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Abstract

In this thesis, we focus on the design of efficient adaptive algorithms for the numerical approxima-

tion of solutions to elliptic partial differential equations (PDEs) with parametric inputs. Nume-

rical discretisations are obtained using the stochastic Galerkin Finite Element Method (SGFEM)

which generates approximations of the solution in tensor product spaces of finite element spaces

and finite-dimensional spaces of multivariate polynomials in the random parameters.

Firstly, we propose an adaptive SGFEM algorithm which employs reliable and efficient hierar-

chical a posteriori energy error estimates of the solution to parametric PDEs. The main novelty

of the algorithm is that a balance between spatial and parametric approximations is ensured by

choosing the enhancement associated with dominant error reduction estimates.

Next, we introduce a two-level a posteriori estimate of the energy error in SGFEM approxi-

mations. We prove that this error estimate is reliable and efficient. Then we provide a rigorous

convergence analysis of the adaptive algorithm driven by two-level error estimates. Four diffe-

rent marking strategies for refinement of stochastic Galerkin approximations are proposed and,

in particular, for two of them, we prove that the sequence of energy errors computed by associated

algorithms converges linearly.

Finally, we use duality techniques for the goal-oriented error estimation in approximating

linear quantities of interest derived from solutions to parametric PDEs. Adaptive enhancements

in the proposed algorithm are guided by an innovative strategy that combines the error reduction

estimates computed for spatial and parametric components of corresponding primal and dual

solutions.

The performance of all adaptive algorithms and the effectiveness of the error estimation stra-

tegies are illustrated by numerical experiments. The software used for all experiments in this

work is available online.
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Notation

dx Lebesgue measure;

a.e. almost everywhere (with respect to the Lebesgue measure);

Rd Euclidean d-dimensional space;

N set of natural numbers excluding zero;

N0 set of natural numbers including zero;

# cardinality;

Öi j Kronecker symbol;

�D boundary of a domain D ⊂ Rd ;

çD characteristic function of D ;

DÓ differential operator of order |Ó|;
∇ gradient operator;

‖ ·‖X norm of a Banach space X;

H′ dual of a Hilbert space H;

(·, ·) inner product in a Hilbert space H;

〈·, ·〉 duality pairing between H′ and H;

Ck(D ) space of functions on D with continuous derivatives up to k;

Ck
0(D ) subspace of Ck(D ) of functions with compact support;

L(X,Y) space of bounded linear operators from X to Y ;

Ò sample space;

F (Ò) ã-algebra of the events;

P probability measure;

(Ò,F (Ò),P) probability space;

PY probability distribution of a random variable Y on Ò;

âY probability density function of a random variable Y on Ò;

i.i.d. independent and identically distributed;

È parameter space;

B(È ) Borel ã-algebra over È ;

L2á(È ) Lebesgue space of square integrable á-measurable functions over È ;

L2á(È ;X) Lebesgue-Bochner space of á-strongly measurable functions from È to X;



H1(D ) Sobolev space of L2-functions with square integrable first-order weak derivatives;

H1
0 (D ) subspace of H1(D ) of functions vanishing on �D in the sense of traces;

T triangulation of a bounded Lipschitz polygonal domain D ⊂ R2;

N (T ), N ◦(T ) set of total and interior vertices of T , respectively;

E(T ), E◦(T ) set of total and interior edges of T , respectively;

N + set of midpoints of interior edges of T ;

Pk space of polynomials of total degree less than or equal to k in d variables;

Sk(T ) space of globally continuous piecewise polynomials in Pk over each element of T ;

Sk0 (T ) subspace of functions in Sk(T ) which vanish on the boundary �D ;

X first-order finite element space S10 (T );
Y first-order detail finite element space over T ;

I subset of NN
0 of finitely supported indices;

ê(m) Kronecker delta index;

PP finite-dimensional polynomial space associated with a finite index set P ⊂ I;

NP cardinality of a finite index set P;

MP number of active parameters of a finite index set P;

Q detail index set;

⊕ direct sum of spaces;

⊗ tensor product of Hilbert spaces or Kronecker product of matrices;

ÙXP hierarchical a posteriori error estimate;

äXP two-level a posteriori error estimate;

ÚX ,ÚP spatial and parametric threshold parameters of a marking strategy, respectively;

M set of marked elements, midpoints, or edges;

M subset of Q of marked indices.



Chapter 1

Introduction

Nowadays, mathematical models and computer simulations of problems depending on uncertain

parameters are indispensable in science and many engineering applications. Partial differential

equations (PDEs) with parametric uncertainty are ubiquitous in such mathematical models as

they evermore represent the starting point of the investigation and play a major role in the mo-

delling of physical phenomena. In these PDEs, diffusion coefficients, source terms, initial and

boundary conditions are model input data that can be affected by uncertainty. In principle, this

uncertainty can be simply due to the incomplete knowledge of the quantities in the model. This

is the case of uncertainties typically referred to as being epistemic. For instance, in modelling

groundwater flow in porous medium, subsurface quantities such as the permeability and porosity

are not really random in nature: they are inaccessible or may not be known everywhere in the

given domain. On the other hand, there are situations in which the uncertainty may come from

the intrinsic variability in the physical system, as, for example, mechanical properties in linear

elasticity problems or the action of the wind in geophysics models. These are the cases of the

so-called aleatoric uncertainties. The need for reliable uncertainty quantification is therefore es-

sential and typically achieved by supplying mathematical models with a probabilistic framework.

In the case of PDE problems whose physical input quantities vary in space, the modelling is

usually performed by means of random fields (see [88]). The numerical computation of solutions

to such PDEs involves three main stages. First, the input random field needs to be appropriately

represented in order to numerically handle the uncertainty of the problem. Typically, the random

field is parametrised by a large (possible infinite) number of random variables. For example,

this can be achieved by using Karhunen-Loève (KL) expansions (see, e.g., [87, 88]), when the

dependence on the parameters is linear, and generalised polynomial chaos (gPC) expansions (see,

e.g., [133, 134, 135]) which allow more general dependence on the parameters. Second, an efficient
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1. INTRODUCTION

numerical method has to be utilised to discretise the parametric PDE and a robust solver has to

be employed to solve the system arising from the discretisation. The third stage involves the

estimation of the error due to the discretisation, or in other words, the assessment of the accuracy

of the computed approximation.

Well-established numerical methods to solve parametric PDEs can be divided into two general

broad classes: non-intrusive and intrusive methods (see [79]). Non-intrusive methods are typically

suitable for parallelisation of deterministic solvers that can be used as building blocks of legacy

codes. Most representative methods of this class are Monte Carlo (MC) methods (see, e.g., [38,

114]) in which the desired stochastic moment of the solution to the PDE is derived by averaging

the spatial approximations obtained by sampling independent and identically distributed (i.i.d.)

realisations of the input random data according to the assumed statistics. On the one hand, using

MC methods requires minimal assumptions for the well-posedness of the parametric problem and

their implementation is elementary based on solving independent deterministic problems. On

the other hand, MC methods can result in expensive computations and, most importantly, yield

approximations that converge slowly. For this reason, other popular sampling-based methods

which generally improve the performance of classic MC approach, have attracted a lot of attention

in recent years. These are, e.g., quasi-Monte Carlo (QMC) methods (see, e.g., [38, 51]), multi-

level Monte Carlo (MLMC) methods (see, e.g., [18, 43, 126, 73]), multi-index Monte Carlo (MIMC)

methods (see, e.g., [80]), and stochastic collocation (SC) methods (see, e.g., [5, 102, 103, 101]).

Unlike non-intrusive methods, intrusive methods require partial redesign of the algorithms as

existing deterministic codes are modified in order to couple together both spatial and stochastic

degrees of freedom at early stage of the code. Most popular intrusive methods are stochastic Ga-

lerkin methods which date back to the pioneering work [72]. These methods are based on a varia-

tional (weak) formulation posed on an appropriate Lebesgue-Bochner space for the given stochas-

tic problem. In particular, a gPC expansion of the solution, which takes into account the stochastic

approximation, is combined together with a Galerkin projection onto a finite-dimensional space

for spatial approximations. In other words, the coefficients of the solution are approximated with

respect to a basis of functions (i.e., polynomials) depending on the parameters. This represents

a major difference to sampling-based methods such as MC, QMC, and MLMC methods: while

these methods are used to target directly stochastic moments of the unknown solution, the gPC

expansion arising from applying stochastic Galerkin methods also provides an explicit parametric

2



1. INTRODUCTION

representation thereof.

Under the finite element method (FEM) setting (see [42, 34, 35, 125]), a very efficient alter-

native to sampling-based methods is represented by the stochastic Galerkin finite element method

(SGFEM) (see, e.g., [48, 49, 8, 9]). This is a powerful tool which received a considerable attention

over the last two decades. As part of intrusive stochastic Galerkin methods, in the SGFEM, nume-

rical approximations are sought in tensor product spaces of finite element spaces associated with

the physical domain and spaces of (multivariate) polynomials over a finite-dimensional manifold

in the parameter domain. For the class of PDE problems whose data depend linearly on random

parameters, the SGFEM has been shown, on the one hand, to be immune to the ‘curse of dimensio-

nality’ (see, e.g., [44, 45]) and, on the other hand, to outperform standard classic sampling-based

methods. For example, so-called multi-level (or sparse tensor) versions of SGFEM discretisations

converge independently of the dimension of parameter spaces, thus achieving convergence rates

which are superior to those of MC approximations (see [30, 118]); in particular, right implemen-

tation of the SGFEM leads to optimal rates as if the stochastic problem was parameter-free (see,

e.g., [47]).

A fundamental aspect of any simulation is the cost associated with running the chosen nu-

merical method. For parametric PDEs, regardless of growing computational power of modern

computers which allow the treatment of high-dimensional problems, if a large number of ran-

dom variables is used to represent the input data of the parametric problem, and highly refined

spatial grids are used for spatial approximations on the physical domain, then computing the so-

lution (or stochastic moments) may become prohibitively expensive. This is true, in particular, for

both sampling-based and stochastic Galerkin methods. In this respect, however, much work has

been done in recent years. For example, it is true that the cost associated with using the SGFEM

is high. This is because the SGFEM allows the simultaneous discretisation of both physical and

parametric spaces, and thus result in huge linear systems normally many orders of magnitude

larger than deterministic subproblems arising from, e.g., MC methods. Nonetheless, it is also

true that the resulting matrix arising from applying the SGFEM is highly block-sparse (see, e.g.,

[65]). Firstly, this means that, effectively, such matrix does not need to be assembled. Secondly,

according to its symmetry and definiteness, the linear system is suitable to be solved by iterative

solvers (e.g., CG, MINRES, and GMRES, see [128, 129, 122]) performing efficient matrix-vector

operations of single blocks. Further to that, to speed up the computation, iterative solvers are

3



1. INTRODUCTION

always coupled with preconditioning strategies (see, e.g., [106, 107, 127]).

In computational PDEs, especially under the finite element framework, the design and theo-

retical analysis of adaptive FEM algorithms have received a significant attention for deterministic

(see, e.g., [52, 96, 97, 31, 93, 98, 40]), and more recently, for parametric PDE problems. In par-

ticular, along with the computation of numerical solutions, a major role in this area is played by

the a posteriori error estimation (see, e.g., [2, 131]). It is well known in the finite element commu-

nity that adaptive strategies based on rigorous a posteriori error analysis of computed solutions

provide an effective mechanism for building approximation spaces and accelerating convergence.

In particular, numerical adaptive algorithms should be designed so as to identify a finite set of

most important parameters to be incorporated into the basis of the approximation space and, at

the same time, spatial and stochastic components of approximations should be judiciously cho-

sen and incrementally refined in the course of numerical computation. This is desirable in order

to compute approximations of the solution (or other quantities of interest different from the so-

lution) up to a prescribed accuracy (engineering tolerance) with minimal computational work.

However, this presents a number of theoretical and practical challenges. In fact, a posteriori error

estimation techniques rely heavily on how the approximation error is estimated and controlled. In

this respect, most common techniques primarily focus on the estimation of the error in a suitable

norm, typically, the (energy) norm induced by the bilinear form of the variational formulation

associated with the PDE.

Within the SGFEM setting for PDE problems with parametric inputs, several adaptive strate-

gies, based on the estimation of global energy norm of the errors, are used to enhance the com-

puted solution and drive the convergence of approximations. Such strategies are developed by

extending the a posteriori error estimation techniques commonly used for deterministic prob-

lems (see, e.g., [50, 16, 2, 96, 97]) to the parametric setting. For example, explicit residual-based

a posteriori error estimates provide spatial and stochastic error indicators for adaptive refinement

in [77, 54, 55]; implicit error estimators are used in [132] for the SGFEM based on multi-element

gPC expansions; local equilibration error estimates are utilised in [56]; hierarchical error estimates

and associated estimates of error reduction drive adaptive algorithms proposed in [29, 27, 47]. It

is worth mentioning that in contrast to the design, the convergence analysis of algorithms for

parametric PDEs is, however, much less developed. Among the most significant contributions,

the convergence of an adaptive SGFEM algorithm driven by residual-based estimates is proved

4



1. INTRODUCTION

in [55] under additional assumptions about enforcing spatial refinements also during iterations

where enrichment of parametric discretisation is performed; moreover, the quasi-optimality of

the generated sequence of grids (in a suitable sense) is established.

In many other practical applications, however, one is not interested in globally approximating

the solution and estimating the associated error in some suitable norm. The estimation of the error

in computing some specific feature of the solution may be, indeed, more useful to the application.

For instance, simulations may target a feature of the solution localised on some part of the com-

putational domain, e.g., the approximation of pointwise values or the approximation of stochastic

moments on a region where the solution exhibits spatial singularities. In this case, the global en-

ergy norm of the error does not provide any meaningful information. Error estimation strategies

thus need to address the approximation of a prescribed quantity of interest (or goal quantity)

which can be typically represented by some linear functional of the solution. In the deterministic

setting, such goal-oriented techniques are well-established (see, e.g., [21, 109, 22, 74, 11]) whereas

relatively little work has been done in the parametric setting; notice that in this latter case, the

quantity of interest is parametric since it depends on the parameters through the solution itself.

In the framework of non-intrusive methods, goal-oriented error estimation techniques and as-

sociated adaptive algorithms are proposed in [57] for the MLMC method and in [3] for the SC

sampling, where, in particular, the authors proposed a procedure to estimate the quantity of in-

terest at each collocation point. Under the SGFEM setting, error estimation of linear functionals

of solutions is addressed in [90] and, for nonlinear problems, in [37]; these works naturally ex-

tend deterministic dual-weighted residual methods to parametric PDEs. In addition, goal-oriented

estimates derived from generic surrogate approximations (either intrusive or non-intrusive) are

introduced in [36].

1.1 Topics of the thesis

In this thesis, we mainly deal with the design of efficient adaptive strategies for the numeri-

cal discretisation of parametric PDEs. The model problem under consideration is a parametric

steady-state diffusion equation with homogeneous Dirichlet boundary conditions on a spatial

two-dimensional polygonal domain. We further assume that the source term is deterministic

rather than being parametric. We consider the case of domains on which the solution may be

5



1. INTRODUCTION

either regular (as for simple square domains) or may exhibit a corner singularity (as in case of

L-shaped or slit domains). The input diffusion coefficient is represented by a spatially varying

random field depending linearly on an infinite countable set of (random) parameters. These are

defined as the images, in the parameter space, of infinite i.i.d. random variables on an underlying

probability space. Note that our model problem is the same parametric equation considered in,

e.g., [49, 9, 29, 54, 56], to name but a few.

We will recall the probability framework lying in the background of our investigation and

how to handle numerically the input parametric coefficients by means of KL or gPC expansions of

random fields. For the discretisation of the problem, the SGFEM is the numerical method that we

consider throughout. The starting point is the variational (or weak) formulation that is derived

from the parametric problem via direct application of the SGFEM. The main focus will be on the

a posteriori error estimation, for computed SGFEM solutions, in the global energy norm and in

estimating prescribed quantities of interest.

Our goal is the development, and in part the analysis, of adaptive SGFEM algorithms derived

under the stardard SOLVE, ESTIMATE, MARK, REFINE paradigm of adaptive finite element methods

(see, e.g., [104, 105]). Two kinds of a posteriori error estimates are used by such algorithms: a

hierarchical error estimate, developed in [24, 29] and based on results from [16, 15, 12], and a novel

two-level error estimate based on ideas from [100, 99, 62]. Hierarchical and two-level a posteriori

estimates are primarily used for the estimation of the energy norm of the global error. We will

show how they can be also used for the goal-oriented error estimation in the quantity of interest

of SGFEM solutions. Both estimates are proved to be efficient and reliable for the estimation of

the energy norm of the error under the so-called saturation assumption (see, e.g., [16, 12, 13, 39]

for the deterministic setting). In addition, such estimates are used to identify dominant sources

of discretisation error and guide the proposed adaptive algorithms by using various refinement

strategies for the enhancement of either the spatial or the parametric component of the solution.

For marking purposes, two popular strategies such as the maximum (see [10]) and the Dörfler (see

[52]) marking strategies are considered; for spatial refinement of grids of the physical domain, we

primarily focus on the newest vertex bisection (NVB) rule (see, e.g., [17, 84, 31, 124]).

The main tasks that we aim to pursue in this thesis are essentially three:

• designing an adaptive SGFEM algorithm which uses hierarchical a posteriori estimates for

the energy error of computed solutions;
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• designing an adaptive SGFEM algorithm which uses two-level a posteriori estimates for the

energy error of computed solutions as well as investigating the convergence properties of

such proposed algorithm;

• designing a goal-oriented adaptive algorithm for the error estimation of linear quantities

of interest (different from the energy error) derived from computed solutions; the resulting

total error estimate may be based on either hierarchical or two-level estimates.

For the above mentioned tasks, a large part of the work is dedicated to the results of extensive

numerical experiments which aim at illustrating the computational aspects as well as the perfor-

mance of the proposed adaptive algorithms. We emphasise that although we focus on a specific

model problem, we try to keep the design of the algorithms as general as possible. In particular,

they can be extended, with natural amendments, to more general PDE problems. These can be, for

example, reaction-diffusion problems, PDEs with parametric source terms with affine dependence

on the parameters, and, as in [82], parameter-dependent linear elasticity equations.

1.2 Main contributions of the thesis

The main contributions of the present work can be summarised as follows.

First, we propose an adaptive algorithm which employs hierarchical error estimates from [29]

for the estimation of the energy error of computed SGFEM solutions to the parametric model

problem. The enrichment of finite element spaces in the algorithm in [29] is based on uniform

refinements of the spatial grid, hence allowing an efficient discretisation only of spatially regular

problems. We extend this algorithm in order to deal with problems exhibiting spatial singulari-

ties. Furthermore, our proposed algorithm is designed so as to run in two different versions. A

first, more traditional version, which is driven by total error estimates, and a second version, in

which the Dörfler strategy firstly returns sets of marked spatial and parametric components of the

two sources of discretisation error, and then the associated larger error reduction estimate indicates

the type of enhancement. For both versions, numerical experiments show that the algorithm is

efficient and able to ensure a balance between spatial and parametric approximations. Although

adaptive algorithms for parametric PDEs already exist in the literature (see, e.g., [76, 55]), our

algorithm is probably the first useful tool for such kind of problems under the framework of

hierarchical a posteriori error estimation.

7
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Second, a two-level estimate for the energy norm of the global error is introduced. The estimate

is derived under the same hierarchical framework from [29] (see also [24]) and its construction is

based on ideas from the deterministic setting (see [100, 99, 62]). We prove that such a novel esti-

mate is both efficient and reliable. To ease the presentation of the analysis, our proof is based on

the two-dimensional model problem under consideration, though it applies to any spatial dimen-

sion. Then we study the convergence of the associated adaptive SGFEM algorithm. In particular,

four versions of the algorithm, based on four different marking strategies that combine both the

maximum and the Dörfler strategies, are proposed. For all versions, by adopting the arguments

from [98], it is proved that the computed sequence of two-level error estimates converges to zero

(see [25]). We stress that such a result holds independently of the saturation assumption, and in

particular, the analysis does not require extra assumptions on the refinement level of the under-

lying spatial grid as, for example, the assumption needed in [55]. Moreover, for two versions of

the algorithm, in the spirit of [96], we prove that linear convergence of the energy errors is ex-

pected (yet assuming the saturation assumption in this case). These contributions fill a gap in the

theoretical analysis of adaptive SGFEM algorithms for elliptic parametric PDEs.

Third, we use the ideas of deterministic goal-oriented error estimation (see [22, 74, 11]) and

adaptivity to design and implement an efficient adaptive algorithm for approximating linear

quantities of interest of the computed solution to our parametric model problem. In the al-

gorithm, the SGFEM is used to approximate the solutions to both primal and dual problems

and adaptive refinement is guided by an innovative strategy that combines the error reduction

estimates associated with spatial and parametric components of the primal and dual solutions.

Specifically, the marking is performed by employing and extending the strategy proposed in [67]

to the parametric setting. Numerical experiments illustrate the performance and the effectiveness

of such error estimation strategy.

Finally, we want to emphasise that all numerical aspects of the main contributions reported in

this thesis, such as the implementation of the two-level error estimation and all proposed adaptive

algorithms, have been developed in conjunction with the open source Matlab toolbox Stochastic

T-IFISS [28] which is available online and has been used to run all numerical experiments. Of

course, there exist many available pieces of software for general uncertain quantification, such

as FERUM [33] and UQLab [89], as well as finite element packages that can be employed as a

framework to solve PDEs problems with uncertain inputs (e.g., p1afem [69], ALBERTA [117], and
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FEniCS [4]). Open source software packages implementing stochastic Galerkin methods, such as

ALEA [58] and SGLib [136], are also freely available. In this respect, our Stochastic T-IFISS toolbox

has been developed and designed to provide a computational laboratory for elliptic parametric

PDEs. Besides supporting the investigation reported in this work, it represents a contribution

to the set of existing packages for the study of parametric PDEs and can be used for academic

research as well as teaching.

1.3 Outline of the thesis

In Chapter 2, we recall the definitions and properties of function spaces such as Sobolev spaces

and Lebesgue-Bochner spaces (Section 2.1), and finite element spaces on conforming triangula-

tions of bounded domains (Section 2.2). In addition, in Section 2.3, we describe two popular

marking strategies and the NVB refinement rule adopted by all adaptive SGFEM algorithms pre-

sented in the thesis.

In Chapter 3, we introduce the probabilistic framework required to setup the study of PDEs

with parametric inputs. This includes the definition of probability space, random variable, and

random field (Sections 3.1 and 3.2) as well as how to represent the latter by means of Karhunen-

Loève and polynomials chaos expansions (Section 3.3).

In Chapter 4, we present the elliptic parametric model problem that we considered in this

work. We make all the required assumptions on the underlying probability space, the parameter

space, and the input random field required for the well-posedness of the problem. Then we derive

its weak formulation (Section 4.1). In Section 4.2, we introduce the approximation space and

briefly describe the discretisation of the weak problem via the SGFEM and discuss some numerical

implementation aspects.

Chapter 5 is dedicated to the design of adaptive SGFEM algorithms driven by hierarchical a

posteriori error estimates. Initially, we recall the parametric framework from which such esti-

mates are derived (Sections 5.1 and 5.2). Then, in Section 5.3, we present the adaptive SGFEM

algorithm for the numerical solution to our parametric problem. We describe all modules com-

posing the adaptive loop and present the two versions of the algorithm driven by dominant total

error estimates and error reduction estimates, respectively. Section 5.4 presents the results of

three illustrative numerical experiments posed on square, L-shaped, and slit domains.

9
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In Chapter 6, the novel two-level error estimate is introduced and analysed. In Section 6.1,

we set up the notation, define the estimate, and prove that it is both efficient and reliable for the

estimation of the energy norm of the error. In Section 6.2, we present adaptive algorithms with

four marking criteria, whereas in Section 6.3 we state the convergence of the computed sequence

of two-level error estimates and prove the linear convergence of global energy errors. Numerical

experiments are reported in Section 6.4, where we first compare the performance of adaptive

algorithms driven by hierarchical and two-level estimates, and then compare the computational

cost associated with employing the proposed marking strategies when using two-level estimates.

Chapter 7 deals with the design of an adaptive goal-oriented SGFEM algorithm for the nume-

rical approximation of prescribed quantities of interests represented by linear functionals of the

solution to the model problem. Firstly, we show how deterministic goal-oriented error estima-

tion techniques can be easily applied to the parametric setting (Section 7.1). Then, a novel goal-

oriented adaptive algorithm is presented in Section 7.2. The effectiveness of the error estimation

strategy and the performance of the algorithm are demonstrated in Section 7.3 by three numeri-

cal experiments including the estimation of directional derivatives and approximated pointwise

values of the solution.

Chapter 8 contains the concluding remarks about the present work.

In Appendix A we report the complete results of the numerical experiment in Section 6.4.2

about the comparison of computational cost of adaptive algorithms in Chapter 6.

Finally, Appendix B aims at highlighting and briefly describing the main components of the

toolbox Stochastic T-IFISS which was used to perform all numerical experiments in the thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce some basic notation and recall many of the ingredients that will

be used throughout the thesis. These include functions spaces, in particular, Sobolev spaces on

bounded domains D ⊂ Rd , d ∈ N, as well as Lebesgue-Bochner spaces of functions taking values

in arbitrary Banach spaces. Next, we recall the definition of conforming triangulations of a do-

main D and discrete polynomial (finite element) spaces defined on such triangulations. Finally,

in the context of adaptive finite element methods for the numerical solution of partial differential

equations, we describe two popular marking strategies for the selection of elements contributing

with large errors to the approximation of the solution as well as a particular mesh-refinement

technique, which is the one used by all adaptive algorithms proposed in this work.

2.1 Function spaces

Let (T ,Î,Þ) be a measure space, where T is a non-empty set, Î is a ã-algebra on T , and Þ is a

measure. For all 1 ≤ p < ∞, we denote by LpÞ(T) the Lebesgue space of Þ-measurable functions

such that

‖v ‖LpÞ(T) :=
(∫

T
|v(t)|pdÞ

)1/p
< +∞ . (2.1)

For p = ∞, the Lp-norm is defined by ‖v ‖L∞Þ (T) := esssupt∈T |v(t)|. Whenever LpÞ(T) is a Hilbert

space, (·, ·)Þ denotes the inner product on LpÞ(T) which induces the Lp-norm (2.1). For a domain

D ⊂ Rd , d ∈ N, spatial points of D are denoted by x = (x1, . . . ,xd ). Also, in this case, we denote

Lebesgue spaces simply by Lp(D ), their norms by ‖ ·‖Lp(D ) with the Lebesgue measure dx replacing

dÞ in (2.1), and for p = 2, we denote the associated inner product by (·, ·)L2(D ). Furthermore, let
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Ó := (Ó1, . . . ,Ód ) ∈ Nd
0 be a multi-index of d non-negative integers. For a multi-index Ó,

DÓ :=
�|Ó|

�xÓ1
1 · · · �xÓd

d

, (2.2)

denotes the differential operator of order |Ó| :=´d
i=1Ói . In the case d = 2, ∇ represents the gradient

operator, i.e., the vector of first-order derivatives ∇ := (D (1,0),D (0,1)) in x1 and x2.

2.1.1 Sobolev spaces

Let Ck(D ), k ∈ N0 ∪ {∞}, be the space of functions whose all derivatives DÓ of orders |Ó| ≤ k are

continuous on D . We say that a function v ∈ Lp(D ) has a weak derivative w of order |Ó| if∫
D
v(x)DÓï(x)dx = (−1)|Ó|

∫
D
w(x)ï(x)dx ∀ ï ∈ C∞0 (D ) , (2.3)

where C∞0 (D ) denotes the space of functions in C∞(D ) with compact support in D . Note that

if v ∈ Lp(D ) has continuous partial derivatives DÓ in the classical sense (2.2), then DÓ coincides

with the weak derivative. However, a partial derivative may exist without existing in the classical

sense. Hereafter, DÓ will then refer to weak derivatives in general but also assumes the meaning

of classical derivative as appropriate.

Sobolev spaces are defined as follows (see, e.g., [1, 35]).

Definition 2.1 (Sobolev space). Let k ∈ N0. The Sobolev space Wk,p(D ) is defined as

Wk,p(D ) :=
{
v ∈ Lp(D ) : ‖v ‖Wk,p <∞

}
,

where the Sobolev norm ‖ ·‖Wk,p is given by

‖v ‖Wk,p :=


(´
|Ó|≤k ‖DÓv ‖pLp(D )

)1/p
if 1 ≤ p <∞ ,

max|Ó|≤k ‖DÓv ‖Lp(D ) if p =∞ ,

where DÓ denotes weak derivatives (see (2.3)).

Clearly, W0,p(D ) = Lp(D ) for all 1 ≤ p ≤∞. It is well known that, for 1 ≤ p ≤∞, Sobolev spaces

Wk,p(D ) are Banach spaces when equipped with the Sobolev norm ‖ ·‖Wk,p(D ) (see, e.g., [1, Theorem

3.3]). We denote by Hk(D ) the space Wk,2(D ) which is a Hilbert space equipped with the inner

product

(v,w)Hk(D ) :=
¼
|Ó|≤k

(DÓv,DÓw)L2(D ) ∀ v,w ∈ Hk(D ), Ó ∈ Nd
0 .

Furthermore, for k = 1, we denote by H1
0 (D ) the closure of C∞0 (D ) in H1(D ). In particular, if D has
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a Lipschitz boundary �D (e.g., in the sense of [35, Definition 1.4.4]), then H1
0 (D ) can be identified

with the space of functions v ∈ H1(D ) such that v|�D = 0, where v|�D has to be understood in the

sense of traces (see, e.g., [35, Section 1.6]).

2.1.2 Lebesgue-Bochner spaces

Lebesgue-Bochner spaces are a generalisation of Lebesgue spaces to functions which take values

in an arbitrary Banach space rather than in R (or C); see, e.g., [115, 1]. These are the natural candi-

date spaces to consider when we look for solutions of PDEs depending on uncertain or parametric

inputs (see Section 4.1.4).

Let (T ,Î,Þ) be a measure space and X be a Banach space with norm ‖ ·‖X . We say that a function

s : T → X is simple if s(t) =
´m

k=1
çEk (t)vk, t ∈ T , where çEk denotes the characteristic function of a

Þ-measurable subset Ek of T and vk ∈ T for k = 1, . . . ,m, with m ∈ N. Then, a function v : T → X is

strongly Þ-measurable if there exists a sequence (sn)n∈N of simple functions such that sn(t)→ v(t)

as n→∞, for a.e. t ∈ T .

Definition 2.2 (Lebesgue-Bochner space). Let (T ,Î,Þ) be a measure space and X be a Banach space

with norm ‖ ·‖X . The Lebesgue-Bochner space LpÞ(T ;X) is the Banach space defined as

LpÞ(T ;X) :=
{
v : T → X : v is Þ-strongly measurable and ‖v ‖LpÞ(T ;X) <∞

}
, (2.4)

where the Bochner norm ‖ ·‖LpÞ(T ;X) is given by

‖v ‖LpÞ(T ;X) :=


(∫

T
‖v(t)‖pX dÞ

)1/p
if 1 ≤ p <∞ ,

esssupt∈T ‖v(t)‖X if p =∞ .

If p = 2 and X is a separable Hilbert space with inner product (·, ·)X , then L2Þ(T ;X) is itself a Hilbert

space with inner product defined as (u,v)L2Þ(T ;X) :=
∫
T
(u(t),v(t))X dÞ for all u,v ∈ L2Þ(T ;X) (see, e.g.,

[88, Proposition 1.34]).

2.1.3 Tensor products of Hilbert spaces

Throughout the thesis, we will often make use of tensor products of Hilbert spaces when defining

the trial and test spaces for discrete weak formulations of parametric PDEs. Let us briefly recall

the definition following the construction given in [111, Section II.4]; see also, e.g., [85, Chapter 1]

and [115].
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LetH1 (resp. H2) be a Hilbert space equipped with the inner product (·, ·)H1
(resp. (·, ·)H2

). For

v1 ∈ H1 and v2 ∈ H2, let v1 ⊗ v2 be the bilinear form on H1 ×H2 defined by

(v1 ⊗ v2)(è1,è2) := (è1,v1)H1
(è2,v2)H2

∀ è1 ∈ H1, ∀ è2 ∈ H2 .

Now, consider the space C of all finite linear combinations of bilinear forms above. On C, we can

define the following inner product:

(u ⊗ v, w ⊗ z)C := (u,w)H1
(v,z)H2

∀ u,w ∈ H1, ∀ v,z ∈ H2 . (2.5)

Inner product (2.5) is well-defined and positive definite (see [111, Proposition 1, Section II.4]).

Then, the tensor product H1 ⊗H2 of Hilbert spaces H1 and H2 is defined as the completion of

the space C under inner product (2.5). In particular, if {un}n∈N and {vm}m∈N are the orthonormal

basis ofH1 andH2, respectively, then {un⊗vm}n,m∈N is an orthonormal basis ofH1⊗H2 (see [111,

Proposition 2, Section II.4]).

Now, let (T ,Î,Þ) be a measure space and {èm}m∈N be the orthonormal basis of a separable

Hilbert space H with inner product (·, ·)H. We recall the following important result which will

be used when describing the discretisation of PDEs with parametric inputs (see Section 4.2). The

Lebesgue-Bochner space L2Þ(T ;H) (see (2.4)) can be uniquely identified with the tensor product

space L2Þ(T)⊗H. In fact, for all functions v ∈ L2Þ(T ;H), we have in H,

v(t) = lim
M→∞

M¼
m=1

fm(t)èm with fm(t) := (èm,v(t))H ∈ L2Þ(T) .

Then, there exists a unique isomorphism U : L2Þ(T)⊗H → L2Þ(T ;H) such that f (t)⊗è 7→ f (t)è for

all f ∈ L2Þ(T) and è ∈ H, i.e. (see [111, Theorem II.10] or [118, Theorem B.17 and Remark C.24]),

L2Þ(T) ⊗ H
U
� L2Þ(T ;H) . (2.6)

2.2 Discrete function spaces

The discretisation of domains as well as the (mesh-)refinement strategy are two fundamental in-

gredients of the design and the implementation of adaptive algorithms for PDEs in the context of

the finite element method (FEM). In this section, we recall the notion of triangulation of bounded

domains and define the corresponding discrete function spaces on such triangulations.
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2.2.1 Triangulations

Triangulations of bounded domains rely on the definition of d-simplices. These are d-dimensional

objects defined as the convex hull of (d +1) points. Specifically, let d ∈ N and S be a set of (d +1)

affinely independent points x(1), . . . ,x(d+1) in Rd . We say that T ⊂ Rd is the d-simplex generated by

the points of S if

T = conv(S) :=

x = d+1¼
i=1

Ýi x
(i) : x

(i) ∈ S, 0 ≤ Ýi ≤ 1 ∀ i = 1, . . . ,d +1, and
d+1¼
i=1

Ýi = 1

 .
The points x(1), . . . ,x(d+1) are called the vertices (or nodes) of T . For instance, a 1-simplex is a

segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. For any d-simplex T and

a non-negative integer m ≤ d − 1, we can further define the m-dimensional face of T as the m-

simplex generated by the m +1 points of T . In particular, 0-dimensional faces are simple points,

1-dimensional faces are called the edges and 2-dimensional faces are called the facets of T .

Let us now introduce the notion of triangulation of a domain; see, e.g., [42, 35].

Definition 2.3 (Conforming triangulation). Let D ⊂ Rd , d = 2,3, be a polygonal or polyhedral

domain. A finite set T is a conforming1 triangulation (or mesh) of D if it fulfils:

• each element T ∈ T is a d-simplex generated by (d +1) vertices x(1)T , . . . ,x(d+1)T ∈ D ;

• the union of all elements of T covers the closure of the domain, i.e., D =
⋃

T∈T T ;

• the intersection of two elements T ,T ′ ∈ T can be either empty, a vertex, or an edge (resp. facet) if

d = 2 (resp. d = 3).

The third condition of Definition 2.3 guarantees that a conforming triangulation T does not con-

tain any hanging node, i.e., a vertex of an element T ∈ T which is contained in the interior of an

edge (or facet) of some element T ′ ∈ T .

Given T , we denote byN (T ) :=⋃
T∈T N (T) the set of vertices of T , whereN (T) denotes the set

of vertices of T ∈ T . Analogously, the set of edges (resp. facets) is given by E(T ) :=⋃
T∈T E(T), with

E(T) denoting the set of edges (resp. facets) of T ∈ T . Furthermore, we denote by N ◦(T ) ⊂ N (T )
the set of interior vertices, i.e., x ∈ N ◦(T ) if and only if x < �D , and we denote by E◦(T ) the set of

interior edges (or facets), i.e., E ∈ E◦(T ) if and only if E = T ∩ T ′ for two elements T ,T ′ ∈ T .

1Conforming triangulations are also referred to as admissible triangulations; see, e.g., [34].
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We introduce some further notation. The following sets

é(T) :=
⋃ {

T ′ ∈ T : E(T)∩E(T ′) , ∅
}

and é(x) :=
⋃ {

T ∈ T : x ∈ N (T)
}
, (2.7)

are the element patch and the vertex patch of an element T ∈ T and a vertex x ∈ N (T ), respectively.

Furthermore, define

hT := sup
x,x′∈T

|x− x′ | and íT := 2 sup
{
r > 0 : B(x, r) ⊂ T , x ∈ T

}
∀ T ∈ T , (2.8)

where B(x, r) denotes the d-dimensional ball of radius r and centre x, and let h := maxT∈T hT be

the mesh-size of T . We say that a triangulation T is shape-regular if there exists a positive constant

C1 such that

ã(T ) := max
T∈T

ã(T) ≤ C1 with ã(T) :=
hT
íT

∀ T ∈ T , (2.9)

where ã(T) is the shape-regularity constant which controls the degeneracy of an element T ∈ T . In

addition, a triangulation T is said to be quasi-uniform if all elements are of comparable size, i.e.,

there exists a positive constant C2 such that

maxT∈T |T |
minT∈T |T |

≤ C2 . (2.10)

Notice that if a triangulation is quasi-uniform, then it is also shape-regular, but not conversely.

Furthermore, we say that a given sequence of triangulations (T�)�∈N is shape-regular (resp. quasi-

uniform) if (2.9) (resp. (2.10)) holds for all triangulations T� (� ∈ N).

2.2.2 Piecewise polynomial spaces

We now introduce the discrete function spaces on triangulations of domains D ⊂ Rd , d = 2,3. To

this end, for each k ∈ N0, let Pk denote the space of polynomials of total degree less than or equal

to k in the d variables x1, . . . ,xd . It is well known that dim(Pk) = (k + d)!/(k!d !) for general d ∈ N
(see, e.g., [41, Theorem 2, p. 29]).

For a triangulation T of D , we define the finite element space on D as the space of globally

continuous piecewise polynomials of Pk over each element T ∈ T , i.e.,

Sk(T ) :=
{
v ∈ C0(D ) : v|T ∈ Pk(T), ∀ T ∈ T

}
∀ k ∈ N , (2.11)

with inclusion Sk(T ) ⊂ H1(D ) for all k ∈ N (see, e.g., [42, Theorem 2.1.1]). For functions vanishing
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on the boundary of D we define

Sk0 (T ) :=
{
v ∈ Sk(T ) : v|�D = 0

}
⊂ H1

0 (D ) . (2.12)

A basis for the space (2.11) is easily constructed by considering the #N (T ) Lagrange basis

functions ïj ∈ Sk(T ) such that ïj (xi ) = Öi j , with Öi j denoting the Kronecker symbol and xi being a

vertex of the triangulation T , i = 1, . . . ,#N (T ) (here, # denotes the cardinality); see, e.g., [42] and

[35, Section 3.1]. Hence, dim(Sk(T )) = #N (T ). Analogously, a basis for (2.12) would only include

those basis elements ïj associated with interior vertices xj ∈ N ◦(T ). The functions ïj are often

referred to as nodal basis functions and for k = 1, the are typically called hat functions.

2.3 Adaptive mesh-refinement in the finite element setting

One of the main topics of this work is the design of adaptive algorithms for (parametric) problems

in the setting of the finite element method. For a given model problem, e.g., a PDE posed on a

bounded domain where spatial discretisations are made via finite element spaces on conforming

triangulations (see (2.11) and (2.12)), adaptive FEM algorithms typically follow the standard loop

consisting of the following four modules

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE. (2.13)

The module SOLVE computes a numerical solution of the problem under consideration whereas

the module ESTIMATE usually gives information about the distribution of the estimated error

among the elements of the underlying triangulation. Then, in order to construct enhanced appro-

ximations for the sake of reducing the error, the module MARK implements some marking strategy

to select the elements associated with comparably large errors and the module REFINE comes with

some refinement rule which determines the refinement of such elements. For an introduction to

the finite element method we refer to, e.g., [42, 34, 35, 125]; comprehensive reviews of the aspects

of adaptive FEMs may be found in, e.g., [104, 105, 121].

In what follows, we recall two popular marking strategies that are often employed in the MARK

module of adaptive finite element algorithms and we also describe the mesh-refinement technique

that will be used in the REFINE module of all adaptive algorithms presented in this thesis.
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Maximum marking strategy

Input: set {Ô(S)}S∈S and a marking parameter Ú ∈ (0,1].
DO

set Ômax := max{Ô(S) : S ∈ S};
END
FOR S ∈ S

IF Ô(S) ≥ ÚÔmax

setM =M∪{S};
END

END
Output: subset of marked elementsM⊆S .

Strategy 2.1. The maximum marking strategy with threshold parameter Ú for a given input set of numbers
{Ô(S)} associated with the elements S of a generic set S .

2.3.1 Marking strategies

Suppose that a set of error estimates {Ô(T)}T∈T associated with elements T ∈ T is available; in

an adaptive FEM algorithm these are typically computed by some (a posteriori) error estimation

technique implemented in the ESTIMATE module (see, e.g., [2, 131]). Two popular marking stra-

tegies to select a subset of elements which contribute with large errors are the maximum marking

strategy and the Dörfler marking strategy2.

Early uses of the maximum marking strategy date back to [10]. In this strategy, an element

T ∈ T is marked if the associated error estimate Ô(T) is larger than a fixed proportion of the

maximum of all error estimates. That is, for a given marking (or threshold) parameter Ú ∈ (0,1],
the strategy returns a minimal setM⊆ T of marked elements such that

Ô(T) ≥ Úmax
T∈T

Ô(T) ∀ T ∈M . (2.14)

Notice that large values of Ú lead to small subsets of marked elements and vice versa.

The Dörfler marking strategy, introduced in [52], builds a subset of marked elementsM⊆ T
with minimal cardinality satisfying ¼

T∈M
Ô(T)2 ≥ Ú

¼
T∈T

Ô(T)2, (2.15)

where Ú ∈ (0,1] is the associated marking parameter. Contrary to the maximum strategy, here,

2The Dörfler marking strategy may be also referred to as equilibration (see, e.g., [131]) or bulk chasing (see, e.g.,
[105]) strategy.
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Dörfler marking strategy

Input: set {Ô(S)}S∈S and a marking parameter Ú ∈ (0,1].
DO

set Ô(S)2 :=´
S∈S Ô(S)2,M = ∅, and Ô(M) := 0;

END
WHILE Ô(M)2 < ÚÔ(S)2

set Ômax := max{Ô(S)2 : S ∈ S \M};
FOR S ∈ S \M

IF Ô(S)2 = Ômax

set Ô(M)2 = Ô(M)2 + Ô(S)2 andM =M∪{S};
END

END
END
Output: subset of marked elementsM⊆S .

