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ABSTRACT
Systems with non-functional requirements, such as Energy, Time
and Security (ETS), are of increasing importance due to the prolif-
eration of embedded devices with limited resources such as drones,
wireless sensors, and tablet computers. Currently, however, there
are little to no programmer supported methodologies or frame-
works to allow them to reason about ETS properties in their source
code. Drive is one such existing framework supporting the devel-
oper by lifting non-functional properties to the source-level through
the Contract Specification Language (CSL), allowing non-functional
properties to be first-class citizens, and supporting programmer-
written code-level contracts to guarantee the non-functional speci-
fications of the program are met. In this paper, we extend the Drive
system by providing rigorous implementations of the underlying
proof-engine, modeling the specification of the annotations and
assertions from CSL for a representative subset of C, called Imp.
We define both an improved abstract interpretation that automati-
cally derives proofs of assertions, and define inference algorithms
for the derivation of both abstract interpretations and the context
over which the interpretation is indexed. We use the dependently-
typed programming language, Idris, to give a formal definition, and
implementation, of our abstract interpretation. Finally, we show
our well-formed abstract interpretation over some representative
exemplars demonstrating provable assertions of ETS.
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1 INTRODUCTION
Programs that consider non-functional properties, such as energy
consumption or maximum execution time, are of increasing im-
portance due to the proliferation of devices with limited resources;
e.g. embedded medical devices, camera pills, drones, wireless sen-
sors, mobile phones and tablets. While conventional understand-
ing of software correctness pertains to the functional properties
of a program, such as the absence of errors and bugs, resource-
limited embedded devices prompt additional conformance to non-
functional requirements [23]. A system that does not conform to
its non-functional specification may ultimately render the system
useless, or worse, a potential danger to others; e.g. a drone depleting
its battery before it can land safely will crash to the ground. It is
therefore necessary to develop such systems with an awareness
of, and a demonstration of conformity to, their (non-functional)
specification.

Drive [6], is a framework for capturing, and reasoning about,
non-functional properties such as Energy, Time and Security (ETS)
in C programs. It includes the Contract Specification Language
(CSL), an Embedded Domain Specific Language (EDSL) that de-
fines C-statement annotations in order to capture non-functional
properties of the statements they annotate, including energy usage,
worst-case execution time (WCET), and the degree of vulnerabil-
ity to side-channel attacks. Drive also facilitates reasoning about
non-functional properties via assertion annotations; e.g. whether
a statement can be executed within an energy budget (Listing 1).
Previously, these contracts were automatically verified using a
light-weight abstract interpretation implemented in Idris [5]. This
lightweight approach to verification is a form of proof-carrying
code [25] since the abstract interpretation automatically derives a
proof of whether each assertion holds true for a given context.

In this paper we extend the Drive framework, creating a trust-
worthy and meaningful proof system for the CSL assertions and
ETS properties. Specifically, we provide a rigorous implementation
of the abstract interpretation. We model a larger subset of the C
language, Imp, facilitating the inference of necessary contextual
information by which our generated proofs are now indexed. We
define a big-step operational semantics of assertion annotations
in conjunction with the semantics of Imp. We additionally parame-
terise our abstract interpretation over the type of numeric values.
Consequently, proofs are no longer limited to natural numbers,
but can be generated, e.g., for integers and real numbers, given
a suitable representation. Finally, we demonstrate our executable
formalisation on a representative example, capturing a range of
programmer-provided assertions and non-functional properties,
and demonstrable proofs of these assertions. In line with the Curry-
Howard correspondence [28, 30], we formulate our definitions of
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language, properties, rewrites, and logical and arithmetic formulæ
as types, and transformations over types that enact rewrites or
determine proofs of properties as total functions. Type-checking
ensures the soundness of these functions relative to the definitions
given as types, thus ensuring soundness of abstract interpretation
and context inference.

1.1 Contributions
(1) We present an abstract interpretation of C, extended with

CSL assertions, fully implemented in Idris, by deriving and
implementing a small general imperative language, called
Imp.

(2) We define and implement a big-step operational semantics
for well-formed Imp programs and CSL assertions, thereby
facilitating robust inference of necessary contextual infor-
mation in order to generate proofs for CSL assertions.

(3) We present an implementation, in Idris, of an inference sys-
tem that automatically (dis)proves programmer-provided
assertions in Imp, potentially making use of captured non-
functional information provided by the capture annotations
in CSL.

2 BACKGROUND
2.1 The Contract Specification Language
The Contract Specification Language (CSL) [6] is an embedded
domain-specific language developed collaboratively between the
University of St Andrews and Inria, Rennes. CSL extends C with
special annotations for both capturing non-functional information
about source code, and the ability to make assertions (or contracts)
using the captured information.

Listing 1 shows an extract from the Levenshtein Distance al-
gorithm, as defined in the BEEBs benchmarks [27] Two CSL cap-
ture annotations and an assertion have been added to the code.
The capture annotations at Lines 19 and 23 direct the compiler
to invoke a worst-case execution time (WCET) analysis for the
assignment statements on Lines 20 and 24–26, respectively. The
results of these analyses are assigned to the declared variables that
are passed to the capture annotations; i.e. true_time and false_time.
These measurements could be used by the programmer as a simple
or coarse-grained check for vulnerability to side-channel attacks;
i.e. using differences in execution time to infer information about
secret data [20]. The assertion at Line 31 expresses this check: the
implementation is vulnerable if the assertion does not hold true.

Brown et al. define assertion expressions as being standard
Boolean expression evaluating to true or false. The proof of whether
an assertion holds true within a given context (i.e. mapping of vari-
ables to values) is inferred by a simple decision procedure imple-
mented in Idris.

2.2 Dependent Types
Dependently typed languages take advantage of the Curry-Howard
correspondence, which states that, given a suitably rich type sys-
tem, (certain kinds of) proofs can be represented as programs [30].
For languages with insufficiently rich type systems, such as C,
dependently-typed languages can be used to produce an abstract
interpretation [11] of a given program in those languages. Such

Listing 1: An extract of the Levenshtein algorithm from the
BEEBs benchmarks suite for C
1 int levenshtein_distance(const char *s, const char *t) {
2 ...
3 for (j = 1; j <= tl; j++) {
4 for (i = 1; i <= sl; i++) {
5 if (s[i - 1] == t[j - 1]) {
6 __csl_time_worst(&true_time); // WCET of following stmt
7 d[i][j] = d[i - 1][j - 1];
8 }
9 else {
10 __csl_time_worst(&false_time); // WCET of following stmt
11 d[i][j] = min(d[i - 1][j] + 1, // deletion
12 min(d[i][j - 1] + 1, // insertion
13 d[i - 1][j - 1] + 1)); // substitution
14 }
15 }
16 }
17 __csl_assert(true_time = worst_time);
18 return d[sl][tl];
19 }

abstract interpretations can be used to derive proofs of desired
properties [2].

In the case of dependently-typed languages, under the proposi-
tions as types view, dependent types are used to represent predi-
cates [31]. For example, (Even : (n : Nat) -> Type) defines the type
of evidence (or proofs) that a natural number, n, is even. In cases
where the property does not hold true, e.g. Even 1, and assuming
a suitably restricted definition of that property, the type is unin-
habited. An uninhabited type represents falsity. Evidence that a
predicate does not hold true can be represented by the type func-
tion, (Not a = a -> Void), where a is a type variable and Void is the
empty type; i.e. it has no constructors. Using dependent types in this
way, properties that represent a (non-)functional specification can
be encoded as predicates (i.e. types). Accordingly, total functions,
f : A -> B, allow for the derivation of evidence that the predicate B

can be constructed given evidence of A. Type-checking ensures the
soundness of these functions [28].

We take advantage of the above features by implementing our
system in the dependently-typed language Idris, a functional lan-
guage developed at the University of St Andrews [5]. The syntax
of Idris is similar to Haskell [19], and like Haskell, Idris supports
algebraic data types with pattern matching, type classes, and do-
notation. Unlike Haskell, Idris evaluates its terms eagerly. Defini-
tions, e.g. of languages and well-formedness, are defined by giving
their definitions as types in Idris. For example, the aforementioned
Even predicate can be defined:

1 data Even : (n : Nat) -> Type where
2 Zero : Even Z
3 Succ : (ek : Even k) -> Even (S (S k))

where, Even is the name of the type being defined, Nat is the type of
natural numbers, (n : Nat) is a (named) argument to the type, and
both Zero and Succ are constructors. Constructors may have (named)
arguments; e.g. (ek : Even k). Constructors may also restrict the
values of their arguments; e.g. Zero explicitly states that n = 0, and
Succ states that n = S (S k) (i.e. k + 2), given an inhabitant of Even k.
As is desired, under this definition, there is no way to construct an
element of, e.g., (Even 1) using either constructor.
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In order to determine whether (Elem n) is inhabited for a given n,
we define the function isEven.

