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Coherent Diffusive Photon Gun for Generating Nonclassical States
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We suggest and discuss a concept of a deterministic integrated source of nonclassical light based on the
coherent diffusive photonics, a coherent light flow in a system of dissipatively coupled waveguides. We
show how this practical quantum device can be realized with a system of single-mode waveguides laser
inscribed in nonlinear glass. We describe a hierarchy of models, from the complete multimode model of
the waveguide network to the single mode coupled to a bath, analyze the conditions for validity of the
simplest single-mode model and demonstrate feasibility of the generation of bright sub-Poissonian light
states merely from a coherent input. Notably, the generation of nonclassical states occurs at the initial
stages of the dynamics, and can be accounted for in the linear model that allows us to circumvent the
prohibiting computational complexity of the exact full quantum representation.
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I. INTRODUCTION

Engineered loss has already turned into a powerful and
intensively researched tool for quantum-state manipula-
tion. With the help of engineered reservoirs, it is possible
to drive a target system into a desired state, to generate and
protect entanglement, to implement computation, and to
transfer quantum states [1–4]. Engineered reservoirs have
become a popular and fruitful research direction for QED
[5], cold atoms and trapped ions [6,7], Rydberg atoms
[8,9], and for superconducting circuits [10–12] due to the
large spectra of possibilities to design systems with nec-
essary coupling between components and strong effective
nonlinearities. For example, by devising strong self-Kerr
and cross-Kerr interactions, and combining them with two-
photon conversion and classical driving, it is possible
to produce two-photon loss, and in this way create the
Schrödinger-cat states and safeguard them against linear
loss [10].

It is considerably harder to engineer losses in pho-
tonic circuits. Optical nonlinearities are usually quite small
and accompanied by rather strong conventional linear
loss. However, even in this case there are possibilities
to exploit effects of nonlocal loss and devise photonic
circuits with quite unusual and potentially very useful fea-
tures, even in passive optical structures. These possibilities
are opened up by a new level of precision and control-
lability reached in systems of coupled waveguides. For
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example, localization of the light in the small part of a
perfect Lieb lattice and diffractionless propagation was
experimentally demonstrated in a system of single-mode
waveguides written in a bulk glass [13,14].

These new experimental advances gave rise to a
recently introduced concept of “coherent diffusive pho-
tonics” (CDP): light processing in a specifically designed
system of single-mode waveguides coupled by common
loss reservoirs, as realized in practice in Ref. [15]. Even
with linear glass, dissipative coupling enables, for exam-
ple, light equalization in a waveguide chain: any input
state tends to a completely symmetrized state over all
the modes. In contrast to the common unitary coupling
schemes, CDP schemes are quite robust with respect to
variations in the coupling length and strength. Further,
CDP allows one to realize an optical router directing light
in different arms of the structure by selective excitation of
the central control nodes, and CDP can even allow light
to be localized in a perfect lattice of dissipatively coupled
modes [15].

In this paper we extend the developed CDP schemes to
the nonlinear regime, and suggest an alternative integrated
CDP-based device exhibiting features of a “photon gun”: a
deterministic generator of nonclassical states, in particular,
sub-Poissonian states (Fig. 1).

It is worth noticing that a true photon gun is still a
challenge (for reviews see [16–18]). Due to high technical
overhead, the available single-photon sources are not read-
ily implementable, mostly do not have well-defined output
mode, and many of them cannot simultaneously satisfy the
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(a) (c)

(b)

FIG. 1. Deterministic photon gun (PhoG) based on the CDP
network of single-mode waveguides written in a bulk of nonlin-
ear glass. (a) Basic scheme behind the PhoG device: two signal
modes asymetrically coupled to a common bath. Both modes
undergo nonlinear coherent loss (NCL). (b) Implementation of
the basic scheme using a network of nonlinear waveguides. The
common bath, the reservoir, is implemented as a linear array
of further waveguides (“tail”). Signal modes [gray in three-
dimensional (3D) picture (c)] are dissipatively coupled via this
common reservoir. The “tail” waveguides [pink in 3D picture (c)]
interact via conventional evanescent coupling.

crucial figures of merit: purity, indistinguishability (often
traded for brightness), and efficiency. Only very recently
top-end quantum-dot-based sources could demonstrate
simultaneously single-photon purity of ≥99%, photon
indistinguishability of 95%–99% and extraction efficiency
of up to 65% [19]. Other alternative, heralded photon
sources based on entangled photon-pair production are
probabilistic and deliver high indistinguishability at the
cost of low brightness. Therefore, in many quantum-
technology applications, experimentalists revert to atten-
uated coherent states instead of single photons. This is
true for most if not all quantum-cryptography implementa-
tions and many others, including quantum simulations and
implementations of quantum gates. Dim coherent states
are “cheap,” easy to handle, and deterministic, however,
their Poissonian photon-number statistics represents a seri-
ous limitation, resulting in unwanted contribution from
multiphoton components. Much better performance can
be achieved using light with sub-Poissonian photon statis-
tics as a quasi-single-photon source. For example, the
key rates for decoy-state quantum-key distribution (QKD)
have been explicitly calculated for different sources, and it
was demonstrated that such a quasi-single-photon source
can drastically raise the key rate in the decoy-state QKD
[20,21].

We demonstrate that the photon-gun device suggested
in this paper is potentially able to act either as a
deterministic or, upon a slight variation of the scheme,
probabilistic quasi-single-photon source. We analyze the
possibility of realization of these devices with current
technology. Whereas approaching deterministic genera-
tion of quasi-single-photon or few-photon strongly sub-
Poissoinian states still seems challenging, we show that
bright sub-Poissonian photon gun is completely feasible

and can be quite robust with respect to experimental
imperfections and noise.

Bright sub-Poissonian PhoG suggested in this paper
carries the important advantage of producing nonclassi-
cal states from merely coherent input, on demand, and in
well-defined temporal and spatial modes. Further, PhoG is
a versatile quantum source and can be modified to pro-
duce correlated photons and other entangled states at the
output. Knowingly, nonclassical photon-number correla-
tions and sub-Poissonian photon statistics can be exploited
for quantum sensing, imaging, and other metrology tasks
[22,23].

The basic idea underlying our scheme is to create a pho-
tonic circuit exhibiting NCL, which is a specific kind of
engineered single-photon loss [24,25]. The principal cir-
cuit, Fig. 1(a), comprises two signal modes asymmetrically
coupled to a common loss reservoir and undergoing NCL.
The required light-propagation regime can be engineered
in different ways. We suggest a nonlinear waveguide net-
work with a chain waveguide structure working as a
common reservoir, Fig. 1(b), which allows the NCL to be
realized in the superposition of two waveguide modes. We
analyze its feasibility under realistic Kerr nonlinearity of
nonlinear glass and for realistic waveguide parameters. We
show that it is feasible to deterministically create bright
sub-Poissonian states of light using a compact (cm-sized)
integrated CDP device and, furthermore, reach other useful
nonclassical output states. The generation of nonclassical
light occurs in the regime when a conventional single-
photon loss is still not affecting significantly the process
of the state generation.

The outline of the paper is as follows. Firstly, in Sec. II,
we present the CDP scheme and describe the hierarchy
of models, which can be used to account for the state
dynamics. We reveal how the description of the whole
network can be reduced to the description of just a sin-
gle superposition mode (“single-mode model”). In Sec. III,
we show that the regime of interest for us is the initial
stage of the dynamics, when strong nonclassicality can
be obtained. We develop an analytic model for evolution
of the Mandel parameter and also show that at this stage
the dynamics can be well captured by the linearization
approach for the quantum correction to the field ampli-
tude. The single-mode model allows us to present a simple
and illustrative analysis of the PhoG-device feasibility pro-
viding necessary parameters of the setup, and ways to
optimize it.

