible VIN3) as a control with 24 h 

+/-estradiol treatment. Cyclohexamide was added and samples were then 

taken 0, 2, 4 and 8 h. cDNA analysis shows that VIN3 is not expressed in the 

VRN2-FLAG line and VIN3 is expressed in 2E only with the addition of 

estradiol (FIGURE 4.8). Western blotting showed that VRN2 levels remain 

fairly constant through the time course in all treatments. Estradiol treatment 

does not cause higher VRN2 levels in line 2E but does in the control, which is 

not as expected. Estradiol should not have an effect on VRN2 levels in the 

control. The presence of VIN3 in estradiol treated plants (2E) does not cause 

an increase in VRN2 stabilization over time. Overall the results do not support 

the hypothesis that VIN3 causes VRN2 stability by shielding the N-terminus in 

vivo, which confirms observations from the in vitro assay. 
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FIGURE 4.6 VRN2 protein stability in estradiol inducible VIN3 lines 
 
Estradiol inducible VIN3 lines were treated with estradiol in ½ MS solution for 
24 h. Results show that VRN2 was present at higher levels in line 2E and 5E. 
In 1A, 5B and 5C the VRN2 levels appeared to be similar +/- estradiol. VRN2 
was more stable in the control without estradiol. VRN2-FLAG is 70kDa. 
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FIGURE 4.7 VRN2 is not more stable in the presence of VIN3 in vivo 
 
Western blot of VRN2-FLAG in seedlings expressing VIN3 driven from an 
estradiol inducible promoter, +/- estradiol showed that VRN2 levels did not 
increase in the presence of VIN3, indicating VIN3 is unlikely to be the cause 
of VRN2 stability in vivo. RT-PCR from total mRNA extracted from +/- 
estradiol treated seedlings showed that VIN3 was induced more in lines 1A 
and 2E, although VIN3 was still expressed in seedlings not treated with 
estradiol. RNA levels of VRN2 and ACTIN2 are also shown. Coomassie show 
equal protein loading. 
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FIGURE 4.8 Ectopic induction of VIN3 does not stabilise VRN2 
 
Western blot of VRN2-FLAG in seedlings expressing VIN3 driven from an 
estradiol inducible promoter, +/- estradiol, sampled at 0, 2, 4 and 8 h after the 
addition of cyclohexamide.  VRN2-FLAG levels appear constant across the 
time course. There is more VRN2-FLAG present in estradiol treated control 
seedlings as well as in inducible VIN3 2E seedlings. RNA levels of VIN3 at 0 h 
are also shown. These results suggest VIN3 is not causing the stabilization of 
VRN2 in vivo. 
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4.4 vin3 mutant confirmation 
	
 

As VIN3 was a focus in this project, vin3 T-DNA mutant seeds were ordered 

from NASC (SALK_004766). If a role for VIN3 in the stabilization of VRN2 had 

been demonstrated, then further experiments could have been done using 

vin3 mutant plants.  These resources could however, still be useful in future 

experiments to study vin3 phenotypes in flowering, and possibly in cHIP 

experiments to see how the mutant affects methylation at FLC.  

 

In order to genotype the seedlings, primers were designed to the left border 

and right border of the T-DNA insert and one from the middle of the insert. 

PCR confirmed the SALK_004766 T-DNA mutant was homozygous for vin3 

(FIGURE 4.9). Homozygous plants were grown under 2 weeks vernalization 

and leaf samples taken. Total RNA was extracted and cDNA synthesized. The 

cDNA analysis using PCR primers from the start and end of the CDS confirms 

a total gene knockout. The vin3 mutants have been crossed with MC-VRN2-

GUS (in Ler), MC-VRN2-FLAG (in Ler) and prt6-1 (in Col-0), and seeds have 

been collected. These were to be used in future experiments to study VRN2 

localization and VRN2 stabilization if VIN3 did have an effect on VRN2 

stability, with the hypothesis being that if VIN3 stabilized VRN2, then VRN2-

FLAG would not accumulate in the cold in the vin3 mutant. As there was lack 

of evidence to support the hypothesis that VIN3 shielded the N-terminus of 

VRN2 (FIGURES 4.3, 4.4, 4.5, 4.6, 4.7, 4.8) this line of work was not 

continued.  
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FIGURE 4.9 Confirmation of vin3 mutant in Col-0 
 
PCR from the left and right border and including the tDNA insert confirms the 
vin3 mutant using genomic DNA. 
Full length PCR from cDNA also confirms the vin3 total knockout mutant. 
ACTIN7 PCR was used as a control.  
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4.5 Discussion 

 

The data in the previous chapter revealed that the N-end rule pathway 

restricts VRN2 accumulation under non-vernalizing conditions but VRN2 

levels are enhanced during vernalization. The increase in VRN2 levels cannot 

be explained by changes in PRT6 expression, which remains unchanged 

during vernalization (Gibbs unpublished). In this chapter one possible 

mechanism behind VRN2 accumulation and stabilization was explored. VIN3 

is transcriptionally induced by low temperatures and is known to interact with 

the VRN2-PRC2 complex and so the hypothesis that VIN3 might protect 

VRN2 from degradation through shielding the N-degron was conceived. 

However, VRN2-HA remained unstable during in vitro protein degradation 

assays where VRN2 and VIN3 were co-expressed and when VIN3 was 

synthesized and subsequently mixed with the VRN2 reaction. In the in vivo 

experiment, it was found that ectopic expression of VIN3 under the control of 

an estradiol inducible promotor was insufficient to stabilize VRN2-FLAG. 

Thus, there was no evidence to support the hypothesis that VIN3 prevents 

VRN2 degradation.  

 

There are other genes that have been found to be up-regulated in the cold 

and downregulated on return to warm conditions such as ALCOHOL 

DEHYDROGENASE1 (ADH1) (Jarillo et al., 1993) and PLANT CYSTEINE 

OXIDASE1 (PCO1) (Gibbs et al., 2018). These genes behave in a similar 

manner as VIN3. Perhaps one of these proteins is responsible for VRN2 N-

degron shielding, although there is not yet evidence of them interacting with 
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VRN2. Some cold-responsive genes are also up regulated during hypoxia 

(Gibbs et al., 2018). Perhaps VRN2 is stabilized due to shielding by one of the 

genes induced by hypoxia. Alternatively, as VRN2 is regulated by the gas 

sensing Cys/Arg N-end rule pathway, it could be stabilized due to the fact 

there are low oxygen and nitric oxide levels during vernalization, and so the 

gas-sensing step is prevented, halting VRN2 degradation. A recent 

investigation supporting this theory has independently tested this hypothesis 

and evidence suggests that there is a connection between the cold and 

hypoxia signalling that may explain why VRN2 is stabilized (Gibbs et al., 

2018). The mechanism that leads to VRN2 stabilization has yet to be 

determined in full and further study is needed to verify the link between cold 

temperatures and the low oxygen signalling pathway. 

 

The vin3 T-DNA mutant SALK_004766 was confirmed by PCR and RT-PCR 

and this was crossed with MC-VRN2-GUS and MC-VRN2-FLAG to produce 

seeds that could be used in future experiments examining the effects of vin3 

plants on VRN2 stability and localization. Whilst this work has not found 

evidence to support the hypothesis that VIN3 shields the N-degron of VRN2, 

there still is further work required to see if there is N-degron shielding by an 

alternative protein, whether hypoxia is the cause of VRN2 stability, whether 

decreased PCO activity leads to VRN2 stabilization during vernalization (as 

has recently been proposed by Gibbs et al., (2018), or there is another 

mechanism we have not yet identified. In the previous chapter VRN2 was 

confirmed to be the only Su(z)12 homologue in plants to be a substrate of the 

Cys/Arg N-end rule pathway (Figure 3.4). The final aim of this project is to see 
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how VRN2 evolved to become part of the N-end rule pathway and this is 

discussed in the next chapter. 
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5.1 Introduction 

 

The PRC2 complex is highly conserved among plants and animals (Hennig 

and Derkacheva, 2009). Plant Su(z)12-like proteins, VRN2, EMF2 AND FIS2 

(Su(z)12-like proteins) associate with the other core protein components to 

make different PRC2 complexes (FIGURE 1.8) targeting different gene 

networks. VRN2 is part of the PRC2 complex targeting vegetative 

development, associating with SWINGER (SWN), FERTILIZATION 

INDEPENDENT ENDOSPERM (FIE) and MULTICOPY SUPPRESSOR OF 

IRA1 (MSI1) proteins (Wood et al., 2006, De Lucia et al., 2008). In this 

chapter the evolution of VRN2 is discussed, investigating how VRN2 became 

co-opted to the N-end rule pathway, introducing a novel function for the PRC2 

complex. This will enable us to examine how the N-end rule pathway 

regulation of the VRN2 by the N-end rule pathway has played a part in plant 

development and evolution through the coupling of VRN2 stability to 

environmental sensing. 