1 isEven : (n : Nat) -> Dec (Even n)
2 isEven Z = Yes Zero
3 isEven (S k) with (k)
4 isEven (S k) | Z = No absurd
5 isEven (S k) | (S j) with (isEven j)
6 isEven (S k) | (S j) | (Yes prf) = Yes (Succ prf)
7 isEven (S k) | (S j) | (No contra) =
8 No (\(Succ x) => contra x)

Here, Dec is the type for a decidable property, where Yes holds a proof
of the property and No holds a proof of its contradiction. The with

rule is used to patternmatch on intermediate values, similar to a case

expression in Haskell. The function (absurd : Uninhabited t => t ->

a) is a convenience function for contradictions where a type, here
(Even 1), is uninhabited. The argument to No on Line 8 is a function
of type (Even (S (S j)) -> Void) and represents a contradiction of
(Even (S (S j))) when (Even j) is uninhabited. Since this is a total
definition, as guaranteed by the type-checker, isEven is a decision
procedure for the type (predicate) (Elem n) for all values of n.

2.3 Non-Functional Properties
The Drive system focuses on three non-functional properties that
we consider to be the most commonplace. The first two are time and
energy, and the third property, security, which we do not consider
in this paper, is typically one that is required as time and energy
properties are leaked from a program and used by adversaries to
obtain information about the algorithm. In Drive, measurements for
these non-functional properties are provided by third-party tools
and models. In this paper, we omit the details of obtaining such
non-functional information, leaving it for future work to extend
the Drive system with support to link to automated tools to obtain
the information automatically.

For time, we consider the worst-case execution time (WCET )
obtained by executing the code with various underlying profiling
tools such as the WCC compiler produced by the University of
Hamburg [12].

Energy measurements are typically obtained by using a model
such as those provided by Eder et al. [24] or by measuring the
amount of energy in Joules (J) that is used by a complete processor
package; i.e. by measuring the total energy that is drawn by each
hardware CPU socket, and energy usage is typically calculated by
computing the rate of change in power per unit of time using the
formulae shown below:

Energy = Power × Time

Joules = Watts × Seconds

3 REPRESENTINGWELL-FORMED
PROGRAMS IN IDRIS

In this section we introduce and define a simple imperative lan-
guage, Imp, in order to facilitate the definition of our semantics
for CSL annotations and assertions. Accordingly, we define an
equivalent version of CSL for Imp, denoted CSLImp. Imp can be con-
sidered a modified standard While language [26], adding arrays
and restricting iteration. In principle, Imp can be extended with

n : N ::= The natural numbers.
c : Type ::= A pointed carrier type.

x : X ::= Numeric variable symbols.
αn : Y ::= Array variable symbols, indexed by length.
i : I ::= Index variable symbols.

Figure 1: Key to terms and notation.

additional language constructs, such as tuples in order to allow
the representation of a wider range of C programs in Imp. In the
following sections, Idris code snippets have been simplified using
mathematical notation where possible to aid clarity1.

3.1 Variable Representation
Variables are represented as three disjoint sets: X denotes the set
of numeric variable symbols, Y denotes the set of array variable
symbols; and I denotes the set of index variable symbols for ac-
cessing elements in arrays. This separation trivially ensures that
array variables are not used where an arithmetic expression is ex-
pected, and vice versa. Index variable symbols are used to facilitate
checking that array accesses are not out of bounds.

1 data VarKind = Numerical | Index | Array
2
3 data Var : (ty : VarKind) -> Type where
4 NumVar : Var Numerical
5 IdxVar : Var Index
6 AryVar : Var Array
7
8 data VarSet : (numvs : Vect n (Var Numerical))
9 -> (idxvs : Vect k (Var Index))
10 -> (aryvs : Vect m (Var Array)) -> Type where
11 MkVarSet : (numvs : Vect n (Var Numerical))
12 -> (idxvs : Vect k (Var Index))
13 -> (aryvs : Vect m (Var Array))
14 -> VarSet numvs idxvs aryvs
15
16 {- X = Elem NumVar numvs -}
17 {- Y = Elem AryVar aryvs -}
18 {- I = Elem IdxVar idxvs -}

In our Idris implementation, variables are represented using proofs
of existence in a vector; e.g. X = Elem NumVar numvs. Here, numvs is a
vector of n elements with type Var Numerical, where Numeric defines
the set to which the variable belongs. Variables in I and Y are
defined analogously. Each array variable, αn : Y, is indexed by the
length of the array that it represents,n : N, wheren > 0. Array sizes
occur at the expression and statement level in our implementation.
Index variables are used to access elements in arrays; they are
mapped to natural numbers and may only be incremented. An
array access expression, e.g. αn [i], is deemed to be out-of-bounds
when i ≥ n.

Data definitions representing syntax are all indexed by the type
VarSet, which is functionally equivalent to the triple (X,I,Y), and
allows variables to be used in Imp programs. In order to simplify
our presentation, we use x ,x1,x2, · · · : X, i, i1, i2, · · · : I, and
αn ,αm1 ,α

k
2 , · · · : Y to represent variables.

1Our full implementation can be found at https://github.com/adbarwell/IFL2019-Drive

https://github.com/adbarwell/IFL2019-Drive
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Example 3.1 (Numeric Variables). The numeric variables, x1,x2 :
X, can be represented in our implementation via the definitions:
x1 = Here and x2 = There Here, where numvs = [NumVar,NumVar,...].

3.2 Numeric Values
Instead of defining Impwith a specific numeric data type, e.g. the nat-
ural numbers, as in [6], we aim to build a framework that allows for
generic representations of numeric values. Taking inspiration from
Slama and Brady [30], we index expressions and statements with
a setoid, (set : Setoid c (≃)) and an algebraic structure, (Struct c

set kind), defined on a carrier type, (c : Type). Our implementation
differs from Slama and Brady’s in that we define both Setoid and
algebraic structures as data types instead of interfaces in order to
simplify their use as constraints in other data type declarations.
Additionally, we extend our setoid definition with both a zeroth
element, zero, that is used as a default value for array elements, and
a boolean equivalence operator that is required to be equivalent to
(≃); i.e. x1 ≡ x2 iff x1 ≃ x2 for all x1,x2 : c . Due to this requirement,
we do not also require proofs of symmetry, transitivity, etc. for ≡.

1 data PropEq : (c : Type) -> ((≃) : c -> c -> Type) -> Type where
2 MkPropEq : ((≃) : c -> c -> Type)
3 -> (refl : (x : c) -> x ≃ x)
4 -> (sym : {a,b : c} -> a ≃ b -> b ≃ a)
5 -> (trans : {w,y,z : c} -> w ≃ y -> y ≃ z -> w ≃ z)
6 -> (set_cong : (i,j : c) -> Dec (i ≃ j))
7 -> (cong_preserves_cong : (t,s,c1,c2 : c)
8 -> (t ≃ c1) -> (s ≃ c2)
9 -> (c1 ≃ c2) -> t ≃ s)
10 -> PropEq c (≃)
11
12 data DefnEq : (c : Type) -> Type where
13 MkDefnEq : ((≡) : c -> c -> Bool) -> DefnEq c
14
15 data Setoid : (c : Type) -> ((≃) : c -> c -> Type) -> Type where
16 MkSetoid : (c : Type)
17 -> (zero : c)
18 -> (propEq : PropEq c (≃))
19 -> (defnEq : DefnEq c)
20 -> (cong_equiv_agree : (x,y : c) -> (x ≃ y)
21 -> So ((π(≡) defneq) x y))
22 -> (equiv_cong_agree : (x,y : c)
23 -> So ((π(≡) defneq) x y) -> x ≃ y)
24 -> Setoid c (≃)

We define Imp for six fundamental algebraic structures, Magma,
Semigroup, Monoid, Group, AlebelianGroup and Ring, shown in the fol-
lowing listings. Algebraic structures are defined in the type Struct.

1 data StructKind : Type where
2 Magma : StructKind
3 Semigroup : StructKind
4 Monoid : StructKind
5 Group : StructKind
6 AbelianGroup : StructKind
7 Ring : StructKind
8
9 data Struct : (c : Type) -> (set : Setoid c (≃))
10 -> (kind : StructKind) -> Type where
11 Magma : (set : Setoid c (≃)) -> ((+) : BinOp c)
12 -> Struct c set Magma
13 ...

