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 2 

Abstract: 1 

Both immune profiling and tumor budding significantly correlate with colorectal cancer 2 

(CRC) patient outcome,but are traditionally reported independently. This study evaluated the 3 

association and interaction between lymphocytic infiltration and tumor budding, coregistered 4 

on a single slide, in order to determine a more precise prognostic algorithm for patients with 5 

stage II CRC. Multiplexed immunofluorescence and automated image analysis were used for 6 

the quantification of CD3
+
CD8

+
 T cells, and tumor buds (TBs), across whole slide images of 7 

three independent cohorts (training cohort: n = 114, validation cohort 1: n = 56, validation 8 

cohort 2: n = 62). Machine learning algorithms were used for feature selection and prognostic 9 

risk model development. High numbers of TBs (HR = 5.899, 95% CI, 1.875 - 18.55), low 10 

CD3
+
 T cell density (HR = 9.964, 95% CI 3.156 - 31.46), and low mean number of 11 

CD3
+
CD8

+
 T cells within 50 μm of TBs (HR = 8.907, 95% CI 2.834 - 28.0) were associated 12 

with reduced disease-specific survival. A prognostic signature, derived from integrating TBs, 13 

lymphocyte infiltration, and their spatial relationship, reported a more significant cohort 14 

stratification (HR = 18.75, 95% CI 6.46–54.43), than TBs, Immunoscore, or pT stage. This 15 

was confirmed in two independent validation cohorts (HR = 12.27, 95% CI 3.524–42.73, HR 16 

= 15.61, 95% CI 4.692-51.91). The investigation of the spatial relationship between 17 

lymphocytes and TBs within the tumor microenvironment improves accuracy of prognosis of 18 

patients with stage II CRC through an automated image analysis and machine learning 19 

workflow.  20 
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Introduction: 1 

Tumor Node Metastasis (TNM) staging remains the gold standard for stratification of 2 

colorectal cancer (CRC) patients into prognostic subgroups, and is fundamental for treatment 3 

selection (1,2). Surgical resection without the use of adjuvant treatment results in long-term 4 

disease-free survival in most stage II CRC cases. However, 20% of patients experience 5 

disease-specific death (3). In addition, some stage III patients experience better outcomes 6 

than some stage II patients. This is in spite of revisions to the TNM guidelines, which, for 7 

example, subdivide pT stage II into three categories (4). Alongside pT stage, tumor 8 

differentiation aids the pathologist in sub-stratifying patients into high or low risk of tumor 9 

progression; however grade is highly subjective (5). Tumor budding, which morphologically 10 

resembles small, poorly-differentiated clusters of cells (1-4 cells) disseminating at the 11 

invasive margin, has consistently been correlated with poor CRC prognosis (6–8). 12 

Both TNM staging and tumor budding concentrate solely on the tumor, but it is now well 13 

established that the host interaction, such as immune infiltrate, within the tumor 14 

microenvironment (TME) plays a crucial role in tumor progression (9,10). Specifically, in 15 

CRC, the pioneering studies of Galon and colleagues demonstrated that CD3
+
 and CD8

+
 T-16 

cell infiltration was an independent prognostic factor predicting patient survival (9,11). 17 

Tumor buds (TBs) are hypothesized to represent a highly invasive tumor subpopulation, 18 

especially if they also have the ability to evade the host immune response (6–8). The 19 

interaction between immune response and TBs may therefore hold vital information 20 

pertaining to the tumor’s potential to metastasize. 21 

Previous research has demonstrated the ability to automatically quantify CD3
+
 and CD8

+
 T 22 

cells within the TME, thereby achieving a greater level of standardization than with 23 

subjective, manual reporting (9). Similarly we have previously shown that tumor budding can 24 

be standardized through automated image analysis (12,13). Although the automatic 25 

quantification of both immune infiltrate and tumor budding has been associated with patient 26 

prognosis, they have not been studied together. Furthermore, by coregistration on the same 27 

tissue section it is possible to accurately study the spatial interaction with each other. We 28 

apply such an approach in this study to investigate if quantifying both features alongside their 29 

spatial interaction allows for a more precise and accurate prognosis for stage II CRC patients.  30 
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Materials and methods 1 

Patient Material and Clinical Data 2 

This study included three independent cohorts of stage II CRC patients who underwent 3 

surgical resection in Edinburgh, UK, hospitals over the years 2002–2004 (n = 170) and the 4 

National Defense Medical College Hospital (NDMCH), Japan, over the years 2006–2011(n = 5 

62). The formalin-fixed paraffin-embedded (FFPE) block that contained the deepest cancer 6 

invasion for each patient was selected after the review of hematoxylin and eosin (H&E) 7 

slides. Cancer blocks from Edinburgh hospitals comprised specimens of cross-sectional cut 8 

whereas the ones from the NDMCH were of longitudinal cut. Associated clinical data 9 

included features from the original pathology report, such as TNM staging and differentiation 10 

as well as detailed follow-up information including disease specific survival (DSS); up to 11 

11.5 years for the Edinburgh cohort and 8.6 years for the Japanese cohort. 114 consecutive 12 

patients who underwent surgical resection in Edinburgh hospitals over the years 2002–2003 13 

were used as a training cohort for this study. All available patients who underwent surgical 14 

resection in Edinburgh hospitals in the following year (2004) were used as a first validation 15 

cohort (n = 56). We then used a similar number of patients who underwent surgical resection 16 

in the NDMCH, Japan over the years 2006–2011 as an international validation set (n = 62). 17 

The clinicopathological data of all the cohorts are shown in Table 1. This study was 18 

conducted in accordance with the declaration of Helsinki. Ethical approval was obtained after 19 

review by the NHS Lothian NRS BioResource, REC-approved Research Tissue Bank (REC 20 

approval ref: 13/ES/0126), granted by East of Scotland Research Ethics Service and by the 21 

Ethics Committee of the National Defense Medical College (approval ref: No.2992). The 22 

ethical approval permitted us to use archival diagnostic samples once they were de-identified 23 

for the purposes of the research. 24 

 25 

Immunofluorescence and Image Capture 26 

Immunohistochemistry antibody optimization 27 

We selected externally validated specific primary antibodies: primary antibody against CD8
+
 28 

cytotoxic T cells (monoclonal mouse anti-human CD8, M7103, Dako, Glostrup, DK) was 29 

previously used for the international validation of the consensus Immunoscore by Pages et 30 

al.(14),  primary antibody against pan T cells (Polyclonal Rabbit Anti-Human CD3, 31 

A045201-2, Dako, Glostrup, DK) used by Harter et al. (15), in assessment of tumor-32 

infiltrating lymphocytes in human brain metastases and for pan-cytokeratin (PanCK) (mouse 33 

monoclonal anti-human cytokeratin, M351501-2, Dako, Glostrup, DK) previously used by 34 

Koelzer et al. (16), for the assessment of TBs in CRC. 35 

In order to assess the in-house antibody performance, each antibody was individually 36 

assessed by brightfield immunohistochemistry (IHC). The primary antibodies against CD3 37 

and CD8 T cells were each tested individually on 3μm thick serial sections of normal tonsil 38 

FFPE tissue, known to have high lymphocytic cell concentration. For assessment of PanCK 39 

primary antibody, a CRC optimizing tissue microarray, consisting of 100 cores taken from 40 

primary tissue blocks, was used. Expression of all cell markers was detected using 3,3’-41 

Diaminobenzidine (DAB) chromogen (K3468, Dako, Glostrup, DK). Nuclei were 42 

counterstained with hematoxylin (RBA-4213-00A, CellPath, Newton, UK). In parallel, H&E  43 
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(RBB-0100-00A, CellPath, Newton, UK) staining was performed on serial sections and 1 

specificity of antibodies from the IHC was assessed and compared visually by an experienced 2 

pathologist (DJH) and research scientists (IPN and PDC). No CD8 positive but CD3 negative 3 

cells were present, giving confidence to the antibodies’ specificity.  Positive and negative 4 

controls were used in each immunohistochemistry staining; human tonsil FFPE tissue without 5 

primary antibody for CD3 and CD8 T cells and a CRC optimizing tissue microarray without 6 

primary antibody for PanCK. Western blot analysis was also used to assess the specificity of 7 

the PanCK antibody using CRC cell lines. 8 

Immunofluorescence staining optimisation 9 

Once specificity of antibodies was confirmed in brightfield, each target was assessed by a 10 

uniplex immunofluorescence. Uniplex immunofluorescence was performed on serial sections 11 

of the CRC optimising tissue microarray (specified above) with the use of individual 12 

tyramide signal amplification (TSA) fluorescence kits. After deparaffinization, slides were 13 

placed in a microwaveable pressure cooker containing boiling antigen retrieval (AR) buffer 14 

(0.1M Sodium Citrate pH6) and microwaved for 5 min at 75 °C. Slides were allowed to cool 15 

down in running tap water for 20min at room temperature and were then rinsed with 0.1% 16 