 

Gene duplications are a major contributor to genome evolution, increasing 

genetic diversity, potentially having an effect on morphology and physiology 

and bringing about novel phenotypes (Soltis and Soltis, 2016). Whole genome 

duplications are common in plants and result in plants with multiple sets of 

their genomes (polyploids), for example the modern wheat variety Triticum 

aestivum possesses 3 genomes (AABBDD), an allopolyploid (six copies of its 

genome make this a hexaploid) (Qiu et al., 2017a).The most recent polyploidy 

event in evolutionary history is specific to Brassicas (Qiu et al., 2017b). 
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Duplication of a gene can result in divergence of that gene, the ancestral 

function of the gene is lost or altered and a novel function or regulation is 

acquired (Moore and Purugganan, 2005). Chen et al. (2009) proposed that 

the VEF-domain gene family consisting of VRN2, EMF2 and FIS2 has arisen 

as the result of gene duplication and subsequent diversification of gene 

sequences leading to the divergence between plants and animals. 

 

The Polycomb Group (PcG) proteins were originally characterized in 

Drosophila and they epigenetically regulate gene expression by forming 

complexes that repress target genes (Chen et al., 2009). VRN2 (found in 

plants) is a homologue of Su(z)12, a PcG protein that is found in animals 

(Butenko and Ohad, 2011). Su(z)12 forms a complex with Extra sex combs 

(Esc), P55 and Enhancer of zeste (E(z)) to form the PRC2 complex 

(Kuzmichev et al., 2002, Muller et al., 2002). VRN2 forms the PRC2 complex 

with SWN (homologous to E(z)) (Chanvivattana et al., 2004), FIE 

(homologous to ESC) (Ohad et al., 1999) and MSI1 (homologous to p55) 

(Hennig et al., 2003). In Drosophila there is only one Su(z) 12 but in 

Arabidopsis there are three homologues; VRN2 (Gendall et al., 2001), EMF2 

(Yoshida et al., 2001) and FIS2 (Ohad et al., 1999).  VRN2, EMF2 and FIS2 

can all form part of a PcG complex but they have all evolved to target different 

gene networks. As mentioned previously (chapter1.4.4), of the three Su(z)12 

homologues found in plants, VRN2 is the only homologue that begins with an 

MC-terminus and the only one found to be regulated by the Cys/Arg N-end 

rule pathway.  
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The N-end rule pathway is found in species other than plants but VRN2, along 

with ERFVIIs are the only N-end rule substrates found in plants to date 

((Licausi et al., 2011, Gibbs et al., 2014b)). The aim of this part of the study 

was to investigate whether MC-initiating Su(z)12s) (VRN2-like proteins), exist 

in flowering plants other than Arabidopsis by analysing and aligning Su(z)12-

like protein sequences from a range of species. It was previously considered 

that a VRN2 protein was only found in Brassicaceae (Chen et al., 2009). By 

doing this analysis, VRN2-like proteins regulated by the N-end rule might be 

identified in plants other than dicots. Adding more ancient plants such as 

gymnosperms and mosses to the alignments may also identify when and how 

VRN2 and VRN2-like MC-initiating Su(z)12 variants evolved. Further, part of 

the mechanism behind gaining novel N-end rule substrates was investigated 

by observing if changing the N-terminus of a protein to an MC would bring it 

under N-end rule regulation. If possible, it may have implications in controlling 

stress tolerance, flowering and other important pathways in crop plants to 

improve their vigour and yields.  
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5.2 Sequence alignments of putative EMF2 and VRN2-like protein 

sequences from diverse land plants species 

 

VRN2 has been proposed to have evolved following the duplication of an 

ancient EMF2-like gene, resulting in a new Su(z)12 homologue in the dicots of 

the Brassicacea family (Chen et al., 2009). It has also been suggested that 

FIS2 evolved from VRN2 in the same way (Qiu et al., 2017b). EMF2-like 

protein sequences (orthologous genes evolved from a common ancestral 

EMF2-like gene) from diverse clades of angiosperms were identified by 

BLAST searches using Arabidopsis VRN2 and EMF2 proteins as a reference. 

These sequences were then aligned with Clustal Omega and it was observed 

that many of them have an internal MC amino acid sequence ~20 amino acids 

downstream of Met1 (FIGURE 5.1A). Due to this observation, EMF2-like and 

VRN2-like protein sequences from representative land plant clades were 

aligned in order to investigate more ancient plant species to observe when the 

MC arose. Here a selection of sequenced plant genomes from 

spermatophytes (angiosperms and gymnosperms), one from the lycophytes 

and one from the bryophytes were taken from the NCBI database and aligned 

using Clustal W software (FIGURE 5.1B). All of the identified EMF2-like 

proteins have an Nt-cap region present, whilst the Nt-cap region was absent 

in all of the VRN2-like proteins. Alignments also show conservation of key 

functional VEF and C2H2 zinc finger domains but only the N-terminus 

alignment is shown as this was to find the emergence of the N-degron at the 

Nt. The Nt-MC of Arabidopsis VRN2 protein aligns with EMF2 at amino acid 

21. This reveals that the VRN2 N-terminus is similar to EMF2 but with the N-
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cap removed leaving an exposed MC N-terminus, which suggests a gene 

duplication and truncation event of an ancient EMF2-like protein lead to the 

formation of VRN2. 

 

Sequence alignment from diverse clades of the angiosperms revealed VRN2-

like proteins throughout flowering plants. The factor used here to determine if 

something is a VRN2-like protein is the presence of the MC at the N-terminus 

as well as the similarity of sequences.  In non-angiosperms the internal MC 

was found in EMF2-like proteins in gymnosperms but generally not in other 

taxa such as Physcomitrella patens and Selaginella moellendorffii. The 

internal MC is absent in some extant angiosperm clades, suggesting it is not 

functionally important in EMF2 but it was important as a precursor for the 

generation of VRN2. These analyses show that the MC sequence is present 

in the basal angiosperm Amborella trochopoda and reveal that the MC 

sequence was fixed in ancient EMF2 orthologues before angiosperms 

emerged, as shown in the gymnosperm Pinus jeffreyi and Ginkgo biloba 

sequences. This supports the hypothesis that an ancient EMF2 orthologue 

could have duplicated and the Nt-cap removed to give the capacity of VRN2-

like proteins to be coupled to the N-end rule pathway. Therefore, giving plants 

the capacity over time to become O2 and NO sensing organisms via the 

Cys/Arg N-end rule. 
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A 

 
B 

 
 
FIGURE 5.1 Alignment of EMF2 orthologous sequences representing 
diverse clades of flowering plants  
A. Sequence alignment of the N-terminus of EMF2 proteins from angiosperms 
showing the position of the internal MC dipeptide highlighted in yellow.  
B. EMF2 and VRN2 orthologous sequences (genes evolved from a common 
ancestral EMF2-like gene) representing diverse clades of land plants. The 
VRN2 MC N-terminus aligns with an internal MC in EMF2-like proteins 
highlighted in yellow. 
Black and grey shading denotes identical and similar amino acids 
respectively. Sequences were obtained from NCBI. Alignments were 
conducted at Clustal Omega using the default settings. 
https://www.ebi.ac.uk/Tools/msa/clustalo/  
Alignments were then converted to this output using Boxshade 3.21, with 
fractional sequences that must agree for shading set at 1.  
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5.3 A VRN2-like protein exists in Barley 
 

Since the Su(z)12 proteins in animals and basal land plants do not initiate 

MC-, it was decided to investigate how Su(z)12 was coupled to the N-end rule 

pathway specifically in angiosperms. Recently it has been reported that EMF2 

orthologues exist in Medicago of the Fabaceae family (Jaudal et al., 2016) 

and also in the monocot rice (Yang et al., 2013). Orthologues have also been 

found in other monocots including wheat and barley (Chen et al., 2009). 

