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Abstract  

 

It is critical for animals to be able to stop locomotion according to their external and internal 

needs. Limited studies show there are dedicated neuronal pathways responding to either 

sensory inputs or commands from higher brain areas to inhibit the locomotor circuit and 

actively terminate locomotion. Such neuronal mechanisms are clearly demonstrated by the 

quick ending of ongoing locomotor rhythms following the activation of “stop” cells in the 

brainstem. In contrast, some activity-dependent mechanisms intrinsic to the locomotor 

neuronal network are responsible for the spontaneous ending of locomotor episodes. Known 

autonomous mechanisms involve the release/accumulative production of adenosine or the 

mediation of long-lasting hyperpolarisation by Na+ pumps following locomotion. We discuss 

some recent studies that have led to these findings.  
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Introduction  

The locomotor rhythms that produce a multitude of behaviours - including crawling, walking, 

swimming and flying - are generated by neuronal networks called central pattern generators 

(CPGs) [1,2]. The CPG networks are located in the ventral nerve cord of invertebrates and 

the spinal cord of vertebrates [1,3–5]. It is essential for animals to be able to halt ongoing 

locomotor activities, either after they have arrived at their destination, to avoid clashes and 

predation or simply to have a rest. The ability to end locomotion is also necessary when 

animals switch from one locomotion mode to another due to terrain changes, e.g. from flying 

in air to walking on grounds in insects [6] and birds.  Although we have gained many crucial 

insights into how locomotor rhythms are generated - for review see [1] - few studies have 

been devoted to understanding how locomotor activity ends.  

 

The brainstem (subdivided into the midbrain, pons and medulla) is a key integrative structure 

involved in many ascending and descending pathways [7]. Vertebrate spinal CPG networks 

receive inputs from critical brainstem neurons to influence the initiation, maintenance and 

cessation of locomotion [8,9]. More specifically, reticulospinal excitatory pathways and the 

mesencephalic locomotor region (MLR) have been shown to be critical in locomotion 

initiation and motor pattern choice in multiple species [4,9]. Key to this review is that some 

descending brainstem neurons have been shown to inhibit locomotion and have been termed 

“stop” cells. The firing of “stop” cells is closely correlated with locomotion ending, 

suggesting that they may initiate the locomotion termination. “Stop” cell candidates have 

been found in vertebrates - Xenopus tadpoles [10], lamprey [11] and mice [12] - along with 

invertebrates - drosophila [13], crayfish [14], crickets [15]. Their apparent conservation 

suggests an evolutionary advantage [5]. In tadpoles, lamprey and mice, the specific activation 

of these “stop” cells has been shown to halt locomotion. Alternative run-down/wind-up 



mechanisms (e.g. Na+ pump activity[16] and adenosine accumulation [17]) intrinsic to the 

spinal CPG network that are directly controlled by the cellular and biochemical repercussions 

of ongoing locomotion can also progressively act to end a locomotion episode.  

  

Tadpole Mechanosensory Stopping Response  

The simple, developing Xenopus laevis tadpole has been used to study vertebrate locomotor 

control for decades [18]. The neuronal circuitry consists of columns of swimming CPG 

neurons which extend continuously from the spinal cord into the hindbrain. Among them, 

excitatory descending neurons (dINs) in the caudal hindbrain/rostral spinal cord are crucial in 

tadpole swimming rhythm generation [19–21]. Exciting a single dIN using intracellular 

depolarising current injections can occasionally initiate swimming [20,22], and 

hyperpolarising current injections into a single dIN can end ongoing swimming in many 

cases [23].  

 

Tadpoles stop swimming when they swim into solid objects or hit the water surface. The 

activation of two sensory pathways has been shown to mediate their stopping response. The 

first pathway involves mechanosensory neurons in the trigeminal ganglia, which sense slow 

pressure on the cement gland or the pulling of the cement gland mucus [24]. These sensory 

neurons make glutamatergic synapses onto the GABAergic mid-hindbrain reticulospinal 

(MHR) neurons.  Remarkably, current injections evoking repetitive firing of a single MHR 

neuron could terminate swimming within one swimming cycle [10] (Fig.1A, B). The 

termination is mediated by the fast monosynaptic GABAergic inhibitory post-synaptic 

potentials (IPSPs) that MHRs produce on swimming CPG neurons [10,24,25] (Fig.1B). The 

second stopping pathway is activated when the tadpole swims into obstacles head-on. The 

head-on clashes excite the rapid-transient detectors in the head skin, the peripheral neurites of 



some mechanosensory neurons within the trigeminal ganglia [26,27]. This, in turn, recruits 

some unidentified cholinergic neurons in the brainstem, producing long-lasting 

hyperpolarisation of swimming CPG neurons located in the mid-hindbrain region and thus, 

terminating swimming [27] (Fig.1C). Pharmacological and voltage-clamp experiments show 

G protein-coupled inward-rectifying potassium channels (GIRKs) mediate the inhibition after 

the postsynaptic M2 acetylcholine receptors are activated [27,28]. Unlike the brief 

GABAergic IPSPs, the GIRK-mediated inhibition lasts up to a couple of minutes, reducing 

tadpole motor responses in a manner resembling some acute symptoms for concussion. It is 

unclear if the termination of swimming is just the consequence of a concussion response [27].   

