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Abstract

Background

Monitoring to identify disease recurrence or progression is common, often with limited evidence to

support the tests used, subsequent decisions, frequency and duration of monitoring.

Aims

To develop methods for designing evidence-based monitoring strategies and estimating measurement

error, a key consideration in selecting monitoring tests.

Methods

To investigate studies of measurement error: frameworks were identified; design, analysis and re-

porting of studies were reviewed; a case study was analysed; and, simulation studies were performed

to evaluate varying sample size and outlier detection methods. To develop methods for designing

monitoring strategies the methods literature was reviewed and simulation models were developed and

validated.

Results

Biological variability studies are often poorly designed and reported. Studies are frequently small

and may not produce valid results; the required precision of estimates can inform the sample size.

Outlier detection can negatively bias variability estimates; methods should be used with caution,

with interpretation allowing for potential bias. Modelling monitoring data requires knowledge of the

natural history of disease, test performance and measurement error; such evaluation enables selection

of evidence-based monitoring strategies prior to full-scale investigation.

Conclusions

Poor monitoring tests can be identified early using small-scale studies and monitoring strategies should

be optimised prior to full evaluation.
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Chapter 1

Introduction

1.1 Evidence based monitoring

Does monitoring of patients improve patient care, and subsequently patient outcomes? What

evidence do we have to suggest that routine monitoring is beneficial to patients? With

increased knowledge, could we improve how we monitor patients?

Patient monitoring is often performed, at great cost, when the benefit of monitoring has not

been evaluated or evidence for monitoring is weak.1,2 When monitoring is formally assessed,

strategies should be evidence-based;3 however, strategies selected for assessment are not al-

ways developed using existing evidence.4 Monitoring strategies are complex interventions and

should be developed and evaluated accordingly.5

The aim of this thesis is to investigate optimal monitoring of progressive and recurrent disease.

This thesis focusses on two main areas: the design, analysis and reporting of biological

variability studies, which provide estimates of measurement error, and modelling to develop
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Chapter 1. Introduction

optimal monitoring strategies for further investigation, combing available evidence.

1.1.1 Definition of monitoring

Monitoring of the health of patients is defined here as: ‘scheduled repeated testing, where

pre-defined test results prompt a change in patient management’.6

When monitoring patients to identify disease progression or recurrence, to begin monitoring

patients must have previous disease that could potentially recur or early stage disease that

may progress. Selected patients are monitored using a strategy (test or tests used at a series

of monitoring points with a decision rule to declare a test result as positive or negative). A

decision rule is used at each monitoring point to identify if the result is positive or negative

(this may be assessing an image for indication of disease, comparing a test value to a defined

threshold or previous measures etc.). If the result is considered negative, monitoring will

continue at given time intervals until a positive result is achieved or a given amount of time

has passed. When a patient is considered positive, they are no longer monitored in the same

way, meaning a change in patient management (new treatment, more intense monitoring,

further testing etc.)7 see Figure 1.1. For a guide to the terminology used in this thesis see

Table 1.1.

1.1.2 Monitoring of disease progression and recurrence

Here, the focus is monitoring to identify progression or recurrence of disease, also referred to

as surveillance and watchful waiting. Patients would be managed using a monitoring strat-

egy after treatment for a recurrent condition or in the early stages of progressive disease. A

monitoring strategy involves repeated use of a test (or multiple tests) in these patients with

a specified rule for the test results that would be considered positive and that would lead to a

change in patient management. Examples of monitoring routinely performed in the UK are

cystoscopy for detecting recurrence of bladder cancer in patients who have previously had

tumours removed, with identification of further tumours resulting in subsequent surgery;8

2



1.1. Evidence based monitoring

Table 1.1: Monitoring and variability terminology.

Term Explanation

Monitoring
Monitoring strategy A monitoring strategy specifies the monitoring test(s), frequency of monitoring,

total duration of monitoring and the decision rule used to identify a test result
as positive or negative.

Monitoring test The test used in a monitoring strategy.
Monitoring frequency The frequency of repeat testing in a monitoring strategy (not necessarily at

regular intervals).
Monitoring duration The total duration of use of a monitoring strategy, may potentially be until

disease progression or recurrence, or death.
Decision rule/monitoring rule The decision rule specifies which results from the monitoring test would be a

positive and a negative result. The decision rule may use only the last value
from the monitoring test or may rely on previous values also.

Threshold The threshold is a set level to measure test results against to identify positive
results.

‘track-shot’ rule A ‘track-shot’ rule uses multiple results for individuals and assesses these results
together to identify if a result is positive or negative.

‘snap-shot’ rule A ‘snap-shot’ rule uses a generic threshold for all individuals using the last
obtained monitoring test result to identify if a result is positive or negative.

Absolute change Changes in test values for an individual on the absolute scale, for example
values of 1 and 2 units show an absolute increase of 1 unit.

Relative change Changes in test values for an individual on the relative scale, for example values
of 1 and 2 units show a relative increase of 100%.

Patient management The management of a patient, for example monitoring, intensive monitoring,
treatment, invasive test to identify need for treatment etc.

Variability
Biological variability Biological variability is the variability in test measures between and within

individuals whilst in a stable disease state.
Pre-analytical variability Pre-analytical variability is the variability of a test measure due to differences in

the how samples have been obtained, stored and transported (prior to
evaluation of the sample).

Analytical variability (imprecision) Analytical variability is the variability of multiple assessments of a single sample
(same participant and observation point).

Within-individual variability Within-individual variability is the variability between test measures for a single
individual over time in a stable disease state.

Homeostatic setting point True value of the test for an individual.
Measurement error Measurement error is the variability in a test measure around the true value for

an individual, this is analytical and within-individual variability combined.
Between-individual variability Between-individual variability is the the variability in a test measure between

individuals.
Assessor variability Assessor variability is the variability in assessing the result of a test, this is most

often seen in imaging studies.
Inter reader variability Inter reader variability is the variability between readers in assessing a test

result, this is most often seen in imaging studies.
Intra reader variability Intra reader variability is the variability within readers (repeated reads by the

same reader) in assessing a test result, this is most often seen in imaging studies.

Evaluation
True positive Positive test result at a point when a patient is diseased.
False positive Positive test result at a point when a patient is not diseased.
True negative Negative test result at a point when a patient is not diseased.
False negative Negative test result at a point when a patient is diseased.
Sensitivity Proportion of diseased participants that have a positive test result at a test

point.
Specificity Proportion of non diseased participants that have a negative test result at a test

point.
Positive predictive value (PPV) Proportion of test positive participants that have a positive test result.
Negative predictive value (NPV) Proportion of test negative participants that have a negative test result.
Coefficient of variation (CV) Standard deviation of variability (at the analytical, within-individual and

between-individual levels) expressed as a ratio to the mean value.
Index of individuality (II) The ratio of analytical and within-individual variability compared to

between-individual variability. Indicates how much variability is within
measures for an individual compared to a group of people.

Reference change value (RCV) Change in a measure suggesting true change based on estimates of variability.
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Entry:

Patient has risk of disease
progression or recurrence

Monitoring strategy:

Monitoring test performed
and decision rule applied
(repeated at subsequent

monitoring points)

Strategy result:

Considered
positive

Management decision:

Consider change in pa-
tient management (new

treatment, intensive moni-
toring, further testing etc.)

Strategy result:

Considered
negative

Management decision:

No change in patient
management (con-
tinue monitoring)

next monitoring point

Figure 1.1: The general monitoring process.
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1.1. Evidence based monitoring

and, repeated blood tests to measure CD4+ cell counts in patients with HIV, to indicate pro-

gression of disease and allow antiretroviral treatment to be appropriately considered.9

There are many disease areas where monitoring is for treatment titration, with the purpose of

modifying doses. Whilst methods and theories relating to treatment titration are considered,

where appropriate, research in this area of monitoring is not directly applicable to the work

presented in this thesis. Examples of diseases where monitoring is for treatment titration are

hypertension10 and diabetes.11

Test and biomarkers with continuous measurements rather than binary or categorical are

considered in this thesis.

1.1.3 Monitoring data

Stevens and colleagues developed a general model for monitoring data. This model defines

Yit as the observed monitoring values and Uit as the ‘true’ underlying (‘latent’) value, which

can never be directly observed.

Uit = αi + βit and Yit = Uit + ωit,

where αi is the latent value at time 0, βit is the change in the latent value over time and ωit

is measurement error.12

1.1.4 Measurement error

The estimation of measurement error is a major theme of this thesis, as measurement error

was identified as a key component of monitoring data and vital when considering optimal

monitoring strategies. The design of studies and methods used to estimate test variability,

particularly biological variability studies, are investigated in this thesis.
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1.1.5 Biological variability

Studies of biological variability often estimate the partitioned variances of a test (at the ana-

lytical, within-individual and between-individual levels) allowing calculation of measurement

error.

Estimates of biological variability provide vital information when using tests for diagnosis and

monitoring.13 Essentially, biological variability estimates quantify the natural fluctuation in

test results which is useful when developing a monitoring strategy as true change (‘signal’)

can be detected over random and expected fluctuation (‘noise’).14 Biological variability is

defined as: ‘The natural variability in a laboratory parameter due to physiologic differences

among subjects and within the same subject over time.’ 15

The biological variability of a test can indicate the appropriate and optimal use for moni-

toring purposes; estimates suggest whether a test is best used with a threshold value for all

participants (‘snap-shot’ rule) or whether differences from previous values for each individual

should be considered (‘track-shot’ rule).9,16 Results of variability studies will also guide the

threshold values used (for the entire population or considering changes from previous values)

to define a positive test result, as these results suggest the magnitude of change implying a

real change in condition.16

1.1.6 Issues in the field

Issues when developing monitoring strategies are:

• Monitoring is performed as standard with many monitoring strategies not subjected to

formal evaluation.2

• Monitoring strategies (test frequencies, decision rules, thresholds and duration) used to

monitor patients with progressive and recurrent disease are rarely evidence based.2

• With limited information on variability, as is often the case, test frequencies are com-

monly based on routine care schedules and test thresholds are chosen arbitrarily.1
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• When monitoring strategies are evaluated using randomised controlled trials there is

limited evidence supporting the components of the strategies.4

Issues in studies of biological variability are:

• Estimates of biological variability are necessary for planning monitoring strategies;3 this

includes the design (specifically sample size), conduct, methods for analysis (including

outlier detection methods) and validity of analysis for studies estimating variability.

• Sources of estimates of biological variability may be important; current estimates from

test manufacturers are designed for the purpose of proving tests meet minimal quality

assurance standards and such studies often use spiked or calibrated samples (for example

Bargnoux et al17) this may not be appropriate when estimating variability to inform

monitoring of patients with potential disease progression or recurrence.

• Studies of biological variability may recruit healthy participants13,18 rather than those

with disease, the population of relevance for monitoring.

• For many tests and patient conditions there may be insufficient evidence for estimates

of biological variability used to plan monitoring strategies.

This lack of evidence for estimating test variability and designing monitoring strategies is

concerning not only due to the high cost of monitoring and studies evaluating monitoring

but the multiple opportunities monitoring has to benefit and harm patients. Strategies should

be optimised to ensure the greatest possible benefit to patients and evaluated.

1.2 Design and evaluation of biological variability studies

1.2.1 Aims of biological variability studies

The aim of biological variability studies is to quantify the inherent variability of test re-

sults.16
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Chapter 1. Introduction

1.2.2 Variability

When considering a standard laboratory based test there are four types of variability to esti-

mate; these are: pre-analytical, analytical, within-individual and between-individual variabil-

ity.16 Studies are often designed to assess analytical, within-individual and between-individual

level variability for a biomarker, for example estimated glomerular filtration rate (eGFR).19

Figure 1.2 shows these measures of variability around the mean value.

1.2.2.1 Pre-analytical variability

‘The pre-analytical phase entails all those actions that are necessary in order to obtain diag-

nostic specimens.’ 20 Pre-analytical variability is due to the differences in how subjects have

prepared for a sample to be taken and the process of taking the sample or performing the test.

The leading causes of pre-analytical variability (as reported in a review by Lippi et al)20 are:

patient preparation (fasting status, exercise and posture), blood drawing (misidentification,

insufficient volume, spurious haemolysis, contamination, venous stasis and blood collection

devices), sample handling (mixing), sample transportation (time, temperature and integrity)

and sample preparation (centrifugation and automation). Often measures are taken to keep

pre-analytical variability at a minimum,16 by keeping testing conditions consistent. The fac-

tors influencing pre-analytical variability vary from test to test; with different tests requiring

stability of different factors. Pre-analytical variability is not a focus of this thesis, and it is

assumed to be minimised.

1.2.2.2 Analytical variability

‘The analytical component of variation is derived from replicate analysis of subject samples.’ 16

Analytical variability is the variation of results from a single sample and is often assessed by

taking a sample and replicating the analysis of this sample.16 Analytical variability is also

known as imprecision and is: ‘the closeness of agreement between independent results of mea-

surements obtained under stipulated conditions.’ 21 To assess analytical variability the same

8
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Chapter 1. Introduction

sample is tested using the same testing procedure at the same time (analysis in duplicate)

and the difference in results at this level is assessed.16

1.2.2.3 Within-individual variability

Within-individual variability (also known as within-subject, within-person and intra-individual

variability) is the variability within test measures for an individual occurring due to normal

(and expected) variation in participants, for example variability may be detected in repeated

measures for an individual if measures are taken at different times of the day and a daily

rhythm exists; at different times of the month when a monthly rhythm exists; and, at dif-

ferent seasons when season is a factor.16 The test values for participants fluctuate for many

tests used in patient care without signifying a change in condition, and this is assessed by

taking multiple samples from participants over a short time period (when the disease state for

participants is expected to stay the same). Assessment of multiple measures for participants

allow this level of variability to be quantified.16

1.2.2.4 Between-individual variability

Between-individual variability (also known as between-subject, between-person and inter-

individual variation)22 is the variation between the central values for individuals. For some

tests individuals will have very similar results and for other tests very different results. Es-

timates of between-individual and within-individual variability allow us to identify if a test

is best used with a threshold to identify a positive or negative result for the population or

if the results for each individual should be considered separately with their own individual

threshold value.

1.2.2.5 Assessor variability

To evaluate the impact of different assessors on test results intra-inter reader studies are

used, often when assessing imaging tests. Individual readers will evaluate a result multiple

10



1.3. Designing and evaluating monitoring strategies

times (intra-reader variability) and multiple readers will assess the same result (inter-reader

variability).23 For example, a study used readers to interpret the results of ultrasound scans to

measure bladder wall thickness, looking at the variability between and within readers.24

Assessor variability is not present when using most laboratory based tests as analytical pro-

cedures will provide the healthcare professional with a value of the test result. In the case

of assessing an image the process of obtaining a value (for example, measuring tumour size)

is variable, with variability occurring between and within assessors. The judgement required

in these tests will introduce additional variability.

1.2.2.6 Other sources of variability

Variability in test results can also be due to other factors. Other variability sources can be:

intra-inter assay variability,25 within and between batch variability26 or intra-inter laboratory

variability.27

1.3 Designing and evaluating monitoring strategies

1.3.1 Strategy design

Monitoring strategies are complex interventions. Each strategy has several components:

• monitoring test(s);

• monitoring rule–decision rule (for defining test positives);

• monitoring frequency;

• and, monitoring duration.

The review by Selby and colleagues4 identified less than 50% of monitoring trials assessed

gave evidence to support the frequency of monitoring and the intervention patients received

11



Chapter 1. Introduction

after a positive result used in monitoring strategies; and less than 60% of trials gave evidence

to support the threshold used as part of the monitoring strategy.

1.3.1.1 Test(s)

The monitoring test or tests are chosen for their ability to identify the target condition in

patients with potential progressive or recurrent disease. The tests used are often chosen based

on accuracy estimates, usually for the purpose of diagnosis rather than monitoring or with

unclear evidence for the selection of the test.1,4

1.3.1.2 Monitoring rule

The monitoring rule (decision rule) is the most complex component of a monitoring strategy.

A simple decision rule would use a single threshold for all patients; those with a test result

exceeding the threshold would be positive and otherwise negative (‘snap-shot’ rule).9 A more

complex decision rule may have the threshold based on change from previous results for each

patient (‘track-shot’ rule), meaning an individual threshold for each participant.9 Decision

rules can also be designed to use not only test information but other factors (such as previous

results and medical history) with an algorithm to provide a positive or negative result.28

1.3.1.3 Monitoring frequency

The frequency of monitoring is how often monitoring tests are performed within a period,

for example two tests per year. The monitoring interval is the length of time between each

monitoring test. The frequency of monitoring can be the same for each patient for the

duration of monitoring or can be more complex. Monitoring may be performed more or less

frequently in the early or latter stages of monitoring or depending on previous results or

patient history, making the monitoring frequency specific to the individual.29

12



1.3. Designing and evaluating monitoring strategies

Obtain estimates regarding disease progression or recurrence
and test performance (measurement error, accuracy, variability)

Simulate patient cohort modelling disease progression
and results of the monitoring test based on evidence

Evaluate the performance of alternative monitoring strate-
gies (different thresholds, test frequencies, decision rules)

Identify optimum strategies for further evaluation

Figure 1.3: Method for selection of monitoring strategies.

1.3.1.4 Monitoring duration

The duration of monitoring is dependent on the clinical situation. Monitoring may continue

indefinitely and usually for the duration of a trial, if a trial is assessing a monitoring strategy.

However, for some conditions it may be monitoring ceases after a certain period with no

positive results, or that if patients appear to be ‘low risk’ from previous results monitoring

can be stopped.8

1.3.2 Method for identifying monitoring strategies

The purpose of the work presented in this thesis is to provide guidance, considering the evi-

dence available, for selecting monitoring strategies for further evaluation, see Figure 1.3.

The approach used in this thesis follows from the method introduced by Stevens et al,12

see §1.1.3. Stevens and colleagues reviewed statistical models used for the control phase

of monitoring, including literature based methods, where parameter estimates are obtained

from reviewing the literature.

The model is used to simulate monitoring data for a cohort of patients and assess the per-

formance of monitoring strategies in this cohort by comparing the observed data (Yit) to the

13



Chapter 1. Introduction

latent test value (Uit). The model uses the initial value for each individual (αi), the change

over time (βit), and the measurement error (ωit).

To use this approach, available information is collected regarding the progression or recurrence

of the disease monitored, and also information on test performance, relating to accuracy and

variability. Progression from an initial study starting point is estimated, the modelled latent

disease state of patients through time. Using information regarding test performance and

variability the observed results seen at monitoring points are estimated.

As both the latent underlying disease status of individuals and the monitoring test results that

would have been observed are estimated, the performance of various monitoring strategies

can be compared, with those appearing optimal highlighted for full evaluation in a trial, in

line with best practice.5

1.3.3 Assessing monitoring strategies

When assessing the ability of monitoring strategies, it may be desirable to assess patient

outcomes. However, the purpose of the work in this thesis is to present a method allowing

identification of optimal strategies for further evaluation in RCTs of monitoring.

1.3.3.1 Assessing test performance

In studies of diagnostic test accuracy, the test result is compared to the true disease status

(measured by a gold standard or reference test, or obtained by follow up of patients). If the

test result correctly detects the true disease status of a patient, this result is a true positive

(TP) if the test result is positive, or a true negative (TN) if the result is negative. If the

patient has a positive test result when the true disease status of the patient is no disease,

this is a false positive (FP) result. If a patient received a negative test result when the true

disease status of that patient is positive this is a false negative result (see Figure 1.4).

Basic measures of test performance are calculated using the number of patients with each

combination of test results and true disease status. Prevalence is the proportion of the

14
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True disease
status

+ −

Test result

+

−

TP FP

FN TN

Disease
Positive

Disease
Negative

Test
Positive

Test
Negative

Prevalence = (TP + FN)/(TP + FN + FP + TN)
Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)

PPV = TP/(TP + FP)
NPV = TN/(TN + FN)

Figure 1.4: Basic test accuracy measures.

population with the disease. Sensitivity is the proportion of patients with disease correctly

identified as positive by the test (TP) and specificity is the proportion of patients without

disease correctly identified as negative by the test (TN). The positive predictive value (PPV)

is the proportion of test positive patients that have the disease; and, the negative predictive

value (NPV) is the proportion of test negative patients that do not have the disease.

1.3.3.2 Assessing monitoring test performance

Usual test accuracy measures are more complex in monitoring studies as participants receive

multiple negative results and the disease status of participants is not constant (participants

develop disease). There are methods for calculating time-dependent sensitivity, specificity and

ROC curves, with these methods reviewed by Pepe and colleagues30 (see Chapter 7).

Adapted from the guidance Li and Gatsonis31 provide (see Chapter 7 for full details) the out-

comes chosen to assess monitoring strategies are: number of tests, positive predictive value
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and delay to diagnosis. The number of tests reflects the resource need of a strategy; the

positive predictive value shows the percentage of truly positive patients from those identified

as test positive; and, the delay to diagnosis reflects the harm to patients by the monitor-

ing strategy as it is the time between developing progressive or recurrent disease and the

monitoring strategy detecting disease. To allow these measures to be assessed objectively

the positive predictive value (PPV) was fixed at an acceptable level for the clinical question

and the number of tests and delay to diagnosis were compared. The threshold used in the

decision rule was adjusted to allow the PPV to be at the chosen level. The delay to diagnosis

estimate indicates the impact of false negatives and the false positives are controlled by fixing

the PPV.

1.3.4 Monitoring studies

Arguably the most robust study design to use when comparing patient health outcomes

between monitoring strategies (or comparing a monitoring strategy to routine care) is a

randomised controlled trial (RCT).4 In a typical RCT comparing a monitoring strategy to

standard care, patients are recruited and randomised to receive either the monitoring strategy

(in addition to routine care) or routine care only. Those receiving monitoring have the

monitoring test at specified time intervals and if they have a positive result the management

of their condition will change. If monitored patients have a negative test result, they continue

monitoring and are tested again at the next testing point.4 Patients in both randomisation

arms receive standard care and may have a change in management, see Figure 1.5.

RCTs evaluating monitoring may compare standard care with monitoring to standard care

alone; alternatively studies can compare two (or more) monitoring strategies (differing by test

used, test threshold or decision rule employed, frequency of monitoring etc.) or comparing

monitoring to immediate treatment.4
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Chapter 1. Introduction

1.3.5 Outcomes

As with trials of treatments, ideally trials of monitoring tests would evaluate differences in

patient outcomes across the arms. The review by Selby et al,4 showed for 49 trials reported

in 58 publications, patient outcomes were used in approximately half the trials assessed and

were generally patient mortality or the event of new or recurrent disease. Monitoring RCTs

may instead evaluate the difference in a process type outcome, such as the percentage of

patients having the condition detected. Process outcomes may be used rather than patient

outcomes as patient outcomes occur after a lengthy period of follow up, rarity of events or

other reasons. Trialists should ensure outcome assessment is not biased across randomisation

arms, such as evaluating positives detected using the monitoring test in one arm but an

alternative method in the other.4 The review by Selby and colleagues4 showed 17% of trials

had biased outcome assessment.

1.3.6 Impact on patients

Monitoring strategies are complex interventions, with the monitoring decision informing pa-

tient management. Whilst strategies can be evaluated by process measures, such as the

number of patients with identified disease, patient benefit is the true outcome of interest

which can only be measured with patient outcomes. From a recent review of monitoring

RCTs,4 in most trials the addition of monitoring was thought to lead to earlier treatment or

better selection of patients for treatment.

There are many ways tests can change the management of patients providing benefit and/or

harm. Ferrante di Ruffano et al32 identified ways the care pathway could be changed when

introducing diagnostic tests, and this has been modified for monitoring tests by Selby et

al.4 The items reported were: test delivery (test feasibility, procedure and frequency), test

result (interpretability, clinical validity, timing of test result, detection of long-term change),

management decision (added clinical value, timeframe of management decision, clinical con-

fidence) and treatment implementation (timing of treatment, efficacy and adherence). Due

to the complex relationship between monitoring and patient impact, full scale investigation

18
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in correctly powered trials with patient outcomes is optimal; and it is essential trials use the

evidence available to ensure the monitoring strategies are most beneficial.

Work by Selby and colleagues7 (adapted from Adriaensen et al33) shows the positive and

negative consequences of each type of test result on patients when monitoring a progressive

or recurrent condition. The positive consequences of monitoring are experienced by those

patients with true positive or true negative results; patients with true positive results benefit

from earlier treatment and patients with true negative results correctly avoiding treatment

or further testing. The patients with false positive and false negative results have undesirable

outcomes; patients with false negative results do not receive necessary treatment and have

the false confidence of a negative result, and patients with false positive results face the harm

of unnecessary treatment, further testing and overdiagnosis. All participants may benefit

from monitoring as their exposure to more invasive testing may be reduced; however, on the

contrary, monitoring tests may cause harm. There may also be psychological benefits and

harm from monitoring, see Figure 1.6.7,33

1.3.7 Relationship to screening

Monitoring of patients with progressive or recurrent disease is different to screening of the

asymptomatic population, as the disease prevalence in populations receiving testing in the

monitoring and screening situations is very different, and the participants without disease

will be different to healthy participants taking part in a screening programme. When using

tests for monitoring or screening purposes the specific use of such tests should be tailored

with the test variability information obtained using the appropriate population, and tests,

test frequencies, and decision rules specifically chosen.

There are similarities between monitoring and screening processes. With the methods for

screening being further developed, there are potential methods that can be adapted for use

in monitoring as appropriate.
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TP FP

FN TN

All

TP

+ Would have experienced clinical outcome but are
cured due to (earlier) detection and effective treat-
ment (A)

+ Would have been successfully treated anyway, but
quality of life is improved due to detection (at an
earlier stage of disease), ± less debilitating treat-
ment (B)

− Would have experienced clinical indications of dis-
ease at a later time point but clinical outcome not
improved and quality of life potentially decreased by
earlier detection and treatment (C)

FN

− Have the disease (or a progres-
sive precursor of the disease) but
have a negative monitoring test
resulting in a false feeling of secu-
rity, delay detection and delay of
effective treatment (D)

FP

− Do not have the disease, or any precursor, and
undergo unnecessary further investigation and treat-
ment (E)

− Have preclinical or early stage disease that would
not have progressed to clinically overt disease within
a ’reasonable’ timeframe (or could potentially have
regressed), resulting in overdiagnosis and unneces-
sary treatment and a longer period in a ’diseased’
state (F)

TN

+ Do not have the disease or preclin-
ical indicator of disease and are
reassured by the negative results
of a monitoring test that correctly
shows they do not have the disease
(G)

All

+ Experience benefit from the monitoring experience
either psychologically or due to less frequent or less
invasive testing (H)

− Experience direct harm from the monitoring test(s)
or from any confirmatory testing (I)

− Experience psychological impact from increased
anxiety or labelling effects (J)

Figure 1.6: Impact of monitoring on patients (from Selby et al,7 adapted from Adriaensen
and colleagues)33.
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1.4 Research questions and thesis outline

1.4.1 Research questions

How can optimal monitoring strategies be designed? What are the appropriate study designs

and methods for estimating variability of tests? In order to deliver on these main questions,

this thesis aims to answer the following questions:

• What are the current methods for assessing biological variability?

• How well are biological variability studies designed, analysed and reported?

• Can the design and analysis of biological variability studies be improved, specifically

sample size planning and outlier detection methods? Are the current methods for anal-

ysis of biological variability studies valid, considering sample size and outlier detection?

• What are the current methods for the design and analysis of monitoring strategies?

• Can modelling methods be used to predict the performance of monitoring strategies,

to identify optimal strategies to be evaluated in an RCT?

1.4.2 Thesis outline

The aim of this thesis is to investigate optimal monitoring of progressive and recurrent disease.

To achieve this aim the thesis looks broadly at two areas: the design, analysis and reporting

of biological variability studies, which provide estimates of measurement error, and the use

of modelling techniques to combine evidence and allow comparison of monitoring strategies,

so that optimal strategies can be used in further investigations.

1.4.2.1 Biological variability studies

Chapters 2 to 6 investigate biological variability studies by: reviewing the current methods

(Chapter 2), reviewing the current state of the field in terms of design, analysis and reporting
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(Chapter 3), providing critical evaluation and recommendations for these studies through

analysis of a case study (Chapter 4), providing guidance for sample size justification (Chapter

5), and evaluating the impact of outlier detection methods and subsequent removal of data

(Chapter 6). The validity of current methods is also evaluated considering different sample

sizes (Chapter 5) and outlier detection methods (Chapter 6).

Chapter 2 provides detailed explanation of the methods reviewed and used in Chapters 3

to 6. The purpose of this Chapter is to introduce concepts and terminology regarding the

design, analysis and reporting of biological variability studies.

Chapter 3 investigates biological variability studies by reviewing the literature across a range

of tests and test situations (laboratory, physiological and imaging tests). The purpose of

this review was to assess the design, analysis and reporting of biological variability studies.

Evaluation of studies identified in this review identified common weaknesses of studies, and

recommendations for reporting are proposed at the end of this Chapter.

Chapter 4 provides a detailed analysis of a biological variability study using a case study.

The aim of this chapter is to identify how the standard methods work using an example and

investigate the use of log-transformation and outlier detection methods.

Chapter 5 uses simulation to validate the confidence intervals for coefficients of variation (see

Chapter 2) provided by Burdick and Graybill34 and the variability of estimates from standard

analysis methods using different sample sizes. A tool was developed allowing researchers to

plan the sample size (number of participants, observations and assessments) based on the

precision of key estimates from biological variability studies. This Chapter provides guidance

for sample size when planning a biological variability study.

Chapter 6 uses simulation to investigate the results from biological variability studies when

(commonly used) outlier detection methods are used, with simulated data both including and

excluding outliers. The purpose of this Chapter is to understand how methods for outlier

detection impact the estimates of variability and the validity of these estimates. This Chapter

ends with recommendations for the use of outlier detection methods and interpretation of

studies using these methods.
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1.4. Research questions and thesis outline

1.4.2.2 Designing monitoring strategies

Chapters 7 and 8 identify optimal evidence-based monitoring strategies for further assessment

explaining the methods and appropriate data required. Methods for monitoring strategy

design and related areas were reviewed (Chapter 7) and using the knowledge of test variability,

along with disease progression and test performance a model was developed allowing the

comparison of monitoring strategies (Chapter 8) in terms of test performance.

Chapter 7 provides an overview of the literature, with searches performed to identify the

current methods for the design of monitoring strategies and also methods from similar fields

(for example screening and biomarker development). The purpose of this review was to

identify appropriate methods for modelling monitoring strategies for progressive and recurrent

disease discussed.

Chapter 8 uses the methods identified in the review of monitoring and monitoring related

areas, to develop a model enabling the simulation of monitoring data. The purpose of this

model is to estimate the performance of strategies in terms of test performance (allowing

candidate strategies to be identified). The aim of this Chapter is to identify the data required

to develop a model to evaluate monitoring strategies, and assess and validate the model

itself.

Chapter 9 summarises the findings and concludes the thesis. A pathway of studies and

evidence required to develop a monitoring strategy is introduced and the implications for

practice discussed. This Chapter also suggests future work and discusses the limitations and

strengths of the thesis.
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Chapter 2

Introduction to assessment of

biological variability: design,

analysis and reporting

Summary

Biological variability studies assess the between and within-individual variability of test data.

A review of biological variability studies was conducted and key methods were reported.

There are many alternative measures of variability with different terms favoured in each area

of research. Biological variability studies in laboratory medicine have a framework for design

and evaluation proposed by Fraser and Harris in 1989.35 Key papers focus on the analysis of

biological variability studies (usually ANOVA or equivalent methods) with little discussion

of the design of studies.
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Chapter 2. Introduction to assessment of biological variability

2.1 Introduction

To assess biological variation of a test the variability within and between individuals needs

to be estimated after accounting for analytical variability,16 see Chapter 1. Estimates of

variability help place tests efficiently and optimally in the care pathway and indicate the

appropriate difference in test results required to change patient management.13 Knowledge

of variability allows the test results triggering a change in patient management to be reflective

of a change in the disease state of a patient rather than merely reflecting the usual variability

in multiple test measures.14

The levels of variability considered are: pre-analytical variability, analytical variability, within-

individual variability and between individual variability.

Pre-analytical variability is variability in a test due to the differences in how subjects have

prepared for a sample to be taken (for example, diet prior to sample being taken and time of

day) and the process of taking the sample or performing the test (for example, the equipment

used to perform a test and the person performing the test) and how this sample has been

treated prior to assessment (for example, in the case of laboratory based tests this may

be procedures for storing and transporting samples). Pre-analytical variability is usually

minimised where possible.16

Analytical variability is the variability of results from a single sample and is often assessed

by taking a sample and replicating the analysis of this sample.16 Analytical variability for

laboratory based tests is generally expressed by how well a laboratory process can replicate

results when using identical samples, but for other testing settings, such as imaging testing,

this process is different with variability in the assessment of an image being due to the

clinician tasked with reviewing the image. The analytical variation in imaging tests is often

assessed by the use of inter and intra reader studies. For physiological tests it is often not

possible to assess analytical variability.

Within-individual variability is the variability due to fluctuation in test results for an indi-

vidual with the underlying disease status of the individual remaining consistent for the time
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period assessed. Between-individual variability is the variability in test measures between

individuals in a population.16

Biological variation is a complex component of test evaluation and it is especially vital this

is accurately estimated when considering the repeated use of a test in a population to detect

disease progression or recurrence.13 Assessment of biological variability, prior to devising a

strategy of monitoring by repeated testing of individuals over time, is crucial to identify

optimal use of the test in the strategy (knowing if the test can be used with a constant

threshold for the whole population or if changes for each individual are more meaningful)

and to fully understand the impact of changes in test results for the multiple tests evaluated

for each participant by knowing the likely variability in results.13

To understand the scope of studies evaluating biological variability, the design, methods for

analysis, reporting and overall quality a review of studies of biological variation was conducted

(see Chapter 3), with the key methodological papers influencing this work identified and

summarised in this Chapter.

In many situations test data are not normally distributed and are log-transformed, the meth-

ods and results for this special case are considered in this Chapter.

2.2 Methods

A review of the design, analysis and reporting of biological variability studies was conducted.

To ensure the review covered a wide range of test areas there were many elements to the

search: searches for key terms were performed, hand searching through relevant journals,

identification of papers from a database of biological variability studies and searches specific

to three selected clinical areas. For full details of the search see Chapter 3. The searches

were developed to ensure that laboratory, physiological and imaging tests were identified in

the review.

Papers were included in the review if they reported a study where the purpose (primary or

secondary) was to assess the variability of measuring or evaluating test results in participants
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thought to be in a stable health state. Studies included were required to have multiple test

assessments for participants under the same conditions (testing and patient care). There was

no restriction placed on study participants for inclusion, with studies of healthy participants

and participants with disease included.

Multiple test assessment included repetition of part or all of the testing procedure; partici-

pants could be tested multiple times or a test could be assessed multiple times (for example,

clinicians assessing imaging results or retesting of stored samples). To obtain an estimate of

biological variability (‘The natural variability in a lab parameter due to physiologic differences

among subjects and within the same subject over time.’ 15), analytical variability needs to be

assessed and allowed for when measuring within-individual and between-individual variabil-

ity, so studies assessing analytical variability only were included. It was also required that

assessment was of participants or participant samples rather than control samples.

Whilst conducting the review, key methodological papers influencing the design, analysis and

reporting of the selected studies were identified and further texts were found from ‘snowball’

searches.36 The main findings from the methodological papers are reported here.

2.3 Results

The literature for designing, analysing and reporting variability studies is better defined in

laboratory science than for other areas of health care. This guidance is generally applicable

to any test providing a continuous value, although some tests do not lend themselves to the

assessment of analytical variability.

Studies of imaging tests have different methods for design, analysis and reporting as these

studies include the variability from having a reader interpret the image. The image may

provide a continuous value that can be used to guide patient care or it may provide a binary

result (presence or absence of disease).
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2.3. Results

2.3.1 Design of biological variability studies

2.3.1.1 Studies of laboratory tests

In the area of clinical chemistry there are developed frameworks that are adhered to when

studying the variability of tests. These frameworks are often used with laboratory tests but

would be generally applicable to any test with a continuous outcome.

Fraser and Harris

The work of Fraser and Harris,35 published in 1989, provides a framework for the design of

biological variability studies conducted in the clinical chemistry laboratory setting. Fraser

and Harris35 state that studies with the aim of estimating biological variability should reduce

pre-analytical variation where possible with this including a strict testing protocol; this may

include tests being performed at the same time of the day, in the same place, by the same

person and at regular time periods in addition to the participant having prepared for the

test in the same way (diet and exercise) and consistent handling, transport and storage of

samples.

With regard to analysing the samples in the laboratory the favoured approach (introduced

by Cotlove and colleagues in 1971)37 is to allow all samples to be collected for the duration

of the study and then analyse all samples at the same time in duplicate.35 The benefit of

this approach is there is no variation due to the samples being analysed in different runs and

the analytical variation can be estimated as the samples are analysed in duplicate. If the

samples are not analysed in duplicate the analytical variance needs to be estimated using

quality control materials, stored samples or existing literature. Fraser and Harris warn that

this is not ideal, as the estimate of analytical variability: ‘may not accurately reflect the

true analytical variation achieved with the specimens from the subjects’.35 It is, however,

acknowledged that in some cases (such as when samples are unstable) analytical variability

will have to be assessed externally.35 Fraser and Harris35 also criticise the approach where

samples are analysed as they are collected, as this will incur between-run variation.
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Participant 1

Time 1

Time n2

Assessment 1

Assessment n3

Assessment 1

Assessment n3

Between-
individual
variability

Participant n1

Time 1

Within-
individual
variability

Time n2

Assessment 1

Assessment n3

Assessment 1

Analytical variability

Assessment 1

Assessment n3

Figure 2.1: Biological variability study design.

In order to assess analytical, within-individual and between-individual variability, the design

often used in laboratory test experiments is to recruit n1 participants and take observations

from these participants at n2 time points, with each observation assessed n3 times,35 see

Figure 2.1.

European Federation of Clinical Chemistry and Laboratory Medicine

The EFLM (European Federation of Clinical Chemistry and Laboratory Medicine) released

a consensus statement in 201538 following the conference held in Milan updating the guide-

lines created in Stockholm 15 years previously.39 This consensus statement offers three broad

approaches; the first concerns analytical performance and the impact of this on patient out-

comes; the second is based on estimating biological variation; and the final approach looks

at comparing analytical variability to performance goals known as ‘the-state-of-the-art’. The

authors advocate the use of the first and second model (individually and in combination)
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over the third as this does not consider impact on patients. There is also a move to make

the catalogued biological variability information more reliable.13

2.3.1.2 Studies of physiological tests

Non-laboratory based studies may be designed to recruit a group of patients and take repeated

measures for these patients without formal assessment of analytical variability. Indeed, for

some physiological measures it may not be possible to directly assess analytical variability, for

example spirometry and blood pressure testing. Use of these designs mean measurement error

is estimated when calculating the variability within participants, combining analytical and

within-individual variability. Laboratory studies may employ this design and calculate within-

individual variability by obtaining an estimate of analytical variability from an external

source. Simundic et al22 stress the importance of clarification when reported results showing

the combined analytical and within-individual variability.

2.3.1.3 Studies of imaging tests

Imaging tests can incur variability at the analytical, within and between-individual level,

but often the focus of the studies is the variability within and between readers, which is

not generally a concern for laboratory and physiological tests. For studies of intra and inter

reader variability of imaging or patient charts, a typical study design would be to recruit and

test each participant. Each result would then be independently assessed by multiple readers,

with a reader(s) assessing each result multiple times.23,40 Intra and inter reader studies often

have few readers.41 Repeat reading of images by readers may only be performed by a subset

of readers or even a single reader.23 In some studies stock images/records are repeatedly read

(for example To et al42). Readers may be chosen purposively to represent experienced and

inexperienced readers.40
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2.3.1.4 Populations investigated

The recommendation of Fraser and Harris,35 when assessing the variability of laboratory

based tests, is to only include apparently healthy participants in studies assessing biological

variability. The Milan consensus issued by the EFLM discussed how results can vary due to

the population and health care setting and participants being in a ‘steady disease state’.38

This issue is also considered by Aarsand et al13 when discussing the reliability of estimates

from biological variability studies.

For imaging and physiological tests no guidelines were identified suggesting the populations

to be tested but studies identified in the review (see Chapter 3) indicate participants with

disease were tested more often.

2.3.1.5 Sample size

There is limited guidance to inform the sample size, number of repeat measures, and timing

of measures when designing studies of test variability.

Studies of laboratory tests

Fraser and Harris35 use previous studies to support the view: ‘valid estimates of the compo-

nents of variation can be obtained from relatively small numbers of specimens collected from a

small group of subjects over a reasonably short period of time’.35 Subsequent work by Fraser16

states: ‘the number of subjects is a compromise between the large number that is the ideal

and the smaller number that can be handled in any good experimental design’.

Another approach for laboratory tests has been to evaluate the number of repeat samples

required (n) for an estimate to be within x% of the homeostatic setting point, which is n =(
1.96

(√
CV 2

A+CV 2
I

x

))2

.16 The homeostatic setting point is the ‘true’ value for an individual.

This approach considers only the estimate of within-individual variability and focusses on

the number of repeat measures that would be required each time the test is performed. See

§2.3.2.4 for explanation of notation.
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More recently Røraas and colleagues43 assessed the power of biological variability studies

using simulation based on analysis using ANOVA, for varying numbers of individuals, sam-

ples, replicates and levels of analytical variability. The tables detailing the power of studies

are available to guide investigators to design biological variability studies with adequate

power.

Studies of physiological tests

In the medical testing setting studies of variability are often called reliability studies which

may be referred to as generalisability studies (G) and studies where the most reliable strategy

involving a decision making process is assessed, which are decision (D) studies.44 de Vet et al44

suggest that a sample size of 50 is appropriate for the measurement of variability reasoning

that this sample size will be adequate to fill a 2× 2 table and will allow a Bland-Altman plot

to be reasonably populated.

de Vet and colleagues44 discuss how statistical significance is not a component of devising the

sample size required to produce a reliability estimate, as it is the value of the estimate which

provides information about the ability of the measuring system rather than the difference from

zero. The importance of an adequate sample size is stressed as this will allow an adequate

95% confidence interval for the reliability parameter to be estimated with Streiner et al23 also

commenting on how sample size influences the accuracy of the reliability coefficient.

de Vet et al44 acknowledge that sample size guidance is difficult to locate and provide sample

size formula for intraclass correlation coefficients (ICCs) allowing the sample size (n) to be

calculated for a pre-specified CI. The formula is taken from Giraudeau and Mary:45

n =
8z2

1−α/2(1− ICC)2[1 + (n2 − 1)ICC]2

n2(n2 − 1)w2
,

where n2 is the number of measures of each participant and w is the width of the 100(1−α)%

confidence interval for the ICC. See §2.3.2.4 for explanation of notation.
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Studies of imaging tests

When imaging studies produce a binary outcome, the measure commonly used is the Kappa

statistic (see §2.3.2.3). It is acknowledged that sample sizes for Kappa statistics need to

be larger as the data is categorical; however, sample size calculations for a Kappa statistic

are more difficult to perform as an estimate of Kappa and other distributional knowledge is

required.44

2.3.2 Analysis of biological variability studies

2.3.2.1 Preparing data for analysis

In studies of laboratory tests data is tested for normality and subjected to outlier detection

methods prior to analysis. For imaging and physiological studies no such practices were

identified.

Normality of data

For laboratory studies of biological variation, Fraser and Harris35 advocate the use of the

Shapiro-Wilk test for normality. This test is applied to results for each individual separately

and the data is transformed (log transformation) if the results for many individuals are not

normally distributed.35 Braga et al46 have offered further guidance introducing Kolmogorov-

Smirnov tests in addition to Shapiro-Wilk (see Box 2.1).

When using a model to evaluate three levels of variability, the model assumes normality of

the variability parameters at the analytical, within-individual and between-individual levels.

If this assumption is not held results from the model may not be valid. Simply assessing

the normality of the test measures may not be sufficient to investigate if the data meets the

assumptions of the model. Many of the outlier detection methods (see Chapter 6) rely on

the data to be normally distributed, hence the further requirement for normality prior to

assessing outliers.

It may also be desirable to convert to the log scale as when biological variability data are log-
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normally distributed, coefficients of variation (on the original scale) can easily be estimated

using the standard deviation of the log transformed data.47

For studies of physiological and imaging tests no guidance on normality checking and trans-

formation of data was identified.

Box 2.1: The Shapiro-Wilk test.

The Shapiro-Wilk test is the primary test used for assessing normality of data in studies
of laboratory test variability. The Shapiro-Wilk test uses analysis of variance to test for
normality, with the null hypothesis that data are normally distributed.48 Given a variable
y is ordered, such that y1 < y2 < . . . < yn the test-statistic for the Shapiro-Wilk test is:

W =
(
∑n

i=1 aiyi)
2∑n

i=1(yi − ȳ)2
,

where ȳ is the mean value of the variable and ai = (a1, . . . , an) = mTV −1

(mTV −1V −1m)1/2 . m =

(m1, . . . ,mn)T are the expected values of ordered statistics and V is the corresponding
covariance matrix.49

Outliers

In the laboratory setting, it is recommended data are assessed for outlying results and these

should be removed prior to analysis. Most commonly, Cochran C test and Reed’s criterion are

used to identify data to be removed, as recommended in the Fraser-Harris Framework.16,35

The Cochran C test is used to assess variances within the duplicated results and if an outlier

is detected both results are removed; this test is used again to assess the variances of results

for each individual. Reed’s criterion is used to identify if the mean value for any individual

is an outlier.16 Other methods of outlier detection are used in the laboratory setting and are

further discussed (See Chapter 6).

In other areas of test evaluation an alternative view of outliers is taken. According to de

Vet et al outliers should not be deleted as errors do occur and may indicate difficulties with

measurement read outs or interpretation of scales.44
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2.3.2.2 General method for analysis of test variability studies

Across variability studies for laboratory, physiological and imaging tests the analysis allowing

the estimates of variability to be quantified is the same and comes from a model allowing the

variability at each level to be estimated, or equivalently analysis of variance, ANOVA.

The differences between studies of test types occur after this analysis has been performed.

Fraser and Harris35 provide guidance for the analysis of biological variability studies con-

ducted in the clinical chemistry laboratory setting. ANOVA is suggested as the method for

analysis providing estimates for each component of variance, which is equivalent to fitting

a linear regression model with only random effects when the number of observations within

participants is consistent for all participants and the number of assessments at each observa-

tion point is consistent for all observation points (a balanced design). ANOVA is performed

by the calculations shown in Table 2.1.

Table 2.1: ANOVA (adapted from Burdick and Graybill34).

DF SS MS EMS

Between participants G = n1 − 1 n2n3
∑
i(ȳi − ȳi)2 S2

G θG = σ2
A + n3σ2

I + n2n3σ2
G

Within participants I = (n2 − 1)n1 n3
∑
i

∑
j(ȳij − ȳi)2 S2

I θI = σ2
A + n3σ2

I

Within assessments A = (n3 − 1)n1n2
∑
i

∑
j

∑
k(ȳijk − ȳij)2 S2

A θA = σ2
A

Total T = n1n2n3 − 1
∑
i

∑
j

∑
k(ȳijk − ȳ)2

DF is degrees of freedom; SS is sum of squares; MS is mean squares; and EMS is expected mean squares

Where S2, the mean squares, is equal to the sum of squares divided by the degrees of freedom,

as is estimated by θ. In model notation this can be expressed as yijk = µ+αi+βij+εijk, where

i = 1, .., n1, j = 1, .., n2 and k = 1, .., n3, yijk is the test measure for the ith participant at the

jth time point and for the kth assessment, µ is the mean value of the measure, αi ∼ N(0, σ2
G),

βij ∼ N(0, σ2
I ) and εijk ∼ N(0, σ2

A).

When using a linear regression model to estimate the variance parameters, the use of re-

stricted maximum likelihood estimation (which estimates the fixed and random effects in-

dependently) is preferred as the estimates are less biased compared to maximum likelihood

estimation methods, especially with small sample sizes.50 McNeish and Stapleton50 recom-

mend a minimum of ten observations per individual to estimate a variance parameter.
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Specialist ANOVA methods

Specifically referring to studies of laboratory tests, further work by Røraas et al51 has in-

vestigated the performance of the standard ANOVA method alongside ln-ANOVA and CV-

ANOVA methods. The ln-ANOVA method uses log transformed values and the method

CV-ANOVA normalises data for each individual (by dividing by the mean) prior to ANOVA

being performed. The ln-ANOVA method is often advocated as it easily allows estimation

of coefficients of variation (CV), see §2.3.2.4. The CV-ANOVA method is an alternative ap-

proach to obtaining CVs; however, it is not possible to estimate between-individual variability

with this method.51

2.3.2.3 Alternative methods for analysis of test variability studies

Bland-Altman method

The Bland-Altman method52 is primarily used when comparing two methods of measur-

ing the same outcome in the same individuals with the Bland-Altman method providing a

measure of agreement, and is often used for physiological measures. The method comprises

the calculation of the mean difference between the measures and 95% limits of agreement

around this estimate (d̄ ± 1.96σd), where σd is the standard deviation of the differences be-

tween measures for each individual, this is often displayed graphically also. When describing

this method, Bland and Altman provide detail regarding the estimation of repeatability of a

measure rather than comparison between two measures, suggesting ANOVA is used to pro-

vide an estimate of within-individual standard deviation which can then be used to compare

repeatability between measurement methods.

Bland and Altman advise that repeatability is evaluated and this is taken into account when

comparing methods of measurement. Bland and Altman also provide the repeatability co-

efficient (CR), which is calculated as 1.96
√

2σA+I , where σA+I is the calculated standard

deviation relating to measurement error. The repeatability coefficient is how close two read-

ings made using the same method will be for 95% of subjects (an absolute measure), with this

measure akin to the reference change value (RCV) but with variability expressed as standard

deviations and the within-individual variation estimate including analytical variation rather
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than estimated separately as measures are not performed in duplicate. This method is used

when assessing clinical measures.53

Kappa

Agreement within and between observers (or raters) is known as intra and inter rater vari-

ability. A basic way of expressing this level of agreement is percentage agreement, which is

the percentage of measurements showing agreement of the total number assessed. Cohen’s

Kappa extends this idea by allowing for agreement occurring by chance. Kappa is calculated

as:

κ =
po − pe
1.0− pe

,

where po is the proportion of cases where there is agreement and pe is the proportion of cases

where agreement would be expected by chance. The corresponding standard error for Kappa

is:

SE(κ) =

√
po(1− po)

n1(1.0− pe)2
,

where n1 is the number of participants in the study. Cohen’s Kappa measures agreement by

providing a value between -1 and 1, with a value of 0 indicating chance agreement.54

Kappa is used in situations where the result of a test is categorical rather than a continuous

measurement as it is difficult to achieve complete agreement when a continuous measure is

used.

Capability measures

Outside of medicine, in the area of industrial management, there are measures of variability

for monitoring ongoing processes. Processes are monitored by taking repeated measures, and

controlled by comparing these to ‘capability measures’ calculated using variability estimates.

Precision to tolerance ratio (PTR) and signal to noise ratio (SNR) are capability measures.

PTR is calculated as
k
√
σ2
A

USL−LSL , where USL and LSL are specification limits and k is equal to
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5.15 or 6 (this is the number of standard deviations between the ‘natural’ tolerance limits and

correspond to the central 99% or 99.73% of the ‘process’ respectively) and σ2
A is the variance of

the measurement system. SNR is

√
2

σ2
G

σ2
A+I

, using the ratio of the process variance or between

individual variance (σ2
G) to the measurement variance (σ2

A+I). The SNR value indicates how

many categories can be reliably identified; SNR values of five and above mean monitoring is

recommended and SNR values of less than two indicate little benefit of monitoring. SNR and

PTR are plotted against each other, with 95% confidence intervals to account for uncertainty

of the estimates and these plots are used to assess the measurement system. Also used

are: intraclass correlation (ICC), a measure of the proportion of the total variation that is

attributed to the process, ρ =
σ2
G

σ2
G+σ2

A+I
; and, process capability, Cp = USL−LSL

6

√
σ2
G

σ2
A+I

, this is to

understand the ability of the process rather than the measurements.55

2.3.2.4 Reported measures from test variability studies

There are many different terms used to describe measures of test variability. These terms

refer to related concepts, and although some terms have precise definitions, in practice, they

are often used interchangeably. Streiner et al23 list some of the definitions used for variability

as: reliability, objectivity, reproducibility, stability, agreement, association, sensitivity, pre-

cision, accuracy, dependability, repeatability and consistency. The exact definitions of these

concepts are not defined here, but the statistical measures presented to describe variability

are discussed. Some measures of test variability are akin to those in other research areas but

may be specified differently.

Reported measures for studies of laboratory tests

Estimated standard deviations are used to set goals for analytical performance. Measures

include: coefficients of variation, reference change values and index of individuality.56 See

Table 2.2 for details of all measures reported in this section.

Coefficient of variation, or CV, is defined as σ/µ where σ is the standard deviation and µ is

the mean.16 Coefficients of variation are often expressed as percentages and allow measures
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to be interpreted in relation to the value of the mean. When calculating the coefficient of

variation at the analytical, within-individual and between-individual levels the corresponding

standard deviations are used and are divided by the overall (grand) mean to estimate the

CV.

The reference change value (RCV), also known as critical difference (CD), estimates the dif-

ference between two results for an individual that would indicate a real change above the ex-

pected random fluctuation in test measures.16 RCV is calculated using
√

2Z
√

(CV 2
A + CV 2

I ),

where Z is selected from the normal distribution (usually 1.96) and CVA and CVI are the co-

efficients of variation at the analytical/reassessment and individual level respectively.16

The index of individuality (II), provides information regarding the best use of a test by quan-

tifying the ratio of variability at the analytical and within-individual levels to the between-

individual level, and is calculated using
√

(CV 2
A + CV 2

I )/CVG where CVA, CVI and CVG are

coefficients of variation analytical, within and between individuals respectively. II is often

simplified to CVI/CVG, with the assumption that CVA << CVI .
16,22 Higher values indicate a

general threshold would be reasonable and lower values suggest changes from previous results

for an individual will more be meaningful.16,57

Also used is the index of analytical error, CVA/CVI . This measure is the ratio of analytical

variation to within-individual variation and is often used for setting analytical variability

goals.16

Total variance is the total variability in the data and is calculated by combining variances

at the analytical, within-individual and between-individual levels, σ2
A +σ2

I +σ2
G.46 This com-

bined variability can also be expressed as a standard deviation (σA+I+G or σTOT ) or as a

coefficient of variation (CVA+I+G or CVTOT ). Another combined variance is total error,

or measurement error, combing the analytical and within-individual variability. Total error

variance is calculated as: σ2
A + σ2

I . Again, total error can also be expressed as a standard

deviation (σA+I or σTE) or coefficient of variation (CVA+I or CVTE).