We define an ordering over these algebraic structures, where Magma

< Semigroup < Monoid < Group < AbelianGroup < Ring. This ordering is
used to ensure that we can only attempt to project functions that
express a structure’s requirements from structures that define them;
e.g. the (additive) identity element from monoids or greater. Our

implementation can be extended with additional structures, e.g.
fields, or a total ordering over c that enables inequalities in boolean
expressions.

1 data TotalOrder : (c : Type) -> (set : Setoid c (≃))
2 -> Type where
3 MkTotalOrder : (lte : (i : c) -> (j : c) -> Type)
4 -> (is_lte : (i : c) -> (j : c) -> Dec (lte i j))
5 -> (def_lte : (i : c) -> (j : c) -> Bool)
6 ...
7 -> TotalOrder c set

Magma takes a proof that there is a Setoid on c and are equipped
with a binary operation, (+) : c -> c -> c.

1 data Struct : (c : Type) -> (set : Setoid c (≃))
2 -> (kind : StructKind) -> Type where
3 ...
4 Semigroup : (magma : Struct c set Magma)
5 -> (assoc : Associativity c set (π(+) magma))
6 -> Struct c set Semigroup
7 ...

Semigroup (as shown in the listing above at Line 4) extends Magmawith
the requirement that (+) is associative. We define these require-
ments via separate data types; e.g. for associativity,

1 data Associativity : (c : Type) -> (set : Setoid c (≃)) -> (
BinOp c set) -> Type where

2 MkAssociativity : ((x,y,z : c)
3 -> ((x + y) + z) ≃ (x + (y + z)))
4 -> Associativity c set (MkBinOp (+) p)

Such property types, have single constructors whose arguments
express the relevant requirements. Here, associativity requires a
function that calculates an explicit witness of type ((x + y) + z)

≃ (x + (y + z)), for the given binary operation (+), definition of
(propositional) equality (≃), and all natural numbers, x, y, and z. We
define π(+) : Struct c set k -> BinOp c set, used in the definition of
Semigroup, inter alia, as a function that projects the binary operation
from a Magma.

1 data Struct : (c : Type) -> (set : Setoid c (≃))
2 -> (kind : StructKind) -> Type where
3 ...
4 Monoid : (semigroup : Struct c set Semigroup)
5 -> (0 : Identity c set (π(+) semigroup))
6 -> Struct c set Monoid
7 Group : (monoid : Struct c set Monoid)
8 -> (inv : Inverse c set (π(+) mnd) (π0 mnd MndSgp))
9 -> Struct c set Group
10 AbelianGroup : (group : Struct c set Group)
11 -> (comm : Commutativity c set (π(+) group))
12 -> Struct c set AbelianGroup
13 ...

Similar to Magma and Semigroup definitions, a Monoid extends a given
Semigroup with the requirement that c has an (additive) identity
element, a Group extends a given Monoid with the requirement that
there is a function (-) : c -> c that produces the (additive) inverse
of its argument, and an AbelianGroup extends a given Group with the
requirement that the (+) operation is commutative.

1 data Struct : (c : Type) -> (set : Setoid c (≃))
2 -> (kind : StructKind) -> Type where
3 ...
4 Ring : (abelgroup : Struct c set AbelianGroup)
5 -> ((×) : BinOp c)
6 -> (assoc× : Associativity c set (×))
7 -> (1× : Identity c set (×))
8 -> (dist : Distributive c set (π(+) abelgroup) (×))
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9 -> Struct c set Ring
10 ...

In order to illustrate that we are not limited to a single binary
operation, we include Ring. A Ring extends a given AbelianGroupwith a
secondary binary operation over c, denoted (×), which is associative,
has an identity element (1×), and distributes over (+).

1 data Struct : (c : Type) -> (set : Setoid c (≃))
2 -> (kind : StructKind) -> Type where
3 ...
4 OrdSemigroup : (sgp : Struct c set Semigroup)
5 -> (ord : TotalOrder c set)
6 -> Struct c set OrdSemigroup

Similarly, we might extend any of the above structures with the
total ordering over c. Here, we have extended Semigroup.

Example 3.2 (The Natural Numbers as a Semigroup). We can take
advantage of the Idris Prelude definitions of propositional equality,
addition, and lemmas over the natural numbers in order to define
the Semigroup structure for natural numbers.

1 setoidNat : Setoid Nat (=)
2 setoidNat =
3 MkSetoid Nat (=) Refl symNat transNat set_eq eq_preserves_eq 0
4
5 semigroupNat : Struct Nat setoidNat Semigroup
6 semigroupNat =
7 Semigroup (Magma setoidNat
8 (MkBinOp (Nat.plus) add_preserves_eq))
9 (MkAssociativity (\x, y, z => sym (Nat.

plusAssociative x y z)))

Example 3.3 (The Natural Numbers as an Ordered Semigroup).
We can further extend the definition in Example 3.2 with the Idris
Prelude definitions of inequalities (LTE).

1 totalOrderNat : TotalOrder Nat NatTestSyntax.setoidNat
2 totalOrderNat = MkTotalOrder (LTE) (isLTE) lte ...
3
4 ordsgpNat : Struct Nat NatTestSyntax.setoidNat OrdSemigroup
5 ordsgpNat = OrdSemigroup semigroupNat totalOrderNat

3.3 Intrinsically Typed Syntax
Since we are only concerned with well-formed input, it makes
sense to restrict the programs that are expressible in Imp as early
as possible. Thus, we begin with syntax that is already type-safe;
other aspects of well-formedness will be covered in Section 3.4.

3.3.1 Arithmetic Expressions. Arithmetic expressions comprise
literal values, numeric variables, array accesses, and an addition
operator for all fundamental algebraic structures that we consider.
For Group and above, negation is available, representing inverses.
Similarly, for Ring, a multiplication operator is available. Arithmetic
expressions are defined in our formalism by the type AExp.

1 data AExp : (c : Type) -> (cnst : Struct c set kind)
2 -> (X, I, Y) -> Type where
3 Val : (n : c) -> AExp c cnst vs
4 Var : (var : X) -> AExp c cnst vs
5 Acc : (varlen : Y) -> (idx : I) -> AExp c cnst vs
6 Neg : (a : AExp c cnst vs)
7 -> (GT kind Group) -> AExp c cnst vs
8 Add : (a1 : AExp c cnst vs) -> (a2 : AExp c cnst vs)
9 -> AExp c cnst vs
10 Mul : (a1 : AExp c cnst vs) -> (a2 : AExp c cnst vs)
11 -> (GT kind Ring) -> AExp c cnst vs

Here, (SKOrd : StructKind -> StructKind -> Type) is used to restrict
the use of constructors Neg and Mul to when the appropriate algebraic
structure is defined over c. We omit this restriction on Add, since
the addition operator is defined as a requirement of Magma, the least
element in our ordering. Array access expressions, Acc, require the
array variable, var, the length of the array being accessed, len, and
an index variable, idx. In our presentation, (var : Y) -> (len: Nat),
(varlen : Y), and αn : Y are all equivalent.

Example 3.4 (Arithmetic Expressions for Natural Numbers). Given
the definitions for natural numbers as a Semigroup in Example 3.2,
we can define the exemplar arithmetic expression

1 a : AExp Nat semigroupNat (X, I, Y)
2 a = Add (Val 42) (Acc α 5

2 i1)

Here, we add a literal value to the element in the array α52 at index
i1. Since a Semigroup is defined over Nat, any occurrences of Neg or Mul
in an arithmetic expression will lead to a type error; therefore, such
arithmetic expressions cannot be constructed. Any occurrences
of a numeric variable or literal in an array access expression, e.g.
(Acc x1 (Val 42)), or an array variable outside of an array access,
e.g. (Add α 5

2 (Var 42)), are similarly invalid.

3.3.2 Boolean Expressions. Boolean expressions comprise equal-
ity and inequality comparisons.

1 data BExp : (c : Type) -> (cnst : Struct c set kind)
2 -> (X,I,Y) -> Type where
3 Eq : (a1 : AExp c cnst vs) -> (a2 : AExp c cnst vs)
4 -> BExp c cnst vs
5 LTE : (a1 : AExp c cnst vs) -> (a2 : AExp c cnst vs)
6 -> (ok : HasOrdering kind) -> BExp c cnst vs

Definitions for both equality and inequalities for a given c are
provided by cnst. As with Neg and Mul above, LTE has an additional ar-
gument that requires demonstration that a total ordering is defined
for the given algebraic structure.

