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Approximate impedance models for point-to-point sound
propagation over acoustically-hard ground containing
rectangular grooves

Steve Mellish,a) Shahram Taherzadeh, and Keith Attenborough
Faculty of STEM, The Open University, Milton Keynes, MK7 6AA, United Kingdom

ABSTRACT:
A modal model for diffraction by a contiguous array of rectangular grooves in an acoustically-hard plane is extended to

predict the free space acoustic field from a point source above such a structure. Subsequently, an approximate effective

impedance model for grooved surfaces is presented. Measurements have shown that these ground surfaces can be used

for outdoor noise reduction but accurate modelling has required the use of computationally expensive numerical meth-

ods. The extended modal model and approximate impedance model inspired by it yield equivalent results in a fraction

of the time taken by the boundary element method, for example, and could be used when designing grooved surfaces to

reduce noise from road traffic. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0000490

(Received 4 August 2019; revised 22 November 2019; accepted 27 November 2019; published online 16 January 2020)

[Editor: Yun Jing] Pages: 74–84

I. INTRODUCTION

Roughness can be used to alter the effective impedance

of the surface of an acoustically hard material thereby alter-

ing the ground effect during outdoor sound propagation. It

has been shown that periodic roughness consisting of identi-

cal parallel low walls or a rectangular lattice of low walls

can offer a useful alternative to conventional noise barriers

for surface transport noise reduction where the erection of a

conventional barrier might not be acceptable.1–3 An impor-

tant effect of such roughness near grazing incidence is the

creation of a surface wave.1–4 The surface structure may be

manipulated such that the resulting energy reaching the

receiver can be reduced at certain frequencies and for a

given source-receiver geometry by the transfer of incident

sound energy into surface waves and diffraction modes.5

Under certain circumstances it has been found that grat-

ing structures can be represented as having an effective

impedance similar to that of a porous hard-backed layer.3 In

an air-filled medium having slit-like pores with widths smaller

than the incident wavelength, viscous friction and thermal

exchange at the internal surfaces contribute to the surface

impedance. If the gaps between the walls are larger than their

height and comparable with the incident wavelength, then the

main phenomenon determining sound propagation over the

walls is multiple scattering. Arbitrary grating shapes may be

modelled numerically using boundary element method

(BEM)6 in the frequency domain or finite difference time

domain and pseudo-spectral time domain in the time domain,

all of which are computationally demanding.1,2,4

Propagation of surface waves over rectangular grooves

at ultrasonic frequencies has been investigated3,7 using a

modal approach adapted by Kelders et al.7 from electromag-

netic (EM) wave propagation theory formulated several de-

cades prior by Hessel et al.8 Since then, significant attention

has been paid to the subject, focused primarily upon the study

and manipulation of the surface waves supported by rectangu-

larly grooved structures. Rayleigh-Bloch surface waves have

been considered using modal decomposition,9 which leads

to studies of designer surface acoustic waves10–27 that are

manipulated by the design of the grooved structure in order to

induce the desired response, such as acoustic collimating or

focusing. Metasurfaces have been considered as profiled

diffusers15 and as phase gradient rectangularly grooved arrays

to design the diffraction properties of a surface16 leading to

subsequent studies.17–23 Similar studies relate to resonant

effects in periodic arrays24,25 and surface waves over arrays

of cylinders using multiple scattering theory.26 So far, little

attention has been paid to the use of the modal model in deter-

mining an effective impedance22 to predict point-to-point

sound propagation over a grooved surface and this is the

subject of the present paper.

In Sec. II, modal theory8 is used to calculate the total

field during point-to-point sound propagation over grooves

and identify scattered modes that do not reach the receiver.

Section III introduces a new effective impedance model in the

form of a summation incorporating scattering effects.

Simplified expressions for small groove widths have been

suggested, but these have been found not to give as good

agreement with data for the excess attenuation spectrum

observed from a point source over the parallel wall or lattice

surfaces as predictions using the slit-pore impedance model in

the classical theory for a point source over an impedance

plane.1 Predictions of the modal model and simple summation

models are compared with measurements, two-dimensional

(2D) BEM numerical calculations and with predictions usinga)Electronic mail: steve@melectronics.co.uk
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the simplified model presented by Allard-Kelders-Lauriks9

and slit-pore models.28–30 Section IV offers a comparison of

the various methods for some configurations that might be of

interest for outdoor sound attenuation.

II. A MODAL MODEL FOR THE SOUND FIELD ABOVE
RECTANGULAR GROOVED DIFFRACTION GRATINGS

A. The modal model

The modal model6 considers the electromagnetic field

scattered by a perfectly reflecting rectangular grooved sur-

face from a homogeneous plane wave incident upon the sur-

face with angle h and propagation constant k. The grooved

structure is assumed to be invariant in y and exhibit infinite

periodicity in 6x. The principle is to model the free-space

field as an infinite set of discrete orthonormal modes in two

dimensions with invariance in y and wave function in the x-
z plane as shown in Fig. 1.

The modal model is generally applicable to similar

lossless medium field problems and was applied originally

to acoustics by Kelders et al.7 in 1998 to investigate surface

wave phenomena, although a simplified surface impedance

model was published soon after.9 The aim of this work is to

use the modal model to enable predictions of point-to-point

propagation over a surface containing rectangular grooves.