The index of heterogeneity (IH) is a measure of the heterogeneity of within-individual ob-

servations. IH measures the ratio of CVA+I to the theoretical CV and is calculated as:
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IH =
CVA+I√

2
n2−1

, where n2 is the number of observations for each individual.46 Under the as-

sumption of no heterogeneity, the expected value is 1/
√

2n2. If the calculated IH is more

than twice the expected value, the IH indicates heterogeneity.46

The Validity Coefficient (VC) represents the difference between the measured value and the

true value, due to variability. V C =

√(
1 +

σ2
I

n2σ2
G

)−1
, where σI and σG are the standard

deviations at the within-individual and between-individual level respectively and n2 is the

number of observations from each individual.58

To demonstrate how the measures of variability differ in different situations estimates are

produced for four test scenarios: scenario A is a test with good analytical variability and

within-individual variability is much lower than between-individual variability; scenario B

is a test with the within-individual variability larger in comparison to between-individual

variability; scenario C is a test with poorer analytical variability; and scenario D is a test

with decreased between-individual variability, see Table 2.3. For further details of how these

measures can be employed for use in monitoring individuals see Chapter 7.

Studies of laboratory tests–log-normal data

Often in laboratory based studies data are considered to be log-normally distributed. Differ-

ent measures are reported when data follow a log-normal distribution.

When data requires log-transformation prior to analysis using ANOVA or modelling, the

estimated standard deviations are geometric CVs and these can be multiplied by 100 to be

expressed as a percentage.59 The exact geometric CV of values on the original scale (assum-

ing a log-normal distribution) can be estimated by
√
exp(σ2)− 1, where σ is the standard

deviation of the log transformed values, with
√
exp(σ2)− 1 × 100 to express CV as a per-

centage.59,60 This calculation of the coefficient of variation arises as standard deviations of

(natural) log transformed data represent a fraction standard deviation, the CV, and with

the equation expressed giving the exact relationship.59 An alternative way of using log trans-

formed data to provide an estimate of geometric CV is given by Kirkwood,61 as exp(σ) − 1

and with the CV expressed as a percentage using (exp(σ) − 1) × 100, where σ is again the

standard deviation of the log transformed values.
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Chapter 2. Introduction to assessment of biological variability

When using log-normal data RCV limits are asymmetrical, meaning the positive and negative

difference are calculated separately. The percentage RCV limits when using log-normal data

are calculated using: RCVpos = [exp(Z×
√

2τ)−1]×100, and RCVneg = [exp(−Z×
√

2τ)−1]×

100 (where τ =
√
ln(CV 2

A+I + 1), Z is selected from the normal distribution (usually 1.96)

and CVA+I is the coefficient of variation for the total imprecision, CVA+I =
√
CV 2

A + CV 2
I ,

with CVA and CVI).
62,63

The measures for log-normal data for the four test scenarios are shown in Table 2.4.

Reported measures for studies of physiological tests

In general, reliability parameters are used to assess the ability of participants to be distin-

guished from each other and are forms of ICC. The reliability parameter is

R =
σ2
G

σ2
TOT

=
σ2
G

σ2
A+I + σ2

G

,

where σ2
TOT is the total variance of measures and σ2

G is the ‘true’ variability between partic-

ipants. Here, σ2
A+I is ‘measurement error’ which includes both within individual variability

and analytical variability, this would be obtained if the study design included only repeat

measures of a group of individuals and no assessment of analytical variability by repeated

assessment of measures. The reliability parameter takes values between 0 and 1, with a value

of 1 meaning the system is perfect at identifying individuals, and 0 meaning it is unreli-

able.

Reported measures for studies of imaging tests

ICC measures are further defined for studies considering the variance due to raters (identified

in inter-intra reader studies of imaging tests), these measures are further defined as ICCs for

agreement and consistency.

ICCagreement =
σ2
G

σ2
A + σ2

I + σ2
G

,
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where σ2
A is residual variance, σ2

I is the rater variance and σ2
G is the between-individual

variance, and

ICCconsistency =
σ2
A

σ2
A + σ2

G

,

where σ2
A is the residual variance and σ2

G is the variance of the ‘true’ scores of the partici-

pants.

For the consistency measure the rater variance is not considered; however, if interest is in

agreement between measures the variance due to raters is included.44

The reliability parameter can also be used when there are multiple (k) measures used to

generate an average,

R =
k2σ2

G

kσ2
A+I + k2σ2

G

.

A more reliable measure will always be achieved when based on the average of measurements

as the measurement error becomes smaller.44 Streiner et al advise that averaging of measures

is only used if this reflects practice.23

The relationship between the reliability parameter, R, and the standard error of measurement

(SEM) is: SEM = σ
√

1−R, where σ is the standard deviation of observed values.23 When

concerned with the variability of a measure itself it is of interest to assess the magnitude

of measurement error. For continuous outcomes the standard error of measurement error

and coefficients of variation are also often reported, and when comparing agreement between

tests the limits of agreement from the Bland-Altman method are used. When the outcome

is categorical (say a diagnosis) Cohen’s Kappa and weighted Kappa are often used to judge

agreement. There are no measurement error estimates for categorical outcomes; instead the

percentage of outcomes in agreement is usually used in some way.44 The use of ICCs and

ANOVA is advocated by Streiner et al rather than Bland-Altman and Kappa.23
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Chapter 2. Introduction to assessment of biological variability

Table 2.2: Commonly reported variability measures.

Measure Formula

Commonly used in studies of laboratory tests

CV σ/µ

Reference change value (RCV)
√

2Z
√

(CV 2
A + CV 2

I ),
where Z is selected from the normal distribution

Index of individuality (II)
√

(CV 2
A + CV 2

I )/CVG

Index of analytical error CVA/CVI

Total variance σ2
A + σ2

I + σ2
G

Index of heterogeneity (IH) CVA+I√
2

n2−1

Validity coefficient (VC)

√(
1 +

σ2
I

n2σ2
G

)−1

After log transformation

Exact geometric CV
√
exp(σ2)− 1

Alternative exact geometric CV exp(σ)− 1

Asymmetric RCV bounds exp(±Z ×
√

2τ)− 1,

where τ =
√
ln(CV 2

A+I + 1)

Commonly used in studies of physiological and imaging tests

Reliability parameter (R)
σ2
G

σ2
A+I+σ

2
G

Reliability parameter with k measurements
k2σ2

G

kσ2
A+I+k

2σ2
G

ICC agreement
σ2
G

σ2
A+σ2

I+σ
2
G

ICC consistency
σ2
A

σ2
A+σ2

G
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Chapter 2. Introduction to assessment of biological variability

2.3.2.5 Use of confidence intervals

In the laboratory test setting, Fraser and Harris comment on the use of confidence intervals to

express uncertainty of estimates produced but caution these are often not considered due to

distributional assumptions.35 Røraas et al43 state that biological variability estimates should

be presented with confidence intervals to allow the uncertainty around the estimate to be un-

derstood. It is acknowledged that confidence intervals are rarely seen in biological variability

studies and as a consequence it is difficult to compare results across studies. This issue was

raised by Henderson64 with debate from Harris65 in 1993 in the Journal of Clinical Chemistry.

Henderson called for the consistent use of confidence intervals in the journal, arguing use was

commonplace in other fields of research, and requested this be made a requirement; however,

Harris was reluctant to employ this. At present the author guidelines for the Journal of

Clinical Chemistry66 state confidence intervals should be used ‘when appropriate’.

Røraas et al43 considered the standard biological variability study design with individuals

providing multiple samples and replicated analyses of these samples using ANOVA. Using

the formula introduced by Burdick and Graybill,34 Røraas et al provided confidence intervals

calculated for a varying numbers of individuals, samples, replicates and levels of analytical

variability. Researchers are encouraged to use the tables provided, demonstrating the width

of confidence intervals under certain designs, to estimate the width of the confidence interval

around an estimate. Røraas et al67 have subsequently investigated the ability of methods to

generate confidence intervals for estimates of within-individual biological variability. Burdick

and Graybill34 proposed methods to calculate approximate intervals for variance components

(see §2.3.2.5).

Burdick et al55 also comment on the use of confidence intervals, as for gauge reliability and

reproducibility studies, it is often not possible to calculate exact confidence intervals for esti-

mates of variability. Two alternatives are discussed, firstly, the modified large sample (MLS)

approach55 and, secondly, the computer intensive approach using generalised confidence in-

tervals. The authors warn intervals obtained from likelihood based methods (for example

REML models) are only valid for large samples and may not be appropriate.
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2.3. Results

For other test types, the use of confidence intervals is commonplace but the issues with

obtaining exact confidence intervals for measures of variability remain. The default of many

computer packages is to display confidence intervals using an approximation via the delta

method.

Confidence intervals for variance components

These formulas are appropriate for any test type where estimates of variability at the ana-

lytical, within-individual and between-individual levels have been estimated.

Using the assumptions of the general model for data from biological variability studies: yijk =

µ+αi + βij + εijk, where µ is the mean value of the measure, αi ∼ N(0, σ2
G), βij ∼ N(0, σ2

I ),

εijk ∼ N(0, σ2
A) and i = 1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , n3, n1S

2
1/θ1, n2S

2
2/θ1 and

n3S
2
3/θ1 are jointly independent chi-squared random variables, see ANOVA notation in Table

2.1. Using the formulas of Burdick and Graybill34 it is possible to calculate confidence inter-

vals calculated using the expected mean squares (as shown in Table 2.1). These equations have

also been coded in a shiny application allowing visualisation of the confidence intervals for

different estimates and sample sizes, https://alicesitch.shinyapps.io/bvs_cis/.

An exact two-sided confidence interval for analytical variation (σ2
A), estimated by θA is given

by:
[

S2
A

Fα:A,∞
;

S2
A

F1−α:A,∞

]
, with this converted to give the confidence interval for σA by taking

the square root of both the lower and upper bound.

To calculate a confidence interval for within-individual variation (σ2
I ) the formula

[
S2
I − S2

A −
√
VIL

n3
,
S2
I − S2

A +
√
VIU

n3

]

is used and for between-individual variation (σ2
G) the formula

[
S2
G − S2

I −
√
VGL

n2n3
,
S2
G − S2

I +
√
VGU

n2n3

]

is used where:
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VGL = GGS
4
G +H2

IS
4
I +GGIS

2
GS

2
I

VGU = HGS
4
G +G2

IS
4
I +HGIS

2
GS

2
I

VIL = GIS
4
I +H2

AS
4
A +GIAS

2
IS

2
A

VIU = HIS
4
I +G2

AS
4
A +HIAS

2
IS

2
A

GG = 1− 1

Fα:G,∞

GI = 1− 1

Fα:I,∞

GA = 1− 1

Fα:A,∞

HG =
1

F1−α:G,∞
− 1

HI =
1

F1−α:I,∞
− 1

HA =
1

F1−α:A,∞
− 1

GGI =
(Fα:G,I−1)2 −G2

GFα:G,I −H2
I

Fα:G,I

GIA =
(Fα:I,A−1)2 −G2

IFα:I,A −H2
A

Fα:I,A

HGI =
(1− F1−α:G,I)

2 −H2
GF

2
1−α:G,I −G2

I

F1−α:G,I

HIA =
(1− F1−α:I,A)2 −H2

IF
2
1−α:I,A −G2

A

F1−α:I,A
.

Confidence intervals for coefficients of variation

Obtaining exact confidence intervals for coefficients of variation involves solving non-linear

equations. Assuming the coefficient of variation is positive, the lower bound of a confidence

interval can be obtained solving the following for β:

α/2 = FNCT (n− 1,
√
n/β)(X̄/(σ/

√
n)),
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where 1 − α represents the confidence level required, FNCT (n − 1,
√
n/β) is a non-central

t-distribution with n − 1 degrees of freedom and
√
n/β non-centrality parameter, X̄ is the

sample mean, σ is the sample standard deviation and n is the sample size. To obtain the

upper bound, the following equation must be solved for β:

1− α/2 = FNCT (n− 1,
√
n/β)(X̄/(σ/

√
n)).60,68

In addition to the computational complexities in obtaining exact confidence intervals for

coefficients of variation, this method can give confidence bounds of infinity. There are also

approximate methods for calculating confidence intervals for coefficients of variation, but the

issue of infinite upper bounds is more apparent for approximate methods.68 There is no closed

form solution for deriving confidence intervals for reference change values.51

Confidence intervals for coefficients of variation–log-normal data

When data are log-normal, the distribution of log transformed data (Yi) is normally dis-

tributed (Yi ∼ N(µ, σ2)) and a 1− α confidence interval for σ2 is [aL, aU ].

aL = (n− 1)σ2/(Fχ2(n− 1)−1(1− α/2)), and

aU = (n− 1)σ2/(Fχ2(n− 1)−1(α/2)),

where σ is the sample standard deviation of the log transformed data (Yi) and Fχ2(n− 1)(x)

is a cumulative distribution function of a central chi-squared distribution with n− 1 degrees

of freedom. This formula is equivalent to the formula for a confidence interval for σA provided

by Burdick and Graybill due to the χ2 distribution and F distribution being equivalent under

certain conditions.

Hence, to obtain a 1 − α confidence interval for the coefficient of variation for log-normal

data, the following is used:

[√
exp(aL)− 1,

√
exp(aU )− 1

]
.68
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2.3.2.6 Reporting of biological variability studies

Studies of laboratory tests

There are no guidelines for the reporting of laboratory biological variability data, unlike the

reporting of reference range estimates. Bartlett and colleagues,69 on behalf of the Biological

Variation Working Group of the European Federation of Clinical Chemistry and Laboratory

Medicine (EFCCLM) developed a checklist for the appraisal of existing and future publica-

tions of biological variability data.69 This checklist is developed from the idea of a minimum

dataset that must be provided to allow readers to accurately interpret results of biological

variability studies.70 The minimum dataset to be reported includes information on the: test,

population, study, analysed data and also suggests linking to a publication with further de-

tails and a rating of the study (in development).69,70 The checklist proposed has six domains:

title/abstract/keywords, introduction, data analysis, results and discussion, see Table 2.5.

Simundic et al suggest that consistent notation is used to avoid confusion when reporting

results from biological variability studies.22

Studies of physiological and imaging tests

For variability studies in other test areas there are reporting guidelines (GRRAS).40 These

guidelines include clear identification of the study type in the title; describing the testing

measurement or device, the population, rater population and study rationale; explanation of

the chosen sample size (number of subjects, raters and replicates), the sampling method, the

measurement and rating process; acknowledgement of independence; description of statistical

analyses; the results must state the number of raters, subjects and duplicates, describe the

raters and subjects and give ‘reliability and agreement’ measures with statistical uncertainty.

Further to these points, there should be discussion of the relevance of results and further

detailed results.
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Table 2.5: Biological variability study checklist. After Bartlett.69

Section and topic Item Evidenced

Title/abstract/keywords 1 The title should indicate that the content relates to a study of biological

variation, the subject of the study, the sample matrix, and the population

studied. Analyte (component being measured), the measurand/s (the

quantity or quantities to be measured, see Section 1.1), and state of

well-being of the subjects under study should be clearly and unambiguously

identified. Relevant coding systems might be employed, (e.g., LOINC,71

SNOMED,72 C-NPU.73)

Abstract 1.1 As a minimum it should contain the headline biological variation data, the

major characteristics of the population studied (numbers of subjects with

demographics), clearly identify the analyte and measurand/s studied [the

analyte quantities studied in a particular sample matrix, (e.g., concentration

of glucose in plasma)], the statistical approach taken, the duration of the

study and the geographical location of the study.

Introduction 2 Introduction should clearly identify the context and aims of the study and

cite any previous relevant studies of biological variability of the target

analyte. Recommended terminology to be adopted re description of

variability.22

Methods 3 Described in enough detail to facilitate transportability of the derived data

across populations and health care systems. The biological variation data

produced are effectively reference data and their applicability requires

delivery of appropriately described metadata to enable their use as such.

Analyte/measurand 3.1 The described study should clearly identify the target analyte and

measurand/s. Where available internationally agreed terminology and

codings should be utilised.

Subjects 3.2 The description of the subjects and population studied should be detailed

enough to enable transportability of the biological variation data. Minimum

data set should be present.70,74,75 This should include number of subjects

studied, age, gender, and state of well-being.

Measurement procedure 3.3 A clear description of the analytical methodology used should form part of

the metadata. This may be made available via an appropriate reference or

be presented within the publication. Deviation from standard operating

procedures, use of adaptations of published methods, and deviation from

manufacturers recommended methods in the case of commercially available

systems should be documented. Standardisation and traceability should be

clearly identified.

Length of study 3.4 Length of the study periods should be clearly identified.

aTests to determine the power of a study to identify heteroscedasticity need to be developed. If variances are not

homogenous derived estimates of biological variation cannot be trusted, and are not representative for the

population in which it is examined.
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Section and topic Item Evidenced

Sampling 3.5 Sampling protocols (e.g., subject preparation, sampling conditions) that

minimise pre-analytical variation should be adequately described to enable

transportability of the data.35 Numbers of samples taken should be

sufficient to deliver the required power to the study.35,43.

Samples 3.6 Recorded details should include the beginning and end date of the study

and timings of sampling. Sampling conditions and sample type should be

described in detail. Pre-analytical storage conditions of samples should be

described.

Conditions for analysis of samples 3.7 A description of conditions under which the samples were analysed.

Analytical protocols should be designed to minimise sources of analytical

variation (Optimal Conditions Precision).76

Data analysis 4 Data analysis techniques should be described. The power of the study to

identify indices of biological variation should be calculated and presenteda.43

Outlier analysis 4.1 Outliers should be excluded from the final analysis of the data. Test for

outliers should be applied to all levels of data (between replicate analysis,

between samples within subject, between subjects).35 The numbers of

outliers and reasons for their exclusion must be given.

Heterogeneity of variance 4.2 Subjects with outlying within subject variance should be rejected from

calculations used to determine an estimate of common true variance. The

numbers of outliers and reasons for their exclusion must be givena.

Statistical methods described and

appropriate

4.3 Statistical methods used should be appropriately identified, fit for purpose

and referenced. Data that do not conform to a normal distribution should

be appropriately transformed.35

Results 5 Unified terminology22 should be used and appropriately defined metadata

clearly presented to enable understanding and transportation of the data

through time and across health care systems.

Terminology 5.1 Terms and symbols should be used to describe biological variation should

conform standards identified by Simundic et al.22

Results clearly presented and

managed

5.2 Biological variation data, with derived indices, should be tabulated in a

format that enables extraction of the key data unambiguously associated

with a minimum data set to enable transportability of the data. Power of

the study and confidence limits around estimates of biological variation

should be presented.43 The results section should clearly identify the results

of outlier analysis undertaken and confirm homogeneity of the data sets. If

data are stratified the variables used to enable this should be clearly

characterised.

aTests to determine the power of a study to identify heteroscedasticity need to be developed. If variances are not

homogenous derived estimates of biological variation cannot be trusted, and are not representative for the

population in which it is examined.
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Section and topic Item Evidenced

Discussion 6 The discussion of the data should clearly include a focus on factors that

impact on the transportability of the data to other settings. Limitations and

strengths of the study should be addressed. If the data are used to set

analytical performance specifications, derive reference change values and

study individuality, the recommendations of Simundic et al. should be

followed.22

aTests to determine the power of a study to identify heteroscedasticity need to be developed. If variances are not

homogenous derived estimates of biological variation cannot be trusted, and are not representative for the

population in which it is examined.

2.4 Summary and conclusions

There are many summary measures of variability across various fields, some are analogous

and others expressed in different ways in different areas (such as coefficient of variation, where

the standard deviation is divided by the mean value and expressed as a percentage), but are

fundamentally expressing the same information to explain variability of tests. Simundic et

al22 called for standardisation of notation for variability measures reported from laboratory

studies but this could be extended to all studies of variability as the array of definitions used

is a source of confusion, making the results of studies inaccessible to those outside of the

field.

The design of studies of test variability is well documented for clinical laboratory based tests

with the Fraser and Harris framework.35 For other areas a paucity of literature concerning the

design of variability studies was identified. The framework of Fraser and Harris is lacking with

no advice given regarding sample size of variability studies. Røraas et al43 have developed

resources to help plan study sizes.

The methods for evaluating variability studies are again well defined for clinical laboratory

tests due to the framework of Fraser and Harris.35 However, some of the methods advocated

require evaluation, specifically the use of outlier detection methods and deletion of values prior
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to analysing data as this may impact variability estimates. In other areas the methods of

analysis appear to be more ad hoc with estimates of variability, such as ICCs, expressed.

The use of confidence intervals to express uncertainty of an estimate is an issue for biological

variability studies due to difficulties with calculation, although it is generally accepted con-

fidence intervals would be useful. Again, the work of Røraas et al43 provided investigators

with help generating confidence intervals. Confidence intervals are commonly used in the

medical field and would be reported as standard from ANOVA and multi-level modelling

analyses.

In order to understand the quality of biological variability studies, the review of studies will

address the areas of design, analysis and reporting with focus on specific elements that have

been highlighted as causing concern. These areas are sample size, data transformations,

outlier detection and the use of confidence intervals. The review will reveal the depth and

the scope of these issues in the current research (see Chapter 3).

To fully investigate the impact of the methods used to investigate biological variability, em-

pirical analyses will be performed to investigate these issues (see Chapter 4).

The issue of sample size specification is also considered further in Chapter 5 and the use of

outlier detection methods in Chapter 6.
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A review of biological variability

studies: design, analysis, and

reporting

This work has been partly presented in the following form:
Sitch, A, Mallett, S, Deeks, J. Biological variability studies: design, analysis and reporting.
4th Methods for Evaluating Medical Tests and Biomarkers (MEMTAB) Symposium,
Birmingham, UK. 19-20 July 2016.

Summary

Biological variability studies provide key information for using tests in patient care. These

studies are required to provide accurate information.13 A purposive search was conducted

to identify and review the design, methods and reporting of biological variability studies, to

identify key issues.
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Studies were difficult to find and the majority of those located were for laboratory tests,

with few studies of variability for imaging and physiological tests identified. The studies of

laboratory tests often used the same method for analysis, ANOVA or random effects linear

regression modelling, and outlier detection and deletion, as specified by Fraser and Harris.35

Sample size was not planned and/or reported in nearly all identified studies and the use of

confidence intervals to express uncertainty was rare.

This review identified the need for guidance when planning sample sizes for biological vari-

ability studies and calculating confidence intervals, and further investigation into the methods

used for outlier detection.

3.1 Introduction

As outlined in Chapter 2, for studies of laboratory tests a general framework for the design and

analysis of studies is advocated by Fraser and Harris.35 Røraas and colleagues have recently

provided guidance on sample size and expressing uncertainty of estimates from biological

variability studies.43 Also, Simundic et al22 have provided a guide for standardising notation

to aid understanding and Bartlett et al69 have developed a checklist for these studies (for

further information see Chapter 2). The Working Group on Biological Variation (WG-BV)

of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) have

been active in developing this field further.13,77

For studies of physiological and imaging tests, guidance on design was not identified and

methods for analyses varied as the types of variability estimated are often different (analytical

variability cannot be assessed using some tests and inter-intra reader variability is of interest

when studying an imaging test).

The purpose of this review is to understand and evaluate the state of the field by investigating

the design, analysis and reporting. This review will allow investigation into how well studies

adhere to the recommendations,69 where there is variation in methods used, and where there

is clear need for improvement.
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3.2 Aims and objectives

The aim of this review was to evaluate the design, analysis and reporting of biological vari-

ability studies. The study objectives were to identify:

• the current state of the field (aims of studies, test types and disease areas);

• how studies are designed;

• the methods used to analyse these studies;

• the quality of reporting;

• and, differences between studies assessing laboratory, imaging and physiological tests.

3.3 Methods

Several searches were used to identify published articles reporting test variability studies

(between November 2014 and May 2015). These searches were developed purposely to en-

sure different test types (laboratory based tests, imaging tests and physiological tests) were

included and the studies covered a range of clinical areas. The searches were not intended

to be fully comprehensive, but were designed to provide a representative sample of studies.

The identified studies were assessed for suitability in the review and key information was

extracted.

3.3.1 Searches used to identify studies reporting biological variability stud-

ies

The search strategy was developed adapting to the identified studies, to ensure a sufficient

number of studies were identified and these were representative. The first search was a broad

search; hand searching of specific journals was then used to ensure full coverage of these
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sources; the Westgard data base was utilised; and, specific searches in targeted clinical areas

were used.

3.3.1.1 Search A: Broad search–November 2014

• Key word search (bio* AND vari*) in title and/or abstract for the period 1st November

2013 to 31st October 2014.

The initial search was used to identify a broad range of studies. Using the results of this

search, searches were refined to identify appropriate studies of biological variability. Searches

were performed in PubMed in November 2014.

3.3.1.2 Search B: Hand search–January 2015

• All articles published in the journals Clinical Biochemistry (search B1), Radiology

(search B2) and Clinical Chemistry (search B3) during the period 1st January 2014 to

31st December 2014. Searches were performed in PubMed in January 2015.

This search looked at all articles for specific journals for a one year period. Journals were

targeted, informed by results from search A, and were chosen to include laboratory and

imaging studies.

3.3.1.3 Search C: Test specific searches–May 2015

Detailed searches for three different test types (imaging, laboratory and physiological) in

specific clinical areas:

• Search C1: Ultrasound imaging to assess bladder wall thickness in patients with incon-

tinence (exp Urinary Incontinence/ AND exp Ultrasonography).

• Search C2: Creatinine and Cystatin C measurements to estimate glomerular filtration

rate (GFR) in patients with chronic kidney disease (CKD) (exp Renal Insufficiency,
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Chronic/ AND exp Glomerular Filtration Rate/ AND (exp Cystatin C/ OR exp Cre-

atinine/).

• Search C3: Spirometry to measure forced expiratory volume (FEV) in patients with

chronic obstructive pulmonary disorder (COPD) (exp Pulmonary Disease, Chronic Ob-

structive/ AND exp Spirometry/ AND exp Forced Expiratory Volume/).

These particular tests and populations were considered due to ongoing work in these areas,

enabling knowledge of the literature and access to experts to develop the searches. Searches

were performed in PubMed in May 2015 with no restriction on the date of publication.

3.3.1.4 Search D: Westgard QC database–May 2015

Studies recorded in the Westgard QC database78 (an online resource giving biological variabil-

ity information for laboratory based tests collated from published studies18,79,80) published

from 1st January 2000 onwards. Accessed in 2015.

As studies have already been assessed prior to inclusion in the database and this is specifically

for laboratory tests, identifying studies only from this source would be limited.

3.3.1.5 Search E: Expert search

In addition to the studies identified by these searches, published articles identified by previous

and concurrent work meeting the criteria were included to enrich the sample. The test specific

searches (C1, C2 and C3) described did not manage to identify all known biological variability

studies in the specific clinical areas. Clinical experts provided further studies.

3.3.2 Eligibility criteria

Studies were included in the review if they met the following criteria:
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• Study aim: the purpose (primary or secondary) was to assess the variability of measur-

ing or evaluating test results in participants, in a stable health state over the period of

testing.

• Study test(s): include assessments of the test(s) for participants under the same con-

ditions.

• Study participants: there was no restriction placed on study participants, with studies

of healthy participants and participants with disease included. However, it was required

that assessment was of participants or participant samples rather than control/spiked

samples.

• Language: only studies reported in English were included in the review.

Studies were required to have multiple test assessment which included repetition of part or

all of the testing procedure; this could mean participants were tested multiple times or test

output/samples were assessed multiple times (for example, clinicians assessing imaging results

or retesting of stored samples). To obtain an estimate of biological variability (“The natural

variability in a lab parameter due to physiologic differences among subjects and within the

same subject over time.”15), analytical variability needs to be assessed and allowed for when

measuring within-individual and between-individual variability so studies assessing analytical

variability only were also included.

3.3.3 Review of selected studies and data extraction

Titles and abstracts were assessed for inclusion, full text was obtained for potentially eligible

articles and reviewed against the eligibility criteria. Details of the study design, methods of

analysis, and reporting were extracted and assessed by a single reviewer. The data extrac-

tion form was adapted from Bartlett’s checklist,69 including fields appropriate for studies of

physiological and imaging tests. Additional items were included for aspects of study design,

analysis and reporting.

The following information was extracted from the included studies:
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1. What are the aims of these studies and in which tests and test areas are they seen?

(a) Test type

(b) Study aim

(c) Situations assessed

2. How are studies assessing biological variability of tests designed?

(a) Participants included

(b) Sample size (any justification of the number of participants, observations per par-

ticipant and assessment of observations)

(c) Duration of study and time between repeated assessments

(d) Levels of variability assessed

(e) Reduction of pre-analytical variability

(f) Blinding

3. How are studies assessing biological variability of tests analysed?

(a) Methods for analyses (reported explicitly or judgement from results)

(b) Data transformation

(c) Outlier identification and exclusion

4. How are studies assessing biological variability of tests reported?

(a) Title identifies study as biological variability

(b) Clarity of reporting for study design and methods for analysis

(c) Biological variability estimates and the corresponding uncertainty
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3.4 Results

3.4.1 What is the current state of the field? What are the aims of these

studies and in which tests and test areas are they seen?

3.4.1.1 Studies identified

One-hundred-and-one studies were included in the review, see Figure 3.1. The Westgard

QC database contributed more studies to the review (n=57, 56%) than any other search,

see Table 3.1. Of the 101 studies, 75 (74%) were studies of clinical chemistry laboratory

tests, with 20 (20%) studies of imaging tests and 6 (6%) studies of physiological tests. The

tests evaluated in these studies varied, (including imaging to measure bladder wall thickness

and tumour size; spirometry to measure forced expiratory volume (FEV); and laboratory

tests measuring glomerular filtration rate (GFR), vitamin uptake, HbA1c, hepatic enzymes,

hormone levels and cardiac troponin), see Appendix A.

3.4.1.2 Study aims

Extracting the study aim gives insight into the main purpose of each study. Some studies

evaluated the variability of just one test (n=37, 37%) whereas others looked at multiple

tests, or multiple measurement types from a single test (n=64, 63%). Some studies (n=27,

27%) also evaluated tests in multiple populations (or subpopulations, defined by gender, age,

medication status etc.) or over different time ranges (n=11, 11%) and reported the results

separately for these situations. The aims of these studies varied also with some studies

looking at the variability of a test measure secondarily to evaluating the test for a different

property (n=25, 25%). The median number of testing situations (different measurement

type, population or time point) was 4 (Q1, Q3: 2, 7). One study estimated variability in 53

different test situations,82 see Box 3.1 for examples and Table 3.2.
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Records after du-
plicates removed

(n=4659)

Records identified through
PubMed database searchinga

(n=4704)

Additional records identified
through other sourcesb

(n=80)

Records screened
(n=4659)

Records excluded
(n=4509)

Full text articles as-
sessed for eligibility

(n=150)

Studies included in review
(n=101)

Full-text articles excluded,
with reasons (n=49)

• provides diagnosis rather than
test measure (n=7)

• uses non-participant/ spiked/
control samples (n=8)

• measures/ predicts participants
with non-stable disease/
measures progression (n=26)

• does not include repeated use
or interpretation of test (n=2)

• not a primary study (review or
opinion paper) (n=5)

• only assesses agreement
between tests (n=1)
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Figure 3.1: Flowchart studies included in biological variability review, from Moher81. asearch
A 1024 studies; B1 318 studies; B2 500 studies; B3 313 studies; C1 219 studies; C2 1578
studies; C3 752 studies. bsearch D 65 studies; search E 15 studies (see §3.3.1).
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Table 3.1: Identified biological variability studies by search.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Search*; n(%)
A 1 (5) 4 (5) 0 (0) 5 (5)
B1 0 (0) 2 (3) 0 (0) 2 (2)
B2 8 (40) 0 (0) 0 (0) 8 (8)
B3 0 (0) 5 (7) 0 (0) 5 (5)
C1 6 (30) 0 (0) 0 (0) 6 (6)
C2 0 (0) 5 (7) 0 (0) 5 (5)
C3 0 (0) 0 (0) 6 (100) 6 (6)
D 0 (0) 57 (76) 0 (0) 57 (56)
E 5 (25) 6 (8) 0 (0) 11 (11)

Year
Median 2012 2008 2006 2009
Q1, Q3 (2008, 2014) (2003, 2012) (2003, 2007) (2003, 2013)
Range [1994-2014] [1988-2014] [1996-2013] [1988-2014]

Journal; n(%)
Annals of Clinical
Biochemistry

0 (0) 6 (8) 0 (0) 6 (6)

Chest 0 (0) 0 (0) 2 (33) 2 (2)
Clinical Biochemistry 0 (0) 3 (4) 0 (0) 3 (3)
Clinical Chemistry 0 (0) 24 (32) 0 (0) 24 (24)
Clinical Chemistry and
Laboratory Medicine

0 (0) 21 (28) 0 (0) 21 (21)

Clinica Chimica Acta 0 (0) 2 (3) 0 (0) 2 (2)
European Journal of
Obstetrics, Gynaecology, &
Reproductive Biology

2 (10) 0 (0) 0 (0) 2 (2)

Kidney International 0 (0) 2 (3) 0 (0) 2 (2)
Radiology 8 (40) 0 (0) 0 (0) 8 (8)
Ultrasound Obstetrics
Gynaecology

2 (10) 0 (0) 0 (0) 2 (2)

World Journal of Urology 2 (10) 0 (0) 0 (0) 2 (2)
Other 6 (30) 17 (23) 4 (67) 27 (27)

*Four studies were identified by more than 1 search. See §3.3.1 for detail of searches.
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Differences between test types

Multiple tests were commonly evaluated across studies of each of the test types (imaging n=

14/20 (70%); laboratory n= 45/70 (60%); and physiological n=4/6 (67%)). More studies of

laboratory tests evaluated multiple populations (n=25/75, 33%) than for imaging (n=1/20,

5%) and physiological tests (n=1/6, 17%). Across all test types, studies showed analysis of

tests separate to estimating variability (imaging n= 9/20 (45%); laboratory n= 15/70 (20%);

and physiological n=1/6 (17%)).

The purpose of 16 (16%) studies was to assess inter and/or intra reader variability, these

studies were all studies of imaging tests, see Table 3.2. Some of these studies investigated

reassessment of images (for example a study of pelvic floor muscle contraction by ultrasonog-

raphy where ‘frozen images’ were reassessed)83 but in other imaging studies multiple images

were taken and assessed (for example a study investigating ultrasonography and Doppler

velocimetric assessment of the levator ani muscle used two investigators each performing the

imaging procedures)84.

Box 3.1: Multiple testing situations in identified biological variability studies.

Multiple tests and populations
Pediatric within-day biological variation and quality specifications for 38 biochemical
markers in the CALIPER Cohort, by Bailey et al82 looked at 53 different testing sit-
uations. This included 38 biochemical markers, for example Albumin, Glucose, and
Magnesium. Some of the biochemical markers were assessed separately for children in
different age bands, for example AST was assessed separately for children up to seven
years old, from seven years up to 12 years old and then from 12 years to 19 years old.

Multiple tests and time periods
Weekly and 90-minute biological variations in cardiac troponin T and cardiac troponin I
in hemodialysis patients and healthy controls, by Aakre et al85 evaluated Cardiac troponin
T and Cardiac Troponin I for two distinct time ranges. The variability of the tests was
assessed by evaluating patients at 90 minute intervals over a 6 hour testing period and
weekly for a period of 10 weeks.
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Table 3.2: Aims of identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Single test evaluated; n(%) 6 (30) 30 (40) 2 (33) 37 (37)
Multiple tests evaluated; n(%) 14 (70) 45 (60) 4 (67) 64 (63)
Number of tests evaluated
Median (Q1, Q3) 4 (1, 6) 2 (1, 5) 5 (1, 11) 2 (1, 6)
Range [1-19] [1-38] [1-14] [1-38]
Multiple populations
evaluated; n(%)

1 (5) 25 (33) 1 (17) 27 (27)

Multiple time periods
evaluated; n(%)

1 (5) 8 (11) 2 (33) 11 (11)

Number of situations
evaluated
Median (Q1, Q3) 5 (1, 8) 4 (2, 7) 8 (2, 14) 4 (2, 7)
Range [1-19] [1-53] [1-30] [1-53]
Inter/intra rater variability;
n(%)

16 (80) 0 (0) 0 (0) 16 (16)

Test(s) evaluated separately
to variability; n(%)

9 (45) 15 (20) 1 (17) 25 (25)

3.4.2 How are studies assessing biological variability of tests designed?

3.4.2.1 Participants included

Biological variability estimates are required for the population that will receive the test. Vari-

ability estimates in healthy participants may be useful if using a test to screen or developing

test reference ranges; however estimates are required for diseased participants if a test is used

for monitoring progressive or recurrent disease.

The participants included in many of the studies were healthy (n=48, 48%). A further 21

(21%) studies assessed mixed populations (with some participants healthy and some dis-

eased), and 22 (22%) studies tested only diseased participants. The healthy status of these

populations was rarely confirmed (n=3, 3%), for example in a study assessing high-sensitivity

troponin T62 healthy individuals were verified through physical examination, MRI analysis

including adenosine perfusion or dobutamine stress, lung function testing, and blood sample

testing, see Table 3.3.
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Differences between test types

Assessment of healthy participants was more common in studies of laboratory tests (n=43/75,

57%) than imaging (n=4/20, 20%) and physiological tests (n=1/6 (17%)). Use of a mixed

population of healthy and diseased participants was seen across studies of all test types

(imaging n= 6/20 (30%); laboratory n= 14/70 (19%); and physiological n=2/6 (33%)), see

Table 3.3.

Table 3.3: Populations studied in identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Population; n(%)
Healthy population 4 (20) 43 (57) 1 (17) 48 (48)

Confirmed healthy population 0 (0) 3 (4) 0 (0) 3 (3)
Diseased population 6 (30) 12 (16) 3 (50) 21 (21)
Mixed healthy/diseased
population

6 (30) 14 (19) 2 (33) 22 (22)

Unknown population 4 (20) 6 (8) 0 (0) 10 (10)

3.4.2.2 Sample size

Study sample sizes require adequate consideration to ensure estimates produced are mean-

ingful. Sample size calculations were rarely performed in the identified biological variability

studies (n=1, 1%), with studies routinely omitting justification of the number of participants

included. The single study reporting a sample size justification used a previous study esti-

mate of variability and calculated the number of repeated measures required for each subject

to allow for small differences to be detected.86 The smallest studies had four participants87,88

and the largest had 7,101 participants.89 Many of the studies identified had few participants

(see Figure 3.2); the median number of participants was 24 (Q1, Q3: 15, 40). Of the 99

studies reporting a sample size, eight (8%) had more than 100 participants and two (2%)

had more than 1,000. Fourteen (14%) studies had 10 participants or fewer; 27 (27%) studies

had between 11 and 20 participants; and, 24 (24%) studies had between 21 and 30 partici-

pants. Studies with larger sample sizes utilised routinely collected data rather than following

a prospective plan for data collection, see Box 3.2.

67



Chapter 3. A review of biological variability studies

Number of Participants

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

Physiological test       
Imaging test       
Laboratory test       

Figure 3.2: Histogram of study sample sizes in identified biological variability studies (ex-
cluding the 8 studies with sample size exceeding 100).

Many studies also looked at subgroups of participants or of the tests performed, and the

sample sizes for these analyses were smaller with some studies using data from only two

participants to provide estimates of variability (median=11; Q1, Q3: 7, 15). The median

number of observations (calculated for studies where there are multiple measures taken for

each person and the number of measures was reported) obtained from each participant to

allow an estimate of within-individual variability to be made was 5 (Q1, Q3: 3, 10) and

ranged from 2 to 40. The median number of assessments was 2 (Q1, Q3: 2, 3). For inter-

intra reader studies the median number of readers was 2 (Q1, Q3: 2, 2) and median number

of duplicate reads was 2 (Q1, Q3: 1, 2), with the common design using two readers for each

image and one reader duplicating all readings, see Table 3.4.

Differences between test types

The median total sample size was similar across studies of all test types (imaging n=26;

laboratory n=24; and physiological n=16), and for the number of repeats for each participant

(imaging n=2; laboratory n=5; and physiological n=5). The number of analyses for each

measure is only given for laboratory tests, as for physiological and imaging tests it is not

possible to assess variability at this level. All inter-intra reader studies were of imaging tests,

68



3.4. Results

see Table 3.4.

Box 3.2: Biological variability studies with large sample sizes–utilising existing data collec-
tion.

Variability of spirometry in chronic obstructive pulmonary disease: results from two clin-
ical trials, by Herpel et al89 used data collected from two clinical trials (the National
Emphysema Treatment Trial, NETT, and the Lung Health study, LHS). This study had
a large sample size of 7,101. Trial participants had two spirometry measurements taken
during baseline study investigations and the data from this was analysed to assess vari-
ability of spirometry in measuring FEV (forced expiratory volume) and FVC (forced vital
capacity) in this study.

Use of observed within-person variation of cardiac troponin in emergency department
patients for determination of biological variation and percentage and absolute reference
change values, by Simpson et al90 used repeat blood sample assessments of Cardiac Tro-
ponin (hs-cTnI) taken routinely for patients presenting in the emergency department
evaluated for acute coronary syndrome. The analysis of these data to estimate variabil-
ity was for the 283 individuals with two test results that did not have acute cardiac
disease at the time of testing in the emergency department.

3.4.2.3 Study duration and time between repeats

The duration of studies and the timing of repeats indicate the resources required for these

studies and the typical design. The median total study duration was 5 weeks (Q1, Q3: 2,

14), ranging from just a single day to five years. The median time between test repeats for

the studies was 1 week (Q1, Q3: 1, 4), with the most frequent repeats within a single day

and the least frequent six monthly, see Table 3.4.

Differences between test types

Studies of imaging tests were carried out over a shorter testing period (median of 0.5 weeks)

compared to laboratory and physiological tests (median of 7 weeks and 5 weeks respectively).

For the eight imaging studies where the time between repeats was reported the interval

(median of 1.5 weeks) was similar to using a laboratory or physiological test (median of 1

week for both test types), see Table 3.4.
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Table 3.4: Sample size and study duration in identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Sample size
Total sample size
calculation/justification provided;
n(%)

1 (5) 0 (0) 0 (0) 1 (1)

Total study sample size (n=20) (n=73) (n=6) (n=99)
Median (Q1, Q3) 26 (10, 52) 24 (4, 39) 16 (10, 30) 24 (15, 40)
Range [7-77] [4-1103] [9-7101] [4-7101]
Multiple measures per person (n=7) (n=66) (n=5) (n=77)
Median (Q1, Q3) 2 (2, 2) 5 (4, 10) 5 (3, 21) 5 (3, 10)
Range [2-6] [2-23] [2-40] [2-40]
Total number of analyses for
each measure

- (n=31) - (n=31)

Median (Q1, Q3) 2 (2, 3) 2 (2, 3)
Range [2-4] [2-4]
Subgroup study sample size (n=2) (n=31) (n=2) (n=35)
Median (Q1, Q3) 13 (7, 19) 12 (6, 15) 10 (10, 10) 11 (7, 15)
Range [7-19] [2-118] [10-10] [2-118]
Subgroup multiple measures
per person

(n=1) (n=29) (n=1) (n=31)

Median (Q1, Q3) 2 (2, 2) 5 (4, 6) 3 (3, 3) 5 (4, 6)
Range [2-2] [2-11] [3-3] [2-11]
Subgroup number of analyses
for each measure

- (n=14) - (n=14)

Median (Q1, Q3) 2 (2, 2) 2 (2, 2)
Range [2-3] [2-3]
Number of readers (n=16) - - (n=16)
Median (Q1, Q3) 2 (2, 2) 2 (2, 2)
Range [1-3] [1-3]
Number of duplicate reads (n=15) - - (n=15)
Median (Q1, Q3) 2 (1, 2) 2 (1, 2)
Range [1-3] [1-3]

Study duration
Total duration (weeks) (n=12) (n=69) (n=3) (n=84)
Median (Q1, Q3) 0.5 (0.1, 2) 7 (3, 20) 5 (1, 8) 5 (2, 14)
Range [0.1-4] [0.1-260] [1-8] [0.1-260]
Overall time between repeats
(weeks)

(n=8) (n=64) (n=2) (n=74)

Median (Q1, Q3) 1.5 (0.5, 3) 1 (1, 4) 1 (0.1, 2) 1 (1, 4)
Range [0.1-4] [0.1-26] [0-2] [0.1-26]
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3.4.2.4 Variability assessed

The design of studies allows assessment of different types of variability, this information

suggests the estimates researchers focus on. Most studies provided estimates of between-

individual variation (n=60, 59%) and within-individual variation (n=72, 71%). For labo-

ratory tests the estimated variability between and within individuals was also accompanied

by the assessment of analytical/reassessment variability in 35 (35%) studies. Sixteen (16%)

studies (all of imaging tests) explored within and between reader variability.

For laboratory based studies an estimate of analytical variability is required to enable the

calculation of between and within-individual variation. For studies not directly estimating

the analytical variation, an estimate of analytical/reassessment variation obtained from a

source external to the study (usually another study or published work) or from the analysis

of control samples, is used to calculate the other levels of variability, this was reported in 24

(24%) studies and a further 14 (14%) studies did not explicitly report this but it is suspected,

see Box 3.3. In addition to analytical, within-individual and between-individual variability,

few studies also attempted to assess the variability at other levels, such as between centre

variability, see Table 3.5.

Differences between test types

For studies of laboratory tests the variability at the analytical, within-individual and between-

individual levels were commonly considered. Of the studies evaluating physiological tests,

one (17%) evaluated variability at the within-individual level. Studies of imaging tests were

mainly inter-intra reader studies and investigated the variability between and/or within read-

ers, see Table 3.5.

3.4.2.5 Pre-analytical variability reduced prior to assessment

Pre-analytical variability was not a focus of this review but there is an assumption this is mini-

mal; many studies (n=85, 84%) reported having undertaken measures to reduce pre-analytical

variability. Most laboratory based studies reported using the same staff, instruments and con-
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Box 3.3: Biological variability studies: Analysis where CVA is estimated separately to main
variability study.

Controls
Biological variation of seminal parameters in healthy subjects, by Alvarez et al,91 looked
at the variability of seminal parameters in 20 healthy donors. However, to estimate ana-
lytical variation quality control materials were assessed.

Sub-samples
Weekly and 90-minute biological variations in cardiac troponin T and cardiac troponin I
in hemodialysis patients and healthy controls, by Aakre et al,85 assessed the variability of
cardiac troponin T and cardiac troponin I for 19 heamodialysis patients and 20 healthy
controls. When assessing analytical variation, however, only half of the samples were se-
lected to be analysed in duplicate in order for this to be estimated, with random selection
stratified by sex.

External estimate
Intra-individual variation in creatinine and cystatin C, by Bandaranayake et al,92 as-
sessed the variability of creatinine and cystatin C in 10 healthy participants. Estimates
of CVA obtained from external sources were stated and used to calculate other variability
estimates.

Analytical CV measured in study but external estimate used
Biological variation of myeloperoxidase, by Dednam et al,93 investigated 12 healthy indi-
viduals to understand the biological variability of myeloperoxidase, a marker of coronary
artery disease. Using samples for the 12 participants an estimate of CVA was produced
of 4%. The authors state the estimate was ‘unrealistically low’ and an estimate of 8.4%
obtained from an external source was used in all calculations.

ditions for sample collection in addition to storage of samples and transport. For other types

of studies, there was also reason to believe pre-analytical variation had been minimised (at

various points) by ensuring participants were prepared for the test in a consistent way and

using the same staff to carry out the test. Studies where measurements were not taken in

controlled circumstances were unable to demonstrate minimising pre-analytical variation (for

example, one study estimated biological variability using test measures obtained in intensive

care unit patients)94.

Differences between test types

Pre-analytical variability was often minimised across studies of all test types (imaging n=15/20

(75%); laboratory n=65/75 (87%); and physiological n=5/6 (83%)), see Table 3.5.
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Table 3.5: Variability levels assessed in identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Variability level assessed;
n(%)
Between individuals 0 (0) 60 (80) 0 (0) 60 (59)
Within individuals 1 (5) 70 (93) 1 (17) 72 (71)
Analytical/reassessment 1 (5) 34 (45) 0 (0) 35 (35)
Analytical/reassessment
evaluation external to study

0 (0) 24 (32) 0 (0) 24 (24)

Suspected
Analytical/reassessment
evaluation external to study

0 (0) 14 (19) 0 (0) 14 (14)

Within/between readers 16 (80) 0 (0) 0 (0) 16 (80)

Pre-analytical variation minimised 15 (75) 65 (87) 5 (83) 85 (84)

3.4.2.6 Blinding

Blinding is important when measuring quantities multiple times, especially for inter-intra

reader studies. Only seven (7%) studies reported blinding of some type. Studies achieved

blinding by keeping assessors and participants from knowing previously observed measures.

Although blinding is not explicitly reported in the majority of studies, it may be in many

studies, the design (with all samples being tested in a single batch at a later date) means the

analysis of samples was blinded.

Differences between test types

The majority of the studies (6/7, 86%) reporting blinding were inter-intra variability studies

using imaging tests. Blinding is integral to inter-intra variability studies as these studies

assess variability between and within readers and so information on the interpretation of

other readers and previous reads by the same reader would be detrimental to the study. For

studies of laboratory (n=0/75, 0%) and physiological tests (n=1/6, 17%) blinding was often

not reported and may not be as critical.
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3.4.3 How are studies assessing biological variability of tests analysed?

3.4.3.1 Methods for analysis

The primary method for analysis was extracted to understand the approaches used. Eighty-

eight (87%) studies appeared to use ANOVA or random effects modelling for the primary

analyses; for 40 studies (40%) the method was not explicitly expressed but the results sug-

gested ANOVA or random effects modelling. The framework introduced by Fraser and Har-

ris35 was referred to in the methods section by 32 (32%) studies and referenced by a total of

52 (51%) studies. Few studies used alternative methods, such as assessing change in a test

value over time or comparing methods of measurement, with the alternative methods Bland-

Altman (n=7, 7%), Kappa (n=1, 1%), other modelling (n=1, 1%) and other methods (n=10,

10%). Other methods were Chi-squared tests, t-tests, correlation coefficients, Kruskal-Wallis

tests and Mann-Whitney U tests, see Table 3.6.

Differences between test types

Across the test types, the use of ANOVA or random effects modelling was common; the

issue of assumed ANOVA or random effects modelling due to lack of clarity was common

across the test types also. All studies identified as following and referencing the Fraser-

Harris framework were evaluating laboratory tests. The use of Bland-Altman methods was

more common in studies of imaging (n=4/20, 20%) and physiological tests (n=2/6, 33%),

rather than laboratory tests (n=1/75, 1%). Kappa was used as the primary analysis for one

(5%) study of an imaging test, see Table 3.6.

3.4.3.2 Normality checking and data transformation

As data transformations may impact the results obtained, the methods for normality check-

ing were noted to understand how frequently this is performed, the methods used and the

transformation approach taken. The normality of obtained data was tested in 38 (38%)

studies, the methods used were: the Shapiro-Wilk test (n=12, 12%), Kolmogorov-Smirnov
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test (n=10, 10%) or visual inspection (n=4, 4%), others stated assessing normality but did

not specify a method (n=18, 18%). Twenty-two (22%) studies reported log transforming the

data, with no alternative transformations reported. Of the 22 studies that log transformed

the data, 17 (77%) reported testing for normality, see Table 3.6.

Differences between test types

Testing for normality was often seen in the laboratory based studies and was not as common

in the non-laboratory test studies (laboratory n=34/75 (45%); imaging n=3/20 (15%); and

physiological n=1/6 (17%). For the laboratory based studies, 21 studies (28%) reported log-

transforming the data, whereas only one (5%) imaging study and none of the identified (0%)

physiological test studies reported log-transformation of data, see Table 3.6.

3.4.3.3 Outlier detection and removal

As outlier detection and removal may impact variability estimates, details of outlier detection

and removal processes were identified to understand the frequency of use and the procedures.

Outliers were tested for in many of the studies identified (n=25, 25%), all were laboratory

based studies. The methods for detecting outliers were mainly Cochran’s C test and Reed’s

criterion (n=9, 9% and n=5, 5%), although in some studies the methods used were not

specified (n=6, 6%). Other outlier detection methods reported were ±3SD, Dixon’s Q test,

Grubbs’ test, Tukey’s IQR rule and visual inspection. Outliers were reported to have been

excluded in 27 (27%) studies, see Table 3.6. Of the 27 studies with outliers excluded, 4

studies did not report testing for outliers this could be due to ‘error’ data that was removed

without formal testing or these studies may have neglected to report the method used for

testing only reporting the consequential changes to the data.

Differences between test types

Testing for normality was often seen in the laboratory based studies; however, this process

was not reported in the studies of imaging and physiological tests (laboratory n=25/75 (33%);

imaging n=0/20 (0%); and physiological n=0/6 (0%). For the studies of laboratory tests,
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27 (36%) reported removing outliers, whereas no studies of imaging and physiological tests

reported outlier removal, see Table 3.6.

3.4.4 How are studies assessing biological variability of tests reported?

3.4.4.1 Title identifies study as biological variability

Following from the items in the Bartlett checklist,69 the titles of studies were assessed to

identify if they clearly labelled studies as biological variability studies. Of the studies identi-

fied by the search, 67 (66%) studies were clearly studies of biological variation from the title

of the article, see Table 3.7.

Differences between test types

Studies of laboratory tests were more likely to clearly identify as studies of biological vari-

ability from the title (n=61/75, 81%) compared to studies of imaging (n=5/20, 25%) and

physiological tests (n=1/6, 17%). This is likely due to the uniform terminology used in stud-

ies of laboratory tests which is not present for studies of imaging and physiological tests, see

Table 3.7.