Example 3.5 (Boolean Expressions for Natural Numbers). Given
the definitions for natural numbers as a Semigroup in Example 3.2
and an ordered Semigroup in Example 3.3, we can define the exemplar
Boolean expressions

1 b1 : BExp Nat semigroupNat (X, I, Y)
2 b1 = Eq (Var x2) (Val 5)
3
4 b2 : BExp Nat ordsgpNat (X, I, Y)
5 b2 = LTE (Val 42) (Var x2) OrdSemigroup

Here, we express x2 ≃ 5 in b1 and the inequality 42 ≤ x2 in b2. The
latter requires the proof, OrdSemigroup, that ordsgpNat is equipped
with a total ordering.

3.3.3 Statements. Statements comprise numeric variable assign-
ment, index variable assignment and increment, array declaration
and update, for-loops, statement composition, and CSL assertions.

1 data Stmt : (c : Type) -> (cnst : Struct c set kind)
2 -> (X,I,Y) -> Type where
3 Assn : (var : X) -> (a : AExp c cnst (MkVarSet ns is as fs))
4 -> Stmt c cnst vs
5 Idxd : (idx : I) -> Stmt c cnst (MkVarSet ns is as fs)
6 Idxi : (idx : I) -> Stmt c cnst (MkVarSet ns is as fs)
7 Aryd : (varlen : Y)
8 -> (lenNZ : NotZero len)
9 -> Stmt c cnst vs
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10 Aryu : (varlen : Y)
11 -> (lenNZ : NotZero len)
12 -> (idx : I)
13 -> (a : AExp c cnst vs)
14 -> Stmt c cnst vs
15 Iter : (var : X)
16 -> (varlen : Y)
17 -> (lenNZ : NotZero len)
18 -> (s : Stmt c cnst vs)
19 -> Stmt c cnst vs
20 Comp : (s_1 : Stmt c cnst vs) -> (s_2 : Stmt c cnst vs)
21 -> Stmt c cnst vs
22 Cert : (b : BExp c cnst vs) -> Stmt c cnst vs

Unlike in arithmetic and Boolean expressions, all statements can
be used with all algebraic structures. We assume that any capture
annotations have been reified to numeric assignment expressions
with literal values prior to the representation in Imp. This leaves
assertions, denoted Cert in order to avoid confusion with numeric
assignment statements, as the sole CSL construct that extends Imp.
To simplify our presentation, we use Boolean expressions (Sec-
tion 3.3.2) as our assertion language. In principle, our the assertion
language could be different to Boolean expressions.

Example 3.6 (Statements for Natural Numbers). Given the defi-
nitions for natural numbers as a Semigroup in Example 3.2, we can
define an exemplar statement.

1 stmt : Stmt Nat semigroupNat (X,I,Y)
2 stmt =
3 Comp (Assn x2 (Val 42))
4 (Comp (Cert (Eq (Var x2) (Val 42)))
5 (Cert (Eq (Var x2) (Val 5))))

Here, stmt is the composition of three statements: the assignment
of x2 to 42, the assertion that x2 is equal to 42, and the assertion that
x2 is equal to 5.

3.4 Well-Formedness
Since our syntax definitions in Section 3.3 ensure that programs
in Imp are type-safe, our well-formedness property is principally
concerned with avoiding the occurrence of undeclared variables
and out-of-bounds array accesses. Determining well-formedness
of arbitrary programs is a two-stage process for expressions and
a four-stage process for statements. As a precursor to checking
for out-of-bounds array accesses and occurrences of numeric and
array variables that have not been declared, we first determine the
validity of index variable occurrences and reify them according
to a context. Reification produces an equivalent representation of
the program with no index variable symbols. For statements, prior
to reification, we first convert the statements into a continuation
passing style and unroll for-loops. We are able to unroll all possible
loops, since loops are defined to iterate over a (finite) fixed-length
array.

3.4.1 Environment. An environment, Env, represents the variable
symbols that are in scope at a given point in a program.

1 data Env : (X,I,Y) -> Type where
2 MkEnv : (nums' : Vect n' X)
3 -> (idxs' : Vect k' I)
4 -> (arys' : Vect m' Y)
5 -> Env vs

In order to simplify our presentation, we use Γ to represent Env.
While the terms environment and context are usually used inter-
changeably, in this paper, we will use environment to refer to the
(sub)set(s) of variable symbols that are in scope, and context to refer
to functions that map variable symbols to (ground) values.

Example 3.7 (Environment). We define an exemplar environ-
ment,

1 Γ : Env (X,I,Y)
2 Γ = MkEnv [There Here]
3 [Here]
4 [(Here, (1 ** MkNotZero)),
5 (Here, (3 ** MkNotZero)),
6 (There Here, (5 ** MkNotZero))]

which states that one numeric variable, one index variable, and
three array variables have been declared, given the sets of variable
symbols (X,I,Y). Array variable symbols are, in effect, a pair
comprising an element of type Elem AryVar as and the length of the
array. We consider two array variables to be distinct even when
the element of type Elem AryVar as is the same but their defined
lengths differ. Thus, in the above example, (Here, (1 ** MkNotZero))

and (Here, (3 ** MkNotZero)) are considered different variables. For
convenience and clarity of presentation, we equivalently denote Γ
as the triple:

Γ = ({x2}, {i1}, {α
1
1 ,α

3
1 ,α

5
2 })

3.4.2 Index Context. Index variables occur only in array access
expressions and are incremented in statements. We define an index
context, ϒ, to be a function from index variable symbols to natural
numbers. In our implementation, we represent this using the data
type IdxCtx.

1 data IdxCtx : (env : Env vs) -> Type where
2 MkIdxCtx : {vs : VarSet nums idxs arys}
3 -> {idxs' : Vect k' (Elem IdxVar idxs)}
4 -> (ubs : Vect k' Nat)
5 -> IdxCtx (MkEnv nums' idxs' arys')

Here, ubs is a vector of natural numbers. When an index variable
occurs in the body of a loop, this represents the maximum value it
is assigned to. We consider that the jth element of idxs' is mapped
to the jth element in ubs. In order to determine the jth element in
ubs, we define the function arrIdxBounds that transforms a proof that
some index variable is an element in idxs' into a proof that ub is the
corresponding element in ubs.

1 data ArrIdxBounds : (idxs' : Vect k' (Elem IdxVar idxs))
2 -> (ubs : Vect k' Nat)
3 -> (idxinenv : Elem idx idxs')
4 -> (ub : Nat)
5 -> Type where
6 Here : ArrIdxBounds (idx :: idxs') (ub :: ubs) Here ub
7 There : (laterArr : ArrIdxBounds idxs' ubs later ub)
8 -> ArrIdxBounds (i :: idxs') (b :: ubs) (There later) ub
9
10 arrIdxBounds : (idxs' : Vect k' (Elem IdxVar idxs))
11 -> (ubs : Vect k' Nat)
12 -> (idxinenv : Elem idx idxs')
13 -> (ub : Nat ** ArrIdxBounds idxs' ubs idxinenv ub)

In order to simplify our presentation, we use ϒ to represent IdxCtx,
where ϒ(i) = k states that the index variable i is mapped to some k
in the context ϒ.
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Example 3.8 (Index Context). We define an exemplar index con-
text,

1 ϒ : IdxCtx Γ
2 ϒ = MkIdxCtx [4]

assuming the environment Γ from Example 3.7, which states that
there is a single declared index variable, i1. For convenience and
clarity of presentation, we equivalently denote ϒ using substitution
notation:

ϒ = {i1 7→ 4}

3.4.3 Arithmetic Expressions.

Index Reification. Since index reification pertains only to array
access expressions, the definition of index-reified algebraic expres-
sions only differs from AExp in the Acc case.

1 data RAExp : (c : Type) -> (cnst : Struct c set k)
2 -> (X,I,Y) -> Type where
3 ...
4 Acc : (var : Y) -> (len : N) -> (idx : N)
5 -> RAExp c cnst vs
6 ...

Additionally, we define ReifyIdx to relate an algebraic expression
with its reified form. Again, Acc is the only interesting case, where
idxisdecld is a proof that idx is in scope, and arridxub relates idxisdecld
with its upper bound ub.