Barley (Hordeum vulgare) is a monocot species that is distantly related to 

Arabidopsis but upon close analysis of the N-terminus of barley EMF2-like 

proteins, it was revealed to possess a VRN2-like protein, annotated as 

HvEMF2c, which initiated MC. It was decided to clone HvEMF2c in order to 

test whether this protein might be regulated in a similar way to Arabidopsis 

VRN2; i.e. whether a VRN2-like protein in plants other than the Brassicaceae 

is co-opted to the N-end rule pathway.  

 

Barley cDNA was generated from total RNA extracts and used as a template 

to amplify the full length HvEMF2c by PCR. The product was then ligated into 

the pTNT vector and confirmed by restriction digest with Eco-RI-HF and KpnI-

HF and by sequencing. An in vitro protein degradation assay was performed 

using MC-HvEMF2c, MA-HvEMF2c and MC-HvEMF2 supplemented with 

bortezomib. The samples were incubated for 30min and then the CHX and 

Bortezomib/SDW was added. Samples were taken at 0, 60 and 120min. 

Western blotting shows that MA-HvEMF2c is stable, highlighting the 

importance of cysteine as the destabilizing residue present at the Nt. The 

addition of the 26S proteasome inhibitor bortezomib stabilized MC-HvEMF2c, 
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suggesting N-end rule regulation. MC-HvEMF2c is degraded over time 

(FIGURE 5.2) showing a similar pattern to VRN2 degradation (FIGURE 3.4). 

This supports the hypothesis that Mc-HvEMF2c is a substrate of the N-end 

rule pathway and VRN2-like MC-initiating proteins exist and are regulated by 

the N-end rule pathway in plants other than Brassicas. The results confirm in 

vitro that HvEMF2c has a functional MC N-degron that is likely modified post-

translationally, causing it to be degraded over time. The fact that MC-

HvEMF2c is degraded agrees with the hypothesis that an N-end rule 

regulated variant of Su(z)12 is conserved in flowering plants. Previously 

VRN2 was only shown to be a substrate of the N-end rule pathway in dicots 

but results here show similar regulation in monocots also. Data presented in 

this chapter suggests that oxygen and nitric oxide sensitive Su(z)12 variants 

are not only found in Brassicaceae but are present throughout the 

angiosperms. Hypoxia treatments a nitric oxide scavenger cPTIO studies 

observing protein stabilization/degradation would confirm this hypothesis 

further. This result may have importance in increasing yield in crop species, 

as it gives us insight to how flowering is controlled in cereals.  

 

HvEMF2c may be a functional orthologue of VRN2 as it is also a substrate of 

the N-end rule pathway, but was likely annotated as HvEMF2c, as the main 

body of the gene/protein shares more similarity with EMF2. In conclusion, a 

VRN2-like protein from barley, a monocot species distantly related to 

Arabidopsis, was confirmed in vitro to have a functional Cys2 derived N-

degron. This suggests that O2-sensitive Su(z)12 variants are present 

throughout flowering plants. Future work could study expression of the 
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HvEMF2c protein in Arabidopsis so protein degradation could be observed in 

planta to confirm this as a VRN2-like protein, check functionality and confirm it 

as a substrate of the N-end rule pathway in vivo. 
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FIGURE 5.2 Barley EMF2c is a substrate of the Cys/Arg N-end rule 
pathway in vitro 
 
Western blot showing an in vitro cyloheximide (CHX) chase of WT and mutant 
(Ala2) variants of the barley VRN2-like protein HvEMF2c (+/- bortezomib; BZ). 
MC-HvEMF2c-HA is degraded over time but stabilized with the addition of the 
proteasome inhibitor Bortezomib. MA-HvEMF2c-HA is stable. Coomassie 
staining shows equal loading. 
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5.4 Can an EMF2 substrate of the Cys/arg N-end rule pathway be created 

by altering the amino acid residues at the N-terminus? 

 

N-degrons comprise of a destabilizing Nt-residue, a Lys  for ubiquitylation and 

an N-terminal protein structure that exposes the N-terminus for interaction 

with other proteins (Gibbs et al., 2014a). EMF2 has a conserved lysine 

residue towards the N-end at amino acid 47 (FIGURE 5.1) and it shares 

sequence similarity to VRN2 and so could have a similar tertiary structure 

leaving the N-terminus accessible. WT EMF2 has proline (an N-end rule 

stabilizing residue) as the second amino acid at the Nt. By altering MP-EMF2 

N-terminus to MC-EMF2 and assessing protein stability, an attempt was made 

to create a novel Cys/arg N-end rule substrate.  

 

In order to do this Arabidopsis cDNA was generated from total RNA extracts. 

This was used as a template to amplify the full length EMF2 gene by PCR. 

Primers were used to amplify the WT MP-EMF2 and to amplify an MC-EMF2 

PCR product. The amplicons and pTNT vector were digested with Eco-RI and 

KpnI restriction enzymes and a ligation reaction was conducted for 16 h. Heat 

shock was used to transform the plasmid into DH5α E.coli and colonies were 

selected on LBA with Ampicillin. Colonies were then grown overnight, DNA 

extracted and digested with the same enzymes. The digests with the 

expected band patterns were sequenced and correct constructs were taken 

forward to the in vitro the rabbit reticulocyte lysate protein degradation assays. 

MC-VRN2-HA, MP-EMF2-HA and MC-EMF2-HA reactions were incubated for 
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30min and a CHX chase was performed. Bortezomib was added to the MC 

initiating sample of the gene. Samples were taken at 0, 60 and 120 min.  

 

Western blotting showed that MP-EMF2-HA was stable over time (FIGURE 

5.3), suggesting that it is not a substrate of the N-end rule pathway. This was 

expected because proline is a stabilizing residue of the N-end rule. The Cys 

mutated second amino acid MC-EMF2-HA also remained stable over time. 

This attempt to artificially create and N-end rule substrate by altering the N-

terminus was unsuccessful, however this does not mean that another protein 

could not be manipulated in this manner. The way EMF2 protein folds may 

have shielded the MC terminus or the Lysine may be too far downstream or in 

the wrong position to allow ubiquitylation by PRT6. Whilst MC-EMF2-HA was 

degraded over the CHX chase, MC-EMF2-HA was stable with Bortezomib 

present, as expected, as this inhibits the 26S proteasome. These results 

suggest that a gene duplication event and a point mutation would not be the 

only factors in play during the divergence of the VRN2 gene to become co-

opted to another regulatory pathway. This leads to the hypothesis that it was a 

gene duplication and truncation event, exposing the internal MC that has led 

to VRN2 N-end rule regulation and diverse function. This was investigated in 

the next section. 
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FIGURE 5.3 Can we create substrates of the N-end rule pathway by 
changing the N-terminus to MC? 
 
Western blot showing an in vitro rabbit reticulocyte lysate system 
cyloheximide (CHX) chase of full-length Arabidopsis EMF2-HA (initiating MP) 
and mutant (Cys2) variant of Arabidopsis EMF2 protein (+/- bortezomib; BZ).  
Wild type MP-EMF2-HA is not a substrate of the Cys/Arg N-end rule pathway 
because it is stable. A substitution creating an MC N-terminus means the 
protein is present at slightly lower levels but it remains at the same levels 
across the time points. Treatment with the proteosome inhibitor bortezomib 
stabilizes MC-EMF2-HA protein to higher levels. Coomassie staining shows 
equal loading.  
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5.5 VRN2 likely evolved from and ancient EMF2-like protein due to a 

gene duplication and truncation event 

 

The sequence alignments of EMF2 and VRN2 homologous sequences 

representing diverse clades of land plants (FIGURE 5.1 B), revealed that the 

internal MC dipeptide was fixed before the angiosperms emerged. The MC 

thus gave an ancient EMF2-like protein the capacity to become a VRN2-like 

oxygen and nitric oxide sensing protein, regulated by the Cys/Arg N-end rule 

pathway, following the loss of the Nt-N-cap sequence. Alignment of VRN2 and 

EMF2 protein sequences revealed the C2H2 and VEF functional domains are 

conserved but the Nt-N-cap is lost in VRN2 (FIGURE 1.9 and FIGURE 5.4 A 

and B). The MC terminus of VRN2 aligns with an internal MC at amino acid 21 

of EMF2, downstream of Met1 at the C-terminal end of the Nt-cap. It was 

hypothesized in this study that there was a duplication event in the genome 

and a truncation in EMF2 during evolution that lead to the formation of VRN2. 

Then VRN2 became co-opted to the N-end rule pathway, leading to 

expansion and divergence in the regulation of genes in the same VEF family. 