Strategy 2.2. The Dörfler marking strategy with threshold parameter Ú for a given input set of numbers
{Ô(S)} associated with the elements S of a generic set S .

large values of Ú lead to large subsets of marked elements and it is guaranteed that sufficiently

many elements are selected so that their combined contributions to the total error estimate con-

stitutes a fixed proportion thereof. Notice that in order to construct a minimal subset, the sum

on the left hand-side of (2.15) considers the elements according to the descendent magnitudes of

associated estimates. This way, the set {Ô(T)}T∈M satisfying (2.15) consists of the #M largest error

estimates of the full set {Ô(T)}T∈T .

The maximum strategy is listed in Strategy 2.1 whereas the Dörfler strategy is listed in Stra-

tegy 2.2. In both cases, the strategies are listed for generic quantities {Ô(S)} associated with the

elements S of a set S .

2.3.2 Newest vertex bisection

The newest vertex bisection (NVB) (see [120]) is widely used in the FEM context since it turned

out to be a key ingredient for proving the convergence of adaptive algorithms for the numerical

approximation of solutions to PDEs; see, e.g., [52, 97, 31, 93, 40].

For simplicity, let us consider D ⊂ R2. Let T0 be an initial triangulation of D . In the NVB, a

reference edge is chosen for each element T ∈ T0. This can be, for example, the longest edge of

each element (see [113]). Given a set of elementsM� ⊆ T� to be refined (obtained by employing,
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(a) (b) (c) (d)

Figure 2.1. NVB bisections. (a) One, (b)-(c) two, and (d) three bisections of the edges of an element in T�.
Double lines denote the reference edges, black dots denote the edges to be bisected, and white dots denote
the newest vertices. Reference edges are always bisected first.

e.g., either the maximum or the Dörfler marking strategy), for � ∈ N0, successive iterations of NVB

refinements read as follows:

1) for each elements T ∈M�, the midpoint zT of the reference edge is connected with the vertex

of T in front of the reference edge. Then, zT becomes a new vertex;

2) such bisection (for all T ∈ M�) produces two new elements (the children of T) whose refer-

ence edges are the edges in front of the newest vertex zT ; see Figure 2.1(a);

3) the triangulation obtained by the refinement of every marked element is not usually con-

forming due to the presence of hanging nodes. Hence, additional bisections are required to

yield T�+1.

The third step of the NVB iteration described above is referred to as completion, or mesh-closure,

step. Notice that hanging nodes appear in the interior of those edges E = T1 ∩ T2, with T1,T2 ∈ T�,
for which the refinement of only one between T1 and T2 involves the bisection of E . To get rid

of hanging nodes, the algorithm performs iterated newest vertex bisections which can split an

element T ∈ T� into two, three, or four new elements; see Figure 2.1. Observe that according to

the configuration of T�, these additional bisections are likely to involve elements which do not

belong to the set of marked elements; see Figure 2.2. It is easy to see that the completion step

consists of finitely many additional bisections since the NVB performs at most 3#T� bisections

in case all edges of T� are bisected. Furthermore, we emphasise that since the refinement of an

element involves the bisection of some of its edges, NVB iterations are equivalently defined for a

given input set of marked edgesM� ⊆ E(T�). For additional details, we refer to [17, 84, 124] for

NVB refinements in two and three-dimensional cases and to [94] for an overview and comparison

of the NVB with other different mesh-refinement techniques.
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T�

(a)

1
2

3
4

5

6

7

8
9

10

(b) (c)

T�+1

(d)

Figure 2.2. NVB refinement. (a) Triangulation T� with marked elements M� = {T1,T4,T5,T8} in orange.
Double lines denote the reference edges of marked elements; (b) Bisections of reference edges of marked
elements M�. Four newest vertices (white dots), which are hanging nodes, are introduced; (c)-(d) Com-
pletion steps. Blue elements represent the elements of T� that require further bisections to yield T�+1. The
set of overall elements that are refined to obtain T�+1 is R� :=M� ∪ {T6,T9,T10}. In particular, there has
been one bisection in elements T1, T4, T6, T8, and T10, two bisections in element T5, and three bisections in
element T9.

Hereafter, for any given conforming triangulation T of D , we will let REFINE(·) be any subrou-

tine implementing NVB refinements such that T̃ = REFINE(T ,M) returns the coarsest conforming

triangulation T̃ so that all elements (resp. edges) in M have been refined (resp. bisected). In

particular, T = REFINE(T ,∅). For each n ∈ N, a triangulation Tn is a refinement of T0 if Tn can be

obtained by a finite sequence of refinements T�+1 = REFINE(T�,M�) for all � = 0, . . . ,n−1. Moreover,

in this work, we say that T̂ is a uniform refinement of T if T̂ is obtained by three newest vertex

bisections per each element T ∈ T (see Figure 2.1(d)).

Remark 2.3.1. An important feature of NVB refinements is that they automatically lead to nested finite

element spaces. That is, for some � ∈ N0, if Sk(T�) denotes the finite element space (2.11) associated with

triangulation T�, after one NVB refinement, the larger finite element space Sk(T�+1) constructed on

T�+1 is such that Sk(T�) ⊆ Sk(T�+1); see, e.g., [105]. This is not guaranteed by other mesh-refinement

techniques, such as red-green refinements (see [14]) and red-green-blue refinements (see [130]).
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Chapter 3

Random fields

In many practical applications, the main challenge is to cope with the uncertainty in some phy-

sical quantity of the model which may vary either in space or in time. A good characterisation

of such uncertainty is therefore essential and represents the reason for developing efficient nu-

merical methods for reliable uncertainty quantification. At the basis of effective mathematical

modelling of uncertain inputs in the model’s data there are probability spaces and the notion of

random variable. In this work, we are only concerned with model problems whose responses have

uncertain spatial behaviour. In this case, spatially varying random fields represent the main tool

to model and handle the uncertainties numerically.

In this chapter, we first recall the concepts of probability space and random variable staying

within the classical formalism of probability theory (see, e.g., [86, 19]). Then, we address the

problem of the representation of random fields by describing the Karhunen-Loève (KL) expan-

sions and, among spectral methods, we briefly review the idea of (generalised) Polynomial Chaos

(PC) expansions of random fields.

3.1 Random variables and probability spaces

A probability space is a measure space (Ò,F (Ò),P) where Ò is a non-empty set called the sample

space, F (Ò) is a ã-algebra on Ò, and P is a probability measure, i.e., a measure P : Ò → [0,1]

such that P(Ò) = 1. A (Ñ ,F (Ñ ))-random variable Y on (Ò,F (Ò),P) is a measurable function from

(Ò,F (Ò)) to (Ñ ,F (Ñ )). The observed value y := Y(é) ∈ Ñ , for some é ∈ Ò, is called realisation

of Y . We say that Y is real valued when it takes values in (R,B(R)), with B(R) being the Borel

ã-algebra on R.

For any real-valued random variable Y on (Ò,F (Ò),P) there is a probability distribution PY
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defined as the probability measure on (R,B(R)) such that

PY (B ) := P(Y−1(B )) = P
(
{é ∈Ò : Y(é) ∈ B}

)
∀ B ∈ B(R) . (3.1)

If PY is absolutely continuous with respect to the Lebesgue measure dx, then there exists a proba-

bility density (function) âY : R→ [0,+∞) such that

PY (B ) =
∫
B
âY (y)dy ∀ B ∈ B(R) . (3.2)

Notice that
∫
RâY (y)dy = 1, since PY (R) = P(Y−1(R)) = P(Ò) = 1 as P is a probability measure. The

mean and the variance of Y are defined by

E[Y] :=
∫
Ò

Y(é)dP(é) =
∫
R
y dPY (y) =

∫
R
yâY (y)dy, (3.3)

Var(Y) := E
[
(Y −E[Y])2

]
= E[Y2] − E[Y]2, (3.4)

respectively, where equalities in (3.3) hold due to (3.1) and (3.2). The standard deviation of Y is the

quantity defined by ãY :=
√
Var(Y).

Now, let Èm ⊂ R for all m ∈ N, and consider a sequence (Ym)m∈N of (Èm,B(Èm))m∈N-random

variables on (Ò,F (Ò),P). Let (PYm )m∈N be the associated probability distributions. We denote by

È :=⊗m∈N Èm the product space of (Èm)m∈N and by B(È ) :=⊗m∈NB(Èm) the product Borel ã-algebra

defined as the smallest Borel ã-algebra containing all sets⊗m∈NBm, with Bm ∈ B(Èm) for all m ∈ N.

The product probability measure ⊗P on (È ,B(È )) is defined as the unique (see, e.g., [19, Theorem

9.2]) probability measure such that

⊗P
⊗
m∈N

Bm

 =
½
m∈N

PYm (Bm) ∀ Bm ∈ B(Èm) . (3.5)

Let Y (é) = (Ym(é))m∈N, é ∈ Ò, be a multivariate random variable with joint probability dis-

tribution PY (B ) := P({é ∈ Ò : Y (é) ∈ B}) for all B ∈ B(È ) (cf. (3.1)). One can show that this is a

well-defined measure on (È ,B(È )). Also, âY represents the associated joint probability density. We

say that random variables (Ym)m∈N are independent if the joint distribution PY is equal to the prod-

uct measure ⊗P defined in (3.5), or, equivalently, if âY =
µ

m∈NâYm , where âYm are the probability

densities of Ym for all m ∈ N (see (3.2)). In particular, this implies that

E[Y ] =
∫
È

yâY (y)dy =
½
m∈N

∫
Èm

ymâYm (ym)dym =
½
m∈N

E[Ym] where y := Y (é) .

In addition, if the random variables are independent and, for all m , n, there holds âYm = âYn , we

say that they are independent and identically distributed (i.i.d.), whereas we say that Ym and Yn are
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uncorrelated if E[YmYn] = 0 for all m , n.

3.2 Definition of random field

Random fields are very important in many engineering applications as they are typically used to

define or obtain other quantities of the model by means of, for example, a PDE. These quantities

can be velocity fields, temperatures, pressures, etc., according to the model under consideration.

However, in all those problems whose inputs are uncertain or depend on some random parame-

ters, one does not have in general the exact knowledge or representation of the random field itself.

We can only rather obtain a priori information from some physical property or quantity which is

relevant to the application. It is therefore essential to be able to construct or approximate random

fields appropriately.

A formal definition of a random field can be given as follows. Let (Ò,F (Ò),P) be a probability

space and D ⊂ Rd , d ∈ N, be a bounded spatial domain. A random field is a jointly measurable

function a : D ×Ò→ R with respect to F (Ò) on the sample space Ò and the Borel ã-algebras on

D and R. In particular, a random field a can be seen as the family {a(x,é)}x∈D , é∈Ò such that a(x, ·)
is a random variable on (Ò,F (Ò)) for any fixed point x ∈ D and a(·,é) is a realisation in D for any

fixed é ∈Ò; see, e.g., [88].

Analogously to random variables, for all é ∈Ò, we can define the following quantities

E[a](x) :=
∫
Ò

a(x,é)dP(é) ∀ x ∈ D , (3.6)

Cov[a](x,x′) := E
[
(a(x,é)−E[a](x)) (a(x′ ,é)−E[a](x′))

]
∀ x, x′ ∈ D , (3.7)

which are the mean and the covariance of the random field a, respectively. The variance of a is

defined as Var(a)(x) := Cov[a](x,x) for all x ∈ D . Note that for these quantities to be well-defined

we should assume that the random field is second-order, i.e., a belongs to the Lebesgue-Bochner

space L2P(Ò;L2(D )). Furthermore, we say that Cov[a] is positive definite if¼
m∈N

¼
n∈N

cmCov[a](xm,xn)cn ≥ 0 ∀ xm,xn ∈ D , cm,cn ∈ C. (3.8)

Before addressing the problem of the representation of random fields, below we give two

examples of important classes of random fields which we will use in some numerical experiments

in this thesis.
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Example 3.2.1 (Stationary random fields). We say that a second-order random field is stationary,

if its mean E[a](x) is constant (i.e., it is independent of x ∈ D) and the covariance can be written as

Cov[a](x,x′) = c(x − x′) for some function c : D → R called stationary covariance function. That is,

stationary random fields are invariant to translations. On simple two-dimensional rectangular domains

D = [−b1,b1] × [−b2,b2] with [−bk ,bk] ⊂ R, k = 1,2, a typical example of a stationary covariance

function is the following,

Cov[a](x,x′) = exp

(
−|x1 − x

′
1|

�1
− |x2 − x

′
2|

�2

)
, (3.9)

where x = (x1,x2),x′ = (x′1,x
′
2) ∈ D , and �1, �2 > 0 are the correlation lengths; see [88, Example 7.56].

Example 3.2.2 (Isotropic random fields). We say that a second-order random field is isotropic if it is

stationary and its stationary covariance function c : D → R is given by c(x) = c0(r), where r :=
√
x21 + x22

and c0 is called the isotropic covariance function. That is, isotropic random fields are stationary random

fields invariant to rotations. A typical example of an isotropic covariance function on two-dimensional

domains is given by

c0(x) =
1
4�2

exp

(
−á r2

4�2

)
, x ∈ D , (3.10)

for a correlation length � > 0; see [88, Example 6.10].

3.3 Representation of random fields

In order to take the uncertainty into account in a given model we need to represent random fields

in an appropriate way. Typically, a random field can be written in Fourier-type series in which the

spatial part, consisting of a family of real-valued functions, is separated from the stochastic part,

which consists of a sequence of random variables. In this section, we briefly recall two well-known

examples of such representations.

3.3.1 Karhunen-Loève expansions

The Karhunen-Loève (KL) expansion of a random field a is the preferred candidate in many ap-

plications since it represents an optimal approximation of a in the mean square sense when the

corresponding infinite expansion is truncated after the first, say, M ∈ N terms.

Let Ca : L2(D )→ L2(D ) be the covariance operator of a second-order random field a defined as

Ca(f )(x) :=
∫
D
Cov[a](x, x′ )f (x′)dx′ ∀ f ∈ L2(D ) . (3.11)
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If the symmetric covariance Cov[a] is positive definite (see (3.8)), then Ca is a symmetric, non-

negative, and compact operator. In particular, there exists a family (Ým, fm)m∈N of eigenpairs of

Ca, i.e., satisfying

Ca(fm) = Ýmfm ∀m ∈ N, (3.12)

where the sequence of non-negative eigenvalues (Ým)m∈N, which is enumerated according to de-

creasing magnitudes (i.e., Ý1 ≥ Ý2 ≥ · · · ≥ 0), tends to zero as m→∞, and eigenfunctions (fm)m∈N

are orthonormal with respect to the inner product (·, ·)L2(D ).

Definition 3.1 (KL-expansions). The Karhunen-Loève expansion of a second-order random field a is

defined as

a(x,é) = E[a](x) +
∞¼

m=1

√
Ýmfm(x)Ym(é), x ∈ D , é ∈Ò, (3.13)

where Ym(é) are random variables uniquely defined by

Ym(é) :=
1√
Ým

(a(x,é)−E[a](x) , fm(x) )L2(D ) ∀m ∈ N, é ∈Ò,

and (Ým, fm)m∈N are the eigenpairs of the covariance operator Ca defined in (3.11).

It is straightforward to verify that Ym are mean zero uncorrelated random variables with unit

variance. Furthermore, expansion (3.13) is well-defined as it converges in L2P(Ò;L2(D )) due to

Mercer’s theorem (see, e.g., [112, p. 245]). In fact, if we denote by

aM (x,é) := E[a](x) +
M¼

m=1

√
Ýmfm(x)Ym(é), x ∈ D , é ∈Ò, (3.14)

the truncated KL-expansion of a after M ∈ N terms, then there holds

sup
x,x′∈D

∣∣∣∣Cov[a](x,x′) − Cov[aM ](x,x
′)
∣∣∣∣ = sup

x∈D

∞¼
m=M+1

Ýmïm(x)
2 → 0 as M→∞,

and then supx∈D E[ (a− aM )(x, ·) ] = supx∈D
´∞

m=M+1Ýmïm(x)2→ 0 as M→∞ (see also [87, p. 144]

and [88, Theorem 7.53]). In particular, the L2P(Ò;L2(D ))-error due to the truncation after M terms

is then given by

‖a− aM ‖L2P(Ò;L2(D )) =
∞¼

m=M+1

Ým . (3.15)

This error is optimal in the sense that for any other truncated series ãM of M ∈ N random variables

and spatial functions, error (3.15) due to KL-expansion is smaller than the corresponding error

‖a − ãM ‖L2P(Ò;L2(D )) (see, e.g., [72]). It is clear that information about the decay of the eigenvalues

(Ým)m∈N of Ca plays a crucial role in order to obtain good bounds which control the error of
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truncated KL expansions; see, e.g., [68, 119].

From the description above, we see that KL-expansions typically require the (a priori) know-

ledge of prescribed means E[a] and covariances Cov[a]. In addition, if the eigenpairs of the as-

sociated covariance operator Ca are not given/known, they should be computed by solving (3.12)

which is in general a non-trivial task. For example, discretisation of (3.12) obtained from nu-

merical methods such as Galerkin projections and approximations via collocation points, give

rise to matrix equations whose eigenpairs approximate the eigenpairs of the continuous problem

(see, e.g., [88, Section 7.4]). However, such resulting matrices are typically dense and large, thus

efficient and accurate numerical approximations may result in expensive computations. In parti-

cular cases, such as exponential (see (3.9)) or triangular covariances on certain domains, there exist

the analytical expressions of the corresponding eigenpairs (see, e.g., [72, Chapter 2] and Exam-

ple 3.3.1 below). For other general covariances or complicated domains, one may use efficient

eigensolvers, e.g., so called fast multipole methods (see [119]).

Example 3.3.1 (Stationary covariances). Consider the KL-expansion of a random field with the sta-

tionary exponential covariance (3.9) from Example 3.2.1. In this case, the eigenpairs (Ým, fm)m∈N of

the covariance operator Ca of the associated random field are given by fm(x) := f (1)i (x1)f
(2)
j (x2) and

Ým := Ý
(1)
i Ý

(2)
j , where (Ý(1)

i , f (1)i )i∈N and (Ý(2)
j , f (2)j )j∈N are the eigenpairs of the one-dimensional eigen-

value problem ∫ bk

−bk

exp

(
−|x − z|

�k

)
f (k)(z)dz = Ý(k)f (z), k = 1,2. (3.16)

See, e.g., [88, Example 7.55], for the analytical expression of such eigenpairs for problem (3.16). It can

be shown that the values of correlation lengths does not affect the asymptotic decay (i.e., for m → ∞)

of eigenvalues Ým which is of order O(m−2) (see [88, Example 7.58]). A truncated KL-expansion with

covariance (3.9) will be considered in the numerical experiment in Section 7.3.2.

In some cases, one may consider KL-expansions with explicit eigenpairs that yield random

fields with covariance functions that are close/similar to goal covariances functions whose eigen-

pairs are either not known analytically or are too difficult to approximate.

Example 3.3.2 (Isotropic covariances). Let D = (0,1)2 and consider the following KL-expansion of a

random field a(x,é),

a(x,é) = E[a](x) +
∞¼
i=0

∞¼
j=0

√
ßi jæi j (x)Yi j (é), x ∈ D , é ∈Ò, (3.17)
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where æ00(x) := 1, ß00 := 1/4, and

æi j (x) := 2cos(iáx1)cos(jáx2) and ßi j :=
1
4
exp

(
−á(i2 + j2)�2

)
∀ i , j ∈ N, (3.18)

with � > 0 and random variables Yi j being independent uniformly distributed in [−√3,√3]; note that

they are mean zero and have unit variance for all i , j ∈ N0. It can be shown that random field a(x,é) in

(3.17) has a covariance function close to the isotropic function (3.10) provided that � is small enough;

see [88, Example 9.37]. KL-expansion (3.17) will be considered in the numerical experiment in Sec-

tion 5.4.4.

Example 3.3.3 (Exponential random fields). The well-posedness of some model problem may require

the input random field a to be positive, e.g., a > amin a.e. in D for some positive constant amin. To

enforce such positiveness, we can represent a as a nonlinear function of the random variables. This is

typically the case of exponential random fields of the form

a(x,é) = amin + exp

 ∞¼
m=1

am(x)Ym(é)

 , x ∈ D , é ∈Ò, (3.19)

or, equivalently defined, e.g., as the KL-expansion of log(a − amin) assuming that a − amin > 0 almost

surely. In particular, when (Ym)m∈N are normal random variables, random field (3.19) is called log-

normal random field; see, e.g., [5, 103, 128, 101]. In this thesis we are not going to consider the case

of exponential random fields, but we rather require the positiveness of the considered random fields by

direct assumption.

3.3.2 Polynomial Chaos expansions

The main drawback of KL-expansions is that they require the random field to have a known pre-

scribed mean and covariance function. Furthermore, assuming such statistics for the input ran-

dom field of the model under consideration does not guarantee at all the response to have the

same properties, i.e., we cannot expect to represent the solution of the model via KL-expansions.

A more general approach to representing random fields dates back to Wiener [133] and was

introduced for the representation of Gaussian random processes. This is known as polynomial

chaos (PC) expansion. Here, random fields are represented by an infinite series in which the

stochastic part consists of Hermite polynomials (see Example 4.2.2) in a sequence of independent

Gaussian random variables. That is, the idea is to write a representation in which a polynomial

combination of known random variables is used as a basis for the expansion. When random
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variables are assumed to be not Gaussian, in order to work with orthogonal polynomials, Hermite

polynomials are substituted by families of orthogonal polynomials with respect to the probability

distribution of such random variables. In this case, we typically talk about generalised PC (gPC)

expansions; see, e.g., [134, 135].

In general, for a sequence of independent real-valued (È ,B(È ))-random variables (Yi (é))i∈N

on the probability space (Ò,F (Ò),P), with Y (é) = (Yi (é))i∈N, and a set {Pm}m∈N of orthogonal

polynomials in Y forming a basis of L2PY
(È ), a second-order random field can then be expanded

(i.e., written) as

a(x,é) =
∞¼

m=1

fm(x)Pm(Y (é)) , x ∈ D , é ∈Ò , (3.20)

where coefficients fm : D → R are spatial functions that have to be chosen appropriately; for exam-

ple, they can be finite element functions; see, e.g., [72, 135]. There are many well-known fami-

lies of gPC polynomial basis associated with the corresponding distribution of random variables

(Yi )i∈N. For example, Gaussian random variables lead to Hermite polynomials while uniformly

distributed random variables lead to Legendre polynomials (see Example 4.2.1). Jacobi and La-

guerre polynomials are instead associated with Beta and Gamma distributions, respectively; see,

e.g., [135, 70]. Notice that as for KL-expansions, in order to deal with expansion (3.20) numeri-

cally, truncation after a certain number of terms is, in general, required. In this work, we will

encounter gPC expansions in subsequent chapters when representing the solution of parametric

elliptic boundary value problems.
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Chapter 4

Discretisation of elliptic problems with parametric
uncertainty

In the present chapter, we focus the attention on the class of elliptic problems under considera-

tion in this work as well as the assumptions used in the remainder of the thesis. We consider

a boundary value problem, with an uncertain spatially-varying diffusion coefficient, posed on a

polygonal domain in R2. This coefficient is seen as a second-order random field (see Section 3.2).

In particular, we consider the case of a parametric random field depending on a countable infinite

number of parameters defined as the images of some (independent) random variables. In order

for the problem to be well-posed, we make particular assumptions on the random field as well as

on the structure of the underlying probability space. Lebesgue-Bochner spaces (or equivalently,

tensor products of Hilbert spaces) will be the natural spaces to use in order to derive the weak

formulation of the problem.

We consider the numerical approximation of the (weak) solution to our parametric model

problem under the general context of spatial discretisations made by means of finite element

approximations. Very popular numerical methods to tackle parametric PDE problems are clas-

sic Monte Carlo (MC) methods, including, e.g., multi-level Monte Carlo (MLMC) methods (see,

e.g., [43, 126, 73]), and stochastic collocation (SC) methods (see, e.g., [5, 103, 102]). These are

sampling-based methods that, in particular, require the (a-priori) truncation of input random

fields. Furthermore, they can be used also in the case of models where random parameters do

not need to take values in bounded domains (e.g., as in the case of lognormal random fields, see

Example 3.3.3). Nevertheless, in this thesis, we are not going to consider such class of numeri-

cal methods for the discretisation of parametric PDEs. We rather focus on the stochastic Galerkin

Finite Element Method (SGFEM); see, e.g., [48, 49, 8, 9]. This method arose by the pioneering con-
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tribution [72] which proposed truncated gPC expansions of solutions to parametric PDEs under

a Galerkin framework. This has resulted in the development of spectral stochastic finite ele-

ment methods, where gPC expansions of the solutions (which take into account the stochastic

approximation) are combined with a Galerkin projection onto (finite-dimensional) finite element

spaces for the spatial approximation (see also [9, 91]).

In what follows, we introduce the model problem, we derive its weak formulation, and state

the assumptions needed to ensure the well-posedness in Section 4.1. Then we describe the SGFEM

method and provide some details on the implementation aspects in Section 4.2.

4.1 Parametrisation of random inputs

Our starting point is a brief review of the abstract setting of general parametric operator equa-

tions. This is the functional analytic setting for the class of elliptic problems with random inputs

that deserves our attention.

4.1.1 The abstract setting of parametric operator equations

Throughout, we follow closely the description given in [118]; see also [75].

Let È be a compact topological space andH be a separable Hilbert space over R equipped with

norm ‖ ·‖H. Also, let L(H,H′) be the space of bounded linear operators from H to its dual space

H′, and 〈·, ·〉 be the duality pairing between H′ and H. Consider the following parametric operator

equation

A(y)u(y) = f (y) ∀ y ∈ È , (4.1)

where A : È → L(H,H′) is a continuous map with a bounded inverse A−1 for all y ∈ È and f :

È →H′. The unique solution u := A−1f : È →H to equation (4.1) is continuous if and only if f is

continuous.

In order to derive the weak formulation of (4.1) in the parameter y ∈ È , we further assume that

A(y) is a symmetric and positive definite operator for all y ∈ È , and that there exists two positive

constants Amin,Amax <∞ such that

‖A(y)‖L(H,H′) ≤ Amax and ‖A(y)−1 ‖L(H′ ,H) ≤ Amin ∀ y ∈ È , (4.2)

i.e., for any v ∈ H, the bilinear form 〈A(y)v,v〉 is an inner product on H which induces a norm
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equivalent to ‖ ·‖H. Now, suppose that á is a probability measure on the measurable space (È ,B(È )).
In this way, the operator A = A(y) depends on a parameter y in a probability space (È ,B(È ),á)
while f becomes a random variable on È taking values in H. In particular, let us assume the

following regularity for the right-hand side

f ∈ L2á(È ;H′) . (4.3)

The weak formulation of problem (4.1) is then defined as follows: find u ∈ L2á(È ;H) such that

B(u,v) :=
∫
È

〈A(y)u(y),v(y)〉dá(y) =
∫
È

〈f (y),v(y)〉dá(y) =: F(v) ∀ v ∈ L2á(È ;H). (4.4)

Due to assumptions (4.2) and (4.3), both integrals in (4.4) are well defined and the problem above

admits a unique solution (see [118, Theorem 2.18]).

4.1.2 Parametric model problem

Hereafter, we refer to the compact topological space È as the parameter space. Let D ⊂ R2 be a

bounded domain with a Lipschitz polygonal boundary �D . For f ∈ L2(D ), consider the following

homogeneous Dirichlet problem for the parametric steady-state diffusion equation

−∇ · (a(x,y)∇u(x,y)) = f (x) x ∈ D , y ∈ È ,

u(x,y) = 0 x ∈ �D , y ∈ È ,
(4.5)

where y ∈ È are the parameters, ∇· denotes the divergence operator with ∇ denoting the differen-

tiation with respect to spatial variables x ∈ D , and the diffusion coefficient a : D × È → R is a

second-order random field (see Section 3.2).

Problem (4.5) is an example of a PDE with parametric inputs which perfectly fits into the class

of problems whose weak formulations derive from abstract parametric operator equations (4.1)

(see Section 4.1.4 below). Here, the parameter y can be seen as the image in È of some random

variable Y on a probability space (Ò,F (Ò),P) with known/given probability distribution á. This

is indeed one of the assumptions that we are going to make in next section. That is, we suppose to

work over the ‘image’ probability space (È ,B(È ),á), where È := Y (Ò), rather than over (Ò,F (Ò),P).

For simplicity, we only consider the case of non-parametric, i.e., deterministic, sources f = f (x);

in fact, in principle, the source term may also be uncertain, that is, it may depend on y ∈ È , thus

being a random field. Problem (4.5) is the same parametric equation that is also considered in, e.g.,

[49, 9, 24, 29, 54, 55, 76]. Note that the solution u to problem (4.5) will be itself a random field.

32



4. DISCRETISATION OF ELLIPTIC PROBLEMS WITH PARAMETRIC UNCERTAINTY

4.1.3 Main assumptions

Let (È ,B(È ),á) be the underlying probability space for problem (4.5). Let us make the following

first assumption.

Assumption 4.1. We assume that

• the parameter domain È is the product space

È :=
∞⊗

m=1

Èm with Èm := [−1,1] ∀m ∈ N , (4.6)

and y ∈ È are vectors of parameters ym ∈ Èm which are the images of i.i.d. random variables

Ym : Ò→ Èm on a probability space (Ò,B(Ò),P), i.e., y = (ym)m∈N = (Ym(é))m∈N, é ∈ Ò. In

particular, B(È ) is the product Borel ã-algebra on È (see Section 3.1);

• the probability distribution á is the product probability measure on (È ,B(È )) given by

á(y) :=
∞½

m=1

ám(ym) ∀ y ∈ È , (4.7)

where probability distributions ám are probability measures on (Èm,B(Èm)), for all m ∈ N.

Moreover, every measure ám is symmetric, i.e., the probability density âm : Èm → [0,+∞) of

Ym, such that dám(ym) = âm(ym)dym (cf. (3.2)), is an even function.

We will refer to y ∈ È as well as the components ym ∈ Èm, for all m ∈ N, as the parameters. We now

make the following assumptions on the coefficient a(x,y) in (4.5).

Assumption 4.2. The diffusion coefficient a(x,y) is a random field which depends linearly on

parameters ym as follows,

a(x,y) = a0(x) +
∞¼

m=1

am(x)ym, x ∈ D , y ∈ È , (4.8)

where we assume that:

• a0(x) is uniformly bounded away from zero, i.e., there exist two constants amin
0 ,amax

0 < ∞
such that

0 < amin
0 ≤ a0(x) ≤ amax

0 a.e. in D ; (4.9)

• spatial functions (am)m∈N satisfy ‖am ‖L∞(D ) ≥ ‖am+1 ‖L∞(D ) for all m ∈ N, and the series in

(4.8) converges uniformly in L∞(D ), with

Õ :=
1

amin
0

∞¼
m=1

‖am ‖L∞(D ) < 1. (4.10)
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For example, decomposition (4.8) may come from a Karhunen-Loève expansion of a random

field a(x,y) with a given covariance function Cov[a] (cf. (3.13)). Notice that the parameter-free

term a0(x) is equal to the mean value E[a]. In fact, for all m ∈ N, we have that∫
È

ym dá(y) =

 ∞½
n,m

∫
Èn

dán(yn)

∫
Èm

ym dám(ym)

 =
∫
Èm

ym âm(ym)dym = 0 ,

where the second equality follows since ám are distribution measures and the third equality fol-

lows from the symmetry of intervals Èm and since ym âm(ym) is an odd function. In addition, for

all y ∈ È , we have

| a(x,y)− a0(x) | ≤
∞¼

m=1

|am(x)ym |
(4.6)
≤

∞¼
m=1

|am(x)| ≤
∞¼

m=1

‖am(x)‖L∞(D )
(4.10)
< amin

0 ,

and from (4.9) we see that the random field a(x,y) in (4.8) is positive and bounded from above by

amin
0 + amax

0 a.e. in D .

Remark 4.1.1 (Finite-dimensional noise assumption). The main theoretical and numerical challenge

in dealing with PDE problems depending on a countable infinite number of parameters is that, in ge-

neral, one does not known a priori which and how many parameters should be incorporated in the

discretisation of the model. In other words, it is difficult to decide after how many terms the represen-

tation of random inputs should be truncated. However, in many practical settings, realisations of the

input random field may be slowly varying in space. When this happens, only few terms in the series are

effectively needed to capture accurately the features of the random field. In this case, expansions such as

(3.13) or (4.8) can be truncated after a certain number of terms (cf. (3.14)). In literature, this is also

known as finite-dimensional noise assumption; see, e.g., [8, 68, 5, 79]. In our current setting, we keep

assumption (4.8) since we will show later that the approximation of problem (4.5) via SGFEM naturally

leads to truncated series in the expansion of the random field (see Proposition 4.1).

It is worth recalling that we do not loose generality in assuming that bounded parameters ym

take values in Èm = [−1,1] (m ∈ N) as in Assumption 4.1, since this can be always ensured by

rescaling appropriately the spatial functions am in (4.8) (see [118, Lemma 2.20]).

4.1.4 Weak formulation

Let H1
0 (D ) be the Sobolev space of functions in H1(D ) vanishing on �D in the sense of traces and

H−1(D ) be its dual space. Furthermore, let 〈·, ·〉 be the duality pairing between H−1(D ) and H1
0 (D ).

For all y ∈ È , let f (y) ∈ H−1(D ) be defined by 〈f (y),w〉 :=
∫
D
f (x)w(x)dx for all w ∈ H1

0 (D ). Fur-
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thermore, for all y ∈ È , we define the following symmetric operator A(y) : H1
0 (D )→ H−1(D ),

〈A(y)v,w〉 :=
∫
D
a(x,y)∇v(x) · ∇w(x)dx = 〈A0v,w〉+

∞¼
m=1

ym〈Amv,w〉 ∀ v,w ∈ H1
0 (D ), (4.11)

where Am : H1
0 (D )→ H−1(D ) are the symmetric operators defined by

〈Amv,w〉 :=
∫
D
am(x)∇v(x) · ∇w(x)dx ∀ v,w ∈ H1

0 (D ), m ∈ N0. (4.12)

Decomposition (4.11) follows the structure of the random field (4.8) and note that operator A(y)

in (4.11) is the one associated with problem (4.5) for all y ∈ È . Assumption (4.9) on the mean field

a0 of the random field implies that the bilinear form 〈A0·, ·〉 is both continuous and coercive, i.e.,

| 〈A0v,w〉 | ≤ amax
0 ‖v ‖H1

0 (D )
‖w ‖H1

0 (D )
∀ v,w ∈ H1

0 (D ) , (4.13)

〈A0v,v〉 ≥ amin
0 ‖v ‖2H1

0 (D )
∀ v ∈ H1

0 (D ) . (4.14)

Also, both (4.9) and (4.10) imply that the operator A(y), as well as its inverse A(y)−1, are bounded

for all y ∈ È ,

sup
y∈È
‖A(y)‖L(H1

0 (D ),H
−1(D )) ≤ Amax and sup

y∈È
‖A(y)−1 ‖L(H−1(D ),H1

0 (D ))
≤ A−1min , (4.15)

where the positive positive constants Amin and Amax are given by

Amax := amax
0 (1 +Õ) and Amin := amin

0 (1−Õ) , (4.16)

respectively (see [118, Proposition 2.22]). Furthermore, (4.10) and (4.13) ensure that the series

in (4.11) converges in L(H1
0 (D ),H

−1(D )) uniformly in y. In particular, A(y) depends continuously

on y ∈ È (see [118, Lemma 2.21]).

Now, let us consider the Lebesgue-Bochner space L2á(È ;H
1
0 (D )). The weak formulation of prob-

lem (4.5) reads as: find u ∈ L2á(È ;H1
0 (D )) such that (cf. (4.4))

B(u,v) :=
∫
È

〈A(y)u(y),v(y)〉dá(y) =
∫
È

〈f (y),v(y)〉dá(y) =: F (v) ∀ v ∈ L2á(È ;H1
0 (D )) , (4.17)

where, due to (4.11) and (4.12), the symmetric bilinear form B can be written as

B(u,v) = B0(u,v) +
∞¼

m=1

Bm(u,v) ∀ u,v ∈ L2á(È ;H1
0 (D )) , (4.18)

with component bilinear forms B0 and Bm given by

B0(u,v) :=
∫
È

〈A0u(y),v(y)〉dá(y) ∀ u,v ∈ L2á(È ;H1
0 (D )) , (4.19)

Bm(u,v) :=
∫
È

ym〈Amu(y),v(y)〉dá(y) ∀ u,v ∈ L2á(È ;H1
0 (D )) , ∀m ∈ N . (4.20)
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Note that F ∈ L2á(È ;H−1(D )) and inequalities (4.15) imply that B(·, ·) is both continuous and coercive

with Amax and Amin defined in (4.16) being the continuity and coercivity constants, respectively.

Therefore, the existence of the unique solution u ∈ V satisfying the weak problem (4.17) is gua-

ranteed by the Lax-Milgram lemma (see, e.g., [35, Theorem 2.7.7]).

To conclude, observe that on the one hand, the bilinear form B(·, ·) defines an inner product in

L2á(È ;H
1
0 (D )) which induces a norm

‖v ‖B := B(v,v)1/2 ∀ v ∈ L2á(È ;H1
0 (D )) ,

called the energy norm, that is equivalent to ‖ ·‖L2á(È ;H1
0 (D ))

(see, e.g., [75, Lemma 1.3]). On the

other hand, (4.13) and (4.14) imply that also B0(·, ·) defines an inner product in L2á(È ;H
1
0 (D )) which

induces the norm ‖ ·‖B0
:= B0(·, ·)1/2 equivalent to ‖ ·‖L2á(È ;H1

0 (D ))
. Therefore, we have the following

equivalence of norms,

Ý‖v ‖2B ≤ ‖v ‖2B0
≤ Ë‖v ‖2B ∀ v ∈ L2á(È ;H1

0 (D )) , (4.21)

where Ý < 1 <Ë are given by

Ý := amin
0 A−1max and Ë := amax

0 A−1min . (4.22)

4.2 Stochastic Galerkin Finite Element Method

In this section, we describe the approximation of the solution to weak formulation (4.17) using

the stochastic Galerkin Finite Element Method (SGFEM); see, e.g., [72, 48, 49, 8, 9, 91, 79].

First of all, notice that the weak solution u ∈ L2á(È ;H1
0 (D )) to the weak formulation (4.17) can be

seen as a function in the tensor product space L2á(È )⊗H1
0 (D ) due to isomorphism (2.6). Therefore,

in the remainder of the thesis, we choose

V := L2á(È ) ⊗ H1
0 (D ) (4.23)

as both our trial and test space in (4.17). As in non-parametric (i.e., deterministic) FEM, discreti-

sation via SGFEM aims at computing a discrete approximation of a weak solution u via Galerkin

projection onto a suitable finite-dimensional subspace of V . Such subspace can be defined by

maintaining the same tensor product structure of V , i.e., it can be given by the tensor product

of independently constructed finite-dimensional subspaces of H1
0 (D ) and L2á(È ). In particular,

the method considers a finite element space associated with the spatial discretisation of D and
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a finite-dimensional space of multivariate polynomials in the parameters for the stochastic ap-

proximation.

The construction of the finite-dimensional subspace of L2á(È ) deserves particular attention. We

describe such construction in the following section.

4.2.1 Orthogonal polynomials in the parameter space

For each m ∈ N, let {pmk }k∈N0
be the set of univariate polynomials of degree k, with pm0 := 1, which

forms an orthonormal basis of L2ám
(Èm) with respect to the inner product (·, ·)ám

. If ám has finite

moments, i.e., ∫
Èm

ynmdám(ym) < ∞ ∀ n ∈ N0 , (4.24)

these polynomials satisfy the well-known three-term recurrence (see, e.g., [70]),

Ômk+1 p
m
k+1(ym) = (ym −Óm

k )p
m
k (ym) − Ômk pmk−1(ym), ym ∈ Èm, k ∈ N0 , (4.25)

where pm−1 := 0 for all m ∈ N and

Óm
k := (ym pmk , p

m
k )ám

and Ômk := cmk−1 / c
m
k ,

with cmk denoting the leading coefficient of pmk and Ôm0 := 1. Notice that under Assumption 4.1, we

have that Óm
k = 0 in (4.25) due to the symmetry of Èm and the symmetry of measures ám, for all

m ∈ N. Recurrence (4.25) can be derived from the Gram-Schmidt orthogonalisation of monomials

(ynm)n∈N0
. For a proof of orthonormality of a set of (univariate) polynomials {pmk }k∈N0

satisfying

(4.25), see, e.g., [118, Lemma 2.14]; the completeness, on the other hand, is a classic result due

to Riesz based on the assumption that measure ám is uniquely ‘determinated’ by its moments in

(4.24) (see, e.g., [23, Theorem 2.1] and [63, Section 3.1]).

We report some examples of sets of orthonormal polynomials satisfying the three-term recur-

rence (4.25). For additional examples of families of orthonormal polynomials we refer to, e.g.,

[135, 70].

Example 4.2.1 (Legendre polynomials). For all m ∈ N, let Èm = [−1,1] and ám be the uniform dis-

tribution measure on (Èm,B(Èm)), i.e., dám(ym) = âm(ym)dym with âm(ym) = 1/2 for all ym ∈ Èm.

Then, the orthonormal basis of polynomials of L2á(Èm) consists of scaled Legendre polynomials, defined
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by Rodrigues’ formula

Lmk (ym) :=

√
2k +1
2kk!

dk

dykm
(y2m −1) , ym ∈ Èm, k ∈ N0 ,

which satisfy the following three-term recurrence

Ômk+1L
m
k+1(ym) = ym Lmk (ym) − Ômk Lmk−1(ym) , k ∈ N0 , (4.26)

with Lm−1 := 0, Lm0 := 1, and Ôm0 := 1 and Ômk = k/(
√
2k +1

√
2k −1) for all k ∈ N.

Example 4.2.2 (Hermite polynomials). For all m ∈ N, let Èm := R and ám be the standard normal

distribution measure on (Èm,B(Èm)), i.e., dám(ym) = âm(ym)dym with

âm(ym) =
1√
2á

exp

(
−y

2
m

2

)
, ym ∈ Èm .

Then, the orthonormal basis of polynomials of L2á(Èm) consists of normalised Hermite polynomials, de-

fined by Rodrigues’ formula

Hm
k (ym) := (−1)k 1√

k!
exp

(
y2m
2

)
dk

dykm
exp

(
−y

2
m

2

)
, ym ∈ Èm , k ∈ N0 ,

which satisfy the following three-term recurrence

Ômk+1H
m
k+1(ym) = ymHm

k (ym) − Ômk Hm
k−1(ym) , k ∈ N0 ,

with Hm
−1 := 0, Hm

0 := 1, and Ôm0 := 1, Ômk =
√
k for all k ∈ N.