Initially, a brief outline of the modal model is presented.

For acoustics, the field is solved in terms of the surface

normal particle velocity vz. and Vm represents the vz ampli-

tude for diffraction mode m. The goal of the model being to

solve for the unknown Vm set. The free-space scattered field

is expanded as the superposition of an infinite set of

weighted Bloch-Floquet plane-wave modes wm approxi-

mated by,

Wðx; zÞ ¼ Vi wi þ Vr wr þ
X
m 6¼0

Vm wm;

Wðx; zÞ ¼ Vi eikðx sin h�z cos hÞ þ Vr eikðx sin hþz cos hÞ

þ
X
m 6¼0

Vm eiðam xþbm zÞ; z � 0; (1)

where the subscript i refers to a parameter of the incident

wave, and r is the m¼ 0 specularly reflected component

with a and b being the modal wave number components in

x and z. The Floquet periodic nature the problem is such

that the field at z¼ 0 exhibits a periodicity in d, combined

with a phase constant term of the incident wave, evident in

the definition of a and b,

am ¼ k sin hþ 2mp
d

;

bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

m

q
: (2)

Furthermore, this allows us to reduce the problem to that of

solving for just one cell of the structure with extent d/2� x
�–d/2 so as to be evenly symmetric about the origin at

(x,z)¼ (0,0). The response of all other cells will be identical

save for the kd sin h phase constant term of the incident

wave. A real valued am represents a free-space propagating

diffraction mode whereas an imaginary value signifies eva-

nescence in z.

To define the problem, we require the boundary condi-

tions at z¼ 0, also posed in terms of vz. Assuming the

grooves act as closed bottom wave guides, then the resultant

vz across the aperture of the groove at z¼ 0 may be consid-

ered as an infinite set of Vn weighted standing-wave mode

functions of the form

nnðx; 0Þ ¼ Vn Kn cos
np
a

� �
xþ a

2

� �� �
;

a=2 � x � �a=2; n ¼ 0; 1; 2; 3;… (3)

with Kn being a normalising constant. Elsewhere at the

peaks of the structure, the ground is assumed acoustically

hard and vz must vanish. Truncating the number of wave-

guide modes to N yields an N*N matrix of the form below,

which can be solved numerically to yield a complete set of

waveguide mode amplitudes Vn

A0;0 þ A0;1 þ � � � þ A0;n0

A1;0 þ A1;1 þ � � � þ A1;n0

..

. ..
. . .

. ..
.

An;0 þ An;1 þ � � � þ An;n0

0
BBBB@

1
CCCCA

V0

V1

..

.

Vn

0
BBBB@

1
CCCCA ¼

X0

X1

..

.

Xn

0
BBBB@

1
CCCCA; (4)

where A are the modal characteristic equations of the prob-

lem and X is the incident source expressions, both of which

are known from the formulation of the model. Solving Eq.

(4) for the Vn set defines the boundary conditions at z¼ 0.

Finally, truncating m to M and correlating the boundary

condition at z¼ 0 with each free space mode m across one

period of the structure yields the set of Vm amplitudes com-

pleting the modal model solution. The resulting free space

plane wave field can be plotted directly in terms of vz from

the superposition of the set of Vm weighted modes. Total

pressure may then be obtained from the impedance relation-

ship Zm for each mode. The coupling of the free-space and

waveguide modes accounts for inter-groove interaction

which becomes ever more significant as the spacing

between adjacent grooves reduces.FIG. 1. Rectangular groove grating structure and diffracted modes.
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A time dependence of e�ixt is assumed and omitted

throughout for clarity and, unless otherwise stated, the trun-

cation parameters are M¼ 25 and N¼ 5.

B. Application to point-to-point propagation

For predicting point-to-point propagation, it is conve-

nient if the grooved surface can be modelled as an effective

impedance plane with normalised impedance Zeff as shown

in Fig. 2, where Zeff is normalised to the characteristic

impedance of the free-space medium Zc.
This holds only for the geometry for which the modal

model is applied because Zeff depends upon the angle of

incidence and source-receiver geometry. The plane wave

field is accumulated from the set of M modes at the receiver

location given the source receiver geometry. The origin is

assumed to be the notional point of specular reflection from

the surface for ease of modal summation. A geometric algo-

rithm is introduced to limit the horizontal extent of the

grooved surface to between the points x1 and x2 shown in

Fig. 3. Free-space propagating scattered components with

propagation angles such that they would not intersect the

receiver are omitted from the field summation. Evanescent

modes are also omitted from the plane wave summation as

they are high order modes resulting from the solution of the

boundary conditions imposed by the surface in the presence

of homogeneous plane wave excitation. According to

Tolstoy,32 these evanescent modes differ fundamentally

from true surface waves that propagate along and are sup-

ported by the structure of the surface alone and in the

absence of an incident field. The propagating surface wave

supported by the surface roughness and excited by a non-

planar source will be accounted for by the surface wave spe-

cific term F(w) in the spherical reflection coefficient Eq.

(11) once applied to point-to-point propagation via Zeff so

long as Im(Zeff)�Re(Zeff).