1 data ReifyIdx : (a : AExp c cnst vs) -> Γ -> ϒ
2 -> (ar : RAExp c cnst vs) -> Type where
3 ...
4 Acc : (idxisdecld : Elem i Γ)
5 -> (arridxub : ArrIdxBounds Γ ϒ idxisdecld ub)
6 -> ReifyIdx (Acc αn i) Γ ϒ (Acc αn ub)
7 ...
8
9 reifyIdx : (a : AExp c cnst vs) -> Γ -> ϒ
10 -> Dec (ar : RAExp c cnst vs ** ReifyIdx a Γ ϒ ar)

We define reifyIdx to transform an algebraic expression, a into an
equivalent reified algebraic expression, ar, given some environment
and index context. This is a decision procedure since idx may not
be in scope.

Example 3.9 (Index Reification of Arithmetic Expressions for N).
Recall the simple arithmetic expression from Example 3.4,

1 a : AExp Nat semigroupNat (X, Y)
2 a = Add (Val 42) (Acc α 5

2 i1)

The index i1 in a can be reified given an Index Context, ϒ. Assuming
ϒ as defined in Example 3.8, the index reification, ar, of a is:

1 ar : RAExp Nat semigroupNat (X, I, Y)
2 ar = Add (Val 42) (Acc α 5

2 4)

Well-Formedness of Reified Arithmetic Expressions. For arithmetic
expressions, Var and Acc are the interesting cases.

1 data WFAExp : (a : RAExp c cnst vs) -> Γ -> Type where
2 ...
3 Var : (varinenv : Elem x Γ) -> WFAExp (Var x) Γ
4 Acc : (lenNZ : NotZero len)
5 -> (varinenv : Elem αn Γ)
6 -> (ubLTlen : ub < len)
7 -> WFAExp (Acc αn ub) Γ
8 ...
9
10 isWFAExp : (a : RAExp c cnst vs) -> Γ -> Dec (WFAExp a Γ)

Here, Var requires a proof that x is in scope, and Acc similarly re-
quires a proof that αn is in scope, but also that n > 0 and that
the index is not out-of-bounds (i.e. ub < len). Constructs that have
subexpressions (i.e. Neg, Add, and Mul) are well-formed only when
their subexpressions are well-formed. Literals (Val) are trivially
well-formed. The definition of the decision procedure for well-
formedness, isWFAExp, is unsurprising.

Example 3.10 (Well-Formedness of Arithmetic Expressions for N).
We can produce a proof that the reified algebraic expression ar
in Example 3.9 is well-formed under the environment defined in
Example 3.7.

3.4.4 Boolean Expressions. Both the index-reification and well-
formedness of Boolean expressions are trivial. For both equality and
inequality expressions, (arithmetic) sub-expressions are themselves
reified and checked for well-formedness.

3.4.5 Statements.

Continuation Passing Style. In order to facilitate the inference of
environments and contexts, statements are first transformed into
an equivalent continuation-passing style.

1 data CPStmt : (c : Type) -> (cnst : Struct c set kind)
2 -> (X,I,Y) -> Type where
3 Assn : (var : X)
4 -> (a : AExp c cnst vs)
5 -> (s_k : CPStmt c cnst vs)
6 -> CPStmt c cnst vs
7 ...
8 Stop : CPStmt c cnst vs
9
10 (++) : (s1 : CPStmt c cnst vs) -> (s2 : CPStmt c cnst vs)
11 -> CPStmt c cnst vs
12
13 data RelStmtCPS : (s : Stmt c cnst vs)
14 -> (s_cps : CPStmt c cnst vs) -> Type where
15 Assn : RelStmtCPS (Assn var a) (Assn var a Stop)
16 ...
17 Comp : (s1CPS : RelStmtCPS s1 s1_cps)
18 -> (s2CPS : RelStmtCPS s2 s2_cps)
19 -> RelStmtCPS (Comp s1 s2) (s1_cps ++ s2_cps)
20
21 relStmtCPS : (s : Stmt c cnst vs)
22 -> (s_cps : CPStmt c cnst vs ** RelStmtCPS s s_cps)

Here, we define a new statement representation, CPStmt, and the
type, RelStmtCPS that defines the relation between statements and
CPS statements. Statement composition is the only interesting case:
s2 is appended to s1, where we define (++) to substitute the instance
of Stop in s1 for s2 (occurrences of Stop in the body of for-statements
are not substituted).

Loop Unrolling. Loops in CPS statements are then unrolled. We
define a new statement representation, LUStmt that is the same as
CPStmt but without loops.

1 data LUStmt : (c : Type) -> (cnst : Struct c set kind)
2 -> (X,I,Y) -> Type where
3
4 (++) : (s1 : LUStmt c cnst vs) -> (s2 : LUStmt c cnst vs)
5 -> LUStmt c cnst vs
6
7 data UnrollCPStmt : (s : CPStmt c cnst (X,I,Y)) -> Γ0
8 -> (s_lu : LUStmt c cnst (X,I,Y)) -> Γω
9 -> Type where
10 ...
11 {- Γ′0 = (∅, ∅, A)-}
12 {- Γ′0 = (∅, ∅, A ∪ {αn })-}
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13 Aryd : (kLU : UnrollCPStmt s_k Γ′0 k_lu Γω )
14 -> UnrollCPStmt (Aryd αn lenNZ s_k) Γ0
15 (Aryd αn lenNZ k_lu) Γω
16 Iter : (aryinarys : Elem arylen Γ)
17 -> (sLU : UnrollCPStmt s Γ0 s_lu Γκ )
18 -> (kLU : UnrollCPStmt s_k Γκ k_lu Γω )
19 -> UnrollCPStmt (Iter var arylen lenNZ s s_k) Γ0
20 ((foldr (++) Stop (replicate len s_lu))
21 ++ k_lu) Γω
22 ...
23
24 unrollCPStmt : (s : CPStmt c cnst vs)
25 -> (env : Env vs)
26 -> Maybe (s_lu : LUStmt c cnst vs ** env_z : Env vs

** UnrollCPStmt s env s_lu env_z)

Similar to before, we additionally define a type that relates a CPS
statement to its loop-unrolled equivalent. An environment is main-
tained between statements in order to know the length of the list be-
ing iterated over in the for-statement. Since we are only concerned
with arrays, only array declarations update the environment. The
other interesting case is Iter, which replaces the loop statement,
e.g.

1 loop : Stmt Nat NatTestSyntax.sgpNat NatTestSyntax.testVs
2 loop =
3 Comp (Aryd α 2 MkNotZero)
4 (Iter x1 i α 2 MkNotZero (Assn x2 (Val 5)))

with a declaration of the index variable, n−1 repetitions of the loop
body prepended with the assignment of the ith element of α2 to
the given numeric variable and appended with an index increment
statement, one final repetition of the loop body prepended with the
assignment ith element of α2 but without the index increment, and
finally the loop-unrolled continuation from the original loop. In
terms of the above example, loop becomes

1 loop : LUStmt Nat semigroupNat (X,I,Y)
2 loop =
3 Aryd α 2 MkNotZero
4 (Idxd i
5 (Assn x1 (Acc α 2 i)
6 (Assn x2 (Val 5)
7 (Idxi i
8 (Assn x1 (Acc α 2 i)
9 (Assn x2 (Val 5)
10 Stop))))))

We note that the covering function for UnrollCPStmt returns a Maybe

instead of a Dec due to difficulties of the type checker to reduce the
fold in proofs of contradiction in the Iter case. Since we are only
interested in the proofs for assertions in well-formed programs,
providing a proof of why a given program is not well-formed is not
strictly necessary and will be left to future work.

Index Reification. Following loop-unrolling, index variables are
reified. We define a new statement representation, RStmt, that is
the same as LUStmt barring three changes: index declaration and
increment constructors no longer take arguments, and all other
occurrences of index variables are replaced with their values taken
from some index-context.