In Secs. IV and V we analyze dynamics of the system
beyond the simplest single collective mode model. We pay
special attention to the two-mode model (Sec. IV), which
exhibits a number of nonclassical features not captured by
the single-mode model, such as entanglement generation.
After that in Sec. VI we proceed to the complete network
showing that for the initial stage of dynamics the predic-
tions made within the single-mode model are indeed true.
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Strong photon-number squeezing is shown to emerge for
moderate lengths of the CDP circuit with realistic losses
and nonlinearity. Also, to assess the impact of specific
effects of short-pulse propagation in our system of coupled
waveguides, we dynamically evolved the spectral and tem-
poral properties of the pulse via the nonlinear Schrödinger
equation, and analyzed their influence on the effectiveness
of the NCL mechanism taking into account the combined
effect of chromatic dispersion, self-phase modulation, and
self-steepening of the pulse.

II. HIERARCHY OF MODELS

In the case of a large number of interacting quantum
modes, a large number of photons and in the presence
of nonlinearity, an exact description of the quantum-state
dynamics of our system is a formidable task. To tackle the
problem, we develop the hierarchical approach to model
the photon gun and optimize its structure. The complete
CDP scheme is reduced to much simpler systems of a few
modes as shown in Fig. 2. These systems are much more
tractable and can be analyzed, optimization can be carried
out, approximations can be verified, and then the obtained
results can be validated by the approximate numerical
analysis of the complete CDP circuit.

The original scheme underlying all the subsequent dis-
cussion is depicted in Figs. 1(b) and 1(c): two waveguides
a and b are coupled to the third waveguide c0 (but not
to each other), and this waveguide c0 is coupled to the
“tail” of next-neighbour coupled single-mode waveguides
cj , j = 1 . . . N . In our consideration, we assume identical
single-mode waveguides described by the corresponding
bosonic creation and annihilation operators. We assume
that some initial state is created in the network, and then

(a) (b) (c) (d)

FIG. 2. Hierarchy of the PhoG models (a)–(d). The model (a)
corresponds to the setup shown in Figs. 1(b) and 1(c) of cou-
pled single-mode waveguides. Modes a and b interact with mode
c0 coupled also to the “tail” of modes c1...N . The three-mode
model (b) corresponds to the adiabatically eliminated “tail” of
waveguides retaining only the first waveguide of the tail, which
is highly lossy due to direct coupling to the reservoir R. This
effectively corresponds to the system presented in Ref. [24]. The
model (c) shows the “two-mode model,” the model with two
superposition, collective modes s± Eq. (5) obtained by eliminat-
ing the third mode c0 of (b). Finally, the single-mode model (d) is
obtained by adiabatic elimination of one of the collective modes
in (c).

this state evolves. Thus, the dynamics of this system is
described by the following master equation for the density
matrix ρ:

d
dt

ρ = −i[H , ρ] + γ1

⎡
⎣L(a) + L(b) +

N∑
j =0

L(cj )

⎤
⎦ ρ,

(1)

where the Lindbladians L describing common single-
photon loss with the rate γ1 are given by L(x)y = xyx† −
1
2 x†xy − 1

2 yx†x for operators x and y; the density matrix for
all modes is ρ and the Hamiltonian H = H int + H Kerr con-
sists of two parts. The first part describes linear interactions
between the modes

H int = gaa†c0 + gbb†c0 +
N∑

j =1

gj c†
j −1cj + h.c., (2)

where ga,b are couplings of the modes a, b, respectively,
to the third mode c0, and gj is the coupling between
mode cj −1 and cj . The part H Kerr describes the self-Kerr
interaction of each mode,

H Kerr = U
2

∑
∀x

(x†)2x2, x = a, b, cj , j = 0, 1 . . . N ;

(3)

U is the Kerr nonlinear interaction constant.
For a large number of waveguides N and large initial

number of photons, the complete model, Eqs. (1) and (2), is
practically intractable without approximations. However,
we are interested in the regime when the “tail” formed by
the waveguides cj , j = 1 . . . N , can be considered a dissi-
pative reservoir rapidly guiding away field from the mode
c0 [14,15]. Assuming that the tail functions as a Marko-
vian reservoir with the decay rate γc, we arrive at the
three-mode model depicted in Fig. 2(b) and described by
the following master equation for the three-mode density
matrix:

d
dt

ρ3 = −i[H3, ρ3] + [γ1L(a) + γ1L(b) + γL(c0)] ρ3,

(4)

where γ = γ1 + γc, the Hamiltonian is H3 = H int
3 + H Kerr

3
with H Kerr

3 as given in Eq. (3) and the interaction part is
H int

3 = gaa†c0 + gbb†c0 + h.c.
The three-mode model of Fig. 2(b) is still too compli-

cated for exact analysis in the case of a large number of
photons. Further simplification can be reached assuming
that the decay rate into the “tail” γc is large enough to
allow for the adiabatic elimination of the mode c0. Let us
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introduce symmetric and antisymmetric collective modes:

s+ = 1
G

(gaa + gbb), s− = 1
G

(gab − gba), (5)

with G =
√

g2
a + g2

b and coupling constants ga,b assumed
real. Then adiabatic elimination of mode c0 leads to the
following two-mode master equation [24,25]:

d
dt

ρ2 = −i[H2, ρ2] + [γ1L(s−) + (� + γ1)L(s+)] ρ2,

(6)

with � = 4G2/γ . The Hamiltonian H2 = H int
2 + H self

2 is
given by

H self
2 = ς1(n2

+ + n2
−) + ς2n+n− + ς3(n+ + n−),

H int
2 = ς4(s

†
+s−)2 + ς5s†

+s−(n− − n+ − 1) + h.c.,
(7)

where n± = s†
±s± are the photon-number operators, and

the coefficients read

ς1 = U
2G4 (g4

a + g4
b), ς2 = 4U

G4 (gagb)
2,

ς3 = ς2/4 − U/2, ς4 = ς2/4, ς5 = U
G4 gagb(g2

a − g2
b).

The two-mode model is depicted in Fig. 2(c).
Finally, if the state of the superposition mode s+ decays

to the vacuum much quicker than the typical timescale of
the dynamics of the superposition mode s−, one arrives
to the single-mode model of Fig. 2(d) described by the
following master equation [24,25]:

d
dt

ρ1 = [
γ1L(s−) + γ2L(s2

−) + γ3L(n−s−)
]
ρ1

+ −i[ς1n2
− + ς3n−, ρ1], (8)

where the decay rates are given by

γ2 = 4U2(gagb)
4

G8(� + γ1)
, γ3 = 4U2(gagb)

2

G8(� + γ1)
(g2

a − g2
b)

2. (9)

The master equation (8) takes account of the three decay
channels for the antisymmetric collective mode: conven-
tional single-photon loss (γ1), two-photon loss (γ2), and
NCL (γ3). We refer to the decay described by the Lindblad
operator n−s− as “nonlinear coherent loss” as the eigen-
states of the operator n−s− are named “nonlinear coherent
states” [27]. The Lindblad operator n−s− responsible for
NCL can be considered as the annihilation operator of
so-called f-deformed harmonic oscillator [26].

Note that the unitary part of the master equation, the last
term in Eq. (8) connected to the self-Kerr interaction, does

not manifest itself in the dynamics of the diagonal elements
of the density matrix ρ1.

The model Eq. (8) is much easier to tackle for a large
number of photons than the two-mode model Eq. (6).
Moreover, it allows us to obtain some general conclusions
about nonclassicality, which are valid even for numbers of
photons so large that an exact solution becomes unfeasible
even for the single-mode model.

III. SINGLE-MODE MODEL

In this section we analyze the simplest single-mode
scheme of Fig. 2(d) to describe the generation of the bright
sub-Poissonian state from the semiclassical coherent input,
and outline the way to optimize the scheme by choosing
the amplitude of the initial coherent state and parameters of
the PhoG for realistic CDP circuits with significant linear
loss and moderate Kerr nonlinearity. We establish an exis-
tence of universal parameters X , Y, which are determined
by effective nonlinearity and thus allow us to character-
ize the scheme performance even for realistic small optical
nonlinearities and, consequently, very large numbers of
photons, when solving the master equation becomes hardly
possible. Finally, we demonstrate the practical feasibility
of the scheme.