A truncated version of EMF2 was created in this study, the new N-terminus 

beginning at amino acid 21, hence initiating with MC. The aim was to see if 

truncated EMF2c is regulated by the N-end rule pathway in the same way as 

VRN2.  

 

Truncated EMF2 (tEMF2) was amplified from the pTNT vector containing the 

full-length gene (SECTION 5.4). This was done using primers targeted toward 

the internal MC starting at amino acid 21 and the end of the gene (FIGURE 
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5.4 B).  These primers were also used to add restriction sites to either end of 

the tEMF2 amplicon. The truncated EMF2 gene was inserted into the pTNT 

vector transformed into DH5α E.coli. The MC-tEMF2-HA, MA-tEMF2-HA and 

MC-tEMF2-HA plus bortezomib reactions were incubated in a heat block for 

30 minutes, cyclohexamide was added and then samples were taken at 0, 60 

and 120 min. Truncated MA-tEMF2-HA was stable, as expected, as this does 

not have the MC terminus required to be a Cys/Arg N-end rule substrate. 

Remarkably, truncated (MC-) EMF2 degraded over time and was extremely 

unstable in vitro via its Nt-Cys2 residue (FIGURE 5.5 A). This supports the 

hypothesis that truncated EMF2 is a substrate of the N-end rule pathway and 

that VRN2 evolved from EMF2 via duplication and truncation.  

 

The MC-tEMF2-HA should be stabilized by bortezomib if truncated EMF2 is 

targeted for degradation by the 26S proteasome via the N-end rule pathway. 

However, truncated MC-tEMF2-HA was degraded at all time points with 

bortezomib treatment (FIGURE 5.5 A). The experiment was repeated by 

performing another in vitro protein degradation assay except bortezomib was 

added from the beginning of the reaction instead of after the 30 min initial 

incubation and no cyclohexamide was added so protein could still be 

synthesized in the reaction. Interestingly, the truncated MC-EMF2-HA was 

stabilized with the bortezomib treatment (FIGURE 5.5 B). This suggests that 

tEMF2 not only is a substrate of the N-end rule pathway but it is actually 

degraded faster and has a higher turnover compared with VRN2. The 

evidence shows that MC-tEMF2-HA degrades faster than 30 min and is 

extremely unstable relating to its cysteine residue. However, if bortezomib is 
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added from the start of expression without adding cyclohexamide, this allows 

the truncated protein to stabilize and accumulate over the time course. The 

earlier alignments (FIGURE 5.1 B) show that the MC sequence was fixed 

before the emergence of angiosperms, i.e. in gymnosperms such as (Pinus 

jefreyii and Ginkgo biloba). This evidence, along with the evidence in vitro that 

tEMF2 is an N-end rule substrate, supports the hypothesis that VRN2 was 

likely recruited to the N-end rule pathway by a gene duplication and N-

terminal truncation of an ancient EMF2-like protein. 
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5.4 A)

 

 

5.4 B) 

 

 

FIGURE 5.4 Arabidopsis VRN2 aligns with EMF2 
 
A) Protein alignment from Arabidopsis showing that VRN2 aligns with EMF2 
at an internal MC at amino acid 21 in EMF2 and the N-terminal MC N-degron 
of VRN2 
B) Schematic showing VRN2 alignment with EMF2 at an internal MC. The 
EMF2 has an N-terminal cap. The C2H2 (in red) and VEF domain (in blue) 
are conserved and VRN2 has a C-terminal extension. Green arrows indicate 
primer position for PCR of full-length MP-EMF2 and Pink arrows are the 
primer position for truncated EMF2 amplification. 
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5.5 A)

 
 
 
 
5.5 B) 

 
 
FIGURE 5.5. Truncated EMF2 (tEMF2) is a substrate of the N-end rule 
pathway in vitro 
 
Western blots showing an in vitro CHX chase of full-length Arabidopsis EMF2-
HA (initiating MP-), and WT or mutant (Ala2) tEMF2-HA, +/- BZ.  
A) MC-tEMF2-HA is degraded over time and the MA-tEMF2-HA is stable as 
expected. The bortezomib treatment did not stabilise the MC protein which 
meant the protein may not be degrade by the 26s proteosome. Coomassie 
staining shows equal loading.  
B) A western blot showing an in vitro protein degradation assay of MC-tEMF2-
HA. Bortezomib was added at the beginning of incubation and no 
cyclohexamide was added. Interestingly here, MC-tEMF2-HA becomes stable 
over time. These results suggest that tEMF2 is a substrate of the Cys/Arg N-
end rule pathway and is actually turned over faster than VRN2. tEMF2-HA is 
72kDa. 
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5.6 Truncated EMF2 is a substrate of the Cys/Arg n-end rule pathway in 

vivo 

 

In the previous section it was shown that tEMF2 was likely a substrate of the 

N-end rule pathway in vitro. In order to test the hypothesis that tEMF2 is a 

substrate of the Cys/Arg N-end rule pathway in planta tEMF2 was first 

inserted into the pE2c cloning vector to fuse the gene with a HA tag sequence 

needed for visualization using western blotting. An LR reaction was used to 

insert tEMF2-HA from pE2c into the pB2GW7 vector (which contains the 35S 

promotor for overexpressing the gene). Colony PCR and restriction digests 

were used to check the insert was correct. The tEMF2-HA pB2GW7 construct 

was then transformed into Agrobacterium tumefaciens by electroporation and 

Col-0 and prt6-1 plants were transformed with tEMF2-HA pB2GW7 by floral 

dip. Seeds were collected and grown on ½ MS supplemented with 

Hygromycin. This was repeated until plants were found to be homozygous for 

MC-tEMF2-HA (see methods section 2.2.6).  

 

Protein was extracted from 7-day-old seedlings and quantified using a 

Bradford assay. The western blot showed the tEMF2-HA could only be 

detected in the prt6-1 mutants and not in the WT (FIGURE 5.6 A). Steady 

state levels of tEMF2 were high in the prt6-1 mutant compared to WT, 

indicating that tEMF2-HA levels are likely linked to PRT6. There was no 

significant difference in mRNA levels judged from the ACTIN7 control PCR. 

Coomassie staining showed there was equal loading. This result is as 

expected for N-end rule pathway regulation, since in normal conditions MC-
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proteins are degraded by the 26S proteasome and in the prt6-1 E3 mutant 

there would be no ubiquitylation and therefore no degradation by the 26S 

proteasome.  

 

It is known that VRN2 becomes stabilized in the cold during vernalization 

(Wood et al., 2006). Earlier, cold-induced stabilization of VRN2 was shown to 

be related to the N-end rule (FIGURE 3.8). Here, tEMF2-HA stability was 

observed to see if it would become stable when subject to vernalization 

treatment. To test this hypothesis, seeds from two independent Col-0 lines 

(labelled 2.7 and 3.2) were grown for 7 days on ½ MS and then subject to 0, 2 

or 2+1 weeks vernalization treatment (where 2+1 was 2 weeks vernalization 

at 5 °C short days, plus 1 wk at 22 °C long days). The results showed close 

similarity with how VRN2 behaves (FIGURE 5.6 B). Both lines showed an 

equivalent trend in protein stability levels. In long days at 22 °C MC-tEMF2-

HA protein levels were low. With 2 weeks of vernalization the MC-tEMF2-HA 

protein levels accumulate. Once plants were returned to 22 °C, the protein 

was less abundant. Coomassie shows equal loading except in line 3.2 where 

there is more protein loaded at 0 and 2+1 weeks, but this does not have an 

effect on conclusions drawn from the western blot. ACTIN7 mRNA transcript 

levels show consistency between lines. 