Using the Kronecker delta, these conditions can be

stated as

dh1

h2
ðhmÞ ¼

1 if h2 � hm � h1

0 if ImðhmÞ > 0

0 else:

8><
>: (5)

Although x1 and x2 may be defined freely within the limits

�1 < x1,2<1 and x1 < x2 to suit the problem at hand,

subsequent results will be presented for the particular case

where the grating extends in the horizontal space between

source and receiver of x1¼ xS and x2¼ xR. The zero phase

point of the incident wave is assumed to be coincident with

the origin. Applying this method, the total acoustic pressure

field at the receiver point (xR,zR) is approximated by the

addition of the incident pi the specularly reflected pr and

scattered ps pressure field components thus

pðxR; zRÞ ¼ piðxR; zRÞ þ prðxR; zRÞ þ psðxR; zRÞ
¼ Z0 Vi exp ðikðxR sin h� zR cos hÞÞ
þZ0 Vr exp ðikðxR sin hþ zR cos hÞÞ

þ
X
m 6¼0

dh1

h2
ðhmÞ Zm Vm exp ðiðamxR þ bmzRÞÞ;

(6)

where the impedance relationship relating pressure to vz for

each mode is

Zm ¼
Zckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k sin hþ 2mp
d

� �2
s : (7)

From the calculated field, use is made of the plane wave

reflection coefficient33 CP,

CP ¼
cos h� 1=Zeff

cos hþ 1=Zeff
: (8)

A value for CP may be deduced from the calculated pressure

field as the ratio of pr þps and pi as follows, including a

phase constant to remove the plane wave path length differ-

ence, lPD, of the incident and reflected components

CP ¼
prðxR; zRÞ þ psðxR; zRÞ
piðxR; zRÞ exp ð�ik lPDÞ

: (9)

Rearranging Eq. (8) for Zeff as the subject and using Eq. (9)

for CP yields an equivalent effective impedance for the

grooved surface of

Zeff ¼
1þ CPð Þsec h

1� CP
: (10)

The effective impedance is, however, dependent upon the

source-receiver geometry. The independence of wave type
FIG. 2. Point-to-point acoustic propagation above an effective impedance

plane.

FIG. 3. Geometric modal cut-off scheme.

76 J. Acoust. Soc. Am. 147 (1), January 2020 Mellish et al.

https://doi.org/10.1121/10.0000490

https://doi.org/10.1121/10.0000490


allows us to apply Zeff in the point-to-point propagation model

within the spherical reflection coefficient33 CS, given as

CS ¼ CP þ 1� CPð ÞFðwÞ (11)

where

FðwÞ ¼ 1þ i
ffiffiffi
p
p

:w cefðwÞ

w, known as the numerical distance, is

w ¼ 1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

2
kRA þ RB

r !
cos hþ 1

Zeff

and cef() is the complex error function.

With reference to Fig. 2, the excess-attenuation EAdB

of the ground surface for a spherical source in decibel is

EAdBðxR;zRÞ

¼ 20log

����1þ CS expðikðRAþRBÞÞð Þ= 4pðRAþRBÞð Þ
expðikRiÞ= 4pRið Þ

����:
(12)

This is a method of approximating the response of a rectan-

gularly grooved surface during point-to-point propagation

except in the limit of h! p/2 (zS! 0) where the definition

of a finite vz is nonsensical and would result in the predic-

tion of infinite pressure fields. The surface acts an effective

impedance and therefore can contribute to noise reduction

due to ground effect with equivalent dependence upon

source-receiver geometry.

III. AN EFFECTIVE IMPEDANCE MODEL

Consider the time dependent causal interactions of the

ingoing and outgoing waves within a groove of the structure

defined in Fig. 1. Each magnitude weighted mode may be

considered separately and linearly combined to approximate

an average lumped impedance at the aperture. To simplify

the analysis, the groove walls are assumed initially to be

thin so a¼ d. This assumption will later be relaxed by add-

ing a specific term to account for effective porosity.

The effective impedance of a surface in the plane z¼ 0

is by definition34

Z ¼ p

v � dn
; z ¼ 0; (13)

and will define the impedance within the groove aperture at

z¼ 0 where p is pressure, v is particle velocity (positive in

the positive direction of the associated axis), and dn is the

surface normal unit vector pointing into the surface.33 The

vector dn is orientated in the -z direction as the surface is

perpendicular to the z-axis and parallel to x. Therefore

v � dn ¼ vertical velocity into surface ¼ �vz: (14)

Reference will be made to the modal model set of z-direction

wave numbers 6kzn, for the nth mode within the groove. In

line with our convention, kþzn represents the upward propagat-

ing components towards z¼1 and k�zn the downward

propagating components, towards z¼�1. Therefore, kþzn
¼ jkznj and k�zn¼�jkznj.

The lossless and inviscid assumptions are invoked, and

as such, the impedance for each groove mode n at z¼ 0 can

be approximated thus by considering the down and up-

going components separately

ZgðnÞ ¼
p�n þ pþn

ðv�zn þ vþznÞ � dn
; z ¼ 0: (15)

The p and v terms will be expanded at the origin x¼ z¼ 0.