3.4.4.2 Clarity of design and methods

The clarity of reporting of the design and methods in the identified studies was variable. Stud-

ies did not adequately describe the: population (n=10, 10%), duration of study (n=17, 17%),

method of measuring assessment variability (analytical variability) externally to the study or

from control/spiked samples (n=14, 14%), method for analyses (n=40, 40%), normality test-

ing procedure (n=31, 31%), outlier detection procedure (n=10, 10%), justification/rationale

for the sample size (n=100, 99%), number of repeats (n=39, 39%), timing of repeats (n=42,

42%), and number of assessments duplicated (n=4, 4%), see Table 3.7.
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Table 3.6: Analysis methods of studies in identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Primary analyses methods;
n(%)
ANOVA reported 2 (10) 33 (44) 2 (33) 37 (37)
RE reported 5 (25) 7 (9) 1 (17) 13 (13)
ANOVA/ RE assumed 6 (30) 33 (44) 1 (17) 40 (40)
Total ANOVA/RE 12 (60) 73 (97) 3 (50) 88 (87)
Bland-Altman 4 (20) 1 (1) 2 (33) 7 (7)
Kappa 1 (5) 0 (0) 0 (0) 1 (1)
ROC analysis 0 (0) 0 (0) 0 (0) 0 (0)
Other modelling 0 (0) 1 (1) 0 (0) 1 (1)
Other methods 6 (30) 2 (3) 2 (33) 10 (10)

Secondary analyses methods;
n(%)
Bland-Altman 1 (5) 5 (7) 0 (0) 6 (6)
Kappa 0 (0) 0 (0) 0 (0) 0 (0)
ROC analysis 3 (15) 2 (3) 0 (0) 5 (5)
Other modelling 4 (20) 15 (20) 1 (17) 20 (20)
Other methods 6 (30) 41 (55) 0 (0) 47 (47)

Fraser framework for
analyses; n(%)
Methods of analyses followed 0 (0) 52 (69) 0 (0) 52 (52)
Reference to framework 0 (0) 32 (43) 0 (0) 32 (32)

Transformation of data; n(%)
Assessment of normality 3 (15) 34 (45) 1 (17) 38 (38)

Shapiro-Wilks test 2 (10) 9 (12) 1 (17) 12 (12)
Kolmogorov-Smirnov test 2 (10) 8 (11) 0 (0) 10 (10)
Visual/plot of data assessment 0 (5) 3 (4) 0 (0) 4 (4)
Unclear method 0 (0) 18 (24) 0 (0) 18 (18)

Data transformed 1 (5) 21 (28) 0 (0) 22 (22)
Log transformation 1 (5) 21 (28) 0 (0) 22 (22)
Other transformation 0 (0) 0 (0) 0 (0) 0 (0)
Unclear transformation 0 (0) 0 (0) 0 (0) 0 (0)

Outlier detection; n(%)
Outliers tested 0 (0) 25 (33) 0 (0) 25 (25)

Cochran C test 0 (0) 9 (12) 0 (0) 9 (9)
Reed’s test 0 (0) 5 (7) 0 (0) 5 (5)
Other outlier test 0 (0) 13 (17) 0 (0) 13 (13)
Unclear method 0 (0) 6 (8) 0 (0) 6 (6)

Outliers removed 0 (0) 27 (36) 0 (0) 27 (27)
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Differences between test types

The population was not specified in more studies of imaging tests (n=4/20, 20%) compared to

laboratory and physiological test studies. The issue of not reporting sample size justification

was seen across all test types with only one imaging study reporting details of sample size.

Details of study design (number of repeats, timing of repeats, duration of study and methods

of analysis) were insufficiently reported in similar percentages of studies across the test types,

see Table 3.7. The issue of measuring analytical variability outside of the study was unique

to studies of laboratory tests, as was the lack of clarity when explaining the methods for

testing for normality and outlier detection.

3.4.4.3 Biological variability estimates and uncertainty

The most common estimates reported were coefficients of variation (CV): estimates of as-

sessment (analytical) variability (n=35, 35%), within-individual variability (n=72, 71%) and

between-individual variability (n=60, 60%). Some studies reported analytical (2, 2%), within-

individual (6, 6%) and between-individual variability (5, 5%) as standard deviations. Total

variability was not often reported in these studies, along with total error and total impreci-

sion. Four (4%) studies reported an exact CV after using log transformed data (methods for

exact geometric CV after log transformation,59,60 assuming the distribution was log-normal,

were used). The RCV (or repeatability coefficient) was reported for 48 (48%) studies, 42

(42%) studies reported a symmetric RCV and 7 (7%) reported a non-symmetric RCV inter-

val (one study reported both,62 see Box 3.4). Forty-four (44%) studies reported the index

of individuality (II) and 18 (18%) reported an ICC/reliability parameter. Estimates of per-

centage agreement, Kappa, AUROC, Bland-Altman limits, regression coefficients and other

general estimates were seen in some studies, and were mainly produced for secondary aims

or aims unrelated to assessing test variability, see Table 3.7.

The uncertainty around these estimates provided was rarely described with few studies (n=18,

18%) providing confidence intervals for any of the biological variability measures or describing

the uncertainty in any other way (n=2, 2%), comparison to the reference range and caution

when interpreting the results. Some of the studies reviewed were considered to have reported
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Table 3.7: Reporting of identified biological variability studies.

Test type

Imaging Laboratory Physiological All

N 20 75 6 101

Identification; n(%)
Biological variation study clear
from title

5 (25) 61 (81) 1 (17) 67 (66)

Poor clarity (unclear or
insufficient detail); n(%)
Population 4 (20) 6 (8) 0 (0) 10 (10)
Sample size 19 (95) 75 (100) 6 (100) 100 (99)
Number of participants 0 (0) 2 (3) 0 (0) 2 (2)
Number of repeats 5 (25) 30 (40) 4 (67) 39 (39)
Timing of repeats 14 (70) 25 (33) 3 (50) 42 (42)
Number of assessments duplicated 1 (5) 3 (4) 0 (0) 4 (4)
Duration of study 8 (40) 6 (8) 3 (50) 17 (17)
Variability of measure of
assessment external to study

0 (0) 14 (19) 0 (0) 14 (14)

Methods for analyses 6 (30) 33 (44) 1 (17) 40 (40)
Normality procedure 0 (0) 31 (41) 0 (0) 31 (31)
Outlier procedure 0 (0) 10 (13) 0 (0) 10 (10)

Estimates; n(%)
Assessment (analytical) variability
CV

1 (5) 34 (45) 0 (0) 35 (35)

Within-individual variability CV 1 (5) 70 (93) 1 (17) 72 (71)
Between-individual variability CV 0 (0) 60 (80) 0 (0) 60 (59)
Assessment (analytical) variability
SD

0 (0) 2 (3) 0 (0) 2 (2)

Within-individual variability SD 0 (0) 5 (7) 1 (17) 6 (6)
Between-individual variability SD 0 (0) 5 (7) 0 (0) 5 (5)

Exact CV 0 (0) 4 (5) 0 (0) 4 (4)
RCV/repeatability coefficient 0 (0) 48 (64) 0 (0) 48 (48)
Symmetric RCV 0 (0) 42 (56) 0 (0) 42 (42)
Non-symmetric RCV 0 (0) 7 (9) 0 (0) 7 (7)
II 0 (0) 44 (59) 0 (0) 44 (44)
ICC/reliability parameter 10 (50) 6 (8) 2 (33) 1 (18)
Percentage agreement 0 (0) 0 (0) 1 (17) 1 (1)
Kappa 1 (5) 0 (0) 0 (0) 1 (1)
AUROC 1 (5) 1 (1) 0 (0) 2 (2)
Bland-Altman limits 3 (15) 2 (3) 2 (17) 7 (7)

Uncertainty; n(%)
Confidence intervals 12 (60) 4 (5) 2 (33) 18 (18)
Other measure of uncertainty 0 (0) 2 (3) 0 (0) 2 (2)
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Box 3.4: Biological variability studies: symmetric and non-symmetric RCVs.

Biological variation and reference change value of high-sensitivity troponin T in Healthy
Individuals during short and intermediate follow up periods, by Frankenstein et al,62

presented both symmetric and non-symmetric reference change values, for normal and
log-normal data respectively. For the estimate of hourly hsTnT using the E 170 assay
the RCV% for normal data was ±47 and for log-normal data was 64, -39.

the results well and are shown as exemplars, see Box 3.5.

Differences between test types

Estimates of CV were almost exclusively reported in studies of laboratory tests, with one

(5%) study of an imaging test and one (17%) study of a physiological test reporting the CVs.

RCVs and IIs were only reported in studies of laboratory tests. ICC measures were used in

10 (50%) studies of imaging tests, 2 (33%) studies of physiological tests and 6 studies (8%)

of laboratory tests. The use of confidence intervals was seen more frequently in studies of

imaging tests (n=12, 60%) and physiological tests (n=2, 33%) compared with laboratory

tests (n=4, 5%), see Table 3.7.

Box 3.5: Biological variability studies: reporting exemplars.

Clarity of external analytical CV estimate
Intra-individual variation in creatinine and cystatin C, by Bandaranayake et al,92 assessed
the variability of creatinine and cystatin C in 10 healthy participants, with variability
estimates calculated using CVA obtained from external sources. This study clearly ex-
pressed external estimates of CVA would be used in the materials and methods section
of the article and stated the estimates of CVA for both creatinine and cystatin C. Many
other studies do not explicitly inform readers that external estimates of CVA are used
and do not give the value of the CVA estimate.

Use of confidence intervals
Within-subject biological variation of glucose and HbA1c in healthy persons and in type
1 diabetes patients, by Carlsen et al,95 was one of the few studies reviewed that pro-
vided any indication of the precision of the estimates generated by the study. This study
reported 95% confidence intervals, generated using the methods of Burdick and Gray-
bill.34 Demonstrating precision of estimates is vital to allow the estimates presented to
be appropriately interpreted and used further.

It is also noted, many of the studies published in laboratory clinical medicine journals were

very short articles, and the low word count available may contribute to lack of clarity.
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3.4.5 What are the differences between studies assessing biological vari-

ability of laboratory, imaging and physiological tests?

There were few studies assessing physiological (n=6, 6%) and imaging test (n=20, 20%)

identified by the review, with the majority of studies (n=75, 74%) assessing laboratory tests.

Biological variability studies appear to be defined for laboratory based studies (n=61/75,

81%) but not for imaging and physiological test studies, (n=5/20 (25%) and n=1/6 (17%)

refer to biological variation in the study title respectively). In the previous sections detailed

comparisons between test types were made; key issues from these analyses are presented

here.

Many of the studies evaluating laboratory based tests assessed only healthy participants

(n=43/75, 57%), and this was less common for physiological and imaging tests (n=5/26,

19%).

With 52 of the 74 (69%) studies assessing laboratory tests referencing or following the frame-

work of design and analysis introduced by Fraser and Harris, the majority of laboratory test

studies used similar study designs and methods. Many of the studies assessing laboratory

tests, tested to identify non-normality of data (n=34/75, 45%) and outliers (n=25/75, 33%),

whereas this was not as common in the non-laboratory test studies (n=4/26 (15%) and 0/26,

(0%) for normality checking and outlier detection respectively). Sample sizes were generally

small, with only a few exceptions.

The quality of reporting appeared similar across the studies of different test types. Biologi-

cal variability studies of laboratory tests reported CVs (n=73/75, 93%), RCVs (and n=48,

64%) and II (n=44, 59%). The studies assessing non-laboratory tests mostly reported ICCs

(n=12/26, 46%) and other measures (percentage agreement, Kappa, AUROC and Bland-

Altman limits), only one study (n=1/26, 4%) reported CVA and two studies (n=2/26, 8%)

reported CVI . Giving an estimate of uncertainty by producing confidence intervals was very

rare in the laboratory test studies (n=4/75, 5%) but more common in imaging and physio-

logical test studies (n=14/26, 54%).
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3.5 Discussion

3.5.1 What is the current state of the field? What are the aims of these

studies and in which tests and test areas are they seen?

It was not easy to identify studies of biological variability, suggesting these studies are not

often performed and/or published. A paucity of biological variability studies would be con-

cerning given the importance of these studies, not just for planning monitoring strategies for

patients with potential disease progression and recurrence but also for selecting tests to be

evaluated for accuracy, or conversely identifying tests that are not fit for purpose and should

not be further investigated.

The review mainly identified studies investigating the variability of clinical laboratory tests.

This may suggest studies of biological variability are more common in this area or it may

be the searches used identified more studies of clinical laboratory tests than imaging and

physiological tests.

Most studies did not aim to assess the variability of a single test situation but multiple tests,

testing populations, measurements from tests, or time points.

3.5.2 How are studies assessing biological variability of tests designed?

The populations assessed in most of the identified studies were partly or fully formed of

healthy individuals. This practice is problematic as test performance and variability may be

different in non-healthy/diseased populations, in whom the tests will be used for diagnostic

and monitoring purposes, compared to healthy populations. However, knowledge of variabil-

ity of tests in healthy populations may be beneficial for screening and developing reference

ranges.

Sample size justification was found to be absent in almost all studies identified; this is likely

due to limited funding and the burden of repeated testing on participants, meaning only a

small sample can be achieved. The recent work of Røraas and colleagues43 may help improve
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the planning of sample sizes for studies in the future and additional guidance may also be

required to enable researchers to appropriately plan studies.

The relatively short duration of studies and fast rate of retesting is to be expected as measures

should be taken over a stable period of disease. The small number of repeats generally seen

in these biological variability studies is also likely linked to the burden on patients and the

need to test within a stable period of disease. Guidance on the number of repeats necessary

is required to help researchers plan these studies.

The levels of variability assessed were mainly within-individual variability and between-

individual variability. The studies where analytical variability was estimated using control

samples or an estimate from a separate source was used are concerning as this estimate of

variability may not be appropriate. Encouragingly, reduction of pre-analytical variability

prior to test assessment was seen in many of the studies.

Blinding is not explicitly reported in the majority of laboratory based studies, this is po-

tentially due to blinding of assessors (laboratory workers) being assumed as the analysis of

samples is performed separately without the input of clinicians or participants. The issue

of blinding is much more important in the imaging test studies, especially those where inter

and intra rater reliability is assessed as ideally observers would be blinded to the true condi-

tion of the participant and also to the measurement(s) obtained from the other observer(s).

Blinding has perhaps been used in more of these studies but poor reporting means this is not

clear.

3.5.3 How are studies assessing biological variability of tests analysed?

Methods for analyses were mainly ANOVA and random effects models. However, for some

studies the methods were not clear and it was assumed ANOVA or random effects modelling

methods had been used, based on the results reported. For the biological variability studies

of laboratory tests the ANOVA and random effects modelling methods are likely used as the

majority of studies followed the methods of Fraser and Harris;35 studies of other test types

more often used alternative methods.
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The practice of transforming data and, identifying and removing outliers was used in many

of the studies identified; again this is likely due to the framework of Fraser and Harris35 and

was mainly seen in studies of laboratory tests.

Due to the framework, it is assumed some studies of laboratory tests may have transformed

the data, or at least tested the normality of the data, but not reported this explicitly; whereas,

this is less likely for imaging and physiological test studies. Some studies may also be log

transforming data as this simplifies calculations (see Chapter 2), rather than for distribu-

tional benefits. It is also anticipated (due to the framework) that although some studies do

not directly report the identification of outliers and consequent removal this has been con-

sidered; however, the non-laboratory test studies may not consider outliers when analysing

the data.

3.5.4 How are studies assessing biological variability of tests reported?

Studies of laboratory tests may have been identified more easily as the clinical laboratory

community have defined terminology for these studies. Identification of biological variability

studies was difficult, and the established database for laboratory tests provided most of the

studies in the review. Correct terminology and labelling of these studies would make it easier

for biological variability studies to be identified.

The clarity of design and methods for analysis was variable for the identified studies with

studies lacking detail of: justification of sample size, number of measurements and timing of

repeats and the methods for analysis. In some cases the detail regarding timing and frequency

of measures is missing due to the ad hoc nature of taking measurements, for example the

studies taking advantage of routinely collected data meaning measurements are made as and

when standard practice dictates. In general, all aspects of reporting for these studies could

be improved. The Bartlett checklist69 and the exemplars given here will hopefully provide

authors with guidance to improve the reporting of these studies. It is also noted many of the

studies published in laboratory clinical medicine journals were very short articles, and the

low word count available may contribute to lack of clarity.

84



3.5. Discussion

Often biological variability estimates are not given with corresponding uncertainty estimates.

Again the work of Røraas and colleagues43 will hopefully give researchers guidance and lead

to improvements.

3.5.5 What are the differences between studies assessing biological vari-

ability of laboratory, imaging and physiological tests?

There are clear differences between the studies of biological variability for laboratory tests

compared with imaging and physiological tests. The laboratory tests have a set framework,

whereas the other test types vary more. The imaging studies are also different as the purpose

is often to explore inter and intra reader variability. Studies of different test types lend

themselves to assessment of different levels of variability; some test types do not allow for

assessment of analytical variability.

Issues with not justifying sample size and lack of clarity for reporting were seen in studies

of all test types; however, studies of physiological and imaging tests more often reported

confidence intervals for estimates.

Testing for outliers was identified as a common procedure in studies of laboratory tests but

not for studies of physiological and imaging tests.

3.5.6 Limitations

This review was not a systematic review. There will be studies of biological variability not

captured by this review and it is likely the searches used identified studies of better quality

(due to the journals chosen for the targeted searches and selection of studies that have been

previously assessed for inclusion in the Westgard QC database). Only articles written in

English were included in the review and a single reviewer extracted information from the

studies. The review only considered published work, which again may be of better quality

than unpublished work. There is no way of knowing if the searches developed capture all

studies meeting the criteria.
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The criteria for inclusion in the review meant that studies using calibrated and spiked samples

were not included. These studies may be beneficial in early test development and evaluation

stages but cannot be used to estimate test variability for patients. The searches used were

limited and could be further developed to detect a broader range of studies.

The purpose of this review was to identify methodology issues for biological variability studies

with articles identified to understand these issues rather than provide an exhaustive sample

of studies.

3.5.7 Further work

This review could be strengthened by improved searches, possibly including key estimates

such as CV, II, RCV and ICC. This review has highlighted the need for guidance in certain

areas. Some of these areas (sample size, uncertainty of estimates and general reporting)

have already been identified and there is guidance for researchers.22,43,77 As the sample size

issue is vital, additional work in this area would be beneficial. Also, the impact of data

transformations and outlier identification and removal requires further investigation.

3.6 Conclusions

Due to a lack of specific search terms for biological variability studies, studies were difficult to

detect. Search terms should be developed for these studies and test developers, researchers

and funders need to be aware of the need for variability estimates and the importance of

biological variability studies.

The design, methods of analysis and clarity of reporting for biological variability studies

can be improved. Primarily, methods for sample size calculation are required as this was

identified as a major deficit of the identified studies. In addition to the work of Røraas et

al,43 guidance is required for sample size justification. Further work investigating sample size

for biological variability studies has been conducted, see Chapter 5. The population assessed

in these studies needs to be chosen considering the likely use of the test. Studies should be
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designed to evaluate all levels of variability and any subgroups should be pre-specified, also

considering sample size.

The practice of outlier detection and deletion, and also data transformation is apparent. The

impact of data transformation and outlier detection requires investigation, as these processes

may be eliminating the variability the studies are aiming to estimate. These procedures were

investigated by carrying out empirical analyses, see Chapter 4, and also the impact of these

methods, see Chapter 6.

The Fraser-Harris framework requires updating. The design of studies evaluating variability

should be fully considered, specifically the sample size (especially if using subgroup analyses),

populations evaluated and levels of variability assessed. The methods for analysis should not

be so prescriptive, allowing assessment of normality and outliers in a tailored way for each

study rather than following a method that may not be appropriate.

The reporting of biological variability studies needs to be detailed and transparent. With

the adoption of the Bartlett checklist,69 this improvement can be achieved. The onus for

detailed and transparent reporting should also be with journals, with the word limits for

reporting allowing the necessary detail. It should be required that estimates are reported

with confidence intervals.
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Chapter 4

Analysis of biological variability

studies: a case study evaluating

glomerular filtration rate (GFR)

This work has, in part, been submitted for publication:
Rowe C, Sitch A, Barratt J, Brettell E, Cockwell P, Dalton N, Deeks J, Eaglestone G,
Pellatt-Higgins T, Kalra P, Khunti K, Loud F, Morris F, Ottridge R, Stevens P, Sharpe C,
Sutton A, Taal M, Lamb E. Biological variation of measured and estimated glomerular
filtration rate (GFR) in patients with chronic kidney disease: the eGFR-C Study. Kidney
International (in press).

Summary

This chapter presents an analysis of markers used in a study of glomerular filtration rate of

patients with chronic kidney disease (CKD), the eGFR-C study. The methods for analysing
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biological variability were described in Chapter 2.

Analysis of the eGFR-C study data using the methods identified in the review of biological

variability studies (see Chapters 2 and 3), highlighted the differences when using normality

checks and transformation, outlier detection and removal, and the use of ‘exact’ measures

and asymmetric reference change values.

There were differences in results when data were analysed with and without transformation–

with some results after log transformation requiring alternative methods. When outliers were

detected and removed the estimates of variability at each level decreased, especially at the

within and between-individual levels.

4.1 Introduction

Glomerular filtration rate (GFR) is the primary method of detecting chronic kidney dis-

ease (CKD) with the reference standard method for measuring GFR being iohexol clear-

ance,19 a method which is time consuming and unreasonable to undertake for the purposes

of disease detection, staging and monitoring of progression. There are also methods for

estimating GFR. Estimated GFR, or eGFR, can be calculated using equations requiring

characteristics of the patient (age, gender and ethnicity) along with serum creatinine and

cystatin C levels (MDRDcreatinine,
96 CKD-EPIcreatinine,

97 CKD-EPICystatin C,98 and CKD-

EPICystatin C creatinine
98). Estimated GFR is often used in clinical practice as the measures

required to calculate eGFR using the equations are easier to obtain.

The eGFR-C study19 is a prospective longitudinal study designed to investigate the accuracy

of the various eGFR equations for the purposes of diagnosis and monitoring of patients with

CKD. The eGFR-C study also has a sub-study component where the biological variation of

reference (iohexol) GFR, creatinine, and cystatin C (along with the eGFR measures calculated

from their use) is assessed, in a population known to have CKD.

Methods for the design and analysis of biological variability studies are sparse with many

laboratory based studies using the framework introduced by Fraser and Harris in 1989.35
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A review of biological variability studies, see Chapter 3, showed studies of laboratory tests

generally adhered to the same methods for analysis; with procedures for evaluating normality

of data with data transformations if required, outlier detection with data deletion if necessary

and one way analysis of variance techniques used to estimate variability at each level, generally

expressed as coefficients of variation (CV) and reference change values (RCV). Using the

standard methods for assessing biological variability, data obtained from the eGFR-C sub-

study can be analysed to not only produce estimates for the iohexol, creatinine and Cystatin

C measures but sensitivity analyses allow the standard methods to be assessed using this

example; specifically the impact of data transformation and outlier detection were explored

with the impact of this methodology evaluated.

4.2 Aims and objectives

There were two primary aims. Firstly, to present a standard analysis of the eGFR-C study

and obtain biological variability estimates. Secondly, the impact of certain elements of the

standard analysis procedure were further evaluated, namely: data transformation and outlier

detection. The method for sample size justification was investigated also.

4.3 Methods

For full details of the eGFR-C study see the published protocol by Lamb et al.19

4.3.1 Eligibility criteria

To be eligible to enter the study, participants were required to be:

• aged 18 years or older;

• in stage 3 CKD (GFR 30-59 mL/min/1.73 m2), diagnosed using eGFR (with at least

two consecutive test results in this range at least 90 days apart and the most recent
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test in the last 12 months);

• and, treated in primary or secondary care.

4.3.2 Study design

In one study centre, twenty people with stage 3 CKD were recruited to have four iohexol

reference measures of GFR along with creatinine and Cystatin C at weekly intervals. In

practice, the creatinine and Cystatin C measures were used to estimate GFR using the four

estimating equations. Measurements for each individual were taken at the same time of the

day (morning), the same day of the week and after participants had consumed only a light

breakfast, see Figure 4.1

Participant 1

Time 1

Time 2

Time 3

Time 4

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Participant 20

Time 1

Time 2

Time 3

Time 4

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Assessment 1

Assessment 2

Figure 4.1: eGFR-C biological variability sub-study design.
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4.3.3 Sample size

The sample size for the eGFR-C study uses an estimate of precision for within-individual

CV. CVI was estimated to be 10%. With twenty participants recruited and tested on four

occasions an approximate 95% confidence interval for CVI has limits ±2% absolute. This

calculation assumes data are log-normally distributed and uses a Chi-squared distribution

for the calculation of the confidence interval for CVI .

4.4 Analysis

The analyses will follow the framework introduced by Fraser and Harris,35 see Box 4.1 and

Chapter 2 for further detail. Analyses will also be conducted to investigate the impact

of certain elements of the methodology, specifically data transformation and outlier detec-

tion.

Box 4.1: Fraser Harris framework.

Normality
• Data is checked for normality using the Shapiro Wilk test, with the test used to

evaluate the distribution of all data points and the distribution of measurements
for each individual separately.
• If the data is non-normal for all measurements or most individuals separately, data

transformation should be considered.

Outliers
• Firstly Cochran’s C test is used to identify outlying measures at the level of dupli-

cate assessments with those identified removed.
• Secondly, Cochran’s C test is used to identify outliers at the within-individual level,

with individuals detected having the extreme duplicate measures removed.
• Thirdly, Reed’s test is used to identify outlying individual means with all measures

for detected individuals removed.

Pre-analytical variability was kept to a minimum by standardising test procedures and was

not considered when evaluating the results. Analytical variability, within-individual vari-

ability and between-individual variability were assessed by allowing for multiple observations

within individual and multiple assessments of each observation. A linear mixed model was

fitted. The model was a null model with random effects for individuals and observation points
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within each individual. All analyses used the ‘xtmixed’ command in Stata version 15, with

restricted estimation of maximum likelihood (REML).

The variability estimates at each level were expressed as coefficients of variation (CV), refer-

ence change values (RCV), index of individuality (II) and interclass cluster correlation (ICC).

Estimates were presented with corresponding 95% confidence intervals (calculated using the

methods of Budick and Graybill),34 where applicable.

4.4.1 Sensitivity analyses

To evaluate the standard methods for analysis of laboratory tests a series of sensitivity anal-

yses were performed, assessing the impact of the methods for normality testing and data

transformation, outlier detection and removal, and reporting of CVs. Combinations of the

following analyses were investigated:

• non-transformed and transformed data;

• no outlier detection, Fraser-Harris method for outlier detection and, Cochran C test

and Reed’s criterion for outlier detection (see §6.3.2);

• and, reporting of CVs and RCVs for log-transformed data.

The Fraser-Harris method uses the Cochran C test and Reed’s criterion for detection of

outliers, see Box 4.1. The Cochran C test requires all measurements (for an individual) to

be removed if detected as an outlier when assessing variances for individuals. The method

introduced by Fraser and Harris suggested that only a set of outlying duplicate results for

detected individuals be removed. The Cochran C test also requires repeated use after deleting

identified values until no additional outliers are detected,99 which is not specified by the

Fraser-Harris method.

Additionally, the method for calculation of geometric CV following log transformation was

investigated using a ‘raw’ calculation of geometric CV(%) (σ × 100) and ‘exact’ calculations

of CV (formula for exact geometric CV(%):
√

(exp(σ2)− 1)× 100,59,60 and alternative exact
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geometric CV(%): (exp(σ)−1)×100)61. The calculation of symmetric and asymmetric RCVs

was also considered (RCVpos = [exp(Z ×
√

2τ)− 1]× 100, and RCVneg = [exp(−Z ×
√

2τ)−

1] × 100, where τ =
√

(ln(CV 2
A+I + 1)), Z is selected from the normal distribution (usually

1.96) and CVA+I the total imprecision CVA+I =
√

(CV 2
A + CV 2

I ))62,63, see Chapter 2.

4.5 Results

4.5.1 Study population and completeness of data

Twenty participants were recruited; ten were male and ten female. The median (Q1, Q3)

age (years) was 71 (64, 75) and the median (Q1, Q3) BMI (kg/m2) was 28.2 (25.0, 30.2). All

participants were of White/Caucasian ethnicity (see Table 4.1).

Table 4.1: Characteristics of patients recruited to eGFR-C biological variability sub-study.

Characteristic Summary

N 20
Gender (male); n (%) 10 (50)
Age (years); median (Q1, Q3) 71 (64, 75)
BMI (kg/m2); median (Q1, Q3) 28.2 (25, 30.2)

Of the twenty participants, 19 obtained results in duplicate at all four weekly assessments for

all measures, giving eight measures per test per participant. One participant did not attend

the fourth week of testing and only had six available results for each test measure (duplicate

assessments at three time points). The total available data were 158 measurements from 20

patients for each measure.

All data were considered prior to analysis. For the iohexol measure, clinical colleagues ob-

served eight measurements (four duplicated results for four patients) were the result of the

dose not being fully administered or being subcutaneously administered; these eight mea-

surements were removed.
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4.5.2 Analyses using standard laboratory based biological variability meth-

ods

4.5.2.1 Normality testing and data transformation

Firstly data was assessed for normality. Shapiro-Wilk tests suggested iohexol, creatinine

and Cystatin C data were not normally distributed (p-values 0.0004, 0.0010 and 0.0117

respectively, see Table 4.2). When performing tests on the data for each individual separately,

for the iohexol measures only one individual had a significant p-value at the 5% level and

for creatinine and Cystatin C data two individuals had significant p-values at the 5% level,

indicating non-normality.

After log transformation, the p-value from the Shapiro-Wilk test for iohexol measures was

0.1123, suggesting no evidence of non-normality; however, for the log transformed creatinine

and Cystatin C values the Shapiro-Wilk test p-values are 0.0106 and 0.0003 respectively,

suggesting the log transformed data are not normally distributed. When performing tests

on the log transformed data for each individual separately, for the iohexol and Cystatin C

measures, the test for one individual produced a significant p-value at the 5% level and for

the creatinine data tests for two individuals produced significant p-values at the 5% level,

indicating non-normality.

From visual inspection of histograms (see Figure 4.2) there was little difference between the

distribution of the original values and the log transformed data. As the normality of all

data was marginally improved and there is a benefit regarding the calculation when using log

transformed data (calculation of geometric CVs, see Chapter 2 for more details), use of log

transformed data was the preferred approach for these analyses. This approach was supported

by clinical chemist colleagues and was considered typical decision making for analysis of this

type of study.
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Figure 4.2: Histogram of original and log transformed measures.

98



4.5. Results

4.5.2.2 Outlier detection and data exclusion

Using the log-transformed data and the method for outlier detection suggested by Fraser and

Harris, for the iohexol, creatinine and Cystatin C analyses eight, four and six measurements

were removed respectively, see Table 4.3.

Table 4.3: Analysis of the eGFR-C biological variability study–outlier detection using the
Fraser-Harris method.

Outlier Detection Iohexol Creatinine Cystatin C

Measurements 142 154 152
Participants 20 20 20
Mean (SD) 3.9 (0.2) 4.8 (0.2) 0.5 (0.2)
Median (IQR) 3.9 (3.7, 4.0) 4.8 (4.7, 5.0) 0.5 (0.4, 0.6)

Cochran C duplicates
Measurements 6 4 6
Duplicates 3 2 3
Participants 3 2 3
Cochran C individuals
Measurements 2 0 0
Duplicates 1 0 0
Participants 1 0 0
Reed’s test
Measurements 0 0 0
Duplicates 0 0 0
Participants 0 0 0

Total outliers 8 4 6

For the iohexol analysis, six measurements were removed after the first use of the Cochran

C test (at the level of duplicate measurements within individuals) and two measurements for

the second use of the Cochran C test (at the level of individuals within the whole group).

The analysis of creatinine removed four measurements after the first use of the Cochran C

test; analysis of Cystatin values removed six measurements after the first use of the Cochran

C test. For creatinine and Cystatin C analyses, the second use of the Cochran C test led to

no outlier detection. For all measures, Reed’s test revealed no outliers for exclusion.

4.5.2.3 Analysis of variance

The analysis of iohexol results following the use of the Fraser-Harris method allowed the

exact geometric coefficients of variation (expressed as percentage) and corresponding 95%
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confidence intervals to be calculated. The coefficient of variation at the analytical level, CVA

was 2.22 (95% CI: 1.92, 2.63); at the within-individual level, CVI was 6.67 (5.60, 8.20); and

at the between-individual level, CVG was 16.61 (12.43, 24.53). Positive and negative RCV

bounds were calculated, and are again expressed as percentages; the positive RCV bound was

21.49 and the negative was -17.69, the index of individuality was 0.42, see Table 4.4.

Table 4.4: Analysis of the eGFR-C biological variability study–results using the Fraser-Harris
method.

Test Iohexol Creatinine Cystatin C

Measurements 142 154 152
Participant 20 20 20

Raw geometric CVsa

CVA 2.22 (1.92, 2.63) 0.66 (0.57, 0.78) 0.56 (0.48, 0.66)
CVI 6.66 (5.59, 8.19) 4.34 (3.68, 5.30) 3.99 (3.38, 4.86)
CVG 16.61 (12.43, 24.53) 19.79 (14.98, 29.00) 18.86 (14.28, 27.63)
CVTOT 18.04 (14.27, 25.53) 20.28 (15.62, 29.34) 19.29 (14.84, 27.92)

Exact geometric
CVsb

CVA (95% CI) 2.22 (1.92, 2.63) 0.66 (0.57, 0.78) 0.56 (0.48, 0.66)
CVI (95% CI) 6.67 (5.60, 8.20) 4.35 (3.68, 5.30) 3.99 (3.38, 4.87)
CVG (95% CI) 16.73 (12.48, 24.91) 19.99 (15.07, 29.62) 19.03 (14.36, 28.17)
CVTOT (95% CI) 18.18 (14.34, 25.95) 20.49 (15.71, 29.98) 19.47 (14.92, 28.48)

Alternative
geometric CVsc

CVA (95% CI) 2.25 (1.94, 2.66) 0.67 (0.58, 0.79) 0.56 (0.48, 0.66)
CVI (95% CI) 6.89 (5.75, 8.53) 4.44 (3.75, 5.44) 4.07 (3.44, 4.98)
CVG (95% CI) 18.07 (13.23, 27.80) 21.89 (16.17, 33.65) 20.76 (15.35, 31.82)
CVTOT (95% CI) 19.77 (15.34, 29.09) 22.48 (16.90, 34.09) 21.27 (16.00, 32.21)

IId 0.42/0.42/0.40 0.22/0.22/0.21 0.21/0.21/0.20

RCV positived 21.47/21.49/22.22 12.95/12.95/13.25 11.81/11.81/12.06

RCV negatived -17.67/-17.69/-18.18 -11.46/-11.47/-11.70 -10.56/-10.56/-10.76

SDA (95% CI) 0.022 (0.019, 0.026) 0.007 (0.006, 0.008) 0.006 (0.005, 0.007)
SDI (95% CI) 0.067 (0.056, 0.082) 0.043 (0.037, 0.053) 0.040 (0.034, 0.049)
SDG (95% CI) 0.166 (0.124, 0.245) 0.193 (0.146, 0.283) 0.189 (0.143, 0.276)
SDTOT (95% CI) 0.180 (0.143, 0.255) 0.198 (0.152, 0.286) 0.193 (0.148, 0.279)

ICCA 0.015 0.001 0.001
ICCI 0.137 0.046 0.043
ICCG 0.848 0.953 0.956

All CV and RCV values as expressed as percentages. aσ × 100; b
√

(exp(σ2)− 1)× 100;
c(exp(σ)− 1)× 100; d calculated using raw CV/ exact geometric CV/ alternative geometric
CVs. 95% confidence intervals were calculated using methods of Burdick and Graybill.34

When analysing the creatinine results using the Fraser-Harris method, CVA, CVI and CVG

were 0.66 (0.57, 0.78), 4.35 (3.68, 5.30) and 19.79 (14.98, 29.00) respectively. The positive
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and negative RCV bounds were 12.95 and -11.47, and II was 0.22. Finally for Cystatin C, the

analysis using the Fraser-Harris method provided estimates of CVA, CVI and CVG of 0.56

(0.48, 0.66), 3.99 (3.38, 4.87) and 18.86 (14.28, 27.63) respectively. The positive and negative

RCV bounds were 11.81 and -10.56, and II was 0.21.

4.5.3 Sample size

The sample size calculation was based on precision of the estimate of CVI . The estimate of

CVI was 10% whereas estimates obtained were lower and the confidence intervals for these

estimates were within the absolute ±2% targeted.

4.5.4 Sensitivity analyses to investigate the impact of methods of analysing

standard laboratory based biological variability methods

4.5.4.1 Normality testing and data transformation

When using the transformed and non-transformed data, outliers detected and excluded were

the same measurements for analyses of iohexol and creatinine for both the Fraser-Harris

method (eight iohexol measurements removed and four creatinine measurements removed)

and complete outlier detection (12 iohexol measurements removed and four creatinine mea-

surements removed), see appendix Table B.1 and Table B.2. Outlier detection for Cystatin

C differed when using log transformed and non-transformed data; when analysing the log-

transformed data fewer measurements were removed for both the Fraser-Harris method (six

compared with eight) and complete outlier detection (six compared with 22), see appendix

Table B.3.

Analyses of log-transformed data generally gave higher CV estimates compared with non-

transformed data, with the exceptions of iohexol CVG and creatinine CVA, see Table 4.5-Table

4.7. It should be noted estimates obtained after log-transformation are geometric CVs.

The reference change values from the analyses of log transformed data are asymmetric (dif-
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4.5. Results

ferent values indicate a true change depending on positive or negative change between mea-

sures);62,63 whereas, RCVs calculated from the analyses of non-transformed data give a single

value for changes in either the positive or negative direction. The RCVs calculated using the

log transformed data appeared conservative compared to the non-transformed data (log-

transformed and non-transformed data using Fraser-Harris method: iohexol -17.69, 21.49

and ±17.91; creatinine -11.47, 12.95 ±12.16; Cystatin C -10.56, 11.81 and ±10.34).

The index of individuality was stable across analyses of log-transformed and non-transformed

data for creatinine and Cystatin C. For the analyses of iohexol the IIs estimated showed

greater change when calculated from the log transformed and non-transformed data (Fraser-

Harris method: 0.42 and 0.37 respectively).

4.5.4.2 Outlier detection and data exclusion

All outlier testing methods led to the exclusion of data when analysing the three measures.

For iohexol, complete outlier detection deleted more measurements (12 measurements for

full detection and eight for Fraser-Harris method) due to the Cochran C test leading to the

removal of all data for the identified individual, see appendix Table B.1. When identifying

outliers in the creatinine data, the outlier detection methods identified the same four mea-

surements, see Appendix B Table B.2. Identification of outliers in the Cystatin C data led

to deletion of the same six measurements when using the Fraser-Harris and complete outlier

detection methods on the transformed data; however, for the non-transformed Cystatin C

data, additional measurements were identified using the complete outlier detection method

(22 compared with eight measurements, see appendix Table B.3). The additional measure-

ments were detected when using the Cochran C test for individuals (the complete outlier

detection method identified all eight measurements to be removed for an individual and a

further eight were removed when another individual was identified using Cochran C testing

of individuals for a second time on the remaining data). See Figure 4.3.

Comparison of analyses of data after different outlier detection approaches were used sug-

gested that estimates of CVA and CVI decrease as more data were excluded, with results
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Iohexol
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Figure 4.3: Beeswarm plot of data and removed data.
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4.6. Discussion

appearing similar when fewer outliers were detected. Comparing estimates of CVG showed

increases with outlier detection for the analysis of iohexol and Cystatin C (see Table 4.5

and Table 4.7) but decreases for creatinine. Similar trends were seen when analysing the

non-transformed data.

The reference change value bounds decreased with more stringent outlier detection when

analysing the iohexol data. The RCVs for creatinine and Cystatin C appeared similar when

using different outlier detection methods, and the RCV values for the non-transformed data

decreased with stricter outlier detection methods for the analysis of iohexol and Cystatin

C. For the analyses of the non-transformed creatinine data the RCVs remained stable with

different methods of outlier detection.

The index of individuality reduced with increased outlier detection for the analyses of log

transformed iohexol data but remained stable for the analysis of log transformed creatinine

and Cystatin C data. The IIs estimated when analysing non-transformed data decreased as

outlier detection increased for iohexol and Cystatin C measures but for creatinine remained

similar.

4.6 Discussion

4.6.1 Sample size

The sample size calculation used in this study focused on the estimate of within-individual

coefficient of variation only, using the number of participants and observation points to assess

precision. The method used for this was simplistic, as the duplicated measures within each

observation point were not factored into the calculation. The method of using confidence

intervals for a given level of precision is appropriate but further guidance is required to

ensure this is correct and the precision of additional estimates are considered. A tool to enable

researchers to easily use these methods to plan the sample size of studies is required.
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4.6.2 Normality and data transformation

The results of analysing the values recorded for iohexol, creatinine and Cystatin C tests

showed estimates were slightly different when using log transformed and non-transformed

data. As the estimates generated from these analyses have shown differences depending on

whether non-transformed data or transformed data was used, and the interpretation of these

estimates differ, it is vital that studies of biological variation report any transformations per-

formed and consider if data is normally distributed prior to transformation and log-normally

distributed after log-transformation.

From investigating published biological variability studies (see Chapter 3) it seems log-

transformation may be used to allow simplification of calculations primarily and the avail-

ability of formulae for calculating confidence intervals for estimates. The true need for trans-

formation of data is often not given.

When using a model to evaluate three levels of variability, the model takes the form of

yijk = µ + αi + βij + εijk, where µ is the mean value of the measure, αi ∼ N(0, σ2
G),

βij ∼ N(0, σ2
I ), εijk ∼ N(0, σ2

A) and i = 1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , n3. The

number of participants is n1, the number of observations for each participant is n2 and the

number of replicate assessments of each observation for each participant is n3. The analytical,

within-individual and between-individual variability, expressed as standard deviations are σA,

σI and σG. This model assumes normality of the variability parameters at the analytical,

within-individual and between-individual levels. If this assumption is not held results from

the model may not be valid. Simply assessing the normality of the test measures may not be

sufficient to investigate if the data meets the assumptions of the model. Many of the outlier

detection methods (see §6.3.2) rely on the data to be normally distributed, hence the further

requirement for normality prior to assessing outliers.

When using normality tests on small samples the tests have limited power; and, with larger

samples the results of normality tests may be significant, indicating non-normality, when

deviations from the normal distribution are small and alternative approaches (non-parametric

testing or transformation) cause limited differences to the results obtained.100
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4.6. Discussion

Further work is required to investigate issues arising when biological variability data are not

normally distributed or log-normally distributed.

4.6.3 Outlier detection and removal

The results of the analyses of iohexol, creatinine and Cystatin C measures showed estimates

were different when outliers are detected and removed. In situations with increased out-

lier detection estimates of variability were generally reduced, meaning these methods were

potentially providing optimistic estimates of variability. The risk in using outlier detection

methods is that valid data is removed rather than data ‘errors’ and the consequence is reduced

estimates of variability.

The results also showed different types of outlier detection led to different results. The method

of Fraser and Harris can be interpreted in different ways leading to differing numbers of

outliers detected which can change the results of biological variability studies. The exact use

of outlier detection methods need to be carefully explained, if these methods are considered

appropriate. It is not clear what the impact of outlier detection is and the most appropriate

method to use in biological variability studies.

The Cochran C test is not a perfect test to use even if outlier detection is appropriate and

necessary. ’t Lam99 discusses the disadvantages of the Cochran C test: requiring a balanced

design; use of the test requires reading of critical values from tables and, the test is not a

two-sided test as it uses critical values to identify large variances but does not identify small

variances.

4.6.4 Limitations

This chapter displays the analysis of only one data set where the distribution of data and

outliers did not appear to have great impact on the analyses performed. For other data sets

the difference in analyses could be greater and this requires further investigation.

Differences in results were seen across the analyses but it is difficult to know what magnitude
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would be meaningful. CVs are often the reported results of biological variability studies but

it may be that estimates of RCV are more meaningful and researchers should be mindful of

the precision of this estimate when planning studies.

4.7 Conclusion and recommendations

The methods for analysing biological variability studies can impact on results, this could

be using: log-transformed or non-transformed data, different outlier detection methods or

different methods of calculation of geometric coefficients of variation. The methods for eval-

uating biological variability studies require updating and researchers need to be made aware

of the methods for analysing these types of studies and the differences in interpretation of

results when geometric coefficients of variation are calculated. Only with clear and trans-

parent reporting can the analyses of biological variability studies be used to inform further

research.

It needs to be clearly reported if the data has been analysed using log-transformed data or

data on the original scale. The decision to transform data should be made given the distribu-

tion of study data and prior knowledge of the measure, with these decisions and considerations

reported. Researchers should also clearly report which method has been used to give CV es-

timates when using log-transformed data. The benefits of using the log-transformed data are

simplification of the calculation of CV and the ability to calculate confidence intervals for

these CVs.

Using outlier detection methods may lead to the identification and deletion of legitimate

test measurements and consequently may decrease the estimates of variability. The impact

of outlier detection methods on variability estimates in biological variability studies needs

further investigation with the methods for identifying outliers compared.

More guidance is required for planning sample sizes for biological variability studies taking

account of the variability at all levels assessed, which can be done with the appropriate

confidence interval calculations. It would also be beneficial to have guidance for sample size
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based on the precision of measures in addition to CVs, such as RCVs. A tool for calculating

the precision of estimates for given sample sizes would allow researchers to easily incorporate

these calculation when planning studies.
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Chapter 5

Sample size guidance and

justification for studies of biological

variation

This work has been partly presented in the following form:
Sitch, A, Mallett, S, Deeks, J. Sample size guidance and justification for studies of
biological variation. EuroMedLab–22nd IFCC-EFLM European Congress of Clinical
Chemistry and Laboratory Medicine, Athens, Greece. 11-15 June 2017.

Summary

Biological variability studies aim to measure variability in a biomarker both between and

within individuals, allowing the potential for a biomarker to diagnose and monitor disease to

be assessed. Sample sizes for these studies state the numbers of participants (n1), observations
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Chapter 5. Sample size guidance and justification for studies of biological variation

per participant (n2) and repeat assessments of each observation (n3). Little guidance exists

to compute these values.

Simulation of biological variability data and subsequent analysis allows potential results to

be observed for more common measures of variability including the coefficient of variation

(CV), reference change values (RCV), and index of individuality (II). Using simulation and

observing the results can help researchers plan sample size (the application is available at

https://alicesitch.shinyapps.io/bvs_simulation/).

Results of simulations showed greater numbers of participants increased the precision of

estimated analytical, within and between-individual variability; increasing the number of

observations per participant increases the precision of estimates of analytical and within

individual variability; and, increasing the number of assessments of observations per partici-

pants increases precision of only analytical variability. If the desired precision of variability

components are known, values for n1, n2 and n3 can be determined.

5.1 Introduction

Biological variability studies look to estimate variability by assessing participants whilst in a

stable disease state. Multiple participants are tested at multiple time points, and each obser-

vation for each participant is assessed multiple times.35 Recruitment of multiple participants

allows the variability between participants to be assessed; multiple measures for each partici-

pant allows within-individual variability to be assessed; and, the multiple assessment of each

measure from each participant allows assessment of analytical variability.16 Pre-analytical

variability is minimised by keeping test procedures constant and is not evaluated.16

Analysis of variability is by ANOVA or random effects modelling. Estimates of variability

are often expressed as coefficients of variation (CVs), identified in the review of biological

variability studies (Chapter 3). Additional estimates provided are index of individuality (II)

and reference change value (RCV), for further details see Chapters 2 and 3.

From the review presented in Chapter 3, few studies of biological variability justified the
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5.1. Introduction

sample size used. Few studies gave any indication of the uncertainty of the estimates produced

with confidence intervals rarely presented. The Fraser and Harris35 guide for the design and

analysis of biological variability studies does not cover sample size justification, stating only

that: ‘valid estimates of the components of variation can be obtained from relatively small

numbers of specimens collected from a small group of subjects over a reasonably short period

of time’.35

Røraas et al43 have provided guidance for both sample size justification and the use of con-

fidence intervals for estimates from biological variability studies. Their work was based on

a simulation study using the standard ANOVA or random effects modelling approach to

analyse biological variability data, whilst varying the analytical variability, number of repli-

cates, number of samples, and number of individuals, and looked at the effect of varying

these study aspects on the confidence interval width for the estimate of within-individual

variability. Tables provided enable planning of appropriate sample size and estimation of

confidence intervals for within-individual variability estimates. Confidence intervals were

calculated using the formula introduced by Burdick and Graybill,34 see Chapter 2.

McNeish and Stapleton50 reviewed ‘rules of thumb’ for the number of clusters to fit multilevel

models and achieve unbiased estimates. The authors acknowledge a ‘a specific sample size

cannot be pinpointed’ with guidance ranging. Kreft101 suggested 30 clusters with 30 data

points within each cluster; Snijders and Bosker102 suggested 20 clusters were necessary and

multilevel models should not be used if fewer than 10 clusters are present;103 and, Hox104 sug-

gested 50 clusters with 10 data points in each cluster was necessary for multilevel modelling,

with this increased to 100 clusters with 10 datapoints in each if variance parameters were

estimated. McNeish and Stapleton50 used simulation to suggest a minimum of ten clusters

to estimate a variance parameter and 50 clusters to estimate the standard error of a variance

parameter. A generic multilevel model was used (also with the estimate of fixed effects)

with only two levels of data. This example was not tailored to biological variability data

but for more general analysis accounting for clustering of data. The validity of multilevel

modelling to obtain estimates of variability with small numbers of participants, observations

and assessments is unknown.
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Chapter 5. Sample size guidance and justification for studies of biological variation

The work presented in this chapter aims to use simulation to assess the validity of the

methods used to produce variability estimates for varying sample sizes and provide guidance

to demonstrate the impact of sample size on the precision of various estimates from biological

variability studies (including estimates where precision cannot easily be derived, such as CV

for non-transformed data, RCV and II). For estimates where estimated confidence intervals

can be derived (CV estimates when data is log-normally distributed and log transformed) the

simulation will be used to validate these methods. Researchers will be provided with a tool

to enable planning and justification of sample size. This tool will not only provide precision

of estimates of within-individual variability but also for analytical and between-individual

variability, and the subsequent measures generated in biological variability studies.

5.2 Aims and objectives

The aims of this study were:

• primarily, to assess the validity and precision of estimates produced when varying sam-

ple size for normal and log-normal data;

• secondarily, to investigate the difference in estimates for a given sample size when

changing the variability at the analytical, within-individual and between-individual

level.

The simulated scenarios were evaluated by assessing:

• bias, accuracy and coverage of the methods used for analysis when estimating standard

deviations;

• and, a range of estimates from biological variability studies (standard deviations, CVs,

II, RCV).

This analysis allowed the validity of methods to estimate variability and calculate confidence

intervals when varying sample size to be assessed, and provides researchers with likely esti-

mates from planned studies so sample size can be modified to achieve the required precision.
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5.3. Methods

An application was developed enabling sample sizes for biological variability studies to be

planned and justified prior to recruitment of participants. In addition an application was

developed to calculate confidence intervals given specified variability estimates and sample

sizes, using analytical methods where possible.

5.3 Methods

The model simulated data for a given sample size (number of participants, observations

and assessments) and test performance (between-individual, within-individual and analytical

variability). After simulating the data, standard analyses were performed to estimate the

between-individual, within-individual and analytical variability. The simulation and analysis

was repeated 1,000 times with the results from the multiple runs analysed to assess the bias,

accuracy and coverage of the estimated standard deviations and the precision of estimates

of biological variability (standard deviations, CVs, II, RCV). This was repeated for differ-

ent sample sizes, test performance values and normal and log-normal data. For estimates

where approximate confidence intervals can be calculated using the methods of Burdick and

Graybill34 these were compared to the results obtained using simulation.

See Table 5.1 for a guide to the notation used when describing the method.

5.3.1 Number of simulations

With 1,000 simulations the 95% confidence interval for coverage, assuming an estimate of

95% would range from 93.46% to 96.27%. One thousand data simulations were used for each

scenario to allow precision of estimates but also efficiency of computing, which would be

required for researchers to use the tool when planning studies. A simulation of 10,000 data

sets was used with the base-case scenario and results were similar when compared to those

generated when using 1,000 data sets.
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Chapter 5. Sample size guidance and justification for studies of biological variation

Table 5.1: Notation description for biological variability study sample size simulation method.

Description Notation

Simulation inputs
Sample size
Number of participants n1

Number of observations per participants n2

Number of assessments per observation per participants n3

Test estimates
Mean test value µ
Analytical variability (standard deviation) σA
Within-individual variability (standard deviation) σI
Between-individual variability (standard deviation) σG
Log transformed analytical variability (standard deviation) σ∗A
Log transformed within-individual variability (standard deviation) σ∗I
Log transformed between-individual variability (standard deviation) σ∗G

Simulation and results
Sample size function
Data simulation and analysis
Simulated test value for each assessment of each observation for each
participant

yijk

Mean test value µ
Between-individual variability; model parameter αi ∼ N(0, σ2

G) αi
Within-individual variability; model parameter βij ∼ N(0, σ2

I ) βij
Analytical variability; model parameter εijk ∼ N(0, σ2

A) εijk
Participant number; i = 1, . . . , n1 i
Observation number; j = 1, . . . , n2 j
Assessment number; k = 1, . . . , n3 k
Estimates
Estimated analytical variability (standard deviation) σ̂A
Estimated within-individual variability (standard deviation) σ̂I
Estimated between-individual variability (standard deviation) σ̂G
Estimated analytical coefficient of variation CVA
Estimated within-individual coefficient of variation CVI
Estimated between-individual coefficient of variation CVG
Estimated index of individuality II
Estimated reference change value RCV
Estimated positive reference change value RCVpos
Estimated negative reference change value RCVneg
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5.3. Methods

5.3.2 Input values

The simulation required details of the sample size of the biological variability study: the

number of participants (n1), the number of observations for each participant (n2) and the

number of replicate assessments of each observation for each participant (n3). Also required

were estimates of the mean value of the test (µ) and the analytical, within-individual and

between-individual variability, expressed as coefficients of variation (CVA, CVI and CVG) or

standard deviations (σA, σI and σG).

A previous review of biological variability studies (see Chapter 3) showed the median (Q1,

Q3) number of individuals in biological variability studies (n1) was 25 (15, 40); for the number

of observations per participant (n2) this was 5 (3, 10); and, for the number of assessments

per observation point 2 (2, 3). From the same review estimates of CVA, CVI and CVG were

extracted with the median (Q1, Q3) of 3.5 (1.4, 6.3), 10.0 (5.0, 18.5) and 26.3 (14.0, 43.9)

respectively.