Phosphate buffered saline-Tween 20 (PBS-T). PBS-T was used for all washing steps. Tissues 17 

were then blocked with 3% hydrogen peroxide for 5 minutes and Dako serum free protein 18 

block (X090930-2, Dako, Glostrup, DK) was then applied for 10 minutes. Slides were then 19 

incubated for 30 min with the same antibodies as for immunohistochemistry at these 20 

dilutions: CD3 (dilution 1:400), CD8 (dilution 1:200) and PanCK (dilution 1:100). Slides 21 

were then washed (3 x 5min). The slides that had previously been incubated with CD3 or 22 

CD8 antibodies were then incubated in pre-diluted anti mouse or anti rabbit HRP conjugated 23 

secondary antibodies (K400111-2 and K400311-2 respectively, Dako, Glostrup, Denmark) 24 

for 30 min. Following 3 more washes of 5 min, slides were incubated for 10 min with either 25 

TSA® fluorescein (FITC) for CD3 antibody visualisation or TSA® Cyanine 5 for CD8 26 

antibody visualisation (NEL741B001KT and NEL745B001KT respectively, Perkin Elmer, 27 

MA, USA) at 1:100 dilution. The slide that had been previously incubated with PanCK 28 

antibody was then incubated in anti-mouse AlexaFluor 555 (A21422, ThermoFisher, MA, 29 

USA) in antibody diluent (S080983-2, Dako, Glostrup, DK) at 1:100 dilution for 30 min. 30 

Finally, following a washing step, the slides were counterstained for 10 min with Hoechst 31 

33342 (H3570, ThermoFisher, MA, USA) at 1:20 dilution in de-ionised water.  Sections were 32 

then dehydrated in 80% ethanol and mounted with ProLong Gold Antifade Reagent (P36930, 33 

Thermo Fisher Scientific Inc., MA, USA). Optimal antibody dilutions in the uniplex 34 

immunofluorescence slides were chosen to ensure best signal to noise and specific staining 35 

pattern when digitised on the Zeiss Axioscan.z1 whole slide scanner (Zeiss, Oberkochen, 36 

DE). Fluorescence slides were compared with serial section of brightfield DAB slides using 37 

the same antibodies. Positive and negative controls were included in each staining run. The 38 

positive controls for the CD3 and CD8 antibodies were the tonsil tissue as specified above. 39 

Once the appropriate dilution of primary antibodies, secondary antibodies and fluorophores 40 

were found under uniplex immunofluorescence, we then assessed them multi-plexed on a 41 

single tissue section. In order to eliminate species cross reactivity, microwave stripping was 42 

performed between the CD8 and PanCK staining. Microwave stripping was performed as 43 

follows. AR buffer was heated in a pressure cooker in the microwave for 12 min prior to 44 

adding the slides in the solution. Slides were then microwaved for 17 min using the auto 45 

defrost function. Sections were then allowed to cool down in running tap water for 20 min 46 

and washed for 5 min. The immunofluorescence protocol utilised to label the study samples 47 

was performed as above using a DAKO Link48 Autostainer (Dako, Glostrup, DK). The first 48 
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run of labelling included the primary antibody against CD8 prior to antibody stripping, and 1 

labelling with a primary antibody cocktail of CD3 and PanCK prior to counterstaining with 2 

Hoechst. The multi-plexed section was compared to the uniplex labelled serial sections and 3 

we confirmed that there was no increase or decrease in the level of specific signals or 4 

nonspecific background signals. 5 

Whole slide fluorescence images were captured with a 20x objective using an Axioscan.Z1 6 

(Zeiss, Oberkochen, DE). Exposure times for Hoechst, Cy3, Cy5 and FITC channels were 12, 7 

120, 8 and 25ms, respectively (see supplementary methods for detailed protocol of antibody 8 

optimization and multiplexed immunofluorescence). 9 

 10 

Digital Image Analysis  11 

Digital whole slide fluorescence images, in Zeiss’ .czi file format, were uploaded into HALO 12 

Next Generation Image Analysis software (version 2.1.1637.18) (IndicaLabs, Corrales, NM) 13 

for image analysis. Full algorithm workflow and settings are shown below: 14 

 15 

Nuclear segmentation: 16 

All nuclei in the whole slide image were automatically segmented using the commercially 17 

available High-Plex FL (version 2.0) module within the HALO Next Generation image 18 

analysis software. Optimized module parameters for nuclei detection included dye weights 19 

(Hoechst nucleus weight = 4, Cy5 nucleus weight = 0.232, FITC nucleus weight = 0.232), 20 

nuclear contrast threshold (0.5), minimum nuclear intensity (0.079), nuclear segmentation 21 

aggressiveness (0.65) and using the default nuclear size setting (1-500µm
2
). All samples were 22 

analyzed using these specific settings. 23 

 24 

Lymphocytic Infiltration Analysis 25 

Within the same software module in which we segmented the nuclei, (High-Plex FL), cells 26 

were then classified as CD3 (FITC) or CD8 (Cy5) positive based on dye nucleus positive 27 

threshold (Cy5 = 0.132, FITC = 0.15), cytoplasm positive threshold (Cy5 = 0.075, FITC = 28 

0.5) and membrane positive threshold (Cy5 = 0.075, FITC = 0.5). The algorithm settings 29 

were kept constant across all patients. Next, the algorithm automatically quantified the 30 

number of each lymphocyte classification across the whole slide image. The flood tool was 31 

used to identify the invasive front. An invasive margin (IM) was created which consisted of a 32 

width span of 500µm in and out from the invasive front. The tumor core area (CT) was set to 33 

be the whole tumor area excluding the 500µm before the invasive front (Fig. 1A). 34 

Lymphocytes (CD3
+
 and CD8

+
 T cells) infiltrating both the CT and the IM of the tumor were 35 

automatically quantified (Fig. 1B) and their densities (cells/ mm²) were exported to assess 36 

their prognostic significance. 37 

 38 

Immunoscore Evaluation 39 

Immunoscore was performed based on the methodology described previously by Galon et 40 

al(9). Using the lymphocytic infiltration analysis results, CD3
+
 and CD8

+
 lymphocytes were 41 

counted in both the IM and CT resulting in the reporting of the following features: CD3
+ 

T 42 

cells in the CT, CD3
+
 T cells in the IM, CD8

+
 cells in the CT and CD8

+
 T cells in the IM. 43 

Optimal cutoff points for the four features were calculated based on survival data of the 44 
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training cohort (Supplementary Table S1). Values above the optimal cutoff points for each 1 

feature were scored 1 whereas values below were scored 0. An immunoscore was then 2 

calculated by the sum of all scores for each patient sample. Finally, similarly to Liu et al. 3 

(17), patients were stratified into two groups; High Immunoscore > 2 and Low Immunoscore 4 

≤ 2.  5 

 6 

Tumor Budding Analysis 7 

The PanCK intensity within each whole slide image was initially assessed using the Area 8 

Quantification FL v1.2 module without any changes to the commercially available module 9 

thresholds. Patient samples were grouped into two categories based on their resulting PanCK 10 

intensity; low (average dye intensity < 2.16 x 10
-2

) and high (average dye intensity > 2.16 x 11 

10
-2

). Using samples from within each PanCK group (high or low), machine learning 12 

classifiers were trained to segment tumor from non-tumor region. Two High Plex FL (version 13 

2.0) modules were next created; one using the classifier trained from low PanCK patient 14 

samples and one from the high PanCK patient samples. Patients with an average PanCK 15 

intensity below 2.16-02 were analyzed to segment tumor from non-tumor using the classifier 16 

termed ‘low PanCK’ and the other with the classifier termed ‘high PanCK’. These modules 17 

were run within a 1000μm border inwards from the invasive front; termed the tumor budding 18 

region of interest (TBROI) (Fig. 1C). Within the tumor regions detected, nuclei were detected 19 

using the methodology described above and cancer cells were classified based on PanCK 20 

positivity in nucleus (0.1), cytoplasm (0.08) and membrane (0.05) (Fig. 1D). These cancer 21 

cell classification thresholds were kept constant across the entire cohort of images. TBs were 22 

classified as tumor clusters containing up to 4 PanCK
+
 cells. TB density (TBs / mm²) and 23 

number were then exported from the algorithm. Mucin pools and areas of necrosis were 24 

excluded. 25 

 26 

Spatial Analysis of Lymphocytes and Tumor Buds 27 

Spatial coordinates of the lymphocytes and TBs were imported into a spatial plot within the 28 

HALO software. From this plot, the Spatial Analysis algorithm was utilized to calculate the 29 

number of CD3
+
 and CD8

+
 T cells within a range between 0-100 μm radii of TBs (Fig. 1E) in 30 

consecutively increasing 10 μm steps therefore creating 11 classes; 0-10 μm, 0-20 μm, 0-30 31 

μm and so on. All classes of radius size were significantly associated with survival, however 32 

after assessing the prognostic significance of iterative groupings of varying radius sizes, there 33 

was a statistical difference observed between the 0-50 μm and the 0-100 μm groupings.  The 34 

classes were therefore merged into two categories: 0-50 μm and 0-100 μm radii of TBs. 35 