 

 “Stop” Cells in the Lamprey Brainstem  

The spinal CPG responsible for generating swimming rhythms in lamprey has also been 

extensively studied [29]. The MLR, a key structure for locomotor control between the 

midbrain and hindbrain, activates reticulospinal cells to initiate and influence swimming 

rhythms generated by the spinal CPG [30,31]. The MLR projections have been shown to 

make both glutamatergic and cholinergic synapses with the reticulospinal neurons [11,32,33].  

 

A discrete population of reticulospinal neurons in lamprey have recently been identified as 

“stop” cells  [11,34]. The middle rhombencephalic reticular nucleus (MRRN), previously 

recognised as essential for locomotor initiation and maintenance [32,35], are also critical to 

locomotor termination. More specifically, the “stop” cells are located in the caudal area of 

MRRN (figure 2A). They show high frequency firing at the end of swimming bouts, evoked 

by stimulating the MLR, a ‘tail pinch’ or at the offset of a spontaneous swimming episode 

[11] (Fig.2B). Depending on the neuronal activity pattern during a swimming episode, two 

other sub-populations of neuron have also been identified within the MRRN. These are 



“start” and “maintain” cells and are active at the initiation of and throughout swimming, 

respectively. Pharmacologically activating the “stop” cells using D-glutamate terminates 

swimming, although the application of glutamatergic blockers only managed to slow down 

swimming towards the end of swimming episodes. It is still unclear which upstream brain 

areas activate these “stop” cells, what the postsynaptic targets of the “stop” cells are and what 

neurotransmitter the lamprey “stop” cells use [11].  

  

 “Stop” Cells in the Mouse Brainstem  

As in lamprey and tadpoles, mammalian spinal locomotor CPG circuits are also critically 

controlled by brainstem motor centres [36,37]. The complicated nature of the organisation of 

the brainstem reticular formation in mammals, where inhibitory and excitatory descending 

brainstem neurons are mostly intertwined [37,38], presents huge challenges in the 

classification and studying of neurons in this region using conventional anatomical and 

physiological methods [12]. Previously, it was shown in cats that stimulating the rostral 

medullary and caudal pontine reticular formation electrically can lead to the general 

inhibition of the motor system [39,40]. The recent application of developmental genetics and 

optogenetics in neonatal mice has enabled the revelation of “stop” neurons in this region - a 

population of V2a CHX10-expressing neurons responsible for locomotion termination. The 

combination of fast optogenetic activation and sequential removal of the rostral brainstem by 

slicing has located these V2a “stop” cells in the rostral medulla and caudal pons area (more 

specifically, in the Rostral Gigantocellularis/rGi, and Caudal Pontine Reticular Nuclei/PnC, 

Fig.3A)  [12]. Activating the “stop” cells quickly stops locomotor activities (Fig.3B). The 

V2a “stop” cells are glutamatergic, and their axons mostly terminate in lamina VII of the 

lumbar spinal cord. It has been proposed that they indirectly terminate locomotion by 



activating the local inhibitory interneurons although their postsynaptic targets also include 

some excitatory interneurons [12].  

 

An additional study has noted further potential “stop” cell populations within the mouse 

brainstem’s reticular formation. The optogenetic activation of specific glycinergic neurons 

could crucially lead to locomotor arrest and these cells are present in areas adjacent to where 

the V2a CHX10-expressing “stop” cells are located [9]. More specifically, these neurons 

were present in the lateral paragigantocellular nucleus (LPGi), the alpha part of the 

gigantocellular nucleus (GiA) and the ventral part of the gigantocellular nucleus, along with 

the more dorsally located gigantocellular nucleus (Gi) (Fig.3C). These neurons receive inputs 

from multiple sources including glutamatergic neurons in MLR and their ipsilateral axons 

terminate in the ventral spinal cord innervating motoneurons and potentially interneurons. 

Interestingly, activating glycinergic neurons in these areas appeared to halt locomotion with 

variable effects on muscle tones, i.e. with maintained body muscle tone for LPGi and GiA, 

muscle tone loss for GiV and spasm for Gi.  

 

Like the lamprey counterparts, it is unknown how the mouse “stop” cells are physiologically 

activated and what their cellular activity is during locomotion and when locomotion ends. It 

is also unclear if there are synaptic connections between the V2a “stop cells” and their 

adjacent glycinergic locomotor-halting neurons. The existence of diverse populations of 

inhibitory and excitatory neurons in close proximity responsible for terminating locomotion 

highlights the difficulty in studying the functional organization of the reticular formation. 