5.3.3 Data simulation

5.3.3.1 Basic simulation model with normally distributed errors

Test data were simulated to follow the model yijk = µ+ αi + βij + εijk, where µ is the mean

value of the measure, αi ∼ N(0, σ2
G), βij ∼ N(0, σ2

I ), εijk ∼ N(0, σ2
A) and i = 1, . . . , n1,

j = 1, . . . , n2 and k = 1, . . . , n3, see Figure 5.1. This was equivalent to the model proposed

by Røraas et al.43

This gave n1×n2×n3 observations; n3 assessments of n2 observations for n1 participants. A

histogram of the simulated measures and plot of the simulated measures by participant can

be seen in Figure 5.2.
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Figure 5.2: Histogram (left) and plot (right) of simulated biological variability data with
normally distributed variability (n1 = 20, n2 = 4, n3 = 2, CVG = 20%, CVI = 10% and
CVA = 5%). Duplicate assessments within observation points shown by points with the same
colour.

5.3.3.2 Log-normal data simulation model

An alternative simulation of log-normal data was performed. Data were simulated following

the model yijk = µ × αi × βij × εijk, thus ln(yijk) = ln(µ) + ln(αi) + ln(βij) + ln(εijk) and

ln(αi) ∼ N(0, σ2
G), ln(βij) ∼ N(0, σ2

I ), ln(εijk) ∼ N(0, σ2
A) and i = 1, . . . , n1, j = 1, . . . , n2

and k = 1, . . . , n3. This gave n1×n2×n3 observations; n3 assessments of n2 observations for

n1 participants. Figure 5.3 shows the distribution of the measurements on the original and

log scale.

5.3.3.3 Detailed specification of the log-normal data

The analytical, within-individual and between-individual standard deviations of the log trans-

formed data are σA, σI and σG respectively. The analytical, within-individual and between-

individual standard deviations of the data on the original scale are σ∗A, σ∗I and σ∗G.

A log-normal variable y has standard deviation σ∗ and mean µ∗σ, and when log trans-

formed has a normal distribution such that ln(y) ∼ N(µσ, σ
2). The mean of log trans-
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Figure 5.3: Histograms (left) and plots (right) of simulated biological variability data
(n1 = 20, n2 = 4, n3 = 2, CVG = 20%, CVI = 10% and CVA = 5%) with log-normal dis-
tributed variability (left shows original data and right shows log transformed data). Duplicate
assessments within observation points shown by points with the same colour.

formed log-normally distributed data (µσ) is ln

 µ∗σ√
1+σ∗2

µ∗2σ

 and the standard deviation (σ)

is

√
ln
(

1 + σ∗2

µ∗2σ

)
.105

The simulation provided exact geometric estimates of CVA, CVI and CVG. This was achieved

by simulating the log transformed data to satisfy σ =
√
ln(CV 2 + 1), so the exact CV is equal

to
√
exp(σ2)− 1.59,60 Log-normal data was simulated using the R function ‘lnorm’, meaning

zero-cell corrections were not necessary.

The mean value of the measure on the original scale is ȳijk = µ × ᾱi × β̄ij × ε̄ijk (hence

µ =
ȳijk

ᾱi×β̄ij×ε̄ijk
) and the mean value of the measure on the log scale is ln(ȳijk). For the

purpose of the simulation the value of ln(µ) was set to equal 10 units. As CV estimates are

geometric for this simulation, the value of the mean is independent.
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5.3.4 Analysis

5.3.4.1 Normally distributed data

The generated test data (yijk) was analysed using a linear model with random effects for

participants and observation points within participants. yijk = µ + αi + βij + εijk, where

i = 1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , n3, yijk is the test measure for the ith participant

at the jth time point and for the kth assessment, µ is the mean value of the measure,

αi ∼ N(0, σ2
G), βij ∼ N(0, σ2

I ) and εijk ∼ N(0, σ2
A).

Fitting the model allowed estimates of σA, σI and σG to be obtained, σ̂A, σ̂I and σ̂G. In

addition to standard deviations, other measures of variability were produced (coefficient of

variation (CV), index of individuality (II) and reference change values (RCV)) using the

estimates from the model.

5.3.4.2 Log-normal data

Analyses were performed using the same model but after log transforming the data.

5.3.5 Results for each simulation

Standard deviations were estimated after fitting the random effects model to each simulated

data set, at the analytical (σ̂A), within-individual (σ̂I) and between-individual (σ̂G) level.

Coefficients of variation (CV), index of individuality (II) and reference change values (RCV)

were calculated. CVA = σ̂A
µ , CVI = σ̂I

µ , CVG = σ̂G
µ , II =

√
CV 2

A+CV 2
I

CVG
and RCV =

√
2 ×

1.96 ×
√
CV 2

A + CV 2
I . For the analyses of the log transformed data, exact geometric CVs

were calculated using
√
exp(σ̂2)− 1.59,60 Corresponding 95% confidence intervals for the

standard deviations and CVs for the log-transformed data were calculated using the equations

presented by Burdick and Graybill,34 and asymmetric RCV, where RCVpos = exp(1.96 ×
√

2τ)− 1, and RCVneg = exp(−1.96×
√

2τ)− 1, where τ =
√
ln(CV 2

A+I + 1), 1.96 is selected

from the normal distribution and CVA+I is the coefficient of variation for the total imprecision,

123



Chapter 5. Sample size guidance and justification for studies of biological variation

CVA+I =
√
CV 2

A + CV 2
I

62,63, as described in Chapter 2.

The application also provides estimates of geometric CVs using exp(σ̂)−161 and intracluster

correlation coefficients (ICCs), however, these estimates are not presented here.

5.3.6 Repeated data simulations and analyses

Standard simulation performance measures were used to evaluate the ability of the methods

to estimate the standard deviations for differing sample sizes and test performance. These

measures were suggested by Burton et al,106 see Table 5.2. As the amount of bias considered

problematic is not know (Burton et al106 state this has been estimated between 1
2SE(β̂) and

2SE(β̂)) the bias is also considered as a percentage of the estimate (percentage bias) and as a

percentage of the empirical standard error of the estimate from the simulations (standardised

percentage bias). Burton and colleagues advocate the use of the standardised percentage bias

as it: ‘can be more informative, as the consequence of the size of the uncertainty’.106

Table 5.2: Performance measures to assess biological variability sample size simulation results.

Evaluation criteria Formula

Bias
Bias δ = ¯̂σ − σ
Percentage bias

(
δ
σ

)
× 100

Standardised bias
(

δ
SE(σ̂)

)
× 100

Accuracy
Mean squared error δ2 + SE(σ̂)2

Coverage
The proportion of times the 100(1− α)% confidence interval includes σ

Average 100(1− α)% confidence interval length

σ is the true value of the standard deviation.
σ̂ is the estimated σ for each simulation.
¯̂σ is the sum of the σ̂ divided by the number of replicate simulations performed (the mean).
SE(σ̂) is the empirical standard error of the estimate for all simulations (the SD across simulated estimates).

For each of the estimates, the mean, median, 25th percentile (Q1), 75th percentile (Q3),

minimum and maximum value were calculated to summarise results. The 2.5th and 97.5th

percentiles are available in the application also.

All analyses were performed using the statistical software R with the seed set at the start
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of each scenario. Each scenario differs due to the sample size and data drawn from different

distributions. For analyses varying sample size, data simulations are not paired. For analyses

of the same sample size varying σA, σI or σG the results are for paired analyses changing

only the specified component. All models were fitted using restricted estimation of maximum

likelihood (REML).

5.3.7 Simulation inputs

5.3.7.1 Base-case

Base-case parameters were kept constant with n1 = 20, n2 = 4, n3 = 2, σA = 0.5 (CVA =

5%), σI = 1 (CVI = 10%) and σG = 2 (CVG = 20%), chosen to reflect standard measures

seen in the review of biological variability studies, see Chapter 3.

5.3.7.2 Varying sample size

The input parameters were varied to reflect the range of sample sizes seen in the review of

biological variability studies (see Chapter 3), with the number of participants ranging from

5 to 100 (5, 10, 20, 30, 40, 60, 100); the number of observations ranging from 2 to 20 (2,

4, 6, 8, 12, 20); and, the number of assessments ranging from 2 to 10 (2, 3, 4, 6, 10). The

log-normal simulation maintained the same CV estimates but the standard deviations used

were slightly different to ensure the CV values remained the same.

Sensitivity analyses were performed increasing the variability of the test measures to σA = 1

(CVA = 10%), σI = 2 (CVI = 20%) and σG = 4 (CVG = 40%).

5.3.7.3 Varying test performance

The variability measures were chosen to reflect likely test performance also, with values

(across all simulations) for σA varying from 0.125 to 1.25 (CVA 1.25%, 2.5%, 3.75%, 5%,

6.25%, 7.5%, 8.75%, 10%, 11.25%, 12.5%); values for σI varying from 0.5 to 2.5 (CVI 5%,
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7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%); values for σG varying from 1 to 5 (CVG

10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%), reflecting the values of CV reported

and assuming a mean test value of 10 units. Variability measures were used in simulations

ensuring σA ≤ σI ≤ σG.

Sensitivity analyses were performed increasing the sample size to n1 = 40, n2 = 10 and

n3 = 3.

5.4 Results

An application was developed (allowing these simulations to be performed) to simulate dif-

ferent biological variability study scenarios, giving an indication of the precision of estimates.

This application can be found at https://alicesitch.shinyapps.io/bvs_simulation/.

An application was also developed allowing confidence intervals to be calculated for estimates

of standard deviation at the analytical, within-individual and between-individual levels, and

can be found at https://alicesitch.shinyapps.io/bvs_cis/.

All CVs and RCVs are displayed as percentages.

5.4.1 Number of participants, observations and assessments

5.4.1.1 Analysis of normally distributed data

Bias

For σA, σI and σG the bias appeared to be negative for all simulated situations except for

some scenarios using larger sample sizes, see Table 5.3. With only five participants, four

observations and two assessments the percentage bias–bias as a percentage of the true value–

was -0.564, -1.834 and -7.250 at the analytical, within-individual and between individual

levels respectively; the standardised percentage bias–the bias expressed as a percentage of the

standard error of the estimate–was -3.698, -8.783 and -20.212. When increasing the number

of participants to 20, the percentage bias was smaller at the analytical, within-individual and
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between-individual levels (-0.175, -0.332 and -1.529); with 100 participants the percentage

bias decreased further (+0.072, -0.127, -0.012). The bias was less than 2% for all situations

with at least 20 participants. With increases in the number of participants (n1) the bias

for σA, σI and σG decreased; with increases in the number of observations (n2) the bias for

σA and σI decreased; and for increases in the number of assessments (n3) the bias for σA

decreased.

Confidence intervals

As the number of participants, observations and assessments increased the mean width of

the Burdick and Graybill34 95% confidence intervals for estimated CVA, CVI and CVG all

reduced in width. The coverage of 95% confidence intervals for estimates of σA, σI and σG

was consistently close to 95%, with two of the scenarios providing coverage estimates for σG

at the lower bound of what was expected given the number of simulations, see Table 5.4

and Figure 5.4. For some of the smaller sample sizes 95% confidence intervals could not be

calculated (when n1 = 5, 10 and n2 = 2). Comparison of the results from the simulated data

to the bounds produced by the Burdick and Graybill confidence intervals (see Figure 5.5)

suggest the lower bound is underestimated.

Estimates of standard deviations and coefficients of variation

The median estimate of σA, σI and σG, and CVA, CVI and CVG appeared consistent for

each number of participants, observations and assessments. For increases in the number of

participants (n1) the range of estimates for σA, σI and σG (and therefore CVA, CVI and CVG)

decreased with estimates from the 1,000 replications closer to the true value. For increases

in the number of observations (n2) the range of estimates for σA and σI (and CVA and CVI)

decreased; however for all numbers of observations, the range of estimates of σG (and CVG)

were constant. For increases in the number of assessments, the range of estimates of σA (and

CVA) decreased only; the estimates of σI and σG (CVI and CVG) were similar, see Figures

5.5 and 5.6 and Appendix C Table C.1 and Table C.2.
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Figure 5.4: Coverage estimates from biological variability data simulations varying sample
size: coverage of SDA (left column), SDI (middle column) and SDG (right column) estimates
when varying number of participants (n1, top row); number of observations per participant
(n2, middle row); and, number of replicate assessments per observation per participant (n3,
bottom row). 95% coverage is shown by horizontal line. Estimates shown in red are for the
baseline strategy. 95% confidence intervals were calculated using the methods of Burdick and
Graybill.34 Confidence intervals could not be calculated for all scenarios, see Table 5.4.

128



5.4. Results

T
ab

le
5.

3:
B

io
lo

gi
ca

l
va

ri
ab

il
it

y
st

u
d

y
sa

m
p

le
si

ze
si

m
u

la
ti

on
re

su
lt

s–
b

ia
s

p
er

fo
rm

an
ce

m
ea

su
re

s
va

ry
in

g
n
u

m
b

er
o
f

p
a
rt

ic
ip

a
n
ts

,
o
b

se
rv

a
ti

o
n

s
an

d
as

se
ss

m
en

ts
.

B
ia

s
In

p
u

ts
B

ia
s

(×
1
0
−

4
)

P
e
rc

e
n
ta

g
e

b
ia

s
S

ta
n

d
a
rd

is
e
d

b
ia

s
n

1
n

2
n

3
σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

5
4

2
0
.5

1
2

-2
8
.1

8
6

-1
8
3
.3

6
5

-1
4
5
0
.0

6
1

-0
.5

6
4

-1
.8

3
4

-7
.2

5
0

-3
.6

9
8

-8
.7

8
3

-2
0
.2

1
2

1
0

4
2

0
.5

1
2

-3
1
.1

3
2

-3
2
.7

5
6

-6
4
8
.2

7
6

-0
.6

2
3

-0
.3

2
8

-3
.2

4
1

-5
.6

9
7

-2
.2

9
9

-1
2
.7

6
8

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

3
0

4
2

0
.5

1
2

-6
.3

9
7

-6
1
.6

5
2

-1
6
9
.7

8
4

-0
.1

2
8

-0
.6

1
7

-0
.8

4
9

-2
.0

6
7

-7
.2

3
2

-5
.9

7
3

4
0

4
2

0
.5

1
2

-5
.4

0
5

-1
5
.6

1
0

-1
4
0
.2

7
2

-0
.1

0
8

-0
.1

5
6

-0
.7

0
1

-1
.9

6
8

-2
.0

7
6

-5
.6

4
3

6
0

4
2

0
.5

1
2

-8
.5

8
5

7
.6

2
2

-6
2
.7

9
7

-0
.1

7
2

0
.0

7
6

-0
.3

1
4

-3
.8

6
1

1
.2

6
9

-3
.2

9
0

1
0
0

4
2

0
.5

1
2

3
.6

0
8

-1
2
.7

2
1

-2
.3

6
6

0
.0

7
2

-0
.1

2
7

-0
.0

1
2

2
.0

7
0

-2
.7

9
1

-0
.1

5
4

2
0

2
2

0
.5

1
2

-1
5
.2

1
7

-1
3
5
.6

6
8

-2
6
9
.1

4
4

-0
.3

0
4

-1
.3

5
7

-1
.3

4
6

-2
.6

8
8

-7
.8

9
5

-7
.1

9
9

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

2
0

6
2

0
.5

1
2

-1
4
.3

4
5

-8
.5

9
8

-1
7
5
.7

0
0

-0
.2

8
7

-0
.0

8
6

-0
.8

7
8

-4
.5

1
7

-1
.0

7
3

-5
.0

8
4

2
0

8
2

0
.5

1
2

-1
1
.5

1
3

-8
.2

8
7

-4
2
2
.3

3
1

-0
.2

3
0

-0
.0

8
3

-2
.1

1
2

-4
.1

5
8

-1
.2

3
7

-1
2
.1

0
9

2
0

1
2

2
0
.5

1
2

-1
.1

0
5

-3
5
.4

9
7

-1
1
5
.5

5
1

-0
.0

2
2

-0
.3

5
5

-0
.5

7
8

-0
.4

9
4

-6
.4

3
2

-3
.4

8
1

2
0

2
0

2
0
.5

1
2

1
.0

6
2

-1
.5

3
3

-3
8
7
.6

9
1

0
.0

2
1

-0
.0

1
5

-1
.9

3
8

0
.6

1
8

-0
.3

8
0

-1
2
.4

7
4

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

2
0

4
3

0
.5

1
2

5
.7

0
4

-5
3
.9

1
1

-1
9
5
.6

0
7

0
.1

1
4

-0
.5

3
9

-0
.9

7
8

1
.9

9
6

-5
.3

8
4

-5
.5

9
7

2
0

4
4

0
.5

1
2

-1
.8

2
2

-5
6
.5

8
2

-8
3
.1

5
0

-0
.0

3
6

-0
.5

6
6

-0
.4

1
6

-0
.7

9
5

-5
.7

7
7

-2
.3

0
2

2
0

4
6

0
.5

1
2

-2
.3

6
2

-3
9
.5

3
9

-2
1
6
.4

8
7

-0
.0

4
7

-0
.3

9
5

-1
.0

8
2

-1
.3

5
9

-4
.2

6
0

-6
.1

5
7

2
0

4
1
0

0
.5

1
2

0
.3

2
6

-4
9
.6

6
8

-2
6
5
.2

5
2

0
.0

0
7

-0
.4

9
7

-1
.3

2
6

0
.2

5
3

-5
.4

7
4

-7
.6

7
7

129



Chapter 5. Sample size guidance and justification for studies of biological variation

T
a
b

le
5
.4

:
B

io
lo

g
ica

l
va

ria
b

ility
stu

d
y

sa
m

p
le

size
sim

u
lation

resu
lts–accu

racy
an

d
coverage

p
erform

an
ce

m
easu

res
vary

in
g

n
u

m
b

er
of

p
a
rticip

a
n
ts,

o
b

serva
tio

n
s

a
n

d
a
ssessm

en
ts.

A
c
c
u

ra
c
y

a
n

d
c
o
v
e
ra

g
e

In
p

u
ts

M
e
a
n

sq
u

a
re

d
e
rro

r
(×

1
0
−

4)
C

o
v
e
ra

g
e

M
e
a
n

9
5
%

C
I

w
id

th
n

1
n

2
n

3
σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

5
4

2
0
.5

1
2

5
8
.1

8
9

4
3
9
.1

9
1

5
3
5
7
.4

8
4

0
.9

5
6

0
.9

6
2
a

0
.9

7
2
b

0
.3

3
8

0
.9

1
7
a

4
.7

6
3
b

1
0

4
2

0
.5

1
2

2
9
.9

6
2

2
0
3
.0

3
7

2
6
2
0
.1

3
5

0
.9

5
8

0
.9

5
7

0
.9

5
1
c

0
.2

2
8

0
.6

0
8

2
.3

7
8
c

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

3
0

4
2

0
.5

1
2

9
.5

8
2

7
3
.0

5
5

8
1
0
.9

0
2

0
.9

6
1

0
.9

4
5

0
.9

5
7

0
.1

2
8

0
.3

3
6

1
.1

6
5

4
0

4
2

0
.5

1
2

7
.5

4
8

5
6
.5

3
8

6
1
9
.8

7
5

0
.9

5
5

0
.9

4
5

0
.9

3
9

0
.1

1
1

0
.2

9
0

0
.9

9
0

6
0

4
2

0
.5

1
2

4
.9

5
0

3
6
.0

7
7

3
6
4
.7

5
1

0
.9

5
7

0
.9

4
8

0
.9

5
3

0
.0

9
0

0
.2

3
6

0
.7

9
5

1
0
0

4
2

0
.5

1
2

3
.0

4
1

2
0
.7

8
4

2
3
5
.1

6
3

0
.9

5
2

0
.9

5
0

0
.9

5
3

0
.0

7
0

0
.1

8
2

0
.6

0
8

2
0

2
2

0
.5

1
2

3
2
.0

6
4

2
9
7
.1

0
1

1
4
0
4
.8

1
2

0
.9

3
9

0
.9

5
3

0
.9

5
7
d

0
.2

2
9

0
.7

6
1

1
.6

2
0
d

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

2
0

6
2

0
.5

1
2

1
0
.1

0
8

6
4
.2

4
4

1
1
9
7
.3

2
3

0
.9

5
1

0
.9

4
5

0
.9

4
5

0
.1

2
8

0
.3

1
9

1
.4

5
4

2
0

8
2

0
.5

1
2

7
.6

7
9

4
4
.8

6
3

1
2
3
4
.3

4
4

0
.9

5
4

0
.9

5
1

0
.9

3
4

0
.1

1
1

0
.2

6
8

1
.4

2
1

2
0

1
2

2
0
.5

1
2

4
.9

9
9

3
0
.5

8
0

1
1
0
3
.2

0
6

0
.9

5
0

0
.9

4
7

0
.9

4
7

0
.0

9
0

0
.2

1
3

1
.4

2
4

2
0

2
0

2
0
.5

1
2

2
.9

5
7

1
6
.2

9
0

9
8
0
.9

6
5

0
.9

5
5

0
.9

5
3

0
.9

6
0

0
.0

7
0

0
.1

6
2

1
.3

9
3

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

2
0

4
3

0
.5

1
2

8
.1

6
7

1
0
0
.5

6
8

1
2
2
5
.3

3
3

0
.9

4
8

0
.9

4
1

0
.9

5
4

0
.1

1
1

0
.3

9
8

1
.4

8
3

2
0

4
4

0
.5

1
2

5
.2

5
8

9
6
.2

6
3

1
3
0
5
.1

3
7

0
.9

5
8

0
.9

4
9

0
.9

3
4

0
.0

9
0

0
.3

9
0

1
.4

8
8

2
0

4
6

0
.5

1
2

3
.0

2
2

8
6
.2

8
5

1
2
4
1
.0

7
3

0
.9

6
0

0
.9

5
8

0
.9

4
2

0
.0

7
0

0
.3

8
3

1
.4

7
8

2
0

4
1
0

0
.5

1
2

1
.6

6
6

8
2
.5

6
8

1
2
0
0
.7

3
6

0
.9

4
9

0
.9

5
6

0
.9

4
4

0
.0

5
2

0
.3

7
6

1
.4

7
3

a
1
2

C
Is

co
u
ld

n
o
t

b
e

ca
lcu

la
ted

;
b7

8
C

Is
co

u
ld

n
o
t

b
e

ca
lcu

la
ted

;
c4

C
Is

co
u
ld

n
o
t

b
e

ca
lcu

la
ted

;
d2

C
Is

co
u
ld

n
o
t

b
e

ca
lcu

la
ted

.

130



5.4. Results

Estimates of index of individuality and reference change value

The median estimates of II and RCV were consistent and accurate for all numbers of par-

ticipants, observations and assessments. As the number of participants and observations

increased (n1 and n2), the range of estimates for both II and RCV decreased. With fewer

participants (n1 = 5) II was overestimated. With increased number of assessments, there was

little change in the range of estimates of II and RCV, see Figure 5.7 and Appendix C Table

C.3.

5.4.1.2 Analysis of log-normal data

When simulating log-normal data the CVs shown are exact geometric CVs and all CVs and

RCVs are displayed as percentages.

When analysing the simulated log-normal data the bias in results along with the coverage

was comparable with the normal data simulation. The log-normal data simulation yielded

similar trends in estimated standard deviations, CVs, RCVs and IIs for increased sample

sizes.

Confidence intervals were calculated for the estimates of CV directly using the equations

of Burdick and Graybill.34 These confidence intervals were appropriate compared to the

simulated results and estimates of coverage were mainly within the expected range (coverage

for one scenario when estimating CVG was 93.4%), see figure 5.8.

The range of values from the 1,000 simulations were less varied for the log-normal simulation

than the normal data simulation, see Appendix C Tables C.4 to C.9 and Figures C.1 and

C.3.

5.4.2 Analytical, within-individual and between-individual variability

Results for scenarios are similar as only the chosen variability estimate is changed in the

simulation; analyses are paired.
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Figure 5.5: SD estimates from biological variability data simulations varying sample size:
SDA (left column), SDI (middle column) and SDG (right column) estimates when varying
number of participants (n1, top row); number of observations per participant (n2, middle
row); and, number of replicate assessments per observation per participant (n3, bottom row).
Median is shown by horizontal line, Q1 and Q3 shown by extremes of box; and minimum and
maximum values shown by arrows. Estimates shown in red are for the baseline strategy. The
dashed line reflects the true SD and the dotted lines are the 95% confidence intervals around
the true value of the estimate for the given sample size, using the methods of Burdick and
Graybill.34
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Figure 5.6: CV estimates biological variability data simulations varying sample size: CVA
(left column), CVI (middle column) and CVG (right column) estimates when varying number
of participants (n1, top row); number of observations per participant (n2, middle row); and,
number of replicate assessments per observation per participant (n3, bottom row). Median is
shown by horizontal line, Q1 and Q3 shown by extremes of box; and minimum and maximum
values shown by arrows. Estimates shown in red are for the baseline strategy. The dashed
line reflects the true CV.
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Figure 5.7: II and RCV estimates from biological variability data simulations varying sample
size: II (left column) and RCV (right column) estimates when varying number of participants
(n1, top row); number of observations per participant (n2, middle row); and, number of
replicate assessments per observation per participant (n3, bottom row). Median is shown by
horizontal line, Q1 and Q3 shown by extremes of box; and minimum and maximum values
shown by arrows. Estimates shown in red are for the baseline strategy. The dashed line
reflects the true II or RCV. *Maximum value not shown.
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Figure 5.8: Log-normal biological variability sample size simulation: CV estimates from
biological variability data simulations varying sample size: CVA (left column), CVI (middle
column) and CVG (right column) estimates when varying number of participants (n1, top
row); number of observations per participant (n2, middle row); and, number of replicate
assessments per observation per participant (n3, bottom row). Median is shown by horizontal
line, Q1 and Q3 shown by extremes of box; and minimum and maximum values shown by
arrows. Estimates shown in red are for the baseline strategy. The dashed line reflects the
true CV and the dotted lines are the 95% confidence intervals around the true value of the
estimate for the given sample size, using the methods of Burdick and Graybill.34
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Chapter 5. Sample size guidance and justification for studies of biological variation

Bias

For σA, σI and σG the bias was negative for all simulated situations, see Table 5.5. The bias

was less than 2% for each estimated standard deviation for most scenarios; for three of the

simulated scenarios the bias was greater than 2%: 1) σA = 0.5, σI = 1.75 and σG = 2; 2)

σA = 0.5, σI = 2 and σG = 2; and 3) σA = 0.5, σI = 1 and σG = 1. With increased analytical

variability (CVA) the bias for σI increased; with increased within-individual variability (CVI)

the bias for σA and σI increased; and for increased between-individual variability (CVG) the

bias for σG increased.

Confidence intervals

As the analytical variability (CVA) increased the mean width of 95% confidence intervals for

σA, σI and σG increased; as the within-individual variability (CVI) increased the width of 95%

confidence intervals for σI and σG increased (with the width of 95% confidence intervals for

σA unchanged); and for increases in between-individual variability (CVG) the mean width of

the 95% confidence intervals for only σG increased in width (with the width of 95% confidence

intervals for σA and σI were constant). The coverage of 95% confidence intervals for estimates

of σA, σI and σG was close to 95% and greater than the expected lower bound given the

number of simulations, see Table 5.6 and Figure 5.9. For some of the larger variability

estimates 95% confidence intervals could not be calculated. Again, comparison of the results

from the simulated data to the bounds produced by the Burdick and Graybill confidence

intervals (see Figure 5.10) suggest the lower bound is underestimated.

Estimates of standard deviations and coefficients of variation

The median estimate of σA, σI and σG and CVA, CVI and CVG changed as expected for each

level of test variability. For increases in analytical variation (CVA) the range of estimates for

σA and σI (and therefore CVA, and CVI) increased, with the range of estimates for σG (CVG)

consistent. For increases in within-individual variation (CVI) the range of estimates for σI and

σG (and CVI and CVG) increased; however for all values of within-individual variation, the

range of estimates of σA (and CVA) appeared constant. For increases in between-individual

variation, the range of estimates of σG (and CVG) increased, with the estimates for σA and
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Figure 5.9: Coverage estimates from biological variability data simulations varying SDA, SDI

and SDG: coverage of SDA (left column), SDI (middle column) and SDG (right column)
estimates when varying value of SDA (top row); value of SDI (middle row); and, value of
SDG (bottom row). 95% coverage is shown by horizontal line. Estimates shown in red are for
the baseline strategy. 95% confidence intervals were calculated using the methods of Burdick
and Graybill.34 Confidence intervals could not be calculated for all scenarios, see Table 5.6.

137



Chapter 5. Sample size guidance and justification for studies of biological variation

T
a
b

le
5
.5

:
B

io
lo

g
ica

l
va

ria
b

ility
stu

d
y

sa
m

p
le

size
sim

u
lation

resu
lts–b

ias
p

erform
an

ce
m

easu
res

vary
in

g
C
V
A

,
C
V
I

an
d
C
V
G

.

B
ia

s
In

p
u

ts
B

ia
s

(×
1
0
−

4)
P

e
rc

e
n
ta

g
e

b
ia

s
S

ta
n

d
a
rd

ise
d

b
ia

s
n

1
n

2
n

3
σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

2
0

4
2

0
.1

2
5

1
2

-2
.1

9
0

-2
7
.9

5
8

-3
0
8
.9

3
2

-0
.1

7
5

-0
.2

8
0

-1
.5

4
5

-2
.2

7
4

-3
.0

9
2

-9
.0

0
4

2
0

4
2

0
.2

5
1

2
-4

.3
7
3

-2
8
.3

0
3

-3
0
7
.1

5
2

-0
.1

7
5

-0
.2

8
3

-1
.5

3
6

-2
.2

7
1

-3
.0

7
3

-8
.9

4
2

2
0

4
2

0
.3

7
5

1
2

-6
.5

5
3

-2
9
.9

5
4

-3
0
6
.0

9
6

-0
.1

7
5

-0
.3

0
0

-1
.5

3
0

-2
.2

6
9

-3
.1

3
9

-8
.8

9
1

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

2
0

4
2

0
.6

2
5

1
2

-1
0
.9

3
4

-3
8
.4

9
5

-3
0
6
.0

3
1

-0
.1

7
5

-0
.3

8
5

-1
.5

3
0

-2
.2

7
1

-3
.5

7
6

-8
.8

1
9

2
0

4
2

0
.7

5
1

2
-1

3
.1

2
6

-4
6
.4

1
2

-3
0
7
.1

0
9

-0
.1

7
5

-0
.4

6
4

-1
.5

3
6

-2
.2

7
2

-3
.9

7
4

-8
.8

0
1

2
0

4
2

0
.8

7
5

1
2

-1
5
.3

0
3

-5
7
.7

4
7

-3
0
8
.9

7
1

-0
.1

7
5

-0
.5

7
7

-1
.5

4
5

-2
.2

7
0

-4
.5

0
7

-8
.7

9
6

2
0

4
2

1
1

2
-1

7
.4

8
5

-7
3
.4

7
7

-3
1
1
.6

1
5

-0
.1

7
5

-0
.7

3
5

-1
.5

5
8

-2
.2

7
0

-5
.1

7
9

-8
.8

0
4

2
0

4
2

0
.5

0
.5

2
-8

.7
4
5

-3
6
.7

3
3

-2
5
4
.3

6
3

-0
.1

7
5

-0
.7

3
5

-1
.2

7
2

-2
.2

7
0

-5
.1

7
8

-7
.6

5
9

2
0

4
2

0
.5

0
.7

5
2

-8
.7

5
0

-3
0
.6

0
3

-2
7
6
.9

0
0

-0
.1

7
5

-0
.4

0
8

-1
.3

8
5

-2
.2

7
2

-3
.6

9
5

-8
.2

0
7

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

2
0

4
2

0
.5

1
.2

5
2

-8
.7

3
8

-3
8
.0

6
9

-3
4
1
.3

8
2

-0
.1

7
5

-0
.3

0
5

-1
.7

0
7

-2
.2

6
9

-3
.1

6
2

-9
.5

7
9

2
0

4
2

0
.5

1
.5

2
-8

.7
3
9

-4
3
.8

7
0

-3
8
4
.6

1
0

-0
.1

7
5

-0
.2

9
2

-1
.9

2
3

-2
.2

6
9

-3
.1

0
7

-1
0
.3

8
4

2
0

4
2

0
.5

1
.7

5
2

-8
.7

4
0

-5
0
.1

3
7

-4
3
6
.7

0
4

-0
.1

7
5

-0
.2

8
6

-2
.1

8
4

-2
.2

6
9

-3
.0

8
5

-1
1
.2

6
4

2
0

4
2

0
.5

2
2

-8
.7

3
9

-5
6
.6

6
3

-4
9
9
.3

8
7

-0
.1

7
5

-0
.2

8
3

-2
.4

9
7

-2
.2

6
9

-3
.0

7
6

-1
2
.2

2
0

2
0

4
2

0
.5

1
1

-8
.7

4
2

-3
3
.2

0
4

-2
5
2
.9

9
4

-0
.1

7
5

-0
.3

3
2

-2
.5

3
0

-2
.2

7
0

-3
.3

0
2

-1
2
.1

3
3

2
0

4
2

0
.5

1
1
.5

-8
.7

4
1

-3
3
.1

9
8

-2
6
6
.5

2
4

-0
.1

7
5

-0
.3

3
2

-1
.7

7
7

-2
.2

7
0

-3
.3

0
1

-9
.7

9
5

2
0

4
2

0
.5

1
2

-8
.7

4
0

-3
3
.2

0
0

-3
0
5
.7

5
8

-0
.1

7
5

-0
.3

3
2

-1
.5

2
9

-2
.2

6
9

-3
.3

0
1

-8
.8

5
1

2
0

4
2

0
.5

1
2
.5

-8
.7

3
9

-3
3
.2

0
7

-3
5
2
.9

3
2

-0
.1

7
5

-0
.3

3
2

-1
.4

1
2

-2
.2

6
9

-3
.3

0
2

-8
.3

5
8

2
0

4
2

0
.5

1
3

-8
.7

3
8

-3
3
.2

1
4

-4
0
3
.7

0
7

-0
.1

7
5

-0
.3

3
2

-1
.3

4
6

-2
.2

6
9

-3
.3

0
3

-8
.0

6
3

2
0

4
2

0
.5

1
3
.5

-8
.7

3
6

-3
3
.2

2
0

-4
5
6
.4

5
1

-0
.1

7
5

-0
.3

3
2

-1
.3

0
4

-2
.2

6
8

-3
.3

0
3

-7
.8

7
0

2
0

4
2

0
.5

1
4

-8
.7

3
5

-3
3
.2

2
6

-5
1
0
.3

8
7

-0
.1

7
5

-0
.3

3
2

-1
.2

7
6

-2
.2

6
8

-3
.3

0
4

-7
.7

3
4

2
0

4
2

0
.5

1
4
.5

-8
.7

3
3

-3
3
.2

3
1

-5
6
5
.1

0
7

-0
.1

7
5

-0
.3

3
2

-1
.2

5
6

-2
.2

6
7

-3
.3

0
4

-7
.6

3
4

2
0

4
2

0
.5

1
5

-8
.7

3
1

-3
3
.2

3
6

-6
2
0
.3

6
6

-0
.1

7
5

-0
.3

3
2

-1
.2

4
1

-2
.2

6
7

-3
.3

0
5

-7
.5

5
9

138



5.4. Results

T
ab

le
5.

6:
B

io
lo

gi
ca

l
va

ri
ab

il
it

y
st

u
d

y
sa

m
p

le
si

ze
si

m
u

la
ti

on
re

su
lt

s–
ac

cu
ra

cy
an

d
co

ve
ra

g
e

p
er

fo
rm

a
n

ce
m

ea
su

re
s

va
ry

in
g
C
V
A

,
C
V
I

a
n

d
C
V
G

.

A
c
c
u

ra
c
y

a
n

d
c
o
v
e
ra

g
e

In
p

u
ts

M
e
a
n

sq
u

a
re

d
e
rr

o
r

(×
1
0
−

4
)

C
o
v
e
ra

g
e

M
e
a
n

9
5
%

C
I

w
id

th
n

1
n

2
n

3
σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

σ
A

σ
I

σ
G

2
0

4
2

0
.1

2
5

1
2

0
.9

2
8

8
1
.8

6
1

1
1
8
6
.6

2
8

0
.9

5
2

0
.9

5
7

0
.9

5
1

0
.0

4
0

0
.3

7
1

1
.4

6
9

2
0

4
2

0
.2

5
1

2
3
.7

1
1

8
4
.9

1
3

1
1
8
9
.3

6
2

0
.9

5
2

0
.9

5
9

0
.9

5
1

0
.0

7
9

0
.3

7
9

1
.4

7
1

2
0

4
2

0
.3

7
5

1
2

8
.3

4
8

9
1
.1

6
6

1
1
9
4
.7

4
1

0
.9

5
2

0
.9

5
9

0
.9

5
4

0
.1

1
9

0
.3

9
4

1
.4

7
5

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

2
0

4
2

0
.6

2
5

1
2

2
3
.1

8
8

1
1
6
.0

0
3

1
2
1
3
.4

8
1

0
.9

5
2

0
.9

5
5

0
.9

5
5

0
.1

9
8

0
.4

4
6

1
.4

8
6

2
0

4
2

0
.7

5
1

2
3
3
.3

9
3

1
3
6
.5

8
4

1
2
2
6
.9

8
2

0
.9

5
2

0
.9

5
6

0
.9

5
4

0
.2

3
7

0
.4

8
5

1
.4

9
4

2
0

4
2

0
.8

7
5

1
2

4
5
.4

5
6

1
6
4
.5

0
4

1
2
4
3
.3

0
6

0
.9

5
2

0
.9

5
3

0
.9

5
4

0
.2

7
7

0
.5

3
4

1
.5

0
4

2
0

4
2

1
1

2
5
9
.3

6
4

2
0
1
.8

2
6

1
2
6
2
.5

3
1

0
.9

5
2

0
.9

6
1
a

0
.9

5
4

0
.3

1
6

0
.5

9
4
a

1
.5

1
5

2
0

4
2

0
.5

0
.5

2
1
4
.8

4
2

5
0
.4

5
9

1
1
0
9
.3

3
9

0
.9

5
2

0
.9

6
1
b

0
.9

5
0

0
.1

5
8

0
.2

9
7
b

1
.4

1
5

2
0

4
2

0
.5

0
.7

5
2

1
4
.8

4
3

6
8
.7

0
5

1
1
4
6
.0

5
7

0
.9

5
2

0
.9

5
5

0
.9

5
1

0
.1

5
8

0
.3

4
4

1
.4

4
2

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

2
0

4
2

0
.5

1
.2

5
2

1
4
.8

4
0

1
4
5
.0

8
4

1
2
8
1
.8

3
5

0
.9

5
2

0
.9

5
9

0
.9

5
9

0
.1

5
8

0
.4

9
8

1
.5

3
0

2
0

4
2

0
.5

1
.5

2
1
4
.8

4
1

1
9
9
.5

5
5

1
3
8
6
.7

3
3

0
.9

5
2

0
.9

6
2

0
.9

6
1

0
.1

5
8

0
.5

8
3

1
.5

9
5

2
0

4
2

0
.5

1
.7

5
2

1
4
.8

4
3

2
6
4
.4

3
0

1
5
2
2
.2

3
4

0
.9

5
2

0
.9

5
8

0
.9

6
2
c

0
.1

5
8

0
.6

7
0

1
.6

7
5
c

2
0

4
2

0
.5

2
2

1
4
.8

4
3

3
3
9
.6

2
4

1
6
9
4
.9

3
2

0
.9

5
2

0
.9

5
9

0
.9

7
1
d

0
.1

5
8

0
.7

5
9

1
.7

7
5
d

2
0

4
2

0
.5

1
1

1
4
.8

4
2

1
0
1
.2

4
8

4
4
1
.1

6
6

0
.9

5
2

0
.9

5
8

0
.9

7
1
e

0
.1

5
8

0
.4

1
6

0
.9

0
9
e

2
0

4
2

0
.5

1
1
.5

1
4
.8

4
2

1
0
1
.2

4
6

7
4
7
.4

8
0

0
.9

5
2

0
.9

5
8

0
.9

5
8

0
.1

5
8

0
.4

1
6

1
.1

7
0

2
0

4
2

0
.5

1
2

1
4
.8

4
3

1
0
1
.2

4
7

1
2
0
2
.7

6
0

0
.9

5
2

0
.9

5
8

0
.9

5
3

0
.1

5
8

0
.4

1
6

1
.4

8
0

2
0

4
2

0
.5

1
2
.5

1
4
.8

4
2

1
0
1
.2

4
7

1
7
9
5
.3

9
0

0
.9

5
2

0
.9

5
8

0
.9

5
4

0
.1

5
8

0
.4

1
6

1
.8

0
5

2
0

4
2

0
.5

1
3

1
4
.8

4
3

1
0
1
.2

4
5

2
5
2
3
.0

6
2

0
.9

5
2

0
.9

5
8

0
.9

5
2

0
.1

5
8

0
.4

1
6

2
.1

3
8

2
0

4
2

0
.5

1
3
.5

1
4
.8

4
1

1
0
1
.2

4
7

3
3
8
5
.0

3
3

0
.9

5
2

0
.9

5
8

0
.9

5
0

0
.1

5
8

0
.4

1
6

2
.4

7
5

2
0

4
2

0
.5

1
4

1
4
.8

4
3

1
0
1
.2

5
0

4
3
8
1
.0

2
5

0
.9

5
2

0
.9

5
8

0
.9

5
2

0
.1

5
8

0
.4

1
6

2
.8

1
4

2
0

4
2

0
.5

1
4
.5

1
4
.8

4
2

1
0
1
.2

4
6

5
5
1
0
.9

2
4

0
.9

5
2

0
.9

5
8

0
.9

5
2

0
.1

5
8

0
.4

1
6

3
.1

5
4

2
0

4
2

0
.5

1
5

1
4
.8

4
1

1
0
1
.2

4
6

6
7
7
4
.6

5
4

0
.9

5
2

0
.9

5
8

0
.9

5
2

0
.1

5
8

0
.4

1
6

3
.4

9
6

a
8

C
Is

co
u
ld

n
o
t

b
e

ca
lc

u
la

te
d
;
b
8

C
Is

co
u
ld

n
o
t

b
e

ca
lc

u
la

te
d
;
c
2

C
Is

co
u
ld

n
o
t

b
e

ca
lc

u
la

te
d
;
d
1
0

C
Is

co
u
ld

n
o
t

b
e

ca
lc

u
la

te
d
;

e
1
8
C

Is
co

u
ld

n
o
t

b
e

ca
lc

u
la

te
d
.

139



Chapter 5. Sample size guidance and justification for studies of biological variation

σI (CVA and CVI) constant, see Figures 5.10 and 5.11 and Appendix C Tables C.10 and

C.11.

Estimates of index of individuality and reference change value

The median estimates of II and RCV were consistent and accurate for all test variation values.

As the analytical variation increased, there was little change in the range of estimates for both

II and RCV. As the within-individual variation increased, the range of estimates for both

II and RCV increased. The range of estimates for II, decreased with increases in between-

individual variability; whereas the range of estimates for RCV increased with increases in

between-individual variability, see Figure 5.12 and Appendix C Table C.12.

5.4.2.1 Analysis of log-normal data

Again similar trends were seen when simulating log-normal data and changing the estimates

of variability. See Figures C.4 to C.7 and Tables C.13 to C.18.

5.4.3 Sensitivity analyses

When increasing the base case number of participants in the simulation (n1 = 40, n2 = 10 and

n3 = 3) and the base case test variability (σA = 1, σI = 2 and σG = 4) the observed trends

remained the same. For simulations with the base case number of participants, observa-

tions and assessments increased, the range of results decreased from the original simulation,

see Appendix C Tables C.19 to C.28. When the base case reflected a test with increased

variability the range of results increased, see Appendix C Tables C.29 to C.38.

5.5 Discussion

The trends seen when varying factors of the simulation (number of participants, observa-

tions and assessments, and test variability at the analytical, within-individual and between-

individual level) are intuitive but allow planning given the specific purpose of the study and
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Figure 5.10: SD estimates from biological variability data simulations varying test variability:
SDA (left column), SDI (middle column) and SDG (right column) estimates when varying
value of SDA (top row); value of SDI (middle row); and, value of SDG (bottom row).
Median is shown by horizontal line, Q1 and Q3 shown by extremes of box; and minimum and
maximum values shown by arrows. Estimates shown in red are for the baseline strategy. The
dashed line reflects the true SD and the dotted lines are the 95% confidence intervals around
the true value of the estimate for the given sample size, using the methods of Burdick and
Graybill.34
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Figure 5.11: CV estimates from biological variability data simulations varying test variability:
CVA (left column), CVI (middle column) and CVG (right column) estimates when varying
value of CVA (top row); value of CVI (middle row); and, value of CVG (bottom row). Me-
dian is shown by horizontal line, Q1 and Q3 shown by extremes of box; and minimum and
maximum values shown by arrows. Estimates shown in red are for the baseline strategy. The
dashed line reflects the true CV.
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Figure 5.12: II and RCV estimates from biological variability data simulations varying test
variability: II (left column) and RCV (right column) estimates when varying value of CVA
(top row); value of CVI (middle row); and, value of CVG (bottom row). Median is shown by
horizontal line, Q1 and Q3 shown by extremes of box; and minimum and maximum values
shown by arrows. Estimates shown in red are for the baseline strategy. The dashed line
reflects the true II or RCV.
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the estimate required, with resource used to give precision of a specific estimate. The nega-

tive bias (underestimation) of the variance parameters was expected with the small sample

size.50,107 The bias was less than 2% for scenarios with at least 20 participants. For studies

with fewer than 20 participants (of which many were identified, see Chapter 3) the bias may

have a large enough impact on results; results from small studies may not be valid and should

be interpreted with caution.

The Burdick and Graybill method for calculating confidence intervals performed well with

coverage estimates in the expected range for most simulated scenarios. Comparison of re-

sults from simulations to estimates of confidence intervals using the equation suggest the

lower bound of the interval is consistently underestimated for all sample sizes and variability

estimates investigated. This is perhaps due the restriction on the lower bound (the standard

deviation cannot take a negative value).

Increases in the number of participants increased precision of all estimates of variability;

whereas increases in the number of observations increased precision of estimates of variability

at the analytical and within-individual level only, and increasing the number of assessments

increased precision of analytical variability estimates only.

The index of individuality (II) includes the coefficient of variation (CV) at the analytical,

within-individual and between-individual level with each contributing to the estimate ob-

tained. However, as analytical variation is small this has little impact on the estimate of

II. If interest is in the estimate of II, precision of the estimates of variability at the within-

individual and between-individual level should be prioritised by increasing the sample size

via increasing the number of participants and observations for each participant.

The measure of reference change value (RCV) includes the variability estimates at the ana-

lytical and within-individual levels. Again, the variability at the analytical level is generally

small and the level of precision of the variability at the analytical level has little impact on

the estimate of RCV. Increasing the number of observations per participant will increase the

precision of the estimate of within-individual variability and analytical variability. Interest-

ingly, increases in the number of participants increases the precision of RCV also as increases
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5.6. Conclusions

in the number of participants helps increase the precision of estimates of variability at the

analytical, within-individual and between-individual levels.

5.5.1 Limitations

The simulation method used assumes test data are normally distributed or log-normally

distributed. Any data that are not distributed in this way may require transformation prior

to analysis as the methods used assume this distribution. The sample size tool, like standard

sample size calculation tools, requires estimates of variability which may be unknown.

Simulation results are shown for the combinations of variability and sample size that have

been selected to demonstrate trends based on the sample sizes and results seen in the review

of biological variability studies (see Chapter 3). The results displayed may not reflect results

for all combinations of variability and sample size, which would need to be considered prior

to planning a study.

Both the normal and log-normal simulation methods used assume the errors have no bias.

This was a necessary assumption, allowing the comparison of input values to estimated results

given the methods used.

When simulating data for more extreme scenarios (large sample sizes and large variability)

the random-effects model failed to converge for a minority of the 1,000 simulations and the

result was forced without convergence.

5.6 Conclusions

When sample sizes of at least 20 participants (with repeated observations and assessments)

are used the methods to generate estimates of analytical, within-individual and between-

individual variability appear valid, with small negative bias. With fewer than 20 participants

the bias may impact results and results from studies should be interpreted with caution.

The methods to generate 95% confidence intervals for biological variability estimates were
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Chapter 5. Sample size guidance and justification for studies of biological variation

valid.

The use of the specified tool allows simulation of biological variability studies using different

sample sizes, for various estimates of variability. From analysing the simulated data and ob-

serving the range of results obtained the appropriate sample size required to ensure precision

of a given estimate can be inferred.

Increasing the number of participants appears to benefit the precision of all estimates of vari-

ability (analytical, within-individual and between-individual) and this subsequently improves

the precision of estimates of commonly reported measures of biological variability of CVA,

CVI and CVG, and also II and RCV.

Increasing the number of observations for each participant has a positive impact on the

precision of estimates of analytical and within-individual variability; this improves precision

of the estimates of II and RCV also, but not to the magnitude of increasing the number

of participants. Increasing the number of assessments of observations for each individual

increases precision of estimates of analytical variability; this improves precision of CVA but

has little impact on measures of II and RCV.
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Chapter 6

The impact of outlier detection and

removal on studies of biological

variability

This work has been partly presented in the following form:
Sitch A, Mallett S, Deeks J. The impact of outlier detection and removal on studies of
biological variability (BV). Methods for Evaluation of medical prediction Models, Tests And
Biomarkers (MEMTAB), Utrecht, Netherlands. 2-3 July 2018.

Summary

Outlier detection methods are frequently used in the analysis of laboratory based studies of

biological variability. The methods for detecting outliers to be removed from a data set prior

to evaluation vary. Some methods account for the structure of data (multiple assessments of

multiple observations of multiple participants) by comparing variances, and others look at all
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Chapter 6. The impact of outlier detection and removal on studies of biological variability

data points evaluating differences in measurements in terms of the range, interquartile range

or standard deviation with comparison to fixed values or critical values based on distributional

assumptions.

Simulation was used to compare the results of analyses using different methods to identify

outliers, with these data points removed prior to analysis.

The simulation showed that when outlier detection is used (when data were log-normally

distributed and had been log-transformed) and identified values are removed the resulting

estimates of analytical, within-individual and between-individual variability are underesti-

mated. The bias in these estimates was greatest when using a detection strategy involving

the Cochran C test and Tukey’s IQR rule. When data were simulated to include outlying

measurements, different outlier detection methods worked best depending on the number of

outliers present. The nature of outliers must be understood before an appropriate method

can be identified.

6.1 Introduction

In biological variability studies of laboratory tests, it is considered best practice to use meth-

ods to identify outliers.13 Identified data are removed prior to obtaining estimates of vari-

ability. Outliers can have a large impact on estimates of variability, especially in small data

sets.108 The methods commonly used are Cochran C test, Reed’s criterion, Dixon’s test,

Grubbs’s test, the Tukey IQR rule and checking values are within three standard deviations,

see Chapter 3. These methods detect data as outlying by assessing the variance of values in

subsets, or evaluating the range, interquartile range or standard deviation with comparison

to fixed values or critical values based on distributional assumptions

Aguinis et al109 offered an extensive review of outlier detection methods defining, identifying

and handling outliers. This review considered 14 outlier definitions, 39 outlier identification

methods and 20 approaches to handling outliers. Outlier definitions leave three main types

of outliers to be considered; ‘error outliers’, ‘interesting outliers’ and ‘influential outliers’.
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6.1. Introduction

‘Error outliers’ are inaccurate data points; ‘interesting outliers’ are data points outside of

the usual range but offer key information; and, ‘influential outliers’ are data points affecting

model fitting and prediction. The authors offer decision making trees depending on the type

of outliers you are looking to identify and the analysis used. The recommendations are: for

‘error outliers’ remove the data and carefully report this; for ‘interesting outliers’ further

study is appropriate; and, for ‘influential outliers’ analyses should be performed and reported

with and without these outlying measures.

By recommending testing for outliers when analysing biological variability studies35,69 there

is a danger of identifying and removing test values which are plausible (potential interesting

and/or influential outliers) rather than only erroneous data (‘error outliers’), which would be

appropriate and in most circumstances could be identified using basic data descriptions and

clinical knowledge. Outlier detection and removal is performed as researchers believe this

process is beneficial with the estimates obtained after analysis a better reflection of the truth

than if the ‘outlying’ data were to remain.13 However, the practice of detecting and removing

outliers may lead to underestimated variability.

The Cochran C test is criticised for only applying to data with equal groups (balanced design)

and not being two-sided (only large variances are identified).99 Methods relying on detecting

differences from the mean in terms of standard deviations are criticised as the mean and the

standard deviation can be strongly influenced by outliers, they require normality of the data

and perform poorly in small samples.110

A variety of methods are used to identify outliers in biological variability studies, see Chapter

3, with combinations of outlier detection methods used also. Some tests and testing strategies

are specific to the study design and account for the clustering of data, identifying outliers at

each level, and others simply look at the range of the data in comparison to distributional

assumptions. The aim is to understand the impact of using outlier detection methods on

the analysis of biological variability studies comparing no outlier detection and removal to

different methods of outlier detection and removal.
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6.2 Aims and objectives

The aim of this work is to understand and evaluate the impact of outlier detection and

removal on obtaining accurate estimates for biological variability studies. The difference

between methods was evaluated, considering data without outliers and data with ‘error’

outliers.

The main research questions were:

• What are the differences between outlier detection methods when simulating data with-

out outliers? How many data points are unnecessarily and inappropriately removed with

each method and what is the consequence?

• What are the differences between outlier detection methods when simulating data with

‘error’ outliers? How many data points are correctly removed and how many are un-

necessarily removed in addition to these for each method, and what is the consequence?

The specific objectives were to:

• investigate the difference in the number of measurements detected and removed (cor-

rectly and incorrectly) using different methods;

• understand the impact of outlier detection methods on the estimated standard devia-

tions;

• and, evaluate the impact of outlier detection methods on estimates of CV, II and RCV.

The methods of outlier detection evaluated were the Cochran C test, Reed’s criterion, the

Fraser-Harris method,35 the Tukey IQR rule, Dixon’s Q test, Grubbs’s test and restricting

the data to be within three standard deviations of the mean. These methods were identified

when reviewing biological variabilty studies, see Chapter 3.
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6.3 Methods

Biological variability data was simulated and tests for outliers were then used. The detected

outliers were removed and the remaining data were analysed.

6.3.1 Data simulation

6.3.1.1 No outlying data simulation

Log-normally distributed data were simulated. Data were simulated following the model

yijk = µ × αi × βij × εijk, thus ln(yijk) = ln(µ) + ln(αi) + ln(βij) + ln(εijk). Data were

simulated where ln(αi) ∼ N(0, σ2
G), ln(βij) ∼ N(0, σ2

I ), ln(εijk) ∼ N(0, σ2
A) and i = 1, . . . , n1,

j = 1, . . . , n2 and k = 1, . . . , n3.