1 data RStmt : (c : Type) -> (cnst : Struct c set kind)
2 -> (X,I,Y) -> Type where
3 ...
4 Idxd : (s_k : RStmt c cnst vs) -> RStmt c cnst vs
5 Idxi : (s_k : RStmt c cnst vs) -> RStmt c cnst vs
6 Aryu : (varlen : Y)
7 -> (lenNZ : NotZero len)

8 -> (idx : Nat)
9 -> (a : RAExp c cnst vs)
10 -> (s_k : RStmt c cnst vs)
11 -> RStmt c cnst vs
12 ...
13
14 data ReifyIdxStmt : (s : LUStmt c cnst vs) -> Γ -> ϒ
15 -> (s_r : RStmt c cnst vs)
16 -> Type where
17 ...
18 Idxd : (kRI : ReifyIdxStmt s_k (Γ ∪ {i }) (ϒ ⊔ {i 7→ 0}) k_r
19 -> ReifyIdxStmt (Idxd i s_k) Γ (MkIdxCtx ubs) (Idxd k_r)
20 Idxi : (idxinenv : Elem i Γ)
21 -> (arr : ArrIdxBounds Γ ϒ idxinenv ub)
22 -> (kRI : ReifyIdxStmt s_k (Γ ∪ {i }) (ϒ ⊔ {i 7→ ub + 1}) k_r)
23 -> ReifyIdxStmt (Idxi i s_k) Γ ϒ (Idxi k_r)
24 Aryu : (aRI : ReifyIdxAExp a Γ ϒ a_r)
25 -> (idxinenv : Elem i Γ)
26 -> (arr : ArrIdxBounds Γ ϒ idxinenv ub)
27 -> (kRI : ReifyIdxStmt s_k Γ ϒ k_r)
28 -> ReifyIdxStmt (Aryu varlen lenNZ i a s_k) Γ ϒ
29 (Aryu varlen lenNZ ub a_r k_r)
30 ...
31
32 reifyIdxStmt : (s : LUStmt c cnst vs) -> Γ -> ϒ
33 -> Maybe (s_r : RStmt c cnst vs
34 ** ReifyIdxStmt s Γ ϒ s_r)

Here, ReifyIdxStmt relates a loop-unrolled statement with an equiv-
alent index-reified statement. The environment, Γ, is only updated
when an index variable is declared. Upon declaration of an index
variable, the index context is also updated such that it maps the
declared index variable, i , to 0. Should i already be in Γ, the new
mapping replaces the old. In the above code, this is represented by
⊔; i.e. ϒ⊔{i j 7→m} = ϒ \ {i j 7→ 0, i j 7→ 1, i j 7→ 2, . . . }∪ {i j 7→m}.
Index increment statements update the context analogously. In our
implementation, we do not remove old instances in either the envi-
ronment or context, but instead rely upon the definition of isElem
returning the first occurrence of i in Γ. Future work will address
this reliance upon implementation idiosyncrasies.

As in Section 3.4.5, the covering function, reifyIdxStmt, returns a
Maybe value instead of a Dec due to impossible contradiction proof
obligations. This is a consequence of the result that for any two
proofs of vector membership, p1,p2 : Elem x xs, it does not hold that
p1 = p2, for a given x and xs. Future work will address this.

Well-Formedness. The index-reification of statements enables
the definition of a type expressing well-formedness; i.e. all vari-
ables are assigned/declared prior to occurrences in statements/sub-
expressions and that array accesses are never out-of-bounds.

1 data WFRStmt : (s : RStmt c cnst vs) -> Γ -> Type where
2 Assn : (a_wf : WFRAExp a Γ)
3 -> (k_wf : WFRStmt s_k (Γ ∪ {x }))
4 -> WFRStmt (Assn x a s_k) Γ
5 Aryd : (k_wf : WFRStmt s_k (Γ ∪ {αn })
6 -> WFRStmt (Aryd αn lenNZ s_k) Γ
7 Aryu : (varinarys : Elem αn Γ)
8 -> (idxLTlen : LT idx len)
9 -> (a_wf : WFRAExp a Γ)
10 -> (k_wf : WFRStmt s_k Γ)
11 -> WFRStmt (Aryu αn lenNZ idx a s_k) Γ
12 ...
13
14 isWFRStmt : (s : RStmt c cnst vs) -> (env : Env vs) -> Dec (

WFRStmt s env)
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Here, the interesting cases are: numeric variable assignment and
array declaration, which adds the relevant variable to the envi-
ronment; and array update, which requires that the array being
accessed is in the environment and that the index is strictly less than
the length of the array (arrays are considered to be zero-indexed).

3.5 Operational Semantics
We define a big-step operational semantics for well-formed pro-
grams in Imp. Since (finite) well-formed programs are intended to
be both guaranteed to be ground and terminate, no error states are
produced during evaluation/execution.

3.5.1 Contexts. Similarly to index contexts in Section 3.4.2, we
define a context, Ψ, for numeric and array variables.

1 data Ctx : (c : Type) -> (env : Env vs) -> Type where
2 MkCtx : {nums : Vect n (Elem NumVar ns)}
3 -> {arys : Vect m (Elem AryVar as, (len ** NotZero len))}
4 -> (nvals : Vect n c)
5 -> (avals : Vect m (s ** Vect s c))
6 -> (ok : StructSame arys avals)
7 -> Ctx c (MkEnv nums idxs arys)

Here, a context takes a vector of numeric values, nvals, and a vector
of array values, avals. Both vectors have the same length as the
vector of numeric and array variables that are in the environment.
The ith element in nvals and avals are mapped to the ith element in
nums and arys, respectively. Each element in avals is itself a vector
of numeric values. The proof term, (ok : StructSame arys avals), re-
quires that each vector of numeric values in avals is the same length
as the declared array in arys. Upon declaration, each element of an
array is set to the zero value defined in the given setoid over c.

Example 3.11 (Context). We might define an example context
for the environment defined in Example 3.7, which has a single
numeric variable, x2, and three arrays, α11 , α

3
2 , and α

5
2 , in scope.

1 testAVals : Vect 3 (l : Nat ** Vect l Nat)
2 testAVals = [(1 ** [1]),(3 ** [2,3,4]),(5 ** [5,6,7,8,9])]
3
4 testAValsStructSame : StructSame {as=[AryVar, AryVar]} [(Here,

(1 ** MkNotZero)), (Here, (3 ** MkNotZero)), (There Here,
(5 ** MkNotZero))] NatTestEnv.testAVals

5 testAValsStructSame = Cons Refl (Cons Refl (Cons Refl Nil))
6
7 testCtx : Ctx Nat NatTestEnv.testEnv
8 testCtx = MkCtx [5] testAVals testAValsStructSame

Here, x2 = 5; α11 = [1]; α32 = [2, 3, 4]; and α52 = [5, 6, 7, 8, 9]. The
variable testAValsStructSame provides the proof that the list of arrays,
testAVals is a vector of length three, with nested vectors of lengths 1,
3, and 5.We equivalently represent testCtx as the set of substitutions

Ψ = {x2 7→ 5,α11 7→ [1],α32 7→ [2, 3, 4],α52 7→ [5, 6, 7, 8, 9]}

3.5.2 Arithmetic Expressions. We define a big step operational
semantics for algebraic expression via the type, SRAExp, which relates
a given reified arithmetic expression to its value in c, given some
context Ψ.

1 data SRAExp : (cnst: Struct c set kind)
2 -> (a : RAExp c cnst vs) -> Γ
3 -> (a_wf : WFRAExp a env) -> Ψ
4 -> (val : c)
5 -> Type where
6 Val : SRAExp cnst (Val n) Γ Val Ψ n
7 Var : (arr : ArrVarC Γ Ψ varinenv val)

8 -> SRAExp cnst (Var var) Γ (Var varinenv) Ψ val
9 Add : (a1_s : SRAExp cnst a1 Γ a1_wf Ψ a1_val)
10 -> (a2_s : SRAExp cnst a2 Γ a2_wf Ψ a2_val)
11 -> SRAExp cnst (Add a1 a2) Γ (Add a1_wf a2_wf) Ψ (π(+)

a1_val a2_val)
12 ...
13
14 sraexp : (cnst : Struct c set kind)
15 -> (a : RAExp c cnst vs) -> Γ
16 -> (a_wf : WFRAExp a env) -> Ψ
17 -> (val : c ** SRAExp cnst a env a_wf ctx val)

Literal values evaluate to themselves; variables and array accesses
are related to a value in the context by ArrVarC and ArrVarIdxC, re-
spectively; and addition, negation, and multiplication are evaluated
using the respective functions defined in the given algebraic struc-
ture.

3.5.3 Boolean Expressions. The semantics for boolean expres-
sions are defined analogously to arithmetic expressions above. Nu-
meric sub-expressions are evaluated, and the functions provided for
definitional equality and inequalities are projected from the given
algebraic structure.

3.5.4 Statements. We define the semantics of statements via
the type, SRStmt. Unlike expressions, the result of executing the
statements is the context, Ψ. Specifically, the final state of a given
statement is the context of the final continuation; i.e. the context
provided to a Stop statement.