Example 4.2.3 (Rys polynomials). For all m ∈ N, let Èm = [−b,b] with b ∈ R, and let ám the ‘trun-

cated’ Gaussian distribution measure on (Èm,B(Èm)), i.e., dám(ym) = âm(ym)dym with

âm(ym) =
(
2Ð

(b
s

)
−1

)−1 1√
2ás2

exp

(
− y2m
2s2

)
ç[−b,b](ym) , ym ∈ Èm , (4.27)

where Ð(·) denotes the Gaussian cumulative distribution function defined as

Ð(x) :=
1√
2á

∫ x

−∞
exp

(
− t

2

2

)
dt ∀ x ∈ R ,

s ∈ R, and ç[−b,b] is the characteristic function of the interval [−b,b]. The function defined by (4.27)

is the probability density function truncated on the interval [−b,b] of a mean zero Gaussian random

variable with standard deviation s. Hence, ám is a particular case of the measure in Example 4.2.2.

The associated orthonormal polynomials in L2ám
(Èm) which satisfy the three-term recurrence (4.25) are

typically referred to as Rys polynomials; see, e.g., [83, 116].

Now, let NN
0 := {ß = (ßm)m∈N : ßm ∈ N0} be the set of multi-indices. In order to construct a basis
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for the space L2á(È ), we define the following set of finitely supported multi-indices

I :=
{
ß ∈ NN

0 : #supp(ß) <∞
}
, (4.28)

where supp(ß) := {m ∈ N : ßm > 0} is the support of ß and # denotes the cardinality. Note that the

set I is countable since it can be understood as a countable union of countable sets. The set I and

all its subsets are called index sets, and we refer to elements ß ∈ I simply as indices. For y ∈ È , we

define the following polynomials

Pß(y) :=
∞½

m=1

pmßm (ym) =
½

m∈supp(ß)
pmßm (ym) ∀ ß ∈ I, (4.29)

where {pmßm } is the set of polynomials of degree ßm, with pm0 := 1, forming a basis of L2ám
(Èm) for all

m ∈ N. Then, the set {Pß(y)}ß∈I of polynomials Pß defined in (4.29), for all ß ∈ I, is an orthonormal

basis of L2á(È ) with respect to inner product (·, ·)á (see, e.g., [118, Theorem 2.12]). Note that due to

the tensor product structure of the space V , each function v ∈ V can be written as a PC expansion

in the orthonormal polynomials Pß, i.e.,

v(x,y) =
¼
ß∈I

wß(x)Pß(y) with unique coefficients wß ∈ H1
0 (D ). (4.30)

For a given finite index set P ⊂ I of cardinality #P <∞, we denote by PP the finite-dimensional

subspace of L2á(È ) of polynomials associated with P, i.e.,

PP := span
{
Pß(y) : ß ∈ P, y ∈ È

}
=

⊕
ß∈P
Pß , (4.31)

where Pß := span{Pß } and Pß is defined in (4.29) for each ß ∈ P. Throughout, we will assume

that PP in (4.31) always contains the zero index ß = 0 := (0,0, . . . ) so that PP also contains constant

functions.

Example 4.2.4. Let P ⊂ I be a finite subset consisting of the following four indices:

P :=
{
ß(1) = 0, ß(2) = (1,0,0, . . . ), ß(3) = (0,1,0, . . . ), ß(4) = (2,1,0, . . . )

}
.

We have supp(ß(1)) = ∅, supp(ß(2)) = {1}, supp(ß(3)) = {2}, and supp(ß(4)) = {1,2}. From (4.29)

and (4.31), it follows that the basis of the associated space PP is formed of the following four polynomials

Pß(1)(y) = 1, Pß(2)(y) = p11(y1), Pß(3)(y) = p21(y2), Pß(4)(y) = p12(y1)p
2
1(y2), ∀ y ∈ È .

For example, in the case of uniformly distributed parameters on Èm = [−1,1], the orthonormal basis

{pmk }k∈N0
of L2ám

(Èm) consists of Legendre polynomials satisfying the three-term recurrence (4.26), thus
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we have

Pß(1) = 1, Pß(2) = y1
√
3, Pß(3) = y2

√
3, Pß(4) =

(√
5(3y21 −1) /2

) (
y2
√
3
)
.

Example 4.2.4 shows that a finite index set P ⊂ I determines both the ‘active’ parameters ym

of P, i.e., those parameters ym ∈ Èm for which there exists ß ∈ P with nonzero ßm (y1 and y2

in the example) as well as the associated polynomial degrees in these ‘active’ parameters. This

observations lead to the following definition.

Definition 4.1. Let P be a finite subset of I. The support of P is defined as

supp(P) :=
⋃
ß∈P

supp(ß) . (4.32)

A parameter ym ∈ Èm is active (in P) if m ∈ supp(P). Furthermore, we denote by MP := #supp(P) the

number of active parameters of P.

With reference to previous Example 4.2.4, we have supp(P) = {1,2}, MP = 2, and y1 and y2 as active

parameters in P.

Example 4.2.5 (Complete and tensor product polynomials). Let M ∈ N and n ∈ N0. The space of

complete polynomials PP(M,n) is the space of polynomials of total degree less than or equal to n in the

first M parameters ym, i.e., the associated index set P(M,n) is defined as

P(M,n) :=

ß ∈ NN
0 : supp(ß) ⊆ {1, . . . ,M},

M¼
m=1

ßm ≤ n

 . (4.33)

The space of tensor product polynomials PP̃(M,n) is the space of polynomials of degree n in each of the

parameters ym for m = 1, . . . ,M, i.e., the associated index set P̃(M,n) is defined as

P̃(M,n) :=
{
ß ∈ NN

0 : supp(ß) ⊆ {1, . . . ,M}, ßm ≤ n for m = 1, . . . ,M
}
. (4.34)

Notice that P(M,n) ⊆ P̃(M,n) and supp(P) = supp(P̃) = {1, . . . ,M}, i.e., only the first M parameters are

active. For example, for M = n = 2,

P(2,2) =


(0,0), (1,0), (2,0)

(0,1), (1,1)

(0,2)


and P̃(2,2) =


(0,0), (1,0), (2,0)

(0,1), (1,1), (2,1)

(0,2), (1,2), (2,2)


.

The dimensions of these spaces are #P(M,n) = (M + n)! /(M !n!) and #P̃(M,n) = (n +1)M , respectively.
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4.2.2 Discrete weak formulation

For the construction of a finite-dimensional subspace of H1
0 (D ) for the spatial discretisation of

weak problem (4.17), the SGFEM considers a finite element space. For simplicity, here, we focus

on the first-order finite element space X := S10 (T ) of piecewise linear functions on a conforming

triangulation T of D (see (2.12)).

With both the finite element space X ⊂ H1
0 (D ) and the polynomial space PP ⊂ L2á(È ) for a given

finite index set P ⊂ I (see (4.31)), we define the finite-dimensional subspace VXP of V as

VXP := X ⊗ PP ⊂ V . (4.35)

Then, the associated discrete weak formulation of problem (4.17) reads: find uXP ∈ VXP such that

B(uXP,v) = F (v) ∀ v ∈ VXP . (4.36)

As for (4.17), the uniqueness of solution uXP ∈ VXP to problem (4.36) follows from the Lax-

Milgram lemma. Moreover, the following best approximation property holds (see, e.g., [88, Theo-

rem 9.51]),

‖u − uXP ‖B = inf
v∈VXP

‖u − v ‖B . (4.37)

In addition, due to the tensor product structure of VXP, the Galerkin solution uXP ∈ VXP can be

written as

uXP(x,y) =
¼
ß∈P

æß(x)Pß(y) , x ∈ D , y ∈ È , (4.38)

with unique PC coefficients æß ∈ X that are finite element functions for all ß ∈ P. The standard

SGFEM approximation (4.38) satisfying problem (4.36) on the tensor product space VXP in (4.35)

can be also referred to as single-level approximation. The name refers to the fact that each PC

coefficient æß (ß ∈ P) is defined on the same finite element space X (see Remark 5.2.3).

It is worth noticing that although (4.36) represents a discrete problem on the finite-dimensional

subspace VXP ⊂ V , the bilinear form B(·, ·) on the left-hand side of (4.36) is given by (4.18) which

contains a series representation. Therefore, for the approximation uXP to be computable it is ne-

cessary that only a finite number of terms are nonzero in B(uXP,v) in (4.36). The following results

shows that this is indeed guaranteed by the fact that P is a finite set of indices.

Proposition 4.1. Under Assumption 4.1, let P be a finite subset of I with MP = #supp(P) <∞ active

parameters. Then, the series in the bilinear form B(·, ·) on the left-hand side of (4.36) only involves the
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MP terms indexed by m ∈ supp(P), i.e.,

B(uXP,v) = B0(uXP,v) +
¼

m∈supp(P)
Bm(uXP,v) ∀ v ∈ VXP , (4.39)

where B0 and Bm are given by (4.19) and (4.20), respectively.

Proof. Let uXP be as in (4.38) and, analogously, let v(x,y) =
´

Þ∈PèÞ(x)PÞ(y) ∈ VXP with finite ele-

ment coefficients èÞ ∈ X. Due to (4.18)–(4.20) and the orthonormality of polynomials Pß ∈ PP, we

have that

B(uXP,v) =
¼
ß∈P

〈
A0æß(x),èß(x)

〉
+
∞¼

m=1

 ¼
ß,Þ∈P

〈Amæß(x),èÞ(x)〉 (ymPß(y),PÞ(y))á

 .
Expanding the inner product (·, ·)á in the above equation, we obtain

(ymPß,PÞ)á =

 ½
s∈N\{m}

∫
Ès

psßs (ys)p
s
Þs
(ys)dás(ys)

 ∫
Èm

ym pmßm (ym)p
m
Þm

(ym)dám(ym)

 . (4.40)

Since P has MP = #supp(P) active parameters, then ßm = Þm = 0 and pmßm (ym) = pmÞm
(ym) = 1 when

m < supp(P). Therefore, for all m < supp(P), the second term in brackets on the right-hand side

of (4.40) is zero, ∫
Èm

ymdám(ym) = 0 , (4.41)

since ám are symmetric measures and Èm = [−1,1] for all m ∈ N.

Proposition 4.1 shows that (ymPß,PÞ)á = 0 for all m < supp(P), ß,Þ ∈ P, under the symmetry of

measures ám and the symmetry of domains Èm. Generally, this also holds if parameters ym are the

images of mean zero random variables Ym for all m ∈ N. In this case, for all m < supp(P), we have

that
∫
Èm
ymdám(ym) = E[Ym] = 0, i.e., (4.41) holds.

Corollary 4.1. Let P ⊂ I be a finite subset with MP = #supp(P) < ∞ active parameters ym which are

the images of mean zero random variables for all m ∈ N. Then (4.39) holds.

It is clear that whenever supp(P) = {1,2, . . . ,M}, i.e., only the first M = MP ∈ N parameters are

active, then (4.39) reads as

B(uXP,v) = B0(uXP,v) +
M¼

m=1

Bm(uXP,v) ∀ v ∈ VXP . (4.42)

Hereafter, if this property holds, we say that the index set P is ordered. Furthermore, notice that

when a parameter ym is active, i.e., for m ∈ supp(P), we also implicitly have the associated coeffi-
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cient am ‘active’ in random field (4.8) as well as in the Galerkin discretisation, since am is incor-

porated in the nonzero term Bm(uXP,v) (see (4.20)).

4.2.3 Stochastic Galerkin linear system

Let {ïj }NX
j=1 be the set of basis functions of X, with NX := #N ◦(T ) denoting the number of interior

vertices of the underlying triangulation T of the domain D . Let P ⊂ I be a ordered finite index

set of cardinality NP := #P with the first MP = #supp(P) parameters active. In what follows, we

identify the indices ß ∈ P and the associated polynomials Pß ∈ PP by using an integer s ∈ N. In

particular, we denote by Ps(y) the polynomial Pß(s)(y) ∈ PP associated with the s-th index ß(s) ∈ P,

for all s = 1, . . . ,NP, and we further assume that the first index ß(1) ∈ P is the zero index, i.e.,

ß(1) = 0, such that P1(y) = 1 for all y ∈ È .

Let us rewrite the polynomial chaos expansion (4.38) using this notation:

uXP(x,y) =
NP¼
s=1

æs(x)Ps(y) =
NP¼
s=1

NX¼
j=1

usjïj (x)Ps(y) , x ∈ D , y ∈ È , (4.43)

where {usj }, s = 1, . . . ,NP and j = 1, . . . ,NX , are real coefficients which have to be computed as

explained below. Let NXP := NXNP = dim(X ⊗ PP) denoting the dimension of the discrete space

VXP. With uXP given by (4.43), and choosing a test function vXP = ïi (x)Pt(y) ∈ VXP for i = 1, . . . ,NX

and t = 1, . . . ,NP, the discrete weak formulation (4.36) yields the following linear system

Bu = F with B =



B11 B12 . . . B1NP

B21 B22 . . . B2NP

...
...

. . .
...

BNP1 BNP2 . . . BNPNP


, u =



u1

u2
...

uNP


, F =



F1

F2
...

FNP


. (4.44)

Here, u ∈ RNXP is the solution vector whose solution blocks us ∈ RNX contain the NX coefficients

associated with indices ß(s) ∈ P, i.e.,

us = (us1, . . . ,usNX
)T , s = 1, . . . ,NP .

Each block Bts ∈ RNX×NX of matrix B ∈ RNXP×NXP in (4.44) has the form

Bts = (Ps ,Pt)áK0 +
MP¼
m=1

(ymPs ,Pt)áKm , s, t = 1, . . . ,NP , (4.45)
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where Km ∈ RNX×NX are finite element matrices with entries

[Km]i j :=
∫
D
am(x)∇ïj (x) · ∇ïi (x)dx , i , j = 1, . . . ,NX , m = 0, . . . ,MP , (4.46)

whereas each block Fs ∈ RNX of source vector F ∈ RNXP in (4.44) is given by

Fs = (P1,Ps)áf0 , s = 1, . . . ,NP ,

where the vector f0 ∈ RNX is defined by

(f0)i :=
∫
D
f (x)ïi (x)dx , i = 1, . . . ,NX .

Notice that since (P1,Ps)á = Ö1s , for all s = 1, . . . ,NP, due to the orthogonality of polynomials

Ps ∈ PP, all blocks Fs in (4.44) are zero for all s = 2, . . . ,NP; this is a simple consequence of the fact

that we are considering non-parametric source terms in problem (4.5).

The linear system (4.44) can be further neatly expressed using Kronecker products of matrices

and vectors. Let G0,Gm ∈ RNP×NP be the stochastic matrices with entries

[G0]st := (Ps ,Pt)á = Öst and [Gm]st := (ymPs ,Pt)á , m = 1, . . . ,MP , (4.47)

for all s, t = 1, . . . ,NP. Notice that G0 is the NP × NP identity matrix. Then, we can rewrite the

matrix B and vector F in (4.44) as

B = G0 ⊗ K0 +
MP¼
m=1

Gm ⊗ Km and F = g0 ⊗ f0 ,

where g0 is the first column of G0 and ⊗ denotes the Kronecker product. We recall that, for a

given matrix A ∈ Rm×n and a matrix B ∈ Rp×q , with m,n,p,q ∈ N, the Kronecker product A⊗ B is

the matrix of dimension mp× nq defined as

A ⊗ B :=



A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
. . .

...

Am1B Am2B . . . AmnB


.

Unlike G0, the matrices Gm defined by (4.47) are not diagonal but they are still highly sparse

due to the orthogonality of polynomials of PP. In particular, they can be computed from the three

term recurrence (4.25) satisfied by the univariate orthonormal polynomials pmk ∈ L2ám
(Èm) for each

m = 1, . . . ,MP.

Theorem 4.1. Let Assumption 4.1 hold. Then, each matrix Gm defined in (4.47) has at most two
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nonzero entries per row:

[Gm]st =



Ôm
ß
(s)
m +1

if ß(s)m = ß
(t)
m −1 and ß

(s)
i = ß

(t)
i for each i ∈ {1, . . . ,MP} \m,

Ôm
ß
(s)
m

if ß(s)m = ß
(t)
m +1 and ß

(s)
i = ß

(t)
i for each i ∈ {1, . . . ,MP} \m,

0 otherwise,

for s, t = 1, . . . ,NP and where Ôm
ß
(s)
m

denote the coefficients from the three-term recurrence (4.25) associated

with polynomials Ps ∈ PP.

For a proof of Theorem 4.1, see, e.g., [88, Theorem 9.59]. From definition (4.47), the block matrix

(4.45) is given by

Bts = [G0]st K0 +
MP¼
m=1

[Gm]st Km, s, t = 1, . . . ,NP .

Furthermore, Theorem 4.1 gives [Gm]ss = 0, for all s = 1, . . . ,NP. Then

Btt = K0 and Bts =
MP¼
m=1

[Gm]tsKm, for t , s .

Since both finite element matrices Km in (4.46) and stochastic matrices Gm in (4.47) are sparse,

the left-hand side matrix B in (4.44) turns out to be highly block sparse; see, e.g., [106], [107,

Figure 3], and [88, Figure 9.10] for examples showing the block sparsity patterns of matrix B

in case of complete polynomials (see Example 4.2.5). See also [65] for further details about the

structure of linear systems arising from PDE problems with random data.

Once the Galerkin approximation (4.43) is obtained (by solving the associated linear sys-

tem (4.44)), we can compute its mean and variance as follows.

Proposition 4.2. Let uXP in (4.43) be the stochastic Galerkin approximation in VXP satisfying weak

formulation (4.36). The mean value and the variance of uXP are given by

E[uXP](x) = æ1(x) and Var(uXP)(x) =
NP¼
s=2

æs(x)
2 , x ∈ D . (4.48)

Proof. The mean value simply follows by the orthogonality of polynomials Ps ∈ PP with respect to

(·, ·)á and since P1(y) = 1 for all y ∈ È :

E[uXP](x) :=
∫
È

uXP(x,y)dá(y) = æ1(x) +
NP¼
s=2

æs(x) (P1,Ps)á︸   ︷︷   ︸
=0

= æ1(x) .
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Similarly, we have that

E[u2
XP](x) =

∫
È

æ2
1(x) +

 NP¼
s=2

æs(x)Ps(y)

2 + 2æ1(x)
NP¼
s=2

æs(x)Ps(y)

dá(y)
= æ2

1(x) +
NP¼
s=2

æ2
s (x) (Ps ,Ps)á︸   ︷︷   ︸

=1

+ 2
¼
s,r
s,r,1

æs(x)ær(x) (Ps ,Pr)á︸  ︷︷  ︸
=0

+ 2æ1(x)
NP¼
s=2

æs(x) (P1,Ps)á︸   ︷︷   ︸
=0

= æ2
1(x) +

NP¼
s=2

æ2
s (x) .

Since the variance is given by Var(uXP) = E[u2
XP]−E[uXP]2 (cf. (3.7)), this concludes the proof.

The SGFEM became increasingly popular over the last decades although its computational

cost is high. Due to approximations of both physical and parametric space simultaneously, the

resulting discretisation requires the solution of linear system (4.44) (of NXP equations) which is

usually many orders of magnitude larger than the subproblems that can be solved in parallel by

sampling-based methods such as Monte Carlo and stochastic collocation methods. This is indeed

the most significant challenge associated with the SGFEM approach, i.e., the so-called ‘curse of

dimensionality’: the linear system (4.44) may be huge, and its size grows fast with the size of the

stochastic discretisation. For example, in Figure 4.1 we plot the dimensions NXP of Galerkin linear

systems (4.44) arising from discretisations of square domain D = (0,1)2 using a fine triangulation

of mesh-size h = 2−5.5 and the set of complete polynomials associated with the index set P(M,n),

on the left, and the set of tensor product polynomials associated with the index set P̃(M,n), on the

right (see Example 4.2.5). Observe that linear system (4.44) becomes infeasible to be solved on

Desktop PCs that will go out of memory quickly for small values of the truncation parameter M.

Nevertheless, in dealing with the huge linear system (4.44), the resulting left-hand side matrix

B is never fully assembled, in particular, if the random field is given as a linear function of the

parameters (cf. (4.8)) and discretisations in the parameter space are done by means of orthogonal

polynomials. In this case, B is highly block sparse and the linear system can be solved with much

less effort than that suggested by its size. Due to the block structure and the sparsity pattern, it

suffices to store the NP finite element matrices Km in (4.46) as well as the entries of each stochastic

matrix Gm defined in (4.47), so that a careful use of matrix-vector multiplications of single blocks

permits to solve the linear system (4.44) efficiently; see, e.g., [106]. Moreover, since the block ma-

trix B in (4.44) is symmetric and positive definite (due to the positivity of the underlying random

field, see Section 4.1.3), linear system (4.44) is thus perfectly suitable to be solved by iterative
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Figure 4.1. Dimension NXP of Galerkin linear system (4.44) for discretisation on a conforming and shape-
regular triangulation with mesh-size h = 2−5.5 of the square domain D = (0,1)2 and using complete poly-
nomials associated with the index set P(M,n) (left) and tensor product polynomials associated with the
index set P̃(M,n) (right) defined in Example 4.2.5. Recall that the truncation parameter M also denotes the
number of active parameters.

solvers such as the Conjugate Gradient Method. However, B is ill-conditioned with respect to

both spatial and stochastic parameters. It is well known that single finite element matrices (4.46)

are ill conditioned with respect to the mesh-size of the triangulation and then solving linear sys-

tem (4.44) becomes more difficult as soon as the underlying triangulation is refined. Likewise,

B is also ill-conditioned with respect to the number of (active) parameters as well as the (total)

degree of polynomials in such parameters; see, e.g., [107, Lemma 3.7] and [88, pp. 410–412]. To

overcome this problem, the construction of efficient preconditioners for linear system (4.44) turns

out to be of fundamental importance.

For the implementation of efficient methods for solving linear systems arising from SGFEM

approximations of PDEs with random inputs, we refer to [71, 106, 107] for mean-based precon-

ditioned solvers and to [127] for solvers using Kronecker product preconditioners. In addition,

see [128, 129] and [64, 122] for optimal preconditioned generalised minimum-residual (GMRES)

and minimum-residual (MINRES) based solvers, respectively, and [108] for efficient reduced-basis

solvers.
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Chapter 5

Adaptive algorithms driven by hierarchical a poste-
riori error estimates

The theory of a posteriori error estimation for partial differential equations has become an essential

ingredient especially for all those applications in which discretisations are made by finite element

approximations. Since the pioneering use of a posteriori estimates by Babuška and Rheinboldt

in [6, 7], the literature about this topic has hugely increased and many effective techniques are

available today for the error estimation under the FEM context (see, e.g., [2, 131]). A posteriori

error estimates not only provide valuable information about the accuracy of the approximation.

Typically, such estimates are computed locally, hence they supply meaningful information about

the distribution of the error among the elements forming the spatial discretisation. In this sense,

a posteriori error estimates are effective usable indicators for local refinement schemes which are

at the basis of adaptive FEM algorithms.

In this chapter, we consider the use of hierarchical bases for the a posteriori estimation of the

energy norm of the error of the solution to problem (4.5). In the non-parametric setting, earlier

use of hierarchical estimates dates back to [138, 137]. Later, this approach has been extensively in-

vestigated in, e.g., [16, 50, 15, 12]. In the parametric setting, the derivation of such estimates relies

on the construction of enriched spaces via tensor products of Hilbert spaces. To our knowledge,

the first application of hierarchical estimates in the context of PDEs with parametric uncertainty

firstly appeared in [24]. Further developments in the same direction can be found in [29].

In what follows, we first recall the hierarchical error estimate introduced in [29]. Next, we

describe the adaptive algorithm presented in recent work [27] for the energy error estimation of

parametric problem (4.5). We do not analyse convergence properties of the proposed algorithm

but we rather focus on its design and its novel error-reduction based version. The performance of
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the algorithm is then showed by a set of numerical experiments where we consider representative

examples of problem (4.5) having both spatially regular as well as singular solutions.

5.1 Enrichments via hierarchical basis

Let u ∈ V be the solution to weak problem (4.17) and let uXP ∈ VXP be the Galerkin approximation

satisfying discrete weak formulation (4.36). Let e := u − uXP ∈ V be the true error satisfying the

following residual equation

B(e,v) = F (v) − B(uXP,v) ∀ v ∈ V . (5.1)

Notice that since VXP ⊂ V , the following Galerkin orthogonality holds:

B(e,v) = 0 ∀ v ∈ VXP . (5.2)

5.1.1 Enriched tensor product spaces

The approximation provided by uXP ∈ VXP can be further improved by computing a Galerkin

solution ûXP belonging to an enhanced finite-dimensional subspace V̂XP of V such that V̂XP ⊃ VXP.

This subspace can be constructed by enriching the finite element space X ⊂ H1
0 (D ) and/or the

polynomial space PP ⊂ L2á(È ).

Let X̂ ⊂ H1
0 (D ) be an enriched finite element space such that X̂ ⊃ X. The space X̂ is usually

constructed by augmenting X with new functions which vanish at the element vertices of the

triangulation T associated with X. For example, suppose that X = S10 (T ) is a first-order finite

element space on T . We can add to X higher-order basis functions, e.g., piecewise quadratic basis

on the same triangulation T (p-enrichment). Alternatively, X can be augmented with piecewise

linear basis functions corresponding to vertices introduced by a uniform refinement of T (h-

enrichment). In both cases, the enhanced space X̂ can be defined as

X̂ := X ⊕ Y with Y :=
{
v ∈ X̂ : v(x) = 0 ∀ x ∈ N (T )

}
. (5.3)

Here, the subspace Y ⊂ H1
0 (D ) is a finite element space such that X ∩ Y = {0} and it is called the

detail (finite element) space; see Figure 5.1.

Remark 5.1.1. Since X ∩ Y = {0} and 〈A0·, ·〉 defines an inner product in H1
0 (D ) (here, A0 is the sym-

metric operator defined in (4.12)), it is well known that there exists a positive constant qcbs ∈ [0,1)
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(a) (b)

Figure 5.1. Enhancement via h-enrichment. (a) Piecewise linear basis function of Y associated with so
called red (or regular) refinement of T ; (b) Piecewise linear basis function of Y associated with the uniform
refinement made by three newest vertex bisections per element.

depending only on X and Y such that the strengthened Cauchy-Buniakowskii-Schwarz (CBS) inequa-

lity holds (see, e.g., [59] and [2, Theorem 5.4])

| 〈A0v,w〉 | ≤ qcbs 〈A0v,v〉1/2〈A0w,w〉1/2 ∀ v ∈ X, ∀ w ∈ Y . (5.4)

Inequality (5.4) is a key tool in some areas of numerical analysis as, in particular, it appears in the

analysis of some types of a posteriori error estimators for finite element approximations of PDEs; see,

e.g., [110, 46, 29].

The polynomial space PP ⊂ L2á(È ) can be enriched by augmenting the index set P with a new set

of indices. The enriched polynomial space may consist of polynomials in new active parameters

ym and/or higher-order polynomials in the same active parameters in the Galerkin approximation.

We introduce a finite index set Q ⊂ I such that P∩Q = ∅ and define

P̂ := P ∪ Q and P̂P := PP ⊕ PQ , (5.5)

where P̂ ⊂ I denotes the enriched index set and P̂P denotes the enriched polynomial space, with

PQ := span{PÞ : Þ ∈ Q} being the corresponding space generated by polynomials PÞ (see (4.29)),

associated with indices Þ ∈ Q, such that PP ∩PQ = {0}. The subset Q is called the detail index set.

Since Q ⊂ I \P, we have

(Pß(y),PÞ(y))á =
∞½

m=1

(
pmßm (ym),p

m
Þm

(ym)
)
ám

=
∞½

m=1

ÖßmÞm
= ÖßÞ = 0, (5.6)

for all ß ∈ P and Þ ∈ Q, i.e., PP and PQ are orthogonal with respect to inner product (·, ·)á.

With both finite element spaces X,Y ⊂ H1
0 (D ) and polynomial spaces PP,PQ ⊂ L2á(È ), we define

the finite-dimensional tensor product spaces

VYP := Y ⊗ PP and VXQ := X ⊗ PQ , (5.7)
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and the following enriched finite-dimensional space V̂XP ⊂ V ,

V̂XP := VXP ⊕
(
VYP ⊕ VXQ

)
. (5.8)

Note that in (5.8), one of the spaces VYP and VXQ may be empty. In particular, VXP is enriched

by adding a set of extra basis functions {æß(x)Pß(y)}, where either æß ∈ Y and Pß ∈ PP (if only X is

enriched) or æß ∈ X and Pß ∈ PQ (if only PP is enriched).

Due to the tensor product structure of VYP and VXQ defined in (5.7), and since P∩Q = ∅, there

holds

B0(v,w) = 0 ∀ v ∈ VYP , ∀ w ∈ VXQ , (5.9)

i.e., VYP and VXQ are orthogonal with respect to inner product B0(·, ·). To verify this, it suffices to

insert the polynomial chaos expansions of v ∈ VYP and w ∈ VXQ (cf. (4.38)) in (5.9) and then use

(5.6). On the other hand, the spaces VXP and VYP are such that the following inequality holds (see

[24, Lemma 3.1])

|B0(u,v) | ≤ qcbs ‖u ‖B0
‖v ‖B0

∀ u ∈ VXP , ∀ v ∈ VYP ,

where qcbs is the constant appearing in (5.4).

5.1.2 Enhanced Galerkin solutions

Let ûXP ∈ V̂XP be the Galerkin approximation satisfying the discrete weak formualation posed on

V̂XP, i.e.,

B(ûXP,v) = F (v) ∀ v ∈ V̂XP . (5.10)

Since VXP ⊆ V̂XP ⊂ V , the enhanced solution ûXP ∈ V̂XP provides an approximation not worse than

that provided by uXP ∈ VXP, i.e.,

‖u − ûXP ‖B = inf
v∈V̂XP

‖u − v ‖B ≤ ‖u − uXP ‖B , (5.11)

where the equality is the associated best approximation property for solution ûXP (cf. (4.37)).

Also, there holds the following the Galerkin orthogonality

B(u − ûXP,v) = 0 ∀ v ∈ V̂XP , (5.12)
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with u − ûXP ∈ V representing the error due to the approximation ûXP ∈ V̂XP (cf. (5.2)). Further-

more, the symmetry of the bilinear form B(·, ·) and Galerkin orthogonality (5.12) imply that

‖u − uXP ‖2B = ‖u − ûXP ‖2B + ‖ ûXP − uXP ‖2B . (5.13)

5.1.3 Saturation assumption

Under the current setting, we assume that a property stronger than (5.11) holds. As commonly

done in the analysis of hierarchical a posteriori error estimation for non-parametric problems, it

is assumed that the enhanced solution ûXP ∈ V̂XP does indeed represent an approximation to u

better than uXP ∈ VXP in the following sense

‖u − ûXP ‖B ≤ qsat ‖u − uXP ‖B with qsat ∈ [0,1) . (5.14)

Inequality (5.14) is called saturation assumption and it is equivalent to the standard saturation

assumption assumed in non-parametric finite element analysis; see, e.g., [16, 15, 12, 2, 13].

Both (5.11) and (5.13) imply that (5.14) always holds for some saturation constant qsat ≤ 1.

The real contribution of the saturation assumption is then that qsat is strictly less than one. Al-

though in the literature it has the status of unproven hypothesis, in the deterministic case, this

assumption may be quite realistic in many practical settings (see, e.g., [2, Section 5.2]). According

to the given problem, the saturation assumption is normally observed for solutions computed

on fine triangulations and may eventually fail to hold only for pairs of solutions associated with

triangulations in ‘preasymptotic ranges’ (see [39]). In [53], for example, the deterministic satura-

tion inequality has been proved to hold for two-dimensional Poisson problems using first-order

FEM whenever data oscillations are small. In [93], the proof of convergence of h-adaptive FEM

algorithms implicitly generalises the validation of saturation property to second-order linear el-

liptic PDEs. On the other hand, it is still an open problem in the parametric setting, to find the

right assumptions on the data in (4.17) and identifying the enriching subspaces Y ⊂ H1
0 (D ) and

PQ ⊂ L2á(È ) for which (5.14) can be guaranteed (see [24, Remark 3.1]).

5.2 Hierarchical error estimate

In order to estimate the energy norm of the error e = u − uXP ∈ V satisfying (5.1), let us consider

the solution ûXP − uXP ∈ V̂XP to the residual problem

B(ûXP − uXP,v) = F (v) − B(uXP,v) ∀ v ∈ V̂XP . (5.15)
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The following estimates hold

‖ ûXP − uXP ‖2B ≤ ‖e ‖2B ≤
1

1− q2
sat
‖ ûXP − uXP ‖2B . (5.16)

Here, the lower bound follows by (5.13) while the upper bound follows by saturation assumption

(5.14).

5.2.1 Error estimation using enriching subspaces

Error estimates (5.16) bear the computational cost associated with computing the enhanced Ga-

lerkin solution ûXP ∈ V̂XP. In addition, the evaluation of the norm ‖ ·‖B is expensive since it in-

corporates all coefficients am associated with all active parameters in supp(P). To overcome these

two problems, we recall the standard hierarchical approach firstly introduced in [24] and further

developed in [29].

Let êXP ∈ V̂XP be the unique solution to the following residual problem

B0(êXP,v) = F (v) − B(uXP,v) ∀ v ∈ V̂XP . (5.17)

Note the use of bilinear form B0(·, ·) on the left-hand side of (5.17). The relation between êXP and

ûXP − uXP is given by

Ý‖ êXP ‖2B0
≤ ‖ ûXP − uXP ‖2B ≤ Ë‖ êXP ‖2B0

, (5.18)

where Ý and Ë are defined in (4.22) (see [24, Proposition 4.2]). Putting together the energy error

estimates (5.16) and (5.18), we obtain

Ý‖ êXP ‖2B0
≤ ‖e ‖2B ≤

Ë2

1− q2
sat
‖ êXP ‖2B0

. (5.19)

Now, exploiting the tensor product structure of the enriched space V̂XP, consider the following

two independent problems posed on the lower-dimensional subspaces VYP and VXQ defined in

(5.7),

find eYP ∈ VYP s.t. B0(eYP,v) = F (v) − B(uXP,v) ∀ v ∈ VYP , (5.20)

find eXQ ∈ VXQ s.t. B0(eXQ,v) = F (v) − B(uXP,v) ∀ v ∈ VXQ . (5.21)

Combining the spatial estimator eYP ∈ VYP and the parametric estimator eXQ ∈ VXQ satisfying (5.20)

and (5.21), respectively, we introduce the following a posteriori error estimate (see [29]),

Ù2XP := ‖eYP ‖2B0
+ ‖eXQ ‖2B0

. (5.22)
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Notice that ÙXP = ‖eYP + eXQ ‖B0
due to the orthogonality of polynomial spaces PP and PQ with

respect to inner product (·, ·)á. The estimate ÙXP satisfies

Ù2XP ≤ ‖ êXP ‖2B0
≤ 1

1− q2
cbs

Ù2XP , (5.23)

where qcbs is the constant satisfying (5.4) (see [29, Lemma 4.1]). Therefore, putting together (5.19)

and (5.23), ÙXP is proved to be an efficient and reliable a posteriori estimate for the energy norm

of the error.

Proposition 5.1 ([29, Theorem 4.1]). Under saturation assumption (5.14), the error estimate ÙXP

defined in (5.22) satisfies

ÝÙ2XP ≤ ‖e ‖2B ≤
Ë

(1− q2
sat)(1− q2

cbs)
Ù2XP , (5.24)

where Ý and Ë are the constants in (4.21), qcbs is the constant in (5.4), and qsat is the saturation

constant in (5.14).

In the remainder of the thesis, we will refer to the a posteriori error estimate ÙXP defined in

(5.22) as hierarchical estimate.

Remark 5.2.1. The parametric estimator eXQ satisfying problem (5.21), as well as its norm ‖eXQ ‖B0
,

can be computed from single contributions associated with individual indices in Q as follows:

eXQ =
¼
Þ∈Q

e
(Þ)
XQ, ‖eXQ ‖2B0

=
¼
Þ∈Q
‖e(Þ)XQ ‖2B0

. (5.25)

Here, e(Þ)XQ represents the parametric estimator in X ⊗PÞ, with PÞ := span{PÞ(y)} for Þ ∈ Q, satisfying

B0(e
(Þ)
XQ,v) = F (v) − B(uXP,v) ∀ v ∈ X ⊗PÞ , (5.26)

(see [29, Lemma 4.2]). In particular, due to the orthogonality of spaces PP and PQ (see (5.6)), we have

F (v) = 0 for all v ∈ X ⊗PÞ. In fact, F (v) incorporates the term (P0,PÞ)á = Ö0Þ which is then equal to zero

as 0 ∈ P does not belong to Q. Thus, (5.26) reduces to

B0(e
(Þ)
XQ,v) = −B(uXP,v) ∀ v ∈ X ⊗PÞ . (5.27)

Remark 5.2.2. In [24], the authors considered the larger enriched space,

ṼXP := V̂XP ⊕ VYQ = VXP ⊕
(
VYP ⊕ VXQ ⊕ VYQ

)
.

where VYQ := Y ⊗ PQ. However, they have also empirically observed that the contributing enrichment

due to the space VYQ does not lead to any qualitative improvement of saturation assumption (5.14) as
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well as the associated hierarchical a posteriori error estimate.

Remark 5.2.3 (Multi-level SGFEM). The error estimation technique described above can be naturally

extended to more sophisticated so-called multi-level SGFEM approximations (see, e.g., [54, 47]). Multi-

level SGFEMs work with discretisation spaces VXP in which the spatial component has a ‘multi-level’

structure. That is, for each ß ∈ P, suppose that a sequence of finite element spaces (Xß)ß∈P ⊂ H1
0 (D )

associated with potentially different triangulations (Tß)ß∈P is available. Then, the discretisation space is

defined as

VXP :=
⊕
ß∈P

V (ß)
XP with V (ß)

XP := Xß ⊗ Pß ∀ ß ∈ P.

Here, Xß := span{ï(ß)
j : j = 1, . . . ,N(ß)

X }, where N(ß)
X ∈ N for all ß ∈ P, and then the PC expansion of the

associated SGFEM solution becomes

uXP(x,y) =
¼
ß∈P

æß(x)Pß(y) with æß(x) =
N (ß)
X¼

j=1

u(ß)
j ï

(ß)
j (x) ∈ Xß , u(ß)

j ∈ R , x ∈ D , y ∈ È .

The associated enriched finite-dimensional space can be defined as

V̂XP :=
( ⊕

ß∈P

(
X̂ß ⊗ Pß

)
︸            ︷︷            ︸

=:VXP⊕VYP

)
⊕

(
Xß̃ ⊗ PQ︸   ︷︷   ︸
=:VXQ

)
,

where X̂ß are the enriched finite element spaces X̂ß := Xß ⊕ Yß for appropriate detail spaces Yß ⊂ H1
0 (D ),

for all ß ∈ P, and ß̃ is one of the indices of P. The main advantage of using multi-level SGFEMs is that,

if implemented appropriately, they can be immune to the ‘curse of dimensionality’ since they generate

sequences of approximations for which the associated energy errors decay with the same rate as in case

of corresponding non-parametric problems (see, e.g., [44, 45, 77]). For instance, for first-order finite

elements, this rate is O(N−1/2), where N is the number of total degrees of freedom of the discretisation

(cf. the numerical experiments in Section 5.4); see, e.g., [47] for details on stochastic Galerkin linear

systems arising from multi-level SGFEMs as well as for the design of adaptive algorithms that are driven

by hierarchical a posteriori error estimates.

5.2.2 Estimates of the error reduction

Proposition 5.1 shows that ÙXP defined in (5.22) can be used to control the error in the Galer-

kin approximation. However, it also turned out that the component estimators eYP ∈ VYP and

eXQ ∈ VXQ contributing to ÙXP play an important role in an adaptive process that aims at reducing
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the error until some tolerance is met. In particular, it has been shown in [29] that ‖eYP ‖B0
(resp.

‖eXQ ‖B0
) provides an effective estimate of the error reduction that would be achieved if we were

to enrich only the finite element space X (resp. the polynomial space PP) and to compute the

corresponding enhanced approximation. For example, suppose that the space V̂XP in (5.8) is con-

structed by only enriching the polynomial space PP, i.e., let uXP̂ ∈ VXP̂ be enhanced approximation

satisfying

B(uXP̂,v) = F (v) ∀ v ∈ VXP̂ := VXP ⊕ VXQ . (5.28)

Then, similarly to (5.13), there holds

‖u − uXP ‖2B = ‖u − uXP̂ ‖2B + ‖uXP̂ − uXP ‖2B .

This shows that the error reduction achieved by enriching only PP is given by ‖uXP̂ − uXP ‖B . The

same argument applies if we were to enrich only the finite element space X by computing the

corresponding approximation uX̂P ∈ VX̂P satisfying

B(uX̂P,v) = F (v) ∀ v ∈ VX̂P := VXP ⊕ VYP. (5.29)

In this case, the error reduction is given by the quantity ‖uX̂P − uXP ‖B . The following two-sides

bounds for both error reductions are proved in [24, Theorem 5.1]:

Ý‖eYP ‖2B0
≤ ‖uX̂P − uXP ‖2B ≤

Ë

1− q2
cbs

‖eYP ‖2B0
, (5.30)

Ý‖eXQ ‖2B0
≤ ‖uXP̂ − uXP ‖2B ≤ Ë‖eXQ ‖2B0

. (5.31)

It is worth noticing that given the problem data and the computed Galerkin approximation

uXP ∈ VXP, the estimates ‖eYP ‖B0
and ‖eXQ ‖B0

are computable for any finite-dimensional space

Y ⊂ H1
0 (D ) and finite index set Q ⊂ I. Therefore, this means that both error reductions ‖uX̂P −

uXP ‖B and ‖uXP̂ − uXP ‖B can be estimated before the corresponding enhanced approximations

are effectively computed (see (5.30) and (5.31)). In particular, we stress that the choice of the

detail subspace Y and the detail index set Q may depend on whether we want to estimate the

error in the Galerkin approximation uXP or estimate the error reduction achieved by enhancing

this approximation. For example, in order to obtain an accurate estimate of ‖e ‖B , we should use

a large detail space Y ⊂ H1
0 (D ), e.g., based on a uniform refinement of the current triangulation,

and a large detail index set Q ⊂ I \P. How to choose a suitable index set Q is discussed in the next

section.
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Remark 5.2.4. Due to decomposition (5.25) of parametric estimator eXQ and error bounds (5.31), the

quantity ‖e(Þ)XQ ‖B0
for Þ ∈ Q, provides an estimate of the energy error reduction achieved by computing

the Galerkin approximation uXP̃Þ
belonging to the space VXP̃Þ

:= VXP ⊕ (X ⊗PÞ), i.e., if the polynomial

space PP is enriched by adding only the polynomial PÞ ∈ PÞ. Hence, there holds

Ý‖e(Þ)XQ ‖2B0
≤ ‖uXP̃Þ

− uXP ‖2B ≤ Ë‖e(Þ)XQ ‖2B0
∀ Þ ∈ Q . (5.32)

5.2.3 Suitable detail index sets

An important aspect of the design of an efficient adaptive algorithm driven by hierarchical es-

timate ÙXP is the need to account for those indices Þ ∈ Q, if any, for which the corresponding

estimator e
(Þ)
XQ is zero. In such case, also the associated error reduction is zero (see Remark 5.2.4).