 

These results suggest that tEMF2 is regulated in a similar way to VRN2, in 

response to cold. The in vitro outcomes corroborate the in vitro results and 

support a potential mechanism for the evolutionary recruitment of Su(z)12 to 

the Cys/Arg N-end rule pathway in angiosperms via gene duplication and a 
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truncation event leading to an exposed MC initiating N-degron in an ancient 

EMF2-like protein in angiosperms.  
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FIGURE 5.6 Truncated EMF2 is a substrate of the Cys/Arg N-end rule 
pathway in vivo 
 
A) Western blot of in vivo steady state protein levels of truncated EMF2-HA 
(MC-tEMF2-HA) in Col-0 vs prt6-1. In Col-0 MC-tEMF2-HA is unstable in Col-
0 whereas it is stable in the prt6-1 E3-ligase mutant. 
B) Western blot of in vivo protein levels of tEMF2 during 0, 2 and 2+1 weeks 
vernalization. Two independent transgenic lines are shown. MC-tEMF2-HA is 
stable under cold conditions but is unstable when returned to 22 °C. 
Coomassie staining shows that protein levels are not due to loading errors.  
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5.7 Discussion 

 

The sequence alignments (Figure 5.1) revealed that the MC sequence was 

fixed in ancient EMF2-like proteins before the angiosperms emerged. The 

internal MC sequence in EMF2-like proteins can be found in other 

angiosperms such as Amoborella trichopoda and in some gymnosperms such 

as Pinus jeffreyi but not in the basal land plants. Until recently it was thought 

that MC-initiating VRN2-like proteins could only be found in the Brassicaceae 

family but MC-initiating EMF2-like proteins had been found in some monocots 

such as rice, wheat and barley (Chen et al., 2009). In this study a VRN2-like 

protein that has been annotated HvEMF2c in barley was found to be 

regulated by the N-end rule pathway in vitro. This protein behaved as VRN2 

does in vitro and in vivo, as MC-HvEFF2c-HA was found to be unstable in 

protein degradation assays. These results indicate the VRN2-like proteins 

exist in plants other than the Brassicaceae. It is likely that the HvEMF2c 

protein has been mis-annotated and actually represents a barley orthologue 

of VRN2, however this would need to be tested in vivo. In this study an 

attempt was made to clone the truncated Pinus jeffreyi EMF2 into the pTNT 

vector, as was a gymnosperm that had an MC Su(z)12 homologue, but 

unfortunately cloning was unsuccessful. Different restriction sites, different 

competent cells and different growing conditions were tried but the gene 

inserted backwards. With more time a different pine species could have been 

used for the experiment or the experiment could have been tried on another 

gymnosperm species such as Ginkgo biloba. It would also be interesting to 

study the Amborella trichopoda EMF2 and examine if this showed similar 
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results. This would give us more insight into when VRN2 may have evolved 

from EMF2 because it could show that MC-initiating VRN2-like proteins in 

gymnosperms are regulated by the Cys/Arg N-end rule (i.e. before the 

emergence of angiosperms).  

 

Taken together, the evidence in this chapter suggests that the evolution of 

VRN2 may have occurred when angiosperms emerged, to include monocots 

and dicots. It could even have occurred before the evolution of the 

angiosperms and further study could explore the possibility that Su(z)12-like 

proteins in gymnosperms or basal land plants behave in the same way as 

VRN2. Two Su(z)12-like genes have been found in rice (Oryza sativa) 

OsEMF2a and OsEMF2b (Hennig and Derkacheva, 2009, Luo et al., 2009), 

with OsEMF2b being found as part of the PRC2 complex. A VIN3-like protein 

OsVIL2 has been shown to directly interact with OsEMF2b and a null mutant 

of OsEMF2b causes late flowering (Yang et al., 2013). In the future it would 

be interesting to clone the OsEMF2b gene, in a similar approach as used for 

the HvEMF2c gene, to detect if OsEMF2b is regulated as VRN2 is, by the 

Cys/Arg N-end rule pathway. It could be speculated that there are more 

VRN2-like proteins in monocots that may have been mis-annotated due to 

sequence alignments appearing similar to EMF2 and not taking into account 

the Nt. More VRN2-like proteins could be regulated by the N-end rule pathway 

even if they do not function in exactly the same way due to the FLC gene not 

being present and vernalization not controlling flowering in all cereals. To test 

the function of the HvEMF2c gene in this study it could be put into Arabidopsis 

to see if protein stability is affected in vivo, to complement the results in vitro. 
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Further, phenotypic analyses such as flowering time assays could also be 

done to test HvEMF2c function and check if HvEMF2c can complement an 

Arabidopsis vrn2 mutant. This could demonstrate it may have a similar 

function to VRN2 in the vernalization pathway. 

 

The next part of the study showed that not all proteins can be regulated by the 

N-end rule pathway, even with manipulation to contain potential N-degron 

sequences (FIGURE 5.3). The full length EMF2 was not degraded over time 

and changing the WT MP N-terminus of full length EMF2 to an MC N-terminus 

did not introduce degradation by the 26S proteasome or allow it to become 

regulated in the same way as VRN2. Factors such as the position of the N-

terminus in the tertiary protein structure and other residues downstream of the 

N-terminus can affect whether a protein can be modified post-translationally in 

a way to cause regulation by the N-end rule pathway. Interestingly though, the 

truncating MP-EMF2-HA to MC-tEMF2-HA showed a decrease in protein 

levels over time in vitro and this study provides evidence that not only was 

there a gene duplication event of EMF2 but there was also a truncation event 

to bring about the exposed MC N-degron, giving rise to VRN2. in vivo tEMF2-

HA was stabilized in the prt6-1 mutant and also stabilized during vernalization. 

This further supports the hypothesis that there was a duplication and 

truncation event leading to the evolution of VRN2 from EMF2. It would be 

interesting to see if the truncated EMF2 can complement the phenotypes of 

the vrn2-5 mutants to test the functionality of the truncated EMF2 in vivo.  
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In summary, the work here has uncovered a novel mechanism plants have 

evolved for perceiving varied environmental conditions and responding with 

epigenetic changes to control development and flowering in angiosperms. 

This has been accomplished by the evolution of a gas-sensitive (Gibbs et al., 

2018) N-degron in an ancient EMF2-like protein. Coupling of an Su(z)12 –like 

protein to the Cys/Arg N-end rule pathway has allowed the PRC2 complex to 

evolve new function in angiosperms via VRN2 and its regulation of flowering 

after vernalization. This may have facilitated the emergence of flowering as a 

reproductive strategy, particularly in colder climates, by directly linking PRC2 

activity to the perception of the environment, whilst also being a starting point 

for further diversification of PRC2 function. 
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6.1 VRN2 is an N-end rule substrate  

 

The N-end rule pathway is a specific branch of the UPS that is directed by 

which amino acid is present at the N-terminus (Gibbs et al., 2014a). It is highly 

conserved in Eukaryotes, having been studied in yeast (Bachmair et al., 

1986), mammals (Davydov and Varshavsky, 2000) and plants (Gibbs et al., 

2011, Licausi et al., 2011).  There is also a variant of the N-end rule pathway 

in prokaryotes (Darwin, 2009). Only a few substrates have been identified in 

plants and prior to the work presented here, the ERFVII transcription factors 

were the only gas sensing substrates of the Cys/Arg N-end rule pathway 

found in plants (Gibbs et al., 2011, Licausi et al., 2011, Gibbs et al., 2014a). In 

this study, evidence shows that the Su(z)12-like PRC2 component, VRN2 is a 

substrate of the Cys/Arg N-end rule pathway in vitro (FIGURE 3.4) and in vivo 

(FIGURE 3.5) and its function is linked to flowering and plant development. 

The instability of VRN2 is related to its MC destabilizing Nt-residues as 

demonstrated by a C2A point mutation, which led to constitutive stablilization 

of VRN2. Stabilization with bortezomib indicated that VRN2 is degraded by 

the 26S proteasome, further supporting its regulation by the N-end rule 

pathway. VRN2 was stable in prt6-1 and ate1ate2 mutants, which are 

involved in ubiquitylation and arginylation of Cys/arg N-end rule pathway 

substrates respectively. Recently, Gibbs et al., (2018) used Methionine amino 

peptidase (MAP) on short polypeptides to remove the Nt-methionine to show 

plant cysteine oxidases (PCOs) can directly target cysteine residues at the Nt. 

They also show that PCO activity was reduced in roots of vernalized 

seedlings where NO is depleted. In the future, studying MAP activity and PCO 
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activity could provide more information about the oxygen sensing step of the 

Cys/Arg N-end rule pathway during vernalization and the regulation of VRN2 

and other possible Cys/Arg N-end rule substrates.  

 
 
6.2 VRN2 localization 
	
 

Vernalization is the process whereby a plant delays flowering until it has 

experienced a prolonged period of cold, in order to flower in more favourable 

conditions in the spring (Song et al., 2012). FLC encodes a highly expressed 

MADS box transcriptional repressor protein, which negatively regulates genes 

that promote flowering, thus acts as a flowering repressor (Gendall et al., 

2001). VRN2 forms part of the VRN2-PRC2 complex, which is a regulator of 

vernalization by the addition of the repressive H3K27me3 epigenetic mark to 

FLC, causing FLC suppression and thus allowing flowering.  