For this derivation, the amplitude of the nth-modal compo-

nent present in the incident wave as projected across the

groove aperture is required and will be termed Cn. Such a

component in the incident wave will excite the associated

down-going mode within the groove with z-axis wave

number k�zn. Here, a simplifying assumption is made that

the mode will be excited with the full vz amplitude of the

component present in the incident wave. In reality, this

could only occur when the mode has the same impedance

as the incident wave and a¼ d to disregard non-

orthonormal coupling between free space and groove

modes. The Cn term is different from the modal model

amplitude Vn, which is the resultant amplitude of mode-n
formed at the aperture from the interference of the down-

going and up-going reflected components within the

groove. In this model, the down and up-going components

are considered separately. Let Cn be approximated by the

inner product of the n-modal characteristic and the inci-

dent wave normalised to a in order to retain correct ampli-

tude scaling as

C0 ¼
ða=2

�a=2

1ffiffiffi
a
p cos

np
a

� �
xþ a

2

� �� �

:
1ffiffiffi
a
p exp ðikx sin hÞ dx; n ¼ 0

Cn ¼
ða=2

�a=2

ffiffiffi
2

a

r
cos

np
a

� �
xþ a

2

� �� �

:

ffiffiffi
2

a

r
exp ðikx sin hÞ dx; n > 0: (16)

It is important to remember that Cn approximates the ampli-

tude of the down-going mode within the groove at z¼ 0 for

the given incident wave with z dependence exp(ikznz). It is

invariant in x as Eq. (18) it is an amplitude of the nth modal

component. In reality, the field and hence impedance will

vary in x across the aperture because of the combination of

different x-axis spatial frequencies of each mode. The field

across the aperture is approximated by considering only the

modal amplitude Cn, which will result in an x invariant

lumped average modal velocity.

The average down-going component of velocity at the

origin, v�zn is simply

v�zn ¼ Cn exp ðik�znzÞ
¼ Cn; z ¼ 0: (17)
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With knowledge of the impedance of the nth-mode, the cor-

responding pressure quantity at the origin is defined thus,

where k is the wave number of the incident wave

p�n ¼ v�zn ZC
k

k�zn

; x ¼ z ¼ 0: (18)

The down-going wave is denoted by the k�zn term, maintaining

the correct inverse sign relationship between p�n and v�n for

down-going propagation. The up-going components are the

reflections from the bottom surface of the groove and hence

will have traversed the full depth of the groove twice. The

reflected component of velocity is expressed as follows, where

the �1 factor accounts for the phase inversion upon reflection

from the bottom and the two exp() phase factors account for

the downward and upward traverse, respectively,

vþzn ¼ Cn exp ðik�znð�hÞÞ exp ðikþznhÞ ð�1Þ
¼ �Cn exp ðikþzn2hÞ: (19)

The expansion is completed with the reflected pressure

component where the ZC(k/kzn
þ) term remains positive as it

is up-going,

pþn ¼ vþzn ZC
k

kþzn

¼ vþzn ZC
k

kþzn

: (20)

Substituting the expansions into Eq. (15), summing over all n-
modes and normalising to Zc and accounting for apparent

porosity with the factor a/d provides the approximate expres-

sion for the effective impedance within the groove, thus

Zeff ¼
a

d

Xn¼1
n¼0

Cn
k

k�zn

� exp ðikþzn2hÞ k

kþzn

� �
Xn¼1
n¼0

Cn 1� exp ðikþzn2hÞ
� 	

� dn

0
BBBB@

1
CCCCA: (21)

Our velocity components are already posed in terms of vertical

velocity, so the dn term in Eq. (21) equates to �1. For practical

application, n must be truncated to N, so, for instance, truncat-

ing to N¼ 2 will model the first three cavity modes within the

groove from n¼ 0 to n¼ 2. Truncation of N should be chosen

such that the upper frequency bound of interest is lower than

the cut-off frequency of mode Nþ 1. The upper frequency limit

of the simplified model for a given truncation N is, therefore,

fmax ¼
c0 N þ 1ð Þ

2a
: (22)

This ensures that all propagating cavity modes are included

within the frequency range of interest.

A. Simple summation model

This section introduces a series of heuristic steps so

the result is a simplified heuristic analytical approximate

impedance model for the rectangular grooved surface.

Expanding upon the result of Eq. (21) an Nþ 1 term summa-

tion based approximation may be formed to include higher

order groove modes. This requires each term to be indepen-

dent, thereby neglecting interaction between modes within

the grooves and prohibiting a Real part of the effective

impedance due to coupling between modes. The approxima-

tion is a weighted impedance summation as opposed to wave

superposition as in Eq. (21), and scattering losses will be

approximated within the imaginary part of the resulting

effective impedance.

Begin with the impedance for mode-n within each

groove Zn, normalise by ZC, and multiply by the surface

normal dn (�1 in this case) as the impedance of a surface is

being expressed to give

Zn ¼ i
k

kþzn

cotðkþzn hÞ: (23)

The approximate effective impedance is, therefore, the

Wn(x) weighted sum of all n-modes, the weighting required

to account for the frequency dependent excitation of each

mode, which depends upon the energy transferred to each

mode from the incident wave and the modal impedance.

Consistent with the work of Kelders et al.,7,9 the groove

depth correction of h:h0¼ h-a/p log2 was employed for the

plane wave mode n¼ 0 term alone. It was presented by

Hurd35 for a parallel problem in electromagnetics as a depth

correction in rectangular grooved diffraction gratings. Once

again, a porosity factor of a/d is included for each term.