Finally, the number and densities of CD3
+
 and CD8

+
 T cells within these distances were 36 

established. 37 

  38 

All features exported from the image analysis are listed in Supplementary Table S2.  39 

 40 

Statistical Analysis 41 

All statistical analysis, unless otherwise stated, was performed in RStudio 1.1.419 running R 42 

3.4.3 (18,19). Continuous image analysis data, categorical clinical data and survival data 43 

were loaded into R. The relationship between lymphocyte distribution patterns, TBs, and 44 
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patient characteristics was assessed using the Chi-Square test. For comparison with 1 

categorical patient data, image analysis features were divided into low and high groups 2 

according to optimal cut-off points based on survival data. To assess the relationship between 3 

lymphocytes and TBs, Spearman correlation coefficients (r) were applied on continuous data. 4 

All r = 0 values indicated no association between features, r > 0 indicated a positive 5 

association where as one variable increases, so does the other and r < 0 indicated a negative 6 

association where as one variable increases the other decreases. Associations between 7 

features were assessed on the training cohort. 8 

Univariate Cox regression was performed on both the categorical clinical and continuous 9 

image analysis data. All P < 0.05 values were considered statistically significant.  10 

The least absolute shrinkage and selection operator (LASSO) penalized Cox proportional 11 

hazard regression was performed for identification of significant features (20), using the 12 

glmnet package (21). The significant features identified by LASSO were then inputted into a 13 

random forest (RF) (n = 500) decision tree model using the randomForest package
 
(22) and 14 

were ranked according to their mean decrease Gini coefficient. Features with a mean decrease 15 

Gini of above 4 were taken forward for further analysis. Optimal cutoff points for these 4 16 

features were calculated and iterative combinations of these features were tested. The model 17 

with most predictive value was then selected; termed the “tumor bud-immuno spatial index” 18 

(TBISI). In order to avoid overfitting during the development of the model, validation was 19 

performed for both LASSO Cox regression model (10-fold cross validation) and random 20 

forest (out of the bag). Univariate Cox regression was performed for; the TBISI, pT stage, TB 21 

number and Immunoscore, and a bootstrap resampling technique was applied (number of 22 

samples = 1000) in SPSS 24 (23). Multivariate Cox Regression with a forward stepwise 23 

method and the Receiver Operating Characteristic (ROC) curve were also applied on to 24 

compare the TBISI, pT stage TB number and Immunoscore in SPSS 24. The prognostic value 25 

of TBISI was then assessed on two independent validation cohorts. All validations were 26 

performed using the fixed optimal cut-off points of the training cohort. All optimal cutoff 27 

points for the categorization of image analysis features including tumor budding, the 28 

immunoscore and for the development of the TBISI were based on disease specific survival 29 

and were calculated using the survminer package (24). All Kaplan Meier (KM) curves were 30 

plotted using the survival package (25). The P values from KM curves were corrected for 31 

false discovery rate (FDR) using the Benjamini-Hochberg procedure to account for multiple 32 

hypothesis testing (26).  33 

Study workflow is illustrated in Supplementary Fig. S1.   34 
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Results 1 

Patient Characteristics 2 

The clinicopathological characteristics of all three cohorts of stage II CRC patients are shown 3 

in Table 1. This study cohort comprised a training cohort of 114 stage II CRC patients, of 4 

which 57 were female and 57 were male. The validation cohorts included 34 male and 22 5 

female patients in validation cohort 1 and 42 male and 20 female patients in validation cohort 6 

2. The range of patients’ age was 37–96 years old. There were 43 right-sided colon 7 

carcinomas, 38 left-sided and 33 rectal cancers in the training cohort and 29 and 14 right-8 

sided colon carcinomas, 9 and 22 left-sided and 18 and 26 rectal cancers in validation cohort 9 

1 and 2, respectively. 10 

Correlations of Patient Characteristics with Lymphocyte Density and TB Number 11 

Automated image analysis was performed to quantify TBs (within TBROI), CD3
+
 cell, and 12 

CD8
+
 T-cell densities (within IM and CT). Optimal cutoff points based on survival data were 13 

used to categorize image analysis features of the training cohort into low and high groups 14 

(Supplementary Table S1). TB number and density were highly correlated with each other 15 

(correlation coefficient = 0.7466; P < 2.2 x 10
-16

; therefore, TB number was selected to be 16 

used for correlation assessments. The relationship between patient characteristics and both 17 

lymphocyte distribution patterns and TB number was then assessed. A high density of CD3
+
 18 

T cells at the IM was associated with no extramural lymphovascular invasion (EMLVI; P = 19 

0.049), whereas in the CT it was correlated with moderate differentiation status and non-20 

mucinous histological type (P = 0.007 and P = 0.023, respectively). A high density of CD8
+
 21 

cells at the IM and across the whole tumor section (WTS) was significantly associated with 22 

female gender (P = 0.016 and P = 0.030 respectively). Finally, advanced pT stage was 23 

significantly associated with a high TB number at the TBROI (P = 0.031) (Table 2). 24 

Relationship between Tumor Budding and Lymphocyte Density  25 

TB number was tested for association with lymphocyte densities of the training cohort, using 26 

the Spearman correlation coefficient (Fig. 2). This indicated a weak negative relationship 27 

between TB number and all lymphocytic cell densities (r < 0) regardless of distribution 28 

pattern (ie. IM, CT, WTS) or lymphocytic cell subpopulations (CD3
+
 or CD8

+
). However, a 29 

higher density of CD3
+
 T cells at the IM, CD8

+
 T cells at the IM, and WTS were significantly 30 

correlated with a lower TB number (P = 0.016, P = 0.037, and P = 0.041 respectively) 31 

(Supplementary Table S3). 32 

Survival Analysis - Clinicopathological Data 33 

To assess the prognostic significance of the categorical clinicopathological data of the 34 

training cohort, univariate Cox-regression was applied. KM survival analysis was used to 35 

further assess any significant prognostic features from the clinicopathological data of the 36 

training cohort (Fig. 3). Univariate Cox-regression showed that only pT stage (HR =4.143; 37 

95% CI, 1.480-11.570; P = 0.006) was significantly associated with disease specific survival 38 

(Table 1). KM survival function was then applied and showed that patients of T4 stage have 39 

poor DSS (73% survived) compared to T3 stage patients (91% survived) (P = 0.003) (Fig. 40 

3A). 41 
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Survival Analysis - Image Analysis Features 1 

To explore the prognostic effects of the quantified lymphocytic distribution patterns, TB 2 

number and density within the training cohort, we performed univariate Cox-regression 3 

analysis. This analysis was also performed for the spatial relationships between lymphocytes 4 

and TBs. The following specific continuous features were calculated and exported from the 5 

image analysis algorithm: a) in IM, CT and WTS; densities of CD3
+
 and CD8

+
 T cells and 6 

ratio of CD3
+
 to CD8

+
 T cells; b) TB number and density at the TBROI, c) within 0–50 μm 7 

and 0–100 μm radius of TBs; number and mean number of CD3
+
 and CD8

+
 T cells. The 8 

densities of both CD3
+
 and CD8

+
 T cells were significantly associated with disease specific 9 

survival (P < 0.05). TB number and density conferred prognostic significance (HR =1.001; 10 

95% CI, 1.000–1.001; P = 0.0004 and HR =1.030; 95% CI, 1.000–1.060; P = 0.0446 11 

respectively). KM analysis showed TB number to be a significant prognostic factor; 95% of 12 

patients in the low tumor budding group survived compared to the high tumor budding group, 13 

in which 73% of patients survived (P = 0.0006) (Fig. 3D). Furthermore, a high mean number 14 

of lymphocytes near TBs was significant in predicting disease specific survival for stage II 15 

CRC patients (P < 0.05) (Supplementary Table S2). 16 

Significant Feature Selection 17 

All clinicopathological and image analysis data of the training cohort (listed in 18 

Supplementary Table S2) were input for a LASSO penalized Cox proportional hazard 19 

regression. This was performed to identify the features that add significant value to the 20 

prediction of disease specific survival over time and therefore to reduce the data 21 

dimensionality. The analysis reported that there were 8 significant candidate features (CD3
+
 22 

T-cell density at WTS, mean CD3
+
CD8

+
 T-cell number within 0–50 μm of TBs, TB Number, 23 

CD8
+
 T-cell density in CT, pT stage, EMLVI, age, and differentiation). The 8 features which 24 

added value to the model were used as further input into a RF decision tree model for optimal 25 

prognostic feature selection. The RF model reported 4 features with a mean decrease Gini of 26 

above 4 (CD3
+
 T-cell density in WTS, mean CD3

+
CD8

+
 T-cell number within 0–50 μm of 27 

TBs, TB number, CD8
+
 T-cell density in CT) (Table 3). 28 

Development of Tumor Bud Immuno-Spatial Index 29 

Optimal cutoff points for these 4 features (CD3
+
 T-cell density in WTS, mean CD3