 

Previous studies have found that FLC is predominantly expressed in regions 

of the plant that are mitotically active (i.e. the shoot and root apical meristems) 

and that these areas are the sites of cold perception where the epigenetic 

vernalization state occurs (Wellensiek, 1962, Sung and Amasino, 2004a). 

Greb et al. (2007) show VRN2 to be restricted to the meristems and 

vasculature and similar observations were made in this study (FIGURE 3.6). 

Although VRN2 is present in the same location as FLC, VRN2 may not always 

be suppressing FLC. VRN2 may be degraded too quickly for FLC repression 

and require the cold for it to be abundant enough to repress FLC, and VRN2 

could have other functions. The root and shoot meristem are proposed to be 
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hypoxic parts of the plant (Considine et al., 2017) and so high VRN2 levels in 

these areas would also be expected, as low oxygen levels would mean 

cysteine could not be oxidized, thus leading to VRN2 stability. Histochemical 

staining of VRN2-GUS showed VRN2 stabilization throughout the plant in the 

prt6-1 and ate1ate2 mutants, suggesting that the N-end rule pathway restricts 

VRN2 to meristematic regions under normal growth conditions (FIGURE 3.6). 

Western blotting showed VRN2 abundance increased during vernalization, 

whereas mRNA levels remained unchanged (FIGURE 3.8). Once returned to 

22 °C VRN2 was again depleted. Comparison of VRN2-GUS to FLC-GUS 

localization could indicate if VRN2 stabilization in response to cold is required 

throughout the plant to effectively silence FLC. Observing if VRN2 

stabilization correlates with oxygen and NO levels could give more insight into 

why VRN2 is degraded or stable in certain tissues/cells. Recently, Gibbs, et 

al., (2018) showed root meristems had low NO levels during vernalization, 

which could be the reason for VRN2 and ERFVII stability in these regions. 

 

VRN2 has previously been shown to be localized in the nucleus of plant cells 

(Gendall et al., 2001), and has also been found in the nucleoplasm (Hecker et 

al., 2015). This study confirmed VRN2 localization in the nucleus of root tips 

with YFP tag attached to the C-terminus (Figure 3.7). Further, the data here 

shows there was no difference in VRN2 protein levels observed between the 

confocal images of the Col-0 and prt6-1 lines tested, in contrast to the results 

of VRN2-GUS western blots (FIGURE 3.5). Quantitative analysis of confocal 

images may confirm if VRN2 levels vary between the WT, prt6-1 

backgrounds. However, further study is needed to confirm VRN2 localization 
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within cells of different tissues of the plant, as it was unclear from this study 

whether VRN2 was cytosolic further up the root in other cell types/tissues. 

Performing western blotting on the cytoplasm and different cell fractions could 

help to confirm if VRN2 is cytosolic.  

It would also be interesting to discover if the localization of VRN2 in the 

nucleus/cytoplasm is only observed when it is interacting within the VRN2-

PCR2 complex or whether VRN2 is visible in these locations when it is not 

associated with the PRC2. This could explain why VRN2 and FLC are both 

found in meristematic tissues. FLC is not constantly being suppressed by 

VRN2, so perhaps VRN2 is not always located in the nucleus. Co-

immunoprecipitation and bimolecular fluorescence complementation of VRN2 

and the PRC2 components would help to uncover if the localization pattern 

observed is when VRN2 is associated with the PRC2 complex. We know that 

VRN2 is important for regulation of flowering time by histone methylation of 

FLC (Henderson and Dean, 2004), but there may be other possible targets of 

VRN2. ChIP-seq analysis could reveal differences in chromatin modifications 

in our mutant lines. This, along with RNA-seq analysis would reveal if VRN2 

has any other DNA methylation targets other than FLC.   

 

6.3 VRN2, vernalization and flowering 

Flowering time and seed development are of academic and economic interest 

(Hennig and Derkacheva, 2009). If we can understand how plants use 

epigenetics (heritable changes in gene expression) to control their 

development, we may be able to manipulate the vernalization pathway to help 
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improve crop yields. A T-DNA insertion mutant was identified as a novel vrn2 

mutant allele, here designated vrn2-5 (FIGURE 3.9).  In this study vrn2-5 was 

used to produce a vrn2-5 prt6-1 double mutant in order to perform phenotypic 

analyses, to try to uncover the functional relevance of VRN2 regulation by the 

N-end rule pathway. Here, it was shown that VRN2 is not involved in the ABA 

response during germination (FIGURE 3.10) even though the N-end rule 

pathway has previously been linked to ABA signalling through PRT6 and 

ATE1/2 (Holman et al., 2009. Zhang et al., 2018), and through the ERFVIIs 

(Gibbs et al., 2014b). The results here suggest the cold signalling associated 

with vernalization does not involve abscisic acid, as in (Liu et al., 2002). vrn2-

5 did however, show a significant decrease in establishment compared to WT 

at 1µM ABA, suggesting VRN2 may be involved in the ABA response during 

establishment. 

 

Increased knowledge of vernalization response mechanisms and the effect of 

VRN2 regulation by the N-end rule pathway on flowering time, could lead to a 

deeper understanding of how different Arabidopsis accessions have evolved 

and adapted to varying environmental conditions in the wild. In naturally 

occurring Arabidopsis accessions, the FRIGIDA (FRI) and FLOWERING 

LOCUS C (FLC) genes determine flowering time variation and the 

requirement for vernalization (Gendall et al., 2001). The naturally occurring 

San Felieu2 (Sf2) ecotype has a dominant FRI allele, meaning they respond 

to vernalization (Diallo et al., 2010). The vrn2-5, prt6-1 and vrn2-5 prt6-1 

mutants were crossed into a vernalization-requiring Col-0 FRI-Sf2 background 

(Figure 3.12). In the Col-0 FRI-Sf2 background, increasing vernalization 
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length decreased temporal flowering time over all lines (FIGURE 3.13). In 

vrn2-5 mutant we would not expect a vernalization response, but these plants 

decreased flowering time with increased vernalization. This suggested that 

vrn2-5 is not a complete knockout and that perhaps there was still some 

functional protein being produced. The vrn2-1 mutant line has a mutation that 

introduces a stop codon into the gene that was shown to reduce the flowering 

response of late flowering genotypes (i.e. vernalization-requiring plants 

experienced vernalization but flowered late) (Gendall et al., 2001). Perhaps 

using this alternative mutant allele in combination with prt6-1 mutant in future 

flowering time assays if used as a comparison, would hopefully compliment 

the results here, as the behavior of these vrn2-1 mutant lines should be 

similar to vrn2-5. vrn2 and vrn2-5 prt6-1 mutants on average flowered later 

than Col-0 FRI-Sf2 and prt6-1 lines, although there was not a statistically 

significant difference between flowering times with all treatments. In the 

absence of vernalization, vrn2-5 prt6-1 flowered significantly later 

developmentally than other lines. The results indicated some effects of VRN2 

and N-end rule regulation on flowering time, but the flowering time assays 

need to be repeated with greater numbers of plants before any firm 

conclusions can be drawn. 

 

It is important to remember that VRN2 and vernalization is not the only 

pathway that is regulating flowering by repression of FLC. The autonomous 

pathway also represses FLC to promote flowering (Sheldon et al., 1999) and 

late flowering autonomous pathway mutants can be reversed by vernalization 

(Koornneef et al., 1991). In this study, vernalization treatments were 
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conducted under short days, whereas the growth conditions after vernalization 

were under long days. However, the aim was to test the effect vernalization 

(i.e. the effect of cold) had on flowering time, not the effect of day length. In 

future, vernalization experiments would be better conducted with consistent 

day lengths, in both the warm and cold temperatures. This would enable a 

distinction between possible effects the photoperiod flowering pathway had on 

flowering time and the effect of vernalization by removing the day length 

variable. As vernalization is not the only pathway controlling flowering time, 

the addition of gibberellic acid (GA) to plants as they are growing could also 

rule out whether the loss of VRN2 function had affected on the GA pathway 

behind flowering (Mouradov et al., 2002, Moon et al., 2003, Shindo et al., 

2006).  

This study has shown an effect of cold treatment and prt6-1 vrn2-5 on 

flowering time in vernalization-requiring accessions of Arabidopsis plants. 