A. Nonlinear loss dynamics

There are two kinds of nonlinear loss present in the
single-mode master equation (8). The first one is the two-
photon loss described by the term L(s2

−) and the second
kind is the NCL described by the term L(n−s−). Both these
kinds of losses are able to produce photon-number squeez-
ing. However, their timescales and asymptotic states are
different. The two-photon loss asymptotically leads to a
mixture of single-photon and vacuum states [28,29]. NCL
asymptotically leads to the single-photon state [24]. We
show here that for the initial coherent state with large
amplitude, |α| � 1 and the assumed equal decay rates,
γ2 = γ3, NCL leads to much faster decay of the average
photon number in the antisymmetric collective mode s−
than the two-photon loss and thus to more rapid narrowing
of the photon-number distribution in s−.

The degree of photon-number distribution squeezing
can be conveniently described by the Mandel parameter
[30], which for the superposition mode s− reads

Q = 〈(s†
−)2s2

−〉
〈n−〉 − 〈n−〉. (10)

Mandel parameter Q = −1 corresponds to the perfect
squeezing (Fock states), zero is for coherent states. This
parameter can be inferred from dynamics of only the diag-
onal elements of the density matrix Eq. (8) given by the
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following equation:

d
dt

ρn = −[γ1n + γ2n(n − 1) + γ3n(n − 1)2]ρn

+ [γ1(n + 1) + γ3(n + 1)n2]ρn+1

+ γ2(n + 1)(n + 2)ρn+2, (11)

where 〈n|ρ1(t)|n〉 = ρn are the density-matrix elements in
the Fock-state basis.

Note that for the symmetric case, ga = gb, the NCL
decay rate γ3 is zero. For asymmetric coupling, ga �= gb,
we fix the parameter ga and start varying the parameter
x = gb/ga for x ∈ [0, 1]. The maximal value of the rate γ3
is then given by the condition dγ3(x)/dx = 0 and leads to
the following result for the ratio of the interaction constants
to maximize NCL:

(gb/ga)opt =
√

2 − 1. (12)

For this optimal coupling ratio, we have

γ3 = U2

4(γ1 + �)
. (13)

In further considerations, we adopt this ratio for estima-
tions.

In Fig. 3 examples of the Mandel parameters and aver-
age photon-number dynamics are given for different num-
bers of photons (several hundred) of the initial coherent
state. Fig. 3 reveals a number of important features in the
dynamics of the antisymmetric collective mode:

1. The Mandel parameter rapidly decreases at the ini-
tial stage of the dynamics. Only a small percentage of
photons is lost when quite considerable negative values of
the Mandel parameter are reached [less than 15% to have
significant photon-number squeezing with Q < −0.25, see
Figs. 3(c) and 3(d)].

2. The practically reachable values of the Mandel
parameter are approximately limited to Q = −0.8 (see also
Ref. [31]). This minimal value is shifted to smaller inter-
action length by increasing the average number of photons
in the initial state.

3. Dynamics due to NCL occurs much faster than
dynamics due to the two-photon loss. As seen in Fig. 3(a),
even a hundredfold increase in the two-photon decay rate,
γ2, does not influence much the initial stage of the Q-
parameter dynamics. In general, the ratio between these
two timescales is determined by the ratio between the cou-
pling constants, gb/ga: γ3 = γ2

[
1 − (gb/ga)

2] / (gb/ga)
2

[see Eq. (9) and text around Eq. (12)].
4. NCL can outrun linear loss. Figure 3(b) shows that

even large linear loss weakly affects the initial stage of the
dynamics.
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FIG. 3. Mandel parameter Q (a) and the average number of
photons (c) for different values of the initial number of photons of
the input coherent state and no linear loss, γ1 = 0. The solid, dot-
dashed, and dashed lines correspond to 〈n−(0)〉 = 100, 300, 500,
respectively. The line marked with round dots in (a) shows the
Mandel parameter for 〈n−(0)〉 = 300 and γ2 increased 100 times
(enhanced two-photon loss) compared with that given by Eq. (9).
Mandel parameter Q (b) and the average number of photons (d)
for different values of linear loss rate γ1 and the initial coher-
ent state with the average number of photons 〈n−(0)〉 = 500.
The solid, dot-dashed, dashed, and dotted lines correspond to
γ1 = 0, 20g, 200g, 400g, respectively. The scaling parameter g
here and in the subsequent simulations is taken to be a half of the
third-order nonlinear rate, U = 2g. For all the panels, the opti-
mal ratio Eq. (12) is taken. Also, it is assumed that the symmetric
mode loss rate � = 432g.

5. Consider now the case of no linear loss. For differ-
ent large initial numbers of photons, after some time the
average numbers of photons tends to largely the same sta-
tionary value [Fig. 3(c)]. It is a signature behavior of NCL
[24].

B. Universal parameters

As we show, the two-photon loss only weakly influ-
ences the dynamics of photon-number squeezing. Also,
large photon-number squeezing is generated at the initial
stage of dynamics when only a relatively small number
of photons is lost. These two facts allow us to introduce
two dimensionless parameters allowing an estimation of
the feasibility of the scheme. These two parameters are

X = γ3[〈n−(0)〉]2tfix, Y = γ1

γ3〈n−(0)〉2 , (14)

where tfix is the fixed interaction time (defined by the
length of the PhoG). The parameter X defines the
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FIG. 4. Dependence of the Mandel parameter Q on the param-
eter X of Eq. (14) for different initial average numbers of
photons 〈n−(0)〉 in the absence of linear loss, γ1 = 0, (a) and for
significant linear loss, γ1 = 10g, (b). Dashed, dotted, and dot-
dashed lines are obtained by solving Eq. (11) and correspond to
〈n−(0)〉 = 100, 400, 900, respectively. Solid line corresponds to
the analytical approximation given by Eq. (17). Other parame-
ters are the same as for Fig. 3. The lines merge together and are
almost indistinguishable for γ1 = 0. The line for 〈n−(0)〉 = 900
merges with approximate solution (17) even for γ1 = 10g.

reachable value of the Mandel parameter, Q, in the absence
of the linear and two-photon loss, and the parameter Y
defines the tolerable level of the linear loss when the value
of Q is still defined by X .

In terms of parameter Y, one has to have Y < 1 for opti-
mal Q for a given X , Fig. 4(a). Of course, even larger
values of Y still allow for considerable Q. However for
that, larger values of X are required.

Such a dependence of photon-number squeezing on the
universal parameters can be explained by simple analytic
considerations. For a large number of photons of the ini-
tial coherent state, the initial photon number distribution
can be with high precision described by the Gaussian. Let
us assume that for the initial stage of the dynamics the
distribution can still be described by the Gaussian

ρn(t) = 1√
2πσ(t)

exp
{
− [n − 〈n−(t)〉]2

2σ(t)2

}
, (15)

where σ(t) = [Q(t) + 1]〈n−(t)〉. In Appendix A it is
shown that Gaussianity of the photon-number distribution
holds very well for 〈n−(t)〉 � 1. Assumption of a smooth
photon-number distribution slowly changing with n [like

the one given by Eq. (15) for large 〈n−(0)〉] allows us
to introduce a continuous variable n, to make an approxi-
mation ρn+m ≈ ρn + m(d/dn)ρn + m2 1

2 (d2/dn2)ρn, and to
calculate averages as

〈n−(t)m〉 =
∫ +∞

0
dnρnnm.

Thus, one can obtain the following equation for the Mandel
parameter:

d
dt

Q ≈ −γ1Q − 2γ2〈n−〉(3Q + 1) − γ3〈n−〉2(5Q + 4).