Given this, and noting that the leading k/kþzn term equates to

unity for n¼ 0, gives the summation

Zeffs ¼ W0ðxÞ
d

a
i cotðkþz0 h0Þ

þ
X
n>0

WnðxÞ
d

a
:

k

kþzn

i cotðkþzn hÞ: (24)

Allard et al.9 presented a Low-frequency impedance

approximation (LFA), which has the same form as the

zeroth term of our simple summation model and will be dis-

cussed in Sec. IV B. The h:h0 correction factor is compen-

sating the impedance of the groove for the effect of higher

order modes in the low frequency region where they are

evanescent and is quite different from the classical “organ

pipe” end correction for quarter wavelength resonances.

Furthermore, the h:h0 correction is not applicable to the

modal model of Sec. II A because the salient higher order

modal effects are implicit within the complexities of the

modal model itself, and this correction is intended to com-

pensate simplified low-frequency models for higher order

modal effects.

B. Weighting function

The Cn function of Eq. (16) may be used as a basis of

the frequency dependent weighting function Wn(x). As the

modes are fully decoupled, the relative phase of Cn is
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redundant, and so only the magnitude is required to give a

scalar weighing envelope for each mode. As will be justi-

fied later, the effective impedance tends to be dominated by

the behaviour of the highest order propagating mode (real

kzn), and so the periodic resonances from the cot term relat-

ing to lower order modes tend to create false peaks in the

response. Contributions from lower order modes are thus

removed by forcing Wn(x) to zero. In its crudest form, this

may be achieved by nulling any contribution from mode n
when mode nþ 1 is propagating. The Wn(x) function is

expressed as

WnðxÞ ¼ jCnj
i Im kþznþ1


 �
kþznþ1

; (25)

where

i Im kznþ1f g
kznþ1

� 0 jRe kznþ1f gj > 0

1 else;

�
(26)

which has the effect of removing the contribution of mode

n, once the next highest mode nþ 1 becomes propagating.

When h is small compared with a, the behaviour of the total

field is dominated by near-field effects which are mitigated

by using the aforementioned h:h0 correction. For a given

source-receiver geometry, the relationship between h and a
also determines the relative influences of path length differ-

ence and scattering because the path length difference min-

ima will be most influenced by h whereas scattering has a

dependence on a (via its relationship to d). The smaller the

depth of the groove h, the higher in frequency the first path

length difference excess-attenutaion (EA) minima will be.

Conversely, increasing a (and d proportionally) will lower

the frequency at which scattering effects occur. Thus,

increasing a and reducing h will close the frequency gap

between the first path length difference EA minimum and

the onset of scattering.

While being significantly less computationally

demanding than BEM, as an engineering model, the full

inner product formulation of Cn Eq. (16) is cumbersome to

implement due to the need to compute inner products. The

Cn set will, therefore, be approximated with an analytic

approximation which assumes grazing incidence so that the

sin(h) term in the exp() vanishes. In addition, unit porosity

a¼ d is assumed for the Cn set as porosity terms have

already been included in the summation. This gives the

grazing incidence analytic approximation for jC0j of

jC0j �
2 sin

a k

2

� �
a k

; n ¼ 0; h ¼ p=2: (27)

As the concern is only with the magnitude of Cn, then for

n> 0, jCnj may be approximated by considering the rela-

tionship purely in terms of relative x-axis projected wave-

length of the incident wave ki and that of mode n within the

groove aperture kn. The jCnj function is proportional to the

sine of the ratio of the two wavelengths, exhibiting a peak

when the two wavelengths are nearly equal. The inner prod-

uct is an area integral so the peak value does not occur

when the wavelengths are exactly the same except for the

limiting case, where the inner product is conducted over an

infinite number of cycles. A wavelength factor Kn must,

therefore, be included to account for this fact. Our approxi-

mation to jCnj for n> 0 is as follows:

jCnj � sin
kn

Kn ki

� �
p
2

� �
; n > 0; (28)

where the x projected wavelengths are given by

kn ¼ 2a=n;

ki ¼
k sin h

2p

� ��1

: (29)

Combining these gives the simple approximate expression

for jCnj for n> 0 of

jCnj � sin
2a=n

Kn
k sin h

2p

� ��1

2
64

3
75

p
2

0
B@

1
CA

� sin
a k sin h
2Kn n

� �
; n > 0: (30)

The constant Kn has periodic solutions, but the particular

solution required is the peak value in the region of equality

of ki and kn and is given by the solution of

djCnj
dKn

¼ 0; n > 0; (31)

where the full equation for jCnj as in Eq. (16) must be

solved. The solution is independent of a, so it is possible to

set a¼ 2 for convenience as this cancels the leading (2/a)0.5

terms, giving

d

dKn

����
ð1

�1

cos
np
2

� �
xþ 1½ �

� �
: exp ði xKnk sin hÞ dx

����
¼ 0; a ¼ 2: (32)

Setting ki and kn to be equal in order to allow the solution

of Kn requires

kn ¼ ki;

2a

n
¼ k sin h

2p

� ��1

;

pn

a
¼ k sin h: (33)

Substituting Eq. (33) into Eq. (32) gives the equation of Kn,

which is solved within the given interval to remain in the

region of interest and exclude periodic higher order correla-

tion peaks
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d

dKn

����
ð1

�1

cos
np
2

� �
xþ 1½ �

� �
: exp i xKn

pn

2

� �
dx

���� ¼ 0;

a ¼ 2; 1:5 � Kn � 1: (34)

With the aid of wolfram alpha,36 the approximate solutions

are shown below in Table I for n¼ 1 through n¼ 6. They

clearly show the tendency to unity with increasing n, as to

be expected, as the correlation window of 6a encompasses

ever more cycles.