1 data SRStmt : (cnst: Struct c set kind)
2 -> (s : RStmt c cnst vs) -> Γ
3 -> (s_wf : WFRStmt s env) -> Ψ
4 -> Type where
5 Assn : (a_s : SRAExp cnst a Γ a_wf Ψ a_val)
6 -> (k_s : SRStmt cnst s_k (Γ ∪ x) k_wf (Ψ ⊔ {x 7→ a_val}))
7 -> SRStmt cnst (Assn x a s_k) Γ (Assn a_wf k_wf) Ψ
8 Aryu : (a_s : SRAExp cnst a Γ a_wf Ψ a_val)
9 -> (arr : AryCtxUpdateAssn cnst Γ Ψ αn lenNZ varinarys
10 (natToFin idx n idxLTlen)
11 a_var Ψ′)
12 -> (k_s : SRStmt cnst s_k Γ k_wf Ψ′)
13 -> SRStmt cnst (Aryu αn lenNZ idx a s_k) Γ
14 (Aryu varinarys idxLTlen a_wf k_wf) Ψ
15 Cert : (b_s : SRBExp cnst b Γ b_wf Ψ val)
16 -> (k_s : SRStmt cnst s_k Γ k_wf Ψ)
17 -> SRStmt cnst (Cert b s_k) Γ (Cert b_wf k_wf) Ψ
18 ...
19
20 srstmt : (cnst: Struct c set kind)
21 -> (s : RStmt c cnst vs) -> Γ
22 -> (s_wf : WFRStmt s env) -> Ψ
23 -> SRStmt cnst s Γ s_wf Ψ

Here, the interesting cases are numeric variable assignment, array
update, and CSLImp assertions. Assignments require the evalua-
tion of the arithmetic expression, a, the result of which is used to
update the context. As in Section 3.5.1, ⊔ denotes the addition or
replacement of a mapping in a given context. In our implemen-
tation, as before, we simply prepend a_val to the list of numeric
values in the context. Array updates are similar, requiring the eval-
uation of the arithmetic expression, which is then used to update
the relevant value in the context. Here, the update is defined via
the type, AryCtxUpdateAssn. This relates the current context with a
new context such that only the element at index idx of the array
assigned to αn is replaced by a_val. Array declarations are defined
analogously, but such that a new vector of zero values are added



IFL’19, September 2019, Singapore Adam D. Barwell and Christopher Brown

to the context. Finally, we define the semantics of CSLImp asser-
tions to be equivalent to a typical skip statement. Assertions do not
affect the execution of the program, but are instead used by the
automatic proof inference system in order to determine whether
the assertion holds. The argument, b_s, represents the evaluation
of the boolean expression, and is used in order to determine the
values of arithmetic sub-expressions when generating proofs for
assertions.

4 AUTOMATICALLY PROVING ASSERTIONS
In this section, we define the type, VCRStmt, that extends assertion
statements from CSL (see Section 2.1 and Listing 1 for an example of
CSL assertions in C) with proofs (of contradition) that demonstrate
that the assertion holds/does not hold true for the current context.

1 data VCRStmt : (cnst : Struct c set kind)
2 -> (s : RStmt c cnst vs) -> Γ
3 -> (s_wf : WFRStmt s env) -> Ψ
4 -> (s_s : SRStmt cnst s env s_wf ctx)
5 -> Type where
6 ...
7 Cert : (b_prf : Dec (VCRBExp cnst b Γ b_wf Ψ b_s))
8 -> (k_vc : VCRStmt cnst s_k Γ k_wf Ψ k_s)
9 -> VCRStmt cnst (Cert b s_k) Γ (Cert b_wf k_wf) Ψ
10 (Cert k_s)

Naturally, Cert is the only interesting case. It takes an argument
that represents the proof of the (reified) Boolean expression that
comprises the assertion for the environment and context at that
particular statement. The environment and context are derived
from, and defined by, the proofs of well-formedness and seman-
tics that VCRStmt is indexed by. The proof itself is comprised of the
type, VCRBexp, which represents only (propositionally) true Boolean
expressions under the given context. Accordingly, and following
convention, a proof that the assertion does not hold is represented
by a function with the type VCRBExp cnst b Γ b_wf Ψ b_s -> Void.

1 data VCRBExp : (cnst : Struct c set kind)
2 -> (b : RBExp c cnst vs) -> Γ
3 -> (b_wf : WFRBExp b env) -> Ψ
4 -> (b_s : SRBExp cnst b Γ b_wf Ψ val)
5 -> Type where
6 Eq : {set : Setoid c (≃)}
7 -> {cnst : Struct c set kind}
8 -> (prf : a1_val (≃) a2_val)
9 -> {a1_s : SRAExp cnst a1 Γ a1_wf Ψ a1_val}
10 -> {a2_s : SRAExp cnst a2 Γ a2_wf Ψ a2_val}
11 -> OrdVCRBExp cnst (Eq a1 a2) Γ (Eq a1_wf a2_wf) Ψ
12 (Eq a1_s a2_s)
13 LTE : {lte : c -> c -> Type}
14 -> (prf : lte a1_val a2_val)
15 -> {a1_s : SRAExp (OrdSemigroup ...)
16 a1 Γ a1_wf Ψ a1_val}
17 -> {a2_s : SRAExp (OrdSemigroup ...)
18 a2 env a2_wf ctx a2_val}
19 -> OrdVCRBExp (OrdSemigroup sgp
20 (MkTotalOrder lte is_lte ...))
21 (LTE a1 a2 OrdSemigroup) Γ
22 (LTE a1_wf a2_wf) Ψ
23 (LTE a1_s a2_s)

Here, both equality and inequality cases take the respective type
definition from the given algebraic structure that represents the
boolean operation. Each case then require an element of that type
applied to the evaluated arithmetic sub-expressions. VCRBExp can be
extended according to the defined algebraic structures and opera-
tions. The decision procedure for VCRBExp is straightforward.

1 isVCRBExp : (cnst : Struct c set kind)
2 -> (b : RBExp c cnst vs)
3 -> Γ
4 -> (b_wf : WFRBExp b Γ)
5 -> Ψ
6 -> (b_s : SRBExp cnst b Γ b_wf Ψ val)
7 -> Dec (VCRBExp cnst b Γ b_wf Ψ b_s)
8 isVCRBExp {set=(MkSetoid ... is_cong ...)} cnst (Eq a1 a2) Γ
9 (Eq a1_wf a2_wf) Ψ (Eq {a1_val} {a2_val} a1_s a2_s) =
10 case is_cong a1_val a2_val of
11 Yes prf => Yes (Eq prf)
12 No contra => No (\(Eq prf) => contra prf)
13 ...

Here, the relevant decision procedure is projected from the given
algebraic structure and is used to produce a proof, which is then
used as an argument to the concomitant VCRStmt constructor.

5 DEMONSTRATION
In order to illustrate our approach, we consider list summation, an
example of summing an array of natural numbers to demonstrate
the principles of our technique, where we manually apply each step;
it is intended that this process will be fully automatic in the future.
In C, we might have the summation function, sumList, that takes

1 int sumList(const int *xs) {
2 int sum = 0;
3 int loop_energy;
4 __csl_energy(&loop_energy);
5 for (i = 0; i < len(xs); i++){
6 sum = sum + xs[i];
7 }
8 __csl_assert(sum == 15);
9 __csl_assert(loop_energy < 10);
10 return sum;
11 }

an array as a parameter and returns the sum of its elements. Here,
sumList has been annotated with a CSL capture annotation on Line
4 to measure, e.g., the estimated energy consumption of the for-
statement on Lines 5–7. CSL assertions have also been introduced
on Lines 8 & 9; the first represents a check that the result of the
loop is correct, and the second represents that the cost of the loop is
within a given upper-bound, i.e. does not exceed 10 joules of energy.
The body of sumList can be represented in Imp for a specific value
of xs and where we assume, for the sake of this example, that all
values in xs are zero or greater (i.e. are natural numbers).

1 loopBody : Stmt Nat ordsgpNat (X,I,Y)
2 loopBody = Assn Here (Add (Var x1) (Var x2))
3
4 sumListNatOSg : Stmt Nat ordsgpNat (X,I,Y)
5 sumListNatOSg =
6 Comp (Assn x1 (Val 0))
7 (Comp (Assn x3 (Val 7))
8 (Comp (Iter x2 i1 α 5

1 MkNotZero loopBody)
9 (Comp (Cert (Eq (Var x1) (Val 15)))
10 (Cert (LTE (Var x3) (Val 10) OrdSemigroup)))))

We use the OrdSemigroup definition for the natural numbers from Ex-
ample 3.3 and assume the existence of the array [1,2,3,4,5], whose
declaration and assignment statements are omitted, in the environ-
ment and context. Here, x1 is the accumulator, x2 is assigned to
each element in the array over the course of all iterations of the
loop, and x3 represents the result of the CSL capture annotation in
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Line 4 of the sumList definition. The assertion on Line 9 represents
a functional check that the result of the summation is the expected
value, and the assertion on Line 10 represents a check to ensure
that the result of the capture annotation is within a certain bound.
In order to generate proofs of these assertions, we first ensure that
sumListNatOSg is well-formed. This process begins with a transfor-
mation into continuation-passing style by the relStmtCPS covering
function.

