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Abstract

Theory predicts that deleterious mutations accumulate more readily in small populations. As a consequence, mutation
load is expected to be elevated in species where life-history strategies and geographic or historical contingencies reduce
the number of reproducing individuals. Yet, few studies have empirically tested this prediction using genome-wide data
in a comparative framework. We collected whole-genome sequencing data for 147 individuals across seven crow species
(Corvus spp.). For each species, we estimated the distribution of fitness effects of deleterious mutations and compared it
with proxies of the effective population size Ne. Island species with comparatively smaller geographic range sizes had a
significantly increased mutation load. These results support the view that small populations have an elevated risk of
mutational meltdown, which may contribute to the higher extinction rates observed in island species.

Key words: molecular evolution, distribution of fitness effects, comparative analysis, avian genomics, mutation load,
selection.

Introduction
The fate of a mutation entering a population depends on the
effect it exerts on the fitness of its carrier. Under the assump-
tion that most changes to the DNA are detrimental, selection
is expected to primarily act to remove deleterious alleles
(Elena et al. 1998; Keightley and Lynch 2003). Lethal or
strongly deleterious mutations have almost no possibility of
becoming fixed in a population, but the retention of weakly
deleterious mutations depends on the effective population
size, Ne (Charlesworth 2009; Akashi et al. 2012). In populations
where a large number of individuals contribute genes to the
next generation, purifying selection is expected to be efficient
relative to genetic drift. In small populations, however, weakly
deleterious mutations can rise to high frequencies, elevating
the risk of population extinction (Lande 1994; Soul�e and Mills
1998). Island species are not only constrained by limited geo-
graphic range, and hence relatively small population size, but
also by limited opportunities to compensate for local popu-
lation crashes through immigration from larger source pop-
ulations (Frankham 2015). Consistent with these theoretical
expectations, extinction rates of island populations are

elevated in comparison to their mainland counterparts
(Frankham 1998).

The distribution of fitness effects of deleterious muta-
tions (hereafter simply referred to as DFE) is a key evolu-
tionary parameter describing the interplay between
purifying selection and genetic drift (Eyre-Walker and
Keightley 2007). It quantifies the proportion of harmful
mutations segregating in a population and thereby provides
a useful measure of mutation load. By convention the DFE
is conceptualized as discrete classes of mutations scaled by
selection coefficients (s) and population size (N). Mutations
in the ranges of Ns 2 [1;10) and Ns > 10 include delete-
rious and strongly deleterious mutations, respectively.
Mutations with Ns 2 [0;1) include slightly deleterious
mutations (Ns � 1) as well as the class of neutral and
effectively neutral mutations (Ns � 1); we refer to this
class of mutations jointly as “mildly deleterious” (cf.
Deinum et al. 2015). Note that, we report the absolute
value of population-scaled selection coefficients with higher
values representing ever more deleterious effects.
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Despite the conceptual importance of the DFE, empirical
data on its shape are rare (but see Huber et al. 2017;
Castellano et al. 2019), and its biological determinants remain
elusive. Insights come from mutagenesis or mutation accu-
mulation experiments (Elena et al. 1998; Keightley and Lynch
2003) and indirect inference from sequencing data (Keightley
and Eyre-Walker 2010; Racimo and Schraiber 2014; Deinum
et al. 2015). Consistent with a central prediction of the nearly
neutral theory, the proportion of mildly deleterious muta-
tions tends to scale negatively with proxies for Ne (Slotte
et al. 2010; Deinum et al. 2015; Chen et al. 2017). Because
long-term Ne is generally unknown, it has been approximated
by geographic range size (Leffler et al. 2012) or a number of
life-history traits, including body mass, age of sexual maturity,
fecundity, or propagule size (Romiguier et al. 2014; Figuet et al.
2016; Chen et al. 2017).

Here, we estimated the DFE from whole-genome sequenc-
ing data of seven avian species within the genus Corvus
(fig. 1A and C). The data set includes five widely distributed
mainland species and two species that are restricted to small
tropical islands. Crows and jackdaws from North America
(C. brachyrhynchos), Eurasia (C. (corone) spp., C. dauuricus,
C. monedula), or the Indian subcontinent (C. splendens) in-
habit large ranges, encompassing on an average 27�106 km2

(range: 5–82�106 km2). In contrast, New Caledonian and
white-billed crows (C. moneduloides, C. woodfordi) evolved
on small islands (0.02–0.05�106 km2) and remained sepa-
rated from their closest mainland relatives for millions of years
(Haring et al. 2012; Jønsson et al. 2012, 2016). The species also
vary in body size (length: 36–53 cm, mass: 208–570 g)
(Dunning 1992; del Hoyo et al. 2017), which may serve as
an additional indicator of long-term Ne (Figuet et al. 2016).
We expect from theory that mutation load should be ele-
vated in large-bodied species or in species with small geo-
graphic ranges.