More specifically, the Col-0 FRI-Sf2 introgression line was chosen so only the 

VRN2 and PRT6 genes were altered during crosses with Col-0 and the rest of 

the genetic background would be the same. However, it would be interesting 

to look at the effect of prt6-1 and vrn2-5 mutations in other vernalization 

dependent accessions because different accessions have varying stability of 

FLC repression (Shindo et al., 2006). For example, studying Edi-0 and H51 

accessions (Nappzinn, 1957) that have active FRI alleles, or the Bil-7 

background that also respond rapidly to vernalization (Shindo et al., 2006).  

The genes FRIGIDA LIKE 1 (FRL1) and FRIGIDA LIKE 2 (FRL2) are similar 

in sequence to FRIGIDA but are not functionally redundant, and so are all 

required for delaying flowering over winter (Michaels et al., 2004). Perhaps 
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using a background with dominant alleles of all three of these genes may 

produce more conclusive results. Alternatively, mutants of the autonomous 

pathway such as flowering control locus a (fca) or multicopy suppressor of 

ira1 (msi1 also known as fve) will produce late flowering plants and these 

could have been used as alternative late flowering backgrounds in these 

experiments.  

 

6.4 VRN2 and abiotic stress 

6.4.1 Heat stress response 

 
Vicente et al. (2017) showed a role for the N-end rule in heat stress tolerance 

via the ERFVIIs. Here, the aim was to examine a potential role for VRN2 in 

heat tolerance, since VRN2 was identified as a new Cys/Arg N-end rule 

substrate. The experiment was only preliminary and the heat stress 

methodology needed more refining, as choosing the appropriate heat stress 

phenotyping assay is important (Yeh et al., 2012). In this experiment it was 

decided to use the methods of Vicente et al. (2017) so the results could be 

comparable, however it was difficult to recreate their results. This could be 

due to details of laboratory environment and differences in the equipment 

used. At least three replicas were used in each experiment. However, using 

more repeats and increasing sample size would help obtain more data for 

statistical analysis to help draw more firm conclusions whether VRN2 has a 

role in heat tolerance. Seedling survival was measured to score heat stress 

tolerance in this study, but hypocotyl/root elongation and chlorophyll 
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accumulation can also be used to test heat stress tolerance and are 

advantageous because they are quantitative scores (Yeh et al., 2012). Long-

term acquired thermotolerance LAT, thermotolerance to moderately high 

temperatures (TMHT) and gradual acclimation types of heat stress assays 

could also be carried out in the future because multiple mechanisms and 

regulation pathways may be involved in each type of thermotolerance.  

 

The accidental observation of vrn2-5 and prt6-1 vrn2-5 plants that lead to the 

heat stress assays was in adult plants (FIGURE 3.14). In the future more 

studies could involve adult plants in the vrn2-5 and prt6-1 single and double 

lines, as well as in seedlings, as adult plants may have different stress 

responses compared with seedlings. This preliminary study showed that 

VRN2 may play a possible role in BT (FIGURE 3.15) but may have a negative 

effect on heat stress response for SAT (FIGURE 3.16). However, laboratory 

based assays may not always reflect real heat stress conditions in the natural 

environment as they are highly complex and involve also water limitation, UV 

irradiation and light intensity (Yeh et al., 2012).  

 

6.4.2 Salt stress response 

Soil salinity has a great effect on plant development (Ma et al., 2015) and it is 

known that high salt levels delay the onset of flowering in A. thaliana (Achard 

et al., 2006). A potential role for VRN2 in plant responses to salt stress was 

also investigated since Vicente et al. (2017) had shown a function for the N-

end rule pathway via ERFVIIs in this process. In the salt stress assay here, it 

was observed that vrn2-5 prt6-1 plants were greener and larger than the other 
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lines, indicating a possible salt tolerance (FIGURE 3.17). The experiment 

needs repeating in order to reveal if the tolerance observed in the double 

mutant is associated with vrn2-5 tolerance or whether it confirms the results of 

Vicente et al. (2017) where prt6-1 was shown to be salt tolerant. This was a 

preliminary experiment but, in the future, it could be repeated by measuring 

size and colour of seedlings alongside measuring electrolyte leakage 

(conductivity) of leaves, in order to produce quantifiable results. Another 

method would be to grow seedlings on ½ MS containing NaCl of various 

concentrations, for a period of time and then transferring them to plain media 

to measure recovery.  

 

Abiotic stress has been linked to reduced nitric oxide levels caused by 

lowered NITRATE REDUCTASE levels and the ERFVIIs have been found to 

become stable under salt stress (Vicente et al., 2017). Conserved features of 

stress signalling across fungi and plants involve calcium, reactive oxygen 

species (ROS) and NO (Zhu, 2016). The fact that NO is known to be involved 

in stress responses has an implication for the stability of Cys/Arg N-end rule 

substrates, as lowered nitric oxide would mean substrates such as VRN2 

would become stable.  Overexpression of ERFVII N-end rule substrates has 

been shown to enhance abiotic stress tolerance in several species including 

Arabidopsis, Oryza and Rumex (Gibbs et al., 2015). Perhaps using a 

transgenic line over-expressing VRN2, or a VRN2 inducible line, as well as 

the vrn2-5 and prt6-1 single and double mutant lines may yield more insight 

into VRN2 involvement in stress responses. VRN2 has been found to play a 

role in promoting hypoxia tolerance (Gibbs et al., 2018). If stress-stabilized 
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VRN2 could be found to enhance abiotic heat and salt stress tolerance it 

would provide a further link between the stress-signalling pathway to the N-

end rule pathway and chromatin remodelling. Identifying stress sensors in 

plants and understanding the cross-talk between stress-signalling and 

developmental signalling pathways remains an important but challenging goal.  

 

6.5 The mechanism behind VRN2 stabilization during vernalization 

 

In chapter 1 (FIGURE3.8) it was determined that VRN2 is stabilized in cold 

conditions. However, the mechanism behind the switch from VRN2 being 

degraded, to VRN2 becoming stable during temperature decreases is 

unknown. The component of oligomeric complex 1 (COG1) which is a subunit 

of the Golgi complex, was found to be stable in complex as the other proteins 

of the Golgi complex shielded its Nt, preventing its degradation (Shemorry et 

al., 2013). It has also shown previously that VIN3 interacts with VRN2 in the 

PRC2 complex (Wood et al., 2006). It is also known that transcription of VIN3 

is only induced during cold exposure but mRNA is not detectable when 

returned to warm temperatures (Sung and Amasino, 2004b, Alexandre and 

Hennig, 2008). It was hypothesized therefore, that VIN3 shields the MC N-

terminus of VRN2, preventing its degradation by the N-end rule pathway, 

causing VRN2 stabilization during vernalization. However, the results here 

suggest that this is not the case.  

 

With co-expression of VIN3 and VRN2 in vitro and co-expression of VRN2 

and VIN3 with the addition of cyclohexamide in vitro, VRN2 was still degraded 
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over time (FIGURE 4.3 and 4.4). VIN3 induction is the most upstream 

molecular effect of vernalization, (it is expressed before VRN2) and this is 

consistent with VIN3 having a role in cold acclimation and sensing the 

duration of cold exposure (Sung and Amasino, 2004b). However, adding pre-

synthesised VIN3 to the VRN2 reaction of the in vitro assay still did not 

stabilize VRN2 (FIGURE 4.5). When VIN3 was induced by estradiol in vivo, 

VRN2 levels were equivalent to those without estradiol treatment (FIGURE 

4.6, 4.7). With the addition of cyclohexamide to estradiol treated seedlings 

sampled over 8 hours VRN2 was still degraded (FIGURE 4.8). For in vivo 

experiment it was not possible to determine whether VIN3 protein was being 

affected, as it was not cloned with a tag. Instead of this, VIN3 RNA 

transcription was shown, however, in the future, VIN3-HA could be cloned 

with a C-terminal HA tag to allow detection of protein. Constitutive VIN3 

expression was shown to not be a suitable substitute for cold exposure during 

vernalization, (i.e. the cold is still needed to initiate vernalization), as it does 

not result in cold-independent early flowering (Sung and Amasino, 2004b). 

Therefore, estradiol-inducible VIN3 may not be able to mimic the effect of cold 

conditions, as there must be factors other than VIN3 that cause VRN2 

stabilization. 