 

Run-Down/ Wind-Up Stopping Mechanisms  



Unlike the active “stop” cell-mediated responses which are activated on demand by sensory 

activation or descending commands, some run-down/wind-up mechanisms have been 

identified to mediate spontaneous stopping responses of locomotion. These run-down/wind-

up processes do not involve supra-spinal brain areas and are intrinsic to the spinal locomotor 

CPG circuitry (Fig.4).   

 

One such intrinsic mechanism relates to the progressive breakdown of ATP to adenosine 

during Xenopus tadpole swimming. At the beginning of a swimming episode, ATP released 

in the spinal cord inhibits voltage-gated K+ channels by activating P2Y receptors and keeps 

the excitability of swimming CPG neurons high. With the progression of swimming, ATP is 

broken down to adenosine, which then accumulates to inhibit voltage-dependent Ca2+ 

channels by activating P1 receptors, reducing the excitability of CPG neurons and gradually 

drawing the swimming to a halt [17]. Adenosine, generally produced by the extracellular 

hydrolysis of ATP, can also be released from astrocytes [41]. A recent study in mice suggests 

that adenosine release by astrocytes during ongoing locomotor can inhibit locomotion rhythm 

generation by enhancing the D1-like dopamine receptor signalling pathway. The 

astrocytically-derived adenosine acts on neuronal A1 adenosine receptors and reduces the 

frequency of fictive locomotor rhythms induced by NMDA application in neonatal mouse 

spinal cords [42].  

 

A recently highlighted activity-dependent mechanism that can modulate locomotor episode 

length and affect when locomotion ends is mediated by the activation of the ubiquitously 

expressed Na+/K+-ATPase (Na+ pump). The α3-containing Na+ pump has been known to play 

critical roles in maintaining ionic gradients across the membrane, and the resting membrane 

potential in neurons and they are sensitive to low-level increases in intracellular Na+ 



concentration. However, the α1-containing Na+ pump is mostly responsive to higher 

increases in intracellular Na+ concentrations. In drosophila larvae motoneurons [43], tadpole 

swimming CPG neurons [44,45] and neonatal mouse spinal neurons [19], prolonged neuronal 

spiking evoked by intracellular current injections can increase intracellular Na+ 

concentration. The elevated Na+ concentration then activates the α1-containing Na+ pump, 

gives rise to an ultraslow afterhyperpolarisation (usAHP) lasting for up to one minute. This 

Na+ pump activity, therefore, is dynamically linked with neuronal activity intensity, 

consequently affecting the locomotor frequency and episode duration [19,43,45] (Fig. 4A). 

Interestingly, Na+ pump activity can be subject to regulations by some neuromodulators 

[46,47], e.g. enhancement by dopamine [48] and depression by serotonin [49] and nitric 

oxide [50]. 

 

Conclusive remarks  

Generally, there are very few studies directly addressing how locomotor activity ends, either 

actively or spontaneously. The mechanisms terminating a locomotor episode fall in two broad 

categories: mechanisms activated by sensory stimulation or commands from higher brain 

areas, or some autonomous run-down/windup processes in the CPG circuits. The pathways 

upstream to the “stop” cells are unclear in most examples. In the case of spontaneous ending 

of locomotor activities, the source of autonomous modulators - like ATP and adenosine - still 

needs further investigation. From the rather limited mechanisms we have reviewed, we can 

perhaps summarise a couple of general rules governing the termination of locomotion. 

Firstly, multiple mechanisms can co-exist in the same locomotor circuit. This is clearly 

demonstrated in the tadpole swimming circuit where intrinsic purinergic and Na+ pump 

mechanisms can lead to spontaneous ending of swimming whereas both GABA-ergic and 

cholinergic brainstem pathways can be activated by specific sensory inputs to terminate 



swimming. Multiple stopping mechanisms in lamprey and mice are also implied since 

locomotion can still end after the identified “stop” cells are disabled [11,12].  Secondly, the 

understanding of cellular mechanisms leading to the inhibition of locomotion is still limited. 

Based on the mechanisms already revealed for activity-dependent and active termination in 

Xenopus tadpoles, it appears that the active termination of locomotor activity is a distinct 

mechanism and not achieved by an acceleration or upregulation of the intrinsic activity-

dependent run-down/wind-up mechanisms. The presence of dedicated neuronal pathways to 

locomotor termination, including the “stop” cells, only manifests the importance of stopping 

mechanisms in motor control.  
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Figure 1.  Swimming termination induced by mechanosensory inputs in stage 37/38 Xenopus 

tadpoles.  