+
CD8

+
 T-30 

cell number within 0–50 μm of TBs, TB number, CD8
+
 T-cell density in CT) were calculated 31 

for the training cohort using the patient survival data (389.6 cells/mm
2
, 4.1, 1104.0, and 114.7 32 

cells/mm
2
, respectively). The least significant feature was then removed in an iterative 33 

process until the removal of a feature decreased the prognostic value of the model. This led to 34 

the creation of the TBISI consisting of 3 features; CD3
+
 T-cell density in WTS, mean 35 

CD3
+
CD8

+
 T-cell number within 0–50 μm of TBs and TB number. Patients with CD3

+
 T-cell 36 

density in WTS and mean CD3
+
CD8

+
 T-cell number within 0–50 μm of TBs below the cutoff 37 

point and TB number above the cutoff point were classified as a “high risk” of disease 38 

specific death group; the remainder of the patients were classified as a “low-risk” group. KM 39 

curves and bootstrap univariate cox regression p values were used to determine the 40 

significance of this index. The created TBISI was highly significant in the prediction of 41 

disease specific death from both KM analysis and cox regression (HR = 18.75, 95%CI 6.46-42 

54.43; p = 1.202 x 10
-13

) (Fig. 3J). KM and univariate cox-regression analyses were also 43 

applied to pT stage (HR = 4.143, 95% CI 1.48-11.57; P = 0.0033) (Fig. 3A), TB number (HR 44 
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= 5.899, 95% CI 1.875–18.55; P = 0.0006) (Fig. 3D) and the studies’ calculated 1 

Immunoscore (HR = 7.02, 95% CI 2.49–19.84; P = 1.922 x 10
-05

) (Fig. 3G). Multivariate 2 

Cox regression model (forward stepwise) revealed that this TBISI was the only feature that 3 

added value to the model when pT stage, TB number, Immunoscore, and TBISI were 4 

included (Supplementary Table S4). Finally, the ROC curve showed that the TBISI had the 5 

greatest area under the curve (Area = 0.785, 95% CI 0.629–0.941) when compared to pT 6 

stage or each of the model’s component individually (Supplementary Fig. S2). 7 

Validation of Tumor Budding, Immunoscore and Tumor Bud-Immuno Spatial Index 8 

The TBISI developed from the training set, alongside the Immunoscore and TBs, were 9 

evaluated on two independent validation cohorts; Validation Cohort 1 patients from 10 

Edinburgh hospitals (n = 56) and International Validation Cohort 2 patients from the 11 

NDMCH, Japan (n = 62). Cutoff points calculated from the training set data were directly 12 

applied to the two validation cohorts. Univariate Cox regression and KM analyses were 13 

calculated using the patient data from the two validation cohorts and used to assess the 14 

clinicopathological data, TB number, immunoscore, and the model TBISI (Table 1). pT stage 15 

was significantly associated with patient survival in validation cohort 1 (HR = 5.00, 95% CI 16 

1.52–16.46; P = 0.008) (Fig. 3B), but not in the Japanese validation cohort 2 (Fig. 3C). TB 17 

number was significant in both validation cohort 1 and 2 (HR = 5.29, 95% CI 1.14–24.50; P 18 

= 0.033 and HR = 8.816, 95% CI 2.70–28.82; P = 0.0003) (Fig. 3E and 3F respectively), 19 

whereas the immunoscore was only significant in the validation cohort 1 (HR = 4.72, 95% CI 20 

1.02–21.87; P = 0.047) (Fig. 3H), although trended to significance in validation cohort 2 21 

(Fig. 3I).  22 

TBISI was highly significant on both validation cohorts; Validation Cohort 1 with HR = 23 

12.27, 95% CI 3.52–42.73; p = 8.2 x 10
-05

 and in Validation Cohort 2 with HR = 15.61, 95% 24 

CI 4.69–51.91; p = 7.42 x 10
-06

 (Fig. 3K and 3L, respectively). The TBISI demonstrated an 25 

increase in hazard ratio and significance in both validation cohorts than when analyzing the 26 

sum of its parts independently. 27 

  28 
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Discussion 1 

Risk assessment and thus treatment choices for stage II CRC patients are in need of 2 

improvement. A growing awareness exists that the TME contributes to cancer differentiation, 3 

progression, invasion, and metastasis (27–29). In CRC, the two most promising candidate 4 

prognostic features involve two distinct aspects of the TME: tumor budding (2,30–32) and 5 

the Immunoscore (9,10,14,33). Tumor budding represents small clusters of infiltrating cancer 6 

cells within the IM, whereas the Immunoscore quantifies tumor infiltrating lymphocytes 7 

(TILs) within both the IM and the CT. However, these features are predominantly assessed 8 

independently of each other. The question, therefore, arises as to whether these two features 9 

combined augment their individual prognostic significance and whether their association and 10 

spatial relationship adds further prognostic value for stage II CRC patients. The work 11 

presented here utilizes automated image analysis to quantify and compare TBs and TILs 12 

coregistered to the same tissue section.  13 

We report four major findings: first, we have shown significant associations between 14 

clinicopathological factors, CD3
+
 CD8

+
 T-cell densities, and TB number; second, we have 15 

confirmed that Immunoscore and tumor budding are strong independent prognostic factors 16 

for disease specific survival in stage II CRC; third, we have demonstrated that the spatial 17 

interaction between lymphocytes and TBs holds additional prognostic significance; and 18 

finally, a standardized prognostic index was created combining all the above features to 19 

achieve a higher significant cohort stratification than any individual prognostic feature tested. 20 

Emerging technologies in tissue analysis have allowed further understanding of the role of 21 

the TME in disease progression. Automated image analysis has been shown to have a high 22 

potential for unbiased and reproducible assessment of histopathological features in CRC, 23 

such as for TBs, lymphatic vessel invasion (12), and TILs (14), as well as in other disease 24 

types (34,35). To an extent, this is assisted by the advancement of acquiring multiparametric 25 

data from a single tissue section, which can provide a more complete understanding of the 26 

underlying mechanisms within the TME. Even though some multiplex 27 

immunohistochemistry or immunofluorescence methodologies have shown the ability of 28 

high-level multiplexing on a single FFPE tissue sample, the analysis may be restricted to 29 

manually selected regions of interest or through their applications on tissue microarrays (36). 30 

Such methodologies can also be associated with long acquisition times for whole tissue 31 

sections and sequential stitching of image tiles into one large image (37).  In this study we 32 

quantified TILs and TBs coregistered to a single whole slide section through the use of four-33 

plexed immunofluorescence, whole slide scanning, and automated image analysis. This 34 

methodology permitted the colocalization of the four tissue markers, required to quantify the 35 

features measured in this study, across the whole tissue section and at single cell resolution. 36 

Spatial coordinates of each cell type were exported from the same tissue section ensuring 37 

more accurate analysis than is achieved from coregistering serial sections. This methodology 38 

therefore conserves precious tissue, reduces scanning time and cost, while also allowing the 39 

objective analysis of the entire TME and its cellular interactions. 40 

Our results showed that the presence of high CD3
+
 T-cell density correlated with favorable 41 

clinicopathological features, at the IM with the absence of EMLVI and at the CT with 42 

moderate differentiation status and non-mucinous histological type. These data concur well 43 

with prognostic analyses on the propitious impact of overall TIL densities in CRC patients 44 
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(10,38). We also found that a high CD8 T-cell density was correlated with the female gender, 1 

a finding that has previously been shown in invasive CRC by Jang (39). However, the 2 

mechanisms underlying this observation remain unknown. An elevated number of TBs was 3 

significantly associated with advanced pT stage, correlating favorably with previous literature 4 

showing TBs being associated with adverse prognostic features (40–42). These findings 5 

highlight the impairing effect T cells have on tumor progression, while suggesting that high 6 

tumor budding cancers harbor a more aggressive phenotype.  7 

Our data indicate a significant inverse relationship between the densities of TILs and TB 8 

number, which substantiates the work of Zlobec et al. (43), who found the absence of TILs to 9 

be associated with presence of tumor budding. This may suggest that during the transition of 10 

TBs from epithelial to mesenchymal phenotype, they might occupy a niche that may not 11 

illicit an immune response. Indeed, it has been suggested that TBs lose MHC expression 12 

during this transition (7), and others have shown that TB positivity is significantly associated 13 

with PD-L1 positivity (44). The data presented here adds further support to the concept of 14 

TBs having the ability to evade the antitumoral host response and thereby embark on the first 15 

steps of the metastatic cascade. 16 

Despite repeated evidence of tumor budding conferring prognostic significance in CRC 17 

(8,12,42,45), its routine clinical assessment has not yet been established due to the lack of 18 

standardized methodology of assessment. Most studies investigating tumor budding rely upon 19 

the use of manual quantification, often based on subjective selection of high magnification 20 

regions of interest (2). The use of cytokeratin immunohistochemistry has previously shown to 21 

improve the detection of TBs as well as increasing inter-observer reproducibility (30). 22 