1 s_cps : CPStmt Nat ordsgpNat (X,I,Y)
2 s_cps =
3 (Assn x1 (Val 0)
4 (Assn x3 (Val 7)
5 (Iter x2 i1 α 5

1 MkNotZero
6 (Assn x1 (Add (Var x1) (Var x2)) Stop)
7 (Cert (Eq (Var x1) (Val 15)) (Cert (LTE (Var x3)) (Val 10)

OrdSemigroup) Stop))))

This is followed by loop-unrolling via the unrollCPStmt, which repli-
cates the body of the loop five times.

1 s_lu : LUStmt Nat ordsgpNat (X,I,Y)
2 s_lu =
3 (Assn x1 (Val 0)
4 (Assn x3 (Val 7)
5 (Idxd i1
6 (Assn x2 (Acc α 5

1 i1)
7 (Assn x1 (Add (Var x1) (Var x2))
8 (Idxi i1
9 (Assn x2 (Acc α 5

1 i1)
10 (Assn x1 (Add (Var x1) (Var x2))
11 (Idxi i1
12 ...
13 (Assn x1 (Add (Var x1) (Var x2))
14 (Cert (Eq (Var x1) (Val 15))
15 (Cert (LTE (Var x3) (Val 10) OrdSemigroup) Stop)...)

In order to maintain functional equivalence, the unrolled loop is
preceded by a declaration of i1 (Line 5), each repetition of the loop
body is preceded by a statement assigning x2 to the ith element of
α51 (Lines 6 & 9), and finally, each repetition, excepting the last, of
the loop body is followed by the incrementation of i1 (Lines 8 &
11). Having unrolled the loop, it is now possible to reify s_lu using
reifyIdxStmt.

1 s_r : RStmt Nat ordsgpNat (X,I,Y)
2 s_r =
3 (Assn x1 (Val 0)
4 (Assn x3 (Val 7)
5 (Idxd
6 (Assn x2 (Acc α 5

1 0)
7 (Assn x1 (Add (Var x1) (Var x2))
8 (Idxi
9 (Assn x2 (Acc α 5

1 1)
10 (Assn x1 (Add (Var x1) (Var x2))
11 (Idxi
12 ...
13 (Assn x1 (Add (Var x1) (Var x2))
14 (Cert (Eq (Var x1) (Val 15))
15 (Cert (LTE (Var x3) (Val 10) OrdSemigroup) Stop)...)

Here, we observe that the occurrences of i1 in Lines 6 & 9 in s_lu

have been replaced with their relevant natural numbers in Lines 6
& 9 of s_r. We now determine the final stage of well-formedness by
applying isWFRStmt.

1 sumListEnv : Env (X,I,Y)
2 sumListEnv = MkEnv [] [] [(Here, (5 ** MkNotZero))]
3
4 s_wf : WFRStmt s_r sumListEnv
5 s_wf =

6 (Assn Val (Assn Val (Idxd
7 (Assn (Acc MkNotZero Here (LTESucc LTEZero))
8 (Assn (Add (Var (There (There Here))) (Var Here))
9 (Idxi
10 (Assn (Acc MkNotZero Here (LTESucc (LTESucc LTEZero)))
11 ...
12 (Cert (Eq (Var Here) Val)
13 (Cert (LTE (Var (There ... (There Here))))))))))) Val)
14 Stop)...)

Sincewe assume thatα51 is already defined and its elements assigned,
we specify the initial environment sumListEnv, which only contains
an array of length 5. s_wf is then a proof that all variables are in the
environment before they occur in assignment statements or sub-
expressions (e.g. on Lines 7–8, 10, & 12–13), and that array accesses
are not out-of-bounds (e.g. on Lines 10 & 13). Given this proof that
s_r is well-formed, and in order to determine whether the assertions
hold, it is necessary to first derive a context for those assertions.
We therefore apply srstmt to both s_r and s_wf. We note that this is
equivalent to executing the program and using the values of x1 and
x3 at the point of each assertion.

1 sumListCtx : Ctx Nat testListEnv
2 sumListCtx = MkCtx [] [(5 ** [1, 2, 3, 4, 5])] (Cons Refl [])
3
4 s_s : SRStmt ordsgpNat s_r sumListEnv s_wf sumListCtx
5 s_s =
6 Assn Val (Assn Val (Idxd (Assn (Acc Here) ... Stop)...)
7
8 Ψω = MkCtx [15, 5, 10, 4, 6, 3, 3, 2, 1, 1, 7, 0]
9 [(5 ** [1, 2, 3, 4, 5])]
10 (Cons Refl []))

As before, we provide an initial context with our array already
included. The result of srstmt is a witness to our semantics, s_s, and
the inferred contexts at each continuation, where Ψω is the final
context. In Ψω , we observe that the values for the arrays have not
changed, which is expected. Excepting the final two elements of the
vector in Line 8, which represents the values of numeric variables,
each pair of elements (i.e. 15 & 5, 10 & 4, etc.) represent updated
values of x1 and x2 respectively. We can now generate the proofs
for both assertion statements by applying vcrstmt to s_r, s_wf, and
s_s.

1 s_vc : VCRStmt ordsgpNat s_r sumListEnv s_wf sumListCtx s_s
2 s_vc =
3 Assn
4 ...
5 (Cert (Yes (Eq Refl))
6 (Cert (Yes (LTE (LTESucc ... (LTESucc LTEZero)...) Stop)...)

Here, s_vc represents the extension of assertions in s_r given the
context at that point the program. Line 5 contains the proof that
x1 ≃ 15 holds true, where x1 = 1 + 2 + 3 + 4 + 5. Similarly, Line 6
contains the proof that the cost value obtained from the capture
annotation is less than the programmer-provided upper bound; i.e.
x3 ≤ 10, where x3 = 7.

6 RELATEDWORK
In addition to the aforementioned related work throughout the
paper, the calculation and bounding of resource usage is a topic
of great interest in the programming language community, with
approaches typically focussed on time, space, and type systems [8,
9, 15, 17, 18, 21, 32]. Other non-functional properties, such as in-
formation flow and leakage, have also been modelled using type
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systems [7, 33]. Energy consumption, which is of increasing interest
to embedded systems programming [24], has also been represented
as a function of program arguments [13, 22]. These approaches typ-
ically depend upon specific type systems or languages; accordingly,
applying them to other languages can prove non-trivial [6]. Abstract
interpretation offers an alternative approach to the verification and
debugging of programs in languages that may not necessarily be
best equipped for the desired techniques [23]. Examples include
debugging of both imperative and logical programs [3, 4], and ap-
proaches to verification by Cousot [10]. More recently, The Ciao
Preprocessor system (CiaoPP) [16, 23, 29] models Java [14] and
XC [1] programs as sequences of Horn Clauses in order to debug
and certify programs, using resource usage information that the
system derives. A high-level comparison between CiaoPP and Drive
is given by Brown et al. [6].

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the small generic imperative language,
Imp, representing a subset of C with CSL assertions. Using the
dependently-typed language, Idris, we defined both the syntax and
a big-step operational semantics for Imp. Imp is parameterised by a
pointed carrier type and an algebraic structure, enabling a generic
and formally-based framework for the expression of arithmetic
and Boolean operations. Our semantics for Imp facilitate a robust
context inference that, in turn, facilitates the automatic generation
of proofs for CSL assertions. We demonstrate our approach on a
representative example of summing an array, featuring both CSL
assertions and capture annotations.

In the future, we will expand our evaluation to include the en-
tirety of the BEEBs benchmark suite, demonstrating a range of non-
functional properties, including both energy and time. Furthermore,
we will extend our non-functional properties to include security,
allowing our formalism to guide the programmer in preventing
common security hacks, such as side-channel attacks. Finally, we
will prove properties of both our semantics and abstract interpreta-
tion, including soundness, determinism, and confluence, in order
to improve confidence in our approach.
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