A. A dorsal-view diagram of tadpole brain showing two tadpole swimming stopping 

pathways. The activation of slow movement sensors innervating the cement gland (orange) 

activates GABAergic MHR cells (blue), to inhibit the swimming CPG primarily in the spinal 

cord (sc). Activating rapid-transient detectors innervating the head skin (red) excites some 

unidentified cholinergic neurons in the brainstem (dotted green) to inhibit swimming CPG 

neurons in the hindbrain. Other structures: trigeminal ganglion (tg); forebrain (fb); midbrain 

(mb); hindbrain (hb); otic capsule (oc); and myotomes (m).  

B1. The activity of an MHR neuron during swimming (m.n. is motor nerve activity) and 

following the stimulation (indicated by “prod”) of the cement gland. B2. Five short step 

current injections evoking two spikes each in an MHR lead to the stopping of swimming. B3. 

A CPG neuron receives brief GABAergic inhibition (*) when the cement gland is prodded.  

C1. Long-lasting inhibition mediated by GIRK channels in a hindbrain dIN following head 

skin stimulation (arrow, five 0.2 ms pulses at 30 Hz). Swimming was induced by dimming an 

LED close to the tadpole head. The boxed area is stretched in C2. Regular downward 



deflections in C1 are caused by – 40 pA step current injections at 0.2 Hz (grey bars in C2).  * 

in C2 marks a period of lack of dIN spiking due to depolarisation block.  

Dashed lines in B3, C1 and C2 indicate resting membrane potential. A and C are adapted from 

[27], B1-2 from [10]. Arrows in B and C indicate the time of electrical skin stimulation. 

 

  



 

 

Figure 2. “Stop” cells in the termination of lamprey swimming.  

A. Diagram showing the location of critical motor control centres in the brainstem (orange): 

MLR, MRRN and posterior rhombencephalic reticular nucleus (PRRN). The electrode 

indicates the region where the majority of “stop” cells are found.  

B. One “stop” cell (RS) shows enhanced spiking (*) at the end of swimming evoked by MLR 

stimulation, tail pinching (arrow) and spontaneous swimming (far right). Swimming in this 

semi-intact preparation is monitored by measuring the angle of tail bends (swim angle) in a 

video at 30 fps.  

A-B are adapted from [11]  

  



 

 

Figure 3. Light activation of glutamatergic V2a “stop” neurons and glycinergic neurons 

expressing Channelrhodopsin in the mouse brainstem reticular formation terminates 

locomotion.  

A1. Diagram showing a split-bath experimental set-up. The brainstem is transversely 

sectioned at different longitudinal positions successively (between arrow heads in A2) to 

determine the “stop” cell location. The anterior end and lumbar end of the spinal cord is 

separated by a Vaseline barrier (black square), to allow kynurenic acid (KA) application to 

block glutamatergic transmission rostral to the barrier and NMDA/5-HT induction of 

locomotion rhythms in the posterior. Motoneuron recordings were taken from the 2nd lumbar 

roots on the left and right sides (l.L2, r.L2).  

A2. Sagittal section of a brainstem segment showing the location of “stop” cells in the 

reticular formation (blue text and lines). Abbreviations: 4V - 4th ventricle; 7N - facial 



nucleus; Amb:12N - hypoglossal nucleus; SOC - Superior olivary complex; IO - Inferior 

olive; DTg - laterodorsal tegmental nucleus; rGi, cGi - rostral and caudal gigantocellular 

reticular nucleus; Mc - magnocellular reticular nucleus; PnC - caudal pontine reticular 

nucleus.  

B1. Light activation (blue shading) of a preparation sectioned at position 1 in A2 stops fictive 

locomotor rhythms. B2. Light activation of the same preparation sectioned at a more caudal 

position (position 2 in A2) fails to stop locomotor rhythms. A-B are adapted from [12].  

C1. A coronal section of mouse brainstem (arrow in A2) showing main areas containing 

locomotion-stopping glycinergic neurons in the reticular formation (blue text and outlines). 

Gi – gigantocellular nucleus; LPGi – lateral paragigantocellular nucleus; GiA – alpha part if 

the gigantocellular nucleus. C2. Light activation of glycinergic neurons in Gi in a mouse 

slows down/stops locomotion (grey lines are individual trials, black dashed line is average). 

C is adapted from [9]. 

  



 

 

Figure 4. The control of tadpole swimming episode length by Na+ pump activity and a 

general summary of locomotion termination mechanisms.  

A. The usAHP (*) and its abolishment by the Na+ pump blocker (ouabain) immediately after 

swimming episodes in a stage 42 Xenopus laevis tadpole. The dashed line indicates the 

resting membrane potential.  

B. Schematic illustrating both brainstem “stop” cells and run-down/wind-up processes 

intrinsic to the spinal locomotor CPG can terminate locomotion. A is adapted from [45].  

 

 

 

 

  