Results
We estimated the DFE for population samples of all seven
species from segregating sites with reliable genotype informa-
tion for least eight chromosomal copies per species (fig. 1A).
In order to control for demographic perturbation, we con-
trasted the site frequency spectrum (SFS) of neutral muta-
tions at 4-fold degenerate sites with the frequency of
mutations subject to selection at 0-fold degenerate sites (2-
epoch model; Keightley and Eyre-Walker 2007). The inferred
proportion of mildly deleterious sites Ns 2 [0;1) ranged from
0.178 to 0.221 in the species with broad geographic ranges,
and was higher in the two island species C. moneduloides
(0.252) and C. woodfordi (0.332) (supplementary table S1,
Supplementary Material online). Statistical models including
origin (mainland vs. island) were most strongly supported,
based on Akaike’s information criterion for small sample sizes
(DAICc � 2) (table 1 and fig. 1B). Summing over the condi-
tional model probabilities, origin had the strongest effect
(wAICc ¼ 0.665), followed by geographic range size (wAICc

¼ 0.142), and body size with the least support (wAICc ¼
0.008). This result suggests that colonization of islands with

subsequent persistence in a confined geographic area may
indeed limit long-term effective size of a population, and
hence reduce the efficacy of selection (Corbett-Detig et al.
2015). Consistent with this expectation, long-term Ne, as in-
dependently approximated by the harmonic mean of the
cross-coalescence rate through time (Schiffels and Durbin
2014), was higher for individuals of the widely distributed
species C. (c.) cornix (Ne ¼ 88,219) and C. brachyrhynchos
(Ne ¼ 122,430) than for the island species C. moneduloides
(Ne ¼ 63,236).

The reliance of the DFE on estimates of genetic variation at
both selected as well as selectively neutral sites makes it sen-
sitive to perturbation in the “neutral SFS” introduced by
factors other than selection. Processes such as demographic
change or population structure can accordingly modulate the
SFS, mimicking the outcome of selection. For validation of the
results above, we therefore explored the effects of sample size,
population structure, and demographic population history
using a large test data set of 118 individuals from the
European crow species complex (Vijay et al. 2016). Without
applying any correction for the distribution of the “neutral
SFS” (1-epoch model; Keightley and Eyre-Walker 2007) the
DFE varied substantially by sample size and population.
However, applying model-based correction using an explicit
demographic parametrization (2-epoch model) stabilized the
DFE across a large range of sample sizes (3–118 individuals),
demographic histories, and population stratification, includ-
ing artificial admixture by pooling across all populations (sup-
plementary text, table S2, and figs. S1 and S2, Supplementary
Material online). Moreover, different methods controlling for
perturbation in the “neutral SFS” yielded very similar esti-
mates for the proportion of mildly deleterious sites in all
seven species (supplementary table S1, Supplementary
Material online). Results from the 2-epoch model, presented
above, were near-identical to estimates using an unspecified
“nuisance parameter” in a diffusion approximation frame-
work (Eyre-Walker et al. 2006), or when simply considering
the ratio of nucleotide diversity of 0- and 4-fold degenerate
sites (p0/p4) (Pearson’s r¼ 0.95–0.99; supplementary table
S3, Supplementary Material online). As for the test data set,
applying model-based correction (2-epoch model) also gen-
erally improved the fit to the data for the remaining six spe-
cies (supplementary table S1, Supplementary Material
online). Estimates derived both from p0/p4 and the method
of Eyre-Walker et al. (2006) (supplementary table S1,
Supplementary Material online) likewise identified island or-
igin and small geographic range size as the main factors as-
sociated with increased mutation load (supplementary table
S4 and fig. S3, Supplementary Material online).