 

If shielding of the MC N-terminus does occur, it is likely to be done by another 

protein or another molecule. The PhD finger domain in VIN3 has been shown 

to be able to bind with phosphoinositides, which are found in cell membranes 

(Gozani et al., 2003). Perhaps when VIN3 interacts with VRN2 it brings a 

phosphoinositide molecule into close proximity, which then could shield the N-
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terminus of VRN2, instead of shielding occurring via VIN3 directly. 

Vernalization triggers a series of histone modifications in FLC such as 

reduced histone acetylation and increased histone K27 and K9 methylation 

and this involves VIN3, VRN1 and VRN2 (Bastow et al., 2004, Sung et al., 

2006b). These modifications recruit LIKE HETEROCHROMATIN PROTEIN1 

(LHP1) to ensure epigenetic memory of the repressed state of FLC (Mylne et 

al., 2006, Sung et al., 2006a). VIN3 is also not the only gene to become up 

regulated during cold exposure (Gibbs et al., 2018). Perhaps LHP1 or another 

cold regulated protein may shield the N-terminus of VRN2. Shielding could be 

via another protein in the PRC2 complex (SWI, FIE or MSI1), as cold could 

alter the protein structure, meaning that VRN2 is only shielded during 

vernalization and not in warmer temperatures.  

 

The mechanism behind VRN2 stabiization may not involve Nt-shielding at all. 

The processes underlying vernalization and flowering are complex and there 

are a number of possible stabilization mechanisms. ADH1 (a key hypoxia 

response gene) and PCO1 (one of the enzymes required for cysteine 

oxidation in the Cys/Arg N-end rule), have also been shown to become up-

regulated in the cold but down-regulated upon return to warm conditions 

(Gibbs et al., 2018). This is an indication of a link between cold conditions and 

low oxygen and nitric oxide levels during vernalization, which would affect 

Cys/Arg substrates of the N-end rule pathway such as VRN2. Further work on 

how hypoxia response genes affect N-end substrate stability during 

vernalization would provide new insight into plant physiology linking the N-

end, abiotic stress and low temperature sensing. However, the question of 
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how VRN2 transitions from being degraded to becoming stable still needs to 

be addressed. 

 

	
6.6 Evolution of an ancient VRN2-like protein allowing neo-

functionalization of PRC2 complexes 

 

Su(z)12 is a PgG protein found in animals (Butenko and Ohad, 2011). The 

Su(z)12 forms a complex with Extra sex combs (Esc), P55 and Enhancer of 

zeste (E(z)) to form the PRC2 complex (Kuzmichev et al., 2002, Muller et al., 

2002). The PRC2 complex is highly conserved among plants and animals 

(Hennig and Derkacheva, 2009). VRN2, EMF2 AND FIS2 are Su(z)12 

homologues but of these, VRN2 is the only Su(z)12 with an MC Nt. Thus, the 

evolutionary origins of VRN2 and its connection with the N-end rule were 

explored. 

 

It was observed that the Su(z)12 homologue EMF2 in angiosperms has an 

internal MC and that MC N-terminus in VRN2-like proteins of diverse clades of 

land plants align with this internal EMF2 MC (FIGURE 5.1). VRN2 was 

thought to have evolved in the Brassicaceae (Chen et al., 2009) but in this 

study a VRN2-like protein in the monocot Barley (annotated HvEMF2c) was 

shown to degrade over time in an in vitro protein degradation assay (FIGURE 

5.2). HvEMF2c was shown to be a substrate of the Cys/Arg N-end rule 

pathway, thus demonstrating that oxygen and nitric oxide sensitive Su(z)12 

variants are present throughout the angiosperms (i.e. that VRN2 is not 

restricted to the Brassicaceae). In the future, Arabidopsis could be 
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transformed with HvEMF2c-HA, in order to perform a protein degradation 

assay and confirm HvEMF2c as a Cys/Arg N-end rule substrate in vivo. 

HvEMF2c-HA protein degradation assays could also be done in barley itself. 

However, as the lifecycle of barley is longer than Arabidopsis and the DNA 

sequences of Barley are less well known, this would need much more time. 

 

Glyma11g13220 in soybean has been found to be a functional homologue of 

Arabidopsis VRN1 and vernalization pathway genes have been conserved 

during the evolution of this crop species (Lu et al., 2015). It would be intriguing 

to test whether rice OsEMF2b, which has an MC N-terminus (and therefore 

proposed to be a VRN2-like protein), is also an N-end rule substrate and also 

test whether VRN2-like proteins in gymnosperms such as ginkgo or pine are 

substrates, as the extent to which vernalization mechanisms are conserved 

among plant species remains to be determined. This study has shown that 

other vernalization gene homologues such as VRN2-like proteins exist in 

diverse angiosperm clades (FIGURE 5.1) and could be N-end rule regulated 

in more species than was first thought as we have now confirmed a VRN2-like 

protein from barley, a monocot species distantly related to Arabidopsis, is a 

Cys/Arg N-end rule substrate. 

 

Gene duplications are a major contributor to genome evolution, increasing 

genetic diversity, having an effect on morphology and physiology and bringing 

about novel phenotypes (Soltis and Soltis, 2016). It has been suggested that 

the VEF-domain gene family consisting of VRN2, EMF2 and FIS2 has arisen 

as the result of gene duplication and subsequent diversification of gene 
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sequences leading to the divergence between plants and animals (Chen et 

al., 2009). Thus, the idea of a gene duplication and truncation event, leading 

to N-end rule regulation of a VRN2-like protein, was explored. N-degrons 

comprise of a destabilizing Nt-residue, a Lys site for ubiquitylation and an Nt 

protein structure that exposes the N-terminus on the outside of the protein for 

interaction with other proteins (Gibbs et al., 2014a). An attempt was made to 

create a novel Cys/Arg N-end rule substrate by mutating the Nt-MP of 

AtEMF2 to an MC. It was shown that the full length AtEMF2 was not 

destabilized when mutating its N-terminus to an MC (FIGURE 5.3), which 

demonstrates that not all proteins can become N-end rule substrates. This 

also indicates that a gene duplication event and a point mutation would not be 

the only factor leading to divergence of a gene to become co-opted to another 

regulatory pathway. Remarkably however, the MC-tEMF2-HA (truncated 

EMF2) was degraded in vitro (FIGURE 5.5) and also stabilized in prt6-1 and 

during vernalization treatments in vivo (FIGURE 5.6). tEMF2 is an N-end rule 

substrate, thus supporting the hypothesis VRN2 has evolved from an ancient 

EMF2-like protein by a duplication and truncation event, exposing the internal 

MC that has led to VRN2 N-end rule regulation and diverse function. 
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6.7 Final remarks 

 

Overall, this study has reported that flowering plants have evolved an Su(z)12 

variant that is regulated by the oxygen and nitric oxide-sensing Cys/Arg N-end 

rule pathway. N-end rule regulation of VRN2 restricts VRN2 abundance, 

ensuring it is only stabilized in specific tissues or in specific conditions such as 

those experienced during vernalization. The rapid post-translational control of 

VRN2 by the N-end rule pathway could thereby control PRC2 activity on FLC 

throughout development. VRN2 is functionally distinct from the ERFVIIs yet 

they are still regulated by the same branch of the N-end rule pathway. This 

means that plants can respond to factors such as low oxygen, low nitric oxide, 

low temperatures and stress by the same mechanism (i.e. N-end rule 

regulation) but with different gene targets. This could mean that there are 

more N-end rule substrates and further roles of VRN2 yet to be discovered.  

 

VRN2 is stable under vernalization conditions and in meristematic regions of 

the plants that are thought to be hypoxic but the mechanism of VRN2 the 

stabilization is still unknown. The regulation of VRN2 by the N-end rule 

pathway gives a novel connection between PRC2 activity and the perception 

of the environment in land plants. This has implications for crop improvement: 

if this mechanism can be manipulated to improve resilience against hypoxic 

stress such as flooding, or manipulated to allow plants to flower whenever 

needed, this could increase crop yield.  
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A novel mechanism for gas sensing in plants was achieved through the 

evolution of a gas sensitive N-degron in an ancient Su(z)12-like protein, 

bringing about a new function for the PCR2. Given the role of VRN2 in the 

regulation and coordination of flowering with seasonal cues, the coupling of 

this Su(z)12 to the Arg/N-end rule pathway may have facilitated the 

emergence of seasonal flowering as a reproductive strategy in plants. The 

work here, has uncovered a novel mechanism through which environmental 

signals can be perceived and transduced into epigenetic changes to control 

development and flowering. 
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