Then, computational efforts should be only directed to solve individual problems (5.27) yielding

nonzero contributions to the error estimator eXQ ∈ VXQ (recall that eXQ can be decomposed into

single contributing estimators e
(Þ)
XQ for all Þ ∈ Q; see Remark 5.2.1).

Let us introduce some notation first. For m ∈ N, let ê(m) := (ê(m)
1 , ê

(m)
2 , . . . ) ∈ I be the Kronecker

delta sequence such that ê(m)
k = Ömk for all k ∈ N. Hereafter, we make the following assumption

on the finite index set P used for parametric SGFEM discretisations. We assume that P ⊂ I is a

monotone1 finite index set, i.e., for all ß ∈ P, the indices Þ = ß−ê(m) belong to P for all m ∈ supp(P).
Now, consider the following (infinite) index set

�P :=
{
Þ ∈ I \P : Þ = ß+ ê(m) ∀ ß ∈ P, ∀m ∈ N

}
, (5.33)

called the boundary of P. Indices Þ ∈ �P are called the neighbours of indices in P. Notice that

supp(P∪�P) = N and that P∪�P is monotone. It can be shown that for any index set Q ⊂ I\(P∪�P)
the error estimator eXQ is identically zero (see [29, Lemma 4.3]). That is, for all indices Þ belonging

to such Q, the estimator e
(Þ)
XQ is zero and no error reduction is expected from adding Þ into the

parametric discretisation (cf. (5.32)). Moreover, [29, Corollary 4.1] shows that this also holds even

in the case of parametric right-hand side sources f (y) in problem (4.5) with affine dependence on

parameters (cf. (4.8)).

Remark 5.2.5. Let us emphasise that the monotonicity of the index set P is not strictly required from the

discretisation point of view nor for the design of an adaptive algorithm. It is rather an algorithmically

desirable property which allows neighbour indices to be accessed easily and that ensures a kind of ‘tree-

1Monotone sets are also often called downward closed sets or lower sets (see, e.g., [55]).
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structure’ for the polynomial degrees of active parameters in the index set.

Example 5.2.1. Consider the set of complete polynomials PP(2,1) associated with the index set P(2,1),

both defined in Example 4.2.5. Let us consider the following enriched polynomial space

PP(4,2) := PP(2,1) ⊕ PQ ,

associated with the index set P(4,2), where the detail index set Q ⊂ I is given by Q = P(4,2) \P(2,1).
That is,

P(2,1) =


(0,0)

(1,0)

(0,1)


and Q =


(0,0,0,1), (0,0,1,0), (1,0,0,1) (0,0,1,1)

(1,0,1,0), (0,1,0,1), (1,1,0,0) (0,0,2,0)

(0,1,1,0), (2,0,0,0), (0,2,0,0) (0,0,0,2)


.

In particular, #Q = #P(4,2) − #P(2,1) = 15 − 3 = 12. However, from [29, Lemma 4.3], the number of

indices Þ ∈ Q associated with nonzero error estimators e
(Þ)
XQ is only 9. In fact, notice that the boldface

indices of Q do not belong to the boundary �P(2,1) since they cannot be obtained by adding Kronecker

delta sequences to the indices in P(2,1) (see also [29, Example 4.1]).

The above discussion suggests to consider only the finite detail index sets Q extracted from the

boundary �P defined in (5.33).

Remark 5.2.6. Lemma 4.3 and Corollary 4.1 in [29] do hold for more general boundary index sets �P

defined as (see [29, Eq. (4.26)])

�̃P :=
{
Þ ∈ I \P : Þ = ß+ ê(m) or Þ = ß− ê(m) ∀ ß ∈ P, ∀m ∈ N

}
.

Note that if P is monotone, then �̃P = �P since indices Þ expressed as ß−ê(m) are already in P due to its

monotonicity.

5.3 Adaptive SGFEM algorithm

In this section, we describe the adaptive SGFEM algorithm presented in [27] for the energy er-

ror estimation of the parametric model problem (4.5). The algorithm is driven by hierarchical a

posteriori error estimates (5.22) and it follows the standard finite element loop (2.13). Further-

more, it can be extended, in an appropriate way, to other parametric PDE problems with affine

dependence on random parameters.

A novelty in this adaptive algorithm is how the balance between spatial and stochastic appro-
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ximations is ensured. We describe two versions of the algorithm based on two different marking

criteria adopted in the MARK module of the adaptive loop. It is common to perform either spa-

tial or stochastic refinements of the discretisation space at each iteration of the algorithm, that

is, either a local mesh-refinement of the underlying triangulation or a parametric enrichment of

the index set is only pursued for the computation of enhanced approximations. Traditionally, the

choice between these two refinements is based on the dominant error estimator contributing to

the total error estimate (cf. [54, 55, 29, 56]); this is one possible version of the algorithm. An

alternative strategy is implemented in the second version: here, the refinement type is chosen by

comparing the error reduction estimates associated with marked elements and marked indices for

spatial parametric approximations, respectively.

Before discussing these aspects of the algorithm, let us provide further details on the compo-

nents of the adaptive loop. Below, we consider the case of spatial discretisation made by first-order

finite element spaces, i.e., we let X := S10 (T ).

5.3.1 Computation of spatial and parametric estimates

The computation of hierarchical estimate ÙXP defined in (5.22) requires solving the problems for

the estimators eYP ∈ VYP and eXQ ∈ VXQ satisfying (5.20) and (5.21), respectively. Suppose that

the Galerkin solution uXP ∈ VXP to problem (4.36) is available. Let us describe how the algorithm

computes the estimators eYP and eXQ.

Computation of the spatial contribution

Let eYP ∈ VYP be the spatial estimator satisfying (5.20). We choose the detail space Y ⊂ H1
0 (D ) to

be associated with the uniform refinement of triangulation T obtained by three NVB refinements

per element of T . That is, Y := span{èj : j = 1, . . . ,#E◦(T )}, where èj denotes the piecewise linear

Lagrange basis function associated with the midpoint of the j-th interior edge Ej ∈ E◦(T ) such that

èj (zi ) = Öi j with zi being the midpoint of Ei ∈ E◦(T ), i , j = 1, . . . ,#E◦(T ) (see Figure 5.1(b)). Note

that all èj also vanish at vertices of T (cf. (5.3)).

Problem (5.20) is solved using a standard element residual technique (see [2, Section 3.3]

and Remark 5.3.1 below). Specifically, on each element T ∈ T , we compute a local spatial error
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estimator by solving the local residual problem associated with (5.20): find e(T)YP ∈ VYP|T such that

B0,T (e
(T)
YP,v) = FT (v) +

∫
È

∫
T
∇ · (a(x,y)∇uXP(x,y))v(x,y)dxdá(y)

− 1
2

¼
E∈E◦(T)

∫
È

∫
E
a(s,y)J∇uXP KE v(s,y)ds dá(y) ,

(5.34)

for all v ∈ VYP|T . Here, VYP|T := Y |T ⊗ PP, where Y |T is the restriction of Y to the element T ∈ T ,

B0,T and FT denote the bilinear form and the linear functional restricted on Y , respectively, and

J ·KE denotes the flux jump across the edge E of T , i.e., for every v ∈ X,

J∇v KE := ∇v|T · n − ∇v|T ′ · n ∀ E ∈ E◦(T) ,

with T ′ ∈ T being the neighbour of T such that E = T ∩ T ′ and where n denotes the outward

pointing unit normal vector to the edge E ∈ E◦(T ). Note that local problems (5.34) are well-

defined; in fact, B0,T (·, ·) is coercive over T as B0,T (v,v) > 0 for all v ∈ VYP|T .

One important feature of this error estimation technique is that the linear algebra associated

with problem (5.34) is simple. In fact, due to the use of bilinear form B0(·, ·) which does not

incorporate the parameters (see (4.19)), the resulting left-hand side matrix of the linear system

arising from (5.34) is the block diagonal matrix BT ∈ R3NP×3NP given by the Kronecker product

of the identity matrix G0 (see (4.47)) and the reduced finite element matrix KT ∈ R3×3 associated

with Y |T , i.e., for all T ∈ T ,

BT = G0 ⊗ KT with [KT ]i j =
∫
T
a0(x)∇èj (x) · ∇èi (x)dx, i , j = 1, . . . ,3.

Here, {èi }3i=1 denote the first-order Lagrange basis of Y |T (with dim(Y |T ) = 3); notice that the

indices i and j refer to the local enumeration of the basis of Y restricted to T ∈ T . As a result, the

numerical computation of local error estimators e(T)YP, for T ∈ T , can be easily parallelised.

Remark 5.3.1 (Implicit estimators). The definition of problem (5.34) posed on single elements T ∈ T
is a technique known as element residual method which dates back to [16]. This method is a specific error

estimation approach belonging to the family of methods referred to as implicit error estimators; see, e.g.,

[2, Chapter 3] and [131, Section 1.7]. Contrary to explicit estimators (i.e., residual-based estimators,

see, e.g., [2, Chapter 2] and [131, Section 1.4]) that are computable from data problem and the Galerkin

approximation, implicit estimators require the solution of auxiliary local boundary value problems that

approximate appropriately the single global residual equation (see (5.17)). The associated error estimate

is then obtained by summing the norms of all local contributing estimators over the domain (see (5.37)
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below).

Remark 5.3.2. In spite of global reliability and efficiency (5.24) of hierarchical error estimates, it is well

known that the associated local error estimators (see (5.34)) are, in general, not ‘reliable’ in the sense

that so-called effectivity indices (defined as the ratio of the total error estimate to the true error in the

energy norm, see (5.43)) may become less than unity (see, e.g., [16] and [61, Section 1.5.2], as well as

the results of numerical experiments in Section 5.4.1).

Computation of the parametric contribution

Consider now the parametric estimator eXQ ∈ VXQ satisfying (5.21). In addition to monotonicity,

the finite detail index sets Q that we are going to define below, and that are used by the adaptive

algorithm, are based on the assumption that the finite index sets P are ordered (see Section 4.2.2

and (4.42)).

As explained in Section 5.2.3, it is worth considering only those detail index sets for which

eXQ is nonzero. Such detail index sets are all subsets of �P defined in (5.33). Therefore, for a fixed

MQ ∈ N, we consider the finite detail index set Q ⊂ �P for the computation of eXQ as

Q :=
{
Þ ∈ I \P : Þ = ß+ ê(m) ∀ ß ∈ P, m = 1, . . . ,MP +MQ

}
. (5.35)

Here, the index set Q contains only those neighbours of the indices of P that have up to MP +MQ

active parameters, i.e., MQ parameters more than those currently active in P. In particular, the

cardinality of Q in (5.35) is at most NP(MP +MQ) and the monotonocity of the enriched index set

P ∪ Q is preserved. Notice that values of MQ larger than 1 may lead to too large computational

efforts when running the adaptive algorithms (see the numerical experiment in Section 7.3.2).

With the finite detail index set (5.35), we compute the individual parametric estimators e
(Þ)
XQ ∈

X ⊗ PÞ by solving the linear systems arising from problems (5.27) for all Þ ∈ Q. In particular,

the corresponding left-hand side matrices BÞ ∈ RNX×NX of such linear systems are given by the

finite element matrices K0 associated with the space X and corresponding to the parameter-free

term a0(x) (see (4.46)). That is, BÞ is the same matrix for all Þ ∈ Q, hence it has to be assembled

only once.

Remark 5.3.3. By considering ordered index sets P, we are assuming that the initial parametric dis-

cretisations do not activate a parameter ym without also activating all parameters yn for all 1 ≤ n ≤m.

The reason for this is the assumption that a parameter yn is more ‘important’ than a parameter ym
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(n ≤ m), in the sense that ym contributes less to expansion (4.8) of the random field (recall the as-

sumption on the magnitudes ‖ ·‖L∞(D ) of spatial coefficients (am)m∈N in Assumption 4.2). For example,

consider the following monotone but not ordered index set:

P =
{
0, (1,0,0), (0,0,1)

}
. (5.36)

Here, supp(P) = {1,3}, i.e., there are MP = #supp(P) = 2 active parameters which are not, however, y1

and y2 (but y1 and y3). In particular, coefficient a3 would be active in expansion (4.8) of the random

field although ‖a3 ‖L∞(D ) ≤ ‖a2 ‖L∞(D ).
We stress that the order constraint is only, effectively, applied to the very first initial index set P,

since its monotonicity automatically implies that the enriched index sets are also ordered. If the initial

index sets do not need to be ordered, we could modify (5.35) by substituting MP with a more general

counter parameter M̃P defined as follows (see [29, Eq. (5.2)]):

M̃P :=


0 if P = {0},

max
{
max(supp(ß) ), ß ∈ P \ {0}

}
otherwise.

For index set (5.36), we have M̃P = 3 , 2 = MP; however, notice that M̃P = MP for ordered index sets.

Local error contributions

Once all local spatial estimators e(T)YP satisfying (5.34) are computed for all T ∈ T and all paramet-

ric estimators e
(Þ)
XQ satisfying (5.27) are computed for all Þ ∈ Q (with Q given by (5.35)), we define

the spatial estimate

ÙYP(T )2 :=
¼
T∈T

ÙYP(T)
2 with ÙYP(T) := ‖e(T)YP ‖B0,T

∀ T ∈ T , (5.37)

and the parametric estimate

ÙXQ(Q)
2 :=

¼
Þ∈Q

ÙXQ(Þ)
2 with ÙXQ(Þ) := ‖e(Þ)XQ ‖B0

∀ Þ ∈ Q. (5.38)

Notice that while ‖eXQ ‖B0
= ÙXQ(Q) due to (5.25), we only have ‖eYP ‖B0

≈ ÙYP(T ) due to the use

of the implicit element residual problem technique (see [16, 2]). Therefore, we approximate the

total hierarchical error estimate ÙXP in (5.22) via

ÙXP ≈ Ù :=
(
ÙYP(T )2 + ÙXQ(Q)

2
)1/2

. (5.39)
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5.3.2 Marking strategy and refinements

In order to compute more accurate Galerkin solutions, enriched approximation spaces need to be

constructed at each iteration of the adaptive loop. To this end, a marking strategy is needed to

select a subset M ⊆ T of elements to be refined or a subset M ⊆ Q of indices to be included in

the parametric approximation. In both cases, the algorithm employs the Dörfler marking strategy

(see Strategy 2.2) to build the two subsetsM⊆ T and M ⊆ Q with minimal cardinality satisfying

ÙYP(M)2 :=
¼
T∈M

ÙYP(T)
2 ≥ ÚXÙYP(T )2 and ÙXQ(M)2 :=

¼
Þ∈M

ÙXQ(Þ)
2 ≥ ÚPÙXQ(Q)

2, (5.40)

respectively. Here, ÙYP(T ) and ÙXQ(Q) are the total estimates defined by (5.37) and (5.38) and

ÚX ,ÚP ∈ (0,1] are the corresponding marking parameters.

Once the setsM ⊆ T and M ⊆ Q are available, the algorithm can construct an enhanced dis-

cretisation space. While parametric enrichments are simply made by adding the set M to the

index set P, a refinement rule has to be set up for spatial mesh-refinements. To this end, the

algorithm returns a new conforming triangulation by implementing the NVB refinements where

reference edges are the longest edges of each element of T (see Section 2.3.2). Recall that the use

of this mesh-refinement technique ensures that the finite element spaces associated with refined

triangulations are nested (see Remark 2.3.1).

5.3.3 Adaptive loop

We now describe the loop of the proposed adaptive SGFEM algorithm. Throughout, we use the

subscript (or superscript) � ∈ N0 for triangulations, index sets, Galerkin solutions, etc., associated

with the �-th iteration of the loop.

Starting with a conforming coarse triangulation T0 and an initial index set P0, at each iteration

� ∈ N0, the finite element space X� := S10 (T�) associated with T�, is tensorised with the polynomial

space PP�
. The unique Galerkin solution u� ∈ V� := V (�)

XP = X� ⊗PP�
satisfying (4.36) is computed by

solving the associated linear system (4.44) by the SOLVE subroutine,

u� = SOLVE(T�,P�,a, f ) ,

where a and f are the problem data (see (4.5) and (4.8)). In order to control the error in the

Galerkin solution u�, local spatial estimates {ÙYP(T)}T∈T� and individual parametric estimates

{ÙXQ(Þ)}Þ∈Q�
defined in (5.37) and (5.38), respectively, are computed as described in Section 5.3.1
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by the subroutine ESTIMATE:[
{ÙYP(T)}T∈T� , {ÙXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
u�,T�,P�,Q�,a, f

)
.

Here, the detail index set Q� ⊂ I \ P� is built via (5.35). The total energy norm error estimate

Ù� ≈ Ù
(�)
XP is then computed via (5.39). If a prescribed tolerance tol is met, i.e., if Ù� ≤ tol, then the

adaptive process stops. Otherwise, a more accurate Galerkin solution belonging to an enriched

finite-dimensional subspace V�+1 ⊇ V� needs to be computed. At this stage of the adaptive loop, a

marking criterion (see below) returns two subsets,M� ⊆ T� and M� ⊆ Q� where, indeed, only one

of them is non-empty according to the type of enrichment that has to be pursued. The selection

of such subsets is performed by the same MARK subroutine

M� = MARK
(
{ÙYP(T)}T∈T� , ÚX

)
and M� = MARK

(
{ÙXQ(Þ)}Þ∈Q�

, ÚP

)
, (5.41)

which implements the Dörfler strategy (see Strategy 2.2). Finally, the enriched space V�+1 is con-

structed by setting

P�+1 := P� ∪M� and T�+1 = REFINE(T�,M�) ,

where the REFINE subroutine implements NVB refinements (see Section 2.3.2). Note that since

eitherM� or M� is empty, only either a parametric enrichment or a mesh-refinement of current

triangulation T� is performed. The algorithm returns a sequence (T�)�∈N0
of adaptively conforming

refined triangulations associated with nested finite elements spaces (X�)�∈N0
, i.e., X� ⊆ X�+1 ⊂

H1
0 (D ) and a sequence (P�)�∈N0

of adaptively enriched nested index sets, i.e., P� ⊆ P�+1 ⊂ I.

Let us now describe how the algorithm chooses between mesh-refinements and parametric

enrichments of the approximation space. In this respect, we distinguish two possible marking

criteria that can be used by the adaptive algorithm.

Marking criterion based on total estimates

This is the criterion listed in Criterion 5.1. Here, we consider the total spatial ÙYP(T�) and total

parametric ÙXQ(Q�) error estimates given by (5.37) and (5.38), respectively, as follows. If ÙXP(T�)
is bigger than ÙXQ(Q�), the criterion selects a subsetM� ⊆ T� of marked elements using the MARK

subroutine and set M� := ∅. Otherwise (i.e., if ÙXP(T�) < ÙXQ(Q�)), a subset M� ⊆ Q� of marking

indices is selected using the MARK subroutine and the criterion sets M� := ∅. Note that, in the

former case, only a new finite element space is going to be constructed on the next iteration,
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Marking criterion for adaptive SGFEM

Input: error estimates {ÙYP(T)}T∈T� , {ÙXQ(Þ)}Þ∈Q�
, and marking parameters ÚX ,ÚP ∈ (0,1].

IF ÙYP(T�) ≥ ÙXQ(Q�)

setM� := MARK
(
{ÙYP(T)}T∈T� , ÚX

)
and M� := ∅;

ELSE

set M� := MARK
(
{ÙXQ(Þ)}Þ∈Q�

, ÚP

)
andM� := ∅.

END
Output: M� ⊆ T� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 5.1. Marking criterion for an adaptive SGFEM algorithm driven by hierarchical error estimates.

whereas, in the latter case, the enhanced space is constructed only by parametric enrichment.

The idea to compare two contributions to the total error estimate in order to decide on the

enrichment type is not new. On the one hand, this idea was used in the adaptive algorithms de-

scribed in [54, 55] and [56], where residual-based and local equilibration error estimators were

employed, respectively. On the other hand, it was used in the adaptive algorithm with uniform

mesh-refinements presented in [29]. Note that, however, the estimate ÙYP(T�) combining all ele-

mentwise contributions {ÙYP(T)}T∈T� does not necessarily provide an effective estimate of the error

reduction that would be achieved if only the marked elements M� ⊆ T� were refined. Likewise,

ÙXQ(Q�) does not necessarily estimate the error reduction that would be achieved by adding only

the subset of marked indices M� ⊆ Q� to P�. These observations motivate the second marking

criterion.

Marking criterion based on error reduction estimates

This is the criterion listed in Criterion 5.2. Before deciding on the type of enrichment, the criterion

uses the subroutine MARK to select a subset M̃� ⊆ T� of marked elements as well as a subset

M̃� ⊆ Q� of marked indices. A post-processing step also returns the set R̃� = T� \ T�+1 ⊆ T� of the

refined elements, i.e., the set consisting of M̃� and all those extra elements that are also marked for

refinement by completion steps of the NVB rule (see Figure 2.2). Note that in finding R̃�, no mesh-

refinement is actually performed: the REFINE subroutine comes with an edge-based procedure

which identifies, for a given input set of marked elements, all edges of T� that should be bisected

to keep the conformity of the newly refined triangulation before effectively performing the mesh-

refinement.
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Marking criterion for adaptive SGFEM

Input: error estimates {ÙYP(T)}T∈T� , {ÙXQ(Þ)}Þ∈Q�
, and marking parameters ÚX ,ÚP ∈ (0,1].

DO

set M̃� := MARK
(
{ÙYP(T)}T∈T� , ÚX

)
;

set R̃� := T� \ T�+1, where T�+1 is defined by T�+1 := REFINE(T�,M̃�);

set M̃� := MARK
(
{ÙXQ(Þ)}Þ∈Q�

, ÚP

)
;

END
IF ÙYP(R̃�) ≥ ÙXQ(M̃�)

setM� := M̃� and M� := ∅;
ELSE

set M� := M̃� andM� := ∅;
END
Output: M� ⊆ T� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 5.2. Marking criterion for an adaptive SGFEM algorithm driven by hierarchical error estimates.

Next, the criterion considers the two error estimates ÙYP(R̃�) and ÙXQ(M̃�) (here, ÙYP(R̃�) is

defined in obvious way as in (5.40)). Since the sum in ÙYP(R̃�) is only over the elements to be

refined (resp. the sum in ÙXQ(M̃�) is over the marked indices to be added to the current index set),

the quantity ÙYP(R̃�) (resp. ÙXQ(M̃�)) does provide an effective estimate of the error reduction

that would be achieved as result of the mesh-refinement (resp. parametric enrichment); cf. (5.30)

and (5.31). Therefore, in the spirit of algorithms driven by dominant error reduction estimates,

the enrichment type in Criterion 5.2 is chosen by comparing the quantities ÙYP(R̃�) and ÙXQ(M̃�).

More precisely, if ÙYP(R̃�) ≥ ÙXQ(M̃�), thenM� is set equal to M̃� and M� := ∅. Otherwise, M� is

set equal M̃� andM� := ∅.
The complete adaptive SGFEM algorithm incorporating both Criteria 5.1 and 5.2 is listed in

Algorithm 5.1.

5.4 Numerical experiments

We report the results of running adaptive Algorithm 5.1 for parametric model problem (4.5).

These results illustrate some aspects of the design of the algorithm and demonstrate the perfor-

mance of the two versions using marking Criteria 5.1 and 5.2 described in Section 5.3.3. The nu-

merical experiments are performed using the open source Matlab toolbox Stochastic T-IFISS [28],
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Adaptive SGFEM algorithm

Input: data a, f ; triangulation T0, index set P0; marking parameters ÚX ,ÚP ∈ (0,1]; tolerance tol.
FOR � = 0,1,2, . . . DO

u� = SOLVE(T�,P�,a, f );[
{ÙYP(T)}T∈T� , {ÙXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
u�,T�,P�,Q�,a, f

)
;

Ù� =
(
ÙYP(T�)2 + ÙXQ(Q�)2

)1/2
;

IF Ù� ≤ tol THEN BREAK; END

select the subsetsM� ⊆ T� and M� ⊆ Q by using either Criterion 5.1 or Criterion 5.2;

set P�+1 = P� ∪M� and T�+1 = REFINE(T�,M�).

END
Output: sequence of Galerkin solutions u� and energy error estimates Ù�.

Algorithm 5.1. Adaptive SGFEM algorithm driven by hierarchical error estimates for parametric problem
(4.5).

on a desktop computer equipped with an Intel Core CPU i5-4590@3.30GHz and 8.00GB of RAM.

A brief description of the toolbox can be found in Appendix B.

5.4.1 Setup of the experiments

In all experiments, we run Algorithm 5.1 using the following initial index set

P0 :=
{
ß(1), ß(2)

}
=

{
0, (1,0,0, . . . )

}
. (5.42)

In P0, only parameter y1 is active and the initial polynomial space is given by PP0
= span{1,Pß(2)},

where Pß(2) is a polynomial of degree 1 in y1. For the computation of detail index sets Q� defined

in (5.35), we fix MQ = 1 and, throughout, we do not investigate the action of larger values.

Let L = L(tol) ∈ N be the smallest integer such that ÙL ≤ tol. We will collect the following

output data:

• the number of total iterations L of the adaptive algorithm;

• the overall computational time t (in seconds);

• the final energy error estimate ÙL;

• the final number of degrees of freedom NL := dim(VL) = dim(XL)dim(PPL
) = NXLPL

;

• the number of elements #TL of last triangulation TL;
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• the number of indices #PL of last index set PL as well as the final number of active parame-

ters MPL
;

• the parametric enrichments of the index set.

In order to test the effectiveness of the error estimation strategy, the hierarchical estimates Ù�

should be compared with the energy norm of the error e� = u − u�. Since the true solution is

unknown, we replace ‖e� ‖B by the energy norm of uref − u�, where uref ∈ Vref := Xref ⊗ PPref
is an

accurate, reference solution. To compute uref, we employ second-order finite element approxima-

tions over a fine triangulation Tref (i.e., Xref := S20 (Tref)) and use a large index set Pref which are

both specified in the experiments. Then, we define the following effectivity indices

à� :=
Ù�

‖uref − u� ‖B
=

Ù�
(‖uref ‖2B − ‖u� ‖2B )1/2

, � = 0, . . . ,L . (5.43)

Note that the equality in (5.43) holds due to Galerkin orthogonality and the symmetry of the

bilinear form B(·, ·).
In what follows, we will write Algorithm 5.1v1 (resp. Algorithm 5.1v2) to refer to the version

of adaptive Algorithm 5.1 which uses marking Criterion 5.1 (resp. Criterion 5.2).

5.4.2 Experiment 1 - Spatially regular solution on square domain

In the first experiment, we consider the parametric model problem (4.5) posed on the square

domain D = (0,1)2, and we set the right-hand side source f (x) := 1 for all x ∈ D . Following [54, 55],

we fix a0(x) = 1 for all x ∈ D and choose the expansion coefficients (am)m∈N in (4.8) to represent

planar Fourier modes of increasing total order, i.e.,

a(x,y) = 1 +
∞¼

m=1

[
Óm cos(2áÔ1(m)x1)cos(2áÔ2(m)x2)

]
ym , x ∈ D , y ∈ È . (5.44)

Here, Óm := Am−ã represents the amplitude of the coefficients, where ã > 1 and 0 < A < 1/Ø(ã),

with Ø being the Riemann zeta function, whereas Ô1,Ô2 : N→ N are defined by

Ô1(m) :=m − k(m)(k(m) + 1)/2 and Ô2(m) := k(m)− Ô1(m) , m ∈ N

with k(m) :=
⌊
−1/2 +

√
1/4+2m

⌋
. Note that with this choice of expansion coefficients, the weak

formulation (4.17) is well-posed since amin
0 = amax

0 = 1 in (4.9) and Õ = AØ(ã) < 1 as required

by (4.10). In particular, by setting ã = 2, we select A such that ä = AØ(ã) = 0.9. This choice

corresponds to a slow decay of the amplitudes Óm and gives A ≈ 0.547 (cf. [54, Section 11.1.1]).

Furthermore, we assume that parameters ym ∈ Èm = [−1,1] in (5.44) are the images of uniformly
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Figure 5.2. Numerical experiment of Section 5.4.2. Decay of energy norm estimates Ù� computed at each
step of Algorithm 5.1v2 for different sets of marking parameters as well as for the case of Criterion 5.2 mo-
dified so that mesh-refinements and parametric enrichments are enforced simultaneously at each iteration.
Filled markers indicate iterations at which parametric enrichments occur.

distributed independent mean-zero random variables. In this case, dám = dym/2 for all m ∈ N
and the orthonormal polynomials basis of L2ám

(Èm) consists of Legende polynomials (see Exam-

ple 4.2.1). The same model problem as described above has been used in numerical experiments

in [54, 55, 29, 56].

The first aim in this experiment is to show the advantages of using adaptivity in both compo-

nents of Galerkin approximations. To this end, starting from the initial coarse triangulation T0
depicted in Figure 5.3(a), we run Algorithm 5.1v2 with four different sets of marking parameters.

In addition, we consider a modification of Algorithm 5.1v2, in which Criterion 5.2 is amended so

that both mesh-refinement and parametric enrichment are enforced at each iteration. We plot the

computed error estimates Ù� in Figure 5.2.

In the cases where only one component of the Galerkin approximation is enriched (i.e., if ei-

ther ÚX or ÚP is equal to 0) the error estimates Ù� quickly stagnate as iterations progress. If both

components are enriched but no adaptivity is used (i.e., for ÚX = ÚP = 1), then Ù� decay throu-

ghout all iterations. However, in this case, the overall decay rate deteriorates due to the number

of degrees of freedom growing fast, in particular, during the iterations where parametric enrich-

ments occur (see the filled pentagon markers in Figure 5.2). An even greater deterioration of the

decay rate is also observed for the case in which both components are fully enriched (ÚX = ÚP = 1)

simultaneously at each iteration. On the other hand, a similar decay is also obtained if we enforce

both enhancements at each iteration but marking parameters less than one are used (Ú = 0.3 and
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Figure 5.3. Numerical experiment of Section 5.4.2. (a) Initial coarse triangulation T0; (b) Adaptively refined
triangulation produced by Algorithm 5.1v1; (c)–(d) The mean field E[uXP] and the variance Var(uXP) of the
computed SGFEM solution, respectively.

ÚP = 0.8). Finally, we observe that the best decay rate is obtained when adaptivity is used for both

components of Galerkin approximations in Criterion 5.2 with parameters Ú = 0.3 and ÚP = 0.8

(see triangle markers in Figure 5.2). Clearly, adaptive enrichment in both components provides

more balanced approximations with less degrees of freedom and leads to faster convergence rates.

Let us now run both Algorithms 5.1v1 and 5.1v2 with the following sets of input parameters.

For marking purposes, we use two sets of threshold parameters, (i) ÚX = 0.5, ÚP = 0.9 and (ii)

ÚX = 0.2, ÚP = 0.9. The stopping tolerance tol = 1.5e-3 is set in all cases. The results of these

computations are presented in Table 5.1 and in Figures 5.3, 5.4, and 5.5.

Figure 5.3(b) shows the locally refined triangulation produced by Algorithm 5.1v1 in case

(i) when an intermediate tolerance was met (similar triangulations were produced in all other

cases). Figures 5.3(c) and 5.3(d) show the mean and the variance of the computed SGFEM solution,

respectively (see (4.48)). Note that due to the regularity of the solution and since the magnitude

of the variance is much smaller than the magnitude of the mean field, the triangulation is mainly
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ÚX = 0.5, ÚP = 0.9 ÚX = 0.2, ÚP = 0.9

Algorithm 5.1v1 Algorithm 5.1v2 Algorithm 5.1v1 Algorithm 5.1v2

L 27 26 64 61
t (sec) 254 179 474 391
ÙL 1.2652e-03 1.4438e-03 1.2509e-03 1.4369e-03
NL 997,763 748,558 986,769 730,319
#TL 87,520 65,750 86,552 64,156
#PL 23 23 23 23
MPL

6 6 6 6

P� � = 9 (0 1) � = 8 (0 1) � = 21 (0 1) � = 10 (0 1)
(2 0) (2 0) (2 0) (2 0)

� = 15 (0 0 1) � = 13 (0 0 1) � = 35 (0 0 1) � = 23 (0 0 1)
(1 1 0) (1 1 0) (1 1 0) (1 1 0)
(3 0 0) (3 0 0) (3 0 0) (3 0 0)

� = 20 (0 0 0 1) � = 19 (0 0 0 1) � = 48 (0 0 0 1) � = 36 (0 0 0 1)
(1 0 1 0) (1 0 1 0) (1 0 1 0) (1 0 1 0)
(2 1 0 0) (2 1 0 0) (2 1 0 0) (2 1 0 0)

� = 24 (0 0 0 0 1) � = 22 (0 0 0 0 1) � = 56 (0 0 0 0 1) � = 44 (0 0 0 0 1)
(0 2 0 0 0) (0 2 0 0 0) (0 2 0 0 0) (0 2 0 0 0)
(1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0)
(3 1 0 0 0) (3 1 0 0 0) (3 1 0 0 0) (3 1 0 0 0)
(4 0 0 0 0) (4 0 0 0 0) (4 0 0 0 0) (4 0 0 0 0)

� = 27 (0 0 0 0 0 1) � = 26 (0 0 0 0 0 1) � = 64 (0 0 0 0 0 1) � = 51 (0 0 0 0 0 1)
(0 1 1 0 0 0) (0 1 1 0 0 0) (0 1 1 0 0 0) (0 1 1 0 0 0)
(1 0 0 0 0 1) (1 0 0 0 0 1) (1 0 0 0 0 1) (1 0 0 0 0 1)
(1 0 0 0 1 0) (1 0 0 0 1 0) (1 0 0 0 1 0) (1 0 0 0 1 0)
(1 2 0 0 0 0) (1 2 0 0 0 0) (1 2 0 0 0 0) (1 2 0 0 0 0)
(2 0 0 1 0 0) (2 0 0 1 0 0) (2 0 0 1 0 0) (2 0 0 1 0 0)
(3 0 1 0 0 0) (3 0 1 0 0 0) (3 0 1 0 0 0) (3 0 1 0 0 0)

Table 5.1. The results of running Algorithms 5.1v1 and 5.1v2 with two sets of marking parameters for the
model problem in Section 5.4.2.

refined towards the corners of the domain.

The results in Table 5.1 evidence some differences in the performance of the algorithm using

Criteria 5.1 and 5.2 in terms of computational times, final number of elements, and total number

of degrees of freedom (cf. the values of t, #TL, and NL in Table 5.1). In particular, Algorithm 5.1v2

took less iterations and reached the tolerance faster than Algorithm 5.1v1 (e.g., about 33% of

time saved in case (ii)). However, in cases (i) and (ii), both Algorithms 5.1v1 and 5.1v2 produced

the same final index set PL with 23 indices corresponding to polynomials of total degree 4 in 6

active parameters. We also note that by design, the use of Criterion 5.2 triggers polynomial en-

richments at earlier iterations than the case when Criterion 5.1 is used. This results in a balanced

refinement of spatial and parametric components of Galerkin approximations generated by run-

ning Algorithm 5.1v2 and this is one of the reasons why it is faster and overall more efficient than
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Figure 5.4. Total and local error estimates at each step of Algorithms 5.1v1 (left) and 5.1v2 (right) with
ÚX = 0.5, ÚP = 0.9 (case (i)) for the model problem in Section 5.4.2.
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Figure 5.5. Total and local error estimates at each step of Algorithms 5.1v1 (left) and 5.1v2 (right) with
ÚX = 0.2, ÚP = 0.9 (case (ii)) for the model problem in Section 5.4.2.

Algorithm 5.1v1 in this experiment.

By looking now at Figures 5.4 and 5.5, we observe that the total error estimates Ù� decay with

an overall rate of about O(N−0.35) for both Algorithms 5.1v1 and 5.1v2 and both sets of marking

parameters. However, due to spatial regularity of the solution, one may expect the error estimates

to decay with the optimal rate O(N−1/2) during mesh-refinement steps, cf. [55] (mesh-refinements

can be identified on the graphs as the steps where the estimates Ù(T�) and Ù(R̃�) decay). It turns

out that Algorithm 5.1 does not achieve this optimal decay rate during mesh-refinement stages

in case (i) (ÚX = 0.5); see Figure 5.4 (also cf. [55, Figure 1] in the case of ÚX = 0.4). However, in

case (ii) (ÚX = 0.2), Figure 5.5 shows that the decay rate during spatial refinement steps is very
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Figure 5.6. The effectivity indices for the SGFEM solutions of the model problem in Section 5.4.2 computed
by Algorithms 5.1v1 and 5.1v2 with ÚX = 0.5, ÚP = 0.9 (case (i), left) and ÚX = 0.2, ÚP = 0.9 (case (ii), right).

close to the optimal one when Criterion 5.2 is used, whereas it is still far from being optimal

if Criterion 5.1 is used by the algorithm. We also note that, since polynomial enrichments are

triggered earlier by Criterion 5.2, the associated reductions in the total error estimates during

these steps, are smaller than the error reductions that occur during polynomial enrichment steps

when running Algorithm 5.1v1.

Finally, in both cases (i) and (ii), we compute the effectivity indices (5.43). In this case, we

employ the reference Galerkin solution uref from [29, Section 6] with corresponding energy norm

‖uref ‖B = 1.90117e-01. The effectivity indices for both cases (i) and (ii) and both Algorithms 5.1v1

and 5.1v2 are plotted in Figure 5.6. We can see that the they are less than unity throughout all

iterations and tend to be close to 0.8 as iterations progress.

Based on the obtained results, we conclude that Algorithm 5.1v2 is more efficient than Al-

gorithm 5.1v1 for the considered parametric problem on the square domain. Indeed, Algo-

rithm 5.1v2 reaches the desired tolerance faster and with a fewer number of total degrees of

freedom. Furthermore, the corresponding total error estimates decay with an optimal rate during

mesh-refinement steps, provided that the spatial parameter ÚX is sufficiently small (e.g., ÚX = 0.2).

On the other hand, the overall convergence rate is essentially the same for both versions of the al-

gorithm and for both sets of marking parameters considered in this experiment.

5.4.3 Experiment 2 - Spatially singular solution on L-shaped domain

In the second experiment, we compare the performance of the two versions of Algorithm 5.1 for

the same parametric model problem described in Section 5.4.2 but now posed on the L-shaped
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Figure 5.7. Numerical experiment of Section 5.4.3. (a) Initial coarse triangulation T0; (b) Adaptively refined
triangulation produced by Algorithm 5.1v1; (c)–(d) The mean field E[uXP] and the variance Var(uXP) of the
computed SGFEM solution.

domain D = (−1,1)2 \ (−1,0]2. Exactly the same parametric problem has been solved numerically

in [54, 55, 56].

We use the initial coarse triangulation T0 depicted in Figure 5.7(a). Similarly to the experiment

in Section 5.4.2, for marking purposes we use two sets of parameters, (i) ÚX = 0.5, ÚP = 0.8 and (ii)

ÚX = 0.2, ÚP = 0.8, and the same stopping tolerance tol = 5.0e-3 is set for both cases. The results

of these computations are presented in Table 5.2 and in Figures 5.7, 5.8, and 5.9.

Figure 5.7(b) shows the locally refined triangulation produced by Algorithm 5.1v1 in case (ii)

when an intermediate tolerance was met (triangulations with a similar patterns were produced in

all other cases). Figures 5.7(c) and 5.7(d) show the mean and the variance of the computed SGFEM

solution, respectively. Observe that the adaptively refined triangulation effectively identifies the

area of singular behaviour of the mean field (in the vicinity of the reentrant corner), where we can

see much stronger mesh-refinement than in other areas of the domain. Note that, since the mag-

nitude of the mean is much higher than the one for the variance, the ‘roughness’ of the variance in
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ÚX = 0.5, ÚP = 0.8 ÚX = 0.2, ÚP = 0.8

Algorithm 5.1v1 Algorithm 5.1v2 Algorithm 5.1v1 Algorithm 5.1v2

L 27 27 65 63
t (sec) 193 194 360 333
ÙL 4.7170e-03 4.7160e-03 4.8340e-03 4.9659e-03
NL 664,729 665,366 576,121 603,594
#TL 103,206 103,304 89,480 67,770
#PL 13 13 13 18
MPL

5 5 5 6

P� � = 12 (0 1) � = 11 (0 1) � = 29 (0 1) � = 20 (0 1)
(2 0) (2 0) (2 0) (2 0)

� = 19 (0 0 1) � = 17 (0 0 1) � = 45 (0 0 1) � = 35 (0 0 1)
(1 1 0) (1 1 0) (1 1 0) (1 1 0)

� = 22 (0 0 0 1) � = 21 (0 0 0 1) � = 53 (0 0 0 1) � = 43 (0 0 0 1)
(1 0 1 0) (1 0 1 0) (1 0 1 0) (1 0 1 0)
(3 0 0 0) (3 0 0 0) (3 0 0 0) (3 0 0 0)

� = 26 (0 0 0 0 1) � = 25 (0 0 0 0 1) � = 62 (0 0 0 0 1) � = 52 (0 0 0 0 1)
(1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0)
(2 1 0 0 0) (2 1 0 0 0) (2 1 0 0 0) (2 1 0 0 0)

� = 60 (0 0 0 0 0 1)
(0 2 0 0 0 0)
(1 0 0 0 1 0)
(3 1 0 0 0 0)
(4 0 0 0 0 0)

Table 5.2. The results of running Algorithms 5.1v1 and 5.1v2 with two sets of marking parameters for the
model problem in Section 5.4.3.

some parts of the domain does not have a significant impact on mesh-refinements in those areas.

Table 5.2 shows the final outputs of all computations in this experiment. By looking at the

results for case (i), we do not observe significant differences between the approximations produced

by the algorithm using Criteria 5.1 and 5.2. Indeed, the tolerance was reached after the same

number of iterations (L = 27) and the same final index set (with #PL = 13 indices), and the number

of elements in final triangulations was comparable. Also, both Algorithms 5.1v1 and 5.1v2 took

nearly the same time to reach the tolerance.

In case (ii), the differences are more evident. To start with, Algorithm 5.1v1 needed two itera-

tions more than Algorithm 5.1v2 to reach the tolerance. Furthermore, it produced a more refined

triangulation than Algorithm 5.1v2 did (cf. the values of #TL in Table 5.2 in case (ii)). On the other

hand, Algorithm 5.1v2 generated a more developed index set (with #PL = 18 indices) with more

active parameters and higher degree of polynomial approximation in these parameters. This ex-

plains why Algorithm 5.1v2 terminated with a slightly bigger number of total degrees of freedom
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Figure 5.8. Total and local error estimates at each step of Algorithms 5.1v1 (left) and 5.1v2 (right) with
ÚX = 0.5, ÚP = 0.8 (case (i)) for the model problem in Section 5.4.3.
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Figure 5.9. Total and local error estimates at each step of Algorithms 5.1v1 (left) and 5.1v2 (right) with
ÚX = 0.2, ÚP = 0.8 (case (ii)) for the model problem in Section 5.4.3.

NL in this case; nevertheless, Algorithm 5.1v2 was 7.5% faster than Algorithm 5.1v1. As already

observed in the experiment of Section 5.4.2, this was due to polynomial enrichments triggered at

earlier iterations.