Furthermore, cytokeratin immunohistochemistry has been recommended by the International 23 

Tumor Bud Consensus Conference to help TB quantification in challenging cases such as 24 

tumors regions with strong inflammation or ruptured glands (2).  In the current study, tumor 25 

budding was identified by the use of cytokeratin immunofluorescence and quantified by 26 

automated and standardized image analysis across the entire TBROI. Previous studies have 27 

highlighted the difficulty in the qualitative assessment of TBs in circumstances of gland 28 

fragmentation, stromal cells mimicking TBs, inflammation (46), microvesicles, and 29 

membrane fragments that might be cytokeratin-positive (30). In order to address these 30 

concerns, we ensured the presence of whole nuclei (n = 1–4) for the TB identification and 31 

only counted the isolated clusters of cells as buds. Quantifying TBs at the whole TBROI has 32 

the advantage of being representative of the whole invasive margin rather than a manually 33 

selected region of interest. However, our methodology has the potential to “dilute” the 34 

significance of TBs represented by hotspots due to the tumor’s innate heterogeneity. Like 35 

previous semi-quantitative studies (6,42) our quantification methodology reported TB 36 

number and density at the TBROI to be significantly correlated to poor patient survival. 37 

The Immunoscore, proposed by Galon et al. (38,47,48), has been validated in a large 38 

international colon cancer study (14). It is not only a promising prognostic index (11,38), but 39 

it has been shown to be  superior to TNM staging when assessing CRC prognosis (47,49). 40 

This score is based on the quantification of the in situ immune infiltration by the 41 

chromogenic labelling of two sequential tissue sections; one with CD3
+
 T cells and one with 42 

CD8
+
 T cells and quantified in two regions (IM and CT). By applying our automated image 43 

analysis workflow across a single tissue section, our Immunoscore results compared 44 
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favorably with those of Galon et al. (9), showing that a high density of TILs was correlated 1 

with better survival outcomes in stage II CRC. 2 

In order to reflect the dynamic processes present at the tumor front, T lymphocytes in close 3 

(50 and 100 μm) proximity of TBs in a 2-dimensional plot were quantified. Our results 4 

revealed that a high number of T lymphocytes near TBs was associated with better survival. 5 

This supports the theory that TBs represent a heterogeneous subpopulation of cells and, 6 

although hypothesized to be more invasive than well differentiated tumor glands, retain the 7 

potential to be recognized by immune-surveillance mechanisms. This process has previously 8 

been described as “nipping in the bud” (43). This theory was also supported by a study on the 9 

microenvironment of TBs by Lugli et al. (50), reporting high lymphocyte to TB ratio as a 10 

good prognostic factor in patients with CRC and by Lang-Schwarz et al. (51), reporting the 11 

combination of both TILs and tumor budding predicting survival in CRC. Due to the high 12 

complexity and heterogeneity within the whole tissue slide, spatial mapping of specific 13 

features by eye is difficult, subjective, and time consuming. Selected regions of interest to 14 

study this interplay between different features and cells might not represent the spatial 15 

relationships present in the whole tissue. Here we propose a rapid and completely unbiased 16 

method capturing every single event at the single cell resolution and therefore better reporting 17 

on the interactions among TBs and TILs seen at the whole IM. Furthermore, such 18 

methodology can reveal specific patterns that may advance our understanding of the 19 

interactions occurring between cancer cells and their microenvironment.    20 

Multiple features reported from the clinicopathological report and by automated image 21 

analysis demonstrated prognostic significance. In order to reduce the dimensionality of the 22 

data and identify the independently significant features, a Cox regression model with LASSO 23 

regularization was applied to all 32 reported features in this study. This reported a reduced 24 

and independently significant set of 8 features: 4 from the clinicopathological report and 4 25 

from image analysis. This reduced feature set was input for a RF machine learning model, 26 

which consisted of 500 trees. The advantage of feature selection through RF is the thorough 27 

testing of all significant features across multiple models while building in validation. This 28 

machine learning application reported only 4 features with a high mean decrease Gini 29 

coefficient, all of which were exported from image analysis. In order to avoid overfitting of 30 

our model on the training cohort, we included multiple validation steps within the workflow. 31 

Through this, we demonstrate that a model in which patients with a combined low CD3
+
 T-32 

cell density in WTS, low mean number of TILs within 50 μm proximity to TBs, and high TB 33 

number conferred a survival disadvantage compared to any other combination. When a 34 

multivariate forward stepwise Cox regression including pT stage, TB number, Immunoscore, 35 

and TBISI was applied, the only feature reported to significantly add value to the model was 36 

the TBISI, whereas pT stage, TB number, and Immunoscore were not included in the 37 

equation. The new prognostic model of TBISI was then successfully validated across two 38 

independent cohorts, the second of which included patients with different genetic 39 

background, tumor genetic features, and gut microbiota, compared with the first cohort. This 40 

model and its cutpoints did not need to be altered for the Japanese validation cohort despite 41 

the fact that their tissue was sectioned longitudinally compared to the other cohorts that were 42 

cut at a cross-section. pT stage in the Japanese cohort, unlike both Edinburgh ones, was not 43 

significantly correlated with DSS in univariate analysis. This reflects the heterogeneous 44 

nature of stage II CRC disease and further highlights the need for additional methodologies, 45 
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such as the TBISI reported here, to more accurately stratify these patients for both prognostic 1 

reasons and potentially identifying patients that may benefit from adjuvant therapy. 2 

In conclusion, this study reports an automated image analysis–based workflow with the 3 

ability to quantify the tumor-infiltrating immune cells; total T cells (CD3
+
) and cytotoxic T 4 

cells (CD8
+
), and TBs at the invasive front, across a single tissue section. Additionally, 5 

through a machine learning approach, our results show evidence that the spatial association of 6 

lymphocytes and TBs has a high prognostic significance in stage II CRC patients. This 7 

combinational prognostic model demonstrated augmented accuracy and precision over that 8 

gained by either characterizing the lymphocytic infiltration or tumor budding in isolation. 9 

Furthermore, the final model contained no clinical parameters, thus demonstrating the benefit 10 

of automated profiling of the TME to provide a more precise and accurate prognosis. The 11 

methodology completely removes human subjectivity and negates the need for experienced 12 

staff to spend valuable time quantifying complex features across large areas of a whole slide 13 

section. This research can serve as a base for future studies on the prognostic significance of 14 

the interplay between different cell types within the patient’s heterogeneous and heterotypic 15 

TME.  16 



 16 

Authors' Contributions 1 

Conception and design: I.P. Nearchou, P.D. Caie 2 

Development of methodology: I.P. Nearchou and P.D. Caie 3 

Acquisition of data: I.P. Nearchou, C.G. Gavriel, P.D. Caie 4 

Analysis and interpretation of data: I.P. Nearchou, P.D. Caie 5 

Writing, review and/or revision of the manuscript: I.P. Nearchou, D.J. Harrison, P.D. Caie 6 

Administrative, technical, or material support: I.P. Nearchou, K. Lillard, H.Ueno, D.J. 7 

Harrison, P.D. Caie 8 

Study supervision: K. Lillard, D.J. Harrison, P.D. Caie 9 

 10 

Acknowledgments  11 

The authors would like to acknowledge Frances Rae from Tissue Governance NHS Lothian 12 

and Dr Yoshiki Kajiwara from the National Defense Medical College for securing ethics and 13 

patient follow-up data as well as In Hwa Um and Mustafa Elshani from the School of 14 

Medicine, University of St Andrews for cutting the tissue sections. Funding for the study was 15 

provided by Medical Research Scotland and Indica Labs, Inc. provided in-kind resource.  16 



 17 

References: 1 

1.  Li J, Yi C-H, Hu Y-T, Li J-S, Yuan Y, Zhang S-Z, et al. TNM Staging of Colorectal 2 

Cancer Should be Reconsidered According to Weighting of the T Stage: Verification 3 

Based on a 25-Year Follow-Up. Medicine (Baltimore). Wolters Kluwer Health; 2016 4 

Feb;95(6):e2711.  5 

2.  Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. 6 

Recommendations for reporting tumor budding in colorectal cancer based on the 7 

International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 8 

2017 Sep 26;30(9):1299–311.  9 

3.  Nitsche U, Maak M, Schuster T, Künzli B, Langer R, Slotta-Huspenina J, et al. 10 

Prediction of Prognosis Is Not Improved by the Seventh and Latest Edition of the 11 

TNM Classification for Colorectal Cancer in a Single-Center Collective. Ann Surg. 12 

2011 Nov;254(5):793–801.  13 

4.  Ajcc. AJCC Cancer Staging. 7th ed. Edge S, Byrd DR, Compton CC, Fritz AG, 14 

Greene F, Trotti A, editors. Springer; 2010. 648 p.  15 

5.  Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: Pathologic 16 

aspects. J Gastrointest Oncol. AME Publications; 2012 Sep;3(3):153–73.  17 

6.  Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in 18 

colorectal cancer. Br J Cancer. 2012;106.  19 

7.  Koelzer VH, Herrmann P, Zlobec I, Karamitopoulou E, Lugli A, Stein U. 20 

Heterogeneity analysis of Metastasis Associated in Colon Cancer 1 (MACC1) for 21 

survival prognosis of colorectal cancer patients: a retrospective cohort study. BMC 22 