C. Slit-pore model as zeroth term

When the wavelength is large compared with the

groove width and the boundary layer thickness is compara-

ble with the semi-width of a, then the thermal viscous

effects are at their most significant and accuracy may be

improved if the zeroth order term is replaced by the imped-

ance of a hard-backed slit-pore layer (see Sec. IV A).

Substituting the slit-pore model as the zeroth term gives

Zeffs ¼ ZSPðh0ÞW0ðxÞ þ
X
n>0

WnðxÞ
d

a
:

k

kþzn

icotðkþzn hÞ;

(35)

where, once again, the h:h0 correction is used for the n¼ 0

mode which is now the slit-pore term. This represents an

approximate effective impedance model for a rectangular

grooved grating, valid over a broad frequency range for a given

groove geometry and appropriate truncation of N. When the

incident wavelength is long when compared to groove dimen-

sions, visco-thermal effects will be significant but only the

plane wave mode will be dominant and scattering effects negli-

gible. Conversely, when the wavelength is short compared to

the groove dimensions diffractive, scattering and modal behav-

iour will be dominant. The formulation of a simple analytic

impedance model for the rectangularly grooved surface struc-

ture which includes diffractive effects is believed to be novel.

D. Truncating N

The truncation of N should be chosen such that the

maximum frequency of interest is lower than the cut-off fre-

quency of mode Nþ 1. This ensures that all modes capable

of propagation within the grooves are included in the simple

summation across the bandwidth of interest. With reference

to Eq. (22), the following inequality is derived and should

be satisfied to estimate a sensible truncation of N. Mode n
may propagate within the groove whenever the incident

wavelength ki is shorter than 2a because aperture modes are

resonant at each half cycle. For a chosen maximum fre-

quency fmax, an inequality is formed around N and fmax as

follows:

ki <
2a

N þ 1
;

fmax <
c0 N þ 1ð Þ

2a
;

N >
2a fmax

c0

� 1; N ¼ 0; 1; 2;…: (36)

N should be rounded up to the next highest integer to ensure

there are sufficient summation terms for a given fmax.

IV. SIMPLE MODELS FOR EFFECTIVE IMPEDANCE

A. The slit-pore model

The slit-pore model assumes the ground surface to be

comprised of narrow parallel walled slits of a given depth

when compared to an incident wavelength, backed by an

acoustically hard layer. The normalised impedance is given

below in terms of complex compressibility C(x) and den-

sity q(x) functions29–31

ZSPðhÞ ¼
1

q0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

X2
:
qðxÞ
CðxÞ

s0
@

1
Acoth �ixh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qqðxÞCðxÞ

p �
(37)

where for slit–pores;

qðxÞ¼ qo

1� ða=2Þ
ffiffiffiffiffiffiffiffiffiffi
x=c0

p ffiffiffiffiffiffi
�i
p ��1

tanh ða=2Þ
ffiffiffiffiffiffiffiffiffiffi
x=c0

p ffiffiffiffiffiffi
�i
p �;

CðxÞ¼ðcPoÞ�1
1þ ðc�1Þffiffiffiffiffiffiffiffiffiffiffiffi

�iNpr

p
ða=2Þ

ffiffiffiffiffiffiffiffiffiffi
x=c0

p
 

	 tanh
ffiffiffiffiffiffiffiffiffiffiffiffi
�iNpr

p
ða=2Þ

ffiffiffiffiffiffiffiffiffiffi
x=c0

p �!
;

Npr¼Prandtl Number�0:708;

c¼Adiabatic gas constant�1:41:

The parameters are defined thus and apply to the 2D

grooved structure of Fig. 1:

Porosity; X ¼ a=d:

Tortuosity; q ¼ 1:

Tortuosity is unity in accordance with the straight parallel

rectangular grooves and the flow resistivity is calculated for

slit shaped pores according to the equation

RS ¼
2lq2s0

Xr2
h

;

l¼ dynamic viscosity coefficient of air¼ 1:811	 10�5;

s0 ¼ shape factor for slit� pores¼ 1:5;

rh ¼ hydraulic radius for slit� pore¼ a=2: (38)

TABLE I. Approximate solutions of Kn.

n 
Kn

1 1.367

2 1.125

3 1.06

4 1.035

5 1.025

6 1.02
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B. LFA impedance model for a groove

The low-frequency model presented by Allard et al.9

for an isolated rectangular groove at normal incidence can

be derived from the modal model with the limiting trunca-

tion of N¼M¼ 0 and by definition includes the h:h0 groove

depth correction. The effective normalised impedance

according to the LFA is

ZAKL ¼
i

X
cot k h� a

p
log 2

� �� �
: (39)

It is clear that the slit-pore and LFA models may cease to

hold if any scattered mode is free-space propagating

because they assume purely specular reflection. Between

normal and grazing incidence, every scattered field exhibit-

ing free-space propagation will include the m¼�1 mode,

which infers the general condition of validity for the slit-

pore and LFA models of

ja�1j � jkj; p=2 � h > 0: (40)

For a given geometry, this represents a high frequency scat-

tering limit fLS above which scattering will occur and the

homogeneous ground assumption, upon which the slit-pore

and LFA models rely, will cease to hold. The groove depth

h and aperture width a (strictly speaking only by virtue of

affecting d), will influence the magnitude of the scattered

components but not their propagation characteristics.