By looking now at Figures 5.8 and 5.9, we see that the overall convergence rate for total error

estimates Ù� is about O(N−0.35) for both Algorithms 5.1v1 and 5.1v2 and for both sets of marking

parameters. Notice that the optimal rate O(N−1/2) is not achieved in case (i) due to the fact that

the marking parameter ÚX = 0.5 is not sufficiently small (see, e.g., [31, 52]). In case (ii), i.e., for

ÚX = 0.2, the decay rate during mesh-refinement steps is close to the optimal one only for Algo-

rithm 5.1v2. This observation is consistent with the one made in the experiment of Section 5.4.2
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Figure 5.10. The effectivity indices for the SGFEM solutions of the model problem in Section 5.4.3 com-
puted by Algorithms 5.1v1 and 5.1v2 with ÚX = 0.5, ÚP = 0.8 (case (i), left) and ÚX = 0.2, ÚP = 0.8 (case (ii),
right). The energy norm of the associated reference solution is ‖uref ‖B = 4.701397e-01.

on the square domain.

In this experiment, we computed the effectivity indices à� defined in (5.43), by employing a

reference Galerkin solution uref computed over the triangulation Tref, with Tref being the uniform

refinement of TL produced by Algorithm 5.1v2 in case (i) and using the reference index set Pref

to be equal to the large index set PL generated by Algorithm 5.1v2 in case (ii). The computed

effectivity indices are plotted in Figure 5.10. In both cases (i) and (ii), they lie within the interval

(0.8, 0.93) throughout all iterations.

In agreement with the results of the experiment in Section 5.4.2, we conclude that for the

parametric problem on the L-shaped domain with spatially singular solution, for a sufficiently

small marking parameter ÚX (e.g., ÚX = 0.2), Algorithm 5.1 is overall more efficient when using

Criterion 5.2. In this case, the algorithm produces more accurate parametric approximations by

generating richer index sets, and the associated total error estimates decay with an optimal rate

during mesh-refinement steps.

5.4.4 Experiment 3 - Spatially singular solution on slit domain

In this third experiment, we consider the parametric model problem (4.5) posed on the slit do-

main D = (−1,1)2 \ ([−1,0] × {0}). Note that the boundary of this domain is non-Lipschitz (see

Figure 5.11(a)); however, the problem on D can be seen as a limit case of the problem on the

Lipschitz domain DÖ = (−1,1)2 \ TÖ as Ö → 0, where TÖ = conv
(
{(0,0), (−1,Ö), (−1,−Ö)}

)
(cf. [125,
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Figure 5.11. Numerical experiment of Section 5.4.4. (a) Initial coarse triangulation T0; (b) Adaptively re-
fined triangulation produced by Algorithm 5.1v1; (c)–(d) The mean field E[uXP] and the variance Var(uXP)
of the computed SGFEM solution.

p. 259])2. Therefore, all computations in this experiment were performed for the domain D = DÖ

with Ö = 0.005.

We set the source f (x) = exp(−(x1 + 0.5)2 − (x2 − 0.5)2) for all x = (x1,x2) ∈ D , and consider the

following parametric diffusion coefficient

a(x,y) = 3 +
√
3
∞¼
i=0

∞¼
j=0

√
ßi jæi j (x)yi j , (5.45)

where æ00 := 1, ß00 := 1/4, æi j and ßi j are defined in (3.18) for all i , j ∈ N (with � = 0.9), and

yi j ∈ [−1,1] are the images of uniformly distributed independent mean-zero random variables for

all i , j ∈ N0. Notice that
√
3 in (5.45) is the normalisation constant such that Var(

√
3yi j ) = 1; see

Example 3.3.2. We rewrite the sum in (5.45) in terms of a single index m in such a way that

2We also refer to [78, Section 2.7, p. 83] for a discussion about the well-posedness of the standard weak formulation
for the deterministic Poisson problem on the slit domain, in particular, in the case of homogeneous Dirichlet boundary
conditions.

78



5. ADAPTIVE ALGORITHMS DRIVEN BY HIERARCHICAL A POSTERIORI ERROR ESTIMATES

Algorithm 5.1v1

ÚX = 0.2, ÚP = 0.9 ÚX = 0.5, ÚP = 0.9 ÚX = 0.35, ÚP = 0.65

L 71 31 43
t (sec) 578 290 399
ÙL 1.4808e-03 1.4912e-03 1.4558e-03
NL 810,441 852,480 895,617
#TL 181,379 190,720 200,345
#PL 9 9 9
MPL

4 4 4

P� � = 36 (0 1) � = 16 (0 1) � = 21 (0 1)
(2 0) (2 0) (2 0)

� = 39 (0 0 1) � = 18 (0 0 1) � = 23 (0 0 1)
(1 1 0) (1 1 0)

� = 55 (0 0 0 1) � = 25 (0 0 0 1) � = 31 (1 0 1)
(1 0 1 0) (1 0 1 0) (1 1 0)
(3 0 0 0) (3 0 0 0)

� = 37 (0 0 0 1)
(3 0 0 0)

Table 5.3. The results of running Algorithm 5.1v1 with three sets of marking parameters for the model
problem in Section 5.4.4.

corresponding values ßm appear in descending order of magnitudes, i.e.,

a(x,y) = 3 +
√
3
∞¼

m=1

√
ßmæm(x)ym , x ∈ D , y ∈ È .

For the model problem described above, we run the two versions of Algorithm 5.1 using either

Criterion 5.1 or Criterion 5.2 with the initial coarse triangulation T0 depicted in Figure 5.11(a).

Aiming to understand the influence of both marking parameters ÚX and ÚP, we perform computa-

tions with three sets of Dörfler marking parameters: (i) ÚX = 0.2, ÚP = 0.9, (ii) ÚX = 0.5, ÚP = 0.9,

and (iii) ÚX = 0.35, ÚP = 0.65. The same stopping tolerance tol = 1.5e-3 was set in all computa-

tions. The results of these computations are presented in Tables 5.3 and 5.4, and in Figures 5.11

and 5.12.

Figure 5.11(b) shows the locally refined triangulation produced by Algorithm 5.1v1 with ÚX =

0.5, ÚP = 0.9 (case (ii)) when an intermediate tolerance was met. In Figure 5.11(c) and 5.11(d),

the mean and the variance of the computed SGFEM solution are plotted. As in previous experi-

ments (cf. Sections 5.4.2 and 5.4.3), we see that the algorithm performs effective adaptive mesh-

refinements in the areas where the mean of the solution is not sufficiently smooth. For the model

problem in this experiment, the strongest mesh-refinement occurs in the vicinity of the crack tip.

By looking at the results in Tables 5.3 and 5.4, we can see that among six computations car-
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Algorithm 5.1v2

ÚX = 0.2, ÚP = 0.9 ÚX = 0.5, ÚP = 0.9 ÚX = 0.35, ÚP = 0.65

L 66 30 41
t (sec) 323 289 223
ÙL 1.4997e-03 1.2802e-03 1.4254e-03
NL 638,370 1,042,365 671,307
#TL 85,961 140,124 104,258
#PL 15 15 13
MPL

4 4 4

P� � = 25 (0 1) � = 14 (0 1) � = 17 (0 1)
(2 0) (2 0) (2 0)

� = 28 (0 0 1) � = 16 (0 0 1) � = 20 (0 0 1)
(1 1 0) (1 1 0)

� = 44 (0 0 0 1) � = 23 (0 0 0 1) � = 28 (1 0 1)
(1 0 1 0) (1 0 1 0) (1 1 0)
(3 0 0 0) (3 0 0 0)

� = 60 (0 0 2 0) � = 30 (0 0 2 0) � = 34 (0 0 0 1)
(0 1 1 0) (0 1 1 0) (3 0 0 0)
(0 2 0 0) (0 2 0 0)
(1 0 0 1) (1 0 0 1) � = 41 (0 1 1 1)
(2 0 1 0) (2 0 1 0) (1 0 0 1)
(2 1 0 0) (2 1 0 0) (2 0 1 0)

(2 1 0 0)

Table 5.4. The results of running Algorithm 5.1v2 with three sets of marking parameters for the model
problem in Section 5.4.4.

ried out in this experiment, the best performance in terms of computational time was achieved

by Algorithm 5.1v2 with ÚX = 0.35, ÚP = 0.65 (case (iii)). In particular, it was about 44% faster

than Algorithm 5.1v1 with the same marking parameters. In agreement with the results of ex-

periments of Sections 5.4.2 and 5.4.3, Algorithm 5.1v2 produced less refined triangulations and

triggered polynomial enrichments earlier than Algorithm 5.1v1 in all three cases. Notice that

the advantages of using a smaller marking threshold ÚX are again more evident when running

Algorithm 5.1v2: final triangulations in cases (i) and (iii) (i.e., for ÚX = 0.2 and ÚX = 0.35) have

about twice less elements than the corresponding cases for Algorithm 5.1v1. In addition, in both

cases (i) and (ii), Algorithm 5.1v2 needed less iterations than Algorithm 5.1v1 to reach the set to-

lerance. Also, along with less computational time, Algorithm 5.1v2 produced final index sets PL

more developed than index sets generated by Algorithm 5.1v1 in all cases (15 versus 9 indices in

cases (i) and (ii) and 13 versus 9 in case (iii)). These conclusions are in agreement with numerical

results for the parametric problem with spatially singular solution of Section 5.4.3, and they con-

firm that in terms of efficiency, Algorithm 5.1v2 is more sensitive to over-refined triangulations

than Algorithm 5.1v1.
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Figure 5.12. Total and local error estimates at each step of Algorithms 5.1v1 and 5.1v2 for the model
problem in Section 5.4.3.

Figure 5.12 show the decay of the computed energy error estimates for all computations. For

both versions and all sets of parameters, initially, the algorithm performs mesh-refinements to
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Figure 5.13. The effectivity indices for the SGFEM solutions of the model problem in Section 5.4.4 com-
puted by Algorithms 5.1v1 and 5.1v2 with ÚX = 0.5, ÚP = 0.9 (case (ii), left) and ÚX = 0.35, ÚP = 0.65
(case (iii), right). The energy norm of the associated reference solution is ‖uref ‖B = 1.639745e-01.

take account the source of error due to the spatial singularity near the crack tip. Then, a first

parametric enrichment, which yields a very small error reduction, in turn enforces a second en-

richment after few iterations. Note that the value of ÚP = 0.9, as in cases (i) and (ii), was not

eventually large enough to mark more indices, hence yielding larger error reductions. We see

that Algorithms 5.1v2 converges faster than Algorithms 5.1v1 during mesh-refinement steps in

all three cases; this has been already observed in numerical experiments of previous sections and

it is due to the use of Criterion 5.2. On the other hand, the overall decay rate obtained for total

error estimates Ù�, in all cases, is about O(N−0.4). Notice that this rate is closer to the optimal

rate (of O(N−1/2)) than the rates achieved by both Algorithms 5.1v1 and 5.1v2 in the numerical

experiments of Sections 5.4.2 and 5.4.3.

Finally, focusing on cases (ii) and (iii), we compute the effectivity indices à� defined in (5.43).

In this experiment, we employ a reference Galerkin solution uref computed over the triangulation

Tref being the uniform refinement of TL produced by Algorithm 5.1v1 in case (iii) and using the

reference index set Pref to be equal to the index set PL generated by Algorithm 5.1v2 in case (ii).

The resulting effectivity indices are plotted in Figure 5.13. As in experiments of previous Sec-

tions 5.4.2 and 5.4.3, the effectivity indices are less than unity for all iterations; for this model

problem, however, they increase as iterations progress and tend to be close to 0.9.

The results of this experiment lead us to the same conclusions about the efficiency of Algo-

rithm 5.1v2 as previous experiments in Sections 5.4.2 and 5.4.3 did: provided that a sufficiently

small spatial marking parameter ÚX is selected (e.g., ÚX = 0.2 or Ú = 0.35), Criterion 5.2 enables
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the algorithm to reach the tolerance faster and the total error estimates decay with almost op-

timal rates during mesh-refinement steps. Interestingly, in this experiment, Algorithm 5.1v2 in

case (iii), i.e., with ÚP = 0.65, performed as well as the algorithm in case (i) where ÚP = 0.9. This

shows that, effectively, comparison of the versions of the algorithm is problem-dependent and

there is no a priori knowledge on the values of input marking parameters that yield ‘optimal’

results with respect to, for example, computational times and final number of elements.
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Chapter 6

Adaptive algorithms driven by two-level a posteri-
ori error estimates

The theoretical analysis of adaptive finite element algorithms has received a remarkable attention

for deterministic problems and, recently, also for model problems with parametric or uncertain

inputs. Unlike the design of efficient adaptive strategies, however, the convergence analysis of

adaptive algorithms for problems with random inputs is less developed. In this chapter, our goal

is twofold: introduce a novel a posteriori estimate for the energy error of solutions to parametric

PDEs and provide a rigorous convergence analysis of the associated adaptive SGFEM algorithms.

In the first part of this chapter, we introduce an energy error estimate composed of two-level

a posteriori error estimates for spatial approximations and hierarchical a posteriori error esti-

mates for parametric approximations. The resulting total estimate, that combines these two con-

tributions (see (6.5) below), has been recently introduced and analysed in [26]; the definition and

analysis of this new estimate are reported in Section 6.1. Building on the hierarchical framework

developed in [24, 29] and recalled in Section 5.1, the construction of this estimate for the energy

error estimation of model problem (4.5) is based on ideas from [100, 99, 62, 66] (see also [50, 32]

for earlier works in this direction). In particular, our first result is the proof of the efficiency and

reliability of the estimate (see Theorem 6.1). One of the key advantages of this a posteriori error

estimate is that it avoids computing the solution of linear systems when estimating the errors

coming from spatial approximations (while keeping the hierarchical structure of the estimate)

and thus speeds up the computation. That is, with reference to hierarchical estimate ÙXP defined

in (5.22), this new estimate does not require the solution of the linear system arising from problem

(5.20) which is instead needed for computing the contributing spatial estimator eYP ∈ VYP.

In the second part of the chapter, we focus on the convergence analysis of adaptive SGFEM
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algorithms driven by the proposed new error estimate (see Algorithm 6.1). This is taken from the

recent work [25]. The algorithm has four versions which employ four different marking criteria

that are combinations of the Dörfler and the maximum marking strategies (see Section 2.3.1). At

each step, all versions of the algorithm perform either solely mesh-refinement or solely polyno-

mial enrichment (cf. Algorithm 5.1). The central result in Theorem 6.2 shows that each proposed

version of the adaptive algorithm generates a sequence of Galerkin approximations such that the

associated sequence of energy error estimates converges to zero. Therefore, this result provides a

theoretical guarantee that, for any given positive tolerance, all versions of the algorithm stop after

a finite number of iterations. As an immediate consequence of Theorem 6.2, we show that, under

saturation assumption (5.14), the Galerkin approximations generated by the algorithms converge

to the true parametric solution (see Corollary 6.2). Further to that, in the case of Dörfler marking,

we prove linear convergence of the computed energy error estimates in Theorem 6.3.

The results of two numerical experiments are reported in Section 6.4. In the first experiment,

we compare the performance of the proposed algorithm with Algorithm 5.1 driven by hierarchical

error estimates whereas, in the second experiment, we compare the performance of the proposed

algorithm with respect to the computational cost associated with using different marking criteria.

6.1 Two-level error estimate

Let X := S10 (T ) be the first-order finite element space associated with a conforming triangulation

T of D ⊂ R2 and let X̂ := S10 (T̂ ) be the enriched space associated with the uniformly refined trian-

gulation T̂ obtained by NVB refinements (see Section 2.3.2). Let Y ⊂ H1
0 (D ) be the corresponding

first-order detail finite element space satisfying (5.3).

We introduce the following notation. Let NY := dim(Y) denote the dimension of Y . Let

N + :=N ◦(T̂ ) \N ◦(T ) = {z1, . . . ,zNY
} ⊂ N ◦(T̂ ) , (6.1)

be the set of NY interior vertices introduced by the uniform refinement of T , i.e., the set of mid-

points of the interior edges of T . We denote by BY := {è1, . . . ,èNY
} the basis of Y , i.e., for each

midpoint zj ∈ N +, èj ∈ BY is the corresponding piecewise linear function such that èj (zj ) = 1

and èj (x) = 0 for all x ∈ N (T̂ ) \ {zj }, j = 1, . . . ,NY (see Figure 5.1(b)). We also define the following

one-dimensional subspaces

Yj := span{èj } ∀ j = 1, . . . ,NY , (6.2)
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which yield the following decomposition, Y =
⊕NY

j=1 Yj . For later use, we note that there exists a

finite constant K ≥ 1 depending on T such that (see Remark 6.1.2)

#
{
èj ∈ BY : interior

(
supp(èj )∩ T

)
, ∅

}
≤ K ∀ T ∈ T . (6.3)

Furthermore, due to the tensor product structure of VYP (see (5.7)), each function v ∈ VYP can be

written as

v(x,y) =
¼
ß∈P

NY¼
j=1

vjß(x)Pß(y), x ∈ D , y ∈ È , (6.4)

where vjß ∈ Yj and Pß ∈ PP, for all ß ∈ P.

Hereafter, we will write . to denote ≤ up to some positive constant C and, given two quantities

a and b, we will write a ' b to abbreviate b . a. b.

6.1.1 Main result

Let uXP ∈ VXP be the Galerkin approximation satisfying (4.36) for a given finite index set P ⊂ I.

Let Q ⊂ I \P be the associated finite detail index set; this can be constructed, e.g., as in (5.35).

Consider the following quantity

ä2XP :=
¼
ß∈P

NY¼
j=1

|F (èjPß)− B(uXP,èjPß)|2
‖a1/20 ∇èj ‖2L2(D )

+
¼
Þ∈Q
‖e(Þ)XQ ‖2B0

, (6.5)

where èj ∈ BY and e
(Þ)
XQ are the individual estimators satisfying (5.27) for all Þ ∈ Q. Note that

èjPß ∈ VYP for all èj ∈ BY and all ß ∈ P.

Theorem 6.1. Let u ∈ V be the solution to problem (4.17), and let uXP ∈ VXP and ûXP ∈ V̂XP be two

Galerkin approximations satisfying (4.36) and (5.10), respectively. There exists a constant Cthm ≥ 1,

which depends only on the shape regularity of T and T̂ , the mesh-refinement rule, and the mean field

a0 in (4.8), such that äXP defined in (6.5) satisfies

Ý
K
ä2XP ≤ ‖ ûXP − uXP ‖2B ≤ ËCthm ä2XP , (6.6)

where Ý and Ë are the constants in (4.22) and K is the constant in (6.3). Furthermore, under saturation

assumption (5.14) with constant qsat ∈ [0,1), there holds

Ý
K
ä2XP ≤ ‖u − uXP ‖2B ≤

ËCthm

1− q2
sat

ä2XP . (6.7)

On the one hand, Theorem 6.1 shows that äXP is an efficient and reliable a posteriori estimate

for the energy norm of the error e = u−uXP (see (6.7)). On the other hand, recall that ‖ ûXP−uXP ‖B
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is the error reduction (in the energy norm) that would be achieved if the enhanced solution ûXP ∈
V̂XP were to be computed (see (5.13)). Hence, inequalities in (6.6) show that äXP also provides

an estimate for this error reduction. Moreover, we stress that Theorem 6.1 holds, indeed, for

any finite detail index set Q ⊂ I \ P and any conforming refinement T̂ of T (and corresponding

detail space Y); see, e.g., Figure 5.1(a) for the case of regular refinements. In addition, we also

emphasise that the proof applies for any spatial dimension, while we restrict ourselves to the

two-dimensional case D ⊂ R2 for ease of presentation. The proof of Theorem 6.1 is postponed to

Section 6.1.3.

The structure of the a posteriori error estimate äXP defined in (6.5) is similar to that of the

hierarchical estimate ÙXP. In fact, while the the parametric part of both estimates is the same (cf.

(5.22) and (6.5)), they only differ in the spatial contribution. Such contribution is adapted from

what in the literature is typically referred to as two-level error estimate; see, e.g., [100, 99, 62]. In

order to give a proper name to estimate äXP defined in (6.5) and distinguish it from hierarchical

estimate ÙXP defined in (5.22), in the reminder of the thesis, we keep the terminology for the

spatial contribution and refer to äXP as the two-level a posteriori error estimate.

Remark 6.1.1. The spatial contributing part of äXP defined in (6.5) includes:

• in the numerator, the entries of the residual of uXP, where the Galerkin data are computed with

respect to the enriching space VYP (cf. the right-hand side of (5.20));

• in the denominator, the diagonal entries of the spatial finite element matrix associated with the

detail space Y , since

‖a1/20 ∇èj ‖2L2(D ) =
∫
D
a0(x)∇èj (x) · ∇èj (x)dx ∀ j = 1, . . . ,NY .

Moreover, the denominator can be easily simplified. For every T ∈ T with diameter hT (see (2.8)),

let èj ∈ BY such that supp(èj ) ⊆é(T) (see (2.7)). Then, there holds

‖a1/20 ∇èj ‖2L2(D ) ' h−2T ‖èj ‖2L2(D ) ' 1,

where hidden constants depend only on the shape regularity of T̂ , the (local) mesh-refinement

rule, and the mean field a0 in (4.8). For instance, if a0 := 1, elementary calculations show that

‖a1/20 ∇èj ‖2L2(D ) = 4 in case T̂ is obtained by uniform NVB refinements.

Thus, the implementation of the spatial estimate contributing to äXP only requires the assembly of the

residual of the Galerkin solution uXP on VYP and no linear system needs to be solved.

87



6. ADAPTIVE ALGORITHMS DRIVEN BY TWO-LEVEL A POSTERIORI ERROR ESTIMATES

Remark 6.1.2. Note that in the two-dimensional case, the number NY = #N + of interior midpoints

introduced by the uniform refinement of T is equal to the number #E◦(T ) of interior edges of T , i.e.,

trivially, there exists a one-to-one map betweenN + and E◦(T ). In particular, it is easy to see that K = 3

in (6.3).

6.1.2 Auxiliary lemmas

In this section, we collect four auxiliary results which are required to prove Theorem 6.1. Let us

start with the following observation.

Lemma 6.1. For all v,w ∈ V , the following equality holds

B0(v,w) =
¼
ß∈I

∫
D
a0(x)∇vß(x) · ∇wß(x)dx ∀ vß,wß ∈ H1

0 (D ). (6.8)

In particular, it follows that

‖v ‖2B0
=

¼
ß∈I
‖a1/20 ∇vß ‖2L2(D ). (6.9)

Proof. Using the polynomial chaos expansion (4.30) for both v and w in V , we have

B0(v,w) =
¼
ß∈I

¼
Þ∈I

∫
È

∫
D
a0(x)∇vß(x) · ∇wÞ(x)Pß(y)PÞ(y)dxdá(y)

=
¼
ß∈I

¼
Þ∈I

∫
D
a0(x)∇vß(x) · ∇wÞ(x)dx

∫
È

Pß(y)PÞ(y)dá(y)︸                  ︷︷                  ︸
=(Pß,PÞ)á

.

Since polynomials {Pß}ß∈I are orthonormal in L2á(È ) with respect to inner product (·, ·)á, this proves

(6.8). Moreover, (6.9) follows by choosing w = v in (6.8).

Lemma 6.2. Consider a function v ∈ VYP and its representation (6.4). There holds:

K−1 ‖v ‖2B0
≤

¼
ß∈P

NY¼
j=1

‖a1/20 ∇vjß ‖2L2(D ) ≤ Cloc ‖v ‖2B0
, (6.10)

where the constant Cloc > 0 depends only on the shape regularity of T̂ , the (local) mesh-refinement rule,

and the mean field a0 in (4.8).

Proof. We divide the proof into three steps.

Step 1. Let T ∈ T and consider a function wj ∈ Yj , where Yj is defined in (6.2) for all j =
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1, . . . ,NY . Observe that∥∥∥∥∥∥a1/20 ∇
 NY¼
j=1

wj

∥∥∥∥∥∥
L2(T)

≤
NY¼
j=1

‖a1/20 ∇wj ‖L2(T) ≤
√
K

 NY¼
j=1

‖a1/20 ∇wj ‖2L2(T)
1/2 .

Hence, summing over all elements T ∈ T , we obtain∥∥∥∥∥∥a1/20 ∇
 NY¼
j=1

wj

∥∥∥∥∥∥
2

L2(D )

≤ K
¼
T∈T

NY¼
j=1

‖a1/20 ∇wj ‖2L2(T) = K
NY¼
j=1

‖a1/20 ∇wj ‖2L2(D ) . (6.11)

Step 2. We now prove the converse estimate of (6.11). For a function wY ∈ Y , which can be

represented as wY =
´NY

j=1wj with unique coefficients wj ∈ Yj , for all j = 1, . . . ,NY , notice that the

following two quantities

‖wY |T ‖Y ,1 :=
 NY¼
j=1

‖a1/20 ∇wj ‖2L2(T)
1/2 and ‖wY |T ‖Y ,2 :=

∥∥∥∥∥∥a1/20 ∇
 NY¼
j=1

wj

∥∥∥∥∥∥
L2(T)

,

where T ∈ T , define two norms on the subspace Y |T := {wY |T : wY ∈ Y}. For example, one trivially

has that ‖ÝwY |T ‖Y ,1 = Ý‖wY |T ‖Y ,1 for all Ý ∈ R. For some zY =
´NY

j=1 zj ∈ Y , there holds

‖wY |T + zY |T ‖Y ,1 ≤
( NY¼
j=1

‖a1/20 ∇(wj + zj )‖2L2(T)
)1/2

≤
( NY¼
j=1

‖a1/20 ∇wj ‖2L2(T) +
NY¼
j=1

‖a1/20 ∇zj ‖2L2(T)
)1/2

≤ ‖wY |T ‖Y ,1 + ‖zY |T ‖Y ,1.

Furthermore, note that ‖a1/20 ∇wj ‖L2(T) = 0 for all wj ∈ Yj implies wY |T = 0 and so ‖wY |T ‖Y ,1. Ana-

logous arguments hold for norm ‖ ·‖Y ,2. Due to equivalence of norms on finite-dimensional spaces

(see, e.g., [92, p. 32]), we then conclude that

NY¼
j=1

∥∥∥a1/20 ∇wj

∥∥∥2
L2(T)

'
∥∥∥∥∥∥a1/20 ∇

 NY¼
j=1

wj

∥∥∥∥∥∥
2

L2(T)

∀ wj ∈ Yj , j = 1, . . . ,NY , (6.12)

where the equivalence constants depend on the mean field a0 in (4.8), the shape regularity of T̂ ,

as well as on the type of the mesh-refinement rule (that affects the configuration of the local space

Y |T ). Summing over all elements T ∈ T in (6.12), we obtain, in particular, the following upper

bound
NY¼
j=1

‖a1/20 ∇wj ‖2L2(D ) ≤ Cloc

∥∥∥∥∥∥a1/20 ∇
 NY¼
j=1

wj

∥∥∥∥∥∥
2

L2(D )

∀ wj ∈ Yj , j = 1, . . . ,NY . (6.13)

Step 3. Let v ∈ VYP represented as in (6.4). From Lemma 6.1, it holds that

‖v ‖2B0

(6.9)
=

¼
ß∈P

∥∥∥∥∥∥a1/20 ∇
 NY¼
j=1

vjß

∥∥∥∥∥∥
2

L2(D )

,

89



6. ADAPTIVE ALGORITHMS DRIVEN BY TWO-LEVEL A POSTERIORI ERROR ESTIMATES

with vjß ∈ Yj for all ß ∈ P and j = 1, . . . ,NY . Then, the two-sides bound (6.10) follows using the

foregoing estimates (6.11) and (6.13) from Step 1 and Step 2, respectively.

To state the next lemma, we recall the nodal interpolation operator IT : C(D )→ X defined by

IT v(x) :=
NX¼
i=1

v(xi )ïi (x), x ∈ D , (6.14)

where xi ∈ N ◦(T ) and ïi ∈ X is the hat function associated with xi , i = 1, . . . ,NX . Note that IT v is

the unique function in S10 (T ) that has the same nodal values as v (see, e.g., [35, Section 3.3]). Now,

if VX̂P := X̂ ⊗PP denotes the enriched space spanned by functions of the form

vX̂P(x,y) =
¼
ß∈P

v̂ß(x)Pß(y) with unique coefficients v̂ß ∈ X̂, (6.15)

then we have that IT v̂ß ∈ X and we can represent a function v ∈ VXP as

vXP(x,y) =
¼
ß∈P

(IT v̂ß(x))Pß(y), x ∈ D , y ∈ È . (6.16)

Lemma 6.3. Let IT be the nodal interpolation operator (6.14). Let vX̂P ∈ VX̂P and vXP ∈ VXP be given

by (6.15) and (6.16), respectively. Then, we have the representation

vX̂P − vXP =
¼
ß∈P

NY¼
j=1

vjßPß ∈ VYP with vjß ∈ Yj for all ß ∈ P, (6.17)

and there holds

‖vX̂P − vXP ‖B0
≤ Cstb ‖vX̂P ‖B0

, (6.18)

where the constant Cstb > 0 depends only on the shape regularity of T̂ , the (local) mesh-refinement rule,

and the mean field a0 in (4.8).

Proof. The proof consists of two steps.

Step 1. Consider a function vX := IT vX̂ ∈ X where vX̂ ∈ X̂. Since X̂ = X ⊕ Y , there exist unique

wX ∈ X and wY ∈ Y such that the function vX̂ −vX ∈ X̂ can be represented as vX̂ −vX = wX +wY . Since

vX̂ and vX coincide on every vertex xT ∈ N (T ) of triangulation T , and functions of Y vanish on

xT , i.e., we have that 0 = (vX̂ − vX )(xT ) = wX (xT ) for all xT ∈ N (T ). Thus, wX = 0, and this implies

that vX̂ − vX ∈ Y . Moreover, using standard scaling arguments (see, e.g., [35]), we have that

‖a1/20 ∇(IT vX̂ )‖L2(T) . ‖a1/20 ∇vX̂ ‖L2(T) ∀ T ∈ T , ∀ vX̂ ∈ X̂,

where hidden constant depend only on the mean field a0 in (4.8) and the shape regularity of T̂ ,

as well as on the type of the mesh-refinement strategy (that affects the configuration of the local
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space Y |T ). Summing this estimate over all T ∈ T , we obtain

‖a1/20 ∇(IT vX̂ )‖L2(D ) . ‖a1/20 ∇vX̂ ‖L2(D ) ∀ vX̂ ∈ X̂. (6.19)

Step 2. Recall that vX̂P−vXP =
´

ß∈P(v̂ß−IT v̂ß)Pß with v̂ß ∈ X̂ and IT v̂ß ∈ X for all ß ∈ P (cf. (6.15)

and (6.16)). According to Step 1, we have that v̂ß −IT v̂ß ∈ Y and hence v̂ß −IT v̂ß =
´NY

j=1 vjß ∈ Y ,

with some vjß ∈ Yj , for all ß ∈ P. This proves (6.17). Moreover, representations (6.15) and (6.16)

yield

‖vXP ‖2B0

(6.9)
=

¼
ß∈P
‖a1/20 ∇(IT v̂ß)‖2L2(D )

(6.19)
.

¼
ß∈P
‖a1/20 ∇v̂ß ‖2L2(D )

(6.9)
= ‖vX̂P ‖2B0

.

The triangle inequality then proves (6.18).

For the last lemma, we introduce some further notation. Let GXP : V → VXP be the orthogonal

projection onto VXP with respect to B0(·, ·), i.e., for all w ∈ V , GXP satisfies

B0(w,vXP) = B0(GXPw,vXP) ∀ vXP ∈ VXP . (6.20)

Furthermore, for all ß ∈ P and all j = 1, . . . ,NY , let Gjß : V → Vjß be the orthogonal projection onto

the subspace Vjß := span{èjPß} for èj ∈ BY and Pß ∈ Pß, with respect to B0(·, ·), i.e., for all w ∈ V , Gjß
satisfies

B0(w,vPß) = B0(Gjßw,vPß) ∀ vPß ∈ Vjß . (6.21)

Lemma 6.4. For any vX̂P ∈ VX̂P, the following estimates hold

C−1Y ‖vX̂P ‖2B0
≤ ‖GXPvX̂P ‖2B0

+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0
≤ 2K ‖vX̂P ‖2B0

, (6.22)

where the constant CY ≥ 1 depends only on the shape regularity of T̂ , the (local) mesh-refinement rule,

and the mean field a0 in (4.8). Moreover, if GXPvX̂P = 0, the upper bound in (6.22) holds with constant

K (instead of 2K).

Proof. We divide the proof into two steps.

Step 1. Let us first prove the lower bound in (6.22). To this end, let vX̂P ∈ VX̂P and vXP ∈ VXP.
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From Lemma 6.3, we have that

‖vX̂P ‖2B0

(6.17)
= B0(vX̂P,vXP) +

¼
ß∈P

NY¼
j=1

B0(vX̂P,vjßPß)

= B0(GXPvX̂P,vXP) +
¼
ß∈P

NY¼
j=1

B0(GjßvX̂P,vjßPß)

≤
(
‖GXPvX̂P ‖2B0

+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0

)1/2(
‖vXP ‖2B0

+
¼
ß∈P

NY¼
j=1

‖vjßPß ‖2B0

)1/2
,

where the second equality follows by (6.20) and (6.21). We now find an upper bound for the

second term in brackets in the right-hand side of the inequality above. First, note that

‖vXP ‖B0
≤ ‖vX̂P ‖B0

+ ‖vX̂P − vXP ‖B0

(6.18)
≤ (1 +Cstb)‖vX̂P ‖B0

.

Second, the upper bound in (6.10) from Lemma 6.2 leads us to

¼
ß∈P

NY¼
j=1

‖vjßPß ‖2B0

(6.9)
=

¼
ß∈P

NY¼
j=1

‖a1/20 ∇vjß ‖2L2(D )

(6.10)
≤ Cloc

∥∥∥∥ ¼
ß∈P

NY¼
j=1

vjßPß
∥∥∥∥2
B0

(6.17)
= Cloc ‖vX̂P − vXP ‖2B0

(6.18)
≤ ClocC

2
stb ‖vX̂P ‖2B0

.

Combining the foregoing three estimates, we conclude that

‖vX̂P ‖2B0
≤ CY

(
‖GXPvX̂P ‖2B0

+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0

)
,

where

CY := (1 +Cstb)
2 + ClocC

2
stb ≥ 1 . (6.23)

Step 2. Let us now prove the upper bound in (6.22). One has

‖GXPvX̂P ‖2B0
+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0
= B0(GXPvX̂P, vX̂P) +

¼
ß∈P

NY¼
j=1

B0(GjßvX̂P, vX̂P)

= B0

(
GXPvX̂P +

¼
ß∈P

NY¼
j=1

GjßvX̂P, vX̂P
)

≤
∥∥∥∥GXPvX̂P +

¼
ß∈P

NY¼
j=1

GjßvX̂P
∥∥∥∥
B0

‖vX̂P ‖B0
,

(6.24)
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where the first equality holds due to (6.20) and (6.21). Now, firstly observe that∥∥∥∥GXPvX̂P +
¼
ß∈P

NY¼
j=1

GjßvX̂P
∥∥∥∥
B0

≤
√
2
(
‖GXPvX̂P ‖2B0

+
∥∥∥∥ ¼
ß∈P

NY¼
j=1

GjßvX̂P
∥∥∥∥2
B0

)1/2
. (6.25)

The above inequality easily follows by considering the square of its left-hand side, and then using

the Cauchy-Schwarz inequality and the fact that 2ab ≤ a2 + b2 for all a,b ∈ R. Next, notice that

GjßvX̂P = vjßPß ∈ Vjß for some vjß ∈ Yj and ß ∈ P (cf. (6.21)). Then,

∥∥∥∥ ¼
ß∈P

NY¼
j=1

GjßvX̂P
∥∥∥∥2
B0

=
∥∥∥∥ ¼
ß∈P

NY¼
j=1

vjßPß
∥∥∥∥2
B0

(6.10)
≤ K

¼
ß∈P

NY¼
j=1

‖a1/20 ∇vjß ‖2L2(D )
(6.9)
= K

¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0
.

(6.26)

Combining the previous three inequalities we have that

‖GXPvX̂P ‖2B0
+

¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0
≤
√
2
(
‖GXPvX̂P ‖2B0

+ K
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0

)1/2
‖vX̂P ‖B0

≤
√
2K

(
‖GXPvX̂P ‖2B0

+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0

)1/2
‖vX̂P ‖B0

,

which yields the upper bound in (6.22):(
‖GXPvX̂P ‖2B0

+
¼
ß∈P

NY¼
j=1

‖GjßvX̂P ‖2B0

)1/2
≤
√
2K ‖vX̂P ‖B0

.

This concludes the proof.

6.1.3 Proof of the efficiency and reliability of the two-level estimate

Let eX̂P ∈ VX̂P be the unique solution to the residual problem

B0(eX̂P,v) = F (v) − B(uXP,v) ∀ v ∈ VX̂P . (6.27)

It is easy to see that eX̂P, defined by (6.27), satisfies

B0(eX̂P,v) = B(uX̂P − uXP,v) ∀ v ∈ VX̂P ,

where uX̂P ∈ VX̂P is the unique Galerkin solution to the corresponding discrete formulation posed

on VX̂P (see (5.29)). Note that since P∩Q = ∅, the spaces VX̂P and VXQ are orthogonal with respect to

B0(·, ·) (recall that VYP ⊂ VX̂P and VXQ are orthogonal with respect to B0(·, ·), see (5.9)). Therefore,

from the observation above and (5.25), we can decompose the estimator êXP ∈ V̂XP defined by
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(5.17) as

êXP = eX̂P +
¼
Þ∈Q

e
(Þ)
XQ with ‖ êXP ‖2B0

= ‖eX̂P ‖2B0
+

¼
Þ∈Q
‖e(Þ)XQ ‖2B0

, (6.28)

where e
(Þ)
XQ are the individual estimators satisfying (5.27) for all Þ ∈ Q.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We divide the proof into two steps.

Step 1. Let eX̂P ∈ VX̂P be the unique solution to residual problem (6.27). Since VXP ⊂ VX̂P, we

deduce from (4.36) and (6.27) that

B0(eX̂P,v) = 0 ∀ v ∈ VXP .

Hence, GXPeX̂P = 0 (cf. (6.20)) and therefore, Lemma 6.4, proves that

C−1Y ‖eX̂P ‖2B0
≤

¼
ß∈P

NY¼
j=1

‖GjßeX̂P ‖2B0
≤ K ‖eX̂P ‖2B0

.

Since CY ,K ≥ 1, we use decomposition (6.28) to obtain the following estimates

C−1Y ‖ êXP ‖2B0
≤

¼
ß∈P

NY¼
j=1

‖GjßeX̂P ‖2B0
+

¼
Þ∈Q
‖e(Þ)XQ ‖2B0

≤ K ‖ êXP ‖2B0
. (6.29)

Step 2. The orthogonal projection Gjß onto the one-dimensional space Vjß (see (6.21)), satisfies

Gjßv =
B0(v,èjPß)

‖èjPß ‖2B0

èjPß ∀ v ∈ V , ∀ ß ∈ P .

Hence, we have that

‖GjßeX̂P ‖2B0
=
|B0(eX̂P,èjPß) |2
‖èjPß ‖2B0

(6.27)
=
|F (èjPß)− B(uXP,èjPß) |2

‖èjPß ‖2B0

(6.9)
=
|F (èjPß)− B(uXP,èjPß) |2

‖a1/20 ∇èj ‖2L2(D )
.

(6.30)

Using the definition of äXP given in (6.5), estimates (6.29) thus implies that

Ý
K
ä2XP

(6.29)
≤ Ý‖ êXP ‖2B0

(5.18)
≤ ‖ ûXP − uXP ‖2B

(5.18)
≤ Ë‖ êXP ‖2B0

(6.29)
≤ ËCY ä

2
XP .

This proves the two-sides bound (6.6) for the error reduction with Cthm = CY , where CY is defined

in (6.23). Furthermore, we also have that

Ý
K
ä2XP ≤ ‖ ûXP − uXP ‖2B

(5.13)
≤ ‖u − uXP ‖2B ,

which is the lower bound in (6.7). On the other hand, the upper bound in (6.7) immediately
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follows by saturation assumption (5.14).

6.2 Adaptive SGFEM algorithms

In this section, we describe an adaptive algorithm driven by the two-level error estimate äXP

defined in (6.5) for the energy error estimation of parametric model problem (4.5). Similarly to

Algorithm 5.1, the algorithm presented here is based on iterations of standard finite element loop

(2.13). Before describing the algorithm, we introduce the general notation that is used in the rest

of the chapter.

6.2.1 Local error contributions

For any edge E ∈ E◦(T ), there is a unique j ∈ {1, . . . ,NY } such that zj ∈ N + is the midpoint of E .

In turn, for each midpoint zj ∈ N +, there is an associated unique basis function èj ∈ BY (see

Remark 6.1.2). In what follows, we change the notation so that the spatial contribution of the

two-level estimate is indexed by midpoints z ∈ N + rather than by indices j ∈ {1, . . . ,NY }. That is,

we define the spatial error estimate contributing to two-level estimate (6.5) as

äYP(N +)2 :=
¼
z∈N +

äYP(z)
2 with äYP(z)

2 :=
¼
ß∈P

|F (èzPß)− B(uXP,èzPß) |2
‖a1/20 ∇èz ‖2L2(D )

, (6.31)

i.e., äYP(z) denotes the local spatial error estimate associated with the midpoint z ∈ N +. Likewise,

we define the parametric error estimate contributing to two-level estimate (6.5) as

äXQ(Q)
2 :=

¼
Þ∈Q

äXQ(Þ)
2 with äXQ(Þ) := ‖e(Þ)XQ ‖B0

. (6.32)

where äXQ(Þ) denotes the individual parametric error estimate associated with the index Þ ∈ Q.

The total two-level error estimate will be denoted by

ä2XP := äXP(N +,Q)2 := äYP(N +)2 + äXQ(Q)
2 . (6.33)

Furthermore, for any subset of midpoints M ⊆ N + and indices M ⊆ Q, the following notation

naturally follows:

äYP(M)2 :=
¼
z∈M

äYP(z)
2, äXQ(M)2 :=

¼
Þ∈M

äXQ(Þ)
2, and äXP(M,M)2 := äYP(M)2 + äXQ(M)2. (6.34)

Remark 6.2.1. Notation (6.31) for local spatial error estimates is not customary since the indexing is

done using midpoints instead of edges. We stress, however, that it is perfectly equivalent to consider
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midpoints instead of their associated edges as well as considering sets of marked midpointsM⊆N + (see

(6.34)) rather than sets of marked edgesM⊆ E(T ).

Remark 6.2.2. The local error estimate äXQ(Þ) in (6.32) coincides with ÙXQ(Þ) defined in (5.38), since,

as already noticed, the parametric parts of hierarchical estimate ÙXP and two-level estimate äXP are the

same. However, for consistency of notation, we change the definition of the single estimate ‖e(Þ)XQ ‖B0
,

Þ ∈ Q, using either the symbol Ù or ä according to the error estimate we refer to.