The simulation was performed with the sample size of 20 participants (n1), four observa-

tion points per participant (n2), and two assessments of each observation (n3). Variabil-

ity estimates were fixed at CVA = 5%, CVI = 10%, and CVG = 20%, and sensitivity

analyses were performed for a ‘poor performing’ test with CVA = 7.5%, CVI = 15%, and

CVG = 30% (increasing each CV separately) and increasing the sample size (n1 = 40, n2 = 4

and n3 = 2).

See Chapter 5 (§5.3.3.3) for further details on the data simulation.

6.3.1.2 Outlying data simulation

Data were also simulated with a percentage of measurements randomly changed by a factor

of 10 or two (multiplied or divided) to give the effect of outliers due to a missed digit or lab

error. Simulations were performed with 0.5%, 1% and 2% of data replaced (using a ceiling

function to give 0.5%=1 measurement; 1%=2 measurements; and, 2%=4 measurements) and

using the multipliers of 10 and two separately.
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6.3.2 Outlier detection methods

A review of studies of biological variability (see Chapter 3) identified the reported methods

for detecting outliers used in these analyses. The following methods were considered:

• no outlier detection;

• Cochran C test;

• Cochran C test partial;

• Fraser-Harris method (Cochran C test and Reed’s criterion for means);

• Reed’s criterion for means;

• Reed’s criterion for measurements;

• Tukey IQR rule;

• Dixon’s Q test;

• Grubbs’s test;

• and, ± 3SD.

6.3.2.1 Cochran C test

Cochran C test for outliers is used in two ways for the purpose of biological variability

data. Firstly the method is used to identify excessive variances for duplicate results within

observations for an individual; and, secondly to identify excessive variances for measurements

for individuals between participants.16

Cochran C test compares the variance of a subgroup of data points to the sum of variances

across all subgroups (subgroups can be duplicate results or observations within individuals).

This ratio of variances is then compared to a critical value (obtained using Fisher’s F ratio).
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If the critical value is exceeded the values within the subgroup generating the largest variance

are deleted and the process is repeated until no variances exceed the critical value.99

Cochran C test for outliers compares the variance within subgroups to the sum of variances

for all subgroups within the larger group. Cochran C values are calculated using:

Cj =
σ2
j∑N

i=1 σ
2
i

where there are n assessments within N subgroups. Cochran C values are calculated using

the ratio of the variance of measures within each subgroup and the sum of the variances

across all subgroups.99

For the first assessment, identifying outliers within duplicate assessments, for each individual

σ2
j is the variance of the jth pair of observations and is divided by the sum of the variances for

all duplicates for that individual.16 For the second use of the Cochran C test, the variance of

measures for each individual is divided by the sum of variances for all individuals to calculate

the Cochran C value (for this the mean of duplicate assessments is used).

After calculating Cochran C values these are compared to a critical value defined by:

CUL =

[
1 +

(N − 1)

Fc(α/N, (n− 1), (N − 1)(n− 1))

]−1

,

where Fc is the critical value from Fisher’s F ratio. If the Cochran C value is greater than

the critical value the data for the subgroup with Cochran C value exceeding the critical value

is excluded. Strict use of the Cochran C method would mean exclusion of both duplicates

in the first use of the test and all values for an individual in the second use of the test. The

procedure of calculating Cochran C values is repeated and results evaluated until no values

exceed the critical value.99

Partial use of the Cochran C test uses the test only once at each level to identify outliers, as

stated by Fraser and Harris,35 rather than being used repeatedly until no further outliers are

detected. The test statistic was calculated using the R command ‘C.test’.
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6.3.2.2 Reed’s criterion

Reed’s criterion assesses the difference between the largest and next largest and smallest and

next smallest measurements, with these extreme values deleted if the difference is greater

than one-third of the range of the data.16

Say there are a set of measurements x1, . . . , xn where these measurements are arranged in

increasing order, so x1 < x2 < . . . < xn−1 < xn. To assess if the minimum and maximum

values are outliers, the criterion is:

x2 − x1 >
1

3
(xn − x1)

xn − xn−1 >
1

3
(xn − x1).

Reed’s criterion can also be applied to the mean values for each participant. For each par-

ticipant, the mean of their measures is calculated. Say there are n1 participants yielding n1

mean values. These are x̄1, . . . , x̄n where these means are arranged in increasing order, so

x̄1 < x̄2 < . . . < x̄n1−1 < x̄n1 . To assess if the minimum and maximum means are outliers,

the criterion is:

x̄2 − x1 >
1

3
(x̄n − x̄1)

x̄n − xn−1 >
1

3
(x̄n − x1).

If a mean for a participant is detected as an outlier, all values for that participant are

removed.

6.3.2.3 Fraser-Harris method

Outlier detection and removal is advocated in the framework outlined by Fraser and Harris.35

The suggested method involves the use of the Cochran C test firstly, to identify outliers at
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the level of duplicate measurements and observations within individuals, followed by Reed’s

criterion using the mean test value for each individual.16,35

The use of the Cochran C test as explained by Fraser and Harris appears to be conservative

in the second use of the test with only the set of duplicate measures appearing to contribute

to the large variance being removed (partial use of the test) rather than all measurements

for that individual.35

6.3.2.4 Tukey IQR rule

Tukey defined data as outlying if the data did not fall into a region defined using interquartile

ranges. Values were considered to be outliers if they were less than the 25th percentile minus

1.5 times the interquartile range (the difference between the 75th and 25th percentile); or, if

values were greater than the 75th percentile plus 1.5 times the interquartile range.111

If values did not fall into the following region (x) they were declared outliers:

25th percentile− (1.5× IQR) ≤ x ≤ 75th percentile + (1.5× IQR).

6.3.2.5 Dixon’s Q test

Dixon’s Q test was designed to identify a single outlier. The data points are ranked and the

differences between consecutive measurements are calculated. These differences are compared

to the range of all data to generate Q. The value of Q is then compared to a critical value

(depending on the number of measurements and the confidence level); with the extreme value

detected as an outlier and deleted if Q is greater than the critical value.112

Say there are a set of measurements x1, . . . , xn and these are arranged in increasing order, so

x1 < x2 < . . . < xn−1 < xn. To assess if x1 is an outlier Q is calculated as:

Q =
x2 − x1

xn − x1
,

155



Chapter 6. The impact of outlier detection and removal on studies of biological variability

providing the ratio of the difference between neighbouring measurements and the range of

the dataset. The calculated Q value is compared to a critical value obtained from tables

(depending on the confidence level and the number of measurements). If Q is greater than the

critical value an outlier has been detected and should be removed from the data set.112

Simulations used the 95% level and defaulted to the maximum number of values available

if the data set contained more using the inbuilt function in R ‘qdixon’. See Table 6.1 for

extract from the Q tables.

Table 6.1: Dixon’s Q tables.

Number of values: 3 4 5 6 7 8 9 10

Q90%: 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412
Q95%: 0.970 0.829 0.710 0.625 0.568 0.526 0.493 0.466
Q99%: 0.994 0.926 0.821 0.740 0.680 0.634 0.598 0.568

6.3.2.6 Grubbs’s test

Grubbs’s test again aims to identify a single outlier. Grubbs’s test calculates the difference

between values and the sample mean in terms of the sample standard deviation. These

values are then compared to a critical value (derived from the t distribution), with differences

exceeding this critical value declared outliers and removed.113

Grubbs’s test identifies the maximum difference between a measure (xi) and the sample mean

(x̄) in terms of the sample standard deviation (σ). The test statistic is calculated as:

G =
max|xi − x̄|

σ
.

When conducting a two-sided test the critical value the G statistic is compared to is calculated

as:

n− 1√
n

√
(tα/2n,n−2)2

n− 2 + (tα/2n,n−2)2
,

where n is the sample size and tα/2n,n−2 denotes the critical value from the t distribution

with n − 2 degrees of freedom and significance level of α/2n. The calculated value of G is

compared to the critical value and if G exceeds this value the measure is identified as an
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outlier and should be deleted.113

6.3.2.7 ± 3SD

The simplest outlier detection method calculates the sample standard deviation and values

are declared as outliers and removed if they are not within three standard deviations of the

mean.

Note that methods other than the Cochran C test and the Fraser Harris method do not

account for the clustering of the data in biological variability studies.

6.3.3 Data analysis

As the simulated data were log-normally distributed, data were firstly log transformed and

outlier detection was performed on the log transformed scale. All identified outliers were

removed and a random effects model was fitted to the remaining data; this was a null model

with random effects allowing for assessments within observations and observations within

participants. ln(yijk) = ln(µ) + ln(αi) + ln(βij) + ln(εijk), where i = 1, . . . , n1, j = 1, . . . , n2

and k = 1, . . . , n3, yijk is the test measure for the ith participant at the jth time point and for

the kth assessment, µ is the mean value of the measure, ln(αi) ∼ N(0, σ2
G), ln(βij) ∼ N(0, σ2

I )

and ln(εijk) ∼ N(0, σ2
A).

Fitting the model allowed estimates (σ̂A, σ̂I and σ̂G) of σA, σI and σG to be obtained. The

coefficient of variation (CV), index of individuality (II) and reference change values (RCV)

were additionally produced using estimates from the model.

Exact geometric CVs were calculated using
√
exp(σ̂2)− 159,60 (assuming log-normally dis-

tributed data) and used to calculate II, RCV, and asymmetric RCV, where RCVpos =

exp(1.96 ×
√

2τ) − 1, and RCVneg = exp(−1.96 ×
√

2τ) − 1, where τ =
√
ln(CV 2

A+I + 1)

(1.96 is selected from the normal distribution and CVA+I is the coefficient of variation for

the total imprecision, CVA+I =
√
CV 2

A + CV 2
I .62,63 Asymmetric CVs are more appropriate

estimates of RCV when using log-normal data.
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6.3.4 Repeated simulations

Each data simulation, outlier detection method and corresponding analyses were performed

5,000 times. The number of simulations was chosen based on the estimate of coverage; with

5,000 randomly generated data sets an estimate of coverage of 95% (for each of the standard

deviation estimates obtained) would have a confidence interval ranging from 94.359% to

95.588%.

For each outlier strategy the number of measurements identified as outliers and the number

of individuals with outliers removed for each simulated data set was obtained.

Standard simulation performance measures were used to evaluate the ability of the methods

to estimate the standard deviations using different outlier identification procedures and re-

moving identified outliers from the data set. These measures were as suggested by Burton et

al,106 see Chapter 5 Table 5.2.

Additionally, for each of the calculated results the mean, median, 25th percentile (Q1), 75th

percentile (Q3), minimum and maximum value were calculated to summarise results.

All analyses were performed using the statistical software R with the seed set at the start of

each scenario (unique for each scenario). The same simulated data were used and analysed

for each of the outlier strategies, meaning the analysis is paired for each of the 5,000 randomly

generated data sets. All models were fitted using restricted estimation of maximum likelihood

(REML).

6.4 Results

All displayed results give CVs and RCVs as percentages.
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6.4.1 Simulation without outliers

6.4.1.1 Outliers detected and removed

Outlier detection strategies including the Cochran C test identified the most outliers; the

median number of measurements removed in each data set was two when using just the

Cochran C test and four when using the Cochran C test with Reed’s criterion for means.

The full use of the Cochran C test alone identified a maximum of 30 measurements and

partial use identified a maximum of 14 measurements; when pairing with Reed’s criterion

for means (Fraser-Harris method) this increased to a maximum of 20. Reed’s criterion on

mean values for individuals resulted in a median of zero measurements removed but the

maximum number of measurements removed was 16. See Table 6.2 and Figure 6.1 for further

details.

Tukey’s IQR rule identified a median of zero outliers for the 5,000 simulated data sets, but

identified a maximum of 19 measurements in one of the simulated data sets. Grubbs’s test

and the ± 3SD rule identified a maximum of one and seven measurements, respectively;

however, the median number identified and removed was zero. Use of Reed’s criterion for all

measurements and Dixon’s Q test did not identify any outliers to be deleted.

Table 6.2: Outliers removed by each detection method for the 5,000 simulations. Maximum
number of measurements removed is 160 and maximum number of individuals removed is 20.

Outlier strategy Measurements removed Individuals with
measurements removed

median (Q1, Q3) [minimum, maximum]
n % n %

Cochran C test 2 (0, 4)[0, 30] 1 (0, 3)[0, 19] 1 (0, 2)[0, 8] 5 (0, 10)[0, 40]
Cochran C test partial 2 (0, 4)[0, 14] 1 (0, 3)[0, 9] 1 (0, 2)[0, 7] 5 (0, 10)[0, 35]
Fraser-Harris method 4 (2, 8)[0, 20] 3 (1, 5)[0, 13] 1 (1, 2)[0, 7] 5 (5, 10)[0, 35]
Reed’s criterion for means 0 (0, 8)[0, 16] 0 (0, 5)[0, 10] 0 (0, 1)[0, 2] 0 (0, 5)[0, 10]
Reed’s criterion for measurements 0 (0, 0)[0, 0] 0 (0, 0)[0, 0] 0 (0, 0)[0, 0] 0 (0, 0)[0, 0]
Tukey IQR rule 0 (0, 2)[0, 19] 0 (0, 1)[0, 12] 0 (0, 1)[0, 5] 0 (0, 5)[0, 25]
Dixon’s Q test 0 (0, 0)[0, 0] 0 (0, 0)[0, 0] 0 (0, 0)[0, 0] 0 (0, 0)[0, 0]
Grubbs’s test 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 5]
± 3SD 0 (0, 0)[0, 7] 0 (0, 0)[0, 4] 0 (0, 0)[0, 2] 0 (0, 0)[0, 10]
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Figure 6.1: Histograms showing the number of measurements removed across the 5,000 sim-
ulations when using each outlier detection strategy.

160



6.4. Results

6.4.1.2 Ability of methods to estimate standard deviations

The bias in estimating the analytical standard deviation was larger for the methods including

the Cochran C test, with increased negative bias compared to the data with no outlier

detection (percentage bias for analytical, within-individual and between-individual SD was

-0.256, -0.365 and -1.608 respectively). The negative bias, even for the no outlier detection

method was expected due to small sample bias (see Chapter 5).50,107 Estimates of within-

individual SD showed increased bias for the methods including the Cochran C test, especially

the Fraser-Harris method (percentage bias for analytical, within-individual and between-

individual SD was -2.126, -0.529 and -3.641 respectively). Use of Reed’s criterion for means

(percentage bias for analytical, within-individual and between-individual SD was -0.290, -

0.492 and -3.679 respectively) increased bias, particularly at the between-individual level;

and, use of the Tukey IQR rule (percentage bias for analytical, within-individual and between-

individual SD was -0.496, -1.549 and -4.305 respectively) increased bias at all levels.

Coverage for estimates of analytical SD was lower when using an outlier detection strategy

including the Cochran C test (decrease from 95.2% to 93.5%-94.0%) with the estimates of

coverage for the Cochran C test analyses below the limit expected given 95% coverage based

on the number of simulations used. Coverage estimates for within-individual SD were also

lower with full use of the Cochran C test. When evaluating the estimate of between-individual

SD the bias increased when using outlier strategies including Reed’s criterion for means and

for full use of the Cochran C tests, see Tables 6.3 and 6.4.

Results when using Tukey’s IQR rule showed increased bias for all estimates of SD and

decreased coverage for estimates of within-individual and between-individual variability. In-

creases in bias were seen for all estimates of SD when using Grubbs’s test and ± 3SD also,

but with the magnitude of the difference to no outlier detection compared with Tukey’s IQR

rule being less.

For the strategies using Reed’s Criterion for measurements and Dixon’s Q test no outliers

were removed so performance was the same as when using no outlier detection.
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6.4. Results

6.4.1.3 Ability of methods to estimate CVs

When using outlier detection strategies including the Cochran C test prior to analysis the

median CVA was 4.89%-4.91% compared with 4.99% for the no outlier detection method,

with the true value of 5%. Reed’s criterion for means, Tukey’s IQR rule, Grubbs’s test

and the ± 3SD rule provided median estimates of CVA of 4.98%, 4.97%, 4.98% and 4.98%

respectively.

For the estimate of CVI , the full Cochran C test strategy had a median value of 9.90%

whereas the no outlier strategy had a median estimate of 9.94%; the true value was 10%.

The Tukey IQR rule and the ± 3SD rule yielded median estimates of CVI of 9.83% and 9.91%

respectively.

When evaluating estimates of CVG, the true value was 20%. The median estimate when

using no outlier detection was 19.58%, this was similar when using strategies including the

Cochran C test only (full and partial use) but for strategies including Reed’s criterion for

means, the median estimates produced were 19.15%. The Tukey IQR rule gave the worst

estimate of 19.00%. When using the ± 3SD rule the median estimate was 19.48%. Results

when using Grubbs’s test and the Cochran C tests were similar to when no outlier removal

was performed.

All estimates for strategies using only Reed’s criterion for all measurements and Dixon’s Q

test remained the same as for using no outlier detection. See Tables 6.5 and 6.6, and Figure

6.2.

6.4.1.4 Ability of methods to estimate IIs and RCVs

The median result when estimating II using no outlier detection was 0.57; the true value

was 0.56. Strategies including the Cochran C test provided a similar median estimate of II

(0.56-0.58; slightly overestimated (II=0.58) when using the Fraser-Harris method and Reed’s

criterion for means). The Tukey IQR outlier method also slightly overestimated II (II=0.58).

All other methods gave very similar results to the analysis when no outlier detection was
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Figure 6.2: Estimates of CVs when using different outlier detection strategies. Beanplots
to show distribution; median is shown by bold line and the dashed line reflects the value
estimated when no outliers are removed.
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used (II=0.57).

The RCV value for this simulation was 30.99%. The median RCV was estimated at 30.86%

when no outlier detection was used and this reduced to 30.65%-30.74% when using strategies

including Cochran C test. The lowest median estimate was 30.53% when using the Tukey

IQR rule. Use of the ± 3SD rule yielded a slight difference in median RCV estimate of

30.76%, see Table 6.7 and Figure 6.3.

Similar results were seen when evaluating the asymmetric RCVs with the lower and upper

bound slightly further underestimated, compared to using no outlier detection method, when

using the strategies including the Cochran C test and ± 3SD rule; and the underestimation

exaggerated further when using the Tukey IQR rule, see Table 6.8 and Figure 6.4.

6.4.1.5 Sensitivity analysis–simulation of test with ‘poor performance’

The simulation of data for a test with increased variability showed the same pattern of results

as seen in the original simulation. The outlier strategies detecting the most measurements

to be removed remained consistent; with slightly fewer measurements removed compared

to the analysis of the original data simulation. The absolute bias estimates were generally

larger with bias increased (underestimation) for analytical and within-individual estimates of

variability when using methods including the Cochran C test, and for estimates of variability

at all levels when using methods including the Tukey IQR rule and the ± 3SD rule. Coverage

again decreased for estimates of analytical and within-individual SD when using strategies

including the Cochran C test. Median estimates of CVA and CVI were underestimated

when using strategies including the Cochran C test and estimates of CVI and CVG were

underestimated when using Tukey IQR rule and ± 3SD rule. See Appendix D Tables D.1-

D.28.
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0.5 1.0 1.5 2.0

+/− 3SD

Grubbs’s test

Dixon’s Q test

Tukey IQR rule

Reed’s criterion for measurements

Reed’s criterion for means

Fraser−Harris method

Cochran C test partial

Cochran C test

No outlier detection

Estimated II

0.3 0.5 0.7 1.0 1.5 2.0
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+/− 3SD

Grubbs’s test

Dixon’s Q test

Tukey IQR rule

Reed’s criterion for measurements

Reed’s criterion for means

Fraser−Harris method

Cochran C test partial

Cochran C test

No outlier detection

Estimated RCV (%)

Figure 6.3: Estimates of II and RCV when using different outlier detection strategies. Bean-
plots to show distribution; median is shown by bold line and the dashed line reflects the value
estimated when no outliers are removed.
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+/− 3SD
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Estimated RCV negative (%)

25 30 35 40 45 50
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Reed’s criterion for measurements
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No outlier detection

Estimated RCV positive (%)

Figure 6.4: Estimates of asymmetric RCV when using different outlier detection strategies.
Beanplots to show distribution; median is shown by bold line and the dashed line reflects the
value estimated when no outliers are removed.
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Chapter 6. The impact of outlier detection and removal on studies of biological variability

6.4.1.6 Sensitivity analysis–simulation of data with increased sample size

When increasing the number of participants, the results when using the different outlier

detection strategies followed the same pattern. The number of measurements removed was

increased, as would be assumed given an increased sample size, and there were more measure-

ments identified by the same strategies (strategies including the Cochran C test, Tukey IQR

rule and ± 3SD). The bias in results was consistent, with methods including the Cochran

C test having increased negative bias for estimates of analytical and within-individual vari-

ability and bias for all estimates was poorer for the strategies including Tukey IQR rule

and ± 3SD. Estimates of bias generally were increased for analytical variability and de-

creased for within-individual and between-individual variability. Coverage for the estimate

of analytical SD when using methods including the Cochran C test remained low; with the

coverage when estimating within-individual variability still lower than when no outliers were

removed but closer to 95% than in the base case simulations. Coverage for the estimate of

between-individual SD when using the Tukey IQR rule appeared notably lower also. The

effect on median CV estimates was similar to other data simulations. See Appendix D Tables

D.29-D.35.

6.4.2 Simulation of outlying data

For full results of simulations including outlying data see Appendix D Tables D.36-D.71.

6.4.2.1 Outliers detected and removed

The Cochran C test (full and partial), the Fraser-Harris method and the Tukey IQR rule

identified all outliers in the simulation for all scenarios but with the exclusion of many more

non-outliers. Reed’s criterion for means performed poorly, not identifying all outliers and

removing many valid measurements. Dixon’s Q test, Grubbs’s test and Reed’s criterion for

measurements worked appropriately with only a single outlier but could not identify outliers

when more than one was present. The ± 3SD rule performed well, especially when the
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6.4. Results

magnitude of the difference for outliers was smaller and there was only one outlier, see Table

6.9 for full results.

6.4.2.2 Ability of methods to estimate standard deviations

Estimates of bias for the standard deviations showed when no outliers detection was used, for

all outlier simulation scenarios, the analytical SD was overestimated and the within-individual

and between-individual SDs were underestimated.

When the data included only one outlier (magnitude 2 and 10), Reed’s criterion for means

performed poorly (overestimating σA and underestimating σI and σG). Results for outlier

detection strategies including the Cochran C test and the Tukey IQR rule underestimated

the standard deviations at all levels, compared with results using Reed’s criterion for mea-

surements, Dixon’s test, Grubbs’s test and ± 3SD (methods that correctly identified only the

outlier).

When more than one outlier was simulated and the magnitude was two, the methods of

Reed’s criterion for means and measurements, Dixon’s test and Grubbs’s test performed

poorly (overestimating σA and underestimating σI and σG); strategies including the Cochran

C test and the Tukey IQR rule did not perform as well as ± 3SD. When simulating data

with multiple outliers and with the increase magnitude (10) the ± 3SD rule also performed

poorly.
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Table 6.9: Outlier detection methods with outlier simulation–outliers removed by each detection method. Maximum number of measurements
is 160, maximum number of individuals is 20 and maximum number of outliers removed is 0.5%=1, 1%=2 and 2%=4.

Outlier strategy Observations removed Individuals with Outliers removed

measurements removed

median (Q1, Q3) [minimum, maximum]

n % n % n %

Scenario: 0.5% and magnitude 2

Cochran C test 4 (2, 6)[2, 30] 3 (1, 4)[1, 19] 2 (1, 3)[1, 7] 10 (5, 15)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Cochran C test partial 4 (2, 6)[2, 12] 3 (1, 4)[1, 8] 2 (1, 3)[1, 6] 10 (5, 15)[5, 30] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Fraser-Harris method 4 (4, 10)[2, 24] 3 (3, 6)[1, 15] 2 (2, 3)[1, 7] 10 (10, 15)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 16] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 1] 100 (0, 100)[0, 100]

Reed’s criterion for measurements 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Tukey IQR rule 1 (1, 3)[1, 20] 1 (1, 2)[1, 13] 1 (1, 2)[1, 7] 5 (5, 10)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Dixon’s Q test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

± 3SD 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Scenario: 1% and magnitude 2

Cochran C test 6 (4, 8)[4, 32] 4 (3, 5)[3, 20] 3 (2, 4)[2, 8] 15 (10, 20)[10, 40] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Cochran C test partial 6 (4, 8)[4, 16] 4 (3, 5)[3, 10] 3 (2, 4)[2, 8] 15 (10, 20)[10, 40] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Fraser-Harris method 6 (4, 12)[4, 24] 4 (3, 8)[3, 15] 3 (2, 4)[2, 8] 15 (10, 20)[10, 40] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 16] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 50 (0, 50)[0, 100]

Reed’s criterion for measurements 1 (0, 1)[0, 2] 1 (0, 1)[0, 1] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 50 (0, 50)[0, 100]

Tukey IQR rule 2 (2, 4)[2, 21] 1 (1, 3)[1, 13] 2 (2, 3)[2, 8] 10 (10, 15)[10, 40] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Dixon’s Q test 1 (0, 1)[0, 1] 1 (0, 1)[0, 1] 1 (0, 1)[0, 1] 5 (0, 5)[0, 5] 1 (0, 1)[0, 1] 50 (0, 50)[0, 50]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 50 (50, 50)[50, 50]

± 3SD 2 (2, 2)[2, 2] 1 (1, 1)[1, 1] 2 (2, 2)[2, 2] 10 (10, 10)[10, 10] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]
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Outlier strategy Observations removed Individuals with Outliers removed

measurements removed

median (Q1, Q3) [minimum, maximum]

n % n % n %

Scenario: 2% and magnitude 2

Cochran C test 10 (8, 14)[8, 38] 6 (5, 9)[5, 24] 5 (4, 5)[4, 9] 25 (20, 25)[20, 45] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Cochran C test partial 10 (8, 10)[8, 18] 6 (5, 6)[5, 11] 5 (4, 5)[4, 9] 25 (20, 25)[20, 45] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Fraser-Harris method 10 (8, 16)[8, 26] 6 (5, 10)[5, 16] 5 (4, 6)[4, 10] 25 (20, 30)[20, 50] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 16] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 25 (0, 25)[0, 50]

Reed’s criterion for measurements 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 5)[0, 5] 0 (0, 1)[0, 1] 0 (0, 25)[0, 25]

Tukey IQR rule 4 (4, 6)[4, 23] 3 (3, 4)[3, 14] 4 (4, 5)[4, 9] 20 (20, 25)[20, 45] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Dixon’s Q test 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 5)[0, 5] 0 (0, 1)[0, 1] 0 (0, 25)[0, 25]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 25 (25, 25)[25, 25]

± 3SD 4 (4, 4)[4, 4] 3 (3, 3)[3, 3] 4 (4, 4)[4, 4] 20 (20, 20)[20, 20] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Scenario: 0.5% and magnitude 10

Cochran C test 4 (2, 6)[2, 28] 3 (1, 4)[1, 18] 2 (1, 3)[1, 7] 10 (5, 15)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Cochran C test partial 4 (2, 6)[2, 14] 3 (1, 4)[1, 9] 2 (1, 3)[1, 7] 10 (5, 15)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Fraser-Harris method 4 (4, 10)[2, 22] 3 (3, 6)[1, 14] 2 (1, 3)[1, 8] 10 (5, 15)[5, 40] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 8] 5 (0, 5)[0, 5] 1 (0, 1)[0, 1] 5 (0, 5)[0, 5] 1 (0, 1)[0, 1] 100 (0, 100)[0, 100]

Reed’s criterion for measurements 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Tukey IQR rule 1 (1, 3)[1, 22] 1 (1, 2)[1, 14] 1 (1, 2)[1, 7] 5 (5, 10)[5, 35] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Dixon’s Q test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]

± 3SD 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 100 (100, 100)[100, 100]
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Outlier strategy Observations removed Individuals with Outliers removed

measurements removed

median (Q1, Q3) [minimum, maximum]

n % n % n %

Scenario: 1% and magnitude 10

Cochran C test 6 (4, 8)[4, 28] 4 (3, 5)[3, 18] 3 (2, 4)[2, 9] 15 (10, 20)[10, 45] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Cochran C test partial 6 (4, 8)[4, 18] 4 (3, 5)[3, 11] 3 (2, 4)[2, 9] 15 (10, 20)[10, 45] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Fraser-Harris method 6 (4, 12)[4, 26] 4 (3, 8)[3, 16] 3 (2, 4)[2, 9] 15 (10, 20)[10, 45] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 16] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 50 (0, 50)[0, 100]

Reed’s criterion for measurements 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 5)[0, 5] 0 (0, 1)[0, 1] 0 (0, 50)[0, 50]

Tukey IQR rule 2 (2, 4)[2, 21] 1 (1, 3)[1, 13] 2 (2, 3)[2, 7] 10 (10, 15)[10, 35] 2 (2, 2)[2, 2] 100 (100, 100)[100, 100]

Dixon’s Q test 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 1)[0, 1] 0 (0, 5)[0, 5] 0 (0, 1)[0, 1] 0 (0, 50)[0, 50]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 50 (50, 50)[50, 50]

± 3SD 2 (1, 2)[1, 2] 1 (1, 1)[1, 1] 2 (1, 2)[1, 2] 10 (5, 10)[5, 10] 2 (1, 2)[1, 2] 100 (50, 100)[50, 100]

Scenario: 2% and magnitude 10

Cochran C test 10 (8, 14)[8, 44] 6 (5, 9)[5, 28] 5 (4, 5)[4, 10] 25 (20, 25)[20, 50] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Cochran C test partial 10 (8, 10)[8, 20] 6 (5, 6)[5, 13] 5 (4, 5)[4, 10] 25 (20, 25)[20, 50] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Fraser-Harris method 10 (8, 16)[8, 28] 6 (5, 10)[5, 18] 5 (4, 6)[4, 10] 25 (20, 30)[20, 50] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Reed’s criterion for means 8 (0, 8)[0, 16] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 5 (0, 5)[0, 10] 1 (0, 1)[0, 2] 25 (0, 25)[0, 50]

Reed’s criterion for measurements 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 5] 0 (0, 0)[0, 1] 0 (0, 0)[0, 25]

Tukey IQR rule 4 (4, 6)[4, 21] 3 (3, 4)[3, 13] 4 (4, 5)[4, 9] 20 (20, 25)[20, 45] 4 (4, 4)[4, 4] 100 (100, 100)[100, 100]

Dixon’s Q test 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 1] 0 (0, 0)[0, 5] 0 (0, 0)[0, 1] 0 (0, 0)[0, 25]

Grubbs’s test 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 1 (1, 1)[1, 1] 5 (5, 5)[5, 5] 1 (1, 1)[1, 1] 25 (25, 25)[25, 25]

± 3SD 2 (2, 3)[1, 4] 1 (1, 2)[1, 3] 2 (2, 3)[1, 4] 10 (10, 15)[5, 20] 2 (2, 3)[1, 4] 50 (50, 75)[25, 100]
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6.4. Results

6.4.2.3 Ability of methods to estimate CVs

With no outlier detection methods used the analysis of the data from the outlier simulations

overestimated CVA, and underestimated CVI and CVG. When simulating a single outlier,

estimates of CVA were reasonable for all outlier exclusion methods, except for Reed’s criterion

for means. When using Reed’s criterion for means the median CVA was still close to the true

value but for some simulations CVA was overestimated.

For the simulations of more than one outlier with magnitude two, the estimates of CVA were

overestimated when using Reed’s criterion for means and measurements, Dixon’s test and

Grubbs’s test. Estimates of CVA were appropriate for strategies including the Cochran C

test, the Tukey IQR rule and ± 3SD.

When simulating data with outlier(s) of magnitude 10, there was a general increase in the

variability of estimates of CVs. For the 1% outlier simulation, the methods of Reed’s criterion

for means and measurements, Dixon’s test and Grubbs’s test were poor. The median estimate

of CVA when using ± 3SD was slightly increased also. When the outliers were increased to 2%

the same strategies performed poorly, and the estimates were further overestimated.

When analysing estimates of CVI and CVG there was a similar pattern for the outlier detection

strategies performing poorly, but with underestimation, and this was not as extreme as for

CVA. See Figures 6.5-6.10.

6.4.2.4 Ability of methods to estimate IIs and RCVs

The II and RCV estimates were extreme, compared to the true values, when analysing the

simulated data with outliers using no outlier detection (II: 3.41 to > 104; lower bound RCV

(%): -87.13 to -100.00; and, upper bound RCV (%): 677.30 to > 104). Estimates when

simulating data with only one outlier (regardless of magnitude) were inflated using Reed’s

criterion for means (II=0.68/0.64; lower bound RCV (%):-28.01/-27.59; and, upper bound

RCV (%): 38.91/38.10). When estimating II and RCV with simulations with more outliers,

the methods of Reed’s criterion for means and measurements, Dixon’s and Grubbs’s test
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Figure 6.5: Outlier detection methods with outlier simulation (magnitude 2)–analytical CV.
Beanplots to show distribution. Vertical lines indicate values at the 2.5th percentile, 25th
percentile, median, 75th percentile and 97.5th percentile of estimates when simulating data
without outliers. The true value of CV is 5%. * shows estimates continue beyond the range
displayed.
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Figure 6.6: Outlier detection methods with outlier simulation (magnitude 10)–analytical CV.
Beanplots to show distribution. Vertical lines indicate values at the 2.5th percentile, 25th
percentile, median, 75th percentile and 97.5th percentile of estimates when simulating data
without outliers. The true value of CV is 5%. * shows estimates continue beyond the range
displayed.
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Figure 6.7: Outlier detection methods with outlier simulation (magnitude 2)–within-
individual CV. Beanplots to show distribution. Vertical lines indicate values at the 2.5th
percentile, 25th percentile, median, 75th percentile and 97.5th percentile of estimates when
simulating data without outliers. The true value of CV is 10%. * shows estimates continue
beyond the range displayed.
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Figure 6.8: Outlier detection methods with outlier simulation (magnitude 10)–within-
individual CV. Beanplots to show distribution. Vertical lines indicate values at the 2.5th
percentile, 25th percentile, median, 75th percentile and 97.5th percentile of estimates when
simulating data without outliers. The true value of CV is 10%. * shows estimates continue
beyond the range displayed.
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Figure 6.9: Outlier detection methods with outlier simulation (magnitude 2)–between-
individual CV. Beanplots to show distribution. Vertical lines indicate values at the 2.5th
percentile, 25th percentile, median, 75th percentile and 97.5th percentile of estimates when
simulating data without outliers. The true value of CV is 20%. * shows estimates continue
beyond the range displayed.
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Figure 6.10: Outlier detection methods with outlier simulation (magnitude 10)–between-
individual CV. Beanplots to show distribution. Vertical lines indicate values at the 2.5th
percentile, 25th percentile, median, 75th percentile and 97.5th percentile of estimates when
simulating data without outliers. The true value of CV is 20%. * shows estimates continue
beyond the range displayed.
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produced extreme results (II and RCV upper bound (%) estimates > 104 and RCV lower

bound (%) estimates of -100); for the high outlier magnitude simulation ± 3SD also pro-

duced extreme results (II: 6.94; lower bound RCV (%): -93.85; and, upper bound RCV (%):

1526.72).

6.4.3 Comparison of outlier detection methods

The Cochran C test, Cochran C test partial, Fraser-Harris method and Tukey IQR rule

introduced negative bias to estimates of variability when outliers were simulated and not

simulated; when outliers were simulated estimated standard deviations were similar to analy-

ses of data when outliers were not simulated. When using Reed’s criterion for means, Reed’s

criterion for measurements, Dixon’s test and Grubbs’s test the bias was small when analysing

data with no outliers but with the outlier simulation (or more than one outlier simulated) the

methods failed to identify outliers and the bias was large. The ± 3SD method gave reasonable

estimates with small bias for the no outlier simulation and most of the outlier scenarios, the

bias only increased for the most extreme outlier scenario, see Figure 6.11.

When estimating the analytical standard deviation using the Cochran C test, Cochran C

test partial and the Fraser-Harris method the bias was negative (approximately -2%) when

no outliers were simulated and for all outlier simulation scenarios; there was less bias (ap-

proximately -1%) when using the Tukey IQR rule. When estimating the within-individual

standard deviation the Tukey IQR rule gave the most negatively bias results for all scenarios

(no outliers and all outlier simulations); results when using the Cochran C test, Cochran C

test partial and the Fraser-Harris method were less biased. When estimating the between-

individual standard deviation, bias was larger when using the Fraser-Harris method and

Tukey IQR rule for the no outlier and all outlier scenarios; estimates when using Cochran C

test and Cochran C test partial were close to results using no outlier detection for the data

with no outliers simulated.
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Figure 6.11: Comparison of average percentage bias for analytical, within-individual and
between-individual standard deviations between outlier detection methods. Dotted line indi-
cates the average percentage bias when using no outlier detection methods for the data with
no outliers. Crosses indicate the average percentage bias for the scenarios with outliers of
magnitude 2 (salmon) and magnitude 10 (teal). Red points indicate the average percentage
bias for each outlier detection method when analysing data with no outliers.
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6.5 Discussion

The analyses using the different outlier detection methods showed, in many cases, none of

the log-normally distributed data were considered outlying, leading to no changes to the data

and the same results obtained from analysis. The methods of outlier detection using the

Cochran C test and Reed’s criterion for means caused data to be detected as outlying more

often and subsequently the results for this analysis reflected an increase in (negative) bias

when estimating analytical and within-individual variation. The Tukey IQR rule, Grubbs’s

test and ± 3SD method led to outlier detection also, with increases in the bias of variability

results (particularly when using the Tukey IQR method). Strategies including the Cochran

C test led to reduced estimates of CVA and CVI ; and strategies using the Tukey IQR rule

led to decreased CVI and CVG estimates. For all strategies estimates of II were similar with

slightly increased results when using the Tukey IQR rule and the RCV bound estimates were

closer to zero for methods including the Cochran C test, Tukey IQR rule and ± 3SD rule.

The negative bias (underestimation) of the variance parameters was expected with the small

sample size.50,107

This simulation showed some of the outlier detection methods used may incorrectly identify

data as outlying and these data were inappropriately removed prior to analysis. These outlier

detection methods are based on reducing the variability within and between groups and the

range of data, with the more extreme data points removed. After detecting data as outlying

these data were then removed resulting in reduced variability shown by the increased negative

bias in the variability results after using outlier detection techniques; some estimated standard

deviations at the analytical level had -2% bias; at the within-individual level had -1% bias;

and, at the between-individual level -4% bias, which has the potential to impact results and

how tests are used. Different techniques affected different levels of bias with the Cochran C

test changing the results for analytical and within-individual variability, as the test focussed

on variability within the duplicate assessments and the groups; and, Reed’s criterion for

means and the Tukey IQR test had biggest impact on the estimate of variability at the

between-individual level.
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The outlier simulation showed methods that identify a single outlier or a minimum and/or

maximum outlier worked well when only one outlier was present. Other methods detected

more data to be excluded than the just the outlying measurements. Given the magnitude

of the difference in the outlying data compared with the unaltered data, the outlying mea-

surements could easily have been detected using descriptive data summaries or plots of the

data. It is important for researchers in this area to understand how these outlier detection

methods work and for these methods to be used in an appropriate way, tailored to the data

set. Outlier detection methods should not be used as standard but only if there is reason

to believe extreme data are present with the nature of these outliers understood and the

appropriate action identified. The ± 3SD rule worked well, only providing invalid results for

the most extreme outlier simulation.

Separate estimates of CVA, CVI and CVG were more robust to incorrect outlier removal than

estimates of II and RCV which use combinations of CVA, CVI and CVG. For the analyses

where outliers were simulated, the results showed increased CVA as the outliers introduced

were ‘error outliers which would increase variability at the analytical level.

Outlier detection methods were used following transformation of data. In this artificial sim-

ulation of log-normal data, this approach is known to be required. As many of the outlier

methods rely on normality of data, this approach should allow optimal use of these methods.

There is guidance for the use of outlier detection and data transformation that may lead

to outlier detection and removal prior to transformation.46 If this strategy is used, outlier

detection methods may perform poorly in comparison to the results shown.

The Birmingham Quality group, part of the National External Quality Assessment Scheme

(NEQAS), monitor the results across UK labs when assessing control material. When re-

porting the results of monitoring assessments, NEQAS rank the data and the 2.5th to 97.5th

percentile range is reported,114 similar to the methods relying on data ranges evaluated.
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6.5.1 Limitations

Data were simulated from a log-normal distribution which may not be truly reflective of

biological variability data seen in practice. The first stage of simulations used data that

were normally distributed after transformation and because of this outlier detection was not

necessary as the data were simulated without outlying data. This element of the study only

allows understanding of the consequences of using different outlier detection methods on data

that are normally distributed. To understand the potential performance of outlier detection

strategies, simulations were performed with outliers introduced.

This artificial generation of outliers may not be reflective of the type of outlying data seen in

biological variability studies. The simulation used added ‘error’ outliers. These values were

random with no link to observation points or individuals. Further work could investigate the

impact of outliers with trend relating to individuals and/or observation points.

A limited number of scenarios were used to investigate the performance of outlier detec-

tion methods. Sensitivity analyses were used, varying the sample size and test variability

estimates; however, the ability of these methods may vary with study design and test per-

formance. The combined effect of small sample size (see Chapter 5) and outlier detection

methods has not been fully investigated.

6.6 Conclusions

In the situation when data are known to be incorrect (an ‘error’ outlier) because of im-

plausible values, be it due to an error in performing the test, storing a sample or recording

a result, then these data should be discarded and with remaining values used for analysis

and the process for removing data carefully reported. However, if data are plausible, the

removal of such data should be treated with extreme caution as these outlying data may be

informative (an ‘interesting’ or ‘influential’ outlier). These types of outliers require further

consideration.
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6.6. Conclusions

The analysis presented has shown often used methods of outlier detection (particularly the

methods advocated by Fraser-Harris) can lead to bias in the results of biological variabil-

ity studies by underestimating the variability which may impact how tests are used, hence

studies using these methods should be interpreted with caution. Also, the analysis of data

including outliers showed different methods performed better depending on the number of

outlying measurements and the magnitude of the difference between the outlying data and

the rest of the data. Different methods of outlier detection may be selected based on the

number of outliers considered. The ± 3SD rule worked well, only providing invalid results for

the most extreme outlier simulation and introducing less bias than the other methods able

to appropriately eliminate outliers (Cochran C test, Cochran C test partial, Fraser-Harris

method and Tukey IQR rule) at the analytical, within-individual and between-individual

level.

It is recommended the data obtained in biological variability studies is viewed prior to using

outlier detection methods, with these methods only employed if visualisation of the data

shows cause to investigate. It is also recommended if outlier detection methods are used and

this leads to the removal of data, the analysis is performed on both the original and modified

data and any differences are commented on or both sets of results are displayed. If an outlier

detection method is required, the ± 3SD rule is recommended.
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Chapter 7

A review of monitoring-related

methodology literature

This work has been partly presented in the following form:
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe
C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes
J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter
P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme
C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S,
Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin
N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D.
Methods for the evaluation of biomarkers in patients with kidney and liver diseases:
multicentre research programme including ELUCIDATE RCT. Chapter 5: A review of
monitoring-related methodology literature. Programme Grants for Applied Research 2018.

189



Chapter 7. A review of monitoring-related methodology literature

Summary

The review of monitoring and monitoring related literature yielded few methods directly

applicable to monitoring of progressive or recurrent disease.

Many of the methods identified are in the related areas of screening, biomarker development

and monitoring for treatment titration purposes. Work in screening may be adapted to

identify appropriate monitoring frequency and applications of the signal to noise approach

for choosing decision rules and thresholds.

Biases identified in areas related to monitoring also need to be considered when using tests

to monitor progression and recurrence of disease.

7.1 Introduction

The purpose of this work is to identify methods for the analysis of data collected from the

monitoring of progressive and recurrent conditions and the design of monitoring strategies

for subsequent evaluation. There are also related areas that may have methods for analysis

and design that can be adapted to be applicable for monitoring of progressive and recurrent

conditions.

Research in the area of monitoring has concentrated on treatment titration. Whilst the pro-

cesses involved in monitoring treatment differ from monitoring patients with potential for

progressive or recurrent disease, the general structure of the data is the same and there are

lessons to be learnt from the research that has been done. There is some methods literature in

the area of screening and, whilst screening is carried out in asymptomatic individuals rather

than patients known to have disease that may progress or recur, there are obvious parallels

between screening and monitoring. These methods are not currently used when planning

screening strategies, with economic evaluations preferred to inform processes, however work

is currently ongoing to improve the selection of screening strategies.115 The literature on ref-

erence change values and statistical process controls may also contribute to the development
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of methods for monitoring of progressive and recurrent disease.

7.2 Aims and objectives

The aim of this review was to understand the current methods available to design monitoring

strategies. To investigate methods in monitoring and related areas searches were developed

to identify papers developing and evaluating monitoring and screening strategies, introducing

time dependent measures of test performance, explaining methods to evaluate measurement

change from test variability and health economic approaches to developing testing proto-

cols.

7.3 Methods

Methodological information related to monitoring was firstly sought from the first edition of

the book ‘Evidence-based medical monitoring’, edited by Paul Glasziou, Les Irwig and Jeffrey

Aronson. Key textwords related to monitoring methodology were identified and purposive

searches of MEDLINE were undertaken from 2000 to 2010 (searches conducted on 26 March

2010). Reference tracking and citation tracking using Science Citation Index were used to

identify additional relevant literature.

A variety of searches were performed to identify relevant literature using various combinations

of the following text words:

(i) monitor*;

(ii) measure* or biomarker* or marker*;

(iii) serial or repeat* or periodic or longitudinal or trajectory*;

(iv) recurrence or progression;

(v) rule* or threshold* or trigger;
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(vi) statistical process control or control chart* or reference change value or critical differ-

ence;

(vii) screen* with frequenc* or intensit* or interval*.

The searches retrieved 2,578 papers for review. These papers were screened by a single

reviewer, and only papers reported in the English Language were considered. After reviewing

72 articles were included initially. Summaries from biomarker development papers identified

by the search are not presented here. Full details have been published.116

The papers selected for review were summarised and full details can be seen in Appendix E

E Table E.1.

7.4 Results

Limited methodological literature was identified providing guidance for the design of studies

to evaluate monitoring tests. Work has focussed more on analytic techniques to assist with

the design of monitoring strategies; primarily through analysis of existing data in order to

make recommendations on monitoring frequency or decision rules, or simulation work, with

both approaches specific to the disease area researched.

The identified literature can be categorised as:

• Development and evaluation of monitoring strategies

– Linear mixed effects models and estimation of signal to noise ratio;

– Joint modelling of longitudinal and outcome data;

– Non-linear mixed models;

– Alternative modelling approaches;

– Simulation studies;
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– Analysis of cohort data;

• Screening;

• Time-dependent ROC curves;

• Differentiating measurement change from measurement variability;

• Health economic approaches

– Decision analytic models;

– Real options approaches.

7.4.1 Development and evaluation of monitoring strategies

The literature in the area of monitoring focussed on modelling approaches (linear mixed mod-

elling, joint modelling and non-linear modelling). The review of the literature also identified

simulation studies and work on the evaluation of monitoring strategies.

Most identified papers provided methods (or examples of methods being applied) to assess

monitoring data via linear mixed modelling, signal to noise ratio analysis and joint modelling.

Articles considering design of monitoring strategies were rare and tended to consider test

frequency rather than decision rules and test thresholds. See Table 7.1.

Table 7.1: Focus of monitoring papers.

Concept Number of papers

Design
Test frequency 89,11,29,31,117–120

Test thresholds 29,117

Decision rules 49,29,119,120

Other 4121–125

Analysis
General data structure 212,124

Linear mixed effects modelling/SNR 149–12,14,117,118,123,126–131

Joint modelling 1029,31,119,132–138

Review of methods 212,132

Other 7124,125,130,131,138–140
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7.4.1.1 Linear mixed effects models and estimation of signal to noise ratio

General description of models

Stevens et al12 reviewed statistical models used for the control phase of monitoring and

explained how models can be fitted to observed monitoring data providing details of maximum

likelihood methods, moment-based methods and literature based methods, where parameter

estimates are obtained from reviewing the literature. They introduced a generic model for

monitoring data, defining Yit as the observed monitoring values including assay noise and

variability, and Uit as the ‘true’ underlying and unobserved values. Uit = αi + βit and

Yit = Uit + ωit where αi is the true value at time 0, βit is the change in the true value over

time and ωit is random error,12 see Chapter 1.

Stevens et al12 discussed the analytical methods required to give the proportion of positive

tests that are truly positive, normality is assumed allowing the marginal and joint distribution

of observed and unobserved values to be used. With more complex models (correlation

structures and distributional assumptions) analytical methods become more difficult to use

and simulation may be favourable. The intercept and gradient can be simulated using their

modelled distributions allowing the unobserved underlying values to be generated. The error

term can be simulated also and combined with the underlying values to give the observed

values. Calculations are then made by comparing the underlying true values with the observed

values.

Signal and noise

Glasziou and colleagues121 questioned the need for randomised controlled trials of monitoring

under certain circumstances, instead promoting understanding the background variation and

evaluating the signal to noise ratio when assessing treatment effects. They suggested large

estimated treatment effects would be required to demonstrate an effect.

Modelling methods are used with repeated test data in the hope of distinguishing ‘signal’

from ‘noise’. The ‘noise’ is normal fluctuation in test results for patients (caused by the

measurement variability of the test) and the ‘signal’ is a change in test results signifying a
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Box 7.1: Signal and noise monitoring examples.

Thompson and Pocock126 presented their findings following the analysis of repeated serum
cholesterol measurements on 14,600 men and women. Their work focussed on the impact
of within-individual variability on screening and monitoring. Using the cholesterol data
a single observed measurement did not reflect the true underlying measure. Thompson
and Pocock showed how the probability of a measure being classed as ‘high’ varied with
the true underlying value, and whether the classification was based on a single measure
or the mean value of multiple measures. The use of multiple measures was shown to
improve classification. The authors identified regression to the mean when analysing
multiple measures and variability in the measures for untreated individuals over time
leading them to doubt whether repeated measures would be able to identify the benefit
of treatment. The authors state the use of repeated measures could be ‘very discouraging’
for some patients.

Buclin et al9 defined two decision rules that could be used to guide the treatment of pa-
tients with HIV infection with antiretroviral treatment based on CD4 cell measurements
using a review of longitudinal analyses of CD4 cell trajectories. The first decision rule was
a ‘snap-shot rule’, dependent on a single CD4 measure, and the other was a ‘track-shot
rule, where multiple CD4 measures are required. The devised rules were tested using
clinical data, to minimise false findings, and recommendations were made regarding the
frequency of testing.

Bell and colleagues122 developed a framework to identify when monitoring of initial re-
sponse to treatment would be beneficial using data from RCTs. The findings showed
monitoring of initial response to treatment would only be useful when there is variation
in treatment effect between patients and not all treated patients achieved results at the
therapeutic level targeted.

Other examples of the use of mixed modelling and signal to noise ratio estimation, to
understand when it is appropriate to monitor response to treatment, thresholds or moni-
toring frequency were: monitoring of cholesterol,14,122,127 bone mineral density,123 blood
pressure,10,117,128,129 lipids,118 and diabetes.11

true change in disease state, see Box 7.1 for examples of using these models.

7.4.1.2 Joint modelling of longitudinal and outcome data

Joint latent class models

When fitting a joint latent class model subjects are split into a finite number of latent sub-

groups. The trajectory of biomarker measurements and the risk of event are specific to each

latent class, with the model allowing for the dependency of biomarker values and risk of
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event. A multinomial logistic regression model is used to assign subjects to subgroups. A lin-

ear mixed model is used to model repeated biomarker measurements given the assigned latent

class of the subject; and, a survival model is used to model the time-to-event, again given the

latent class of the subject. The model is fitted using maximum likelihood estimation.132

Examples of the use of joint latent class models can be seen in work by Proust-Lima and

Taylor133 and Li and Gatsonis,31 both applied to monitoring with prostate specific antigen

(PSA) prostate cancer recurrence, see Box 7.2.

Box 7.2: Joint latent class models example.

Proust-Lima and Taylor133 discussed the derivation of a posterior probability of recur-
rence from a joint class linear model to identify a ‘dynamic prognostic tool of recurrence’.
The posterior probability obtained from the joint latent class model gives the probability
of an event occurring between time s and time s + t (where the subject is event free at
time s). Estimating the probability of an event after a certain time requires fitting sur-
vival models to subjects at each time estimated with only covariates available at time s.
As biomarker data are often discrete, imputation techniques are used to allow predictions
of an event to be obtained at multiple time points. Proust-Lima et al also discussed the
validation of predictive tools and the lack of consensus in this area.

Li and Gatsonis31 used a joint latent class model to develop a strategy that modifies
monitoring intervals. Li and Gatsonis used a two-stage approach when fitting the joint
latent class model, where the model used to identify latent classes was fitted separately.
Bayesian Information Criteria was used to select the number of classes. The two-stage
approach has the advantage of being less computationally intensive. The uncertainty of
latent class assignment was evaluated using multiple imputation assuming latent class
was missing completely at random. For prospective studies the two-stage procedure is
repeated as new information is collected (measures, events and study end). Li and Gat-
sonis demonstrated the method using simulated PSA measurements for 150 patients with
prostate cancer with testing to identify recurrence. Predictions from the model inform
a utility function which was used to identify the appropriate monitoring intervals for
each patient. The expected value of the utility function used is Ũt = aP (event at time t)
where a is a negative value if the event occurs and zero otherwise. The optimal monitor-
ing interval can be identified for individuals or groups of patients; the authors advocated
optimising by latent class as these intervals can then be adapted for new patients.

Bayesian hierarchical change-point models

Bayesian hierarchical change-point models model the trajectory of test results prior to, at

the time of and after the onset of disease simultaneously. Models also allow for the within-

individual correlation, as individuals have multiple test measurements, between-subject vari-
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ation in trajectories and the random change-point. A piecewise or segmented linear model is

used where the parameters of the model are the trajectory of test results prior to the change-

point, the test result value at the time of the change point, the time of the change-point and

the trajectory of results after the change-point; each of the parameters is a random effect

within the model. Non-informative prior distributions are used for the parameters in the

model134,135 see Box 7.3.

Box 7.3: Bayesian hierarchical change-point models examples.

Slate and Turnbull134 demonstrated the use of Bayesian hierarchical change-point mod-
els analysing PSA data. The authors state the advantages of using Bayesian hierarchical
change-point models are ‘borrowing of strength’ when estimating parameters specific to
individuals whilst also accounting for the correlation of measures and, by obtaining poste-
rior distributions using Gibbs sampling, the model can give the probability an individual
has reached the change-point.