Cancer. BioMed Central; 2015 Mar 21;15:160.  23 

8.  Koelzer VH, Canonica K, Dawson H, Sokol L, Karamitopoulou-Diamantis E, Lugli A, 24 

et al. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on 25 

single cell invasion (tumor budding) and clinicopathological outcome. 26 

Oncoimmunology. Taylor & Francis; 2016 Apr;5(4):e1106677.  27 

9.  Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the 28 

introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 29 

2014 Jan;232(2):199–209.  30 

10.  Pagès F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, et al. In situ 31 

cytotoxic and memory T cells predict outcome in patients with early-stage colorectal 32 

cancer. J Clin Oncol. 2009 Dec 10;27(35):5944–51.  33 

11.  Kwak Y, Koh J, Kim D-W, Kang S-B, Kim WH, Lee HS. Immunoscore encompassing 34 

CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for 35 

advanced colorectal cancer. Oncotarget. Impact Journals, LLC; 2016 Dec 36 

6;7(49):81778–90.  37 

12.  Caie PD, Turnbull AK, Farrington SM, Oniscu A, Harrison DJ. Quantification of 38 

tumour budding, lymphatic vessel density and invasion through image analysis in 39 

colorectal cancer. J Transl Med. 2014 Jun 1;12(1):156.  40 

13.  Caie PD, Zhou Y, Turnbull AK, Oniscu A, Harrison DJ. Novel histopathologic feature 41 

identified through image analysis augments stage II colorectal cancer clinical 42 



 18 

reporting. Oncotarget. 2016;7(28).  1 

14.  Pagès F, Mlecnik B, Marliot F, Bindea G, Ou F-S, Bifulco C, et al. International 2 

validation of the consensus Immunoscore for the classification of colon cancer: a 3 

prognostic and accuracy study. Lancet. 2018 May 10;391(10135):2128–39.  4 

15.  Harter PN, Bernatz S, Scholz A, Zeiner PS, Zinke J, Kiyose M, et al. Distribution and 5 

prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 6 

immune checkpoints in human brain metastases. Oncotarget. Impact Journals, LLC; 7 

2015 Dec 1;6(38):40836.  8 

16.  Koelzer VH, Assarzadegan N, Dawson H, Mitrovic B, Grin A, Messenger DE, et al. 9 

Cytokeratin-based assessment of tumour budding in colorectal cancer: analysis in stage 10 

II patients and prospective diagnostic experience. J Pathol Clin Res. Wiley-Blackwell; 11 

2017 Jul;3(3):171–8.  12 

17.  Liu R, Peng K, Yu Y, Liang L, Xu X, Li W, et al. Prognostic Value of Immunoscore 13 

and PD-L1 Expression in Metastatic Colorectal Cancer Patients with Different RAS 14 

Status after Palliative Operation. Biomed Res Int. Hindawi; 2018 Jan 31;2018:1–8.  15 

18.  RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA 16 

[Internet]. 2015. Available from: http://www.rstudio.com/. 17 

19.  R: The R Project for Statistical Computing [Internet]. 2018. Available from: 18 

https://www.r-project.org/ 19 

20.  Tibshirani R. Regression Shrinkage and Selection via the Lasso. Vol. 58, Journal of 20 

the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical 21 

Society; 1996. p. 267–88.  22 

21.  Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear 23 

Models via Coordinate Descent. J Stat Softw. 2010 Feb 2;33(1):1–22.  24 

22.  Andy Liaw and Matthew Wiener. Classification and Regression by randomForest. R 25 

News. 2002;2(3):18–22.  26 

23.  IBM Corp. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp. 27 

2016.  28 

24.  Alboukadel Kassambara, Marcin Kosinski , Przemyslaw Biecek SF. Drawing Survival 29 

Curves using “ggplot2” [R package survminer version 0.4.2]. Comprehensive R 30 

Archive Network (CRAN); 2018;  31 

25.  Therneau TM, Grambsch PM. Modeling survival data : extending the Cox model. 32 

Springer; 2000. 350 p.  33 

26.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 34 

Powerful Approach to Multiple Testing. Vol. 57, Journal of the Royal Statistical 35 

Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. p. 289–300.  36 

27.  Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G. The immune contexture in 37 

cancer prognosis and treatment. Nat Rev Clin Oncol. 2017 Jul 25;14(12):717–34.  38 

28.  Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells 39 

in cancer SUBTYPES OF IMMUNE CELL INFILTRATE. 2017;117.  40 

29.  Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour 41 



 19 

microenvironment creates a niche for the self-renewal of tumour-promoting 1 

macrophages in colon adenoma.  2 

30.  Koelzer VH, Zlobec I, Berger MD, Cathomas G, Dawson H, Dirschmid K, et al. 3 

Tumor budding in colorectal cancer revisited: results of a multicenter interobserver 4 

study. Virchows Arch. 2015 May 21;466(5):485–93.  5 

31.  van Wyk HC, Park J, Roxburgh C, Horgan P, Foulis A, McMillan DC. The role of 6 

tumour budding in predicting survival in patients with primary operable colorectal 7 

cancer: A systematic review. Cancer Treat Rev. 2015 Feb;41(2):151–9.  8 

32.  Zlobec I, Lugli A. Tumour budding in colorectal cancer: molecular rationale for 9 

clinical translation. Nat Rev Cancer. 2018 Jan 29;18(4):203–4.  10 

33.  Pagès F, Galon J, Dieu-Nosjean M-C, Tartour E, Sautès-Fridman C, Fridman W-H. 11 

Immune infiltration in human tumors: a prognostic factor that should not be ignored. 12 

Oncogene. 2010 Feb;29(8):1093–102.  13 

34.  Brown JR, Wimberly H, Lannin DR, Nixon C, Rimm DL, Bossuyt V. Multiplexed 14 

Quantitative Analysis of CD3, CD8, and CD20 Predicts Response to Neoadjuvant 15 

Chemotherapy in Breast Cancer. Clin Cancer Res. 2014 Dec 1;20(23):5995–6005.  16 

35.  Donovan MJ, Scott R, Khan F m, Zeineh J, Fernandez G. The application of artificial 17 

intelligence and machine learning to automate Gleason grading: Novel tools to develop 18 

next generation risk assessment assays. J Clin Oncol. 2018 Feb 20;36(6_suppl):170–19 

170.  20 

36.  Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH, et al. 21 

Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-22 

Immune Complexity Associated with Poor Prognosis. Cell Rep. NIH Public Access; 23 

2017;19(1):203–17.  24 

37.  Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly multiplexed 25 

immunofluorescence imaging of human tissues and tumors using t-CyCIF and 26 

conventional optical microscopes. Elife. 2018 Jul 11;7.  27 

38.  Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the 28 

introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol. 29 

Wiley-Blackwell; 2014 Jan;232(2):199–209.  30 

39.  Jang TJ. Progressive Increase of Regulatory T Cells and Decrease of CD8+ T Cells 31 

and CD8+ T Cells/Regulatory T Cells Ratio during Colorectal Cancer Development. 32 

Korean J Pathol. Korean Society of Pathologists and Korean Society for 33 

Cytopathology; 2013 Oct;47(5):443–51.  34 

40.  Lohneis P, Sinn M, Klein F, Bischoff S, Striefler JK, Wislocka L, et al. Tumour buds 35 

determine prognosis in resected pancreatic ductal adenocarcinoma. Br J Cancer. 36 

Nature Publishing Group; 2018 May 14;1.  37 

41.  Gujam FJA, McMillan DC, Mohammed ZMA, Edwards J, Going JJ. The relationship 38 

between tumour budding, the tumour microenvironment and survival in patients with 39 

invasive ductal breast cancer. Br J Cancer. Nature Publishing Group; 2015 Sep 40 

11;113(7):1066–74.  41 

42.  Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour “budding” as an index 42 

to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002 43 



 20 

Feb;40(2):127–32.  1 

43.  Zlobec I, Lugli A, Baker K, Roth S, Minoo P, Hayashi S, et al. Role of APAF-1, E-2 

cadherin and peritumoural lymphocytic infiltration in tumour budding in colorectal 3 

cancer. J Pathol. 2007 Jul;212(3):260–8.  4 

44.  Kim K-J, Wen X-Y, Yang HK, Kim WH, Kang GH. Prognostic Implication of M2 5 

Macrophages Are Determined by the Proportional Balance of Tumor Associated 6 

Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric 7 

Carcinoma. Singh PK, editor. PLoS One. 2015 Dec 29;10(12):e0144192.  8 

45.  Tanaka M, Hashiguchi Y, Ueno H, Hase K, Mochizuki H. Tumor budding at the 9 

invasive margin can predict patients at high risk of recurrence after curative surgery 10 

for stage II, T3 colon cancer. Dis Colon Rectum. 2003 Aug;46(8):1054–9.  11 

46.  Mitrovic B, Schaeffer DF, Riddell RH, Kirsch R. Tumor budding in colorectal 12 

carcinoma: time to take notice. Mod Pathol. 2012 Oct 13;25(10):1315–25.  13 

47.  Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human 14 

tumours: impact on clinical outcome. Nat Rev Cancer. Nature Publishing Group; 2012 15 