6.2.2 Schematic adaptive loop

In the same spirit of adaptive Algorithm 5.1, we now introduce an adaptive algorithm driven

by two-level estimates for parametric problem (4.5). We present the algorithm in a schematic

way (or abstract form) by minimising dependence on data and with no specification of working

subroutines. Hereafter, we use the iteration counter � ∈ N0 of the loop of the adaptive algorithm

to denote triangulations, index sets, Galerkin solutions, etc., associated with the �-th iteration of

the loop.

Let T0 be the underlying initial conforming coarse triangulation of the domain D and let P0

be the initial index set. For each � ∈ N0, iterations of the algorithm read as follows. The discrete

Galerkin approximation u� ∈ V� satisfying (4.17) is computed. The total two-level error estimate

ä� := ä
(�)
XP is assembled as in (6.33) by computing local spatial ä�(z) := ä

(�)
YP(z) and parametric

ä�(Þ) := ä
(�)
XQ(Þ) estimates for all z ∈ N +

� and Þ ∈ Q�. Here, Q� is the detail index set defined in

(5.35). A marking criterion returns two subsetsM� ⊆ N +
� and M� ⊆ Q� and finally the algorithm

sets P�+1 = P� ∪M� and T�+1 = REFINE(T�,M�), where T�+1 is obtained by local NVB refinements

with reference edges to be the longest edges of each element of T�.
The adaptive algorithm generates a sequence (T�)�∈N0

of adaptively refined triangulations and

a sequence (P�)�∈N0
of adaptively enriched index sets such that, for all � ∈ N0, there holds

X� ⊆ X�+1 ⊆ X̂� ⊂ H1
0 (D ) and PP�

⊆ PP�+1
⊆ P̂P�

⊆ P̂P�+1
⊂ L2á(È ) ,

where recall that P̂P�
= PP�

⊕PQ�
. Furthermore, the algorithm performs either a mesh-refinement

or a parametric enrichment at each iteration, and thus, for � ∈ N0, one of the inclusions X� ⊆ X�+1

or PP�
⊆ PP�+1

is strict (in other words, at each iteration, eitherM� or M� is empty). Therefore, we

have V� ⊂ V�+1 as well as V̂� ⊂ V̂�+1. In particular, the enrichment type depends on the marking

criterion used (this is specified subsequently). The adaptive algorithm is listed in Algorithm 6.1.
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Schematic adaptive SGFEM algorithm

Input: triangulation T0, index set P0;
Set � = 0;

(i) Compute the discrete approximation u� ∈ V�;
(ii) Assemble the total error estimate ä� by computing ä�(z) and ä�(Þ) for all z ∈ N +

� and all Þ ∈ Q�;

(iii) Use a marking criterion to select a subsetM� ⊆N +
� and a subset M� ⊆ Q�;

(iv) Set P�+1 := P� ∪M� and T�+1 = REFINE(T�,M�);

(v) Increase the counter � 7→ �+1 and go back to (i).

Output: sequence of triangulations T�, index sets P�, Galerkin solutions u�, and error estimates ä�.

Algorithm 6.1. Schematic adaptive SGFEM algorithm driven by two-level error estimates for parametric
problem (4.5).

Note that after step (ii), a stopping criterion is used, in practice, to terminate the algorithm (cf.

Algorithm 5.1).

6.2.3 Estimates of the error reduction

Let us emphasise that the analysis of the two-level error estimate made in Section 6.1 proves

a more general result than error reduction (6.6) for the pair of Galerkin solutions u� ∈ V� and

û� ∈ V̂�. The proof of Theorem 6.1 essentially relies on the stable subspace decompositions

X̂� = X� ⊕ Y� = X� ⊕
 ⊕
z∈N +

�

span{èz ,�}
 ,

P̂P = PP�
⊕ PQ�

= PP�
⊕

⊕
Þ∈Q�

span{PÞ,�}
 .

In particular, let T�+1 be the refined triangulation returned by the REFINE subroutine for a given

set of marked midpointsM� ⊆ N +
� . Consider a midpoint z ∈ R� ⊆ N +

� , where R� ⊇M� is the set

of refined midpoints given by R� = N ◦�+1 ∩N +
� = N ◦�+1 \ N ◦� , i.e., the set consisting of M� and all

extra midpoints that are marked by completion steps of the NVB refinements to keep the confor-

mity of T�+1 (see Figure 6.1). Let ïz ,�+1 ∈ X�+1 be the corresponding piecewise linear hat function

associated with z on the (locally) refined triangulation T�+1. Also, let ï̂z ,� ∈ X̂� be the correspon-

ding piecewise linear hat function associated with z on the (uniformly) refined triangulation T̂�.
The refinement made by NVB ensures that èz ,� = ïz ,�+1 = ï̂z ,�, and this, in turn, yields the stable
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T�

N ◦� = {◦}, N +
� = {•}

(a)

M� = {•}

(b)

T�+1

N ◦�+1 = {◦}

(c)

R� =N +
� ∩N ◦�+1

=N ◦�+1 \N ◦� = {•}
(d)

Figure 6.1. (a) Triangulation T� with interior vertices N ◦� (white dots) and midpoints N +
� of all interior

edges (green dots); (b) Set M� of marked midpoints (red dots); (c) Conforming triangulation T�+1 with
interior vertices N ◦�+1 (white dots); (d) Set of refined midpoints R� (blue dots) that are introduced by the
refinement.

decomposition

X�+1 = X� ⊕
⊕
z∈R�

span{ïz ,�+1}
 = X� ⊕

⊕
z∈R�

span{ï̂z ,�}
 .

We emphasise that this property does not hold for other mesh-refinement techniques which do

not lead, in general, to nested finite element spaces (see Remark 2.3.1). Therefore, the following

result shows how the spatial and parametric contributing part to the total two-level estimate ä�

can be used to control the error reduction due to adaptive enrichments of the components of the

approximation space V� = X� ⊗PP�
.

Corollary 6.1. Let Cthm ≥ 1 be the constant from Theorem 6.1. Let T̂� = REFINE(T�,N +
� ) be the uniform

triangulation obtained by NVB refinements. Analogously, suppose that T�+1 = REFINE(T�,M�) is the

locally refined triangulation obtained by NVB refinements for a subset of midpoints M� ⊆ N +
� . Also,

let P�+1 = P� ∪M� for a subset of indices M� ⊆ Q�. If u� ∈ V� and u�+1 ∈ V�+1 the are corresponding

Galerkin approximations, then there holds

Ý
K
ä�

(
R�,M�

)2 ≤ ‖u�+1 − u� ‖2B ≤ ËCthm ä�
(
R�,M�

)2
. (6.35)

6.2.4 Marking criteria

We now describe four different marking criteria, to be used in Step (iii) of Algorithm 6.1, that

specify the selection of the subsetsM� ⊆ N +
� and M� ⊆ Q� and, at the same time, determine the

type of enrichment of the �-th iteration of the adaptive loop. In particular, each criterion comes
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Marking criterion for adaptive SGFEM

Input: error estimates {ä�(z)}z∈N +
�

, {ä�(Þ)}Þ∈Q�
, ë > 0, and marking parameters ÚX ,ÚP ∈ (0,1].

Case (a): ä�(N +
� ) ≥ ëä�(Q�)

set M� := ∅;
findM� ⊆N +

� with minimal cardinality such that ä�(M�) ≥ ÚXä�(N +
� ).

Case (b): ä�(N +
� ) < ëä�(Q�)

setM� := ∅;
find M� ⊆ Q� with minimal cardinality such that ä�(M�) ≥ ÚPä�(Q�).

Output: M� ⊆N +
� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 6.1. A marking criterion based on total error estimates for an adaptive SGFEM algorithm driven
by two-level estimates.

Marking criterion for adaptive SGFEM

Input: error estimates {ä�(z)}z∈N +
�

, {ä�(Þ)}Þ∈Q�
, ë > 0, and marking parameters ÚX ,ÚP ∈ (0,1].

find M̃� ⊆ Q� with minimal cardinality such that ä�(M̃�) ≥ ÚP ä�(Q�);

find M̃� ⊆N +
� with minimal cardinality such that ä�(M̃�) ≥ ÚX ä�(N +

� );

set R̃� :=N ◦�+1 ∩N +
� , whereN ◦�+1 is associated with T�+1 = REFINE(T�,M̃�).

Case (a): ä�(R̃�) ≥ ëä�(M̃�). Set M� = ∅ andM� = M̃�.
Case (b): ä�(R̃�) < ëä�(M̃�). Set M� = M̃� andM� = ∅.
Output: M� ⊆N +

� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 6.2. A marking criterion based on error reduction estimates for an adaptive SGFEM algorithm
driven by two-level estimates.

with three parameters: ë > 0 is a weight modulating the choice between mesh refinement and

parametric enrichment (with parametric enrichment being favoured for ë > 1) and ÚX , ÚP ∈ (0,1]
are the spatial and parametric threshold parameters controlling the marking of midpoints in N +

�

and the marking of indices in Q�, respectively.

The first criterion is similar to Criterion 5.1 used by adaptive Algorithm 5.1. That is, it en-

forces spatial refinement if the spatial error estimate is comparably large; otherwise, parametric

enrichment is chosen for the next iteration. Marked nodes (resp., marked indices) are obtained

via Dörfler marking (see Remark 6.2.3). This criterion is listed in Criterion 6.1.

Similarly to the first one, the second criterion is inspired by Criterion 5.2 used by adaptive

Algorithm 5.1. That is, it is based on the idea that the error estimate ä� based on the refined
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Marking criterion for adaptive SGFEM

Input: error estimates {ä�(z)}z∈N +
�

, {ä�(Þ)}Þ∈Q�
, ë > 0, and marking parameters ÚX ,ÚP ∈ (0,1].

Case (a): ä�(N +
� ) ≥ ëä�(Q�)

set M� := ∅;
findM� ⊆N +

� with minimal cardinality such that ä�(M�) ≥ ÚXä�(N +
� ).

Case (b): ä�(N +
� ) < ëä�(Q�)

setM� := ∅;
define M� := {Þ ∈ Q� : ä�(Þ) ≥ (1−ÚP) maxÞ∈Q�

ä�(Þ)}.
Output: M� ⊆N +

� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 6.3. A marking criterion based on total error estimates for an adaptive SGFEM algorithm driven
by two-level estimates.

Marking criterion for adaptive SGFEM

Input: error estimates {ä�(z)}z∈N +
�

, {ä�(Þ)}Þ∈Q�
, ë > 0, and marking parameters ÚX ,ÚP ∈ (0,1].

define M̃� := {Þ ∈ Q� : ä�(Þ) ≥ (1−ÚP) maxÞ∈Q�
ä�(Þ)};

find M̃� ⊆N +
� with minimal cardinality such that ä�(M̃�) ≥ ÚX ä�(N +

� );

set R̃� :=N ◦�+1 ∩N +
� , whereN ◦�+1 is associated with T�+1 = REFINE(T�,M̃�).

Case (a): ä�(R̃�) ≥ ëä�(M̃�). Set M� = ∅ andM� = M̃�.
Case (b): ä�(R̃�) < ëä�(M̃�). Set M� = M̃� andM� = ∅.
Output: M� ⊆N +

� and M� ⊆ Q�, where one of the two subsets is empty.

Criterion 6.4. A marking criterion based on error reduction estimates for an adaptive SGFEM algorithm
driven by two-level estimates.

midpoints (resp., added indices) provides information about the associated error reduction (see

Corollary 6.1). This criterion, which is listed in Criterion 6.2, enforces either spatial refinements

(if the error reduction for spatial mesh-refinement is comparably large) or parametric enrichments

(otherwise).

Criterion 6.3 is a modification of Criterion 6.1. It employs a maximum strategy (see Re-

mark 6.2.3) in the parameter domain, while using the Dörfler strategy in the physical domain.

As in Criterion 6.1, the enrichment type is determined by the dominant contributing error esti-

mate.

Finally, Criterion 6.4 is a modification of Criterion 6.2 in the same way as Criterion 6.3 is a

modification of Criterion 6.1. Namely, we employ the Dörfler strategy in the physical domain
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and use a maximum strategy in the parameter domain, while the refinement type for successive

iterations is determined by the dominant error reduction.

Remark 6.2.3 (Dörfler and maximum strategies). In all proposed Criteria 6.1–6.4, the selection of

marked midpointsM� ⊆N +
� for spatial refinements occur via the Dörfler strategy. However, the criteria

use a modified version of the Dörfler strategy described in Strategy 2.2 (cf. (2.15) with the condition

satisfied by marked midpoints in, e.g., Criterion 6.1). From the algorithmic point of view, numerical

experiments show that the Dörfler strategies as used in Criteria 6.1–6.4 effectively mark less ‘elements’

per iteration than those marked by Strategy 2.2.

For what concerns Criteria 6.3 and 6.4, the maximum strategy employed here is also a modification

of Strategy 2.1 (cf. (2.14) with the condition satisfied by marked indices in, e.g., Criterion 6.3). The

modification is only the input threshold (1−ÚP) for the marking strategy. In particular, notice that this

way, large values of marking parameter ÚP lead to large subsets of marked indices and vice versa.

Finally, notice that for ÚX = ÚP = 1, Criteria 6.1–6.4 return the same full subsets of marked mid-

pointsM� =N +
� and marked indices M� = Q�.

In the reminder of the chapter we will write Algorithm 6.1v1 to refer to the version of adap-

tive Algorithm 6.1 which employs Criterion 6.1 in its Step (iii); similarly, for other choices of

criteria. When we refer to Algorithm 6.1 without specifying the version type, this will mean that

the statement holds for any of the four proposed marking criteria.

6.3 Analysis of convergence of the adaptive algorithm

In this section, we report the main results about the convergence analysis of Algorithm 6.1 for

parametric model problem (4.5). In particular, we start by stating the plain convergence of the

generated sequence of two-level error estimates, which holds for the proposed four versions of

Algorithm 6.1. This result follows from the convergence analysis in [25]. Then, we prove that un-

der saturation assumption (5.14), the versions of the algorithm using the Dörfler strategy to mark

both spatial and parametric components of discretisation error in the corresponding marking cri-

terion (i.e., Algorithms 6.1v1 and 6.1v2) yield a sequence of global energy errors which converge

linearly.
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6.3.1 Convergence results

The first convergence result shows that Algorithm 6.1 ensures convergence of the computed se-

quence of two-level error estimates to zero.

Theorem 6.2 (Plain convergence). For any choice of marking parameters ÚX , ÚP, and ë, Algorithm 6.1

yields a convergent sequence of error estimates, i.e., ä�→ 0 as �→∞.

We emphasise that this result is valid independently of saturation assumption (5.14) and no ad-

ditional assumptions on the refinement level of the underlying sequence of triangulations is re-

quired (cf. [55]). For the proof of Theorem 6.2, see Sections 6 and 7 in [25].

Remark 6.3.1. Note that although proposed Criteria 6.1–6.4 seem to be the natural candidates in our

present setting, the proof of Theorem 6.2 allows for more general marking criteria than those proposed

in Section 6.2.1 (see Propositions 10 and 11 in [25]).

The following result is an immediate consequence of Theorem 6.2 and upper bound (6.7) from

Theorem 6.1. That is, trivially, the convergence of two-level estimates and their global reliability

(under saturation assumption (5.14)) ensure the converge of the sequence of energy errors to zero.

Corollary 6.2. Let u ∈ V be the solution to problem (4.17). Let (u�)�∈N0
be the sequence of Galerkin

solutions generated by Algorithm 6.1. Denote by (û�)�∈N0
the associated sequence of Galerkin solutions

satisfying (5.13) and suppose that saturation assumption (5.14) holds for each pair u� and û� (� ∈ N0).

Then, for any choice of marking parameters ÚX , ÚP, and ë, Algorithm 6.1 yields convergence of the

energy norm of the error, i.e., ‖u − u� ‖B → 0 as �→∞.

Under saturation assumption (5.14), Algorithms 6.1v1 and 6.1v2 allow for a stronger con-

vergence result than Corollary 6.2. The following theorem states the linear convergence of the

computed sequence of energy errors. The proof of this result is given in the next section.

Theorem 6.3 (Linear convergence). Let u ∈ V be the solution to problem (4.17). Let (u�)�∈N0
be

the sequence of Galerkin solutions generated by either Algorithm 6.1v1 or Algorithm 6.1v2 with ar-

bitrary ÚX ,ÚP ∈ (0,1] and ë > 0. Denote by (û�)�∈N0
the associated sequence of Galerkin solutions

satisfying (5.13) and suppose that saturation assumption (5.14) holds for each pair u� and û� (� ∈ N0).

Then, there exists a positive constant qlin < 1 such that

‖u − u�+1 ‖B ≤ qlin ‖u − u� ‖B ∀ � ∈ N0 .
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The constant qlin depends on the mean field a0 in (4.8), the constant Õ in (4.10), the saturation constant

qsat in (5.14), the coarse triangulation T0, and marking parameters ÚX , ÚP, and ë.

6.3.2 Linear convergence of the energy errors

In this section, we prove that saturation assumption (5.14) yields contraction of the energy errors

at each iteration of Algorithms 6.1v1 and 6.1v2. In the proof, we adapt the arguments of [96].

Firstly, let us prove, in the following lemma, the contraction of the energy errors for all those

iterations of the algorithms where spatial refinements are performed.

Lemma 6.5. Let u ∈ V be the solution to problem (4.17). Let � ∈ N0 and suppose that saturation

assumption (5.14) holds for two Galerkin solutions u� and û� satisfying (4.36) and (5.10), respectively.

Suppose that

ä�(Q�) ≤ Cë ä�(N +
� ) with Cë > 0 , (6.36)

and letM� ⊆N ◦�+1 ∩N +
� =R� satisfy

ä�(M�) ≥ Úä�(N +
� ) with Ú ∈ (0,1] . (6.37)

Then, for the enhanced Galerkin solution u�+1 ∈ X�+1 ⊗PP�
, there holds

‖u − u�+1 ‖2B ≤ (1− q)‖u − u� ‖2B ,

where q ∈ (0,1) depends on the mean field a0 in (4.8), the initial triangulation T0, the constant Õ in

(4.10), the saturation constant qsat in (5.14), Cë, and Ú.

Proof. Using the upper bound in (6.7), inequality (6.36), and marking strategy (6.37), we obtain

1− q2
sat

ËCthm
‖u − u� ‖2B

(6.7)
≤ ä�

(6.33)
= ä�(N +

� )
2 + ä�(Q�)

2
(6.36)
≤ (1 +C2

ë )ä�(N +
� )

2

(6.37)
≤ (1 +C2

ë )Ú
−2 ä�(M�)

2.

(6.38)

Hence, using Corollary 6.1 and the fact thatM� ⊆R�, we derive that

‖u − u�+1 ‖2B
(5.13)
= ‖u − u� ‖2B − ‖u�+1 − u� ‖2B

(6.35)
≤ ‖u − u� ‖2B −

Ý
K
ä�(R�,∅)2

≤ ‖u − u� ‖2B −
Ý
K
ä�(M�,∅)2

(6.38)
≤

1 − ÝÚ2(1− q2
sat)

ËCthm(1 +C2
ë )K︸               ︷︷               ︸

=:q

 ‖u − u� ‖2B .
This concludes the proof.
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Similarly to Lemma 6.5, the next result concerns the contraction of the energy errors for those

iterations of Algorithms 6.1v1 and 6.1v2 where parametric enrichments are performed. The proof

follows from the same arguments used in Lemma 6.5, so it is omitted.

Lemma 6.6. Let u ∈ V be the solution to problem (4.17). Let � ∈ N0 and suppose that the saturation

assumption (5.14) holds for two Galerkin solutions u� and û� satisfying (4.36) and (5.10), respectively.

Suppose that

ä�(N +
� ) ≤ Cë ä�(Q�) with Cë > 0 ,

and let M� ⊆ Q� ∩P�+1 be such that

Úä�(Q�) ≤ ä�(M�) with Ú ∈ (0,1] .

Then, for the enhanced Galerkin solution u�+1 ∈ X� ⊗PP�+1
, there holds

‖u − u�+1 ‖2B ≤ (1− q)‖u − u� ‖2B ,

where q ∈ (0,1) depends on the mean field a0 in (4.8), the initial triangulation T0, the constant Õ in

(4.10), the saturation constant qsat in (5.14), Cë, and Ú.

With the previous two lemmas, we are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. Firstly, consider Algorithm 6.1v1. If Case (a) of marking Criterion 6.1 oc-

curs, we can apply Lemma 6.5 with Cë = ë−1 and Ú = ÚX . Likewise, when Case (b) (of the same

marking criterion) occurs, we can use Lemma 6.6 with Cë = ë and Ú = ÚP. In both cases, this

proves the contraction of the energy error for a constant qlin ∈ (0,1), i.e., there holds ‖u−u�+1 ‖B ≤
qlin ‖u − u� ‖B for all � ∈ N0.

Let us now consider Algorithm 6.1v2. In Case (a) of marking Criterion 6.2 one has

ÚP ä�(Q�) ≤ ä�(M̃�) ≤ ë−1ä�(R̃�) ≤ ë−1ä�(N +
� ) .

Hence, Lemma 6.5 applies to this case with Cë = Ú−1P ë−1 and Ú = ÚX . Similarly, in Case (b) of

marking Criterion 6.2, one has

ÚX ä�(N +
� ) ≤ ä�(M̃�) ≤ ä�(R̃�) < ëä�(M̃�) ≤ ëä�(Q�) ,

and thus, in this case, Lemma 6.6 applies with Cë = Ú−1X ë and Ú = ÚP. In both cases, we therefore

obtain the contraction of the energy error, ‖u −u�+1 ‖B ≤ qlin ‖u −u� ‖B for all � ∈ N0, for a constant

qlin ∈ (0,1).
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6.4 Numerical experiments

In this section, we report the results of two numerical experiments performed for the parametric

model problem (4.5). In the first experiment, we compare the performance of adaptive Algo-

rithm 6.1 driven by two-level error estimates (see (6.5)) with Algorithm 5.1 driven by hierarchical

error estimates (see (5.22)). The second experiment is focused on comparing the performance

of Algorithms 6.1v1–6.1v4 for a certain range of marking parameters. The experiments were

performed using the toolbox Stochastic T-IFISS [28] (see Appendix B) on a desktop computer

equipped with an Intel Core CPU i5-4590@3.30GHz and 8.00GB of RAM.

6.4.1 Experiment 1 - Comparison with hierarchical estimates

Consider the parametric model problem, posed on the square domain D = (0,1)2, described in the

numerical experiment of Section 5.4.2. Our aim is to show the advantages in running adaptive

algorithms driven by two-level error estimates rather than hierarchical error estimates. To this

end, we focus the attention only on the versions of the algorithms which use similar marking

criteria, i.e., Algorithms 5.1v1 and 6.1v1 and Algorithms 5.1v2 and 6.1v2.

Recall from Remark 6.2.3 that Algorithm 6.1 (with its four possible marking Criteria 6.1–6.4)

employs a modified version of the Dörfler strategy that is used by Algorithm 5.1. Thus, in order

to make a meaningful comparison, we need to adapt Algorithms 6.1v1 and 6.1v2 appropriately.

That is, for this experiment, we consider the modification of Criterion 6.1 such that the subset of

marked midpointsM� ⊆ N +
� satisfies ä�(M�)2 ≥ ÚX ä�(N +

� )
2 for iterations � ∈ N0 (cf. (2.15)); the

same amendment is done for the subset M̃� ⊆N +
� in Criterion 6.2.

We use the initial coarse triangulation T0 depicted in Figure 5.3(a) and the initial index set

P0 defined in (5.42). Detail index sets Q� are constructed via (5.35) with MQ = 1. In addition, we

set ë = 1 in Criteria 6.1 and 6.2. We first run adaptive Algorithms 5.1v1 and 6.1v1 with marking

parameters ÚX = 0.5, ÚP = 0.8, and then adaptive Algorithms 5.1v2 and 6.1v2 with marking para-

meters ÚX = 0.25, ÚP = 0.8, for the prescribed tolerance tol = 1.0e-3; see Figures 5.3(c) and 5.3(d)

for a plot of the computed SGFEM mean and variance for this model problem.

Table 6.1 reports the results of the computations, including the same set of data as described

in Section 5.4.1. Notice that the last computed hierarchical estimate ÙL refers to Algorithms 5.1v1

and 5.1v2 while the last computed two-level estimate äL refers to Algorithms 6.1v1 and 6.1v2. For
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ÚX = 0.5, ÚP = 0.8 ÚX = 0.25, ÚP = 0.8

Algorithm 5.1v1 Algorithm 6.1v1 Algorithm 5.1v2 Algorithm 6.1v2

L 31 23 56 44
t (sec) 940 218 1066 362
ÙL (äL) 9.2984e-04 9.9701e-04 9.9668e-04 9.8483e-04
NL 2,649,625 1,310,575 2,103,342 1,555,772
#TL 213,208 105,688 124,648 92,294
#PL 25 25 34 34
MPL

7 7 8 8

Table 6.1. The results of running Algorithms 5.1v1 and 6.1v1 with ÚX = 0.5 and ÚP = 0.8 and Algo-
rithms 5.1v2 and 6.1v2 with ÚX = 0.25 and ÚP = 0.8 for the model problem in Section 6.4.1. The values
of the last hierarchical estimate ÙL refers to Algorithms 5.1v1 and 5.1v2 whereas the values of the last
two-level estimate äL refers to Algorithms 6.1v1 and 6.1v2.

both sets of marking parameters and versions of the algorithms, on the one hand, the final index

sets generated are the same, with #PL = 25 indices when running Algorithms 5.1v1 and 6.1v1

(ÚX = 0.5) and #PL = 34 indices when running Algorithms 5.1v2 and 6.1v2 (ÚX = 0.25). On the

other hand, the advantages of using two-level estimates for the estimation of the energy error is

evident. In fact, observe that Algorithm 6.1v1 produced a less refined final triangulation (with

nearly twice less number of elements #TL), it takes less iterations, and thus overall takes less

computational time (about 77% of time saved) than Algorithm 5.1v1 when ÚX = 0.5; similar

observations holds for the second versions of the algorithms in case of ÚX = 0.25 and ÚP = 0.8. One

of the reason for which Algorithms 6.1v1 and 6.1v2 are faster is certainly due to the computation

of the spatial two-level contribution to the total estimate ä� which speeds up the error estimation

steps at each iteration of the loop (see Remark 6.1.1).

Figure 6.2 shows the decay of hierarchical estimates Ù� (computed by Algorithms 5.1v1 and

5.1v2) and the decay of two-level estimates ä� (computed by Algorithms 6.1v1 and 6.1v2) for

the corresponding case of marking parameters. In addition, we also plot the associated reference

energy errors ‖uref − u(Ù)
� ‖B and ‖uref − u(ä)

� ‖B , where u
(Ù)
� and u(ä)

� denote the SGFEM solutions

computed by Algorithms 5.1v1 and 5.1v2 and Algorithms 6.1v1 and 6.1v2, respectively, whereas

uref is the same reference solution used in the numerical experiment of Section 5.4.2. We notice

that while both Ù� and ä� decay with the same overall rate in all computations, two-level esti-

mates ä� underestimate the energy error more than hierarchical estimates Ù� do. This can be also

observed by looking at Figure 6.3 which shows the computed effectivity indices à� (see (5.43)) for

the sequence of SGFEM solutions u
(Ù)
� and u(ä)

� ; overall, we see that two-level estimates ä� tend to
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Figure 6.2. Energy error estimates Ù� and ä�, and reference errors ‖uref − u(Ù)
� ‖B and ‖uref − u(ä)

� ‖B at each
step of Algorithms 5.1v1 and 6.1v1 with ÚX = 0.5, ÚP = 0.8 (left) and Algorithms 5.1v2 and 6.1v2 with
ÚX = 0.25, ÚP = 0.8 (right), for the model problem in Section 6.4.1. The energy norm of the associated
reference solution is ‖uref ‖B = 1.90117e-01.
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Figure 6.3. The effectivity indices for the SGFEM solutions of the model problem in Section 6.4.1 computed
by Algorithms 5.1v1 and 6.1v1 with ÚX = 0.5, ÚP = 0.8 (left) and Algorithms 5.1v2 and 6.1v2 with ÚX =
0.25, ÚP = 0.8 (right).

be close to 0.7 while hierarchical estimates Ù� tend to be close to 0.8 as iterations progress (see also

Figure 5.6). This is effectively the second reason for which Algorithms 6.1v1 and 6.1v2 achieve

the tolerance faster than Algorithms 5.1v1 and 5.1v2 (cf. the final number of degrees of freedom

NL in Table 6.1).

In conclusion, we see that for model problem (4.5), two-level a posteriori error estimates un-

derestimate the true energy error more than hierarchical estimates. On the one hand, running

Algorithm 5.1 provides a sequence of overall more accurate error estimates. The cost of this accu-

racy, however, is borne by the effort of solving extra linear systems for spatial contributions to the
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Algorithm 6.1 ÚP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v1 (ÚX = 0.8) 2,454,929 2,454,929 2,454,929 2,454,929 2,454,929 2,403,912 1,628,563 1,560,286 1,731,044

v2 (ÚX = 0.7) 3,157,697 3,157,697 3,157,697 3,157,697 3,157,697 2,146,095 1,973,460 1,966,801 1,488,993

v3 (ÚX = 0.7) 2,094,382 1,891,752 1,970,087 2,014,430 1,496,851 1,710,029 1,793,937 2,185,402 1,837,025

v4 (ÚX = 0.7) 2,146,095 1,952,007 2,000,424 1,966,801 1,460,210F 1,604,638 1,740,662 2,050,900 1,855,200

Table 6.2. Computational cost (6.39) of Algorithms 6.1v1–6.1v4 for the model problem in Section 6.4.2. For
each algorithm, we choose the spatial marking parameter ÚX ∈ Ê for which the smallest cost is incurred
(see Tables A.1–A.4 in Appendix A) and show the computational cost for all ÚP ∈ Ê. The smallest cost
for each algorithm is highlighted in boldface in the corresponding row. The boldface starred value is the
overall smallest cost, i.e., the smallest cost among all computations with 81 pairs (ÚX ,ÚP) ∈ Ê ×Ê for all
four algorithms.

total estimate at each iteration (see Section 5.3.1). On the other hand, Algorithm 6.1 (in particular,

in its versions using Criteria 6.1 and 6.2) is overall more efficient from the computational point of

view, as the use of two-level estimates enables the adaptive loop to run faster. At the same time,

this still ensures balanced Galerkin approximations and provide competitive results as much as

those from Algorithm 5.1.

6.4.2 Experiment 2 - Comparison of computational costs

In this second experiment, we consider the same parametric model problem, posed on the L-

shaped domain D = (−1,1)2\(−1,0]2, described in Section 5.4.3. We now focus the attention on the

performance of adaptive Algorithm 6.1 using the four marking criteria proposed in Section 6.2.4.

We compare Algorithms 6.1v1–6.1v4 with respect to a measure of the total amount of work

needed to reach a prescribed tolerance tol. Let L = L(tol) ∈ N denote the last iteration of the

algorithm (i.e., such that äL ≤ tol) and let N� be the total number of degrees of freedom at the �-th

iteration. We define the computational cost of Algorithm 6.1 as the cumulative number of degrees

of freedom for all iterations of the adaptive loop, i.e.,

cost = cost(L) :=
L¼

�=0

N� . (6.39)

In all computations, we use the initial index set P0 := {0}, whereas detail index sets are con-

structed via (5.35) with MQ = 1. In each marking Criteria 6.1–6.4, we set ë = 1. Then, we set
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Figure 6.4. Energy error estimates ä� computed at each iteration of Algorithm 6.1v1 with ÚX = 0.8 and
Algorithms 6.1v2–6.1.v4 with ÚX = 0.7, for ÚP ∈ {0.1,0.3,0.5,0.7,0.9,1}, for the model problem in Sec-
tion 6.4.2.

tol = 5e-03 and starting from the coarse triangulation T0 depicted in Figure 5.7(a), we run Al-

gorithms 6.1v1–6.1v4 with marking parameters ÚX ,ÚP ∈ Ê := {0.1,0.2, . . . ,0.9}; see Figures 5.7(c)

and 5.7(d) for a plot of the computed SGFEM mean and variance for this model problem.

The computational costs as well as the empirical convergence rates for each algorithm with 81

pairs (ÚX ,ÚP) ∈Ê×Ê of marking parameters are shown in Tables A.1–A.4 reported in Appendix A.

A snapshot of these results is presented in Table 6.2. The results show that the overall smallest

cost is achieved by Algorithm 6.1v4 for the values ÚX = 0.7 and ÚP = 0.5. These values of marking

parameters are the ones for which also Algorithm 6.1v3 yields the smallest cost among all pairs

(ÚX ,ÚP) ∈Ê×Ê. This similarity does not hold for Algorithms 6.1v1 and 6.1v2, for which the smal-

lest cost is achieved with ÚX = ÚP = 0.8 for Algorithm 6.1v1 and with ÚX = 0.7 and ÚP = 0.9 for

109



6. ADAPTIVE ALGORITHMS DRIVEN BY TWO-LEVEL A POSTERIORI ERROR ESTIMATES

102 103 104 105 106

10−2

10−1

O(N−0.34� )

degrees of freedom N�

er
ro

r
es

ti
m

at
es

Algorithm 6.1v1 (ÚX = 0.8, ÚP = 0.8)

ä�
ä�(N +

� )
ëä�(Q�)

102 103 104 105 106

10−2

10−1

O(N−0.34� )

degrees of freedom N�

er
ro

r
es

ti
m

at
es

Algorithm 6.1v2 (ÚX = 0.7, ÚP = 0.9)

ä�
ä�(R̃�)

ëä�(M̃�)

102 103 104 105 106

10−2

10−1

O(N−0.34� )

degrees of freedom N�

er
ro

r
es

ti
m

at
es

Algorithm 6.1v3 (ÚX = 0.7, ÚP = 0.5)

ä�
ä�(N +

� )
ëä�(Q�)

102 103 104 105 106

10−2

10−1

O(N−0.34� )

degrees of freedom N�

er
ro

r
es

ti
m

at
es

Algorithm 6.1v4 (ÚX = 0.7, ÚP = 0.5)

ä�
ä�(R̃�)

ëä�(M̃�)

Figure 6.5. Total and local error estimates computed at each iteration of Algorithms 6.1v1–6.1v4 with
the marking parameters ÚX ,ÚP ∈ Ê that yield smallest cost (see Table 6.2) for the model problem in Sec-
tion 6.4.2.

Algorithm 6.1v2. Thus, we conclude that, for the above values of marking parameters, the adap-

tive algorithms with refinements driven by dominant error reduction estimates (Algorithms 6.1v2

and 6.1v4) incur less computational costs than their counterparts driven by dominant contribu-

ting error estimates (Algorithms 6.1v1 and 6.1v3). On the other hand, the algorithms that employ

the maximum strategy for parametric refinement (Algorithms 6.1v3 and 6.1v4) incur less com-

putational costs than their counterparts that use Dörfler marking (Algorithms 6.1v1 and 6.1v2).

Overall, the smallest computational cost is incurred by the algorithm that combines these two

winning strategies, i.e., Algorithm 6.1v4.

Figure 6.4 shows the decay of the overall error estimate ä� versus the number of degrees of

freedom N� for different values of ÚP ∈ Ê, with ÚX = 0.8 in Algorithm 6.1v1 and ÚX = 0.7 in
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Figure 6.6. The effectivity indices à� for the SGFEM solutions at each iteration of Algorithms 6.1v1
and 6.1v2 (left) and Algorithms 6.1v3 and 6.1v4 (right) with the marking parameters ÚX ,ÚP ∈Ê that yield
smallest cost (see Table 6.2).

Algorithms 6.1v2–6.1v4. The aim of these plots is to show that the sequence of two-level energy

error estimates computed by the adaptive algorithm converges regardless of the marking criterion

and the value of ÚP used (see Theorem 6.2); similar decay rates are obtained for other values of

ÚX , ÚP ∈Ê (see Appendix A). Observe that ä� decays also in the case ÚP = 1 <Ê for all algorithms.

However, in this case, significantly more degrees of freedom are needed to reach the prescribed to-

lerance, compared to the cases of ÚP ∈Ê. This is because, for ÚP = 1, each parametric enrichment

is performed by augmenting the index set P� with the whole detail index set Q�.

In Figure 6.5, we plot the decay of all error estimates computed by the four algorithms with

the pairs of marking parameters yielding the corresponding smallest cost. As expected, we see

that the decay rates of ä� are similar in all four cases.

To conclude, we test the effectiveness of the error estimation strategy by computing the effec-

tivity indices à� defined in (5.43) (see Section 5.4.1). In particular, we choose Tref to be the uniform

refinement of the mesh TL generated by Algorithm 6.1v2 with ÚP = 0.5 (i.e., one of the final trian-

gulations with the largest number of elements) and Pref to be the final index set PL produced by

Algorithm 6.1v4 with ÚP = 0.8 (i.e., one of the largest index sets generated). Figure 6.6 shows the

effectivity indices à� for Algorithms 6.1v1 and 6.1v2 (left) and Algorithms 6.1v3 and 6.1v4 (right)

with the pairs of parameters (ÚX ,ÚP) for which the smallest cost is attained. As for hierarchical

estimates, and as observed in previous experiment in Section 6.4.1, we see that, in all cases, the

error is slightly underestimated as the effectivity indices vary in a range between 0.7 and 0.82

throughout all iterations.
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Chapter 7

Adaptive algorithms for goal-oriented error estima-
tion

When adaptive finite element algorithms are used in practical applications, the design of a pos-

teriori error estimation strategies should aim at estimating the error committed in approximating

the physical quantity considered useful in the given model. For example, in both Chapters 5

and 6, we focused on the a posteriori estimation of the energy norm of the global error under the

SGFEM setting for parametric elliptic problems. Here, associated local error estimates were used

to enhance the computed solution and adaptively drive the sequence of energy error estimates

to zero. However, in other practical applications, simulations may be oriented to the numerical

approximation of a specific (e.g., localised) feature of the solution, which is then often referred

to as quantity of interest, represented using a linear functional of the solution. In these cases, the

energy norm may give very little useful information about the simulation error, thus the error

estimation strategy should be designed appropriately.

Error estimation techniques, such as goal-oriented error estimations, have been therefore de-

veloped for the purpose of controlling the errors in the quantity of interest. For deterministic

PDEs, these techniques and the associated adaptive algorithms are very well studied (see, e.g.,

[21, 109, 22, 74, 11] for the a posteriori error estimation and [95, 20, 81, 67] for a rigorous conver-

gence analysis of adaptive algorithms), whereas less work has been done for PDEs with parametric

or uncertain inputs (see, e.g., [90, 37, 3, 57, 36]). In this chapter, our main aim is then to design an

adaptive SGFEM algorithm for accurate approximation of moments of a quantity of interest Q(u).

Here, u is the solution to parametric model problem (4.5) and Q is a linear functional of u. In

particular, we are interested in estimating and controlling the expected error in the quantity of

interest, i.e., E[Q(u−uXP)], where uXP is the SGFEM approximation satisfying the associated weak
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problem (4.36). This enables us to use the ideas of goal-oriented adaptivity, where the aim is to

control the error in the goal functional G (u) := E[Q(u(·,y))] rather than in the energy norm.

In what follows, we introduce the goal-oriented error estimation strategy in Section 7.1 and

present the goal-oriented adaptive algorithm in Section 7.2. The effectiveness of the error estima-

tion strategy and the performance of the proposed algorithm are tested numerically in Section 7.3

for three representative model problems with parametric coefficients and for three quantities of

interest including estimation of directional derivatives and approximation of pointwise values.

7.1 Goal-oriented a posteriori error estimation

We recall the setting of goal-oriented a posteriori error estimation via duality approach (see, e.g.,

[22, 74]). Firstly, we describe the idea in a pure abstract functional analytic setting of a well-

posed problem on a Hilbert space and, secondly, we show how this setting fits the framework of

SGFEM approximations for parametric model problem (4.5). The method that we describe will

also motivate the design of the goal-oriented adaptive algorithm that is introduced in Section 7.2.

7.1.1 Abstract setting

Let V be a Hilbert space and denote by V ′ its dual space. Let B : V × V → R be a continuous,

symmetric, and coercive bilinear form with associated (energy) norm ‖ ·‖B := B(·, ·)1/2. Given two

continuous linear functionals F ,G ∈ V ′, our aim is to approximate G (u), where u ∈ V is the unique

solution to the primal problem:

B(u,v) = F (v) ∀ v ∈ V . (7.1)

To this end, the standard duality approach (see, e.g., [22, 74, 11]) considers z ∈ V as the unique

solution to the dual problem:

B(v,z) = G (v) ∀ v ∈ V . (7.2)

Let V? be a finite dimensional subspace of V . Let u? ∈ V? and z? ∈ V? be the unique Galerkin

approximations of the solutions to the discrete primal and dual problem, respectively, i.e.,

B(u? ,v) = F (v) and B(v,z?) = G (v) ∀ v ∈ V? .
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Then, it follows that

|G (u)−G (u?) | = |B(u − u? ,z) | = |B(u − u? ,z − z?) | ≤ ‖u − u? ‖B ‖z − z? ‖B , (7.3)

where the second equality holds due to Galerkin orthogonality (cf. (5.2)). Assume that Þ? and Ø?

are reliable estimates for the energy errors ‖u − u? ‖B and ‖z − z? ‖B , respectively, i.e.,

‖u − u? ‖B . Þ? and ‖z − z? ‖B . Ø? . (7.4)

Hence, inequality (7.3) implies that the product Þ? Ø? is a reliable error estimate for the ap-

proximation error in the goal functional:

|G (u)−G (u?)| . Þ? Ø? . (7.5)

7.1.2 Extension to the parametric setting

Let us show how the abstract result on goal-oriented error estimation of Section 7.1.1 can be

formulated in the context of SGFEM discretisations for parametric model problem (4.5).

Let u ∈ L2á(È ;H1
0 (D )) be the unique primal solution to primal problem (4.17). Given g ∈ H−1(D ),

consider the quantity of interest

Q(u(·,y)) :=
∫
D
g(x)u(x,y)dx ∀ y ∈ È . (7.6)

We are interested in approximating the goal functional G ∈ L2á(È ;H−1(D )) defined as the mean of

the quantity of interest, i.e.,

G (v) := E[Q(v(·,y))] =
∫
È

∫
D
g(x)v(x,y)dxdá(y) ∀ v ∈ L2á(È ;H1

0 (D )) . (7.7)

Now, let z ∈ L2á(È ;H1
0 (D )) be the unique dual solution to the dual problem

B(v,z) = G (v) ∀ v ∈ L2á(È ;H1
0 (D )) . (7.8)

Consider the finite-dimensional subspace VXP ⊂ V ' L2á(È ;H
1
0 (D )) defined in (4.35) (with V de-

fined in (4.23)) and let uXP ∈ VXP be the primal Galerkin approximation satisfying discrete prob-

lem (4.36). Then, let zXP ∈ VXP be the dual Galerkin approximation satisfying

B(v,zXP) = G (v) ∀ v ∈ VXP . (7.9)

Recall that the two-level error estimate äXP defined in (6.5) provides an efficient and relia-

ble estimate for the energy error in the Galerkin approximation of primal solution u (see Theo-

rem 6.1). Analogously, let ØXP be the corresponding two-level estimate defined as in (6.5) for the
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energy error in the Galerkin approximation of dual solution z ∈ V (see Remark 7.1.1 below). It

follows from (6.7) that

‖u − uXP ‖B . äXP and ‖z − zXP ‖B . ØXP . (7.10)

From the abstract result in Section 7.1.1 (see (7.3)–(7.5)), we therefore conclude that the error

in approximating G (u) can be controlled by the product of the two energy error estimates äXP

and ØXP, i.e.,

|G (u)−G (uXP) | ≤ ‖u − uXP ‖B ‖z − zXP ‖B . äXPØXP . (7.11)

Remark 7.1.1. Note that we define the two-level error estimate ØXP satisfying (7.10) exactly as in (6.5)

since, in our parametric setting, the bilinear form B(·, ·) is symmetric (see (4.18)–(4.20)). In particular,

it follows that the differential operators of the PDEs associated with primal problem (4.17) and dual

problem (7.8), respectively, are both equal to −∇ · (a∇v) for all v ∈ V . This means that the left-hand side

matrices of linear systems arising from discrete problems (4.36) and (7.9) are the same (see (4.44)).