Bellera et al135 stated additional advantages of this type of modelling are the ability to
provide precise estimates compared with simpler models, the parameters used by the
model are all of clinical importance, estimates of test measurement variability can be
estimated as a function of test result value, and the model is flexible. Bellera and col-
leagues, however, commented that the model can be influenced by the timing of and the
number of test measurements for individuals with the potential for this to cause bias, as
participants with more results will provide more information for the model and partici-
pants with more test results may be different to those with fewer test results. Subsequent
work by Bellera et al119 used an empirical simulation approach (see Section 7.4.1.5 for
further detail).

Inoue et al136 combined longitudinal PSA measurements from three different studies us-
ing a non-linear Bayesian hierarchical model. At the individual level a non-linear model
was used to model PSA over time and the hierarchical model component then accounted
for the variability between studies.

7.4.1.3 Non-linear mixed models

Non-linear mixed models allow more flexibility in modelling as linearity of the parameters

is not necessary which may be appropriate for modelling longitudinal test data in some

conditions. Multiple measures for each individual can also be accounted for by non-linear

mixed models with the incorporation of random effects, see Box 7.4 for examples.
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Box 7.4: Non-linear models examples.

Subtil and Rabilloud137 used a non-linear mixed model to evaluate PSA measures to
identify recurrence of prostate cancer after initial treatment. To model the trajectory
of PSA measures a non-linear exponential decay growth model was used. This model
contained parameters for the intercept of PSA trajectory and the trajectories before
and after recurrence, with the parameters included as random effects. The model was
empirically derived and was used to model the exponential increase in PSA occurring at
the time of recurrence. The non-linear model was preferred to the change-point model,
in this case, as the non-linear model was thought to be more flexible and allowed for
exponential increase of PSA measures after recurrence. Subtil and Rabilloud discussed
the potential issues introduced by data showing random fluctuation in PSA measures
and suggested using the student t-distribution and a Dirichlet process assumption to
both reduce the weighting of outlying PSA measures used in the model and allow the
distribution of the random effects to be non-normal.

Taylor et al138 demonstrated a modelling approach, again in the area of PSA monitoring
after treatment for prostate cancer. The approach used a model for cure, a model of PSA
measures and a model of clinical events. For the modelling of serial PSA measurements a
non-linear hierarchical model, similar to the model used by Subtil and Rabilloud,137 was
used.

7.4.1.4 Alternative modelling approaches

Alternative modelling approaches were used by Thiébaut et al130 and Wolbers et al131 in the

area of CD4 cell monitoring to understand when to initiate treatment for patients with HIV,

see Box 7.5. These approaches combined piecewise linear models with Cox models.

7.4.1.5 Simulation studies

With knowledge of the progression of disease and the variability of the test used to monitor

the disease, data can be simulated allowing the evaluation and comparison of decision rules

and testing frequency, see Box 7.6.

The approaches outlined by Sölétormos et al120 and Bellera et al29 used the biomarker values

with measurement error excluded as the underlying disease state without any link between

biomarker values and true disease state, as measured by the gold standard. The ability of

decision rules were assessed without accounting for the meaning of the underlying biomarker

values in terms of disease state.
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Box 7.5: Alternative modelling approaches examples.

Thiébaut et al130 modelled time to an AIDS event or death after the initiation of highly
active antiretroviral therapy for patients with HIV, using a two-stage approach. Mea-
sures of CD4 cell count and HIV RNA were firstly modelled using a piecewise linear mixed
model with a slope estimated from the initiation of treatment until two months and from
two months after treatment onwards. This model was used to account for measurement
error and avoid making further assumptions of the observed measures. The results of
this model were then used as time dependent covariates in a Cox proportional hazards
model.

Wolbers et al131 modelled the survival of patients with HIV after the initiation of com-
bination antiretroviral therapy with emphasis on the prognostic value of CD4 cell count
change prior to beginning treatment. For patients with two or more CD4 cell measure-
ments, a slope was estimated using linear mixed effects modelling (sensitivity analyses
also use joint modelling of CD4 measures and separate estimates for each patient) with
the value of the slope then used as a prognostic factor in a Cox proportional hazards
survival model, modelling time from initiation of combination antiretroviral therapy to
AIDS event or death.

7.4.1.6 Analysis of cohort data

Existing longitudinal data sets can allow comparison of monitoring approaches. In some

disease areas data sets from multiple cohort studies exist and it is possible to combine the

data and analyse the pooled group of patients. With information on the patients within the

cohort studies it is possible to use the combined data as a proxy for trial data and compare

potential monitoring strategies or components of strategies, see Box 7.7 for details.

7.4.1.7 Evaluation of monitoring strategies

Measuring the performance of a monitoring strategy is different, and more complex, compared

to testing at a single time point, due to repeated testing and the potential for patients to

change disease state.

DeLong et al139 discussed the sensitivity and specificity of a monitoring strategy in the

situation where patients were permitted to change disease state between monitoring test

applications and patients with disease are removed from the sample after their first result

whilst diseased, as the purpose of the test would be to detect the onset of disease. DeLong and
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Box 7.6: Simulation studies examples.

Sölétormos et al120 used simulation to compare rules used for monitoring of cancer anti-
gen 15.3 (CA15.3) and carcinoembryonic antigen (CEA) to identify metastatic breast
cancer. The approach simulated observed monitoring results for individuals with pro-
gression and those in a stable state. Simulations were produced using 48 permutations
of background variation value and cutoff/starting concentration value; 12 permutations
of background analytical and biological variation, and progression rate given concentra-
tions start in the middle of a reference interval; and, 12 permutations of background
variation value and progression rate, given concentrations start above the criteria cutoff.
Previously established criteria were then compared using the simulated data. Sölétormos
and colleagues stated there is great potential for using simulation to compare progression
criteria, although the approach demonstrated used only specific values of starting con-
centration, analytical and biological variation, and progression rate. The results showed
the extremes of the abilities of the guidelines rather than how these would perform in the
population they would be used to monitor, and, furthermore, only established guidelines
were tested.

Bellera et al29 used an empirical simulation approach to estimate the sensitivity and
specificity of a decision rule stating three consecutive rises in PSA measure should con-
stitute a positive result indicating possible recurrence of prostate cancer. Firstly, Bellera
and colleagues used Bayesian hierarchical change-point modelling (for further detail see
Section 7.4.1.2) to analyse longitudinal PSA measures for a cohort of patients. The re-
sult of this modelling process was considered the true underlying trend in PSA and the
modelling also provides an estimate of the variability of PSA measurements, allowing
empirical simulation of observed results. Sensitivity and specificity were then estimated
by comparing the simulated results with the modelling results. The authors stated an
advantage of this approach to be the flexibility in evaluating decision rules based on
consecutive increases or decreases in results as the performance of decision rules can be
evaluated for different frequencies of observations, underlying progression and variability.
The limitations of this study were that the process requires a longitudinal data set for
analysis that may not be available for all situations, only decision rules based on trends
(increases and decreases) are investigated, and this approach would not be appropriate
in cases where increases (or decreases) in the test measures are expected and the objec-
tive of monitoring is to identify progression at the point of a clinical event rather than
distinguishing stable disease from non-stable disease.

colleagues used partial likelihood to estimate test performance summaries. Other approaches

of estimating time-dependent sensitivity and specificity for ROC curve analysis are described

in Section 7.4.3.

Li and Gatsonis31 provided guidance on the evaluation of monitoring strategies, specifying

the reporting of:
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Box 7.7: Pooled analyses examples.

The When To Start Consortium124 used data from multiple cohort studies to investigate
when to start combination antiretroviral treatment for patients with HIV-1. Treatment
was started either when the CD4 cell count of a patient was at a higher value (threshold
1) or treatment would not be given until the patient reached a lower CD4 cell count
(threshold 2). As there was limited evidence comparing the use of the two strategies
analysis of cohort studies was sought. The data available to the research team consisted
of cohort studies prior to and after the use of combination antiretroviral therapy. Kaplan-
Meier estimates of the probability of progression to AIDS or death based on time from
initiation of treatment and starting CD4 cell count were obtained using the data from
treated patients. Simple hazard ratios of AIDS and death were also calculated using
Cox regression, with a more complex method involving imputation also used (method
introduced by Cole et al140) allowing for lead time bias–extra time from initiation of
treatment to AIDS or death due to patients receiving treatment earlier–and unseen events
for those not receiving treatment until reaching a lower CD4 cell count (threshold 2).
The data collected prior to the use of combination antiretroviral treatment was used to
estimate the distribution of time from reaching threshold 1 to worsening to reach threshold
2. The probability of progressing to AIDS or death before having a CD4 cell count low
enough to reach threshold 2 was modelled also. Progression rates were compared and
random effects models used to estimate the decrease in CD4 cell count for the period
prior to antiretroviral therapy and for the period where antiretroviral therapy was used.

Ahdieh-Grant et al125 used the cohort approach, again, as a proxy for a trial looking
to identify the appropriate CD4 cell level at which to begin antiretroviral treatment
for patients with HIV. The authors draw attention to the disadvantage of using data
obtained by cohort studies as there is no randomisation. Ahdieh-Grant and colleagues
also discussed the issue of lead time bias, which they accounted for by splitting the
time to progression to AIDS into time from CD4 cell count being in a certain range to
beginning antiretroviral treatment and beginning antiretroviral treatment to the onset
of AIDS. Time to event analysis was used to analyse the cohort data, comparing the
patients starting antiretroviral treatment at high and low CD4 cell count levels.

(i) the total number of tests required for each patient;

(ii) the difference in how early the new strategy can detect an event compared to the

comparator strategy;

(iii) the detection rate (events detected by monitoring/events) and error rate (symptomatic

detected events/events);

(iv) the cost of monitoring examination and any required confirmatory tests;
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(v) and, the percentage of monitoring detected length

PMLD =
monitoring detected time− time at change point

time at symptomatic event− time at change point
× 100,

where the time at change point is the time the biomarker begins to change (a proxy for

the time of event).

7.4.2 Screening

The aim of screening is to benefit patients by detecting disease prior to the onset of symptoms

as is the case with monitoring. Figure 7.1 describes the development of disease and the

screening process. The detectable pre-clinical stage of disease is the time when screening

may detect asymptomatic disease; this is also known as the sojourn time. The delay time is

the period of the sojourn time when the screening has not detected disease and lead time is

the period of sojourn time after screening has detected disease. The greater the lead time,

the greater the potential benefit of screening.

Walter and Day141 discussed the biases that need to be considered when analysing screening

data. Firstly, the population that participate in screening may vary from the population that

do not participate in screening, as they may be at higher or lower risk of having the disease

the screening process aims to detect. This is likely to be less of an issue for monitoring

populations, although it is conceivable that there will be differences between those who do

participate in monitoring and those who either drop out (perceiving themselves to be at low

risk of the event in question) or who demand some form of treatment (perceiving themselves

to be at high risk of the event in question). Other biases that may affect monitoring studies

include length-biased sampling and lead time bias. Length-bias sampling occurs as patients

with more aggressive disease will be in the pre-clinical phase of disease where screening will

detect disease (sojourn time) for a shorter length of time than those with less-aggressive

disease. Screening is most likely to detect cases with a longer sojourn time, hence cases

of less-aggressive disease which will likely have a better prognosis. Lead time bias is when

survival times for screened cases appear to be greater than survival times for cases identified
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Figure 7.1: Process of screening patients (after Walter and Day141).

by different means when there is no difference in survival; the only difference is cases identified

by screening are detected earlier.

Work has focussed on estimating the duration of the pre-clinical stage of disease (Walter

and Day,141 Day and Walter142 and Etzioni and Shen143), which enabled further work into

the optimal frequency of screening (Zelen144, Lee and Zelen,145 Frame and Frame146 and

Lee et al147). Others have considered how to set the optimal decision rule for a screening

strategy using a new test when the length of the sojourn period is not known (McIntosh and

colleagues148 and McIntosh and Urban149), see Boxes 7.8 to 7.10.

7.4.3 Time-dependent ROC curves

When a test gives a binary result (positive or negative) the performance of the test is usually

assessed by calculating the sensitivity and specificity. When the result of a test is a continuous

value the performance of the test is evaluated for various cut offs by calculating the sensitivity
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Box 7.8: Estimating the duration of the pre-clinical stage of disease.

Walter and Day141 presented a method that uses the prevalence of disease at the time
of screening and the incidence of disease in the time between screening visits to estimate
a distribution for the time in a pre-clinical state and the sensitivity of screening. The
benefit of this approach is length biased sampling is accounted for. Walter and Day
discussed the effect of screening on the incidence rate of a population. The authors
assumed that prior to screening commencing the incidence rate will remain at a constant
level. After a screening test has taken place the incidence rate reduces and initially the
majority of new cases of disease will consist of individuals that have a false negative
result from the previous screening test. Until the next screening point the incident
rate will then gradually increase. Fewer cases will be seen at each successive screening
point, with the incidence rate between screening points also being lower as screening
continues. If screening were to stop the incidence rate would gradually increase to the
level prior to screening. Using these observations Walter and Day derived an expression
for the incidence at time t given the previous false negative results of the population and
the sojourn time, and from this the distribution of lead time can be obtained. Later,
Day and Walter142 published further detail of these expressions which allowed lead time
distributions to be estimated for screening strategies other than the strategy used when
the data set was collected. The authors used these expressions in analysing the Health
Insurance Plan of Greater New York (HIP) study of breast cancer where approximately
62,000 women were randomised to be offered screening or receive no screening.141,142

Etzioni and Shen143 developed the work of Walter and Day141 by using the false negative
rate, as this varies with the sojourn time, to estimate the asymptomatic period of cancer.
Estimates were produced using non-parametric methods with the EM algorithm utilised.

and specificity of the test at each possible result value and plotting sensitivity against 1-

specificity, a receiver operating characteristic (ROC) plot. The ROC plot and the areas

under the curve produced can then be used to assess the performance of the test and identify

optimal thresholds for the use of the test in practice. When allowing for time in ROC analysis,

time-dependent ROC methods are used.

Pepe and colleagues30 undertook a review of time-dependent ROC curves. The definition of

sensitivity of a test is dependent on the time when the test is performed. As it is assumed

diseased cases will present with positive test values early in the testing process it is thought

sensitivity will decrease with time. Pepe et al also discussed cumulative sensitivity, which

would provide the sensitivity for a test for an interval of time, and how this can be derived.

The false positive fraction, or 1- specificity, is problematic to define as the disease status of

individuals can change over time making it difficult to classify individuals as diseased or non-
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Box 7.9: Optimal screening frequency.

Zelen144 expanded the ideas of Day and Walter142 to calculate the optimal frequency of
screening. Zelen described the three health states of screening; patient free of disease, pa-
tient with pre-clinical disease and patient with clinically diagnosed disease. The screening
period in which a patient enters the pre-clinical disease phase was then used in deriving
the incidence and the probability of being in the pre-clinical disease phase at time t. The
benefit of Zelen’s approach over Day and Walter’s approach is the effect of cases present
at the initial screening point is accounted for. To use the derived expressions to identify
optimal screening frequencies Zelen used a weighted utility function assigning different
weights to cases observed at the first screening point, subsequent screening points and
between screening points (cases not identified by screening). A different weight was used
for the initial screening point as the initial screening point will be most affected by length
biased sampling. Using the assigned weights an equation was given to calculate the op-
timal frequency of screening observations. Zelen also provided a proof of equal time
between screening only being optimal if the sensitivity of the screening test is equal to 1.

Lee and Zelen145 developed the work on optimal screening schedules by Zelen144 and
proposed threshold and sensitivity methods to dictate appropriate screening times. The
threshold method required screening to be undertaken at time points such that the proba-
bility of being in the pre-clinical detectable state is at a pre-assigned level. The sensitivity
method defines the screening schedule based on the ratio of the number of cases the screen
is expected to detect to the number of cases that will be detected over the specified dura-
tion of screening. However, Frame and Frame146 argued the risk of disease should not be
a factor in evaluating appropriate screening frequencies. Instead, Frame and Frame ad-
vocated determining screening schedules based on knowledge of the progression of disease
and the sensitivity of the screening test used and gave a mathematical expression for the
error of a screening strategy (the proportion of cases of pre-clinical disease not identified

by screening, E), E = (1−S)
W
F , based on the relationship between the sensitivity of the

screening test (S), the sojourn time (W ) and the frequency of screening (F ).

Lee and colleagues147 further developed the methods of Lee and Zelen145 by incorpo-
rating mortality into the model for selecting optimal screening frequency strategies. To
predict the difference in mortality for different screening strategies the model used the
idea of stage-shift with the key assumption that survival is improved for cases identified
by screening as they are detected in at an early stage of disease compared with cases
identified by usual care. The model predicting mortality assumes the natural history of
disease is progressive and benefits of early detection are due to stage-shift in diagnosis.

diseased, especially in situations where all individuals will have an event at some point. One

approach is to choose a time point specific to the context assessed and individuals are treated

as non-diseased if they are free of the event at the specified time (the static false positive

fraction). Another approach is to allow the false positive fraction to vary with the time
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Box 7.10: Optimal decision rules for novel tests.

McIntosh and colleagues148 and McIntosh and Urban149 provided a method for deciding
the optimal decision rule for a screening strategy when using a new test, when the length
of the sojourn period is not known. An algorithm using parametric empirical Bayes (PEB)
theory was discussed. Test values from healthy individuals collected over time were used
to estimate total, between-individual and within-individual variance and the trajectory
of test values. Using the estimates of trajectory and allowing for heterogeneity in the
population to be screened the PEB algorithm can produce person specific thresholds to
maintain a specified false negative rate (FNR) to be used at the next screening point.
The authors state the use of the PEB algorithm to generate person specific thresholds
allows earlier detection of disease without increasing the burden on healthy individuals.

since the test was performed (the dynamic false positive fraction). When using the dynamic

false positive fraction test performance may be misleading as a positive result will be falsely

positive shortly before an individual develops disease. For tests with continuous results time-

dependent ROC curves compare individuals with and without disease at each time point.

If using the dynamic false positive fraction ROC curves are difficult to interpret due to the

non-diseased group changing over time (see Boxes 7.11 and 7.12 for examples).

7.4.4 Differentiating measurement change from measurement variability

The variability of repeated test measures for an individual can be broken down into three

components: pre-analytical variability, analytical variability and individual variability.16,56

The coefficient of variation (CV) is calculated by dividing the standard deviation by the

mean and is commonly used in place of standard deviations as this allows for a reference

change value (RCV) to be calculated to reflect percentage changes rather than absolute

changes. Given the values of analytical and within-individual variation, a difference between

two results greater than the RCV suggests a real change in condition.155 For further detail

see Chapter 2.

Statistical process control methods (first developed by Shewhart) are often used in manu-

facturing and can be used for medical applications when a process can be measured directly

or via a biomarker. Statistical process control procedures measure variability across time,

where variability can be split into common cause and special cause variability (or assignable
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Box 7.11: Sensitivity and specificity.

Cai et al150 presented equivalent time dependent definitions of sensitivity and 1- speci-
ficity, but with the emphasis on the time of an event occurring, defining sensitivity and
1- specificity to be functions of time relative to the time of disease or time of an event.
The authors stated most research in the area assumed the test and assessment of disease
status are carried out simultaneously raising the issue of the predictive accuracy of a test
dependent on the time it is carried out in comparison to the onset of disease, assuming an
increase in accuracy if the test is used closer to the time of an event. Cai and colleagues
also fitted semi-parametric models using longitudinal test data to separately estimate
sensitivity and 1- specificity.

Zheng and Heagerty151 discussed sensitivity and specificity for time-dependent ROC anal-
ysis as functions of both the time of testing and the time of event. Zheng and Heagerty
also discussed the difference between estimating incident and prevalent ROC curves, re-
stricting their work to incident ROC curves.

Subtil et al152 discussed how incident sensitivity requires a test to be performed a given
number of days prior to the onset of disease and offers a way of taking the variation of
time between individuals receiving a test and developing disease into account. Subtil and
colleagues introduced a Bayesian method to allow for the interval-censored measurements.
Results of using this method compared with the method without adjustment suggested
the ‘crude’ method underestimates sensitivity.

Parker and DeLong153 provided a method to convert estimates of sensitivity and speci-
ficity for monitoring tests for ROC curve analysis. The estimates of sensitivity and
specificity used are those introduced by DeLong et al,139 which were derived using par-
tial likelihood estimation under the assumption that diseased participants can have at
most one test result when in the diseased state.

cause variability). Special cause variability is akin to signal and signifies true change in the

disease state of an individual. Common cause variability, as noise, reflects random variability

in measures.155

X-bar charts are used to display measurements over time for an individual. If a process is

stable, measurements are expected to fluctuate around the mean, and the standard deviation

of observed measures is expected to be constant over time. Estimates of the mean (µ) and

standard deviation (σ) can be taken from stable processes, with an unbiased estimate of

the standard deviation obtained using a moving range (the difference between consecutive

measures) and dividing the mean of the moving range estimates by a constant (d2 = 1.128).

Estimates of the mean and standard deviation of a stable process can then be used to identify
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Box 7.12: Modelling to produce time-dependent ROC curves.

Slate and Turnbull134 reviewed methods used to analyse repeated test data when the test
is used to screen or monitor the onset of disease in a population. These methods are used
to estimate the ROC curve for each test and the resulting ROC curves are compared.
The review discussed the use of time dependent Cox proportional hazards modelling, joint
modelling of longitudinal test data and time of diagnosis, Weibull methods to model two
time events, random effects models and integrated Onstein-Uhlnbeck (IOU) stochastic
processes, multi-state models and Markov models, and change-point models.

Zheng and Heagerty151 discussed a semi-parametric regression approach used to estimate
ROC curves and an approach based on asymptotic distribution theory, which will allows
covariates to change the distributional shape of test results.

Etzioni et al154 introduced and demonstrated two methods for modelling the effect of lead
time on the ROC curve. The first approach required modelling of longitudinal test data
and then using parameter estimates from the model the ROC curve can be estimated
at varying time points. The second approach directly modelled the ROC curve as a
function of covariates including time of the test relative to the time of diagnosis. Etzioni
and colleagues discussed how the methods can be adapted to compare two tests. The first
method required separate fitting of models using data for the two tests with comparison of
the derived ROC curves after; whereas, the approach of modelling the ROC curve directly
more easily allowed for comparison of tests. Other advantages of the direct modelling
approach were: fewer distributional assumptions with the method using the ranking of
data points, robustness and flexibility and ease of implementation.

control limits.

The control limits can be identified using many criteria and should be modified depending on

the situation; it may be target values are safety driven. Moving range charts and exponentially

weighted moving average charts (moving averages are calculated with greater weight given

to the most recent observations) are also used in similar ways. The variability of a process

can be quantified using the capability index, the difference between the upper and lower limit

divided by 6σ. The off-target ratio, ST = (µ − T )/σ where T is the target value, measures

how far the process is from the specified target value in terms of standard deviations. Process

control charts use the assumption of independent normally distributed outcomes and generally

require at least 20-25 observations.155

See examples in Boxes 7.13 and 7.14, and issues with these methods in Box 7.15.
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Box 7.13: Methods accounting for test variability.

Sölétormos et al28 used a rule based on an RCV in a computer model for monitoring of
progression to metastatic breast cancer with cancer antigen 15.3 (CA15.3), carcinoem-
bryonic antigen (CEA) and tissue polypeptide antigen (TPA).

Smellie57 questioned the use of the 5% significance level when evaluating differences be-
tween results, as 10% or higher levels may be more appropriate in some situations.

Petersen156 commented on how the use of RCV only considers the type I statistical error
rate and not power, which is linked to the magnitude of the change in values for an in-
dividual. Petersen et al157 discussed the importance of distinguishing between reference
intervals and decision limits.

Klee158 reviewed methods for setting analytical performance goals; these methods include
the use of guides produced by regulations and external assessment, biological variation
limits, needs of clinicians, subsequent testing and medical decision models. Klee identified
differences in the performance limits identified by the different approaches.

7.4.5 Health economic approaches

7.4.5.1 Decision analytic models

Decision analytic modelling evaluates the cost, outcomes and cost effectiveness of interven-

tions. In the case of repeated testing appropriate techniques need to be used for this evalua-

tion, see Box 7.16.

7.4.5.2 Real options approaches

Palmer and Smith169 introduced real options approaches, inspired by methods used in fi-

nancial markets, which aim to include the uncertainty around the use of a new technology

along with health economic evaluation. The approach uses the potential to delay introducing

a new technology (akin to a change in management) and the irreversibility of using a new

technology. Analyses factor in deferring using a technology and the better evidence that may

be available after deferral using expected value of perfect information methods (EVPI), see

Box 7.17.
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Box 7.14: Statistical process control and statistical rules for interpretation of sequential tests.

Tennant et al159 reviewed studies where patients were monitored using statistical process
control methods and compare the use of statistical control methods with currently used
rules and guidelines. Clinical areas found to use process control methods were: peak flow
measurements for patients with asthma, blood pressure measurements for patients with
hypertension and serum creatinine measurements for patients after undergoing a kidney
transplant.

Thor et al160 also reviewed studies using statistical control processes to monitor patients
and highlight the disadvantages of using these methods. Thor and colleagues discussed
that in some studies methods had been employed where there was a clear lack of under-
standing. The authors also commented on issues with auto-correlated measures, collection
of data and application of the methods.

Gavit et al161 discussed a slightly different approach to process control in change point
analysis. Change point analysis uses cumulative sum charts of the difference between the
mean value and the recorded value. Change points were then analysed as bootstrapping
methods are used to generate a confidence interval for the change point. The change
point method can also be used to identify differences in variability. An advantage of
the change point method is the ability to analyse non-normal data due to the lack of
distributional assumptions. Gavit and colleagues also claimed the change point method
is able to identify subtle changes that would not be picked up by control charts.

7.5 Summary and conclusions

This review revealed limited methodological literature around the design of monitoring strate-

gies. Work has focussed primarily on analysis of data where subsequently recommendations

of monitoring frequency or decision rules could be made or simulation work performed, with

both approaches being specific to the disease area researched. The area of screening has

developed methods with the focus being identifying the optimal frequency of screening which

could be used for designing monitoring strategies. There was some work on the design of

biomarker development studies which could potentially be adapted to allow for the evalua-

tion of a monitoring strategy using previously collected specimens. It appeared thresholds

are often developed by analysis of the variability of the test being used, identified by the

literature describing signal to noise ratio, biomarker development studies, statistical process

control and reference change values.

The study by Buclin et al9 showed an approach where decision rules were devised by a review
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Box 7.15: Issues for methods using test variability.

Omar et al162 discussed how useful reference change values are. Omar and colleagues
commented on issues regarding the timing of observations, as the CVI can increase as the
interval between tests increases, and auto-correlation of serial measurements. Omar and
colleagues also discussed that within-individual variability is commonly the largest com-
ponent of RCV and how estimates of CVI are usually available in the literature. Omar et
al also explained the issues with these studies as estimates of CVI are often for healthy
participants and this may not reflect the variability of participants in stable disease.

Biosca et al163 reported a study of biological variability to identify the appropriate RCV
to use for long-term monitoring of renal post-transplantation. The research group had
already conducted a biological variation study to determine the RCV values required for
short-term monitoring. These studies showed little difference between RCVs required
for short and long term monitoring; however, the RCVs obtained from studies using an
appropriate population were very different to those detected using healthy participants.

A review of the accuracy and prognostic literature of cardiac natriuretic hormone (CNH)
assays by Clerico and Emdin164 highlighted differences in analytical sensitivity across
studies carried out in differing populations. The results of accuracy measures were diffi-
cult to compare due to different gold-standards.

Box 7.16: Decision analytic models examples.

Karnon et al165 reviewed models for measuring the cost effectiveness of screening regimes
for breast, cervical and colorectal cancer. The review covered approaches including: deci-
sion trees, Markov models, MIcrosimulation for SCreening ANalysis (MISCAN), discrete
event simulation (DES) and more complex approaches, such as the Baker166 and Parmi-
giani167 approaches.

Sutton et al168 introduced comprehensive decision modelling, a combination of evidence
synthesis and decision modelling, to integrate the analysis of diagnostic test performance
and cost-effectiveness.

of the literature and then using an obtained data set and analysis of signal and noise the

rules were refined to minimise false results. Following this, recommendations of the decision

rule and frequency of monitoring could be made. Takahashi et al,117 Takahashi et al118

and Oke et al11 also used signal and noise methods when analysing data and subsequently

recommendations can be made for future monitoring strategies.

A number of applications of the signal and noise approach9–11,14,117,118,121–123,126–129 were

identified, largely in the area of treatment titration. The limitations of this approach for
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Box 7.17: Real options approaches examples.

Driffield and Smith170 further explained how these methods can be used to understand
the benefit of ‘watchful waiting’ with some monitoring of disease progression rather than
immediate treatment. The method was demonstrated using the example of the manage-
ment of abdominal aortic aneurysms. Meyer and Rees171 further developed the approach
by allowing the incorporation of patient aversion by using a Poisson process.

Shechter et al172 used a real options approach with a Markov decision model incorpo-
rated to identify the optimal time to cease monitoring and begin treatment. Shechter and
colleagues also presented an example, looking at treatment for patients with HIV, of the
errors made when the development of future technologies is not taken into consideration.

Whynes173 introduced a similar approach looking at identifying the optimal time to move
from monitoring to treatment considering the problem as a cost-minimisation exercise.
Lasserre et al174 used this type of method to investigate when to begin antiretroviral
treatments in patients with HIV-infection.

monitoring disease progression or recurrence are that rules and thresholds are devised purely

by analysing the variability of test measures and the minimisation of false findings rather

than detection of disease at the earliest point possible and the impact on patients.

The simulation approach proposed by Li and Gatsonis31 uses a joint latent class model which

combines predictions from the model along with a utility function to identify optimal moni-

toring frequencies. The results of a simulation study reported by Li and Gatsonis appeared

promising; however, the approach has not been widely adopted perhaps due to the complex

nature of the model. Other simulation approaches may also have potential under certain

circumstances, particularly if measurement error, and a link between biomarker values and

true disease state can be included.

The biases that are well documented in the screening literature are applicable to the area of

monitoring also. Length-time bias and lead time bias should be considered when analysing

monitoring data and when designing monitoring studies. There is also the issue of post-

screening noise which is again important to take into consideration when evaluating a moni-

toring strategy; the time point at which monitored and non-monitored patients are compared

should be selected to minimise the issue of incidence after the final testing point and should

also consider the number of likely events. Harm to patients is vitally important in screening
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and monitoring as this harm may be at several time points and this must be thought of when

designing strategies.

A further consideration for the analysis of monitoring data concerns the number of test mea-

surements and the timing of test measurements:135 people with more results will contribute

more data to the model but they may be very different to those with fewer results. Measure-

ment error and particularly biological variability also requires consideration. Studies have

shown that reference change values from biological variability studies of healthy participants

are not necessarily reflective of the true RCV for a diseased population. As methods to

derive test thresholds used in monitoring rely heavily on the variability of test results it is

important that estimates from biological variability studies are accurate. Also, the quality of

studies undertaken when developing new biomarkers is not always rigorous; however, there is

literature concerning the design of these studies and the evaluation of quality of these studies

that may in time improve quality.

7.5.1 Limitations

This review was not systematic, meaning this search will not have identified all methods

papers relevant to the area of monitoring. The searches were performed in 2010, so new

methods may have been published and missed. To limit missing new developments the

literature has been evaluated as it becomes available (published articles and conferences) and

included if relevant, and sources working in screening have been able to provide information

regarding current practice.115

7.5.2 Application to thesis: methods used

A simulation approach using the general model of Stevens and colleagues12 was used in

subsequent work (see Chapter 8) to investigate optimal monitoring strategies (decision rule,

threshold and duration of monitoring) for a trial evaluating a monitoring test.

A simulation approach was chosen as data were required to fit the unique situation of the
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corresponding trial (see Chapters 1 and 8). This approach used a model with a random

intercept and a random slope. Simulation of the latent test values and observed test values

allowed multiple candidate strategies to be compared, evaluating all aspects of the monitoring

strategy (test frequency, decision rule, test threshold) simultaneously. Simulation approaches

had been used to compare monitoring strategies, as identified in this review. The approach

used in this thesis allowed the latent and observed values to be modelled, taking account of

the measurement error of the test. The importance of measurement error estimates used in

the developed model were investigated through sensitivity analyses, but the analyses were

driven by differences in potential patient outcomes rather than simply controlling the false

findings, as used in other monitoring studies. The chosen approach also allowed the link

between true disease state and the biomarker to be modelled and fully incorporated.

For the evaluation of monitoring strategies, the criteria introduced by Li and Gatsonis31 was

modified.

The methods identified for screening were considered but not utilised fully as they only al-

lowed optimisation of individual components of the monitoring strategy. The biases identified

in the screening literature were taken into account when developing the monitoring model

and analysing the data. The issues raised by Bellera et al135 regarding the difference in par-

ticipants contributing large and small amounts of data to models was also considered when

analysing the data from the trial.
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Simulating monitoring data and

evaluating monitoring strategies

This work has been partly presented in the following form:
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe
C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes
J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter
P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme
C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor
S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N,
McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods
for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre
research programme including ELUCIDATE RCT. Chapter 7: Simulating monitoring data
and evaluating monitoring strategies. Programme Grants for Applied Research (2018).
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Summary

There is a need to develop monitoring strategies based on evidence of effectiveness in the

monitored population.2 An example was presented using the Enhanced Liver Fibrosis (ELF)

biomarker in managing patients with known liver fibrosis, specifically the ELUCIDATE

trial.

Existing data and expert opinion were used to estimate the progression of disease and the

performance of repeat testing. Knowledge of the true disease status in addition to the ob-

served test results for a cohort of simulated patients allowed various monitoring strategies to

be implemented and evaluated. The modelled data was validated by comparing to data from

the trial.

The monitoring strategy utilising a prediction from a linear regression model in the decision

rule and the monitoring strategy using a simple threshold decision rule performed similarly

well. The results of sensitivity analysis showed the importance of accurate data to inform

the simulation. Monitoring data can be simulated and strategies compared given adequate

knowledge of disease progression and test performance. The simulated data compared well

to the trial data.

8.1 Introduction

Although patient monitoring is a fundamental function of healthcare, incurring consider-

able cost to health care providers, the underlying methodology of monitoring is under re-

searched2,175 and there is an increased need for monitoring strategies to be systematically

developed incorporating known likely progression of disease and the performance of the mon-

itoring test to be used. Dinnes et al reviewed the evidence base for prostate specific antigen

(PSA) monitoring to identify recurrence of prostate cancer.1,176 The review identified the

lack of a systematic approach in developing a monitoring strategy, with monitoring intervals

based on standard follow-up schedules and limited evidence of consensus for the thresholds

used to initiate treatment.1
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Stevens et al12 discussed various statistical models of the transition between the maintenance

and re-established control phases of monitoring (the process of detecting when a disease is

out of control leading to a change in management, for example treatment or more intensive

monitoring) and identified a general statistical model for the evolution of monitoring data

over time outlining possible sources of variation.12 This general statistical model proposes the

form of monitoring data based upon the observed values of sequential monitoring tests, the

values of measurement error and other sources of variability, and the true disease state, which

can be modelled based on epidemiological evidence but never observed, see §1.3.2.

This general model along with existing data, and evidence gathered from the literature, can

be used to simulate monitoring data and allow the evaluation of strategies for a given target

condition. The potential effect of monitoring strategies can then be evaluated and ranked,

prior to full-scale investigation.5

The example presented investigates the use of the Enhanced Liver Fibrosis (ELF) biomarker

in monitoring patients with known liver fibrosis. This modelling work was done alongside a

prospective multicentre randomised trial (the Enhanced Liver fibrosis (ELF) test to Uncover

Cirrhosis as an Indication for Diagnosis and Action for Treatable Events (ELUCIDATE)

trial177). The ELUCIDATE trial evaluates ELF for the early detection of progression from

liver fibrosis to liver cirrhosis compared to routine care, with the aim of enabling earlier treat-

ment and potentially improved patient outcomes. Participants with known liver fibrosis and

meeting a minimum ELF level at registration were recruited to the study and randomised to

receive either standard care or standard care and monitoring with the biomarker Enhanced

Liver Fibrosis (ELF). In the ELUCIDATE trial the ELF biomarker was used to detect pro-

gression in patients with liver disease so patients could be managed appropriately to prevent

complications of cirrhosis. Participants randomised to the monitoring arm received an ELF

test every six months and had a positive monitoring test if the result was 9.5 or above.

Those with a positive monitoring test received a change in patient management and those

with a negative result went forward to the next monitoring point with their management un-

changed, see Figure 8.1. As the monitoring trial was performed simultaneously, this provided

the opportunity to use information to inform the model building and allowed validation of
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the model, by comparing the simulated data to the real study data. Designing a monitoring

strategy using all available evidence should be performed prior to the conduct of a monitoring

study evaluating the strategy.

8.2 Aims and objectives

The aims of the study were to:

• develop a model for simulating and evaluating monitoring data.

• use these data to identify the optimal monitoring strategy, from candidate monitoring

strategies, for patients known to have liver fibrosis receiving repeated testing using the

biomarker ELF. Candidate strategies were selected and evaluated to:

– compare the alternative frequencies of monitoring (6 month or 12 month intervals).

– evaluate the benefit of using targeted retesting compared to no retesting.

– compare decision rules (positive results based on crossing a threshold determined

by a single value (snapshot simple threshold rule), and track-shot rules based on

absolute or relative increases from first test value, absolute or relative increases

from last test value and prediction from a linear regression model).

• assess the validity of the model by comparing the estimated performance of the strate-

gies, using the simulation, to results from the trial.

8.3 Methods

The method used to simulate data followed the model introduced by Stevens et al.12 The

process involved simulating the ‘true’ underlying and unobserved data and, including mea-

surement error to generate the observed data.
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• A model was used to generate the underlying and unobserved disease progression (giv-

ing ‘latent’ biomarker values), incorporating estimates of disease progression and the

variability of these estimates, for a cohort of simulated individuals.

• Observed test result values were generated using the latent disease progression values

and estimates of test performance.

• Selected monitoring strategies were then evaluated and compared, using both the ob-

served test values and the true disease status.

Explanation of the notation used in the model can be seen in Table 8.1.

Table 8.1: Monitoring simulation model notation.

Description Notation

Individual number i
Number of initially simulated individuals n
Time across fibrosis stages t

Fibrosis progression rate pi
Mean fibrosis progression rate µp
Standard deviation of fibrosis progression rate σp

Fibrosis stage s
Starting fibrosis stage Si

ELF value each stage of fibrosis Es
Mean ELF value at each fibrosis stage µs
Standard deviation of ELF value at each fibrosis stage σs
Observed mean ELF value at each fibrosis stage µYs

Observed standard deviation of ELF value at each fibrosis stage σYs

ELF at the beginning of each fibrosis stage Eis
Gradient of ELF progression βis
Latent ‘true’ ELF Uit

Measurement error ωit
Standard deviation of measurement error σA+I

Observed ELF Yit
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8.3.1 Simulation of true disease progression

The model simulated true disease progression, generating a random slope and random inter-

cept in terms of fibrosis stage for each patient.

8.3.1.1 Fibrosis progression–random slope

The rate at which each individual patient progresses through the fibrosis stages was assumed

to be constant, throughout the stages of fibrosis. The progression rates between patients

varied; this was assumed to be normally distributed, pi ∼ N(µp, σ
2
p), where i = 1, . . . , n and

n is the number of simulated individuals; µp is the mean and σp is the standard deviation of

fibrosis progression rate. Fibrosis progression rate was restricted to only positive values, by

fixing pi at 0.01 if pi ≤ 0, meaning only increases in fibrosis stage were simulated; however,

as the increase is just 0.01 fibrosis units per year this effectively means these patients are in

a stable fibrosis state. The data source used to provide an estimate of fibrosis progression is

given in §8.3.3.1.

8.3.1.2 Fibrosis stage at entry–random intercept

Patients recruited to a trial would be in varying stages of disease at entry. Using data on the

likely distribution of fibrosis stage for a population with known liver fibrosis, a multinomial

distribution was used to simulate a starting stage for each individual Si. The data source

used to provide an estimate of fibrosis stage at entry is given in §8.3.3.2.

8.3.1.3 ELF value link to fibrosis stage

For each stage of fibrosis, the distribution of latent ELF values within fibrosis stage was

assumed to follow a normal distribution, Es ∼ N(µs, σ
2
s), where s is the fibrosis stage and

s = 0, . . . . , 4; µs is the mean value of ELF at each fibrosis stage and σs is the standard

deviation of ELF at each fibrosis stage. The data source used to provide estimates for the

ELF link to fibrosis stage is given in §8.3.3.4.
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8.3.1.4 ELF progression between fibrosis stages

The model used fibrosis stage as a continuous value. To generate ELF values for each patient

at all stages of fibrosis, ELF progression between consecutive integer fibrosis stages was

assumed to be linear. It was assumed that patients would have ELF values at the same point

of the normal distribution for each fibrosis stage (patients would remain a given number of

standard deviations from the mean). To randomly select the point of the normal distribution

that patients would follow, a value from the standard normal distribution was generated

for each patient (zi). The ELF value for each participant, at each stage of fibrosis was

Eis = µs + (ziσs), see Figure 8.2 (left).

8.3.1.5 ELF progression–random slope

The ELF values at the beginning of each fibrosis stage for each individual (Eis) and the rate

each simulated participant progressed through fibrosis (pi), were combined to calculate the

increase in ELF per year. The gradient of ELF progression was βis = (Ei,s+1 − Ei,s) pi, for

s = 0, . . . , 3. The gradient of ELF progression after stage 4 was assumed to be the same as

the gradient between stages 3 and 4, βi3 = βi4. βis is the random slope in terms of ELF

progression. The latent ELF progression values for each stage and all time points from the

onset of fibrosis was:

Uit =



Eij0 + βi0xt for time in stage 0

Eij1 + βi1xt for time in stage 1

Eij2 + βi2xt for time in stage 2

Eij3 + βi3xt for time in stage 3

Eij4 + βi4xt for time in stage 4

where t is time across all stages. This allowed the simulation of life time progression data for

a cohort of patients; see Figure 8.2 (centre). ELF values were truncated at 0 if a negative

value was simulated.
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8.3.1.6 ELF value at entry–random intercept

The simulation was conducted to prevent patients from inclusion if they would be confirmed

as having cirrhosis, or at a point of fibrosis they would not have reached in their lifetime due

to their simulated progression rate. A maximum value was used to restrict the time patients

had liver fibrosis and cirrhosis.

The time at registration for each participant was a randomly selected time point from the

time period when the individual was in their generated fibrosis stage at study entry. If the

participant was in stage 4 of fibrosis at entry, a random value from the interval of stage 4

starting to a point two years after was selected. The maximum time participants could have

fibrosis was 20 years, see Table 8.2

In the ELUCIDATE trial, a registration ELF test was given to each patient to assess eligibility.

The first ELF test included in the trial data was taken at the point of randomisation. The

start of the trial was assumed to occur three months after registration.

Table 8.2: Trial consideration estimates used in monitoring simulation modelling.

Description Estimate used in simulation modelling

Maximum time in cirrhosis
before trial entry

To avoid simulating patients that are in advanced cirrhosis, the maxi-
mum amount of time a patient has been cirrhotic for is set to 2 years.

Maximum time in fibrosis
before entry to the trial

To avoid patients being simulated at a point of disease they would not
have reached given their fibrosis progression rate the maximum amount
of time a patient has had fibrosis for at the time of entering the trial is
set at 20 years.

Time between registration
and randomisation

The time between registration ELF test and randomisation ELF test
was estimated to be 3 months.

Trial duration The duration of the trial used in all simulations was 5 years.

Time between test and
retest measures

The time between a patient having a test and retest (if the original test
was in the target range) was estimated to be 1 week.

8.3.1.7 Random slope and random intercept model in terms of ELF

The underlying disease progression for the simulated individuals, Uit, was used for the time

period starting at study entry and continuing for the duration of the trial (5 years was used)
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for simulated patients with an eligible registration ELF test value (see §8.3.2.2), see Figure

8.2 (right).

8.3.2 Simulation of observed values

The latent underlying ELF measurements were converted to observed ELF measures by the

addition of measurement error.

8.3.2.1 Measurement error

The measurement error at each observation point (ωit) was formed of within-individual vari-

ation and analytical variation. Measurement error was assumed to be normally distributed

with a mean of zero, ωit ∼ N(0, σ2
A+I). The observed ELF measurement at any given time

(Yit) was the underlying measurement plus the measurement error Yit = Uit + ωit. Values

were adjusted to equal 0 if a negative observed ELF value was simulated. The data sources

used to provide an estimate of ELF measurement error are given in §8.3.3.3.

8.3.2.2 Entry criteria

In order to fulfil trial entry criteria the observed ELF measurement at registration had to

be greater than or equal to the pre-set value of 8.4. An example of simulated observed ELF

measures can be seen in Figure 8.3.

8.3.3 Data sources

The data sources used to estimate fibrosis progression rate, fibrosis stage at trial entry,

measurement error and ELF value link to fibrosis stage are described below and also in Table

8.3.
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Figure 8.3: Observed ELF measures from monitoring data simulation.

8.3.3.1 Fibrosis progression rate

An estimate of the rate of fibrosis progression, based on data for 1,157 patients179 with chronic

hepatitis C followed up for over 40 years, was obtained from Poynard et al. When consulting

clinical experts it was suggested the estimate provided by Poynard et al179 was identified in

a population that was not comparable with that of the ELUCIDATE study (participants in

the Poynard study were thought to have less severe disease). The estimate from Poynard et

al was used primarily in the simulation model with an adjusted estimate (doubled) used for

sensitivity analyses. Estimates of fibrosis progression were measured using the METAVIR

system, assumed to approximate Scheuer fibrosis units per year, where Scheuer scores range

from 0 to 4 and measure severity of liver disease with stage 0 showing no fibrosis and 4

showing liver cirrhosis.178

8.3.3.2 Fibrosis stage at entry

A cross-sectional data set with ELF results and Scheuer fibrosis scores following liver biopsy

for 921 patients180 was used to identify the distribution of fibrosis stages in the cohort. This

data set contained fibrosis scores from histology and ELF values for participants.
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8.3.3.3 Measurement error

To estimate the error associated with each observed ELF test value, three data sources were

considered. Firstly, a longitudinal data set with repeat ELF measurements (baseline and at 3

months) for 220 patients182 was subjected to analysis of variance to identify variability at the

individual level. Without repeated analyses of test observations for individuals, this variabil-

ity was the combined analytical and within-individual variability (σ2
A+I). The manufacturer

also provided information on the measurement error of the ELF test (σ2
A+I).

181 Details of

the analysis and design of this study were unclear but it was understood that repeated mea-

surement of a small sample of healthy volunteers were used. Due to discrepancies between

the estimates from the two sources, data was obtained directly from the ELUCIDATE trial.

Analysis of variance was used to obtain an estimate of the analytical and individual level

variability for the registration and randomisation ELF values for the first 112 eligible partic-

ipants; this estimate was used in the simulation model.

8.3.3.4 ELF value link to fibrosis stage

The cross-sectional data set180 (including ELF values and fibrosis units from histology for 921

patients) was used to provide an estimate of the observed ELF value for patients at each level

of fibrosis with a corresponding measure of variability (σYs is the observed standard deviation

at each stage of fibrosis). To estimate the latent and unobserved standard deviation of ELF

values at each fibrosis stage (the between individual variation, σ2
s), the measurement error

(σ2
A+I) that would have been included in these observed measures was accounted for. As

the latent ELF variability (σ2
s) and the measurement error (σ2

A+I) are independent in the

simulation, σ2
Ys

= σ2
s + σ2

A+I , so σs =
√
σ2
Ys
− σ2

A+I .

To estimate the latent and unobserved mean ELF value at each stage of fibrosis the observed

estimates were assumed to give the mean value for the midpoint of the corresponding fibrosis

stage.
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8.3.4 Implementation of a monitoring strategy

The effect of implementing different monitoring strategies was predicted using simulated

observed values of ELF. The specified monitoring strategy (decision rule, use of retesting and

frequency of testing) changed the simulated observed values that would be measured and

how the value or values for each individual would be interpreted.

8.3.4.1 Monitoring strategies

Simple decision rule (strategy A)

The simplest decision rule was based on a single value threshold (snap-shot rule). The

threshold value was specified and any observed value over this threshold indicated a positive

result for that participant at that time point.

Retesting (strategy B)

Patients with an initial test value within 1 ELF unit of the threshold value were subjected to

retesting, an additional test would be carried out one week after the standard test. When a

patient required retesting, the mean of the original test and the retest result was calculated

and this value was subjected to the decision rules to identify positive participants. Patients

with a value above the upper limit of the range were classed as positive on the initial test

without further testing and patients below the limit of the retesting range were classed as

negative using just the initial test. The retesting component could be used with any of the

alternative decision rules.

Frequency of monitoring (strategy C)

The frequency of monitoring was varied by increasing the interval between monitoring tests,

from six months to twelve months. Varying the frequency of monitoring could be used in

conjunction with any of the alternative decision rules explained.

229



Chapter 8. Simulating monitoring data and evaluating monitoring strategies

Alternative decision rules

Decision rules incorporating previous test results as well as the current result (track-shot

rules) to identify positive patients were also considered. Absolute and relative increases from

randomisation ELF or from the last recorded ELF measure were investigated. A rule using

predictions from a linear regression model fitted using all available observed data points was

also considered.

Decisions rules based on absolute and relative increases and the linear regression method

required at least two observations to declare a participant as positive. A simple threshold

rule was used to identify participants at the first monitoring point.

Absolute increase from start value (strategy D)–A result was considered positive when

the absolute difference between the test value and the first recorded value for the patient was

greater than the threshold.

Absolute increase from last observed value (strategy E)–A result was considered

positive when the absolute difference between the test value and the last observed test value

for that patient was greater than the threshold.

Relative increase from start value (strategy F)–A result was considered positive when

the relative difference between the test value and the first recorded test value for the patient

was greater than the threshold.

Relative increase from last observed value (strategy G)–A result was considered

positive when the relative difference between the test value and the last observed test value

for that patient was greater than the threshold.

Linear regression (strategy H)–The linear regression decision rule involved fitting a lin-

ear regression model to the data for each participant at each time point, using all available

measures for that participant. The prediction from the model was then used to identify

the patient as test positive or negative. A result was considered positive when the predic-

tion (at that monitoring time point) from the linear regression model was greater than the

threshold.
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8.3.5 Evaluation of a monitoring strategy

To evaluate each strategy, the decision made from implementing the monitoring strategy

using the simulated observed values and the corresponding latent values was assessed. With

knowledge of the true underlying disease state of each participant, the performance of a

variety of monitoring strategies was evaluated. These measures were adapted from the criteria

introduced by Li and Gastonis.31

8.3.5.1 Comparison of observed results with the underlying disease state

Participants had a positive or negative test result based on the simulated observed data and

the decision rule used. The test result was then found to be either true or false depending

on the underlying disease state. The purpose of the ELF test was to identify when patients

entered compensated cirrhosis, stage 4. As it may be beneficial to identify patients a short

period of time prior to entering compensated cirrhosis, participants were classed as ‘diseased’

three months prior to this time point.

If, at a testing point, a participant was ‘diseased’, a positive result would be a true positive

and a negative result would be a false negative. If, at a testing point, the patient was not

diseased, a negative result would be a true negative and a positive result would be a false

positive. As a positive result (true or false) caused a change in management and cessation of

monitoring, patients with a positive result do not have a test result at subsequent monitoring

times. Figure 8.4 illustrates how a strategy with a simple threshold decision rule can be

evaluated.

8.3.5.2 Measuring the performance of a monitoring strategy

The performance of a monitoring strategy was assessed at each monitoring point by calcu-

lating the number of patients at each monitoring test visit, and the number of true positive,

false positive, true negative and false negative test results.
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Figure 8.4: Implementing a monitoring strategy using simulated data.

The criteria used to asses strategies across all time points (adapted from the criteria intro-

duced by Li and Gastonis.31) were:

• the number of tests carried out across the duration of the strategy–to represent resource

use;

• the positive predictive value (PPV)–to investigate how likely it was for an individual

with a positive result to be diseased;

• and, the time between the onset of compensated cirrhosis and a patient having a positive

test result–to measure the potential patient outcome.

When comparing strategies the number of tests per person for the duration of monitoring,

PPV (for all tests over the duration of monitoring) and percentage of patients with ‘delayed

diagnosis’ (delay from onset of disease to diagnosis of over 12 months) were used to measure

performance. To allow for comparisons to be made between strategies where only two of the

three measures of performance ranged, thresholds used by monitoring strategies were varied

to obtain a PPV of 25%. A PPV of 25% was chosen as this would be an acceptable PPV in

practice.183
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With the PPV kept constant, differences in the percentage of patients with delay to diagnosis

of 12 months or more and the number of tests can be compared and appropriate strategies

selected. The delay to diagnosis estimate indicates the impact of false negatives and the false

positives are controlled by fixing the PPV.

8.3.5.3 Evaluation of strategies

The strategy evaluated first was the simple threshold strategy with observations every six

months and no retest component (reference strategy). Alternative strategies were evaluated

where individual components of the reference strategy were varied: the frequency of moni-

toring, the decision rule and whether a retest value was used. The same simulated data were

used when evaluating strategies A to H, to allow a direct comparison.

Sensitivity analyses

Sensitivity analyses were carried out to estimate the effect of inaccurate information regarding

test performance and progression of liver disease. Estimates of between-individual variability,

measurement error and fibrosis progression rate were altered (halved and doubled) and the

reference strategy (strategy A) was evaluated with all aspects of the strategy kept constant

(including the threshold value). Analyses were performed with the threshold varied to give

PPV of 25% using data with altered estimates also. Further sensitivity analyses were un-

dertaken in which the fibrosis progression rate was adjusted based on expert opinion, these

were analyses of: strategies A to H as for the main analysis (with PPV held at 25%), and

the reference strategy using varied estimates to generate monitoring data.

Validation of the ELUCIDATE trial data

To assess the accuracy of the model, the mean and standard deviation of randomisation

ELF values were calculated and compared for the ELUCIDATE and simulated data sets.

Analysis of variance was used to assess between-individual and within-individual variability

of ELF values recorded for patients in the trial and the simulated results. Multilevel models

(accounting for the repeated observations for patients) were fitted, both with and without
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estimating a random slope, using the simulated observed values and observed values from the

ELUCIDATE trial (for participants with two or more ELF measures post registration) and

the results from these models were compared. In the ELUCIDATE trial ELF measurements

were not taken in the majority of cases after the participant had an ELF result of 9.5 or above.

To allow for this the ELUCIDATE and simulated data sets were modified so that each patient

with an ELF measure of 9.5 or above did not have any subsequent measures.