Apr 15;12(4):298–306.  16 

48.  Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer 17 

classification using the Immunoscore: a worldwide task force. J Transl Med. 2012 Oct 18 

3;10(1):205.  19 

49.  Lea D, Håland S, Hagland HR, Søreide K. Accuracy of TNM staging in colorectal 20 

cancer: a review of current culprits, the modern role of morphology and stepping-21 

stones for improvements in the molecular era. Scand J Gastroenterol. Taylor & 22 

Francis; 2014 Oct 21;49(10):1153–63.  23 

50.  Lugli A, Karamitopoulou E, Panayiotides I, Karakitsos P, Rallis G, Peros G, et al. 24 

CD8+ lymphocytes/ tumour-budding index: an independent prognostic factor 25 

representing a “pro-/anti-tumour” approach to tumour host interaction in colorectal 26 

cancer. Br J Cancer. Nature Publishing Group; 2009 Oct 20;101(8):1382–92.  27 

51.  Lang-Schwarz C, Melcher B, Haumaier F, Lang-Schwarz K, Rupprecht T, Vieth M, et 28 

al. Budding and tumor infiltrating lymphocytes – combination of both parameters 29 

predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum 30 

Pathol. W.B. Saunders; 2018 May 19;  31 

 32 



 21 

 

 

Table 1. Univariate Cox Regression analysis for clinicopathological data, Immunoscore, Tumor Bud 

(TB) Number and Tumor Bud-Immuno Spatial Index (TBISI) for all three cohorts. Significant features 

(P < 0.05) are shown in bold. Max.tum.diam = Maximum tumor diameter, Ap.node. = Apical node, EMLVI 

= Extramural lymphovascular invasion. 

Freq(%) P Freq(%) P Freq(%) P 

Age 0.233 0.192 0.061

≤70 46(40.4) 24(42.9) 40(64.5)

71-79 32(28.0) 14(25.0) 18(29.0)

≥80 36(31.6) 18(32.1) 4(6.5)

Gender 0.755 0.943 0.253

Male 57(50.0) 34(60.7) 42(67.7)

Female 57(50.0) 22(39.3) 20(32.3)

pT stage 0.006 0.008 0.285

pT3 88(77.2) 46(82.1) 56(90.3)

pT4 26(22.8) 10(17.9) 6(9.7)

Tumour site 0.234 0.293 0.037

Left 38(33.3) 9(16.1) 22(35.5)

Right 43(37.7) 29(51.8) 14(22.6)

Rectal 33(28.9) 18(32.1) 26(41.9)

Differentiation 0.061 0.784 0.240

Moderate 91(79.8) 14(25.0) 20(32.3)

Poor 20(17.5) 8(14.3) 7(11.3)

Well 3(2.6) 34(60.7) 34(54.8)

N/A 0 0 1(1.61)

Max.tum.diam 0.716 0.473

<5 58(50.9) 25(44.6)

≥5 40(35.1) 26(46.4)

N/A 16(14.0) 5(8.9)

Ap.node 0.189 0.035

None 8(7.0) 6(10.7)

≥1 101(88.6) 50(89.3)

N/A 5(4.4)

EMLVI 0.050 0.013

Yes 18(15.8) 3(5.36)

No 96(84.2) 34(60.7)

N/A 0 19(33.9)

Tumour type 0.998 0.126 0.751

Adenocarcinoma 105(92.1) 45(80.4) 56(90.3)

Mucinous 5(4.4) 8(14.3) 5(8.1)

Mixed 4(3.5) 3(5.4) 0

N/A 0 0 1(1.6)

ImageAnalysis

Immunoscore <0.001 0.047 0.057

Low 22 (19.3) 27 (48.2) 20 (32.3)

High 92 (80.7) 29 (51.8) 42 (67.7)

TBNumber <0.001 0.033 <0.001

Low 73 (64.0) 29 (51.8) 48 (77.4)

High 41 (36.0) 27 (48.2) 14 (22.6)

TBISI <0.001 <0.001 <0.001

Low 102 (89.5) 45 (80.4) 56 (90.3)

High 12 (10.5) 11 (19.6) 6 (9.7)

18.75 (6.460-54.430)

5.899 ( 1.875-18.55) 5.289 (1.142-24.500)

4.720 (1.019-21.870)

15.610 (4.692-51.910)

8.816 (2.697-28.820)

3.314 (0.968-11.350)

12.270 (3.524-42.730)

0.366 (0.082-1.641)

0.342 (0.117-1.000)

<0.001 (0-Inf)

7.020 (2.485-19.840)

0.851 (0.308-2.347)

4.143 (1.48-11.57)

0.663 (0.337-1.305)

2.025 (0.968-4.238)

1.224 (0.411-3.646)

Training Cohort (n  = 114) Validation Cohort 1 (n  = 56) Validation Cohort 2 (n  = 62)
Features

HR (95%CI)

Clinicopathological

HR (95%CI) HR (95%CI)

1.466 (0.782-2.747) 2.177 (0.964-4.916)1.603 (0.788-3.260)

2.313 (0.497-10.770)

0.415 (0.092-1.876)0.956 (0.279-3.272)

5.003 (1.521-16.460)

0.620 (0.255-1.510) 2.590 (1.062-6.319)

1.251 (0.252-6.204)

1.590 (0.448-5.637)

0.240 (0.636-0.910)

1.395 (0.178-10.950)

0.113 (0.020-0.636)

1.858 (0.839-4.110)

N/A

N/A

N/A

0.694 (0.378-1.276)
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Feature Total
Freq(%)

Low High Low High Low High Low High Low High Low High Low High
n  = 11 n  = 103 n  = 35 n  = 79 n  = 29 n  = 85 n  = 36 n  = 78 n  = 16 n  = 98 n  = 21 n = 93 n = 73 n  = 41

Age
≤70 46(40.4) 6(5.3) 40(35.1) 14(12.3) 32(28.0) 12(10.5) 34(29.8) 18(15.8) 28(24.6) 6(5.3) 40(35.1) 11(9.7) 35(00.0) 31(27.1) 15(13.2)

71-79 32(28.0) 3(2.6) 59(25.4) 12(10.5) 20(17.5) 10(8.8) 22(19.3) 11(9.7) 21(18.4) 7(6.1) 25(21.9) 7(6.1) 25(21.9) 21(18.4) 11(9.7)
≥80 36(31.6) 2(1.8) 34(29.8) 9(7.9) 27(23.7) 7(6.1) 29(25.4) 7(6.1) 29(25.4) 3(2.6) 33(28.9) 3(2.6) 33(28.9) 21(18.4) 15(13.2)

Gender
Male 57(50) 7(6.1) 50(43.9) 17(14.9) 40(35.1) 15(13.2) 42(36.8) 24(21.1) 33(28.9) 9(7.9) 48(42.1) 15(13.2) 42(36.8) 36(31.6) 21(18.4)

Female 57(50) 4(3.5) 53(46.5) 18(15.8) 39(34.2) 14(12.3) 43(37.7) 12(10.5) 45(39.5) 7(6.1) 50(43.9) 6(5.3) 51(44.7) 37(32.5) 20(17.5)
pT Stage

pT3 88(77.2) 10(8.8) 78(68.4) 23(20.2) 65(57.0) 19(16.7) 69(60.5) 26(22.8) 62(54.4) 11(9.7) 77(67.5) 16(14.0) 72(63.2) 61(53.5) 27(23.7)
pT4 26(22.8) 1(0.9) 25(21.9) 12(10.5) 14(12.3) 10(8.8) 16(14.0) 10(8.8) 16(14.0) 5(4.4) 21(18.4) 5(4.4) 21(18.4) 12(10.5) 14(12.3)

Tumour site
Left 38(33.3) 4(3.5) 34(29.8) 15(13.2) 23(20.2) 11(9.7) 27(23.7) 15(13.2) 23(20.2) 5(4.4) 33(28.9) 8(7.0) 30(26.3) 23(20.2) 15(13.2)

Right 43(37.7) 3(2.6) 40(35.1) 13(11.4) 30(26.3) 10(8.8) 33(28.9) 10(8.8) 33(28.9) 6(5.3) 37(32.5) 7(6.1) 36(31.6) 26(22.8) 17(14.9)
Rectal 33(28.9) 4(3.5) 29(25.4) 7(6.1) 26(22.8) 8(7.0) 25(21.9) 11(9.7) 22(19.3) 5(4.4) 28(24.6) 6(5.3) 27(23.7) 24(21.1) 9(7.9)