(16)

Neglecting linear and two-photon losses, in the continu-
ous approximation for Eq. (11) one obtains that 〈n−(X )〉 ≈
〈n−(0)〉/√1 + 2X (see Appendix A). For the Mandel
parameter we get

Q(X ) ≈ −4
5

[
1

(1 + 2X )5/2 − 1
]

. (17)

This situation is illustrated in Fig. 4. Figure 4(a) shows
that in the absence of linear loss neither the initial num-
ber of photons nor the interaction time by themselves are
the parameters defining possible Q. Practically, it depends
only on X . The black solid line in Fig. 4(a) shows the
result provided by approximation (17) for several initial
states with hundreds of photons. It is obvious that Eq.
(17) very closely reproduces the exact solution of Eq. (11).
Equation (11) also shows why the influence of two-photon
losses is so small for γ2 close to γ3: the timescales are
determined by ∝ γ2n2 for two-photon loss and ∝ γ3n3 for
NCL. For large photon numbers and γ2 ≈ γ3, the NCL
obviously dominates.

Figure 4(b) shows the influence of linear loss (described
by the parameter Y) on the reachable value of the Man-
del parameter. For a given linear loss of γ1 = 10g, for
〈n(0)〉 = 900 one has Y < 1, and the curve describing the
achievable values of the Mandel parameter (dash-dotted
line) is practically coinciding with the approximation given
by Eq. (17). For small Y any influence of the linear loss
is indeed small. For a smaller initial number of photons,
〈n(0)〉 = 100, when Y > 1, one has considerable difference
with analytic predictions [dashed line in Fig. 4(b)].

C. Feasibility

Universal parameters X and Y are decisive to ensure the
optimal performance of PhoG as a deterministic source of
sub-Poissonian light. For PhoG design we have a “rule-of-
thumb”: we should aim to make X as large as possible,
and Y as small as possible. In this section we demonstrate
that it is feasible to reach X > 0.3 and Y < 1 for realistic
waveguide structures.
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First of all, we connect the nonlinear interaction con-
stant U in expressions (9) with quantities commonly used
for description of the Kerr nonlinearity in waveguide struc-
tures. We assume that the pulse of the finite length propa-
gates through the waveguide, and the pulse length Leff is
much smaller than the waveguide length; we introduce the
propagation length as z = ctfix/neff, where neff is the effec-
tive refractive index of the waveguide mode. Thus, the
nonlinear interaction constant in our model can be written
in the following way (see, for example, Ref. [32]):

U = 2�ω
ω

Veff

n2

neff
, (18)

where n2 is the nonlinear refractive index and Veff is the
mode volume. For our model, we assume Veff ≈ AeffLeff,
where Aeff is the effective area. The effective area is
defined as

A−1
eff =

∫ ∫
d2s |E(s)|4, (19)

where E(s) is the normalized transversal field profile,
∫ ∫

d2s |E(s)|2 = 1.

Here we do not consider the influence of losses on the
nonlinear interaction constant [33].

In a fiberlike waveguide it is customary to introduce the
nonlinear fiber coefficient:

γ̄ NL = ω

c
n2

Aeff
⇒ U = 2

�ω

Teffneff
γ̄ NL, (20)

where Teff is the pulse time duration in vacuum.
Now let us consider several waveguide arrangement

with realistic parameters.

1. Large waveguides in bulk glass

Let us take coupling parameters as used in the CDP cir-
cuits in Ref. [15], ga ≈ 200 m−1. The decay rate of the

c0 mode Fig. 2 can be approximated by γc ≈ 4
√

g2
a + g2

b ,
which for optimal coupling ratio results in � ≈ 216.5 m−1

(decay rate for the symmetric collective mode s+, Fig. 2).
For intended linear loss of about 0.5 dB/cm, we have
γ1 ≈ 11.5 m−1, and γ3 ≈ 0.0011 m−1 × U2. The dimen-
sions of the waveguides as used in CDP circuits in Ref.
[15] are approximately 4 × 4 μm2. For a conservative esti-
mate, let us assume an effective modal area an order of
magnitude larger than typical for single-mode fibers with
similar core dimensions around 1000 nm (see, for example,
Corning� HI 1060 fiber with the mode-field diameter of
about 6.2 μm at 1060 nm), Aeff = 300 μm2 (which would
be more than three times larger even for typical modal

areas at 1550 nm). Thus, taking n2 = 3 × 10−18 W−1 m2

and neff = 2.59 typical for IG2 glass [34], for a 100-fs
pulse at 1060 nm we have γ3 ≈ 8 × 10−18 m−1. Condi-
tion Y = 1 of Eq. (14) requires energy levels of 1.2 × 109

photons per pulse or 224 pJ per pulse. The feasibility of
these energy levels in the context of our setup is confirmed
by the recent work [35], where femtosecond pulses with
energies more than 10 nJ at 1030 nm have been used for
writing waveguides. Using all these parameters, for a 3-cm
waveguide we have X ≈ 0.33, which is sufficient to reach
a high degree of photon-number squeezing Q < −0.5. As
follows from condition (14), for lower effective modal area
one would need proportionally lower energies per pulse.
For Aeff = 30 μm2 only 25 pJ per pulse is sufficient.

2. Fiberlike systems

Now let us use for the PhoG setup the parameters
from the recent fiber-based interferometric scheme [36] for
sub-Poissonian light generation. For the used polarization
maintaining fiber (Nufern, HP-780) one has γ̄ NL = 8.51 ×
10−3 W−1 m−1 for 808 nm. Using neff = 1.45, we arrive at
γ3 ≈ 9.2 × 10−19 m−1. It is nearly an order of magnitude
lower than for the bulk waveguides. However, much lower
loss of 3.5 dB/km implies that condition (14) is easier to
satisfy. For that, 3 × 107 photons per pulse (or less than
10 pJ per pulse) are needed. If 2 × 109 photons per pulse
are used, 10 cm of the fiber are required to reach X = 0.37
and squeezing of about Q < −0.5 (which is more or less
in agreement with results obtained in Ref. [36]).

3. Silicon nanowires

Finally, let us consider the silicon nanowire arrangement
as a possible platform for PhoG generators. Si-nanowire
waveguides have typically very high nonlinearity and loss,
and small lengths. We assume loss of 5 dB/cm and mod-
erate nonlinearity, γ̄ NL = 300 W−1 m−1 with other param-
eters being the same as above [37]. Notice that even for
such loss level, � is larger than γ1, where γ1 ≈ 115 m−1.
For neff = 3.5 and wavelength of 1064 nm, we obtain γ3 ≈
7.75 × 10−11 m−1, which is much larger than for all the
previously considered cases. To satisfy Y = 1, we require
only 1.3 × 106 photons per pulse or less than 0.3 pJ pulse
energy. For this number of photons a 3-mm waveguide
would be sufficient to achieve X = 0.345 and Q < −0.5.

D. Linearization

Here we demonstrate that, over the timescales when
large photon-number squeezing occurs, at the initial stage
of dynamics the evolution of the Mandel parameter can
be adequately described using a linearization approach.
This approximation is typical for consideration of non-
linear waveguide systems. Essentially, it is a linearization
on a quantum correction to the creation and annihilation
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operators, s− = S− + δs−, where the quantity S− = 〈s−〉 is
the classical amplitude, δs− are the quantum fluctuations,
which obey the same commutator as s−, and 〈δs−〉 = 0.
The resulting system of equations allows us to find quan-
tities 〈s−〉, 〈s†

−〉, 〈s2
−〉, 〈s†

−s−〉, and 〈s†2
− 〉 and circumvents

the computational complexity required in the case of exact
solution for large photon numbers in a large number of
modes.

Our starting point is Eq. (8), from which we may derive
the following system of coupled equations:

∂t〈s−〉 = c1〈s−〉 + c2〈s†
−s2

−〉 − γ3

2
〈s†2

− s3
−〉,

∂t〈s†
−〉 = c∗

1〈s†
−〉 + c∗

2〈s†2
− s−〉 − γ3

2
〈s†3

− s2
−〉,

∂t〈s2
−〉 = c3〈s2

−〉 + c4〈s†
−s3

−〉 − γ3〈s†2
− s4

−〉,
∂t〈s†2

− 〉 = c∗
3〈s†2

− 〉 + c∗
4〈s†3

− s−〉 − γ3〈s†4
− s2

−〉,
∂t〈s†

−s−〉 = −γ1〈s†
−s−〉 + c5〈s†2

− s2
−〉 − γ3〈s†3

− s3
−〉,

(21)

with coefficients c1 = (−γ1/2 + iς1 + iς3), c2 = (γ2 −
γ3 + 2iς1), c3 = (−γ1 − γ2 − γ3 + 4iς1 + 2iς3), c4 =
(−2γ2 − 5γ3 + 4iς1), and c5 = (−2γ2 − γ3).