Sample size

Simulations were based on a cohort of 20,000 patients to give adequate precision. With 20,000

test results, if one of the performance measures gave an estimate of 15% a corresponding 95%

confidence interval would range from 14.5% to 15.5%; for an estimate of 1.5% a 95% confidence

interval would range from 1.3% to 1.7%.

8.4 Results

The same simulated data were used when evaluating strategies A to H, to facilitate direct

comparisons. For the simulated cohort of 20,000 patients, 5,314 (26.6%) would develop

cirrhosis.

8.4.1 Reference monitoring strategy (strategy A)

Table 8.4 shows the performance of the reference monitoring strategy at each testing time

point. For the reference monitoring strategy (simple threshold, observations six-monthly and

no retest component), the threshold required to maintain the PPV at 25% was an ELF value

of 10.715. This was identified using an iterative process of modifying the threshold used in

the simulation. The sensitivity and PPV calculated for the strategy were highest at the initial

observation point and the percentage of tests with a positive result was also larger, due to

cases being identified from a prevalent population at the initial testing point. The percentage

of false negative results generally rises as the strategy continues in time. Over the duration
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of the monitoring strategy 7.64 tests per person (152,724 tests in total) were performed and

6.10% of all patients had delay to diagnosis.

8.4.2 Comparing strategies with changes to individual components to the

reference strategy

Figure 8.5 and Table 8.5 show the performance of various monitoring strategies. Results of

each strategy by observation point can be found in Appendix F Tables F.1 to F.7.
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Figure 8.5: Performance of various monitoring strategies on simulated monitoring data with
PPV of 25%. A is the simple threshold strategy; B is the retest strategy; C is the decreased
monitoring frequency strategy; D is the absolute increase from initial value strategy; E is the
absolute increase from last value strategy; F is the relative increase from initial value strategy;
G is the relative increase from last value strategy; H is the linear regression strategy.
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8.4.2.1 Inferior strategies

The retest strategy (strategy B) and the strategies with decision rules based on absolute

and relative increases from the first and last recorded value (strategies D, E, F and G) were

inferior to the reference strategy, requiring more tests and causing more patients who had

progressed to liver cirrhosis to experience a delay to diagnosis, whilst achieving the same

PPV.

The main effect of the retest strategy was to increase the number of tests performed (increase

of 3.30 tests per person), with also a small increase in the percentage of patients with delay

to diagnosis of 12 months or more (absolute increase of 0.40 percentage points). Whereas,

the strategies with decision rules based on absolute and relative increases from an initial

value showed only small increases in the number of tests required (increases of 0.14 and

0.18 tests per person respectively) but larger increases in the percentage of patients with

delay to diagnosis of 12 months or more (absolute increases of 1.58% and 2.05% respectively)

compared with the reference strategy. The absolute and relative increase from last recorded

value decision rules both increased the number of tests required (by 0.98 and 1.18 per person,

respectively) and increased the percentage of patients with delay to diagnosis of 12 months

or more (to 10.42% and 11.09%).

8.4.2.2 ‘Trade-off’ strategies

The reduced monitoring frequency strategy (strategy C) showed a ‘trade-off’ between delay

to diagnosis and the number of tests required when compared with the results of the reference

strategy. The number of tests required decreased by 3.30 tests per person and the percentage

of patients with delay to diagnosis of 12 months or more increased by 0.15 percentage points

(absolute increase) compared with the reference strategy.
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8.4. Results

8.4.2.3 Superior strategies

The reference strategy was found to be inferior to the linear regression strategy. The linear

regression strategy used fewer tests (decrease of 0.12 tests per person) and had a lower

percentage of patients with delay to diagnosis of 12 months or more (absolute decrease of

0.47%) when compared to the reference strategy.

8.4.3 Sensitivity analyses

8.4.3.1 Comparing results from the reference strategy when varying estimates

of test performance and disease progression

Table 8.6 demonstrates the effect on the reference strategy of increasing (doubling) or de-

creasing (halving) parameter estimates (measurement error, between-individual variability

and fibrosis progression rate). Results for each monitoring time point using these alternate

estimates can be seen in Appendix F Tables F.8 to F.19. Analyses were performed with the

estimates varied to understand the impact of incorrect data on the simulation; these scenarios

were also analysed with the thresholds manipulated to give a PPV of 25%.

Improved estimates of test performance (decreased measurement error and decreased between-

individual variability) both improved PPV (absolute increases of 4.6% and 8.6% respectively)

and increased the number of tests required (increases of 0.73 and 0.91 tests per person) with

decreased measurement error also increasing the percentage of patients with delay to diagno-

sis (absolute increase of 1.30%). Both increased and decreased between-individual variability

reduced the percentage of patients with delay to diagnosis (absolute decrease of 0.72% and

2.12% respectively). An increased rate of fibrosis progression led to both increased PPV (ab-

solute increase of 4.2%) and percentage of patients with delay to diagnosis (absolute increase

of 1.52%) but decreased the number of tests required (decrease of 0.64 tests per person).

The largest difference in PPV was achieved by increasing the between-individual variability

(absolute decrease of 8.8%); the largest difference in number of tests required was achieved by

increasing measurement error (decrease of 1.84 tests per person); and the largest difference
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in the percentage of patients with delay to diagnosis was achieved by decreasing between-

individual variability (absolute decrease of 2.12%).

Analyses were performed with the thresholds calibrated to give PPV of 25%. The biggest

difference in delay to diagnosis of 12 months or more was changing between-individual vari-

ability. The biggest difference in the number of tests per person was caused by changing the

fibrosis progression rate.

8.4.3.2 Adjusted fibrosis progression rate

Results of evaluating strategies based on data with the adjusted estimate of fibrosis progres-

sion can be seen in Appendix F Tables F.20 to F.41 and Figure F.1. Results for strategies,

comparing to the reference strategy, appeared similar to results when using the unadjusted

estimate.

8.4.4 Comparison to ELUCIDATE data

The ELUCIDATE data contained 705 observations taken from 420 participants randomised

to the ELF monitoring arm of the trial. After removing measurements following an ELF value

of 9.5 or above for each individual (akin to the trial setting), the simulated data set contained

66,320 observations for 20,000 participants and the simulated data set with adjusted fibrosis

progression included 59,000 observations for 20,000 participants.

Analysis of the ELF value at the point of randomisation for each of the data sets showed

similar results–mean (SD) for the ELUCIDATE data was 9.57 (1.21); for the simulated data

9.71 (1.15); and for the simulated data with adjusted fibrosis progression 9.83 (1.20)–with the

mean value being slightly lower for the ELUCIDATE data than the two simulated data sets.

The between-individual standard deviation was higher for the ELUCIDATE data than for the

simulated data sets (0.93 for the ELUCIDATE data compared with 0.76 for the simulated data

and 0.82 for the simulated data with adjusted fibrosis progression). The within-individual

standard deviation was similar for the ELUCIDATE data and both simulated data sets (0.53
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Chapter 8. Simulating monitoring data and evaluating monitoring strategies

for the ELUCIDATE data and, 0.51 and 0.52 for the simulated and simulated with adjusted

fibrosis progression data sets respectively). Results of analysis of randomisation ELF and

analysis of variance on ELF at all recorded time points can be seen in Table 8.7.

Table 8.7: Comparison of monitoring simulation to trial data–results of analysis of randomi-
sation ELF and analysis of variance for ELF measurements at all time points.

ELUCIDATE data Simulated data Simulated data with
adjusted fibrosis

progression

Randomisation point ELF
ELF mean (SD) 9.57 (1.21) 9.71 (1.15) 9.83 (1.20)

Analysis of variance
Between-individual SD 0.93 0.76 0.82
Within-individual SD 0.53 0.51 0.52

The ELUCIDATE data modelled consisted of 429 observations from 153 participants, with

each participant having a minimum of 2 and a maximum of 6 ELF observations and the

average number of observations per person was 2.8. The number of observation points used

from the simulation model was therefore capped to give a similar mean number of observations

per person to the value seen in the ELUCIDATE data. Allowing more observations per

person would introduce bias as patients with slower progressing disease will have more ELF

measurements prior to having a test result of 9.5 or above. The bias seen here relates to

comments made by Bellera et al135 when analysing monitoring data, with those patients

contributing the most monitoring observations generally in a more stable disease state and

potentially different to those contributing few monitoring observation points, see Chapter

7.

The model fitted to simulated data used 26,429 observation points for 9,608 simulated partici-

pants and the simulated data with adjusted fibrosis progression rate used 23,972 observations

for 8,779 simulated participants. For the simulated data sets the mean number of observa-

tions was 2.8 for the original data set with unadjusted fibrosis progression and 2.7 for the data

set with adjusted fibrosis progression. Results of modelling the ELUCIDATE data, simulated

data and adjusted fibrosis progression estimate simulated data can be seen in Tables 8.8 and

8.9.

Modelling of the ELUCIDATE data estimated the increase in ELF per year was 0.31 (95% CI
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8.4. Results

Table 8.8: Results of multilevel model of repeated ELF measures from ELUCIDATE trial
and monitoring simulation.

Estimate 95% Confidence Interval P-value

ELUCIDATE ELF
Time since randomisation (years) 0.31 (0.22, 0.39) < 0.001
Constant 8.73 (8.63, 8.82) < 0.001

Between-individual SD 0.43 (0.36, 0.51)
Within-individual SD 0.48 (0.44, 0.52)

Simulated ELF
Time since randomisation (years) 0.24 (0.23, 0.26) < 0.001
Constant 8.84 (8.83, 8.85) < 0.001

Between-individual SD 0.42 (0.41, 0.43)
Within-individual SD 0.47 (0.46, 0.47)

Simulated ELF with adjusted fibrosis progression
Time since randomisation (years) 0.28 (0.27, 0.30) < 0.001
Constant 8.86 (8.84, 8.87) < 0.001

Between-individual SD 0.42 (0.41, 0.43)
Within-individual SD 0.46 (0.46, 0.47)

Table 8.9: Results of multilevel model (with random slope estimated) of repeated ELF mea-
sures from ELUCIDATE trial and monitoring simulation.

Estimate 95% Confidence Interval P-value

ELUCIDATE ELF
Time since randomisation (years) 0.38 (0.28, 0.49) < 0.001
Constant 8.71 (8.62, 8.80) < 0.001

Between-individual SD 0.41 (0.34, 0.49)
Within-individual SD 0.43 (0.38, 0.47)
Random slope 0.34 (0.23, 0.51)

Simulated ELF
Time since randomisation (years) 0.32 (0.30, 0.34) < 0.001
Constant 8.83 (8.82, 8.84) < 0.001

Between-individual SD 0.39 (0.38, 0.40)
Within-individual SD 0.42 (0.41, 0.42)
Random slope 0.46 (0.44, 0.48)

Simulated ELF with adjusted fibrosis progression
Time since randomisation (years) 0.36 (0.35, 0.38) < 0.001
Constant 8.84 (8.83, 8.86) < 0.001

Between-individual SD 0.38 (0.37, 0.39)
Within-individual SD 0.41 (0.41, 0.42)
Random slope 0.46 (0.44, 0.48)
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(0.22, 0.39); p-value < 0.001). Modelling of the simulated data showed the increase in ELF

per year to be comparable at 0.24 (95% CI (0.23, 0.26); p-value < 0.001) and for the simulated

data with adjusted fibrosis progression the increase in ELF per year was 0.28 (95% CI (0.27,

0.30); p-value < 0.001). When allowing for the random slope the estimate of increase in

ELF per year from the ELUCIDATE data was 0.38 (95% CI (0.28, 0.49); p-value< 0.001);

from the model this was 0.32 (95% CI (0.30, 0.34); p-value< 0.001) and from the model with

increased fibrosis progression this was 0.36 (95% CI (0.35, 0.38); p-value< 0.001).

Findings from the simulated data were broadly comparable with the trial. Comparison of the

cirrhosis outcomes for the simulated data and ELUCIDATE data (monitoring arm) showed a

higher percentage of positive results (70.7%/74.4% vs 64.2%) in the simulated data compared

with the ELF arm of the trial. The percentage of positive results in the standard care arm

was lower (4.5%). However, the percentage of diagnoses of cirrhosis after the first testing

time point were greater for the trial than the simulated data (18.7%/18.3% vs 29.9%), see

Table 8.10.

Table 8.10: Comparison of outcomes for trial and simulated data.

Outcome RCT RCT Model Model
monitoring standard care Unadjusted Adjusted

Fibrosis progression Fibrosis progression

Diagnosis of cirrhosis
during trial 281/438 (64.2%) 20/440 (4.5%) 14132/20000 (70.7%) 14876/20000 (74.4%)
Diagnosis of cirrhosis
after 1st measurement 84/438 (29.9%) 20/440 (4.5%) 3740/20000 (18.7%) 3655/20000 (18.3%)

8.5 Discussion

8.5.1 Reference strategy

At the initial testing point a monitoring strategy will be identifying cases from a prevalent

population where a large proportion of patients will have high ELF values. At subsequent

time points those with a previous positive result will not be tested and the tested population

will contain cirrhotic patients that were falsely negative at the previous testing point or

have developed cirrhosis since the last testing point (incident cases), hence the difference in
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results at the initial monitoring time point compared with others. The percentage of false

negative results generally increased with each time point as patients with low ELF trajectory

have reached compensated cirrhosis but as they have a low ELF value for their disease stage

they are required to progress further to have a positive test result using the simple threshold

decision rule. The increasing percentage of false negative results as the testing points advance

suggests the simple threshold should be reduced at later time points to account for the patients

that have false negative results using the original threshold.

8.5.2 Comparing strategies with changes to individual components to the

reference strategy

8.5.2.1 Inferior strategies

It was anticipated that the strategy with retesting would result in an increase in the number

of tests per person required compared to the reference strategy (due to the increase in tests at

each observation point) but the percentage of patients with delay to diagnosis increased also.

Due to the measurement error of both the initial and retest results some patients would have

been positive on their initial test (as with the reference strategy) but using the mean of the

initial and retest means they have a negative result. The slight increase in time to diagnosis

when using a retest strategy will have a small effect on the percentage of participants with

delay to diagnosis also.

The strategies using absolute and relative increase from last recorded value decision rules were

notably worse than the strategies using absolute and relative changes from the initial recorded

value. When using a decision rule based on detecting a magnitude of change between one

value and another, the two values used to calculate the change will both have measurement

error. Comparisons with the initial value will consider increases in ELF across the entire

monitoring period rather than increases since the previous monitoring point only. Differences

from the initial value rather than the last value were better for detecting true change over

measurement error (signal from noise).
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The simple threshold strategy outperformed the strategies comparing current to previous

values. This is linked to the index of individuality (II), the ratio of within-individual and

between-individual variation. If a test has a high II value, where an individual can have results

spanning a wide range of the possible results for a group of people, comparison to constant

thresholds will be more meaningful than for tests with low II values, where an individual

will have tests results spanning only part of the possible range of results and comparisons to

previous results will be more beneficial.35 Modelling results showed the measurement error

and between-individual variability to be similar which would lead to a large II, see Table

8.8.

8.5.2.2 ‘Trade-off’ strategies

The reduced test frequency strategy showed a large decrease in the number of tests per person

used for a small increase in the percentage of people with delay to diagnosis. It may be that

for a substantial decrease in the number of tests required, and therefore the resource used, the

slight potential for increased harm to patients (through later diagnosis) is acceptable.

8.5.2.3 Superior strategies

The linear regression strategy was the only strategy tested that showed a reduction in both

the number of tests required and the percentage of patients with delay to diagnosis. By fitting

a regression model using all previous observations for an individual and obtaining a prediction

from this, the linear regression method utilised all available data and some allowance was

made for the fluctuation in results due to measurement error. The linear regression strategy,

however, only resulted in small benefits compared with the reference strategy. This modest

improvement in monitoring strategy performance may not merit the extra complexity involved

when using the linear regression method.
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8.5.3 Estimates of test performance and disease progression (sensitivity

analyses)

The results obtained when varying estimates in the simulation model and evaluating the

reference strategy highlight the importance of accurate data. The increases and decreases

in estimates of test performance (measurement error and between-individual variability) and

fibrosis progression rate affected the three measures of performance in different ways.

8.5.3.1 Measurement error and between-individual variability

The measurement error of a test affects the number of false positive test results, with larger

measurement error resulting in more false positive results and smaller measurement error re-

sulting in fewer false positive results. Between-individual variability will affect the underlying

ELF values possible at each fibrosis stage. Providing ELF is related to fibrosis stage, if the

between-individual variability is smaller it will be easier to correctly identify fibrosis stage

from ELF resulting in fewer false positive results and more true positive results.

With fewer false positives and more true positives, PPV will increase, the number of tests

required will increase as the reduction in false positives means the number of patients cor-

rectly staying in the monitoring programme will increase. With reduced measurement error

the observed values reflect more closely the underlying disease state of each patient, if the

threshold does not adequately account for this patients will need to progress for longer to

have a test value over the threshold indicating a positive result. When the between-individual

variability is reduced, due to the increase in true positive results the percentage of patients

with delay to diagnosis will decrease.

8.5.3.2 Comparison of simulated and trial data

Analysis of the simulated and trial data showed similar results; indicating the model may

reflect patient progression well. The monitoring arm of the trial detected cirrhosis in 64.2%

of patients compared with just 4.5% in the standard care arm and the model predicted this
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would be 70.7%. Such a difference in detection suggests the false positive rate is high with

the strategy used in the trial. Had there been sufficient time this modelling exercise could

have been used to modify the strategy.

8.5.3.3 Fibrosis progression rate

Fibrosis progression rate will affect the number of diseased patients. With an increased

fibrosis progression rate more patients will have compensated cirrhosis, which will lead to an

increase in PPV. With increased fibrosis progression rate patients have positive results earlier

in the strategy and the strategy will require fewer tests to be performed. If patients have

increased fibrosis progression rate more patients will have been in cirrhosis for more than 12

months meaning more patients can be undetected for over 12 months.

8.5.4 Comparison of modelled data to ELUCIDATE

The fibrosis progression rate, adjusted (increased) due to clinical opinion, seemed reason-

able compared to the ELUCIDATE data. The estimates of between and within-individual

standard deviations for the simulated data were similar to the ELUCIDATE data. The

comparison of individuals detected as positive was higher in the simulated data, but the pro-

portion of patients identified after the first testing point was underestimated in the simulated

data, suggesting a decreased severity of disease at entry in the trial.

Overall, the simulated data compared well with the ELUCIDATE data, showing the possi-

bilities of modelling to design a monitoring strategy prior to evaluating in a trial.

8.5.5 Limitations

8.5.5.1 Data sources

The estimates from data sources used to inform the simulation model will have a large impact

on the results of the simulation model. The suitability of data was assessed, by consultation
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with clinical colleagues, and where necessary estimates were adjusted for sensitivity analyses.

However, as the model was dependent on the information it used, the quality and suitability of

data used will always be a limitation. Just one cross-sectional study provided information on

both the link between ELF values and fibrosis stage and the distribution of fibrosis stages at

entry to the trial. When looking to identify an estimate of measurement error several sources

were identified with the estimates from each found to be vastly different. The data used

to obtain the estimate of measurement error did not allow within-individual and analytical

variation to be estimated separately meaning an estimate of total imprecision was used and

applied at each time point. The data linking ELF to fibrosis stage defined fibrosis stage by

biopsy. Even though biopsy is the reference standard for staging fibrosis, biopsy is known to

not be accurate in some cases.

The ELUCIDATE trial data used to assess the simulation model was not completely ap-

propriate as the dataset contained repeated observations from 153 participants with many

participants having only two observations; more observations per person would allow the

model to better estimate the error terms and the changes over time. ELF measurements only

being taken until the point of a measurement being classed as positive also hinders the ability

of the data to estimate the true progression of ELF over time as those with higher ELF val-

ues (and possibly more developed cirrhosis) cease to have ELF recorded and so progression

beyond this ELF value cannot be assessed. Patients with lower ELF measures (below 9.5)

continued monitoring meaning they had more measures, and therefore contributed more data

to the model; however they were potentially very different to those with fewer measures, who

were likely in a worse health state.

8.5.5.2 Assumptions

A limitation of the simulation model is the number of assumptions required. Some of the

estimates used to generate the monitoring data, such as fibrosis progression rate and mea-

surement error, can be varied in magnitude and the results assessed to identify the impact of

using data of insufficient quality or suitability in the model. However, there were assumptions

in the development of the model that were not explored.
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The model assumes fibrosis progression is constant and requires patients to have positive

fibrosis progression. The model assumed linear increases in ELF between fibrosis stages,

normally distributed ELF within fibrosis stage and constant fibrosis progression rate. The

error associated with each observation was assumed to be normally distributed and a simple

error term was used. The measurement error used in the simulation may be simplistic as it

is randomly chosen from a distribution that is constant across individuals and time, and not

linked to the magnitude of the ELF value. As no alternative data or substantiated opinion

was available to enable modelling of these factors in any other way, these assumptions were

necessary for the development of the model. Longitudinal data sets with ELF values and

biopsy recorded in addition to data from a biological variability study of ELF would be

required to test these assumptions.

8.5.5.3 Trial considerations

Several criteria were required to allow the simulation model to generate data for a trial

(described in Table 8.2). Whilst these criteria were included to avoid anomalies and were

based on clinical advice, there is no data to support them.

8.5.6 Further work

A greater variety of strategies could be evaluated with multiple components assessed simul-

taneously. More complex decision rules and frequencies could be explored, for example a

simple threshold decision rule where the threshold remains the same across patients but

varies by time point within a monitoring strategy or changing the frequency of testing to be

non-constant.

It may be possible for the simulation model to be adapted to account for usual care (and

variation in usual care). If usual care could be modelled, it may be possible to compare the

use of monitoring strategies (in addition to usual care) to usual care alone and with further

simulation work estimate differences in patient outcomes between the approaches.
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The model can be used to show lifetime progression for a time-matched cohort of patients

with fibrosis (if the data is simulated with all patients starting at the onset of liver fibrosis).

These data may be beneficial to the assessment of how a strategy would perform in practice

rather than specifically in the trial setting as this would provide information on how newly

diagnosed patients would benefit from monitoring.

Well-designed studies of biological variability would mean accurate estimates of variability

(see Chapters 3 and 5) could be used in the model enabling more accurate monitoring data

to be generated and analysed.

8.6 Conclusions

Simulation can be used to obtain monitoring data for candidate monitoring strategies and to

enable an appropriate strategy to be selected for full scale evaluation.

To generate monitoring data there has to be available evidence on the natural history of the

disease and the performance of the monitoring test (measurement error and test accuracy)–

this evidence can be from existing data sets, reviewing the literature or potentially expert

opinion. If the data informing the simulation model is inaccurate the results obtained from

evaluation of strategies will not reflect the truth. Inaccurate estimates will affect results in

a complex way. The results of sensitivity analyses highlighted the importance of accurate

estimates of test performance and progression. See Chapters 2 to 5 for reviews of methods

and studies, analysis and studies of sample size for biological variability studies.

Comparison of the trial data and the simulated data provided similar results. Bias in mon-

itoring data, particularly concerning the number of recorded results, should be considered

when analysing as those contributing more monitoring data points are generally different to

those contributing few (see Chapter 7).
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Chapter 9

Discussion and Conclusions

Monitoring of disease progression and recurrence is frequently used by healthcare providers in

the management of patients with little or no evidence of effectiveness.2 The evidence required

to know how and when a test can be used to monitor disease progression and recurrence is

often poorly understood and neglected.1

The overarching questions addressed in this thesis were:

• How can optimal monitoring strategies be designed?

• What are the appropriate study designs and methods for estimating variability of tests?

To investigate estimating test variability the design, analysis and quality of reporting of stud-

ies was assessed to understand test behaviour in a monitoring setting. Results of these studies

help researchers understand how tests can be best used to monitor patients, informing deci-

sion rules for identifying test positives. To investigate how to optimise monitoring strategies,

work focussed on how monitoring strategies can be designed and evaluated prior to full scale
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evaluation in a randomised controlled trial. The purpose of this work was to optimise all

aspects of the monitoring strategy (the decision rule, threshold for a positive test, frequency

of monitoring and duration of monitoring) considering both the performance of monitoring

strategies and the impact on patient outcomes. The aim was to combine knowledge of dis-

ease progression and the ability of the monitoring test to optimise a monitoring strategy that

could then be used in a randomised controlled trial.

9.1 Overview of thesis

9.1.1 Research questions

This thesis looked broadly at two areas: the design, analysis and reporting of biological

variability studies, which provide estimates of measurement error, and the use of modelling

techniques to combine evidence and allow comparison of monitoring strategies, so that opti-

mal strategies can be used in further investigations.

How can optimal monitoring strategies be designed? What are the appropriate study designs

and methods for estimating variability of tests? In order to deliver on these main questions,

this thesis aimed to answer the following questions:

• What are the current methods for assessing biological variability?

• How well are biological variability studies designed, analysed and reported?

• Can the design and analysis of biological variability studies be improved, specifically

sample size planning and outlier detection methods? Are the current methods for anal-

ysis of biological variability studies valid, considering sample size and outlier detection?

• What are the current methods for the design and analysis of monitoring strategies?

• Can modelling methods be used to predict the performance of monitoring strategies,

to identify optimal strategies to be evaluated in an RCT?
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The first Chapter provided an overview of the issues with non-evidence based monitoring

strategies being commonly used in practice. This Chapter provided background detail on

biological variability, the standard study design and associated study designs. The broad

concepts for developing a monitoring strategy and full evaluation of a monitoring strategy

were also introduced. The eGFR-C and the ELUCIDATE studies were introduced in Chapter

1 as they were case studies used in subsequent Chapters of the thesis. This Chapter defined

the scope of the thesis and specified the main aims.

The second Chapter focussed on biological variability and introduced the key ideas to as-

sessing biological variability. This Chapter considered the design, analysis and reporting of

studies to evaluate biological variability using literature from a variety of areas, not just

laboratory sciences.

The third Chapter was a review of the current state of biological variability studies. This

review identified studies of biological variability across test areas (laboratory, physiological

and imaging) and assessed the design, analysis and reporting of these studies.

The fourth Chapter showed analysis of a biological variability case study conducted as part of

the eGFR-C study. The analysis of these data was performed in several ways to understand

the impact of the various methods identified in Chapters 2 and 3 (transformation of data and

outlier detection).

The fifth Chapter focussed on sample size for biological variability studies. Using simulation,

biological variability data were generated and the standard methods were used to analyse

these data. This simulation process allows researchers to understand the validity of results

and the potential results they may generate from studies given their chosen sample size.

The sixth Chapter investigated the impact of outlier detection methods when analysing bio-

logical variability data. Again, simulated data were used to show the effect of using different

methods to identify outliers and removing these prior to analysis. The effect of these methods,

and the validity of results, was investigated and guidance provided.

The seventh Chapter reviewed the literature in the area and related areas of developing and
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evaluating monitoring strategies. This review discussed modelling methods, signal and noise,

screening, and health economic approaches.

The eighth Chapter developed a model allowing monitoring data to be simulated and mon-

itoring strategies to be compared, with optimal strategies selected. This Chapter used the

ELUCIDATE study as a case study. The model simulated trial data and this was compared

with the actual trial data. This analysis allowed the performance of monitoring strategies to

be compared.

9.1.2 What are the current methods for assessment of biological variabil-

ity?

To understand the current methods used to assess the biological variability of tests (design,

analysis and reporting) a review of the literature was undertook in Chapter 2, a review of

studies of biological variability in Chapter 3 and a case study analysis using these methods

in Chapter 4.

There was little identified literature regarding the design of biological variability studies in

the review in Chapter 2. For laboratory based studies there appeared to be one main source

of design advice, the Fraser-Harris framework published in 1989. This design guidance was

evident in the studies of biological variability identified and reviewed in Chapter 3. The

Fraser-Harris framework offered limited information regarding sample size but there have

been recent publications commenting on this issue.

The review of the literature (Chapter 2) identified the methods for the analysis of biological

variability studies. The terminology of results differed across disciplines and the area of clin-

ical chemistry had the most well defined methods. The primary method of evaluating data

was ANOVA or a random effects model. In the laboratory setting there was additional guid-

ance regarding transforming data and outlier removal, again stemming from the Fraser-Harris

framework. When biological variability data are log-transformed prior to analysis, methods

can be used to provide ‘exact’ results (see Chapter 2). The identified literature demonstrated

the estimates of variability were different across areas, with laboratories favouring the calcu-
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lation of coefficients of variation and reference change values; whereas, in the medical setting

intra-cluster correlation coefficients were commonly referred to. Methods for similar set-

tings to biological variability include inter-intra reader analysis and Bland-Altman analysis

(comparison of methods for measuring the same thing). Chapter 3 highlighted how biologi-

cal variability analysis methods were used in the identified studies and Chapter 4 provided

examples of the use of these analyses.

Chapter 2 identified literature calling for the standardisation of terminology and notation and

a checklist for reporting. The infrequent use of confidence intervals to display uncertainty of

estimates in laboratory studies of biological variability was also identified as a concern, as

the meaning and interpretation of estimates may be affected by lack of clear reporting of the

range of likely values for estimates of variability.

9.1.3 How well are biological variability studies designed, analysed and

reported?

The main finding from the review of biological variability studies (Chapter 3) was the lack

of these studies, particularly considering their importance in identifying the optimal use of

a test in monitoring. The majority of the studies identified were for laboratory tests, rather

than physiological and imaging tests, although this may be due to the search criteria used.

There is a need to educate researchers to understand the key importance of these studies and

the vital information they provide to tailor the use of tests.

The review (Chapter 3) identified the design of biological variability studies as suboptimal,

often recruiting very few participants (particularly studies of laboratory tests) and rarely

providing any justification for the sample size chosen. Participants in biological variability

studies are often healthy participants and do not reflect the population that would receive

the test to monitor progressive or recurrent disease; estimates of variability from studies of

healthy populations may be very different to disease populations. Some studies of biological

variability did not assess analytical, within-individual and between-individual variability in

the same study and instead relied on external estimates; this practice is not appropriate and
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has the potential to result in incorrect estimates of variability.

The review of biological variability studies (Chapter 3) showed the analysis was in most cases

appropriately performed by ANOVA or random effects modelling. In the studies of biological

variability of laboratory tests additional methods were used prior to this analysis to assess

the normality of data and identify outliers, leading to transformation and deletion of outliers.

The process of assessing normality and transforming data may be performed to ensure the

methods of analysis are appropriate but may also be due to the beneficial impact on analysis

when log-transformed biological variability data are used (coefficients of variation can easily

be derived), with exact estimates produced for log-normal data.

The purpose of outlier detection and removal methods is less obvious and more concern-

ing. The purpose of these studies is to evaluate variability, with the removal of variability

prior to analysis potentially introducing bias (removing outliers generally removes variabil-

ity). Chapter 4 further investigated the impact of transformation and outlier detection us-

ing a case study, showing the results vary when these methods are employed. The use of

log-transformation needs to be complemented with the calculation of ‘exact’ results and be

clearly specified when reporting methods and results. The analysis with and without outlier

exclusion showed the impact of outlier removal often led to a reduction in the estimated

variability.

The review of studies of biological variability identified reporting was poor often due to lack

of detail regarding: sample size rationale, number of measurements, timing of repeats and

the method of analysis. Confidence intervals were rarely used to indicate the uncertainty of

estimates. It was also likely that outlier detection and deletion and normality assessment and

transformation may have been performed in some studies but the methods were not explicitly

stated.
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9.1.4 Can the design and analysis of biological variability studies be im-

proved, specifically sample size planning and outlier detection meth-

ods? Are the current methods for analysis of biological variability

studies valid, considering sample size planning and outlier detection

methods?

The review of biological variability studies (Chapter 3) highlighted the need for improvements

in areas of design, analysis and reporting. Subsequent work in Chapter 5 was developed to

provide guidance to researchers when planning biological variability studies by investigating

the impact of sample size (number of participants, observations of participants, and assess-

ments of observations of participants) on the precision of results. Chapter 6 focussed on

understanding the impact of different methods for outlier detection on the standard analysis

of biological variability data and the results obtained. The empirical analysis of a biological

variability study conducted in Chapter 4 further uncovered the issues with analysis and how

this should be reported.

Chapter 3 identified issues with the design of biological variability studies. One of the main

issues identified was sample size and this was further investigated in Chapter 5. A simulation

model was developed allowing biological variability data to be simulated and evaluated, and

using multiple simulations the bias and precision of estimates of biological variability were as-

sessed. The results showed estimates may not be valid in some test scenarios with small sam-

ple sizes, due to the bias of variability estimates. The results identified where to focus resource

to gain precision. Increasing the number of participants appeared to be most beneficial as

this increased the precision of analytical, within-individual and between-individual variability

which impacts on the precision of all measures of coefficient of variation, the reference change

value and the index of individuality. An application was developed to carry out the simulation

and guide researchers, https://alicesitch.shinyapps.io/bvs_simulation/.

Chapter 6 investigated one of the concerns regarding analysis of biological variability data,

which was the use of outlier detection methods and deletion of the measures identified. The

results of this simulation study showed, with log-normally distributed data, outlier detection
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methods generally led to underestimation of the variability. Outlier detection methods in-

volving the Cochran C test and Tukey IQR rule were particularly poor. With outlying data

present the best performing outlier detection strategies were identified.

The review work in Chapter 3 and empirical analysis in Chapter 4 concluded and recom-

mended reporting of biological variability studies needs to be transparent. The Bartlett

Checklist has been developed which should improve reporting, and particularly enabling

studies of biological variability in laboratory medicine to be identified. This checklist could

be further enhanced to include the issues identified the methods for: checking normality of

data, transformation leading to the methods used to produce results, as well as whether any

methods have been used to identify and remove outliers, and any potential bias resulting

from using these methods. When outliers are detected and removed this should be fully re-

ported and it would be good practice for this analysis to be presented as a sensitivity analysis

alongside the analysis of the full data set.

The review identified confidence intervals were rarely given for estimates of biological variabil-

ity; Chapter 2 provides the formulas for these confidence intervals and an application was de-

veloped alongside the simulation work in Chapter 5 allowing researchers to easily calculate and

visualise these for a range of sample sizes (https://alicesitch.shinyapps.io/bvs_cis).

Reporting of confidence intervals indicates the uncertainty of estimates and allows results

from separate studies to be compared.

9.1.5 What are the current methods for the design and analysis of moni-

toring strategies?

The review of monitoring and monitoring related literature (Chapter 7) identified a paucity

of research, with the few relevant studies reporting an analysis or simulation of a particu-

lar monitoring situation; most studies simply offered a standard method for designing and

analysing a monitoring strategy. The review identified a general model of monitoring data,

with the observed values comprising of the true (unobserved) value and the measurement

error.
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In the published literature on screening tests, methods focussed on identifying the optimal

frequency of screening. The review identified thresholds are often developed using variability

data, especially in the area of treatment titration. Whilst variability information is necessary

when developing a monitoring strategy, it is important to include considerations such as

impact on patient health for monitoring progressive and recurrent disease. The literature

review also highlighted the potential biases in monitoring data.

9.1.6 Can modelling methods be used to predict the performance of mon-

itoring strategies, to identify optimal strategies to be evaluated in

an RCT?

Chapter 8 introduced a model for monitoring data allowing observed test data and ‘true’

underlying and unobserved data to be generated. Monitoring data were generated using

knowledge of disease progression, accuracy of the monitoring test and variability of the mon-

itoring test. Monitoring strategies were then evaluated using the observed data to give a

test outcome and the underlying ‘true’ value to indicate the true disease state. Monitoring

strategies were defined specifying the decision rule, test threshold, frequency and duration of

monitoring. Decision rules using a simple threshold for all participants, relative and absolute

increase from last and first measure for each individual, including a retest component and

using predictions from a linear regression model were compared. For the ELUCIDATE case

study, the best performing strategy was the linear regression strategy with similar results for

the simple threshold strategy. Comparing the simulated data with the ELUCIDATE data

showed the results were similar and the simulation model may have been able to identify

a preferable monitoring strategy for the trial, with a higher threshold used to reduce false

positive results.
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9.2 Strengths and Limitations

9.2.1 Strengths

The work presented in this thesis looks at an under researched area where non evidence based

practice is a common occurrence. The importance of understanding biological variability and

the impact of this information on how tests are used for monitoring is under-acknowledged,

thus under-utilised.

Biological variability studies are often small niche projects in laboratories. This thesis offers a

coherent statistical review of methods which will help researchers in this field understand why

they are using these methods and challenge the specific ways these methods are employed.

Guidance and understanding will improve the design, analysis and reporting of biological

variability studies.

The sample size simulation work allows researchers to plan biological variability studies ac-

cording to the precision of all estimates of biological variability, adding to the previous knowl-

edge in this area. Also the application for calculating confidence intervals may help with the

reporting of estimates. Guidance on the issues associated with outlier detection will help

understanding of the potential problems when using these methods and enable researchers

to use these approaches when necessary and with appropriate caution.

The further simulation work focusses on the whole monitoring strategy and evaluates mon-

itoring test performance. This approach allows all aspects of a monitoring strategy to be

evaluated rather than each component in isolation. Optimal strategies can then be selected

for further evaluation.

9.2.2 Limitations

Chapters 2, 3 and 7 provide reviews of the literature for assessing biological variability, bio-

logical variability studies and monitoring and monitoring-related methodology respectively.

These reviews were not systematic reviews. The purpose of the literature reviews (Chapters 2
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and 7) was to understand the main methods available and a systematic review would not have

been an efficient way to locate this information. The purpose of Chapter 3 was to understand

the current state of the field of biological variability studies. These studies were difficult to

identify, especially studies of physiological and imaging tests. It may be laboratory studies

are over represented in the review of biological variability studies as these were the studies

easily located due to the recorded and updated Westgard QC database. A systematic review

may have identified more biological variability studies to enhance this review.

Chapter 4 used a single case study for empirical analysis. This case study had multiple

outcomes but all of these were related to kidney function. This case study also focussed on

laboratory tests and analyses of physiological and imaging tests were not performed. The

sample size for the eGFR-C study was small with only 20 participants, four observations

of each participant and analysis in duplicate; however, this is reflective of these studies in

practice.

Chapters 5 and 6 presented simulation studies to understand the precision of estimates of

results using simulated data which are normally or log-normally distributed. These distri-

butions were used so the estimated result from the simulation could be compared with the

expected result. However, it is unlikely real biological variability data will perfectly follow

these distributions. Use of the sample size application requires researchers to input estimates

for each level of variability, which may not be known.

Chapter 8 produced a model which was dependent on many data sources and assumptions.

Data required for this model included natural progression of disease (case mix at study

entry and an estimate of the rate of progression), the performance of the test (accuracy,

specifically the link between biomarker and disease stage) and the measurement error of the

test (biological variability estimates). Limited data sources were available to contribute these

data. It is unlikely such an array of data would be available in many clinical areas for many

tests. The model assumed linear progression between stages of disease, which may not be

fully appropriate.
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9.3 Implications for practice

The work presented in this thesis emphasises the importance of estimating biological vari-

ability and the potential studies of biological variability have to impact on development of

evidence based approaches to monitoring disease progression and recurrence. Highlighting

the importance of these studies will not just increase the quality of the design, analysis and

reporting but also the number of these studies conducted and the variety of settings these

studies are conducted in. Researchers need to understand the importance of having good es-

timates of biological variability particularly for monitoring purposes, as do funders, as this is

an area that can be vastly improved for limited resource. The results of biological variability

studies may also show a test is not fit for monitoring prior to full scale evaluation limiting

further cost.

This thesis allows better planning of biological variability studies. The issues identified in the

review of biological variability studies and the empirical analyses need to be communicated

to researchers in this area. The application developed to help researchers plan the sample size

of biological variability studies considering the precision of estimates gives usable guidance

which has the potential to greatly improve these studies. The application for confidence

intervals for some biological variability estimates provides a tool for improving the reporting

of uncertainty for these studies.

This thesis also provides recommendations to improve the analysis of biological variability

studies with researchers empowered by further understanding of the methods and the issues

related to outlier detection. The work on outlier detection also highlights the need for caution

when interpreting results from studies that have used outlier detection methods.

The methods for planning and evaluating monitoring strategies prior to a trial, in terms

of performance, need refining and tailoring to the specific situations they are applied to.

However, this work shows the data required to undertake such an evaluation prior to a trial,

the small preliminary studies that should be performed when developing a strategy and the

possibilities if this information is available.
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The work presented in this thesis has provided a cohesive and complete pathway for develop-

ing an evidence-based monitoring strategy to be fully evaluated in a monitoring RCT. Figure

9.1 demonstrates the necessary evidence required to design a monitoring strategy; from proof

of principle, biological variability and accuracy studies, and using results from these studies

with natural history data to model strategies allowing selection of optimal strategies and

further evaluation using a monitoring RCT.

As monitoring RCTs are typically very expensive, following this pathway of studies can

identify monitoring tests that are not fit for purpose (due to lack of proof of principle,

high variability, poor accuracy or substandard monitoring strategy performance) early in the

process using small-scale studies and modelling. Using this pathway also ensures only optimal

tests are evaluated using monitoring RCTs.

9.4 Future research

Searches for biological variability studies indicated the need for clear labelling of these studies

and the development of search terms.

A checklist for planning studies of biological variability would be beneficial. This would

highlight the importance of sample size, choosing an appropriate population, specifying the

measures of variability to be assessed and pre-specifying the methods for analysis. The

Bartlett Checklist requires updating to reflect the additional points identified for transparent

reporting; namely the methods for outlier detection and removal. Reporting of exactly how

this has been conducted, the number of observations removed and the recommendation the

analysis of the complete data set be reported also need to be included. A risk of bias tool

could be developed to assess these studies also.

The impact of using of healthy populations to measure variability and using external sources

to obtain some measures of variability require further investigation. These issues stem from

a lack of understanding and indicated researchers in this area require further guidance when

planning biological variability studies.

265



Chapter 9. Discussion and Conclusions

Proof of principle study

Decision
to progress

Biological variability study
to estimate analytical, within-

individual and between-
individual variability in
appropriate population

Decision
to progress

Improve test or
identify new test

–Investigate causes
of variability and
limit variability

–Improve test, identify
new test, or consider
a different population

Test accuracy study
to estimate test accuracy
in appropriate population –Investigate causes

of poor accuracy and
improve accuracy

–Improve test, identify
new test, or consider
a different population

Decision
to progress

Natural history study
to gain disease progres-
sion estimates for ap-
propriate population

Modelling study
to identify optimal

monitoring strategies

Decision
to progress

–Investigate causes
of poor strategy
performance and

modify appropriately
–Improve test, identify
new test, or consider
a different population

Monitoring RCT
to evaluate the ben-

efit of monitoring

Figure 9.1: Pathway of designing monitoring studies.
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The work concerning biological variability studies could be developed to further understand

the impact of outlier detection and removal. This may be through additional empirical

analyses to understand the impact of this practice or via a simulation study, using data that

do not perfectly follow a distribution and is closer to real data.

The monitoring simulation work needs to be developed further to provide a generic case

which can be modified by researchers to develop an idea of the performance of a strategy.

The simulations performed can then have a greater degree of flexibility of strategies (changing

more than one component at a time).

When the final results of the ELUCIDATE study (long-term follow up) are obtained anal-

ysis can be undertaken to further compare the simulation model with the ELUCIDATE

data.

The monitoring simulation models can be further developed to consider the potential patient

outcomes and cost-effectiveness of monitoring strategies. Also, given the need for data from

a variety of sources, value of information analysis may be useful to understand where to focus

resource.

9.5 Conclusions

This thesis has identified key information and methods that can be used to develop moni-

toring strategies allowing monitoring of disease progression and recurrence to be evidence-

based.

In addition to the biological variability of the monitoring test, other key information for

evaluating the use of monitoring of progressive or recurrence disease is the natural history

of the disease and the accuracy of the monitoring test. Incorporating all this knowledge and

using modelling techniques allows observed monitoring data and the underlying disease state

to be simulated. These data can then be used to compare monitoring strategies in terms

of strategy performance. This approach was validated by comparing the modelled data to

observed study data.
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This thesis has highlighted the importance of biological variability studies and the estimates

obtained from them. Work needs to be done to ensure these studies are performed more often

and in a variety of clinical areas, and researchers need to understand how to design these

studies using the correct population, using the correct methods for analysis, and reporting the

methods and results in a transparent manner. Tools have been developed allowing researchers

to easily calculate confidence intervals for variance estimates and to plan studies with ap-

propriate sample sizes to understand the likely precision of key estimates. Recommendations

have also been made regarding the use of outlier detection methods when analysing biological

variability studies and the interpretation from studies that have used these methods.

Using the pathway identified in this thesis, poor monitoring tests (for example, the ELF test to

monitor progression of liver fibrosis and prostate specific antigen for monitoring recurrence of

prostate cancer) can be identified early using small-scale studies (proof of principle, biological

variability studies, test accuracy and modelling). Use of this pathway also ensures monitoring

strategies are optimised prior to full evaluation in a monitoring RCT.
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Appendix A

Biological variability studies:

review of design, analysis, and

reporting

A.1 Studies identified for review of biological variability stud-

ies
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Table A.1: Studies identified for review of biological variability studies.

ID Search Authors Year Title Journal

1 A Curtis et al184 2014 Evaluation of dried blood spots with a multiplex assay for measuring recent

HIV-1 infection

PLoS One

2 A Gabriele et al185 2014 Reproducibility of the Carpet View system: a novel technical solution for

display and off line analysis of OCT images

Int J Cardiovasc

Imaging

3 A Jimmerson et al87 2014 Development and validation of a dried blood spot assay for the

quantification of ribavirin using liquid chromatography coupled to mass

spectrometry

J Chromatogr B

Analyt Technol

Biomed Life Sci

4 A Manley et al186 2014 Comparison of IFCC-calibrated HbA(1c) from laboratory and point of care

testing systems

Diabetes Res Clin

Pract

5 A & B1 Saez-Benito Godino et al187 2014 Multicentre evaluation of glycated haemoglobin (HbA1c) of Roche

Diagnostics in Andalusia

Clin Biochem

6 B1 Wu et al188 2014 Biological variation of the osmolality and the osmolal gap Clin Biochem

7 B2 Alizai et al189 2014 Cartilage lesion score: comparison of a quantitative assessment score with

established semiquantitative MR scoring systems

Radiology

8 B2 Donati et al86 2014 Diffusion-weighted MR imaging of upper abdominal organs: field strength

and intervendor variability of apparent diffusion coefficients

Radiology

9 B2 Frings et al190 2014 Repeatability of metabolically active tumor volume measurements with

FDG PET/CT in advanced gastrointestinal malignancies: a multicenter

study

Radiology

10 B2 Giles et al191 2014 Whole-body diffusion-weighted MR imaging for assessment of treatment

response in myeloma

Radiology

11 B2 Knobloch et al192 2014 Arterial, venous, and cerebrospinal fluid flow: simultaneous assessment with

Bayesian multipoint velocity-encoded MR imaging

Radiology

See §3.3.1 for detail of searches.

270



A
.1.

S
tu

d
ies

id
en

tifi
ed

for
rev

iew
of

b
iological

variab
ility

stu
d

ies
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12 B2 Roujol et al193 2014 Accuracy, precision, and reproducibility of four T1 mapping sequences: a

head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE

Radiology

13 B2 Suh et al194 2014 Atypical imaging features of primary central nervous system lymphoma that

mimics glioblastoma: utility of intravoxel incoherent motion MR imaging

Radiology

14 B2 Thevenot et al195 2014 Assessment of risk of femoral neck fracture with radiographic texture

parameters: a retrospective study

Radiology

15 B3 Aakre et al85 2014 Weekly and 90-minute biological variations in cardiac troponin T and

cardiac troponin I in hemodialysis patients and healthy controls

Clin Chem

16 B3 Bailey et al82 2014 Pediatric within-day biological variation and quality specifications for 38

biochemical markers in the CALIPER cohort

Clin Chem

17 B3 Karon et al196 2014 Precision and reliability of 5 platelet function tests in healthy volunteers and

donors on daily antiplatelet agent therapy

Clin Chem

18 B3 Noceti et al197 2014 Tacrolimus pharmacodynamics and pharmacogenetics along the calcineurin

pathway in human lymphocytes

Clin Chem

19 B3 Simpson et al90 2014 Use of observed within-person variation of cardiac troponin in emergency

department patients for determination of biological variation and percentage

and absolute reference change values

Clin Chem

20 C1 Beco et al198 1998 Study of the female urethra’s submucous vascular plexus by color Doppler World Journal of

Urology

21 C1 Chen et al83 2011 The assessment of voluntary pelvic floor muscle contraction by

three-dimensional transperineal ultrasonography

Archives of

Gynecology &

Obstetrics

22 C1 Heit199 2002 Intraurethral sonography and the test-retest reliability of urethral sphincter

measurements in women

Journal of Clinical

Ultrasound

23 C1 Oelke et al200 2009 Manual versus automatic bladder wall thickness measurements: a method

comparison study

World Journal of

Urology

See §3.3.1 for detail of searches.
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24 C1 Oliveira et al84 2007 Ultrasonographic and Doppler velocimetric evaluation of the levator ani

muscle in premenopausal women with and without urinary stress

incontinence

European Journal of

Obstetrics,

Gynecology, &

Reproductive Biology

25 C1 Otcenasek et al201 2002 New approach to the urogynecological ultrasound examination European Journal of

Obstetrics,

Gynecology, &

Reproductive Biology

26 C2 Naresh et al202 2013 Day-to-day variability in spot urine albumin-creatinine ratio American Journal of

Kidney Diseases

27 C2 Ristiniemi et al203 2012 Evaluation of a new immunoassay for cystatin C, based on a double

monoclonal principle, in men with normal and impaired renal function

Nephrology Dialysis

Transplantation

28 C2 Rule et al204 2013 Estimating the glomerular filtration rate from serum creatinine is better

than from cystatin C for evaluating risk factors associated with chronic

kidney disease.