Species samples were not evenly distributed across the
phylogeny (fig. 1). Although phylogenetic conservatism for
Ne is not expected, shared ancestry may contribute to
explaining variation in the DFE across species and lead to
overconfident statistical inference. We therefore quantified
the degree of shared polymorphism as a proxy for the con-
tribution of shared ancestral population signatures to the DFE
of individual species. Proportions were nonzero for the closest
species pairs, but overall low suggesting that the species under
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A
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FIG. 1. Study system and mutation load. (A) Phylogeny of the genus Corvus, redrawn after Jønsson et al. (2012). Species included in this study are
highlighted in bold, and numbers in brackets indicate the number of whole-genome resequenced individuals. The geographic origin is indicated by
color (blue, island; green, continent). For the purpose of this article, we treat the up to five taxonomic groups that have been recognized within the
Corvus (corone) species complex (Parkin et al. 2003) as a single species sharing recent ancestry with a substantial amount of cosegregating genetic
variation (Vijay et al. 2016). (B) Mutation load of a species, estimated as the proportion of mildly deleterious mutations Ns 2 [0;1); differs by
geographic origin (island vs. continent), and varies to a lesser extent with distributional range; the effect of body size is not statistically significant.
(C) Species illustrations courtesy of Handbook of the Birds of the World Alive.

Table 1. Summary of All Statistical Multiple Linear Regression Models (numbered 0–7) Exploring Relationships between Mutation Load Ns2 [0;1),
As Estimated by the 2-Epoch Model of DFEalpha (Keightley and Eyre-Walker 2007), Geographic Range Size, Body Length, and the Mainland-Island
Contrast.

Model Type I Error k AICc DAICc wAIC R2
adj

Intercept Geographic Range Size Body Length Origin [mainland/island]

3 0.000 0.013 3 217.936 0 0.663 0.693
0 0.000 2 215.404 2.531 0.187 0.000
1 0.002 0.041 3 214.835 3.1 0.141 0.521
2 0.100 0.610 3 28.807 9.129 0.007 20.133
5 0.931 0.483 0.150 4 24.908 13.028 0.001 0.665
4 0.069 0.782 0.029 4 24.084 13.852 0.001 0.624
6 0.026 0.079 0.940 4 20.847 17.089 0 0.402
7 0.935 0.357 0.461 0.153 5 35.6 53.536 0 0.640
R wAIC 0.142 0.008 0.665

NOTE.—Type I errors are given for each model and response variable. The best supported model is highlighted in gray.
k, number of parameters; AICc, Akaike’s information criterion adjusted for small sample sizes; DAICc, difference in AICc relative to the best model; wAICc, Akaike weights for
small sample sizes; RwAICc, summed Akaike weights; R2

adj, squared correlation coefficient, adjusted for the number of parameters.
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consideration have largely reached evolutionary indepen-
dence (supplementary table S5, Supplementary Material on-
line). Moreover, reanalyses of the best-supported models
(table 1) with explicit inclusion of phylogenetic distance
showed no evidence for a phylogenetic contribution to the
inference. Models with parameter estimates of zero for the
covariance structure of the error received the highest
likelihood.

Discussion
In this study, we took a comparative genomic approach to
address the relationship between mutation load and popu-
lation size proxies. Using genome-wide data from 118 indi-
viduals of the Corvus (corone) spp. species complex, we
established that a moderate sample of less than ten chromo-
somal copies contains reliable information characterizing the
species’ DFE. Model-based correction of factors other than
selection perturbing the “neutral SFS” stabilized the DFE
across populations and demographic histories. Population
stratification in the Corvus (corone) spp. species complex is
moderate, and comparable to other species (FST range: auto-
somes, 0.02–0.25; sex chromosome, 0.04–0.51) (Poelstra et al.
2014). Populations within this species complex coalesce more
recently with each other than with the American sister spe-
cies C. brachyrhynchos (Haring et al. 2012; Vijay et al. 2016). It
is thus reasonable to assume that representative population
samples sharing recent common ancestry approximate the
selective processes acting during much of the history of the
species as a whole.