Remark 7.1.2. Recall that the hierarchical a posteriori error estimate ÙXP defined in (5.22) is an ef-

ficient and reliable estimate for the energy error in the Galerkin approximation of primal solution u

(see Proposition 5.1). Analogously, ÙXP is also an efficient and reliable estimator for the energy error

‖z − zXP ‖B of the associated dual problem (due to the symmetry of the bilinear form B(·, ·), see Re-

mark 7.1.1). However, in the reminder of the chapter, we only focus on goal-oriented estimation by

means of two-level error estimates.

7.2 A goal-oriented adaptive algorithm

In this section, we present an adaptive goal-oriented algorithm for the error estimation of goal

functional (7.7) for a quantity of interest of the solution to parametric model problem (4.5). In

the same spirit of Algorithms 5.1 and 6.1, the goal-oriented algorithm is built under the same

framework of adaptive FEM loop (2.13). In particular, at each iteration, the loop consists of (i)

two discrete problems (primal and dual) that have to be solved, (ii) two energy error estimations

for the computed primal and dual solutions (see (7.10)), and (iii) a marking and a refinement

strategy for the control of the error in the approximation of goal functional G defined in (7.7). In

what follows, we consider first-order spatial Galerkin approximations.
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7.2.1 Local error estimates in the energy norm

Let us introduce the notation for local error estimates in the energy norm for discrete dual prob-

lem (7.9).

Similarly to decomposition (6.33) for the energy error estimate äXP, we write the two-level

error estimate ØXP associated with dual Galerkin solution zXP ∈ VXP satisfying (7.9) as follows.

Recall that N + denotes the set of midpoints of the interior edges of the underlying triangulation

T of D (see (6.1)) and let Q be the finite detail index set (5.35). Then,

Ø2XP = Ø2XP(N +,Q) = ØYP(N +)2 + ØXQ(Q)
2 , (7.12)

with the spatial contribution defined by

ØYP(N +)2 :=
¼
z∈N +

ØYP(z)
2 with ØYP(z)

2 :=
¼
ß∈P

|G (èzPß) − B(zXP,èzPß) |2
‖a1/20 ∇èz ‖2L2(D )

, (7.13)

and the parametric contribution defined by

ØXQ(Q)
2 :=

¼
Þ∈Q

ØXQ(Þ)
2 with ØXQ(Þ) := ‖e(Þ)XQ ‖B0

, (7.14)

(cf. (6.31) and (6.32)). Two remarks are needed here. Firstly, notice that in the spatial contribution

ØYP(z) defined in (7.13) we write B(zXP,èzPß) instead of B(èzPß,zXP) due to the symmetry of the

bilinear form B(·, ·) (see (4.18)–(4.20)). Secondly, we see that the individual parametric estimator

e
(Þ)
XQ ∈ X ⊗PÞ defined in (7.14), Þ ∈ Q, satisfies the following problem

B0(e
(Þ)
XQ,v) = −B(zXP,v) ∀ v ∈ X ⊗PÞ . (7.15)

Equation (7.15) is the discrete problem, analogous to (5.27) (see Remark 5.2.1), arising from the

residual error equation associated to the dual problem, i.e.,

B(z − zXP,v) = G (v)− B(zXP,v) ∀ v ∈ V , (7.16)

(cf. (5.1)). Notice that in writing (7.15) and (7.16), we are exploiting again the symmetry of the

bilinear form B(·, ·).

7.2.2 Marking strategy

In order to compute a more accurate Galerkin solution (and, hence, to reduce the error in the

quantity of interest), an enriched approximation space has to be constructed. As for Algorithms 5.1

and 6.1, in the algorithm presented below, the approximation space is enriched at each iteration
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T

(a)

Mu = {z1,z2,z3}
Mz = {z4,z5,z6,z7}

z1

z2

z3

z4 z5

z6
z7

(b)

M? :=Mu , M? :=Mz

M :=M? ∪ {z4,z5,z6} = {•}

T̃

(c)

Figure 7.1. Goal-oriented marking strategy on a given triangulation T . (a) Let Mu = {z1,z2,z3} ⊆ N +

(blue midpoints) andMz = {z4,z5,z6,z7} ⊆ N + (red midpoints). Suppose that midpoints inMu are sorted
according to associated estimates äYP(zi ), i = 1,2,3, with descendent magnitude, i.e., äYP(z1) ≥ äYP(z2) ≥
äYP(z3); similarly for midpoints in Mz ; (b) Then, M? := Mu (hence M? := Mz) and M is given by the
union ofM? and the #M? = 3 midpoints ofM? associated with largest estimates (i.e., z4, z5, and z6); (c)
The refined triangulation T̃ obtained by the introduction of marked midpoints (orange dots in (b)).

of the adaptive loop either by performing a local refinement of T or by adding new indices to the

index set P. In the former case, the refinement is guided by a setM⊆N + of marked midpoints,

whereas in the latter case, a set M ⊆ Q of marked indices is added to P.

Let us focus on the case of spatial marking of midpoints of N +. We use the Dörfler marking

strategy (see Strategy 2.2) for the two sets {äYP(z)}z∈N + and {ØYP(z)}z∈N + of spatial error estimates

(see (6.31) and (7.13)) in order to identify two independent sets of marked midpoints associa-

ted with primal and dual problem (4.36) and (7.9), respectively. Specifically, given the marking

parameter ÚX ∈ (0,1], we build two subsets Mu ,Mz ⊆ N + with minimal cardinality satisfying,

respectively,

äYP(Mu)2 :=
¼
z∈Mu

äYP(z)
2 ≥ ÚX äYP(N +)2 and ØYP(Mz)2 :=

¼
z∈Mz

ØYP(z)
2 ≥ ÚX ØYP(N +)2,

where äYP(N +) is defined in (6.31) and ØYP(N +) is defined in (7.13). The set Mu (resp. Mz)

satisfying the condition above is returned by a MARK subroutine with ÚX and {äYP(z)}z∈N + (resp.

{ØYP(z)}z∈N +) as inputs (cf. (5.41)). Then, in order to combine the two sets Mu and Mz , the

goal-oriented adaptive algorithm employs the marking strategy adopted in [67]. Comparing the

cardinality ofMu and the cardinality ofMz , we define

M? :=Mu and M? :=Mz if #Mu ≤ #Mz ,

M? :=Mz and M? :=Mu otherwise.
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Marking criterion for goal-oriented adaptive SGFEM

Input: error estimates {äYP(z)}z∈N + , {äXQ(Þ)}Þ∈Q for the primal problem; error estimates {ØYP(z)}z∈N + ,
{ØXQ(Þ)}Þ∈Q for the dual problem; marking parameters ÚX ,ÚP ∈ (0,1].
DO

setMu := MARK
(
{äYP(z)}z∈N + , ÚX

)
andMz := MARK

(
{ØYP(z)}z∈N + , ÚX

)
;

set Mu := MARK
(
{äXQ(Þ)}Þ∈Q, ÚP

)
and Mz := MARK

(
{ØXQ(Þ)}Þ∈Q, ÚP

)
;

IF #Mu ≤ #Mz

setM? :=Mu andM? :=Mz ;

ELSE

setM? :=Mz andM? :=Mu ;

END

IF #Mu ≤ #Mz

set M? :=Mu and M? :=Mz ;

ELSE

set M? :=Mz and M? :=Mu ;

END

setM :=M? ∪M, whereM is the set of #M? midpoints ofM? with largest error estimates;

set M :=M? ∪M, where M is the set of #M? indices of M? with largest error estimates;

define R := Ñ ◦ ∩N +, where Ñ ◦ is associated with T̃ := REFINE(T ,M).

END
Output: subsetM⊆N + of midpoints and subset M ⊆ Q of indices.

Criterion 7.1. A marking criterion for a goal-oriented adaptive SGFEM algorithm driven by two-level error
estimates.

Then we define a set M as the union of M? and those #M? midpoints z ∈ M? associated with

the largest error estimates. The set M ⊆ M? ∪M? ⊆ N + is the set of marked midpoints used

to guide local mesh-refinements in the goal-oriented adaptive algorithm. Notice that with this

construction there holds M? ⊆ M and #M ≤ Cmrk#M? , with Cmrk = 2; see Figure 7.1 for an

example of this strategy for spatial marking.

Analogously, in order to identify the set M ⊆ Q of marked indices to be added to the index

set P, we follow the same marking procedure as described above by replacingM, N +, z , äYP(z),

ØYP(z), and ÚX with M, Q, Þ, äXQ(Þ), ØXQ(Þ), and ÚP, respectively, (ÚP ∈ (0,1]).

Remark 7.2.1. There exist several possibilities for ‘combining’ the sets Mu and Mz into a single set
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that is used for refinement in a goal-oriented adaptive algorithm; see [95, 20, 81, 67]. For example,

for goal-oriented adaptivity in the non-parametric setting with marking of finite elements, [67] proves

that the strategies of [95, 20, 67] lead to convergence of adaptive goal-oriented algorithms with optimal

algebraic rates, while the strategy from [81] might not. In particular, the marking strategy proposed

in [67], which is the one described above for marking of midpoints, is a modification of the strategy

in [95], and it has been empirically shown that it is is more effective than the original strategy in [95]

with respect to the overall computational cost (see (6.39)).

The marking strategy described above for the marking of both midpoints and indices is listed

in marking Criterion 7.1.

7.2.3 Error reduction in the product of energy norms

Before describing the adaptive loop, let us now describe the idea behind the REFINE module of the

goal-oriented adaptive algorithm. The motivation relies on the fact that the algorithm employs

the product of energy errors ‖u − uXP ‖B ‖z − zXP ‖B to control the error in approximating G (u)

(see (7.11)).

Let ṼXP ⊃ VXP be an enrichment of VXP. The enrichment is based on either a triangulation T̃
obtained by mesh-refinement of T , i.e., ṼXP = X(T̃ ) ⊗ PP, or on a larger index set P̃, i.e., ṼXP =

X(T ) ⊗ PP̃. In particular, triangulation T̃ is obtained by local NVB refinements whereas P̃ is

obtained by adding extra indices to P. Let ũXP, z̃XP ∈ ṼXP denote the enhanced primal and dual

Galerkin solutions, respectively. According to (7.11), one has

|G (u) − G (ũXP) | ≤ ‖u − ũXP ‖B‖z − z̃XP ‖B .

We want to find the error reduction in the product of the energy norms obtained due to the

enrichment.

Similarly to (5.13), for enhanced solutions ũXP and z̃XP, there holds

‖u − ũXP ‖2B = ‖u − uXP ‖2B − ‖uXP − ũXP ‖2B and ‖z − z̃XP ‖2B = ‖z − zXP ‖2B − ‖zXP − z̃XP ‖2B ,

where the quantities appearing with minus on the right-hand sides of above equalities denote the

error reductions (in the energy norm) achieved if solutions ũXP and z̃XP are going to be computed
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for the primal and the dual problem, respectively. Hence,

‖u − ũXP ‖2B ‖z − z̃XP ‖2B = ‖u − uXP ‖2B ‖z − zXP ‖2B
−

(
‖u − uXP ‖2B ‖zXP − z̃XP ‖2B + ‖uXP − ũXP ‖2B ‖z − zXP ‖2B

− ‖uXP − ũXP ‖2B ‖zXP − z̃XP ‖2B
)
.

The equality above shows that the quantity in brackets, i.e.,

‖u − uXP ‖2B ‖zXP − z̃XP ‖2B + ‖uXP − ũXP ‖2B ‖z − zXP ‖2B
− ‖uXP − ũXP ‖2B ‖zXP − z̃XP ‖2B ,

(7.17)

provides the reduction in the product of energy errors that would be achieved due to enrichment

ṼXP of the approximation space VXP. Numerical experiments empirically show that the third term

contributing to (7.17), i.e., −‖uXP − ũXP ‖2B ‖zXP − z̃XP ‖2B , is normally much smaller (in absolute

value) compared to the sum of the first two terms in (7.17) and may thus be neglected. Therefore,

‖u − uXP ‖2B ‖zXP − z̃XP ‖2B + ‖uXP − ũXP ‖2B ‖z − zXP ‖2B , (7.18)

provides a good approximation to the true error reduction (7.17).

Now, recall that Theorem 6.1 provides computable estimates of the energy errors (see (6.7))

and of the energy error reductions (see (6.6)). We can use these results to bound each term

in (7.18), thus obtaining a computable numerical estimate of the reduction in the product of

energy errors. In particular, we define the following two quantities

â2X := ä2XP

 ¼
z∈N +

Ø2YP(z)

 + Ø2XP

 ¼
z∈N +

ä2YP(z)

 , (7.19)

â2P := ä2XP

¼
Þ∈M

Ø2XQ(Þ)

 + Ø2XP

¼
Þ∈M

ä2XQ(Þ)

 . (7.20)

For example, suppose that ṼXP is obtained by a mesh-refinement of VXP (i.e., by the introduction

in T of all refined midpoints R⊆N + by local NVB refinements), then

â2X ' ‖u − uXP ‖2B ‖zXP − z̃XP ‖2B + ‖uXP − ũXP ‖2B ‖z − zXP ‖2B .

Likewise, the reduction (7.18) due to polynomial enrichment (i.e., by adding the set M of marked

indices to P) is estimated by â2P defined in (7.20). Thus, by comparing these two estimates (âX and

âP), the adaptive algorithm chooses the enrichment of VXP (either mesh-refinement or polynomial

enrichment) that corresponds to the larger estimate of the associated error reduction.
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7.2.4 Goal-oriented adaptive loop

Let us now briefly describe the goal-oriented adaptive algorithm for numerical approximation of

the goal functional G (u) defined in (7.7).

Let � ∈ N0 denote the iteration counter of the loop. We use � to denote triangulations, index

sets, Galerkin solutions, etc., associated with the �-th iteration of the adaptive loop. In particular,

V� := X� ⊗ PP�
denotes the finite-dimensional subspace of V , u� ∈ V� and Ø� ∈ V� are the primal

and dual Galerkin solutions to (4.36) and (7.9), respectively, and ä� := ä
(�)
XP and Ø� := Ø

(�)
XP are the

associated total two-level error estimates (see (6.33) and (7.12)).

For each iteration of the loop, discrete primal problem (4.36) and dual problem (7.9) are solved

by the SOLVE subroutine,

u� = SOLVE(T�,P�,a, f ) and z� = SOLVE(T�,P�,a,g) ,

where f and g are the right-hand side data of the primal and the dual problem, respectively. Local

two-level spatial and parametric estimates of the error for the two problems are computed by the

ESTIMATE subroutine[
{äYP(z)}z∈N +

�
, {äXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
u�,T�,P�,Q�,a, f

)
,[

{ØYP(z)}z∈N +
�
, {ØXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
z�,T�,P�,Q�,a,g

)
,

where the detail index set Q� ⊂ I \ P� is constructed via (5.35). Total two-level estimates ä� and

Ø� for the primal and the dual problem are assembled using (6.33) and (7.12), respectively, and

the product ä� Ø� for the goal-oriented estimation of the error |G (u) − G (u�)| is thus obtained

(see (7.11)). If a prescribed tolerance tol is met, i.e., if ä� Ø� ≤ tol, then the adaptive process

stops. Otherwise, the algorithm employs marking Criterion 7.1 to select a subset M� ⊆ N +
� of

marked midpoints and a subset M� ⊆ Q of marked indices. The type of enrichment to pursue is

decided by comparing the error reduction estimates âX,� and âP,� defined in (7.19) and (7.20) for

mesh-refinements and parametric enrichments, respectively. If âX,� is dominant (i.e., âX,� ≥ âP,�)

a larger error reduction (in the product of the energy norms, see Section 7.2.3) is expected, and a

new triangulation is obtained via T�+1 := REFINE(T�,M�), with the REFINE subroutine implemen-

ting local NVB refinements where reference edges are the longest edges of each element; also, the

same index set is used on the next iteration, i.e., P�+1 = P�. If âP,� is dominant, then the algorithm

uses the same triangulation, i.e., T�+1 = T�, and the index set P� is enriched by adding the set of
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Goal-oriented adaptive SGFEM algorithm

Input: data a, f , g; triangulation T0, index set P0; marking parameters ÚX , ÚP; tolerance tol.
FOR � = 0,1,2, . . . DO

u� = SOLVE(T�,P�,a, f );

z� = SOLVE(T�,P�,a,g);[
{äYP(z)}z∈N +

�
, {äXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
u�,T�,P�,Q�,a, f

)
;[

{ØYP(z)}z∈N +
�
, {ØXQ(Þ)}Þ∈Q�

]
= ESTIMATE

(
z�,T�,P�,Q�,a,g

)
;

ä� =
(
äYP(T�)2 + äXQ(Q�)2

)1/2
;

Ø� =
(
ØYP(T�)2 + ØXQ(Q�)2

)1/2
;

IF ä� Ø� ≤ tol THEN BREAK; END

obtainM� ⊆N +
� and M� ⊆ Q� by using Criterion 7.1;

compute the error reduction estimates âX,� and âP,� (see (7.19) and (7.20));

IF âX,� ≥ âP,�

set T�+1 := REFINE(T�,M�) and P�+1 := P�;

ELSE

set T�+1 := T� and P�+1 := P� ∪M�.

END

END
Output: sequence (u�,Ø�) of primal and dual Galerkin solutions and estimates ä� Ø� of the error in
approximating G (u).

Algorithm 7.1. Goal-oriented adaptive SGFEM algorithm driven by the products of two-level error esti-
mates in the energy norm.

marked indices M�, i.e., P�+1 = P� ∪M�.

The goal-oriented adaptive algorithm described above is listed in Algorithm 7.1. Note that

similarly to Algorithms 5.1 and 6.1, Algorithm 7.1 returns a sequence of adaptively refined trian-

gulations (T�)�∈N0
associated with nested finite element spaces (X�)�∈N0

as well as a sequence of

adaptively enriched nested index sets (P�)�∈N0
.

7.3 Numerical experiments

In this section, we report the results of some numerical experiments that demonstrate the perfor-

mance of the goal-oriented adaptive Algorithm 7.1 for parametric model problem (4.5). All expe-
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riments were performed using the toolbox Stochastic T-IFISS [28] (see Appendix B) on a desktop

computer equipped with an Intel Core CPU i5-4590@3.30GHz and 8.00GB of RAM.

7.3.1 Setup of the experiments

We use the representations of f and g as introduced in [95] to define the corresponding functionals

F (v) and G (v) in discrete primal and dual problems, respectively (see (4.36) and (7.9)); see also [67,

Section 4]. Specifically, let fi ,gi ∈ L2(D ), i = 0,1,2, and set f := (f1, f2) and g := (g1,g2). Define

F (v) =
∫
È

∫
D
f0(x)v(x,y)dxdá(y) −

∫
È

∫
D
f (x) · ∇v(x,y)dxdá(y) ∀ v ∈ V , (7.21)

and

G (v) =
∫
È

∫
D
g0(x)v(x,y)dxdá(y) −

∫
È

∫
D
g(x) · ∇v(x,y)dxdá(y) ∀ v ∈ V . (7.22)

That is, for primal problem (4.36), representation (7.21) arise from considering right-hand side

sources of the form f := f0 + ∇ · f , where f0 ∈ H−1(D ) and ∇· : L2(D ) × L2(D ) → H−1(D ) is the

divergence operator with weak derivatives. Similarly, for dual problem (7.9), we write g := g0 +∇·
g; see [95]. The motivation behind these representations is to introduce different non-geometric

singularities in the primal and dual solutions. In the context of goal-oriented adaptivity, this

emphasises the need for separate marking to resolve singularities in both solutions in different

regions of the computational domain.

We run Algorithm 7.1 with initial index set (5.42) with only one active parameter. Detail in-

dex sets Q� are computed via (5.35). Let L = L(tol) ∈ N be the smallest integer such that äLØL ≤ tol,

with tol denoting a stopping tolerance. We will collect the same output data as listed in Sec-

tion 5.4.1 as well as the computational cost defined in (6.39). In order to test the effectiveness

of the goal-oriented error estimation, we compare the products ä� Ø�, � = 0, . . . ,L, with a reference

error |G (uref) − G (u�)|, where uref ∈ Vref := Xref ⊗ PPref
is an accurate primal solution. As in Sec-

tion 5.4.1, we compute uref by employing quadratic (second-order) finite element approximations

over a fine triangulation Tref (i.e., Xref := S20 (Tref)) and using a large index set Pref (both Tref and

Pref are to be specified in each experiment). Then, the effectivity indices for the goal-oriented

estimation are defined by:

î� :=
ä� Ø�

|G (uref)−G (u�) |
, � = 0, . . . ,L. (7.23)
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Figure 7.2. The mean fields of primal (left) and dual (right) Galerkin solutions for the model problem in
Section 7.3.2.
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Figure 7.3. Numerical experiment for the model problem in Section 7.3.2. (a) Initial triangulation T0 with
shaded triangles Tf and Tg ; (b)-(c) Triangulations generated by a standard adaptive SGFEM algorithm with
spatial refinements driven by either error estimates ä� or by error estimates Ø�; (d) Triangulation generated
by the goal-oriented adaptive Algorithm 7.1.

7.3.2 Experiment 1 - Estimation of directional derivatives on square domain

In the first experiment, we consider the parametric model problem (4.5) posed on the square do-

main D = (−1,1)2. Suppose that coefficient a(x,y) in (4.8) is a second-order stationary random field

with prescribed (constant) mean E[a] and covariance Cov[a] (see Example 3.2.1). In particular, we

assume that Cov[a] is the separable exponential covariance function given by

Cov[a](x,x′) = ã2exp

(
−|x1 − x

′
1|

�1
− |x2 − x

′
2|

�2

)
,

where x = (x1,x2),x′ = (x′1,x
′
2) ∈ D , ã denotes the standard deviation of the random field, and

�1, �2 > 0 are the correlation lengths (cf. (3.9)). Then we consider a Karhunen–Lòeve expansion of

the random field (see Section 3.3.1),

a(x,y) = E[a](x) + cã
∞¼

m=1

√
Ýmïm(x)ym , x ∈ D , y ∈ È , (7.24)
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ÚX = 0.5, ÚP = 0.9 ÚX = 0.25, ÚP = 0.9

MQ = 1 MQ = 2 MQ = 1 MQ = 2

L 20 19 36 34
t (sec) 190 250 309 343
cost 1,584,981 2,398,452 3,073,941 3,798,893
äLØL 6.9126e-06 5.3746e-06 6.0296e-06 6.3484e-06
NL 368,270 920,873 587,554 797,490
#TL 53,184 97,752 54,000 53,748
#PL 14 19 22 30
MPL

8 11 10 15

Table 7.1. The outputs obtained by running Algorithm 7.1 with ÚX = 0.5, ÚP = 0.9 (case (i)) and ÚX = 0.25,
ÚP = 0.9 (case (ii)) for the model problem in Section 7.3.2.

where {(Ým,ïm)}∞m=1 are the eigenpairs of the associated covariance operator Ca (see (3.11)), ym

are the images of pairwise uncorrelated mean-zero random variables, and the constant c > 0 is

chosen such that Var(c ym) = 1 for all m ∈ N. Recall that analytical expressions for Ým and ïm

exist in the one-dimensional case and, as a consequence, the formulas for rectangular domains

follow by tensorisation (see Example 3.3.1). In this experiment, we assume that ym are the images

of independent mean-zero random variables on Èm = [−1,1] with the following density

â(ym) = (2Ð(1)−1)−1
(

1√
2á

)
exp

(
−y

2
m

2

)
∀m ∈ N ,

i.e., the ‘truncated’ Gaussian density (4.27) (with constants b = s = 1) such that the corresponding

polynomials which are orthonormal with respect to inner product (·, ·)ám
(m ∈ N) are the Rys

polynomials (see Example 4.2.3). In this case, we have c ≈ 1.8534 in (7.24).

We test the performance of Algorithm 7.1 by considering a parametric version of Example 7.3

in [95]. Specifically, let f0 = g0 = 0, f = (çTf ,0), and g = (çTg ,0), where çTf and çTg denote the

characteristic functions of the following triangles

Tf := conv
(
{(−1,−1), (0,−1), (−1,0)}

)
and Tg := conv

(
{(1,1), (0,1), (1,0)}

)
,

respectively (see Figure 7.3(a)). Then, the functionals F and G in (7.21) and (7.22) read as

F (v) = −
∫
È

∫
Tf

�v
�x1

(x,y)dxdá(y) and G (v) = −
∫
È

∫
Tg

�v
�x1

(x,y)dxdá(y) ∀ v ∈ V .

Setting ã = 0.15, �1 = �2 = 2.0, and E[a](x) = 2 for all x ∈ D , we compare the performance

of Algorithm 7.1 for different input values of marking parameter ÚX as well as parameter MQ in

detail index set (5.35). More precisely, we consider two sets of marking parameters: (i) ÚX = 0.5,

ÚP = 0.9; (ii) ÚX = 0.25, ÚP = 0.9; in each case, we run Algorithm 7.1 with MQ = 1 and MQ = 2
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ÚX = 0.5, ÚP = 0.9

MQ = 1 MQ = 2

P� � = 10 (0 1) � = 8 (0 0 1)
(0 1 0)

� = 11 (0 0 1) � = 12 (0 0 0 0 1)
(0 0 0 1 0)

� = 14 (0 0 0 1) � = 14 (0 0 0 0 0 0 1)
(1 1 0 0) (0 0 0 0 0 1 0)
(2 0 0 0) (1 1 0 0 0 0 0)

(2 0 0 0 0 0 0)

� = 16 (0 0 0 0 1) � = 16 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 0)
(1 0 1 0 0 0 0 0 0)

� = 18 (0 0 0 0 0 1) � = 18 (0 0 0 0 0 0 0 0 0 0 1)
(1 0 1 0 0 0) (0 0 0 0 0 0 0 0 0 1 0)

(0 1 1 0 0 0 0 0 0 0 0)
� = 19 (0 0 0 0 0 0 1) (1 0 0 0 0 1 0 0 0 0 0)

(1 0 0 1 0 0 0) (1 0 0 0 1 0 0 0 0 0 0)
(1 0 0 1 0 0 0 0 0 0 0)

� = 20 (0 0 0 0 0 0 0 1)
(1 0 0 0 1 0 0 0)

Table 7.2. The parametric enrichments of the index set P obtained by running Algorithm 7.1 with ÚX = 0.5,
ÚP = 0.9 (case (i)) for the model problem in Section 7.3.2.
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Figure 7.4. Characteristics of the index sets P� at each iteration of Algorithm 7.1 for the model problem in
Section 7.3.2.

in (5.35). The same stopping tolerance is set to tol = 7e-6 in all four computations.

Figure 7.2 (left) shows the mean field of the primal Galerkin solution exhibiting a singularity

along the line connecting the points (−1,0) and (0,−1). Similarly, the mean field of the dual

Galerkin solution in Figure 7.2 (right) exhibits a singularity along the line connecting the points

(1,0) and (0,1).

Figure 7.3(a) shows the initial triangulation T0 used in this experiment. Figure 7.3(b) and 7.3(c)
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Figure 7.5. Error estimates ä�, Ø�, ä� Ø� and the reference error |G (uref) − G (u�)| at each iteration of Al-
gorithm 7.1 with ÚX = 0.5, ÚP = 0.9 (case (i)) for the model problem in Section 7.3.2. Here, G (uref) =
−3.180377e-03.
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Figure 7.6. Error estimates ä�, Ø�, ä� Ø� and the reference error |G (uref) − G (u�)| at each iteration of Al-
gorithm 7.1 with ÚX = 0.25, ÚP = 0.9 (case (ii)) for the model problem in Section 7.3.2. Here, G (uref) =
−3.180377e-03.

depict the refined triangulations generated by an adaptive SGFEM algorithm with spatial refine-

ments driven either solely by the estimates ä� for the error in the primal Galerkin solution or solely

by the estimates Ø� for the error in the dual Galerkin solution. Figure 7.3(d) shows the triangula-

tion produced by Algorithm 7.1. As expected, this triangulation simultaneously captures spatial

features of both primal and dual solutions.

In Table 7.1, we collect the final outputs of computations in cases (i) and (ii) for MQ = 1 and

MQ = 2, whereas Table 7.2 shows the index set enrichments in case (i). Recall that choosing larger
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Figure 7.7. The effectivity indices for the goal-oriented error estimates ä�Ø� at each iteration of Algo-
rithm 7.1 for the model problem in Section 7.3.2.

values of MQ in (5.35) leads to larger detail index sets, and thus, larger sets of marked indices,

at each iteration. As a result, for MQ = 2, more random variables are active in the final index set

and the total number of iterations is reduced (compare the values of L, #PL, and MPL
in Table 7.1).

This can be also observed by looking at Figure 7.4 that visualises the evolution of the index set in

cases (i) and (ii). Notice that, however, larger detail index sets yield larger computational times

due to more expensive computations of the parametric estimates (cf. the times in Table 7.1).

Figure 7.5 shows the convergence history of three error estimates (ä�, Ø�, and ä� Ø�) and the

reference error |G (uref)−G (u�)| in case (i) for both MQ = 1 and MQ = 2 (see the end of this subsection

for details on how the reference solution uref is computed). We observe that the estimates of the

error in approximating G (u) (i.e., the products ä� Ø�) decay with an overall rate of about O(N−0.55)
for both MQ = 1 and MQ = 2. We notice that choosing MQ = 2 has a ‘smoothing’ effect on the decay

of ä�Ø� (see Figure 7.5 (right)); this is due to larger index set enrichments in this case compared to

those in the case of MQ = 1 (see the evolution of P� in Table 7.2).

Analogously to Figure 7.5, in Figure 7.6, we plot three error estimates as well as the reference

error in the goal functional in case (ii). We observe that ä� Ø� decay with about the same overall

rate as in case (i), i.e., O(N−0.55). On the other hand, the ‘smoothing’ effect due to a larger MQ is

less evident in case (ii), compared to case (i). This is likely due to a smaller value of the (spatial)

marking parameter ÚX in case (ii), which provides a more balanced refinement of spatial and

parametric components of the generated Galerkin approximations (the marking parameter ÚP is

the same in both cases). Notice that in both Figures 7.5 and 7.6 the error estimates ä� and Ø�
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Figure 7.8. Initial triangulation T0 with shaded triangle Tg (left) and the triangulation generated by Algo-
rithm 7.1 for an intermediate tolerance (right) for the model problem in Section 7.3.3.

coincides due to the symmetry of the problem (cf. the primal and dual solutions in Figure 7.2).

Finally, for all cases considered in this experiment, we compute the effectivity indices (7.23)

as explained in Section 7.3.1. Here, the solution uref is computed using the triangulation Tref
obtained by a uniform refinement of TL from case (i) with MQ = 2 and a large index set Pref which

includes all indices generated in this experiment. The effectivity indices are plotted in Figure 7.7.

Overall, they oscillate within the interval (6,13) in all cases.

7.3.3 Experiment 2 - Estimation of directional derivatives on L-shaped domain

In this experiment, we consider the parametric model problem (4.5) posed on the L-shaped do-

main D = (−1,1)2 \ (−1,0]2 and we choose the random field (5.44) used in the experiment of

Section 5.4.2. In particular, we also assume here that the parameters ym in (5.44) are the images

of uniformly distributed independent mean-zero random variables on Èm = [−1,1] for all m ∈ N.

Similarly to previous experiment in Section 7.3.2, we choose a quantity of interest that involves

the average value of a directional derivative of the primal solution over a small region away from

the reentrant corner of the domain. More precisely, we set f0 = 1, f = (0,0), g0 = 0, and g = (çTg ,0),

where çTg denotes the characteristic function of the triangle

Tg := conv
(
{(1/2,−1), (1,−1), (1,−1/2)}

)
,

(see Figure 7.8 (left)), so that the functionals in (7.21) and (7.22) read as

F (v) =
∫
È

∫
D
v(x,y)dxdá(y) and G (v) = −

∫
È

∫
Tg

�v
�x1

(x,y)dxdá(y) ∀ v ∈ V .

Note that in this example, both the primal and dual solutions exhibit a geometric singularity

at the reentrant corner of the domain; see Figures 5.7(c) for a plot of the primal solution and
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Figure 7.9. The mean field (left) and the variance (right) of the dual Galerkin solution for the model
problem in Section 7.3.3.

Figure 7.9 (left) for a plot of the dual solution. In addition, notice that the dual solution exhibits

also a singularity along the line connecting the points (1/2,−1) and (1,−1/2). Such singularity is

due to a low regularity of the goal functional G .

Similarly to the experiment of Section 5.4.2, our first aim in this experiment is to show the

advantages of using adaptivity in both components of Galerkin approximations for adaptive Al-

gorithm 7.1 (cf. Figure 5.2). To this end, we consider the expansion coefficients in (5.44) with

ã = 2 (corresponding to a slow decay of the amplitudes Óm), A ≈ 0.547, and we choose MQ = 1

in (5.35). Starting with the coarse triangulation T0 depicted in Figure 7.8 (left) and setting the

tolerance to tol = 1e-05, we run Algorithm 7.1 for six different sets of marking parameters and

plot the error estimates ä� Ø� computed at each iteration; see Figure 7.10.

In the cases where only one component of the Galerkin approximation is enriched (i.e., either

ÚX = 0 or ÚP = 0 as in the first two sets of parameters in Figure 7.10), the error estimates ä� Ø�

quickly stagnate as iterations progress, and the set tolerance cannot be reached. If both compo-

nents are enriched but no adaptivity is used (i.e., ÚX = ÚP = 1, see the third set of parameters in

Figure 7.10), then the error estimates decay throughout all iterations. However, in this case, the

overall decay rate is slow and eventually deteriorates due to the number of degrees of freedom

growing very fast, in particular, during the iterations with parametric enrichments (see the filled

pentagon markers in Figure 7.10). The deterioration of the decay rate is also observed for both the

fourth and fifth sets of marking parameters in Figure 7.10, where adaptivity is only used for en-

hancing the spatial or the parametric component of approximations, respectively. The best rate is

achieved for the sixth set of marking parameters, ÚX = 0.2, ÚP = 0.8, where adaptivity is used for

both components of Galerkin approximations. Thus, in agreement with results of experiment in
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Figure 7.10. Error estimates ä� Ø� at each iteration of Algorithm 7.1 for different sets of marking parame-
ters in the numerical experiment of Section 7.3.3. Filled markers indicate iterations at which parametric
enrichments occur.

Section 5.4.2, we conclude that for the same level of accuracy, adaptive enrichments in both com-

ponents provide more balanced approximations with overall less degrees of freedom and lead to

faster convergence rates.

Let us now run Algorithm 7.1 with the following two sets of marking parameters: (i) ÚX = 0.3,

ÚP = 0.8; (ii) ÚX = 0.15, ÚP = 0.95. In each case, we consider the expansion coefficients in (5.44)

with slow (ã = 2) and fast (ã = 4) decay of the amplitudes Óm (in the latter case, fixing Õ = AØ(ã) =

0.9 results in A ≈ 0.832). In all computations, we choose MQ = 1 in (5.35) and set the tolerance to

tol = 1e-05.

Figure 7.8 (right) depicts an adaptively refined triangulation produced by Algorithm 7.1 in

case (i) for the problem with slow decay of the amplitude coefficients (similar triangulations were

obtained in other cases). Observe that the triangulation effectively captures spatial features of

primal and dual solutions. Indeed, it is refined in the vicinity of the reentrant corner and, similarly

to the experiment in Section 7.3.2, in the vicinity of points (1/2,−1) and (1,−1/2).
Table 7.3 collects the outputs of all computations. On the one hand, we observe that in case (i),

for both slow and fast decay of the amplitude coefficients, the algorithm took fewer iterations

compared to case (ii) (32 versus 57 for ã = 2 and 33 versus 57 for ã = 4) and reached the tolerance

faster (see the final times t in Table 7.3). On the other hand, due to a larger ÚX in case (i), the

algorithm produced more refined triangulations (see the values of #TL in Table 7.3). Also, we

observe that final index sets generated for the problem with slow decay (ã = 2) are larger than

those for the problem with fast decay (ã = 4) (20 indices versus 12 in case (i) and 29 indices
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ÚX = 0.3, ÚP = 0.8 ÚX = 0.15, ÚP = 0.95

ã = 2 ã = 4 ã = 2 ã = 4

L 32 33 57 57
t (sec) 323 367 506 485
cost 3,017,395 2,386,455 5,502,298 3,482,930
äLØL 8.4228e-06 8.2214e-06 9.3225e-06 9.6034e-06
NL 782,100 561,384 818,989 521,645
#TL 79,029 94,446 57,203 62,102
#PL 20 12 29 17
MPL

6 3 6 4

P� � = 11 (0 1) � = 8 (2 0) � = 14 (0 1) � = 10 (2 0)
(2 0) (2 0)

� = 18 (0 0 1) � = 14 (3 0) � = 25 (0 0 1) � = 20 (0 1)
(1 1 0) (1 1 0) (3 0)

(3 0 0)

� = 22 (0 0 0 1) � = 19 (0 1) � = 36 (0 0 0 1) � = 29 (1 1)
(1 0 1 0) (4 0) (0 2 0 0) (4 0)
(2 1 0 0) (1 0 1 0)
(3 0 0 0) � = 23 (1 1) (2 1 0 0) � = 39 (0 0 1)

(5 0) (4 0 0 0) (2 1 0)
� = 27 (0 0 0 0 1) (5 0 0)

(0 2 0 0 0) � = 45 (0 0 0 0 1)
(1 0 0 1 0) � = 28 (2 1) (0 1 1 0 0) � = 48 (1 0 1)
(2 0 1 0 0) (6 0) (1 0 0 1 0) (3 1 0)
(3 1 0 0 0) (1 2 0 0 0) (6 0 0)

(2 0 1 0 0)
(3 1 0 0 0)

� = 31 (0 0 0 0 0 1) � = 32 (0 0 1) � = 52 (0 0 0 0 0 1) � = 56 (0 0 0 1)
(0 1 1 0 0 0) (3 1 0) (0 1 0 0 1 0) (2 0 1 0)
(1 0 0 0 1 0) (0 1 0 1 0 0) (4 1 0 0)
(1 2 0 0 0 0) (1 0 0 0 0 1) (7 0 0 0)
(4 0 0 0 0 0) (1 0 0 0 1 0)

(1 1 1 0 0 0)
(2 0 0 1 0 0)
(2 2 0 0 0 0)
(3 0 1 0 0 0)
(4 1 0 0 0 0)
(5 0 0 0 0 0)

Table 7.3. The outputs obtained by running Algorithm 7.1 for the model problem in Section 7.3.3 with
ÚX = 0.3, ÚP = 0.8 (case (i)) and ÚX = 0.15, ÚP = 0.95 (case (ii)) for both slow (ã = 2) and fast (ã = 4) decay
of the amplitude coefficients.

versus 17 in case (ii)). Furthermore, the algorithm tends to activate more parameters and to

generate polynomial approximations of lower degree for the problem with slow decay (e.g., in

case (i), polynomials of total degree 4 in 6 parameters for ã = 2 versus polynomials of total degree

6 in 3 parameters for ã = 4). Note that this behaviour has been previously observed in numerical

experiments for parametric problems on the square domain (see [29]).

Figure 7.11 (resp., Figure 7.12) shows the convergence history of three error estimates (ä�, Ø�,

and ä� Ø�) and the reference error in the goal functional in case (i) (resp. case (ii)) of marking
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Figure 7.11. Error estimates ä�, Ø�, ä� Ø� and the reference error |G (uref) − G (u�)| at each iteration of Al-
gorithm 7.1 with ÚX = 0.3, ÚP = 0.8 (case (i)) for ã = 2 (left) and ã = 4 (right) for the model problem in
Section 7.3.3. Here, G (uref) = 1.789774e-2 for ã = 2 and G (uref) = 1.855648e-2 for ã = 4.
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Figure 7.12. Error estimates ä�, Ø�, ä� Ø� and the reference error |G (uref) − G (u�)| at each iteration of Algo-
rithm 7.1 with ÚX = 0.15, ÚP = 0.95 (case (ii)) for ã = 2 (left) and ã = 4 (right) for the model problem in
Section 7.3.3. Here, G (uref) = 1.789774e-2 for ã = 2 and G (uref) = 1.855648e-2 for ã = 4.

parameters. Firstly, we can see that the estimates ä� Ø� converge with a faster rate for the problem

with ã = 4 than for the problem with ã = 2. This is true in both cases of marking parameters. In

particular, the overall convergence rate is about O(N−3/4) when ã = 4, whereas it is about O(N−2/3)
when ã = 2. Secondly, we observe an improved convergence rate during mesh-refinement steps

in case (ii) (i.e., for smaller ÚX and larger ÚP). For both problems with ã = 2 and ã = 4 this rate is

about O(N−0.9), i.e., very close to the optimal one (see Figure 7.12).

We conclude the experiment by testing the effectivity of the goal-oriented error estimation at
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Figure 7.13. The effectivity indices for the goal-oriented error estimates ä�Ø� at each iteration of Algo-
rithm 7.1 for the model problem in Section 7.3.3.

each iteration of Algorithm 7.1. We compute the effectivity indices î� defined in (7.23) by em-

ploying reference Galerkin solutions uref to problems with slow (ã = 2) and fast (ã = 4) decay of

the amplitude coefficients. Specifically, for both problems we employ the same reference trian-

gulation Tref (to be the uniform refinement of TL generated in case (i) for the problem with slow

decay), but use two reference index sets (namely, for ã = 2, we set Pref := PL, where PL is gene-

rated for the problem with slow decay in case (ii) and for ã = 4, we set Pref := PL ∪ML with the

corresponding PL and ML generated for the problem with fast decay in case (ii)). The computed ef-

fectivity indices are plotted in Figure 7.13. As iterations progress, they tend to concentrate within

the interval (4,5) in all cases.

For the parametric model problem considered in this experiment, we conclude that Algo-

rithm 7.1 performs better if the (spatial) marking threshold ÚX is sufficiently small and the (para-

metric) marking threshold ÚP < 1 is sufficiently large (see the results of experiments in case (ii)).

In fact, in case (ii), the estimates ä�Ø� converge with nearly optimal rates during spatial refine-

ment steps for problems with slow and fast decay of the amplitude coefficients. Furthermore,

in this case, the algorithm generates richer index sets which lead to more accurate parametric

approximations.