Kidney International

29 C2 Sjostrom et al205 2009 Cystatin C as a filtration marker–haemodialysis patients expose its

strengths and limitations

Scandinavian Journal

of Clinical &

Laboratory

Investigation

30 C2 Walser et al206 1993 Prediction of glomerular filtration rate from serum creatinine concentration

in advanced chronic renal failure

Kidney International

31 C3 Beeh et al207 2003 Long-term repeatability of induced sputum cells and inflammatory markers

in stable, moderately severe COPD

Chest

32 C3 Herpel et al89 2006 Variability of spirometry in chronic obstructive pulmonary disease: results

from two clinical trials

American Journal of

Respiratory & Critical

Care Medicine

See §3.3.1 for detail of searches.
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33 C3 Liistro et al208 2006 Technical and functional assessment of 10 office spirometers: A multicenter

comparative study

Chest

34 C3 Madsen et al209 1996 Patient-administered sequential spirometry in healthy volunteers and

patients with alpha 1-antitrypsin deficiency

Respiratory Medicine

35 C3 McCarley et al210 2007 A pilot home study of temporal variations of symptoms in chronic

obstructive lung disease

Biological Research for

Nursing

36 C3 Timmins et al211 2013 Day-to-day variability of oscillatory impedance and spirometry in asthma

and COPD

Respiratory

Physiology &

Neurobiology

37 D Alexander et al58 2013 Prognostic utility of biochemical markers of cardiovascular risk: impact of

biological variability

Clin Chem Lab Med

38 D Alvarez et al212 2000 Components of biological variation of biochemical markers of bone turnover

in Paget’s bone disease

Bone

39 D Alvarez et al91 2003 Biological variation of seminal parameters in healthy subjects Human Reproduction

40 D Andersen et al213 2010 Comparison of within- and between-subject variation of serum cystatin C

and serum creatinine in children aged 2-13 years

Scand J Clin Lab

Invest

41 D Andersson et al214 2003 Variation in levels of serum inhibin B, testosterone, estradiol, luteinizing

hormone, follicle-stimulating hormone, and sex hormone-binding globulin in

monthly samples from healthy men during a 17-month period: possible

effects of seasons

J Clin Endocrinol

Metab

42 D Ankrah-Tetteh et al215 2008 Intraindividual variation in serum thyroid hormones, parathyroid hormone

and insulin-like growth factor-1

Ann Clin Biochem

43 D Braga et al216 2011 Revaluation of biological variation of glycated hemoglobin (HbA(1c)) using

an accurately designed protocol and an assay traceable to the IFCC

reference system

Clin Chim Acta

See §3.3.1 for detail of searches.
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44 D Brown et al217 2008 Assay validation and biological variation of serum receptor for advanced

glycation end-products

Ann Clin Biochem

45 D Browne et al218 2007 Accuracy and biological variation of human serum paraoxonase 1 activity

and polymorphism (Q192R) by kinetic enzyme assay

Clin Chem

46 D Carlsen et al95 2011 Within-subject biological variation of glucose and HbA(1c) in healthy

persons and in type 1 diabetes patients

Clin Chem Lab Med

47 D Cembrowski et al94 2010 The use of serial patient blood gas, electrolyte and glucose results to derive

biologic variation: a new tool to assess the acceptability of intensive care

unit testing

Clin Chem Lab Med

48 D Cheuvront et al219 2010 Biological variation and diagnostic accuracy of dehydration assessment

markers

Am J Clin Nutr

49 D Cho et al220 2005 The biological variation of C-reactive protein in polycystic ovarian syndrome Clin Chem

50 D Corte et al221 2010 Biological variation of free plasma amino acids in healthy individuals Clin Chem Lab Med

51 D Dednam et al93 2008 Biological variation of myeloperoxidase Clin Chem

52 D Desmeules et al222 2010 Biological variation of glycated haemoglobin in a paediatric population and

its application to calculation of significant change between results

Ann Clin Biochem

53 D Dittadi et al223 2004 Biological variation of plasma chromogranin A Clin Chemistry Lab

Med

54 D Dittadi et al224 2008 Biological variability evaluation and comparison of three different methods

for C-peptide measurement

Clin Chem Lab Med

55 D Dittadi et al225 2008 Within-subject biological variation in disease: the case of tumour markers Ann Clin Biochem

56 D Frankenstein et al62 2011 Biological variation and reference change value of high-sensitivity troponin

T in healthy individuals during short and intermediate follow-up periods

Clin Chem

57 D Garde et al226 2000 Seasonal and biological variation of blood concentrations of total cholesterol,

dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free

testosterone in healthy women

Clin Chem

See §3.3.1 for detail of searches.
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58 D González et al227 2001 Biological Variation of Interleukin-1β, Interleukin-8 and Tumor Necrosis

Factor-α in Serum of Healthy Individuals

Clin Chemistry Lab

Med

59 D Jensen et al228 2007 Biological variation of thyroid autoantibodies and thyroglobulin Clin Chem Lab Med

60 D Kristoffersen et al229 2012 A model for calculating the within-subject biological variation and

likelihood ratios for analytes with a time-dependent change in

concentrations; exemplified with the use of D-dimer in suspected venous

thromboembolism in healthy pregnant women

Ann Clin Biochem

61 D Lara-Riegos et al230 2013 Short-term estimation and application of biological variation of small dense

low-density lipoproteins in healthy individuals

Clin Chem Lab Med

62 D Martinez-Morillo et al88 2012 Reference intervals and biological variation for kallikrein 6: influence of age

and renal failure

Clin Chem Lab Med

63 D McKinley et al231 2001 Plasma homocysteine is not subject to seasonal variation Clin Chem

64 D Melzi d’Eril Aet al232 2001 Biological variation of serum amyloid A in healthy subjects Clin Chem

65 D Melzi d’Eril et al233 2003 Biological variation of N-terminal pro-brain natriuretic peptide in healthy

individuals

Clin Chem

66 D Meo et al234 2005 Biological variation of vascular endothelial growth factor Clin Chem Lab Med

67 D Moller et al235 2003 Biological variation of soluble CD163 Scand J Clin Lab

Invest

68 D Mosca et al236 2013 Analytical goals for the determination of HbA(2) Clin Chem Lab Med

69 D Nguyen et al237 2008 Within-subject variability and analytic imprecision of insulinlike growth

factor axis and collagen markers: implications for clinical diagnosis and

doping tests

Clin Chem

70 D Pagani et al238 2001 Biological variation in serum activities of three hepatic enzymes Clin Chem

71 D Pineda-Tenor et al239 2013 Biological variation and reference change values of common clinical

chemistry and haematologic laboratory analytes in the elderly population

Clin Chem Lab Med

See §3.3.1 for detail of searches.
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72 D Reclos et al240 2006 Estimation of the biological variation of glucose-6-phosphate dehydrogenase

in dried blood spots

Accreditation and

Quality Assurance

73 D Reinhard et al241 2009 Biological variation of cystatin C and creatinine Scand J Clin Lab

Invest

74 D Rohlfing et al242 2002 Biological variation of glycohemoglobin Clin Chem

75 D Rossi et al243 2013 High biological variation of serum hyaluronic acid and Hepascore, a

biochemical marker model for the prediction of liver fibrosis

Clin Chem Lab Med

76 D Serteser et al244 2012 Biological variation in pregnancy-associated plasma protein-A in healthy

men and non-pregnant healthy women

Clin Chem Lab Med

77 D Shand et al245 2006 Biovariability of plasma adiponectin Clin Chem Lab Med

78 D Talwar et al246 2005 Biological variation of vitamins in blood of healthy individuals Clin Chem

79 D Trapé et al247 2000 Reference Change Value for HbA1c in Patients with Type 2 Diabetes

Mellitus

Clin Chemistry Lab

Med

80 D Trapé et al248 2003 Reference change value for alpha-fetoprotein and its application in early

detection of hepatocellular carcinoma in patients with hepatic disease

Clin Chem

81 D Trapé et al249 2005 Biological variation of tumor markers and its application in the detection of

disease progression in patients with non-small cell lung cancer

Clin Chem

82 D Trapé et al250 2010 Determination of biological variation of alpha-fetoprotein and

choriogonadotropin (beta chain) in disease-free patients with testicular

cancer

Clin Chem Lab Med

83 D Valero-Politi et al251 2001 Annual Rhythmic and Non-Rhythmic Biological Variation of Magnesium

and Ionized Calcium Concentrations

Clin Chemistry Lab

Med

84 D van der Merwe et al252 2002 Biological variation in sweat sodium chloride conductivity Ann Clin Biochem

85 D van Hoydonck et al253 2003 Reproducibility of blood markers of oxidative status and endothelial

function in healthy individuals

Clin Chem

See §3.3.1 for detail of searches.
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86 D Vasile et al254 2010 Biological and analytical variability of a novel high-sensitivity cardiac

troponin T assay

Clin Chem

87 D Vasile et al255 2011 Biologic variation of a novel cardiac troponin I assay Clin Chem

88 D Viljoen et al256 2008 Analytical quality goals for parathyroid hormone based on biological

variation

Clin Chem Lab Med

89 D Wu et al257 2009 Short- and long-term biological variation in cardiac troponin I measured

with a high-sensitivity assay: implications for clinical practice

Clin Chem

90 D Wu et al258 2012 Long-term biological variation in cardiac troponin I Clin Biochem

91 D & E Bandaranayake et al92 2007 Intra-individual variation in creatinine and cystatin C Clin Chem Lab Med

92 D & E Delanaye et al259 2008 New data on the intraindividual variation of cystatin C Nephron Clin Pract

93 D & E Toffaletti et al260 2008 Variation of serum creatinine, cystatin C, and creatinine clearance tests in

persons with normal renal function

Clin Chim Acta

94 E Gaspari et al261 1998 Precision of plasma clearance of iohexol for estimation of GFR in patients

with renal disease

J Am Soc Nephrol

95 E Gowans et al262 1988 Biological Variation of Serum and Urine Creatinine and Creatinine

Clearance: Ramifications for Interpretation of Results and Patient Care

Annals of Clinical

Biochemistry: An

international journal

of biochemistry and

laboratory medicine

96 E Keevil et al263 1998 Biological variation of cystatin C: implications for the assessment of

glomerular filtration rate

Clin Chem

97 E Khullar et al24 1994 A novel technique for measuring bladder wall thickness in women using

transvaginal ultrasound

Ultrasound Obstet

Gynecol

98 E Kuo264 2009 Measurement of detrusor wall thickness in women with overactive bladder

by transvaginal and transabdominal sonography

Int Urogynecol J

Pelvic Floor Dysfunct

See §3.3.1 for detail of searches.
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99 E Lekskulchai et al265 2008 Detrusor wall thickness as a test for detrusor overactivity in women Ultrasound Obstet

Gynecol

100 E Panayi et al266 2010 Ultrasound measurement of vaginal wall thickness: a novel and reliable

technique

Int Urogynecol J

101 E Tubaro et al267 2013 Intra- and inter-reader variability of transvaginal ultrasound bladder wall

thickness measurements: results from the shrink study

Neurology and

Urodynamics

See §3.3.1 for detail of searches.
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Table A.2: Details of studies identified for review of biological variability studies.

Study details Study design Analysis Reporting

ID Test type Measure Tests (n) Situations (n) Participants Participants (n) Analysis CVA CVI CVG RCV II ICC

1 Laboratory Antibody

reactivity

(blood spot

assay HIV)

6 6 Non-healthy

participants

51 ANOVA/RE

(assumed)

Yes No No No No No

2 Imaging Stents (angina) 2 6 Non-healthy

participants

21 Other No No No No No Yes

3 Laboratory Ribavirin

(hepatitis C)

1 1 Unknown 4 ANOVA/RE

(assumed)

Yes No No No No No

4 Laboratory HbA1c 3 3 Non-healthy

participants

23 Other No No No No No No

5 Laboratory HbA1c 1 4 Non-healthy

participants

35 ANOVA/RE

(assumed)

Yes No No No No No

6 Laboratory Osmolal gap,

sodium,

glucose

6 6 Healthy

participants

20 ANOVA/RE

(assumed)

Yes Yes Yes Yes Yes No

7 Imaging Cartilage

legion score

3 3 Mixed

participants

77 ANOVA/RE

(assumed)

No No No No No Yes

8 Imaging Abdominal

diffusion

6 6 Healthy

participants

10 ANOVA/RE Yes No No No No Yes

9 Imaging Tumour size 19 19 Non-healthy

participants

34 ANOVA/RE No No No No No Yes

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

10 Imaging Myeloma

treatment

response

1 1 Mixed

participants

15 ANOVA/RE

(assumed)

No Yes No No No No

11 Imaging Blood and

CSF flow

1 1 Healthy

participants

10 ANOVA/RE

(assumed)

No No No No No Yes

12 Imaging Extra cellular

volume

fraction

4 8 Healthy

participants

7 ANOVA/RE No No No No No No

13 Imaging Tumour

parameters

and blood

volume

4 8 Non-healthy

participants

60 ANOVA/RE

(assumed)

No No No No No Yes

14 Imaging Bone texture 4 4 Unknown 53 ANOVA/RE

(assumed)

No No No No No Yes

15 Laboratory Cardiac

troponin

2 8 Mixed

participants

39 ANOVA/RE Yes Yes Yes Yes Yes No

16 Laboratory Biochemical

markers

38 53 Healthy

participants

29 ANOVA/RE No Yes Yes Yes Yes No

17 Laboratory Platelet

function

5 10 Mixed

participants

53 ANOVA/RE Yes Yes No No No Yes

18 Laboratory Lymphocytes 4 4 Healthy

participants

5 ANOVA/RE

(assumed)

Yes Yes No No Yes No

19 Laboratory Cardiac

troponin

1 1 Non-healthy

participants

283 ANOVA/RE No Yes Yes Yes Yes No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

20 Imaging Length and

thicknesss of

sheath and

distance

3 3 Mixed

participants

27 ANOVA/RE

(assumed)

No No No No No No

21 Imaging US pelvic floor 8 8 Mixed

participants

20 ANOVA/RE No No No No No Yes

22 Imaging US urethral

spincter

measurements

8 8 Healthy

participants

29 ANOVA/RE No No No No No Yes

23 Imaging US bladder

wall thickness

4 4 Non-healthy

participants

50 Other No No No No No No

24 Imaging US and

Doppler area

measures

8 8 Mixed

participants

63 Other No No No No No No

25 Imaging US 6 6 Non-healthy

participants

10 Other No No No No No No

26 Laboratory Albumin

creatinine ratio

1 1 Non-healthy

participants

157 Other No No No No No No

27 Laboratory Cystatin C 1 1 Healthy

participants

170 ANOVA/RE

(assumed)

No Yes No No No No

28 Laboratory eGFR 5 5 Unknown 40 ANOVA/RE

(assumed)

No Yes No No No No

29 Laboratory Serum

Cystatin C

1 1 Non-healthy

participants

134 ANOVA/RE

(assumed)

No Yes Yes No No No

30 Laboratory GFR and

creatinine

2 2 Non-healthy

participants

85 ANOVA/RE

(assumed)

No Yes No No No No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

31 Physiological Sputum and

FEV

14 14 Non-healthy

participants

12 ANOVA/RE

(assumed)

No No No No No Yes

32 Physiological Spirometry 4 4 Non-healthy

participants

7101 Other No No No No No No

33 Physiological Pulmonary

function tests

11 11 Healthy

participants

9 Other No No No No No No

34 Physiological Spirometry 1 2 Mixed

participants

20 Other No No No No No No

35 Physiological Peak flow 1 1 Non-healthy

participants

10 ANOVA/RE No No No No No No

36 Physiological Respiratory

measures

5 30 Mixed

participants

30 ANOVA/RE No Yes No No No Yes

37 Laboratory Cholesterol 9 18 Healthy

participants

15 ANOVA/RE No Yes Yes No Yes Yes

38 Laboratory Bone turnover 7 14 Mixed

participants

29 ANOVA/RE No Yes Yes Yes Yes No

39 Laboratory Seminal

parameters

6 6 Healthy

participants

20 ANOVA/RE No Yes Yes Yes Yes No

40 Laboratory Cystatin C 2 2 Unknown 30 ANOVA/RE

(assumed)

Yes Yes Yes Yes Yes No

41 Laboratory Male hormone 7 7 Healthy

participants

27 ANOVA/RE No Yes Yes No No No

42 Laboratory Hormone 5 5 Healthy

participants

10 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

43 Laboratory HbA1c 1 3 Healthy

participants

18 ANOVA/RE Yes Yes Yes Yes Yes No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

44 Laboratory Blood (RAGE) 1 1 Healthy

participants

21 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

45 Laboratory CHD risk

markers

9 9 Unknown 17 ANOVA/RE Yes Yes Yes No No No

46 Laboratory HbA1c 3 6 Mixed

participants

30 ANOVA/RE Yes Yes Yes Yes No No

47 Laboratory Electrolytes

(ICU testing)

9 9 Non-healthy

participants

ANOVA/RE

(assumed)

Yes Yes No No No No

48 Laboratory Dehydration

markers

6 6 Healthy

participants

18 ANOVA/RE

(assumed)

Yes Yes Yes Yes Yes No

49 Laboratory CRP 1 1 Mixed

participants

23 ANOVA/RE

(assumed)

Yes Yes Yes Yes No Yes

50 Laboratory Plasma blood 25 25 Healthy

participants

11 ANOVA/RE No Yes Yes Yes No No

51 Laboratory MPO 1 1 Healthy

participants

12 ANOVA/RE Yes Yes Yes No Yes No

52 Laboratory HbA1c 1 1 Non-healthy

participants

38 ANOVA/RE No Yes Yes Yes No No

53 Laboratory Plasma 1 1 Healthy

participants

22 ANOVA/RE Yes Yes Yes Yes Yes No

54 Laboratory C-peptide 1 1 Healthy

participants

15 ANOVA/RE No Yes Yes Yes No No

55 Laboratory Tumour

markers

2 4 Mixed

participants

43 ANOVA/RE No Yes No No No No

56 Laboratory Troponin T 2 4 Healthy

participants

37 ANOVA/RE Yes Yes No Yes No No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

57 Laboratory Blood markers 6 18 Healthy

participants

21 ANOVA/RE No Yes Yes No Yes No

58 Laboratory Cytokines 3 9 Healthy

participants

15 ANOVA/RE No Yes Yes Yes Yes Yes

59 Laboratory Thyroid

markers

3 4 Healthy

participants

24 ANOVA/RE No Yes Yes No No No

60 Laboratory D-dimer 1 3 Mixed

participants

36 ANOVA/RE Yes Yes Yes Yes Yes No

61 Laboratory LDL 1 3 Healthy

participants

24 ANOVA/RE Yes Yes Yes Yes Yes No

62 Laboratory klk6 CKD 1 1 Healthy

participants

4 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

63 Laboratory Vitamin B

intake

6 6 Healthy

participants

22 ANOVA/RE Yes Yes Yes No No Yes

64 Laboratory Serum amyloid

A (SSA) and

CRP

2 6 Healthy

participants

24 ANOVA/RE Yes Yes Yes Yes Yes No

65 Laboratory Brain

prohormone

1 3 Healthy

participants

16 ANOVA/RE Yes Yes Yes Yes Yes No

66 Laboratory Growth factor 3 12 Healthy

participants

28 ANOVA/RE Yes Yes Yes Yes Yes No

67 Laboratory CD163 1 2 Healthy

participants

12 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

68 Laboratory HbA(2) 1 1 Healthy

participants

17 ANOVA/RE No Yes Yes No No No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

69 Laboratory Growth factor 6 6 Healthy

participants

1103 ANOVA/RE No Yes Yes Yes Yes No

70 Laboratory Hepatic

enzymes

3 9 Healthy

participants

10 ANOVA/RE Yes Yes Yes Yes Yes No

71 Laboratory Biochemical

and

haematological

analytes

(elderly

population)

26 52 Healthy

participants

253 ANOVA/RE No Yes Yes Yes Yes No

72 Laboratory glucose-6-

phosphate

(dried blood

spots newborn

screening)

1 1 Healthy

participants

20 ANOVA/RE Yes Yes Yes No Yes No

73 Laboratory Cystatin C 2 4 Mixed

participants

39 ANOVA/RE Yes Yes Yes Yes Yes No

74 Laboratory Glycohemoglobin 2 2 Unknown 48 ANOVA/RE No Yes Yes No No No

75 Laboratory Liver fibrosis

markers

3 12 Mixed

participants

80 ANOVA/RE

(assumed)

No Yes Yes Yes No No

76 Laboratory Plasma protein 1 1 Healthy

participants

11 ANOVA/RE No Yes Yes Yes Yes No

77 Laboratory Plasma

adiponectin

3 3 Mixed

participants

20 ANOVA/RE No Yes Yes Yes Yes No

78 Laboratory Vitamins 15 15 Healthy

participants

14 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

79 Laboratory HbA1c 1 4 Non-healthy

participants

47 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

80 Laboratory AFP 1 7 Mixed

participants

115 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

81 Laboratory Tumour

markers

3 6 Mixed

participants

40 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

82 Laboratory AFP 2 2 Non-healthy

participants

28 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

83 Laboratory Magnesium

and calcium

2 2 Healthy

participants

51 ANOVA/RE

(assumed)

No Yes Yes Yes No No

84 Laboratory Sweat sodium

chloride

conductivity

1 3 Mixed

participants

55 ANOVA/RE

(assumed)

No Yes Yes No Yes No

85 Laboratory Oxidative

status

7 7 Healthy

participants

25 ANOVA/RE

(assumed)

Yes Yes Yes No No No

86 Laboratory Cardiac

troponin

1 2 Healthy

participants

20 ANOVA/RE Yes Yes Yes Yes Yes No

87 Laboratory Cardiac

troponin

1 2 Healthy

participants

ANOVA/RE Yes Yes Yes Yes Yes No

88 Laboratory Parathyroid

hormone

1 1 Healthy

participants

20 ANOVA/RE

(assumed)

Yes Yes Yes Yes Yes No

89 Laboratory Cardiac

troponin

1 2 Mixed

participants

29 ANOVA/RE Yes Yes Yes Yes Yes No

90 Laboratory Cardiac

troponin

1 1 Unknown 19 ANOVA/RE No Yes Yes Yes Yes No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

91 Laboratory Creatinine and

cystatin C

2 2 Healthy

participants

10 ANOVA/RE

(assumed)

No Yes Yes Yes Yes No

92 Laboratory Cystatin C 3 3 Healthy

participants

13 ANOVA/RE

(assumed)

Yes Yes No Yes No No

93 Laboratory Serum

creatinine,

cystatin C,

and creatinine

clearance

4 4 Healthy

participants

31 ANOVA/RE

(assumed)

No Yes Yes No No No

94 Laboratory Plasma

clearance of

iohexol (GFR)

1 6 Non-healthy

participants

24 ANOVA/RE

(assumed)

No Yes No No No No

95 Laboratory Creatinine 5 11 Healthy

participants

15 ANOVA/RE

(assumed)

Yes Yes Yes Yes Yes No

96 Laboratory Cystatin c 2 2 Healthy

participants

12 ANOVA/RE

(assumed)

Yes Yes Yes Yes No Yes

97 Imaging US bladder

wall thickness

1 1 Non-healthy

participants

10 Other No No No No No No

98 Imaging Sonography

detrusor wall

thickness

1 1 Mixed

participants

10 Other No No No No No No

99 Imaging US detrusor

wall thickness

1 1 Unknown 67 ANOVA/RE No No No No No Yes

100 Imaging US vaginal

wall thickness

6 6 Unknown 25 Other No No No No No No

See §3.3.1 for detail of searches.
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ID Test type Measure Tests Situations Participants Sample size Analysis CVA CVI CVG RCV II ICC

101 Imaging US bladder

wall thickness

1 1 Unknown 40 Other No No No No No No

See §3.3.1 for detail of searches.

288



Appendix B

Analysis of biological variability: a

case study evaluating glomerular

filtration rate (GFR)

B.1 Detailed results of analyses
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Appendix C

Sample size guidance and

justification for studies of biological

variation

C.1 Results of the normally distributed data simulation; vary-

ing sample size
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C.1. Results of the normally distributed data simulation; varying sample size
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Appendix C. Sample size guidance and justification for studies of biological variation
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Figure C.1: Log-normal biological variability sample size simulation: SD estimates from
biological variability data simulations varying sample size: SDA (left column), SDI (middle
column) and SDG (right column) estimates when varying number of participants (n1, top
row), number of observations per participant (n2, middle row), and number of replicate
assessments per observation per participant (n3, bottom row). Median is shown by horizontal
line, Q1 and Q3 shown by extremes of box; and minimum and maximum values shown by
arrows. Estimates shown in red are for the baseline strategy. The dashed line reflects the
true SD and the dotted lines are the 95% confidence intervals around the true value of the
estimate for the given sample size, using the methods of Burdick and Graybill.34
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Figure C.2: Log-normal biological variability sample size simulation: II and RCV estimates
from biological variability data simulations varying sample size: II (left column) and RCV
(right column) estimates when varying number of participants (n1, top row), number of obser-
vations per participant (n2, middle row), and number of replicate assessments per observation
per participant (n3, bottom row). Median is shown by horizontal line, Q1 and Q3 shown by
extremes of box; and minimum and maximum values shown by arrows. Estimates shown in
red are for the baseline strategy. The dashed line reflects the true II or RCV.
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Figure C.3: Log-normal biological variability sample size simulation: asymmetric RCV es-
timates from biological variability data simulations varying sample size: RCV lower bound
(left column) and RCV upper bound (right column) estimates when varying number of par-
ticipants (n1, top row), number of observations per participant (n2, middle row), and number
of replicate assessments per observation per participant (n3, bottom row). Median is shown
by horizontal line, Q1 and Q3 shown by extremes of box; and minimum and maximum values
shown by arrows. Estimates shown in red are for the baseline strategy. The dashed line
reflects the true RCV bound.
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C.2. Results for log-normal data simulation; varying sample size
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.2. Results for log-normal data simulation; varying sample size
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.2. Results for log-normal data simulation; varying sample size
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Appendix C. Sample size guidance and justification for studies of biological variation

C.3 Results of the normally distributed data simulation; vary-

ing variability
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C.3. Results of the normally distributed data simulation; varying variability
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.3. Results of the normally distributed data simulation; varying variability
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Appendix C. Sample size guidance and justification for studies of biological variation

C.4 Results of the log-normal data simulation; varying vari-

ability
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Figure C.4: Log-normal biological variability sample size simulation: SD estimates from bio-
logical variability data simulations varying test variability: SDA (left column), SDI (middle
column) and SDG (right column) estimates when varying value of SDA (top row), value of
SDI (middle row), and value of SDG (bottom row). Median is shown by horizontal line, Q1
and Q3 shown by extremes of box; and minimum and maximum values shown by arrows.
Estimates shown in red are for the baseline strategy. The dashed line reflects the true SD
and the dotted lines are the 95% confidence intervals around the true value of the estimate
for the given sample size, using the methods of Burdick and Graybill.34
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Figure C.5: Log-normal biological variability sample size simulation: CV estimates from bio-
logical variability data simulations varying test variability: CVA (left column), CVI (middle
column) and CVG (right column) estimates when varying value of CVA (top row), value of
CVI (middle row), and value of CVG (bottom row). Median is shown by horizontal line, Q1
and Q3 shown by extremes of box; and minimum and maximum values shown by arrows.
Estimates shown in red are for the baseline strategy. The dashed line reflects the true CV
and the dotted lines are the 95% confidence intervals around the true value of the estimate
for the given sample size, using the methods of Burdick and Graybill.34
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Figure C.6: Log-normal biological variability sample size simulation: II and RCV estimates
from biological variability data simulations varying test variability: II (left column) and RCV
(right column) estimates when varying value of CVA (top row), value of CVI (middle row),
and value of CVG (bottom row). Median is shown by horizontal line, Q1 and Q3 shown by
extremes of box; and minimum and maximum values shown by arrows. Estimates shown in
red are for the baseline strategy. The dashed line reflects the true II or RCV.
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Figure C.7: Log-normal biological variability sample size simulation: asymmetric RCV esti-
mates from biological variability data simulations varying test variability: RCV lower bound
(left column) and RCV upper bound (right column) estimates when varying value of CVA
(top row), value of CVI (middle row), and value of CVG (bottom row). Median is shown by
horizontal line, Q1 and Q3 shown by extremes of box; and minimum and maximum values
shown by arrows. Estimates shown in red are for the baseline strategy. The dashed line
reflects the true RCV bound.
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C.4. Results of the log-normal data simulation; varying variability
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.4. Results of the log-normal data simulation; varying variability
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.4. Results of the log-normal data simulation; varying variability
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C.5 Sensitivity analyses
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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Appendix C. Sample size guidance and justification for studies of biological variation
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C.5. Sensitivity analyses
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D.1. Outlier detection methods with outlier simulation–poor test performance
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.1. Outlier detection methods with outlier simulation–poor test performance
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D.1. Outlier detection methods with outlier simulation–poor test performance
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.1. Outlier detection methods with outlier simulation–poor test performance
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.1. Outlier detection methods with outlier simulation–poor test performance
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix D. The impact of outlier detection and removal on studies of biological variability
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D.3. Outlier detection methods with outlier simulation
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Appendix E

A review of monitoring-related

methodology literature

E.1 Summary of identified studies
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Table E.1: Summary of reviewed monitoring and monitoring related methodology literature.

Reference
Design Analysis Citations†

Test

frequency

Test

thresholds

Decision

rules

Review

of

methods

Other General

data

structure

Linear mixed

effects mod-

elling/SNR

Joint

modelling

Cost

effective-

ness

Review

of

methods

Other

Monitoring

Stevens et al

(2010)12

D D D 8

Thompson and

Pocock (1990)126

D 26

Buclin et al (2011)9 D D D D 6

Glasziou et al

(2007)121

D 195

Bell et al (2008)122 D 19

Glasziou et al

(2008)14

D 55

Bell et al (2011)127 D 8

Bell et al (2009)123 D 36

Bell et al (2009)128 D D 13

Keenan et al

(2009)10

D 40

Powers et al

(2011)129

D 50

SNR is Signal to Noise ratio.

† Citations from Scopus search 24th July 2014

areview of current practice; b reporting guidelines; c review of reporting standards; d review of literature.
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(2012)117
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Oke et al (2012)11 D D 2
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(2014)132
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Proust-Lima and
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Li and Gatsonis

(2012)31

D D 1

Slate and Turnbull

(2000)134

D 44

Bellera et al

(2008)135

D 12

Bellera et al

(2009)119

D D D 5

Inoue et al (2004)136 D 23

Subtil and Rabilloud

(2010)137

D 3

SNR is Signal to Noise ratio.

† Citations from Scopus search 24th July 2014

areview of current practice; b reporting guidelines; c review of reporting standards; d review of literature.
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(2010)131

D D 22
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(2000)120
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Bellera et al

(2008)29
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DeLong et al

(1985)139

D 20

When to start

consortium

(2009)124

D D D 389

Cole et al (2004)140 D 28

Ahdieh-Grant

(2003)125

D D 32

Screening

SNR is Signal to Noise ratio.

† Citations from Scopus search 24th July 2014

areview of current practice; b reporting guidelines; c review of reporting standards; d review of literature.
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Walter and Day

(1983)141
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Day and Walter

(1984)142
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Etzioni and Shen

(1997)143
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Zelen (1993)144 D 49

Lee and Zelen

(1998)145
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Frame and Frame

(1998)146
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Lee et al (2004)147 D 13

McIntosh et al

(2002)148
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McIntosh and Urban

(2003)149

D 36

Time-dependent

ROC curves

Pepe et al (2008)30 D D 24

Cai et al (2006)150 D 26

SNR is Signal to Noise ratio.

† Citations from Scopus search 24th July 2014

areview of current practice; b reporting guidelines; c review of reporting standards; d review of literature.
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Subtil et al
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Etzioni et al
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Variability
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(2000)28

D D 3
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Petersen (2005)156 D -

Fraser (2001)16 D -

Fraser et al (1990)56 D 57

Klee (2010)158 D 39

SNR is Signal to Noise ratio.

† Citations from Scopus search 24th July 2014

areview of current practice; b reporting guidelines; c review of reporting standards; d review of literature.
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.1. Detailed simulation results

T
ab

le
F

.7
:

M
on

it
or

in
g

si
m

u
la

ti
on

–r
es

u
lt

s
u

si
n

g
li

n
ea

r
re

gr
es

si
on

m
on

it
or

in
g

st
ra

te
g
y

(s
tr

a
te

g
y

H
)

b
y

o
b

se
rv

a
ti

o
n

p
o
in

t.

O
b

se
rv

a
ti

o
n

T
e
st

s
T

P
re

su
lt

s
F

P
re

su
lt

s
F

N
re

su
lt

s
T

N
re

su
lt

s
P

o
si

ti
v
e

re
su

lt
s

D
is

e
a
se

d
a

P
P

V
S

e
n

si
ti

v
it

y
m

o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
1
6
2

(5
.8

)
2
2
3
6

(1
1
.2

)
7
7
1

(3
.9

)
1
5
8
3
1

(7
9
.2

)
3
3
9
8

(1
7
.0

)
1
9
3
3

(9
.7

)
3
4
.2

6
0
.1

6
1
6
6
0
2

2
8
0

(1
.7

)
1
4
8
8

(9
.0

)
6
6
0

(4
.0

)
1
4
1
7
4

(8
5
.4

)
1
7
6
8

(1
0
.6

)
9
4
0

(5
.7

)
1
5
.8

2
9
.8

1
2

1
4
8
3
4

1
4
6

(1
.0

)
7
4
1

(5
.0

)
6
5
0

(4
.4

)
1
3
2
9
7

(8
9
.6

)
8
8
7

(6
.0

)
7
9
6

(5
.4

)
1
6
.5

1
8
.3

1
8

1
3
9
4
7

9
2

(0
.7

)
4
9
2

(3
.5

)
6
8
5

(4
.9

)
1
2
6
7
8

(9
0
.9

)
5
8
4

(4
.2

)
7
7
7

(5
.6

)
1
5
.8

1
1
.8

2
4

1
3
3
6
3

8
7

(0
.7

)
3
8
5

(2
.9

)
7
0
6

(5
.3

)
1
2
1
8
5

(9
1
.2

)
4
7
2

(3
.5

)
7
9
3

(5
.9

)
1
8
.4

1
1
.0

3
0

1
2
8
9
1

9
3

(0
.7

)
3
0
7

(2
.4

)
7
4
2

(5
.8

)
1
1
7
4
9

(9
1
.1

)
4
0
0

(3
.1

)
8
3
5

(6
.5

)
2
3
.2

1
1
.1

3
6

1
2
4
9
1

8
5

(0
.7

)
2
8
4

(2
.3

)
7
7
2

(6
.2

)
1
1
3
5
0

(9
0
.9

)
3
6
9

(3
.0

)
8
5
7

(6
.9

)
2
3
.0

9
.9

4
2

1
2
1
2
2

6
8

(0
.6

)
2
6
8

(2
.2

)
8
3
8

(6
.9

)
1
0
9
4
8

(9
0
.3

)
3
3
6

(2
.8

)
9
0
6

(7
.5

)
2
0
.2

7
.5

4
8

1
1
7
8
6

1
0
0

(0
.8

)
2
7
3

(2
.3

)
8
5
9

(7
.3

)
1
0
5
5
4

(8
9
.5

)
3
7
3

(3
.2

)
9
5
9

(8
.1

)
2
6
.8

1
0
.4

5
4

1
1
4
1
3

1
0
7

(0
.9

)
2
7
7

(2
.4

)
8
8
0

(7
.7

)
1
0
1
4
9

(8
8
.9

)
3
8
4

(3
.4

)
9
8
7

(8
.6

)
2
7
.9

1
0
.8

6
0

1
1
0
2
9

1
1
1

(1
.0

)
2
6
0

(2
.4

)
9
0
6

(8
.2

)
9
7
5
2

(8
8
.4

)
3
7
1

(3
.4

)
1
0
1
7

(9
.2

)
2
9
.9

1
0
.9

A
ll

1
5
0
4
7
8

2
3
3
1

(1
.5

)
7
0
1
1

(4
.7

)
8
4
6
9

(5
.6

)
1
3
2
6
6
7

(8
8
.2

)
9
3
4
2

(6
.2

)
1
0
8
0
0

(7
.2

)
2
5
.0

2
1
.6

a
T

es
ts

p
er

fo
rm

ed
w

h
en

th
e

p
a
ti

en
t

w
a
s

d
is

ea
se

d
.

395



Appendix F. Simulating monitoring data and evaluating monitoring strategies

F.2 Detailed simulation results–sensitivity analyses
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Figure F.1: Adjusted fibrosis progression rate–performance of various monitoring strategies
on simulated monitoring data with PPV of 25%. A is the simple threshold strategy; B is the
retest strategy; C is the decreased monitoring frequency strategy; D is the absolute increase
from initial value strategy; E is the absolute increase from last value strategy; F is the relative
increase from initial value strategy; G is the relative increase from last value strategy; H is
the linear regression strategy.
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses

T
ab

le
F

.1
9:

M
on

it
or

in
g

si
m

u
la

ti
on

–r
es

u
lt

s
u

si
n

g
re

fe
re

n
ce

st
ra

te
gy

w
it

h
in

cr
ea

se
d

fi
b

ro
si

s
p

ro
g
re

ss
io

n
ra

te
b
y

o
b

se
rv

a
ti

o
n

p
o
in

t
a
n

d
P

P
V

at
25

%
.

O
b

se
rv

a
ti

o
n

T
e
st

s
T

P
re

su
lt

s
F

P
re

su
lt

s
F

N
re

su
lt

s
T

N
re

su
lt

s
P

o
si

ti
v
e

re
su

lt
s

D
is

e
a
se

d
a

P
P

V
S

e
n

si
ti

v
it

y
m

o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
7
0
4

(8
.5

)
3
3
3
2

(1
6
.7

)
7
7
8

(3
.9

)
1
4
1
8
6

(7
0
.9

)
5
0
3
6

(2
5
.2

)
2
4
8
2

(1
2
.4

)
3
3
.8

6
8
.7

6
1
4
9
6
4

2
7
1

(1
.8

)
1
3
0
8

(8
.7

)
7
0
9

(4
.7

)
1
2
6
7
6

(8
4
.7

)
1
5
7
9

(1
0
.6

)
9
8
0

(6
.5

)
1
7
.2

2
7
.7

1
2

1
3
3
8
5

1
8
3

(1
.4

)
9
7
9

(7
.3

)
6
9
9

(5
.2

)
1
1
5
2
4

(8
6
.1

)
1
1
6
2

(8
.7

)
8
8
2

(6
.6

)
1
5
.7

2
0
.7

1
8

1
2
2
2
3

1
7
4

(1
.4

)
7
4
3

(6
.1

)
7
0
5

(5
.8

)
1
0
6
0
1

(8
6
.7

)
9
1
7

(7
.5

)
8
7
9

(7
.2

)
1
9
.0

1
9
.8

2
4

1
1
3
0
6

1
4
7

(1
.3

)
6
9
1

(6
.1

)
6
8
0

(6
.0

)
9
7
8
8

(8
6
.6

)
8
3
8

(7
.4

)
8
2
7

(7
.3

)
1
7
.5

1
7
.8

3
0

1
0
4
6
8

1
3
9

(1
.3

)
5
6
6

(5
.4

)
6
9
3

(6
.6

)
9
0
7
0

(8
6
.6

)
7
0
5

(6
.7

)
8
3
2

(7
.9

)
1
9
.7

1
6
.7

3
6

9
7
6
3

1
3
9

(1
.4

)
5
9
1

(6
.1

)
6
9
9

(7
.2

)
8
3
3
4

(8
5
.4

)
7
3
0

(7
.5

)
8
3
8

(8
.6

)
1
9
.0

1
6
.6

4
2

9
0
3
3

1
4
6

(1
.6

)
5
5
3

(6
.1

)
6
8
4

(7
.6

)
7
6
5
0

(8
4
.7

)
6
9
9

(7
.7

)
8
3
0

(9
.2

)
2
0
.9

1
7
.6

4
8

8
3
3
4

1
5
9

(1
.9

)
4
7
2

(5
.7

)
6
8
9

(8
.3

)
7
0
1
4

(8
4
.2

)
6
3
1

(7
.6

)
8
4
8

(1
0
.2

)
2
5
.2

1
8
.8

5
4

7
7
0
3

1
6
2

(2
.1

)
4
6
5

(6
.0

)
7
0
6

(9
.2

)
6
3
7
0

(8
2
.7

)
6
2
7

(8
.1

)
8
6
8

(1
1
.3

)
2
5
.8

1
8
.7

6
0

7
0
7
6

1
6
3

(2
.3

)
4
5
0

(6
.4

)
7
1
2

(1
0
.1

)
5
7
5
1

(8
1
.3

)
6
1
3

(8
.7

)
8
7
5

(1
2
.4

)
2
6
.6

1
8
.6

A
ll

1
2
4
2
5
5

3
3
8
7

(2
.7

)
1
0
1
5
0

(8
.2

)
7
7
5
4

(6
.2

)
1
0
2
9
6
4

(8
2
.9

)
1
3
5
3
7

(1
0
.9

)
1
1
1
4
1

(9
.0

)
2
5
.0

3
0
.4

a
T

es
ts

p
er

fo
rm

ed
w

h
en

th
e

p
a
ti

en
t

w
a
s

d
is

ea
se

d
.

403



Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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Appendix F. Simulating monitoring data and evaluating monitoring strategies

T
a
b

le
F

.3
4
:

M
o
n

ito
rin

g
sim

u
la

tio
n

a
d

ju
sted

fi
b

ro
sis

p
ro

gression
sen

sitiv
ity

an
aly

ses–resu
lts

u
sin

g
referen

ce
strategy

w
ith

d
ecreased

b
etw

een
-

in
d

iv
id

u
a
l

va
ria

b
ility

b
y

o
b

serva
tio

n
p

o
in

t.

O
b

se
rv

a
tio

n
T

e
sts

T
P

re
su

lts
F

P
re

su
lts

F
N

re
su

lts
T

N
re

su
lts

P
o
sitiv

e
re

su
lts

D
ise

a
se

d
a

P
P

V
S

e
n

sitiv
ity

m
o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
8
0
9

(9
.0

)
1
7
4
5

(8
.7

)
5
4
6

(2
.7

)
1
5
9
0
0

(7
9
.5

)
3
5
5
4

(1
7
.8

)
2
3
5
5

(1
1
.8

)
5
0
.9

7
6
.8

6
1
6
4
4
6

3
4
9

(2
.1

)
9
2
5

(5
.6

)
3
9
7

(2
.4

)
1
4
7
7
5

(8
9
.8

)
1
2
7
4

(7
.7

)
7
4
6

(4
.5

)
2
7
.4

4
6
.8

1
2

1
5
1
7
2

1
8
9

(1
.2

)
7
7
1

(5
.1

)
3
6
8

(2
.4

)
1
3
8
4
4

(9
1
.2

)
9
6
0

(6
.3

)
5
5
7

(3
.7

)
1
9
.7

3
3
.9

1
8

1
4
2
1
2

1
4
3

(1
.0

)
7
3
1

(5
.1

)
3
6
7

(2
.6

)
1
2
9
7
1

(9
1
.3

)
8
7
4

(6
.1

)
5
1
0

(3
.6

)
1
6
.4

2
8
.0

2
4

1
3
3
3
8

1
3
9

(1
.0

)
6
6
8

(5
.0

)
3
3
5

(2
.5

)
1
2
1
9
6

(9
1
.4

)
8
0
7

(6
.1

)
4
7
4

(3
.6

)
1
7
.2

2
9
.3

3
0

1
2
5
3
1

1
4
1

(1
.1

)
6
6
0

(5
.3

)
3
3
4

(2
.7

)
1
1
3
9
6

(9
0
.9

)
8
0
1

(6
.4

)
4
7
5

(3
.8

)
1
7
.6

2
9
.7

3
6

1
1
7
3
0

1
4
0

(1
.2

)
6
9
5

(5
.9

)
3
3
4

(2
.8

)
1
0
5
6
1

(9
0
.0

)
8
3
5

(7
.1

)
4
7
4

(4
.0

)
1
6
.8

2
9
.5

4
2

1
0
8
9
5

1
5
3

(1
.4

)
6
6
5

(6
.1

)
3
0
4

(2
.8

)
9
7
7
3

(8
9
.7

)
8
1
8

(7
.5

)
4
5
7

(4
.2

)
1
8
.7

3
3
.5

4
8

1
0
0
7
7

1
3
2

(1
.3

)
6
9
8

(6
.9

)
3
3
2

(3
.3

)
8
9
1
5

(8
8
.5

)
8
3
0

(8
.2

)
4
6
4

(4
.6

)
1
5
.9

2
8
.4

5
4

9
2
4
7

1
5
3

(1
.7

)
6
4
9

(7
.0

)
3
2
6

(3
.5

)
8
1
1
9

(8
7
.8

)
8
0
2

(8
.7

)
4
7
9

(5
.2

)
1
9
.1

3
1
.9

6
0

8
4
4
5

1
4
3

(1
.7

)
5
6
0

(6
.6

)
3
4
1

(4
.0

)
7
4
0
1

(8
7
.6

)
7
0
3

(8
.3

)
4
8
4

(5
.7

)
2
0
.3

2
9
.5

A
ll

1
4
2
0
9
3

3
4
9
1

(2
.5

)
8
7
6
7

(6
.2

)
3
9
8
4

(2
.8

)
1
2
5
8
5
1

(8
8
.6

)
1
2
2
5
8

(8
.6

)
7
4
7
5

(5
.3

)
2
8
.5

4
6
.7

a
T

ests
p

erfo
rm

ed
w

h
en

th
e

p
a
tien

t
w

a
s

d
isea

sed
.

T
a
b

le
F

.3
5
:

M
o
n

ito
rin

g
sim

u
la

tio
n

a
d

ju
sted

fi
b

ro
sis

p
ro

gression
sen

sitiv
ity

an
aly

sesresu
lts

u
sin

g
referen

ce
strategy

w
ith

d
ecreased

b
etw

een
-

in
d

iv
id

u
a
l

va
ria

b
ility

b
y

o
b

serva
tio

n
p

o
in

t
a
n

d
P

P
V

a
t

25%
.

O
b

se
rv

a
tio

n
T

e
sts

T
P

re
su

lts
F

P
re

su
lts

F
N

re
su

lts
T

N
re

su
lts

P
o
sitiv

e
re

su
lts

D
ise

a
se

d
a

P
P

V
S

e
n

sitiv
ity

m
o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
9
1
7

(9
.6

)
2
1
2
0

(1
0
.6

)
4
3
8

(2
.2

)
1
5
5
2
5

(7
7
.6

)
4
0
3
7

(2
0
.2

)
2
3
5
5

(1
1
.8

)
4
7
.5

8
1
.4

6
1
5
9
6
3

2
9
7

(1
.9

)
1
1
1
9

(7
.0

)
3
2
1

(2
.0

)
1
4
2
2
6

(8
9
.1

)
1
4
1
6

(8
.9

)
6
1
8

(3
.9

)
2
1
.0

4
8
.1

1
2

1
4
5
4
7

1
6
1

(1
.1

)
9
5
1

(6
.5

)
2
9
0

(2
.0

)
1
3
1
4
5

(9
0
.4

)
1
1
1
2

(7
.6

)
4
5
1

(3
.1

)
1
4
.5

3
5
.7

1
8

1
3
4
3
5

1
2
7

(0
.9

)
8
4
9

(6
.3

)
2
8
7

(2
.1

)
1
2
1
7
2

(9
0
.6

)
9
7
6

(7
.3

)
4
1
4

(3
.1

)
1
3
.0

3
0
.7

2
4

1
2
4
5
9

1
2
1

(1
.0

)
7
5
7

(6
.1

)
2
4
7

(2
.0

)
1
1
3
3
4

(9
1
.0

)
8
7
8

(7
.0

)
3
6
8

(3
.0

)
1
3
.8

3
2
.9

3
0

1
1
5
8
1

1
2
2

(1
.1

)
7
2
2

(6
.2

)
2
3
5

(2
.0

)
1
0
5
0
2

(9
0
.7

)
8
4
4

(7
.3

)
3
5
7

(3
.1

)
1
4
.5

3
4
.2

3
6

1
0
7
3
7

1
1
9

(1
.1

)
7
5
7

(7
.1

)
2
2
2

(2
.1

)
9
6
3
9

(8
9
.8

)
8
7
6

(8
.2

)
3
4
1

(3
.2

)
1
3
.6

3
4
.9

4
2

9
8
6
1

1
0
9

(1
.1

)
7
2
1

(7
.3

)
2
1
1

(2
.1

)
8
8
2
0

(8
9
.4

)
8
3
0

(8
.4

)
3
2
0

(3
.2

)
1
3
.1

3
4
.1

4
8

9
0
3
1

9
5

(1
.1

)
6
9
6

(7
.7

)
2
3
9

(2
.6

)
8
0
0
1

(8
8
.6

)
7
9
1

(8
.8

)
3
3
4

(3
.7

)
1
2
.0

2
8
.4

5
4

8
2
4
0

1
2
6

(1
.5

)
6
7
2

(8
.2

)
2
2
2

(2
.7

)
7
2
2
0

(8
7
.6

)
7
9
8

(9
.7

)
3
4
8

(4
.2

)
1
5
.8

3
6
.2

6
0

7
4
4
2

1
2
9

(1
.7

)
6
0
5

(8
.1

)
2
2
1

(3
.0

)
6
4
8
7

(8
7
.2

)
7
3
4

(9
.9

)
3
5
0

(4
.7

)
1
7
.6

3
6
.9

A
ll

1
3
3
2
9
6

3
3
2
3

(2
.5

)
9
9
6
9

(7
.5

)
2
9
3
3

(2
.2

)
1
1
7
0
7
1

(8
7
.8

)
1
3
2
9
2

(1
0
.0

)
6
2
5
6

(4
.7

)
2
5
.0

5
3
.1

a
T

ests
p

erfo
rm

ed
w

h
en

th
e

p
a
tien

t
w

a
s

d
isea

sed
.

412



F.2. Detailed simulation results–sensitivity analyses

T
ab

le
F

.3
6:

M
on

it
or

in
g

si
m

u
la

ti
on

ad
ju

st
ed

fi
b

ro
si

s
p

ro
gr

es
si

on
se

n
si

ti
v
it

y
an

al
y
se

s–
re

su
lt

s
u

si
n

g
re

fe
re

n
ce

st
ra

te
g
y

w
it

h
in

cr
ea

se
d

b
et

w
ee

n
-

in
d

iv
id

u
al

va
ri

ab
il

it
y

b
y

ob
se

rv
at

io
n

p
oi

n
t.

O
b

se
rv

a
ti

o
n

T
e
st

s
T

P
re

su
lt

s
F

P
re

su
lt

s
F

N
re

su
lt

s
T

N
re

su
lt

s
P

o
si

ti
v
e

re
su

lt
s

D
is

e
a
se

d
a

P
P

V
S

e
n

si
ti

v
it

y
m

o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
7
7
9

(8
.9

)
6
9
1
6

(3
4
.6

)
6
7
9

(3
.4

)
1
0
6
2
6

(5
3
.1

)
8
6
9
5

(4
3
.5

)
2
4
5
8

(1
2
.3

)
2
0
.5

7
2
.4

6
1
1
3
0
5

1
7
1

(1
.5

)
1
2
9
9

(1
1
.5

)
6
8
3

(6
.0

)
9
1
5
2

(8
1
.0

)
1
4
7
0

(1
3
.0

)
8
5
4

(7
.6

)
1
1
.6

2
0
.0

1
2

9
8
3
5

1
0
9

(1
.1

)
8
0
8

(8
.2

)
7
4
1

(7
.5

)
8
1
7
7

(8
3
.1

)
9
1
7

(9
.3

)
8
5
0

(8
.6

)
1
1
.9

1
2
.8

1
8

8
9
1
8

1
1
9

(1
.3

)
6
3
1

(7
.1

)
7
4
6

(8
.4

)
7
4
2
2

(8
3
.2

)
7
5
0

(8
.4

)
8
6
5

(9
.7

)
1
5
.9

1
3
.8

2
4

8
1
6
8

9
9

(1
.2

)
5
4
4

(6
.7

)
7
5
7

(9
.3

)
6
7
6
8

(8
2
.9

)
6
4
3

(7
.9

)
8
5
6

(1
0
.5

)
1
5
.4

1
1
.6

3
0

7
5
2
5

1
1
1

(1
.5

)
4
4
6

(5
.9

)
7
6
5

(1
0
.2

)
6
2
0
3

(8
2
.4

)
5
5
7

(7
.4

)
8
7
6

(1
1
.6

)
1
9
.9

1
2
.7

3
6

6
9
6
8

1
2
4

(1
.8

)
3
9
0

(5
.6

)
7
5
2

(1
0
.8

)
5
7
0
2

(8
1
.8

)
5
1
4

(7
.4

)
8
7
6

(1
2
.6

)
2
4
.1

1
4
.2

4
2

6
4
5
4

1
2
9

(2
.0

)
4
1
2

(6
.4

)
7
4
7

(1
1
.6

)
5
1
6
6

(8
0
.0

)
5
4
1

(8
.4

)
8
7
6

(1
3
.6

)
2
3
.8

1
4
.7

4
8

5
9
1
3

1
4
3

(2
.4

)
3
4
6

(5
.9

)
7
1
8

(1
2
.1

)
4
7
0
6

(7
9
.6

)
4
8
9

(8
.3

)
8
6
1

(1
4
.6

)
2
9
.2

1
6
.6

5
4

5
4
2
4

1
2
2

(2
.2

)
3
0
5

(5
.6

)
7
2
7

(1
3
.4

)
4
2
7
0

(7
8
.7

)
4
2
7

(7
.9

)
8
4
9

(1
5
.7

)
2
8
.6

1
4
.4

6
0

4
9
9
7

1
3
0

(2
.6

)
2
8
6

(5
.7

)
7
1
7

(1
4
.3

)
3
8
6
4

(7
7
.3

)
4
1
6

(8
.3

)
8
4
7

(1
7
.0

)
3
1
.2

1
5
.3

A
ll

9
5
5
0
7

3
0
3
6

(3
.2

)
1
2
3
8
3

(1
3
.0

)
8
0
3
2

(8
.4

)
7
2
0
5
6

(7
5
.4

)
1
5
4
1
9

(1
6
.1

)
1
1
0
6
8

(1
1
.6

)
1
9
.7

2
7
.4

a
T

es
ts

p
er

fo
rm

ed
w

h
en

th
e

p
a
ti

en
t

w
a
s

d
is

ea
se

d
.

T
ab

le
F

.3
7:

M
on

it
or

in
g

si
m

u
la

ti
on

ad
ju

st
ed

fi
b

ro
si

s
p

ro
gr

es
si

on
se

n
si

ti
v
it

y
an

al
y
se

s–
re

su
lt

s
u

si
n

g
re

fe
re

n
ce

st
ra

te
g
y

w
it

h
in

cr
ea

se
d

b
et

w
ee

n
-

in
d

iv
id

u
al

va
ri

ab
il

it
y

b
y

ob
se

rv
at

io
n

p
oi

n
t

an
d

P
P

V
at

25
%

.

O
b

se
rv

a
ti

o
n

T
e
st

s
T

P
re

su
lt

s
F

P
re

su
lt

s
F

N
re

su
lt

s
T

N
re

su
lt

s
P

o
si

ti
v
e

re
su

lt
s

D
is

e
a
se

d
a

P
P

V
S

e
n

si
ti

v
it

y
m

o
n
th

(n
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

(%
)

(%
)

0
2
0
0
0
0

1
4
0
6

(7
.0

)
3
8
7
6

(1
9
.4

)
1
0
5
2

(5
.3

)
1
3
6
6
6

(6
8
.3

)
5
2
8
2

(2
6
.4

)
2
4
5
8

(1
2
.3

)
2
6
.6

5
7
.2

6
1
4
7
1
8

1
9
0

(1
.3

)
1
0
0
2

(6
.8

)
1
1
0
9

(7
.5

)
1
2
4
1
7

(8
4
.4

)
1
1
9
2

(8
.1

)
1
2
9
9

(8
.8

)
1
5
.9

1
4
.6

1
2

1
3
5
2
6

1
4
1

(1
.0

)
6
6
7

(4
.9

)
1
2
1
5

(9
.0

)
1
1
5
0
3

(8
5
.0

)
8
0
8

(6
.0

)
1
3
5
6

(1
0
.0

)
1
7
.5

1
0
.4

1
8

1
2
7
1
8

1
2
5

(1
.0

)
5
2
3

(4
.1

)
1
2
7
2

(1
0
.0

)
1
0
7
9
8

(8
4
.9

)
6
4
8

(5
.1

)
1
3
9
7

(1
1
.0

)
1
9
.3

8
.9

2
4

1
2
0
7
0

1
1
7

(1
.0

)
4
6
1

(3
.8

)
1
3
4
9

(1
1
.2

)
1
0
1
4
3

(8
4
.0

)
5
7
8

(4
.8

)
1
4
6
6

(1
2
.1

)
2
0
.2

8
.0

3
0

1
1
4
9
2

1
3
2

(1
.1

)
4
2
3

(3
.7

)
1
4
1
8

(1
2
.3

)
9
5
1
9

(8
2
.8

)
5
5
5

(4
.8

)
1
5
5
0

(1
3
.5

)
2
3
.8

8
.5

3
6

1
0
9
3
7

1
5
9

(1
.5

)
4
4
1

(4
.0

)
1
4
3
7

(1
3
.1

)
8
9
0
0

(8
1
.4

)
6
0
0

(5
.5

)
1
5
9
6

(1
4
.6

)
2
6
.5

1
0
.0

4
2

1
0
3
3
7

1
3
0

(1
.3

)
3
9
2

(3
.8

)
1
5
0
9

(1
4
.6

)
8
3
0
6

(8
0
.4

)
5
2
2

(5
.0

)
1
6
3
9

(1
5
.9

)
2
4
.9

7
.9

4
8

9
8
1
5

1
6
1

(1
.6

)
3
6
3

(3
.7

)
1
5
8
7

(1
6
.2

)
7
7
0
4

(7
8
.5

)
5
2
4

(5
.3

)
1
7
4
8

(1
7
.8

)
3
0
.7

9
.2

5
4

9
2
9
1

1
9
6

(2
.1

)
3
4
2

(3
.7

)
1
6
2
7

(1
7
.5

)
7
1
2
6

(7
6
.7

)
5
3
8

(5
.8

)
1
8
2
3

(1
9
.6

)
3
6
.4

1
0
.8

6
0

8
7
5
3

1
8
3

(2
.1

)
3
1
7

(3
.6

)
1
6
5
1

(1
8
.9

)
6
6
0
2

(7
5
.4

)
5
0
0

(5
.7

)
1
8
3
4

(2
1
.0

)
3
6
.6

1
0
.0

A
ll

1
3
3
6
5
7

2
9
4
0

(2
.2

)
8
8
0
7

(6
.6

)
1
5
2
2
6

(1
1
.4

)
1
0
6
6
8
4

(7
9
.8

)
1
1
7
4
7

(8
.8

)
1
8
1
6
6

(1
3
.6

)
2
5
.0

1
6
.2

a
T

es
ts

p
er

fo
rm

ed
w

h
en

th
e

p
a
ti

en
t

w
a
s

d
is

ea
se

d
.

413



Appendix F. Simulating monitoring data and evaluating monitoring strategies
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F.2. Detailed simulation results–sensitivity analyses
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