Differentiation
Moderate 91(79.8) 8(7.0) 83(72.8) 22(19.3) 69(60.5) 20(17.5) 71(62.3) 28(24.6) 63(55.3) 13(11.4) 78(68.4) 20(17.5) 71(62.3) 61(53.5) 30(26.3)

Poor 20(17.5) 2(1.8) 18(15.8) 12(10.5) 8(7.0) 8(7.0) 12(10.5) 7(6.1) 13(11.4) 2(1.8) 18(15.8) 8(7.0) 12(10.5) 10(8.8) 10(8.8)
Well 3(2.6) 1(0.9) 2(1.8) 1(0.9) 2(1.8) 1(0.9) 2(1.8) 1(0.9) 2(1.8) 1(0.9) 2(1.8) 1(0.9) 2(1.8) 2(1.8) 1(0.9)

Max.tum.diam
<5 58(50.9) 5(4.4) 56(49.1) 14(12.3) 44(38.6) 13(11.4) 45(39.5) 19(16.7) 39(34.2) 6(5.3) 52(45.6) 11(9.7) 47(41.2) 39(34.2) 19(16.7)
≥5 40(35.1) 4(3.5) 36(31.6) 17(14.9) 23(20.2) 11(9.7) 29(25.4) 11(9.7) 29(25.4) 7(6.1) 33(28.9) 7(6.1) 33(28.9) 26(22.8) 14(12.3)

N/A 16(14.0) 2(1.8) 14(12.3) 4(3.5) 12(10.5) 4(3.5) 12(10.5) 6(5.3) 10(8.8) 3(2.6) 13(11.4) 3(2.6) 13(11.4) 8(7.0) 8(7.0)
Ap.node.exam

None 8(7.0) 1(0.9) 7(6.1) 2(1.8) 6(5.3) 3(2.6) 5(4.4) 4(3.5) 4(3.5) 2(1.8) 6(5.3) 3(2.6) 5(4.4) 4(3.5) 4(3.5)
≥1 101(88.6) 10(8.8) 91(79.8) 31(27.2) 70(61.4) 24(21.1) 77(67.5) 30(26.3) 71(62.3) 13(11.4) 88(77.2) 17(14.9) 84(73.7) 65(57.0) 36(31.6)

N/A 5(4.4) 0(0) 5(4.4) 2(1.8) 3(2.6) 2(1.8) 3(2.6) 2(1.8) 3(2.6) 1(0.9) 4(3.5) 1(0.9) 4(3.5) 4(3.5) 1(0.9)
EMLVI

Yes 18(15.8) 4(3.5) 14(12.3) 9(7.9) 9(7.9) 7(6.1) 11(9.7) 8(7.0) 10(8.8) 2(1.8) 16(14.0) 4(3.5) 14(12.3) 12(10.5) 6(5.3)
No 96(84.2) 7(6.1) 89(78.1) 26(22.8) 70(61.4) 22(19.3) 74(64.9) 28(24.6) 68(59.6) 14(12.3) 82(71.9) 17(14.9) 79(69.3) 61(53.5) 35(30.7)

Tumour type
Adenocarcinoma 105(92.1) 9(7.9) 96(84.2) 31(27.2) 74(64.9) 26(22.8) 79(69.3) 35(30.7) 70(61.4) 14(12.3) 91(79.8) 20(17.5) 85(65.8) 66(57.9) 39(34.2)

Mucinous 5(4.4) 2(1.8) 3(2.6) 4(3.5) 1(0.9) 3(2.6) 2(1.8) 1(0.9) 4(3.5) 2(1.8) 3(2.6) 1(0.9) 4(3.5) 4(3.5) 1(0.9)
Mixed 4(3.5) 0(0) 4(3.5) 0(0) 4(3.5) 0(0) 4(3.5) 0(0) 4(3.5) 0(0) 4(3.5) 0(0) 4(3.5) 3(2.6) 1(0.9)

p = 0.800

p = 0.662

IM CT WTS WTSCTIM
TB Number

p = 0.031*

p = 0.467

p = 0.354

p = 0.818

p = 0.417

p = 0.816

p = 0.366

p = 0.839

P  = 0.536

p = 0.697

p = 0.250

p = 0.052

p = 0.338

p = 0.055

p = 0.007*

p = 0.735

p = 0.254

p = 0.341

P  = 0.521

p = 0.233

p = 0.827

p = 0.054

p = 0.049*

p = 0.814

p = 0.316

p = 0.201

p = 0.233

p = 0.023*

p = 0.053

p = 0.736

p = 0.139

p =  0.103

p = 0.153

p = 0.386

p = 0.565

P  = 0.681

p = 0.845

p = 0.283

p = 0.390

p = 0.016*

P  = 0.151

p = 0.857

p = 0.904p = 0.385

p = 0.971

p = 0.579

p = 0.932

p = 0.175 p = 0.625

p = 0.650

p = 0.146

p = 0.854

p = 0.739p = 0.549

p = 0.305

CD3⁺ density (cells/mm²) CD8⁺ density (cells/mm²)

P  =  0.532

p =  0.830

P  = 0.267

p = 0.590 p = 0.030*

P  = 0.164

 

Table 2. Lymphocyte distribution patterns and tumor bud number in relation to clinicopathological characteristics. IM = invasive margin, CT = tumor 

core, WTS = whole tumor section, TB = tumor bud, Max.Tum.Diam = Maximum Tumor Diameter, Ap.Node.Exam = Apical Node Exam, EMLVI = 

Extramural lymphovascular invasion. * Statistical significance, Chi-Square.
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Features 
Coefficients 

LASSO Mean Decrease Gini 
   

CD3
+
 density in WTS -0.0006 5.7932 

   

Mean CD3
+
CD8

+ 
number within 0-50μm of TB  -0.8951 5.4673 

   

TB Number 0.0004 4.7092 

   

CD8
+
 density in CT -0.0004 4.4586 

   

pT 0.8394 1.3724 

   

EMLVI -0.8623 1.1499 

   

Age 0.5791 1.1071 

   

Differentiation 0.4967 0.9728 

Table 3. LASSO penalized Cox proportional hazard regression and Random Forest Gini coefficients 

for the significant features. WTS = whole tumor section, CT = tumor core, TB = tumor bud, EMLVI = 

Extramural lymphovascular invasion.
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Figure Legends: 

Figure 1. Digital image analysis method. A) Full tissue area (yellow line) and invasive front 

(green line) are outlined, pancytokeratin (PanCK), CD3
+
, and CD8

+
 cells annotated in green, 

yellow and red respectively; invasive margin region is highlighted in green (IM) and the 

tumor core region in blue (CT), B) detection and classification of lymphocyte cell type (CD3
+
 

cells in yellow, CD8
+
 cells in red and their colocalization in orange mask), C) Full tissue area 

(yellow line) and Invasive front (green line) are outlined, PanCK, CD3
+
, and CD8

+
 cells 

annotated in green, yellow, and red, respectively; area of tumor bud quantification is 

highlighted in green, D) tumor to stroma segmentation and PanCK cell quantification within 

the tumor areas, E) Proximity Analysis of lymphocytes to tumor buds (TBs). CD3
+
 cells are 

shown in blue, CD8
+
 cells in orange, and TBs in gray. Proximity line series is shown for 

lymphocytes within 50 µm of TBs. 

Figure 2. Spearman correlation matrix for lymphocyte densities and tumor bud 

number. Spearman correlation coefficient is shown for all relationships.  A coefficient with 

either +1 (blue), 0 (white), or -1 (red) value indicates a perfect association, no association, 

and a perfect negative association of ranks, respectively. 

Figure 3. Kaplan Meier survival analysis for pT stage, tumor bud (TB) number, 

immunoscore, and Tumor Bud-Immuno spatial index (TBISI) for training cohort, 

validation cohort 1, and validation cohort 2. (A) pT stage for training cohort, (B) pT stage 

for validation cohort 1, and (C) pT stage for validation cohort 2. (D) TB number for training 

cohort, (E) TB number for validation cohort 1, and (F) TB number for validation cohort 2; 

High represents the group of patients with TB number above the optimal cutoff point 

(1104.0).  Low represents the group of patients with TB Number below the cutoff point. (G) 

Immunoscore for training cohort, (H) Immunoscore for validation cohort 1, and (I) 

Immunoscore for validation cohort 2. High Immunoscore represents the group of patients 

with an Immunoscore > 2, and Low Immunoscore represents the group of patients with an 

Immunoscore ≤ 2. (J) TBISI for training cohort, (K) TBISI for validation cohort 1, and (L) 

TBISI for validation cohort 2. High risk represents the group of patients who have CD3
+
 

density in whole tumor section and mean CD3
+
CD8

+
 cell number within 0–50 μm of TBs 

below the cutoff point (389.6 cells / mm
2
 and 4.1, respectively) and TB number above the 

cutoff point (1104.0). Low risk represents all other patients.  
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