7.3.4 Experiment 3 - Pointwise estimation on slit domain

In this last experiment, we test the performance of adaptive Algorithm 7.1 for the parametric

model problem (4.5) posed on the domain D = DÖ with DÖ = (−1,1)2 \ TÖ, Ö > 0, where TÖ =

conv
(
{(0,0), (−1,Ö), (−1,−Ö)}

)
, introduced in Section 5.4.4. That is, we consider an approximation
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Figure 7.14. The mean field (left) and the variance (right) of the primal Galerkin solution for the model
problem in Section 7.3.4.

of the slit domain D = (−1,1)2 \ ([−1,0] × {0}) as Ö tends to zero. Throughout, we let Ö = 0.005.

Following [57], we consider a modification of parametric coefficient (5.44). For all m ∈ N and

x ∈ D , let am(x) be the spatial functions

am(x) := Óm cos(2áÔ1(m)x1)cos(2áÔ2(m)x2) , Óm := Am−ã ,

where A, ã, Ô2, and Ô2 are defined as in Section 5.4.2. Then, given two constants c, ê > 0, we define

a(x,y) :=
c

Ómin

 ∞¼
m=1

ymam(x) +Ómin

 + ê , x ∈ D , y ∈ È , (7.25)

where Ómin := AØ(ã) and the parameters ym are the images of uniformly distributed independent

mean-zero random variables on Èm = [−1,1] for all m ∈ N. It is easy to see that a(x,y) ∈ [ê, 2c + ê]

for all x ∈ D and y ∈ È . Note that (7.25) can be written in the form (4.8) by setting a0(x) = c + ê

and the expansion coefficients equal to (c am(x))/Ómin. Furthermore, conditions (4.9) and (4.10)

are satisfied with amin
0 = amax

0 = c + ê and Õ = c/(c + ê), respectively.

It is known that solution u to problem (4.5) in this example exhibits a singularity induced by

the slit in the domain (cf. the numerical experiment in Section 5.4.4). Our aim in this experiment

is to approximate the (mean) value of u at some fixed point x0 ∈ D away from the slit. To that end

(and to stay within the framework of the bounded goal functional G in (7.22)), we fix a sufficiently

small r > 0 and define g0 as the mollifier (see [109]),

g0(x) = g0(x;x0, r) :=


C exp

(
− r2

r2−‖x−x0 ‖22

)
if ‖x− x0 ‖2 < r,

0 otherwise.
(7.26)

Here, ‖ ·‖2 denotes the Euclidean norm and C is a normalisation constant chosen such that∫
D
g0(x)dx = 1.
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r = 0.15, #T20 = 3573 r = 0.3, #T18 = 3239 r = 0.4, #T16 = 2248 r = 0.5, #T15 = 1834
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Figure 7.15. Adaptively refined triangulations (top row) and mean fields of dual Galerkin solutions (bot-
tom row) computed using the mollifier g0 in (7.26) with r = 0.15,0.3,0.4,0.5, for the model problem in
Section 7.3.4.

Note that the value of the constant C is independent of the location of x0 ∈ D , provided that r is

chosen sufficiently small such that supp(g0(x;x0, r)) ⊂ D . In this case, C ≈ 2.1436 r−2 (see, e.g.,

[109]).

Setting f0 = 1, f = (0,0) and g = (0,0), the functionals in (7.21) and (7.22) read as

F (v) =
∫
È

∫
D
v(x,y)dxdá(y) and G (v) =

∫
È

∫
D
g0(x)v(x,y)dxdá(y) ∀ v ∈ V .

Note that if u(x,y) is continuous in the spatial neighbourhood of x0, then G (u) converges to the

mean value E[u(x0,y)] as r tends to zero.

We fix c = 10−1, ê = 5 · 10−3, ã = 2, A = 0.6 and choose x0 = (0.4,−0.5) ∈ D . In all computa-

tions performed in this experiment, we use the coarse triangulation T0 depicted in Figure 5.11(a);

Figure 7.14 shows the mean field (left) and the variance (right) of the primal Galerkin solution.

First, we fix tol = 7e-03 and run Algorithm 7.1 to compute dual Galerkin solutions for dif-

ferent values of radius r in (7.26). Figure 7.15 shows the refined triangulations (top row) and

the corresponding mean fields of dual Galerkin solutions (bottom row) for r = 0.15,0.3,0.4,0.5.

As observed in experiments of Sections 7.3.2 and 7.3.3, the triangulations generated by the goal-

oriented adaptive algorithm simultaneously captures spatial features of primal and dual solu-

tions. In this experiment, the triangulations are refined in the vicinity of each corner, with par-
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ÚX = 0.3, ÚP = 0.8 ÚX = 0.15, ÚP = 0.8

L 30 53
t (sec) 436 646
cost 3,047,041 4,841,526
äLØL 4.9335e-04 5.4956e-04
NL 827,421 705,915
#TL 79,518 67,871
#PL 21 21
MPL

6 6

P� � = 10 (0 1) � = 12 (0 1)
(2 0) (2 0)

� = 16 (0 0 1) � = 23 (0 0 1)
(1 1 0) (1 1 0)
(3 0 0) (3 0 0)

� = 22 (0 0 0 1) � = 35 (0 0 0 1)
(1 0 1 0) (1 0 1 0)
(2 1 0 0) (2 1 0 0)

� = 26 (0 0 0 0 1) � = 43 (0 0 0 0 1)
(1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0)
(4 0 0 0 0) (4 0 0 0 0)

� = 29 (0 0 0 0 0 1) � = 47 (0 0 0 0 0 1)
(0 1 1 0 0 0) (0 1 1 0 0 0)
(0 2 0 0 0 0) (0 2 0 0 0 0)
(1 0 0 0 1 0) (1 0 0 0 1 0)
(2 0 0 1 0 0) (2 0 0 1 0 0)
(3 0 1 0 0 0) (3 0 1 0 0 0)
(3 1 0 0 0 0) (3 1 0 0 0 0)

Table 7.4. The outputs obtained by running Algorithm 7.1 with ÚX = 0.3, ÚP = 0.8 (case (i)) and ÚX = 0.15,
ÚP = 0.8 (case (ii)) in the case r = 0.15 for the model problem in Section 7.3.4.

ticularly strong refinement near the origin, where the primal solution exhibits a singularity (see

Figure 7.14 (left)); in addition to that, for smaller values of r (e.g., r = 0.15, 0.3), the triangulation

is strongly refined in a neighbourhood of x0 due to sharp gradients in the corresponding dual

solutions (note that the refinements in the neighbourhood of x0 become coarser as r increases).

Let us now fix r = 0.15 (which gives C ≈ 95.271 in (7.26)) and run Algorithm 7.1 with two sets

of marking parameters: (i) ÚX = 0.3, ÚP = 0.8; (ii) ÚX = 0.15, ÚP = 0.8. In both computations we

choose MQ = 1 in (5.35) and set the tolerance tol = 6.0e-04.

In Table 7.4, we collect the outputs of computations in both cases. In agreement with results

of the experiments of previous Sections 7.3.2 and 7.3.3, we see that running the algorithm with a

smaller value of ÚX (i.e., in case (ii)) requires more iterations to reach the tolerance (see the values

of L in both columns in Table 7.4). We also observe that, for a fixed ÚP, choosing a smaller ÚX

naturally results in a less refined final triangulation (#TL = 67,871 in case (ii) versus #TL = 79,518
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Figure 7.16. Error estimates ä�, Ø�, ä� Ø� and the reference error |G (uref) − G (u�)| at each iteration of Algo-
rithm 7.1 with ÚX = 0.3, ÚP = 0.8 (case (i), left) and ÚX = 0.15, ÚP = 0.8 (case (ii), right) in the case r = 0.15
for the model problem in Section 7.3.4. Here, G (uref) = 0.144497e+01.
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Figure 7.17. The effectivity indices for the goal-oriented error estimates ä� Ø� at each iteration of Algo-
rithm 7.1 in the case r = 0.15 for the model problem in Section 7.3.4.

in case (i)), although, for the chosen tolerance, the final index set PL generated is the same in both

cases (21 indices with 6 active parameters).

By looking now at Figure 7.16 we observe that the energy error estimates ä� and Ø� decay

with the same rate of about O(N−0.35) for both sets of marking parameters; this yields an overall

rate of about O(N−2/3) for ä� Ø� in both cases. However, we can see that in case (ii), the estimates

ä� Ø� decay with a nearly optimal rate of O(N−0.9) during mesh-refinement steps. This is due to a

smaller value of the marking parameter ÚX in this case and consistent with what we observed in

the experiment in Section 7.3.3.

Finally, we compute the effectivity indices î� defined in (7.23) at each iteration of the algorithm
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7. ADAPTIVE ALGORITHMS FOR GOAL-ORIENTED ERROR ESTIMATION

by employing a reference Galerkin solution uref computed using the triangulation Tref (to be the

uniform refinement of TL produced in case (i)) and the reference index set Pref := PL ∪ML, where

PL and ML are generated in case (ii). The effectivity indices are plotted in Figure 7.17. This plot

shows that the sequence (ä� Ø�)�, � = 0, . . . ,L, provides sufficiently accurate estimates of the error in

approximating G (u), as the effectivity indices tend to vary in a range between 1.8 to 2.5 for both

sets of marking parameters.

The results of this experiment show that Algorithm 7.1 with appropriate choice of marking

parameters generates effective approximations to the mean of the quantity of interest associated

with point values of the spatially singular solution to the considered parametric model problem.

In agreement with results of the experiment in Section 7.3.3, we conclude that smaller values of

the spatial marking parameter ÚX (such as ÚX = 0.15 as in case (ii)) are, in general, preferable, as

they yield nearly optimal convergence rates (for the error in the goal functional) during spatial

refinement steps.
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Chapter 8

Concluding remarks

The development of robust numerical schemes for efficient discretisation of continuous mathe-

matical models with inherent uncertainties has been a very active research theme in recent years.

In this context, and largely for PDE based problems, the design of efficient adaptive strategies is

evermore a demanding task to mitigate the so-called ‘curse of dimensionality’, that is a deteriora-

tion of convergence rates and an exponential growth of the computational cost as the dimension

of the discrete parameter space increases. In particular, adaptive algorithms are indispensable

when solving a particularly challenging class of parametric problems represented by PDEs whose

inputs data depend (e.g., in an affine way) on infinitely many uncertain parameters.

In this work, we considered a simple example of elliptic boundary value problem whose un-

certainty is represented by a random diffusion coefficient. Furthermore, homogeneous Dirichlet

conditions were imposed on the boundary of physical domains. The numerical method we pri-

marily decided to focus on is the intrusive SGFEM whereas the type of a posteriori error estimates

that we used to design adaptive strategies for our model problem are hierarchical and two-level

estimates. The more important contribution of this thesis has been the design and development

of innovative adaptive algorithms, under the SGFEM framework, for the numerical computation

of solutions to the parametric PDE problem using the above mentioned type of error estimates.

The first adaptive algorithm presented in Chapter 5 is driven by precise estimates of the error

reductions that would be achieved by pursuing different refinement strategies. There are two

distinctive features in our approach. Firstly, the approximation error is controlled in the algorithm

via hierarchical a posteriori error estimates; we do not claim originality of the associated analysis,

yet we observe that, to our knowledge, an efficient algorithm of this type was missing in the

literature. Secondly, the error reduction estimates are used in the algorithm (specifically, in its

second version) not only to guide adaptive refinement but also to choose between spatial and
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parametric refinement at each iteration step.

The second adaptive algorithm proposed in Chapter 6, essentially follows the same lines of

that of Chapter 5. For both algorithms, in fact, the aim was the estimation of the energy norm

of the global error. However, in Chapter 6 we introduced the novel two-level error estimate and

proved that it is both efficient and reliable. The associated algorithm using such estimate, in

its four possible versions, does not require an extra step for solving any linear system for the

estimation of errors arising from spatial discretisations. When compared to hierarchical error es-

timation, this approach leads to an undeniable benefit in terms of the overall computational time

(see the numerical experiment in Section 6.4.1). Moreover, with a rigorous convergence analysis of

the adaptive algorithm, the sequence of generated two-level error estimates is proved to converge

to zero (see [25]), and further to that, we proved that the two versions of the algorithm which

use only the Dörfler strategy in the associated marking criteria (i.e., Algorithms 6.1v1 and 6.1v2),

yield a sequence of global errors which converges linearly.

Finally, we developed a goal-oriented adaptive algorithm for the approximation of a quantity

of interest which is a linear functional of the solution to parametric problem. The algorithm is

driven by two-level a posteriori estimates of the energy errors (although it works with any relia-

ble and computable a posteriori error estimate) in Galerkin approximations of the primal as well

as associated dual solutions. The main novelty is that the components of the error estimates for

primal and dual solutions are used to guide the adaptive enhancement of the discrete space as

well as to assess the error reduction in the product of these estimates which is seen to be a reliable

estimate for the approximation error in the quantity of interest. This information about the er-

ror reduction is then employed to choose between spatial refinement and parametric enrichment

throughout the iterations of the algorithm.

Future work that would conclude the investigation reported here, includes the mathemati-

cal justification, via convergence analysis, of the adaptive SGFEM algorithm using hierarchical

estimates for the energy error estimation as well as of the goal-oriented adaptive algorithm in

Chapter 7. Alternatively, other obvious possible extensions include the use of other compati-

ble types of spatial mesh-refinement rules to be used in the proposed algorithms (e.g., general

newest vertex bisections or regular refinements, instead of just longest edge bisections), the re-

design of the algorithms in case of other elliptic operators, or the treatment of non-homogeneous

boundary conditions. In fact, for example, we observe that the analysis of hierarchical error es-
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timation for parametric PDEs is well-established in case of homogeneous Dirichlet conditions

(see Sections 5.1 and 5.2) but the extension to non-homogeneous boundary conditions seems still

missing; the same extension could be investigated if two-level error estimates are used in adaptive

algorithms. Furthermore, the case of problems with parametric right-hand sides sources as well

as parameter-dependent functions in the definition of the goal functional for goal-oriented esti-

mation may be interesting topics that would contribute to fill gaps in the current literature about

parametric PDEs.

To conclude, we recall that the numerical software implementing the proposed adaptive al-

gorithms in this thesis is available online and can be used to reproduce the presented numerical

results as well as to help future investigations about parametric elliptic problems.

142



Appendix A

Numerical experiment of Section 6.4.2 (extended
version)

Tables A.1–A.4 collect the computational costs (6.39) as well as the empirical convergence rates for

Algorithms 6.1v1–6.1v4 applied to the parametric model problem in Section 6.4.2. The empirical

convergence rates are computed as the slopes of the lines which are best fit, in the least squares

sense, of the overall error estimates ä� computed by the algorithm with the corresponding pair of

marking parameters (ÚX ,ÚP)∈Ê×Ê with Ê = {0.1,0.2, . . . ,0.9}. Observe that all rates are similar

and vary in a range between −0.36 and −0.32. In each table, numbers in boldface indicate the

smallest cost in the corresponding row (i.e., for fixed ÚX ), whereas the starred boldface number

denotes the overall smallest cost in the table.
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A. NUMERICAL EXPERIMENT OF SECTION 6.4.2 (EXTENDED VERSION)

Algorithm 6.1v1

HH
HHÚX

ÚP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
36,634,764

−0.3395
36,634,764

−0.3395
36,634,764

−0.3395
36,634,764

−0.3395
36,634,764

−0.3395
37,126,693

−0.3412
38,135,658

−0.3401
38,948,918

−0.3398
36,522,593

−0.3401

0.2
10,652,382

−0.3386
10,652,382

−0.3386
10,652,382

−0.3386
10,652,382

−0.3386
10,652,382

−0.3386
10,472,434

−0.3401
10,611,056

−0.3392
10,842,902

−0.3395
9,891,950

−0.3398

0.3
5,737,346

−0.3380
5,737,346

−0.3380
5,737,346

−0.3380
5,737,346

−0.3380
5,737,346

−0.3380
5,398,269

−0.3392
5,444,071

−0.3386
5,491,501

−0.3390
4,487,527

−0.3392

0.4
4,066,841

−0.3369
4,066,841

−0.3369
4,066,841

−0.3369
4,066,841

−0.3369
4,066,841

−0.3369
3,657,156

−0.3382
3,703,037

−0.3379
3,738,567

−0.3384
3,005,547

−0.3385

0.5
2,974,895

−0.3360
2,974,895

−0.3360
2,974,895

−0.3360
2,974,895

−0.3360
2,974,895

−0.3360
2,523,497

−0.3374
2,526,413

−0.3373
2,521,302

−0.3381
2,193,757

−0.3380

0.6
2,838,789

−0.3371
2,838,789

−0.3371
2,838,789

−0.3371
2,838,789

−0.3371
2,838,789

−0.3371
2,323,857

−0.3383
2,351,810

−0.3384
2,331,065

−0.3389
1,900,951

−0.3385

0.7
2,658,382

−0.3373
2,658,382

−0.3373
2,658,382

−0.3373
2,658,382

−0.3373
2,658,382

−0.3373
2,094,382

−0.3380
2,046,871

−0.3390
2,014,430

−0.3399
1,566,530

−0.3394

0.8
2,454,929

−0.3346
2,454,929

−0.3346
2,454,929

−0.3346
2,454,929

−0.3346
2,454,929

−0.3346
2,403,912

−0.3354
1,628,563

−0.3367
1,560,286F

−0.3363
1,731,044

−0.3373

0.9
3,042,687

−0.3278
3,042,687

−0.3278
3,042,687

−0.3278
3,042,687

−0.3278
3,042,687

−0.3278
2,891,115

−0.3308
1,978,191

−0.3289
1,776,192

−0.3321
1,993,972

−0.3334

Table A.1. Computational cost (top of the cell) and empirical convergence rates (bottom of the cell) for
Algorithm 6.1v1 applied to the parametric model problem in Section 6.4.2.

Algorithm 6.1v2

HHHHÚX

ÚP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
55,591,871

−0.3543
55,591,871

−0.3543
55,591,871

−0.3543
61,960,516

−0.3478
71,558,237

−0.3372
82,193,108

−0.3326
90,977,432

−0.3288
99,219,735

−0.3281
> 1e+08
−0.3216

0.2
11,801,518

−0.3543
11,801,518

−0.3543
11,801,518

−0.3543
11,606,375

−0.3542
12,864,430

−0.3479
13,991,407

−0.3424
14,616,770

−0.3377
15,930,094

−0.3376
18,204,663

−0.3362

0.3
5,385,296

−0.3499
5,385,296

−0.3499
5,385,296

−0.3499
5,385,296

−0.3499
5,340,256

−0.3492
5,757,081

−0.3454
6,042,307

−0.3416
5,796,230

−0.3452
6,330,829

−0.3391

0.4
3,587,223

−0.3457
3,587,223

−0.3457
3,587,223

−0.3457
3,587,223

−0.3457
3,626,569

−0.3461
3,432,938

−0.3467
3,338,087

−0.3442
3,086,323

−0.3473
3,165,582

−0.3425

0.5
2,874,852

−0.3429
2,874,852

−0.3429
2,874,852

−0.3429
2,874,852

−0.3429
2,874,852

−0.3429
2,380,185

−0.3464
2,560,036

−0.3451
2,081,426

−0.3465
2,582,765

−0.3430

0.6
2,883,427

−0.3383
2,883,427

−0.3383
2,883,427

−0.3383
2,883,427

−0.3383
2,883,427

−0.3383
2,259,538

−0.3411
2,307,901

−0.3421
1,764,686

−0.3422
2,078,219

−0.3415

0.7
3,157,697

−0.3292
3,157,697

−0.3292
3,157,697

−0.3292
3,157,697

−0.3292
3,157,697

−0.3292
2,146,095

−0.3350
1,973,460

−0.3383
1,966,801

−0.3389
1,488,993F

−0.3398

0.8
3,381,315

−0.3237
3,381,315

−0.3237
3,381,315

−0.3237
3,381,315

−0.3237
3,381,315

−0.3237
2,613,691

−0.3320
1,641,372

−0.3355
1,549,138

−0.3369
1,720,006

−0.3378

0.9
4,886,790

−0.3153
4,886,790

−0.3153
4,886,790

−0.3153
4,886,790

−0.3153
4,886,790

−0.3153
3,708,374

−0.3205
2,288,775

−0.3246
2,071,551

−0.3282
1,993,972

−0.3334

Table A.2. Computational cost (top of the cell) and empirical convergence rates (bottom of the cell) for
Algorithm 6.1v2 applied to the parametric model problem in Section 6.4.2.
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Algorithm 6.1v3

HH
HHÚX

ÚP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
37,126,693

−0.3412
38,436,652

−0.3392
31,766,942

−0.3391
38,948,918

−0.3398
40,891,821

−0.3400
35,855,809

−0.3397
30,252,882

−0.3397
44,306,077

−0.3389
47,582,801

−0.3342

0.2
10,472,434

−0.3401
10,293,846

−0.3388
8,743,434

−0.3388
10,842,902

−0.3395
10,790,957

−0.3397
9,833,369

−0.3395
8,317,634

−0.3395
12,082,564

−0.3389
12,942,155

−0.3338

0.3
5,398,269

−0.3392
5,386,660

−0.3382
4,609,593

−0.3384
5,491,501

−0.3390
5,194,711

−0.3390
4,573,863

−0.3391
4,270,672

−0.3390
6,113,283

−0.3382
5,957,047

−0.3334

0.4
3,657,156

−0.3382
3,573,880

−0.3372
3,169,527

−0.3373
3,738,567

−0.3384
3,352,712

−0.3384
3,024,178

−0.3380
2,634,872

−0.3378
4,146,897

−0.3370
3,567,033

−0.3325

0.5
2,523,497

−0.3374
2,380,561

−0.3367
2,459,900

−0.3368
2,521,302

−0.3381
2,102,539

−0.3379
2,260,210

−0.3374
1,847,454

−0.3371
2,721,150

−0.3369
2,572,804

−0.3320

0.6
2,323,857

−0.3384
2,168,310

−0.3377
2,271,816

−0.3382
2,331,065

−0.3389
1,828,574

−0.3384
2,004,779

−0.3390
1,533,861

−0.3386
2,528,526

−0.3378
2,294,306

−0.3325

0.7
2,094,382

−0.3380
1,891,752

−0.3375
1,970,087

−0.3376
2,014,430

−0.3399
1,496,851F

−0.3393
1,710,029

−0.3383
1,793,937

−0.3383
2,185,402

−0.3377
1,837,025

−0.3325

0.8
2,403,912

−0.3354
2,162,469

−0.3347
2,240,383

−0.3362
1,560,286

−0.3363
1,645,652

−0.3370
1,940,368

−0.3368
2,048,616

−0.3370
1,620,466

−0.3353
2,089,746

−0.3297

0.9
2,891,115

−0.3308
2,621,348

−0.3295
2,830,679

−0.3283
1,776,192

−0.3321
1,885,067

−0.3329
2,470,591

−0.3282
2,619,845

−0.3285
1,880,106

−0.3295
2,611,297

−0.3231

Table A.3. Computational cost (top of the cell) and empirical convergence rates (bottom of the cell) for
Algorithm 6.1v3 applied to the parametric model problem in Section 6.4.2.

Algorithm 6.1v4

H
HHHÚX

ÚP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
65,375,862

−0.3482
78,893,946

−0.3367
82,752,064

−0.3375
86,536,330

−0.3383
85,276,880

−0.3389
94,093,402

−0.3378
> 1e+08
−0.3339

> 1e+08
−0.3285

> 1e+08
−0.3235

0.2
11,852,403

−0.3516
12,956,995

−0.3447
13,658,830

−0.3427
14,138,022

−0.3475
14,888,877

−0.3441
16,118,678

−0.3443
17,014,103

−0.3412
17,774,020

−0.3370
22,821,433

−0.3294

0.3
5,393,465

−0.3482
5,187,233

−0.3503
5,976,264

−0.3465
5,607,496

−0.3462
6,018,687

−0.3443
6,200,892

−0.3415
6,737,413

−0.3383
6,628,919

−0.3354
8,667,208

−0.3279

0.4
3,359,537

−0.3466
2,993,784

−0.3499
2,968,892

−0.3484
3,086,323

−0.3473
3,280,115

−0.3460
3,526,098

−0.3446
3,229,531

−0.3419
3,942,973

−0.3367
5,087,723

−0.3298

0.5
2,380,185

−0.3464
2,317,914

−0.3467
2,570,641

−0.3466
2,081,426

−0.3465
2,294,857

−0.3456
2,461,136

−0.3442
2,727,436

−0.3422
2,513,794

−0.3384
3,221,702

−0.3316

0.6
2,259,538

−0.3411
2,163,842

−0.3402
1,719,454

−0.3413
1,764,686

−0.3422
1,897,407

−0.3423
2,067,075

−0.3412
1,672,508

−0.3395
1,935,515

−0.3370
2,563,621

−0.3309

0.7
2,146,095

−0.3350
1,952,007

−0.3347
2,000,424

−0.3363
1,966,801

−0.3389
1,460,210F

−0.3383
1,604,638

−0.3389
1,740,662

−0.3386
2,050,900

−0.3370
1,855,200

−0.3305

0.8
2,613,691

−0.3320
2,613,691

−0.3304
2,429,679

−0.3331
1,549,138

−0.3368
1,634,584

−0.3375
1,806,369

−0.3381
1,977,211

−0.3380
1,621,561

−0.3349
2,093,208

−0.3304

0.9
3,708,374

−0.3205
3,151,928

−0.3189
3,183,738

−0.3249
2,071,551

−0.3288
1,885,067

−0.3329
2,470,591

−0.3287
2,386,770

−0.3311
1,880,106

−0.3295
2,439,044

−0.3254

Table A.4. Computational cost (top of the cell) and empirical convergence rates (bottom of the cell) for
Algorithm 6.1v4 applied to the parametric model problem in Section 6.4.2.

145



Appendix B

Stochastic T-IFISS package

In this appendix, we describe the Stochastic T-IFISS package [28] used for all numerical experi-

ments in this thesis. The name T-IFISS stands for Triangular Incompressible Flow & Iterative Solver

Software. Stochastic T-IFISS is the extension, to stochastic Galerkin approximations of diffusion

problems with random coefficients, of the core version of the open source Matlab toolbox T-IFISS

[123] for solving deterministic elliptic problems on two-dimensional domains using finite element

method; spatial discretisations in both Stochastic T-IFISS and T-IFISS are performed by means of

triangular meshes. In turn, T-IFISS has been developed on top of the Matlab toolbox IFISS [60]

that was produced to perform computational experiments in the monograph [61]; in IFISS, deter-

ministic elliptic problems on domains are discretised using rectangular meshes. In what follows,

we briefly highlight the main components of Stochastic T-IFISS. Note that this is not supposed to

be a detailed technical description of the toolbox. This short appendix is rather intended to be the

starting point of a future complete documentation of the software.

B.1 Overview. Stochastic T-IFISS has been mainly designed to support the investigation about the

topics reported in this work. The package is organised in a modular way using task-specific mo-

dules, each of them dedicated to the various component aspects of solving individual parametric

PDE problems. This makes easy for the user to experiment with the code and, most importantly,

to include additional features as well as extract parts of the package to be used for distinct pur-

poses. In particular, the toolbox is accessible to anyone with a basic knowledge of Matlab. Also,

Stochastic T-IFISS takes advantage of Matlab high-level programming, portability, and readabi-

lity as well as vectorisation features that enable fast and efficient computation: wherever possible,

Stochastic T-IFISS routines are written so as to exploit vectorised computation over, for example,

finite elements (such as assembling of stiffness matrices or mesh-refinements).
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The Stochastic T-IFISS toolbox includes all directories composing the T-IFISS package. In fact,

Stochastic T-IFISS makes use of several T-IFISS files such as marking strategies and quadrature

rules. Most important features of current version 1.2 of Stochastic T-IFISS are Galerkin linear

and quadratic spatial discretisations (quadratic discretisations only for non-adaptive codes), vi-

sualisation of generated domains as well as mean value and variance of computed solutions, fast

mesh-refinement routines (spatial refinement can be either element or midpoint based), and im-

plementation of adaptive algorithms driven by built-in a posteriori error estimates of the genera-

ted solutions.

Main routines in Stochastic T-IFISS implementing stochastic Galerkin approximations for

parametric PDEs problems have been initially developed for the numerical SGFEM discretisation

of model problem (4.5) (see [27]); a further extension included all routines for the goal-oriented

numerical approximation of quantities of interest discussed in [26]. In particular, Stochastic T-

IFISS contains self-adaptive test problems implementing adaptive Algorithms 5.1 and 7.1 able to

reproduce the experiments in Sections 5.4 and 7.3. Both hierarchical (see Chapter 5) and two-

level (see Chapter 6) error estimates are then also implemented and can be used for a posteriori

energy error estimations.

B.2 Directory structure and test problems. In Stochastic T-IFISS, function files to run SGFEM

approximations for parametric PDEs are included in the directory stoch_diffusion. The names

of all function files in stoch_diffusion start with stoch_. Within this directory, main subdirec-

tories are:

• /stoch_diffusion_adapt/ includes important routines used by self-adaptive examples,

such as main drivers for the setup of initial parameters, marking strategies, and error es-

timation techniques;

• /stoch_goafem/ includes all routines for self-adaptive goal-oriented examples; the names

of all function files in this subdirectory start with stoch_goafem_;

• /test_problem/ contains files for the definition of diffusion coefficients, boundary condi-

tions, and source terms for the set up of built-in reference test problems. These include

problems with both estimation of the energy error and prescribed quantities of interest.

Current reference problems implemented in Stochastic T-IFISS are parametric PDEs posed over

three available spatial domains, square, L-shaped, and slit domains (see Section 5.4), and using
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three main type of parametric coefficients. These are the synthetic random field (5.44) from

[54, 55], the KL-expansion of random fields with covariance (3.9), and expansion (3.17) from

[88]. For goal-oriented examples, the setup of reference test problems is the one described in

Section 7.3.1; this includes the parametric version of Example 7.3 in [95] for the estimation

of directional derivatives as well as the estimation in approximating pointwise values (see Sec-

tion 7.3). Main drivers runnig self-adaptive algorithms for the above mentioned model problems

are stoch_adapt_testproblem and stoch_goafem_testproblem, respectively, that can be found

inside the /test_problem/ subdirectory.

B.3 Data structures (spatial approximations). Let T = {T1, . . . ,TNT } be a conforming and shape-

regular triangulation with NT := #T elements of D ⊂ R2. Let NX := #N (T ) be the number of total

vertices, ND
X := #N ◦(T ) be the number of interior vertices, and N�D

X := #(NX \ND
X ) be the number of

boundary vertices (note that NX = ND
X +N�D

X ). Let N (T ) = {x1, . . . ,xNX
} be the set of total vertices.

The triangulation T is represented by the matrices xy and evt, and vectors interior and bound:

• xy is a NX × 2 matrix containing the physical coordinates of all vertices. The i-th row of xy

stores the coordinates of the i-th vertex xi = (x(i)1 ,x(i)2 ) ∈ N (T ), i.e., xy(i,:) = [x(i)1 x(i)2 ];

• evt is a NT × 3 matrix containing the elements vertices’ numbers. That is, the n-th element

Tn = conv({xi , xj , xk}) ∈ T with vertices xi ,xj ,xk ∈ N (T ) is stored in evt(n,:) = [i j k],

with vertices counted in counterclockwise order;

• interior is a ND
X × 1 vector containing the global numbers of interior vertices of T . For

example, ifN ◦(T ) = {x1, x2, x4, x6}, then interior = [1 2 4 6]
T ;

• bound is a N�D
X × 1 vector containing the global numbers of boundary vertices of T . For

example, ifN (T )∩�D = {x1, x2, x5}, then bound = [1 2 5]
T . Note that {interior, bound}

= {1,2, . . . ,NX }.

Figure B.1 shows an illustrative triangulation and the associated matrices and vectors described

above; these are, in particular, the spatial data structures required for the numerical computation

of the SGFEM solution. A remark about enumeration of vertices and edges is due here. Given

T = conv({xi ,xj ,xk}) ∈ T , with 1-st vertex xi , 2-nd vertex xj , and 3-rd vertex xk counted counter-

clockwise, it is assumed that

• the 1-st edge of T is the one in front of xi , i.e., conv({xj ,xk});
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−1

0

1 xy

1 −1 −1
2 0 −1
3 1 −1
4 −1 0
5 0 0
6 1 0
7 −1 1
8 0 1
9 1 1

evt

1 5 4 1
2 1 2 5
3 5 2 3
4 3 6 5
5 5 6 9
6 9 8 5
7 5 8 7
8 7 4 5

bound

1 1
2 2
3 3
4 4
5 6
6 7
7 8
8 9

interior

1 5

Figure B.1. Triangulation T of the square domain D = (−1,1)2 with NT = 8 elements (circled numbers in
black) specified by evt matrix and NX = 9 vertices (numbers in blue) specified by xy matrix. Interior and
boundary vertices are stored in interior and bound vectors, respectively.

1

2

3

4

1 2 3

45

6

2

1 3
1

2

3

1

2
3

1

2 3

eboundt

1 1 1
2 1 2
3 2 3
4 3 1
5 4 1
6 4 3

els

1 1.00 1.41 1.00
2 1.00 1.41 1.00
3 1.41 2.00 1.41
4 1.41 2.00 1.41

eex

1 0 0 2
2 1 3 0
3 0 4 2
4 0 3 0

tve

1 0 0 1
2 3 3 0
3 0 2 2
4 0 2 0

Figure B.2. Local enumeration of the edges of a conforming and shape-regular (structured) triangulation
T with four elements; numbers in blues are vertices’ global numbers of T whereas circled numbers are
elements’ numbers. Coloured numbers denote local elements’ edges. Associated data structures eboundt,
els, eex and tve. Zeros entries in eex and tve indicate the boundary edges.

• the 2-nd edge of T is the one in front of xj , i.e., conv({xk ,xi });

• the 3-rd edge of T is the one in front of xk, i.e., conv({xi ,xj }).

In particular, for a shape-regular (structured) triangulation T , the local enumeration of the vertices

of an element T ∈ T is such that the longest edge of T is the second one (see Figure B.2).

Additional data structures are the eboundt, els, eex, and tve matrices:

• eboundt is a matrix containing the boundary elements’ numbers and local numbers of the

corresponding edges lying on the boundary �D . By boundary element, we mean an element

having either one or two edges lying on the boundary;

• els is a NT × 3 matrix containing, on each row, the lengths of the 3 edges of all elements

in T ;

• eex is a NT ×3 matrix storing the element patches (see (2.7)) of all elements in T . That is, if
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3 0.25 0.75
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8 0.25 0.00
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evtY

1 1 2 8
2 4 6 1
3 5 2 3
4 3 7 9

boundY

1 4
2 5
3 6
4 7
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1 1 2 1 3
2 1 3 2 2
3 3 4 3 1
4 2 2 1 1
5 3 3 1 1
6 2 2 2 2
7 4 4 2 2
8 1 1 3 3
9 4 4 3 3

Figure B.3. Data structures for the detail grid associated with the detail space Y on a given triangulation T
with #T = 4 elements.

é(Tn) = {Tm,T�,Tk} with Tm sharing the 1-st edge of Tn, T� sharing the 2-nd edge of Tn, and Tk

sharing the 3-rd edge of Tn, then eex(n,:) = [m � k];

• tve is a NT ×3 matrix for the ‘edge-location’ of neighbours in the element patches. For exam-

ple, if Tn ∈ T shares the 1-st, the 3-rd, and the 2-nd edge of its corresponding neighbours

(stored in eex), respectively, then tve(n,:) = [1 3 2].

See Figure B.2 for an example of the data structures eboundt, els, eex, and tve for a given triangu-

lation. In particular, these four data structures are needed for solving local element residual prob-

lems (5.34) for the computation of hierarchical error estimate ÙXP (see stoch_diffpost_p1_yp

below).

Given the finite element space X(T ) associated with T , Stochastic T-IFISS also includes some

data structures to store information about the detail grid for the corresponding first-order detail

space Y (see (5.3)) associated with uniform NVB refinements of T (see Figure 5.1(b)). That is, the

detail grid stores information about the ‘mesh’ consisting of midpoints introduced by uniform

NVB refinements associated with Y . Let NY = #E(T ) and N�D
Y = #(E(T ) \ E◦(T )) be the number of

total and boundary midpoints, respectively. The detail grid is represented by the matrices xyY,

evtY, boundY, and Ybasis, where:

• xyY is a NY ×2 matrix containing the physical coordinates of the midpoints of all edges of T
(cf. xy);

• evtY is a NT × 3 matrix containing all midpoints’ numbers per element. That is, if mid-

points zi ,zj ,zk ∈ N + lie on the 1-st, the 2-nd, and the 3-rd edge of the n-th element Tn ∈ T ,
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respectively, then evtY(n,:) = [i j k];

• boundY is a N�D
Y ×1 matrix containing the global numbers of boundary midpoints (cf. bound);

• Ybasis is a NY × 4 matrix storing information about position of linear basis functions of Y ,

that is, information about midpoint positions with respect to the elements. For example,

suppose that the i-th row of Ybasis is Ybasis(i,:) = [n m j k]. It means that midpoint

zi lies on the (i-th) edge shared by elements Tn,Tm ∈ T , and that such edge is the j-th (local)

edge of Tn and the k-th (local) edge of Tm (i.e., j ,k ∈ {1,2,3}). In particular, the first two

entries n and m, indicate the patch of (the two) elements containing the support of the i-th

basis function of Y (i.e., supp(èi ) ⊆ Tn ∪ Tm).

See Figure B.3 for an illustrative example triangulation with associated detail grid data structures

xyY, evtY, boundY, and Ybasis. These four matrices are used by Stochastic T-IFISS routines for

the assembling of the two-level error estimate äXP (see stoch_diffpost_p1_yp_2level below).

B.4 Data structures (parametric approximations). Let P be the finite index set for parametric

approximations, and recall that NP and MP denote its cardinality and the number of active pa-

rameters, respectively. In Stochastic T-IFISS, two main variables take account of the number of

parameters: the variable norv, is a global variable storing the maximum number of parameters

allowed for numerical computation, while noarv denotes the number of active parameters (i.e.,

MP) which vary throughout adaptive computations. Other main variables and data structures are:

• distribution is the variable storing the distribution type of random parameters. These can

be uniformly distributed on [−1,1] or having ‘truncated’ Gaussian density (4.27) on [−1,1];

• indset is a NP ×MP matrix which stores the given index set P. Each row of indset is an

index ß ∈ P;

• G is a 1× (MP+1) cell array which stores the G matrices (4.47) for the given index set indset;

• Q_indset is a matrix storing the finite detail index set Q, defined in (5.35), associated with

indset;

• GPQ is the cell array which stores the G matrices associated with index sets P and Q (cf.

(4.47)); these matrices appear in the assembling of the right-hand side of (5.27) where there

are both uXP ∈ VXP and v ∈ X ⊗PÞ, with Þ ∈ Q.
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B.5 List of main functions. Here, we report an incomplete list of functions of Stochastic T-IFISS.

In particular, we list the main functions for the stages composing the loop of self-adaptive rou-

tines. We briefly explain what each function does (notice that in writing functions’ names, we do

not specify the input and output arguments). For more information, we refer to detailed descrip-

tions supplied by single functions in the package.

Initialisation step:

• stoch_adapt_init_param: scriptfile that sets up all initial variables. Among the most im-

portant, there are variables for the version’s type of the adaptive algorithm, tolerance, type

of error estimate (hierarchical or two-level), marking strategy (maximum or Dörfler), and

associated threshold parameters;

• stoch_adapt_init_spatial: scriptfile for the generation of the initial triangulation of the

spatial domain and all associated data structures (see Section B.3);

• stoch_adapt_init_stoch: scriptfile for the set up of random diffusion coefficients, distri-

bution of parameters as well as associated data structures for parametric discretisations (see

Section B.4).

The same scriptfiles for the goal-oriented adaptive algorithm (e.g., stoch_goafem_init_param)

fulfill similar tasks.

SOLVE module:

• stoch_femp1_setup: function for assembling (first-order) stochastic matrices as well as

source vectors in linear system (4.44);

• stoch_femp2_setup: as stoch_femp1_setup but for second-order spatial Galerkin approxi-

mations;

• stoch_impose_bcx: imposes prescribed Dirichlet boundary conditions on both sides of li-

near system (4.44);

• stoch_est_minresx: function implementing a preconditioned MINRES solver for the solu-

tion of linear system (4.44) and the computation of SGFEM approximations (see [122]).

ESTIMATE module:

• stoch_diffpost_p1_yp: this function computes the energy norm (5.37) of spatial estimator

eYP defined in (5.20) by implementing the element residual method (5.34);
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• stoch_diffpost_p1_yp_linsys: this function also computes the energy norm of spatial

estimator eYP defined in (5.20) but by solving the global assembled linear system directly

arising from discrete formulation (5.20) (assembled linear system is solved using Matlab

backslash (\) operator);

• stoch_diffpost_p1_yp_2level: this function assembles the spatial part (6.31) contribu-

ting to the two-level estimate (6.33);

• stoch_adapt_diffpost_p1_xq: this function computes the energy norm of parametric es-

timator eXQ defined in (5.21) by exploiting the decomposition into contributing individual

indices in the detail index set Q (see (5.27)); this is used by both hierarchical and two-level

error estimates.

MARK module:

• stoch_adapt_marking: main driver for the marking step of adaptive loops. It calls the

marking strategies routines for spatial and stochastic component of SGFEM approximation;

for spatial marking, the function allows the marking of both elements and midpoints (i.e.,

edges);

• marking_strategy_fa: function implementing the maximum and the Dörfler marking stra-

tegies (see Section 2.3.1);

• get_all_marked_elem: this function returns the set of overall marked elements (resp. mid-

points) that have to be refined (resp. introduced) to keep the conformity once the current

triangulation is refined.

REFINE module:

• mesh_ref: main driver for spatial mesh-refinements. It returns the updated data structures

xy, evt, bound, interior, and eboundt (see Section B.3) for the refined triangulation;

• bisection: function implementing NVB refinements where reference edges are the longest

edges;

• stoch_pol_enrich: scriptfile performing the parametric enrichment, i.e., it enlarges the

current index set indset by appending the set of marked indices.
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B.6 Some useful commands. Here, we report some useful Matlab commands that can be used to

obtain information on the underlying triangulation as soon as spatial data structures are available

(see Section B.3):

• get the number of elements and total vertices of triangulation T , respectively:

size(evt,1), size(xy,1);

• get the number of total edges (i.e., midpoints) of triangulation T :

size(evtY,1);

• get the coordinates of interior and boundary vertices, respectively:

xy(interior,:), xy(bound,:);

• get the elements sharing the vertex xi ∈ N (T ) (i.e., the vertex patch é(xi )):

find( sum( (evt==i), 2) );

• get the elements sharing the midpoint zj ∈ N + (i.e., the edge Ej ∈ E(T )):

Ybasis(j,1:2) or find( sum( (evtY==j), 2) );

• get the elements sharing one edge with the element Tn ∈ T (i.e., the element patch é(Tn)):

eex(n,:) or setdiff( Ybasis( evtY(n,:),1:2 ), n ).
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