Therefore, the slit-pore and LFA models may hold outside

of the limits imposed by Eq. (40) if the magnitudes of scat-

tered components are negligible, such as when h!0, a!0,

or a/d!0. Extensive testing has shown that the condition of

Eq. (40) represents a high frequency limit of the slit-pore

model, above which it may be in significant error due to the

onset of scattering. Furthermore, and as can be seen later,

the slit-pore and particularly the LFA model may also tend

to increase error to a greater or lesser degree depending

upon the geometry as fLS is approached, where the effects of

higher order modes become significant.

The simple summation model of Eq. (35) will over-

come the scattering limitation of Eq. (40) as it approximates

scattering effects by considering higher order modes within

the grooves. It includes the slit-pore model as its zeroth

term and so visco-thermal effects will be included for the

plane-wave mode within the groove, which is the realm

where such effects will be dominant. Thus, it may be argued

that if one were to introduce visco-thermal effects for the

higher order modes, it would be of diminishing value as

visco-thermal and scattering effects dominate under oppos-

ing conditions.

C. Comparison with BEM predictions

In this section, the results from the modal model and

effective impedance models are compared with those from

BEM at two extremes of the a/d ratio, 1/6 and 5/6.

Parameters for the BEM simulations are a mesh resolution

of 0.008 m with acoustically hard surfaces and the grating

extending horizontally beyond the source and receiver.

Source and receiver heights are specified as the height

above the highest extent of the grating structure. Figure 4

shows a summary of the close agreement of the BEM and

modal models for two cases. The plots show predicted EA

spectra (defined as the total sound field with respect to the

free-field) for the five models.

Agreement of the modal model with BEM in Fig. 4(a)

is excellent throughout the spectrum. The effective imped-

ance model of the cot() series summation [using Eq. (35)

with approximated inner products of Eqs. (27) and (30)]

shows good agreement with BEM. Whereas the slit-pore

model loses accuracy beyond fLS and fails to predict the sec-

ond EA minima entirely. The LFA model is unreliable

throughout, but this is not surprising as it is not intended to

be applied near grazing incidence nor in the realm of scat-

tering. The causal model of Eq. (21) shows generally poor

performance in Fig. 4(a) but fares better in Fig. 4(b). For

Fig. 4(b), only the full modal model is in agreement with

the BEM as to the frequency of the first EA minimum and

all except the modal model begin to loose accuracy with

BEM from around 1 kHz prior to fLS for this particular

geometry and hence fail to correctly predict the frequency

of the first EA minimum. However due to the low a/d ratio

of Fig. 4(b), all models regain agreement beyond fLS. The

standard errors (SEs) for each model prediction with

FIG. 4. (Color online) (a) Simulated EA spectra for d¼ 0.06, a¼ 0.05,

h¼ 0.025, and 0.1 m source-receiver heights separated by 1 m. (b)

Simulated EA spectra for d¼ 0.06, a¼ 0.01, h¼ 0.025, and 0.1 m source-

receiver heights separated by 1 m.
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reference to the BEM model and using the following for-

mula can be calculated as a measure of goodness of fit,

although these figures can be distorted:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
fn

jEAmeasurementðfnÞ � EApredictedðfnÞj2
s

:

(41)

D. Comparison with measurement

Measurements were made in an anechoic chamber using

one metre wide aluminium strips placed upon a hard surface

to create a groove grating structure protruding above ground

with different values of a/d and with the grating extending

horizontally between the source and receiver. A personal com-

puter running a single MATLAB script was used as a host to gen-

erate the signal waveforms and to collect and post process the

data via a National Instruments data acquisition module

(DAQ) connected by USB. The sound source was a Tannoy

driver acoustically coupled to a 22 mm diameter copper tube

with length LT of 2.2 m to approximate a point source and

driven by the DAQ via an audio amplifier with a short dura-

tion impulse as the excitation. The receiver was a Br€uel &

Kjær 0.5 in. free field microphone cartridge type 4966 with an

amplifier type 2669 and model 5935 battery power supply.

The analogue output from the preamplifier was and band-pass

filtered and sampled by the DAQ and the data stream acquired

by the host computer via the USB link. A block diagram of

the hardware set-up used to make the measurements is given

in Fig. 5.

The data from many impulse signal bursts were post

processed in the MATLAB script being subject to windowing

to remove stray reflections and averaging to improve the

signal to noise ratio. Finally, a fast Fourier transform

(FFT) was applied to obtain the frequency response of the

system. The EA spectrum was obtained by first measuring

the system with the layer under test (LUT) removed and

the source and microphone lowered very close to, but not

touching, the hard ground surface while maintaining the

same horizontal separation to obtain a reference measure-

ment of the environment. Full measurements were then

taken with the LUT in place and the source and receiver in

their prescribed locations as in Fig. 5. The resulting EA

spectrum for the grating surface under test was therefore

obtained from

EAðf ÞdB ¼ 20 log10

Full measurementðf Þ
Reference measurementðf Þ

� �
dB:

(42)

Figures 6(a) and 6(b) compare EA spectra predicted by the

modal, the simple summation approximation with the slit-

pore zeroth-term of Eq. (35) with the approximated inner

products of Eqs. (27) and (30), and the slit-pore and LFA

models with laboratory data. The measurement results were

not sensitive to the horizontal placement of the grooves in

respect of whether the source or receiver are placed over a

gap between the strips or the top of a strip.