This system of equations is not closed, and so cannot
yet be solved. To proceed, we must perform the lineariza-
tion procedure in order to reduce operator products in
Eq. (21) to at most second order, thereby closing the sys-
tem of equations and allowing us to obtain its solution.
The linearization can be done in a standard manner using
the cumulant expansion (see Appendix B). The linearized
forms of Eqs. (21) are excplitly shown in Appendix C.

The solution of the linearized forms of Eq. (21) are used
to approximate Q, and in Fig. (5) this result is compared to
the exact method from the previous section. The lineariza-
tion approximation (dashed lines) accurately predicts the
evolution of Q over the initial stages of evolution, and
actually underestimates |Q| in the later stages, although
including realistic γ1 allows the approximation to remain
accurate as the nonclassical output state is pushed towards
the vacuum.

Since when γ1 = 0 the linearization approximation
remains accurate over the timescales of interest [see
Fig. 5(a)], and since the presence of realistic loss makes
the approximation increasingly accurate [see Fig. 5(b)], we
may confidently apply the linearization approach over the
parameter regimes of physical interest – short times and
realistic loss – even in the case where a fully quantum
treatment would be intractable, i.e., large 〈n (0)〉 or large
number of modes.

IV. THE SYMMETRIC TWO-MODE MODEL

In the previous section, we show that two-photon loss
is far less efficient in producing photon-number squeezing

(a)

(b)

FIG. 5. Evolution of the Mandel Q parameter is accurately pre-
dicted by the linearization method over the initial stages of evolu-
tion, and |Q| is underestimated at later stages. Dashed, linearized.
Solid, exact, as in Fig. 3. U = 2g and � = 432g. (a) Initial pho-
ton number 〈n− (0)〉 = 100, 300, 500, 700 (top to bottom), with
γ1 = 0. (b) 〈n− (0)〉 = 500, γ1 = 0, 20g, 200g, 400g (bottom to
top). With realistic linear loss rates γ1 our approximation remains
accurate even in the late stages of evolution. Both graphs use the
same time scaling gt as Fig. 3.

than NCL. However, it is worth pointing out that even sym-
metric system exhibiting only two-photon loss can be of
use. To show it, let us recourse to the two-mode model
of Fig. 2(c). First of all, even a symmetric system is able
to produce entangled states of waveguide modes asymp-
totically, when the state of the symmetric superposition
mode s+ is the vacuum (Sec. IV A). The second and rather
nontrivial feature of the symmetric system is the possibil-
ity of producing few-photon entangled states by driving
the rapidly decaying collective mode s+ (Sec. IV B). This
scheme can also be used for probabilistic generating of
single photons.

A. Modal entanglement

Generally, the state produced by the two-photon loss is
quite far from Gaussian (asymptotically, the initial bright
coherent state is driven by the two-photon loss toward the
superposition of the vacuum and single-photon state [28,
38]). However, one can still obtain a lower bound on the
entanglement between modes from the covariance matrix
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FIG. 6. Two-mode PhoG model: symmetric CDP circuit with
initial excitation in symmetric collective mode s+.

for modes a, b: σkl = 1
2 〈dkdl + dldk〉 − 〈dk〉〈dl〉, with the

vector d =
(

1/
√

2
) [

a + a†, i
(
a† − a

)
, b + b†, i

(
b† − b

)]
[39,40]. This bound is provided by the (Gaussian) logarith-
mic negativity N [39,40], which quantifies violation of the
positive partial transpose criterion [41]. The logarithmic
negativity N is defined as N = max {0, −log λ}, where λ

is the smallest symplectic eigenvalue of the partially trans-
posed matrix σkl. Elements of this matrix are provided by
the linearized approach considered in the previous section.

For example, for 〈a†a (0)〉 = 〈b†b (0)〉 = 2500, U = 2g,
γc = 15g, γ1 = 11.5g and symmetric coupling ga = gb =
60g, the system evolves to logarithmic negativities N ≈
1.25 between modes a and b within 0.01gt, while modes
a and b each contain 18 photons. Thus symmetric PhoG
generates entanglement between modes a and b (though is
unable to produce large photon-number squeezing in the
initial stages of the dynamics).

B. Photon-pair generation

Despite the quick decay of the symmetric mode s+, it
still can create a nonclassical state in the mode s−. Indeed,
for the symmetric case of Fig. 6, ga = gb ≡ g, we have
ς5 = 0 and the Hamiltonian part describing interaction
between superposition modes is

H int
2 = ς4(s

†
+s−)2 + h.c. (22)

The Hamiltonian H int
2 for the case describes the four-wave-

mixing process of transferring two photons of initially
excited decaying mode s+ to the initially empty mode s−.
Thus the symmetric PhoG of Fig. 6 can be designed to
reproduce the four-wave-mixing process, which is known
to allow for the generation of entangled photon pairs
[42,43]. But notice that in our case there is no problem
of separating the generated state from the pump. For suf-
ficiently long PhoG the driving excitation of the mode s+
completely decays leaving photons only in the mode s−.

The process of the pair-generation dynamics with weak
coherent initial states is illustrated in Fig. 7 with the
photon-number distribution of mode a. Initial coherent
states with equal amplitudes are excited in waveguides a
and b(corresponding to s+, s− as shown in Fig. 6). For
small propagation lengths, the remnant of the initial excita-
tion dominates [Fig. 7(a)]. However, it quickly decays and

1 2 3 4 5
0

0.5

1

1.5

2
(a) (b)x10

–3

n

P
a
(n

)

1 2 3 4 5
0

0.5

1

1.5
x10

–4

n

gt = 0.25 gt = 0.75

FIG. 7. P(n), the n-photon probabilities, in mode a for different
propagation times. The symmetric PhoG is taken, ga = gb = g.
Weak coherent states with amplitudes αa = 0.5; αb = 0.5 are
assumed as initial states of modes a and b. Here zero-photon
components are not shown. Notice that here the scaling constant
g is taken to be equal to the Kerr nonlinear constant, U = g; the
loss in the collective symmetric mode is γc = 5g, and the linear
loss rate is zero.

for larger times predominantly two photons in the antisym-
metric mode are observed [Fig. 7(b)]. Just two photons in
this mode correspond to the following entangled superpo-
sition of photons in waveguides a and b at the output of the
PhoG:

|s−〉out|s+〉out = |2〉− |0〉+
= 1

2

(
|2〉a|0〉b + |0〉a|2〉b −

√
2|1〉a|1〉b

)
.

(23)

One can see the photon-number distribution correspond-
ing to single- and two-photon part of the generated state
(23) in Fig. 7(b). The ratio of the single-photon compo-
nent to the two-photon component is approximately 2.05
for gt = 0.75. Notice that by increasing amplitudes of
the initial states, a squeezed vacuum state is created in
mode s−.

Another important difference with the conventional
four-wave-mixing pair-generating schemes [42,43] is that
here we have the two entangled photons in two spatially
separated modes. As can be seen in Ref. [15], at the PhoG
output, the spatial distance between the modes exceeds
considerably the mode cross section.

V. THREE-MODE MODEL

As seen in the previous sections, analysis of the single-
mode model allows us to give simple and straightforward
prescriptions for the practical realizations of the PhoG. The
question is how close predictions given by the single-mode
model approach the results for more complicated modal
arrangements.