Under this premise, we quantified mutation load as the
proportion of mildly deleterious sites (Ns2 [0;1)), and related
it to life-history traits for all seven species in our data set. The
use of genome-scale data for multiple individuals of several
species, though moderate in number, allowed for statistical
treatment in a comparative framework. Moreover, in contrast
to studies leveraging information on the degree of purifying
selection in natural populations from broad taxonomic sam-
pling (Chen et al. 2017), we focused our analyses on a single
avian genus. This allowed us to explore the effects of Ne as
approximated by variation in body size and geographic range
size, while keeping variation in other relevant life-history
traits—such as the genetic system or propagule size—to a
minimum (Owens and Bennett 1995). It also circumvents
phylogenetic inertia that may otherwise hamper the interpre-
tation of differences in DFE across large evolutionary distan-
ces. With due caution concerning the relatively small number
of species, we found a statically supported relationship be-
tween the mutation load of a species and its distributional
range. This finding is in accordance with the observation that
species with large population sizes appear to purge deleteri-
ous mutations more efficiently (Gl�emin 2003). Furthermore,
our study provides evidence that species living on islands
accumulate mildly deleterious mutations more readily than
more widely distributed species (Johnson and Seger 2001;
Woolfit and Bromham 2005; Gardiner et al. 2008). Similar
to what has been reported elsewhere for the degree of genetic
polymorphism (James et al. 2016), the difference between

island and continental species with respect to the inferred
mutation load was relatively small. Moreover, island species
show a higher degree of variation (supplementary table S1,
Supplementary Material online). Although this observation
clearly needs to be substantiated for a larger sample of species,
it may suggest a disproportionate effect of specific coloniza-
tion history (bottleneck, degree of postcolonization gene
flow) that is difficult to capture with simple proxies for Ne.

There have been recent claims (Kern and Hahn 2018) and
counter-claims (Jensen et al. 2019) about the extent to which
comparative genomics studies are rejecting the explanatory
power of the neutral theory. Our findings are consistent with
the central prediction from nearly neutral theory of negative
scaling between the proportion of deleterious mutations and
effective population size (Ohta 1992). Our results further im-
ply that populations of mainland species with large distribu-
tional ranges harbor fewer deleterious mutations than their
island congeners making the latter potentially more vulnera-
ble to mutational meltdown (Frankham 1998). To corrobo-
rate the generality of this observation studies exploring the
distribution of fitness effects in a large number of closely
related species across a variety of taxa are encouraged.

Materials and Methods
A detailed account of the methods can be found in the sup-
plementary text, Supplementary Material online.

Data Collection and Processing
We collated whole-genome resequencing data for a total of
147 individuals from population samples of seven Corvus spe-
cies (see fig. 1 and supplementary table S6, Supplementary
Material online). After quality assessment and adapter trim-
ming, sequencing reads were aligned with bwa v0.7.13 (Li and
Durbin 2009) to the closest available reference genome, either
C. moneduloides (accession number: VRTO00000000) or C.
(corone) cornix (Poelstra et al. 2014). Syntenic regions be-
tween the two reference assemblies were determined from
lift-overs using SatsumaSynteny (Grabherr et al. 2010).
Variant discovery and genotyping were performed using
GATK v3.4.0 (Auwera et al. 2013). CpG-prone sites and sites
with missing data were removed from vcf files.

Estimation of the DFE
We approximated the DFE by a gamma distribution using
DFEalpha v.2.15 (Keightley and Eyre-Walker 2007) and DoFE
v3.1 (Eyre-Walker et al. 2006). We further calculated the ratio
of nucleotide diversity at nonsynonymous, 0-fold degenerate
sites, and at synonymous, 4-fold degenerate sites (p0/p4),
reflecting the strength of selection (Charlesworth and Eyre-
Walker 2008).

Life-History Parameters, Demographic Inference, and
Statistical Model Selection
For each species, we extracted data on geographical range size
and mean body size (see supplementary table S6,
Supplementary Material online, for data and references).
Body length and body mass showed a high degree of collin-
earity (r¼ 0.88) and we report results for the former. Body
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mass, however, yielded qualitatively the same results (supple-
mentary table S4d, Supplementary Material online). Statistical
analyses of relationships between the DFE and life-history
parameters were based on model selection of multiple linear
regression models using Akaike’s information criterion
(Burnham and Anderson 2002) and were performed in R
version 3.5.1 (R Core Team 2018). To test for possible effects
of genealogical nonindependence, we fitted a linear model
allowing for correlation of errors as implemented in the pack-
age nlme v. 3.1-131.1 (Pinheiro et al. 2017). The correlation
structure was specified by the phylogenetic distance matrix
(based on both Jønsson et al. 2012, 2016) and modeled as-
suming Brownian motion (Freckleton et al. 2002). For all
individuals with a minimum average sequencing coverage
of 18�, we also estimated demographic history through
time, using the program MSMC (Schiffels and Durbin 2014).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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