The resulting EA spectra for the slit-pore and LFA

impedance models tend to be unreliable beyond fLS, but

show increasing accuracy below this point as neither

account for scattering effects. As would be expected, the

slit-pore layer and LFA models exhibit their best

FIG. 5. (Color online) Measurement setup.

FIG. 6. (Color online) (a) Measured and predicted EA spectra for

d¼ 0.030, a¼ 0.017, h¼ 0.025. (b) Measured and predicted EA spectra for

d¼ 0.060, a¼ 0.035, and h¼ 0.025.
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agreement with data in Fig. 6(a), where the groove is at its

narrowest and scattering effects do not occur in the lower

region of the spectrum. It would be sensible to think that in

the region of the first EA minima and far below fLS where

scattering effects will be negligible, the slit-pore will be

the most accurate model [Fig. 6(a)] due to its inclusion of

thermo-viscous losses. The underestimating of the surface

wave component in the measurements is likely due to

experimental error due to the non-ideal reproduction of the

structure.

The modal model shows generally good agreement

throughout the range of data. It is especially suited to cases

dominated by scattering behaviour [Fig. 6(b)] and remains

accurate even when a is less than or comparable to h and

the effective porosity a/d is significantly less than unity.

The series model shows a good prediction of the fre-

quencies of EA maxima and minima across the spectrum.

The magnitude of the response is routinely overestimated

beyond fLS because the groove modes in the series model

have been decoupled and so do not destructively interfere to

produce negative real parts which would suitably account

for scattering losses.

E. Testing the approximations

Given grazing incidence, the highest order propagating

n-mode has the potential to receive the most excitation

energy from the incident wave because of the similarity in

x-axis spatial frequency. Although lower order modes may

still be excited, their potential excitation energy will be ever

decreasing with frequency due to their inner product being

only proportional to the area of one incident half cycle. It

may, therefore, be shown in Fig. 7 that the highest order

propagating mode tends to dominate the local response

while at the same time asserting that the simplifications of

Eqs. (27)–(30) to the full inner product are reasonable.

The errors of the approximate inner products as shown

in Fig. 7(a) are small in the region around the associated

cut-off frequency (denoted by the corresponding vertical

cursor) and upto the cut-off frequency of the next higher

mode. Throughout the remaining spectrum, however, the

approximations exhibit large errors. Despite this, the pre-

dicted EA curves from both the full and approximate inner

products in Fig. 7(b) are in close agreement suggesting that

the local response is dominated by the highest order propa-

gating mode and that our treatments of approximating the

inner product are reasonable.

V. CONCLUSIONS

A modal model has been used to derive an approximate

effective impedance for a regularly grooved acoustically

hard surface. When applied to point-to-point propagation, it

shows good agreement with BEM calculations and measure-

ments but requires significantly less computation. The modal

model is, however, limited to rectangular grooved gratings

whereas BEM will apply to any shape. Implementation of

the modal model, although simpler than BEM, is not a trivial

task and so may preclude practical application in many

acoustic engineering problems. An approximate model has

been derived for engineering applications. Such an applica-

tion of the modal model is believed to be novel.

Inspired by the modal model methods, a new analytic

series approximation to the effective impedance of a rectan-

gularly grooved grating is presented. Using the slit-pore

model as the zeroth (low-frequency) term, the model is

more accurate than the slit-pore model alone for a wider

range of aperture to depth ratios including those for which

there is significant scattering. Moreover, it offers an engi-

neering model for predicting point-to-point propagation

over a grooved surface for which there is no simple analyti-

cal model.

Using the modal model and its approximations, a rigor-

ous method for determining the range of applicability of the

slit-pore model has been presented, whose validity is lim-

ited by the onset of scattering. Prior to this, the limits of the

slit-pore model had been explored in an empirical way

using a restricted set of laboratory measurements.1

Ongoing work includes extending the modal model to

predict the acoustic field above three-dimensional (3D) lat-

ticed ground structures for any azimuthal angle with a view

to extending the simple summation model to predict the

effective impedance of a lattice. Modelling a Real part to the

higher order mode impedance terms of the simple

FIG. 7. (Color online) (a) Approximated inner product error curves with

respect to the full inner product for the first 5 n-modes [Eqs. (16)–(27) or

(30)]. (b) Comparison of EA curve prediction of summation model Eq.

(35) using the full inner products of Eq. (16) and simplified versions of

Eqs. (27) and (30).
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summation model is also of interest. Stinson37 extended the

work of Kirchoff et al.38 to predict oscillatory flow in a rect-

angular tube for all supported modes so it would be of interest

to reconcile this work with ours. Extending the modal model

to predict the response of rectangular grooved metasurfaces

where each grating period consists of several grooves of dif-

ferent depths is also of interest for future effort.
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