In this section, we analyze dynamics of a three-mode
PhoG schematically shown in Fig. 2(c). Considering this
model, we have in mind two purposes. Firstly, the three-
mode scheme can be realized in practice as it is, i.e., by
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arranging a strong loss in the waveguide c0. It is feasible,
for example, in semiconductor planar waveguide struc-
tures [44]. Secondly, the three-mode model still allows for
a comparison between the exact solution and the single-
mode approximation for a moderately large numbers of
photons (few tens). One could also use it to verify the lin-
earization approximation, and check the optimal ratio of
the interaction constants gb/ga for minimizing the Mandel
parameter with a fixed interaction time and length.

To verify the transition from the three-mode model
Eq. (4) to the single-mode model Eq. (8), the evolution of
the mean photon number 〈n−(t)〉 and the Mandel parameter
Q−(t) of the antisymmetric collective mode s− is simu-
lated using the three-mode model and quantum trajectories
approach [45]. Obtained results are then compared with
the same quantities computed using the single-mode model
with parameters taken from Eqs. (9). Figure 8 illustrates
how close these models are for the optimal ratio gb/ga
Eq. (12) and large enough losses in the third, lossy, mode.
Solid lines in the figure correspond to the three-mode
model and dots correspond to the single-mode model. The
figure is obtained for gb/ga = √

2 − 1, U = 0.012gb, γc =
6.04gb, γ1 = 0.

Thus, the three-mode model confirms the main evolu-
tion characteristic stemming from the single-mode analy-
sis, namely, rapid photon-number squeezing for relatively
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FIG. 8. Evolution of Mandel parameter (a) and mean photon
number (b) of the antisymmetric mode s− computed using the
three-mode model (solid lines) and the single-mode model (dots)
for the following parameters: gb/ga = √

2 − 1, U = 0.012gb,
γc = 6.04gb, γ1 = 0.

small decrease in photon number in the initial stage of
evolution.

VI. MULTIMODE MODEL

Finally, we consider a complete multimode model
depicted in Fig. 2(a) for the realistic parameters described
in Sec. III, and show that predictions made in that section
still hold true for a multimode circuit of dissipatively cou-
pled bosonic modes. We consider the multimode PhoG
device with the two signal modes coupled to a long tail,
which is described by Eq. (1).

We take the physical parameters from Sec. III C 1 for
coupled waveguides in bulk glass, and the number of tail
modes to be N = 28. Since the Kerr-nonlinearity param-
eter is small, U ∼ 10−8, in order to reach the regime of
strongly sub-Poissonian light we have to take a bright input
coherent state containing O (

109
)

photons. To model such
large numbers of photons and long tail lengths we recourse
to the linearization method described in Sec. III D along
the lines demonstrated in Appendix B.

This linearization technique is applied to the full mas-
ter equation, Eq. (1). Since in the multimode model the
Lindblad operators are only first order in a, b, and cj , only
the third- and fourth-order linearization approximations are
required. Therefore, we may reasonably expect the approx-
imation to be more accurate in the multimode case than
in the single-mode case, where linearization on sixth-order
expectation values is required. We thus derive a closed sys-
tem of equations for expectations up to second order. An
example of the evolution of both Q and 〈n−〉 is shown in
Fig. 9.

When a coherent state containing 1.2 × 109 photons is
initialized in mode s− (solid red lines in Fig. 9), the system
quickly evolves to a strongly sub-Poissonian state, even in
the presence of a realistic loss rate γ1. A brighter initial
state results in larger |Q| over shorter timescales, and in
greater robustness of the sub-Poissonian output to linear
loss γ1.

For no linear loss, γ1 = 0 (dashed line in Fig. 9(b)), Q ≈
−0.8 remains steady until a later time, which is propor-
tional to N . Thus, the tail effectively acts as a Markovian
reservoir, which justifies its adiabatic elimination in Eq. (4)
[15]. Crucially, therefore, the long tail of modes combined
with the self-Kerr interaction corresponds to the effects of
nonlinear coherent loss into a Markovian reservoir (com-
pare Figs. 3 and 9), and we note that the timescales over
which this correspondence holds may be increased by
increasing the tail length N .

Since s− is a linear combination of modes a and b,
Eq. (5), the input coherent state with amplitude α into s−
may be generated by initializing modes a and b with coher-
ent states of appropriate amplitude. Alternatively, we may
consider the initial condition 〈a〉 = α and all other modes
as vacuum. In this case, the behavior of s− is qualitatively
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(a)

(b)

FIG. 9. With the realistic parameters U = 8.5 × 10−8, gc =
60 m−1, tail length N = 28, and the optimal coupling ratio Eq.
(12), mode s− quickly evolves to a strongly sub-Poissonian state.
A coherent state with average photon number n− (0) is initial-
ized in mode s−, and all other modes are initialized into the
vacuum. (a) The dot-dashed, solid, dotted, and dashed lines cor-
respond to 〈n− (0)〉 = 1.7 × 109, 1.2 × 109, 7.2 × 108, and 2.4 ×
108, respectively, and γ1 = 11.5 m−1. Inset, the evolution of pho-
ton number 〈n−〉 displays the nonlinear decay behavior perculiar
to the NCL mechanism. (b) The Mandel parameter Q remains
strongly negative even in the presence of realistic linear loss
γ1. The dashed, solid, dotted, and dot-dashed lines correspond
to γ1 = 0, 11.5, 20, and 40 m−1, respectively, and 〈n− (0)〉 =
1.2 × 109.

equivalent to Fig. 9, but a slightly different optimal ratio
gb/ga should be considered.

Finally, we note that in the case of γ1 = 0, the sig-
nal modes are highly sensitive to whether N is odd or
even, and for even N the decay of mode s− is inhibited.
Indeed, the decay rate γ ′ into an effective reservoir changes
depending on N , and may be understood as an interfer-
ence effect resulting from the unitary coupling between
tail modes affecting whether the excitation returns to signal
mode a or mode b from the tail. This effect of the reservoir,
which quickly vanishes at even small levels of linear loss
γ1, will not manifest itself over the timescales of interest
provided that N is large.

We demonstrate that the multimode model—which
is the model most closely aligned to a physical

FIG. 10. Evolution of photon number from the numerical solu-
tion of the 100-fs pulse propagation in the waveguide structure
with five modes in the tail. We account explicitly for chromatic
dispersion, Kerr effect and self-steepening, and solve the nonlin-
ear Schrödinger equation via the split-step Fourier method for the
system of coupled waveguides. The blue, red, green, and purple
lines correspond to 〈n−(0)〉 = 1.6 × 109, 1.2 × 109, 7.8 × 108,
and 3.9 × 108. The evolution of the photon-number characteristic
for the NCL mechanism is observed [compare with Fig. 9(a)].

implementation via waveguides inscribed in bulk glass,
Fig. 2(a)—can generate a strongly sub-Poissonian out-
put from a classical input state into mode s− over the
short timescales of initial evolution. This corroborates
results from Sec. III and the prediction of optimal coupling
parameters ga,b Eq. (12) when mode s− is initially excited.

To assess the impact of specific effects of short-pulse
propagation in the system of coupled waveguides, we
dynamically evolved the spectral and temporal properties
of the pulse and analyzed their influence on the effective-
ness of the NCL mechanism. In particular, we consider the
combined effect of chromatic dispersion, self-phase mod-
ulation (Kerr effect), and self-steepening of the pulse via
the nonlinear Schrödinger equation (NLSE) for the system
of waveguides in a χ(3) nonlinear medium. The resulting
system of coupled propagation equations for all waveg-
uides in the PhoG structure is numerically solved using the
split-step Fourier method [46]. For a specific comparison
we use the signature of the NCL mechanism, the nonlinear
decay behavior of photon number 〈n−〉 in the antisymmet-
ric mode s− displayed in the inset of Fig. 9(a), which may
additionally be interpreted as an intensity-dependent loss.
In Fig. 10 such a decay can be clearly seen when evolving
an initially Gaussian pulse according to the NLSE. Lin-
ear loss is neglected in this simulation to ensure that the
decay is caused by the NCL mechanism, though we note
that even when linear loss is included we observe strong
agreement between the nonlinear decay behavior of the
full pulse propagation (NLSE) numerics and the quantum
multimode model considered in Fig. 9.

The pulse propagation is modeled for a 100-fs initially
Gaussian pulse in IG2 glass with a central wavelength
of 1550 nm (see Ref. [34], and also Sec. III C 1). Initial
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pulse energies of 50, 100, 150, and 200 pJ are chosen,
in order to compare with the inset of Fig. 9(a). The non-
linear parameter γ̄ NL is set at 0.6 W−1 m−1, considering
that the pulse energy is 200 pJ. The resulting evolution is
displayed in Fig. 10 and we observe the characteristic non-
linear decay, which is a good evidence that NCL occurs
for these realistic physical parameters even when the full
pulse dynamics is considered. Linear loss is neglected in
this simulation to ensure that the decay is caused by NCL
mechanism.

It is found that ga = 210 m−1, gb = 360 m−1, and gc =
430 m−1 best reproduces the signature behavior of NCL
(different decaying rates for the different initial energies)
as shown in Fig. 10. The optimal ratio between interac-
tion constants is only weakly influenced by the effects
of the pulse propagation. The spectral broadening of the
pulse is estimated to be about 10 nm for 100-fs input
pulse and 2–3-cm device at 1550-nm central wavelength.
Provided that the device length is sufficient for the short-
est wavelength of the pulse to undergo NCL decay (and
for the example shown in Fig. 10 it is sufficient), the
effects of such pulse spectral broadening do not affect the
manifestations of the NCL mechanism.

VII. CONCLUSIONS

We discuss the design of a family of PhoG-based
devices of coupled single-mode waveguides in bulk non-
linear glass. We show that an asymmetric structure can
indeed function as a deterministic generator of bright
sub-Poissonian states of light. The sub-Poissonian light
generation with considerably large photon-number squeez-
ing (up to the values of the Mandel parameter of about
−0.8) can occur at the initial stages of the dynamics.
In this regime conventional linear loss (which is quite
high in nonlinear glass) still can be overcome by suf-
ficiently intensive coherent input, and the nonclassical
states can be produced. A hierarchy of models has been
derived, from the original multimode waveguide network
down to the simplest single-mode model exhibiting both
two-photon and nonlinear-coherent loss. We develop an
analytic approach to the single-mode model and discov-
ered two dimensionless parameters allowing one to design
the waveguide system with the aim of reaching a maxi-
mally nonclassical state for a given length of the structure.
Feasibility of the suggested device has been analyzed for
three different eligible practical structures: a system of
waveguides in bulk glass, multicore fiber, a set of coupled
nanowires. We estimate the number of photons required
to reach large nonclassicality with the femtosecond input
pulses and demonstrate that this number remains well
within the operational possibilities. Further, we develop
an approximation linearized on the quantum correction to
the classical solution and demonstrate its closeness with
the exact solution of the single-mode problem. Both the

three-mode approximation and the complete multimode
model lead to very close results in the initial stage of the
dynamics.

In summary, suggested CDP circuits indeed allow for
implementation of the engineered nonlinear loss to pro-
duce strongly nonclassical states in realistic photonic struc-
tures. Our design of the PhoG with a system of waveguides
laser written in the bulk glass can serve as a practi-
cal recipe for realizing such structures. Being compara-
tively inexpensive and easy to produce, these generators
can find applications for different detection, measurement,
and metrology tasks [22,23] and as quasi-single-photon
sources in various quantum-technology applications, such
as, e.g., quantum-key distribution [21].
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APPENDIX A: ON GAUSSIANITY OF THE
PHOTON-NUMBER DISTRIBUTION OF THE

PHOG GENERATED STATE

Here we derive approximate analytical expressions for
dynamics of mean photon number, Mandel parameter,
and higher-order moments of the photon-number distribu-
tion for the single-mode model. We start from the master
equation (8) of the main text. For the photon-number
distribution, p(n) = 〈n|ρ|n〉, Eq. (8) yields

dp(n)

dz
=

3∑
i=1

γi [fi(n + ξi)p(n + ξi) − fi(n)p(n)] , (A1)

where ξi is the number of photons lost per each dissipation
event (ξ1 = ξ3 = 1, ξ2 = 2); f1(n) = n, f2(n) = n(n − 1),
and f3(n) = n(n − 1)2.

For a function g(n), one can define its average as

〈g(n)〉 =
∞∑

n=0

g(n)p(n). (A2)

Equation (A1) implies that the average satisfies the follow-
ing equation:

d
dz

〈g(n)〉 =
3∑

i=1

γi 〈fi(n) [g(n − ξi) − g(n)]〉 . (A3)
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For example, the mean photon number μ = 〈n〉 corre-
sponds to g(n) = n and satisfies

dμ

dz
= −

3∑
i=1

γiξi〈fi(n)〉

= −γ1μ − 2γ2
(〈n2〉 − μ

) − γ3
(〈n3〉 − 2〈n2〉 + μ

)
.

(A4)

For further calculation of the photon-number distribution
moments, it is also useful to calculate the derivative for a
function g(δn) of the photon-number deviation δn = n −
μ. Here, one needs to take into account that μ also varies
with z:

d
dz

〈g(δn)〉 =
3∑

i=1

γi 〈fi(n) [g(δn − ξi) − g(δn)]〉

− 〈
g′(δn)

〉 dμ

dz
,

=
3∑

i=1

γi{〈fi(n) [g(δn − ξi) − g(δn)]〉

+ ξi
〈
g′(δn)

〉 〈fi(n)〉}. (A5)

In further calculations, n in Eq. (A5) can also be expressed
in terms of δn: n = μ + δn.

Let us assume that the initial state is a coherent one with
the mean photon number μ(z = 0) = n0:

p(n, z = 0) = nn
0

n!
e−n0 . (A6)

Central moments of the input state are equal to

〈δn2〉 = μ, 〈δn3〉 = μ, 〈δn4〉 = 3μ2 + μ. (A7)

Taking into account that Poisson distribution does not have
heavy tails and its central moments are mainly determined
by the central part of the distribution, one may expect that,
at least for the beginning of the state evolution, p(n) will
have nonzero values for |δn| � const

√
μ, and, therefore,

〈δnk〉 = O(μk/2). (A8)

Let us consider such z that conditions (A8), together with

ζ2 = 〈δn2〉
μ

= O(1), (A9)

are still satisfied. Substituting the definition of ζ2 into
Eq. (A5) and using Eq. (A8) for k ≥ 3, one can derive the

following equation:

dζ2

dz
= γ1 (1 − ζ2)

+ 2γ2
{
(2 − 3ζ2) μ + O(

√
μ)

}

+ γ3
{
(1 − 5ζ2) μ2 + O(μ3/2)

}
. (A10)

According to the derived equation, the quantity ζ2 tends to
reach the value

ζ
(f )

2 ≈ γ1 + 4γ2μ + γ3μ
2

γ1 + 6γ2μ + 5γ3μ2 = O(1). (A11)

Taking into account that ζ2(z = 0) = 1, one can expect
that condition (A8) will be satisfied during most of the sys-
tem evolution, until the mean photon number μ becomes
small.

Assuming that a single type of dissipation is prevailing,
one can derive the values

ζ
(f )

2 = 1, 2/3, 1/5 (A12)

for linear, two-photon, and nonlinear coherent loss, respec-
tively. The corresponding values of Mandel parameter Q =
ζ2 − 1 are

Q = 0, −1/3, −4/5. (A13)

Now let us assume that for the considered z the conditions

ζ3 = 〈δn3〉
μ

= O(1) (A14)

and

ζ4 = 〈δn4〉 − 3ζ2μ

μ3/2 = O(1) (A15)

are still satisfied (for z = 0 one has ζ3 = 1 and ζ4 =
1/

√
μ) together with Eq. (A8) for k ≥ 5.

Therefore, one can derive the following equation for ζ3:

dζ3

dz
= γ1 (−1 + 3ζ2 − 2ζ3)

+ 2γ2
{(−4 + 12ζ2 − 6ζ 2

2 − 5ζ3
)
μ + O(

√
μ)

}

+ γ3
{(−1 + 9ζ2 − 18ζ 2

2 − 8ζ3
)
μ2 + O(μ3/2)

}
.

(A16)

The quantity ζ3 tends to the value

ζ
(f )

3 ≈ 1
2γ1 + 10γ2μ + 8γ3μ2 [γ1(3ζ2 − 1)

+ 4γ2μ(−2 + 6ζ2 − 3ζ 2
2 )

+ γ3μ
2(−1 + 9ζ2 − 18ζ 2

2 )] = O(1). (A17)
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In a similar way one can show that ζ4 satisfies

dζ4

dz
= γ1

{−4ζ4
√

μ + O(1)
}

+ 2γ2

{
−8

(
2ζ4 + 〈δn5〉

μ5/2

)
μ3/2 + O(μ)

}

+ γ3

{
−12

(
ζ4 + +〈δn5〉

μ5/2

)
μ5/2 + O(μ2)

}
.

(A18)

The derived equation has two important implications. First,
it shows that the condition ζ4 = O(1) remains valid while
〈δn5〉/μ5/2 = O(1), which in its turn is a consequence
of Eqs. (A10) and (A11). Second, in contrast to lower-
order moments, the equation for ζ4 is not disentangled
from higher moments and cannot be solved independently
of them. Still, the condition ζ4 = O(1) is sufficient for
validity of the previously derived Eqs. (A16) and (A11).

For a single type of dissipation, one can derive the
values

ζ
(f )

3 = 1, 2/30, 1/100 (A19)

for linear, two-photon, and nonlinear coherent loss respec-
tively, which correspond to the following values of skew-
ness ζ3/(

√
μζ

3/2
2 ):

Skewness = 1√
μ

,
0.12√

μ
,

0.11√
μ

. (A20)

Similarly, for excess kurtosis one can derive the estimate

Excess kurtosis = 〈δn4〉
μ2ζ 2

2
− 3 = ζ4√

μζ 2
2

= O
(

1√
μ

)
.

(A21)

The results show that the photon-number distribution,
despite becoming strongly sub-Poissonian, remain Gaus-
sian with high accuracy until the mean photon number μ

becomes small.

APPENDIX B: DERIVATION OF LINEARIZATION
APPROXIMATIONS

In this section we derive the linearization approxima-
tions, which are used in Secs. III D and VI. These approx-
imations become increasingly necessary for modeling the
system when large photon numbers or large numbers of
modes must be considered.

Consider arbitrary quantum operators A, B, C. We
explicitly show the derivation for linearization of 〈ABC〉,
but the approach may be readily generalized to higher-
order products. We derive replacements, which allow us
to approximate expectations of products of three or more

operators, using only first- and second-order terms, e.g.,
〈A〉, 〈AB〉.

We may expand each operator A, B, C into a classi-
cal “mean-field” term and a quantum fluctuation term:
A = 〈A〉 + δA. We take 〈δA〉 = 0, which ensures that the
mean-field term 〈A〉 is meaningful and consistent. Then
substituting these expansions into 〈ABC〉,

〈ABC〉 = 〈A〉〈B〉〈C〉 + 〈A〉〈δBδC〉 + 〈B〉〈δAδC〉
+ 〈C〉〈δAδB〉 + 〈δAδBδC〉. (B1)

A key tool we require is the cumulant expansion for
generic operators {O1, . . . , On}

C (O1, . . . , On) =
∑
P∈P

(|P| − 1)! (−1)|P|−1
∏
p∈P

〈∏
i∈p

Oi

〉
,

(B2)

where P denotes all disjoint partitions of the set of opera-
tors, |P| denotes the number of blocks in partition P , and
p iterates over each block in the partition. For example,

C (X , Y, Z) = 〈XYZ〉 + 2〈X 〉〈Y〉〈Z〉 − 〈X 〉〈YZ〉
− 〈Y〉〈XZ〉 − 〈Z〉〈XY〉.

We perform our linearization assumption on Eq. (B1) by
setting C (δA, δB, δC) = 0, which implies therefore that
〈δAδBδC〉 = 0 since 〈δA〉 = 〈δB〉 = 〈δC〉 = 0. Finally,
using δA = A − 〈A〉 we arrive at our final expression,

〈ABC〉 ≈ 〈A〉〈BC〉 + 〈B〉〈AC〉 + 〈C〉〈AB〉
− 2〈A〉〈B〉〈C〉. (B3)

Higher-order expectations of products of operators may be
calculated in the same way, with the only requirements
assumed about fluctuations being the zero-mean condition
〈δA〉 = . . . = 〈δZ〉 = 0 and the linearization approxima-
tion C (δA, . . . , δZ) = 0.

APPENDIX C: LINEARIZED SINGLE-MODE
MODEL

By applying the linearization approximations derived in
Appendix B to the system of coupled ODEs (21) we arrive
at the following closed system of ODEs:

∂t〈s−〉 = c1〈s−〉+ c2

(
〈s†

−〉〈s2
−〉+ 2〈s−〉〈n−〉− 2〈s†

−〉〈s−〉2
)

− γ3

2

(
6〈s†

−〉〈n−〉〈s2
−〉 + 3〈s−〉〈s†2

− 〉〈s2
−〉

+ 6〈s−〉〈n−〉2 − 2〈s†2
− 〉〈s−〉3 − 12〈n−〉〈s†

−〉〈s−〉2

− 6〈s2
−〉〈s†

−〉2〈s−〉 + 6〈s†
−〉2〈s−〉3

)
(C1)
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∂t〈s†
−〉 = c∗

1〈s†
−〉+c∗

2

(
〈s−〉〈s†2

− 〉+2〈s†
−〉〈n−〉−2〈s†

−〉2〈s−〉
)

− γ3

2

(
6〈s−〉〈n−〉〈s†2

− 〉 + 3〈s†
−〉〈s2

−〉〈s†2
− 〉

+ 6〈s†
−〉〈n−〉2 − 2〈s2

−〉〈n3
−〉 − 12〈n−〉〈s−〉〈s−〉2

− 6〈s†2
− 〉〈s−〉2〈s†

−〉 + 6〈s†3
− 〉〈s−〉2

)
(C2)

∂t〈s2
−〉 = c3〈s−s−〉 + c4

(
3〈n−〉〈s2

−〉 − 2〈s†
−〉〈s−〉3

)

− γ3

(
3〈s†2

− 〉〈s2
−〉2 + 12〈n−〉2〈s2

−〉 − 2〈s†2
− 〉〈s−〉4

− 12〈s2
−〉〈s†

−〉2〈s−〉2 − 16〈n−〉〈s†
−〉〈s−〉3

+ 16〈s†
−〉2〈s−〉4

)
(C3)

∂t〈s†2

− 〉 = c∗
3〈s†2

− 〉 + c∗
4

(
3〈s†2

− 〉〈n−〉 − 2〈s†
−〉3〈s−〉

)

− γ3

(
3〈s†2

− 〉2〈s2
−〉 + 12〈s†2

− 〉〈n−〉2 − 2〈s2
−〉〈s†

−〉4

− 21〈s†2
− 〉〈s†

−〉2〈s−〉2 − 16〈n−〉〈s†
−〉3〈s−〉

+ 16〈s†
−〉4〈s−〉2

)
(C4)

∂t〈n−〉 = −γ1〈n−〉+c5

(
〈s†2

− 〉〈s2
−〉+2〈n−〉2 −2〈s†

−〉2〈s−〉2
)

− γ3

(
9〈s†2

− 〉〈n−〉〈s2
−〉+6〈n−〉3 −6〈s†2

− 〉〈s†
−〉〈s−〉3

− 18〈n−〉〈s†
−〉2〈s−〉2 − 6〈s2

−〉〈s†
−〉3〈s−〉

+ 16〈s†
−〉3〈s−〉3

)
, (C5)

with n− = s†
−s−.

This system is solved numerically for 〈s−〉, 〈s†
−〉, 〈s2

−〉,
〈s†2

− 〉, 〈n−〉 and the results are shown as dashed lines in
Fig. 5.
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