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Introduction: Water is a critical resource for long 

term human exploration of the Moon and beyond as it 

can be used for life support supplies and for rocket 

propellant in the form of hydrogen and oxygen. Lunar 

polar water ice deposits could be harvested for such 

uses. However, these deposits may not be easily acces-

sible from around stations where the water supplies are 

needed. Also, these ice deposits occur in permanently 

shadowed regions (PSRs) reaching temperatures of 

<30K, adding technological challenges for accessibil-

ity. Alternatively, water can be obtained from dry rego-

lith by extracting the oxygen from the minerals and 

combining it with hydrogen [1]. A water production 

demonstration will be attempted by the ProSPA in-

strument which will be heading to a south polar region 

of the Moon in ~2025 on-board Luna-27 [2]. Although 

ProSPA is optimized to analyze volatiles in the lunar 

regolith, in this work we show how the instrument can 

also be used to perform one of the first in-situ resource 

utilization (ISRU) experiments on the Moon. We show 

how the simple system can successfully produce water 

from a lunar simulant, a lunar meteorite, and Apollo 

samples, and discuss the suitability of lunar simulant 

and meteorite as proxies for lunar material with regards 

to ISRU studies. 

Proposed ISRU technique: Hydrogen can reduce 

iron-oxide-bearing minerals in an equilibrium reaction 

when heated to temperatures of at least 900˚C [1]. The 

most easily reducible mineral on the Moon is ilmenite 

(FeTiO3), and this is the most studied ISRU reduction 

process: 

FeTiO3 + H2 ↔ Fe + TiO2 + H2O               (1) 

Other iron-oxide-bearing minerals such as pyroxene 

and olivine can also be reduced, albeit at lower effi-

ciencies, as can other metal oxides such as those con-

taining TiO2, SiO2, and MgO [3]. A generic formula 

for the reduction of any metal-oxide-bearing mineral 

can be written as: 

MOx + xH2 ↔ M + xH2O                     (2) 

where MO and M represent metal oxide and metal re-

spectively.  

The hydrogen reduction technique simply requires 

a furnace, hydrogen, and a method of removing the 

produced water from the gas phase so that the forward 

reaction can continue. Most proposed reactors utilize a 

flow of hydrogen gas which removes the produced 

water [4]. The ProSPA design includes a carousel of 

ovens and an on-board supply of hydrogen, however a 

flow of gases cannot be obtained as it is a static system. 

Instead, ProSPA would use a cold finger to produce a 

temperature gradient that will remove any produced 

water from the gas phase and therefore allowing the 

reaction to continue [5].  

Experimental procedure: Our previous work has 

shown that a static system can be used to reduce ilmen-

ite to produce water [6]. A breadboard model (ISRU-

BDM) was developed to replicate the key aspects of 

the ProSPA design (Fig. 1), and the experiment was 

optimized. Samples of ~45 mg, similar to those ex-

pected in the ProSPA ovens, were prepared. The sam-

ples we heated to 1000˚C in the presence of ~420 mbar 

of hydrogen, while the cold finger was set to -80˚C. 

The samples were reacted for 4 hours and the water 

was collected at the cold finger. Quantification of the 

reaction rate and yield were determined by pressure 

changes within the system.  

 
Fig. 1 ISRU-BDM schematic 

Lunar simulant and samples: Four different mate-

rials were studied in this work. The lunar simulant se-

lected is NU-LHT-2M, a highland simulant which con-

tains 0.6 vol.% ilmenite [7]. The simulant was also 

doped with 10 wt.% ilmenite to replicate a more FeO-

rich soil. Next, the reaction was performed on lunar 

material in the form of a crushed meteorite, Northwest 

Africa 12592, which is classified as a fragmental brec-

cia and chosen as a representative of the bulk lunar 

regolith at feldspathic lunar highlands, albeit with no 

identifiable ilmenite [8]. To eliminate the effects of 

iron-oxide weathering products, some of the meteorite 

samples were treated with EATG which is commonly 

used to remove secondary iron-oxides [9]. The average 
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FeO content of NU-LHT-2M and NWA 12592 are to 

be determined in due course. Finally, two Apollo soil 

samples were selected: a mare soil, 10084, and a high-

land soil, 60500. The mare soil has a relatively high 

FeO content (~15.7 wt.%) and contains ilmenite [10], 

whilst the highlands soil has relatively low FeO content 

(~5.5 wt.%) with trace amounts of ilmenite [11]. To 

prevent any fines from passing through the filter on the 

ISRU-BDM, each sample was sieved prior to the ex-

periments to remove grains <38 μm. 

Results: Yields. After a 4 hour reaction, the water 

is released from the cold finger and the associated 

pressure rise was used to quantify the yield (Table 1), 

where a 1σ uncertainty was derived from the three re-

peats for each experiment. The results for a pure ilmen-

ite sample are also shown as taken from [6]. Mass 

spectra from the released vapor were analyzed which 

confirmed the composition of the product as water. 

Table 1 Yields from the reduction of lunar simulant and sam-

ples, as compared to pure ilmenite 

Sample Average yield (wt.% O2) 

Ilmenite 3.43±0.14 

NU-LHT-2M 0.29±0.04 

90% NU-LHT-2M: 10% 

ilmenite 

0.89±0.04 

NWA 12592 - treated 0.07±0.02 

NWA 12592 - untreated 0.08±0.01 

10084 0.94±0.03 

60500 0.18±0.02 

SEM analysis. Reacted and un-reacted samples of 

each material were set in epoxy resin and polished for 

analysis using the Scanning Electron Microscope 

(SEM). Back Scatter Electron (BSE) imaging was used 

to identify the reduction product, Fe, visible as bright 

white blebs, and therefore show how the reaction pro-

ceeds in each mineral type (Fig. 2). Where ilmenite is 

present, the mineral reduces significantly, producing 

large veins of iron. Other minerals such as olivine and 

pyroxene also show some evidence of reduction, dis-

persed with smaller iron-blebs. As anticipated, plagio-

clase showed little-to-no evidence of reduction. 

Discussion: The static system is capable of reduc-

ing iron-oxide bearing minerals and can be used to 

measure quantitative yields of water. With increasing 

ilmenite content, the yields increase, which is to be 

expected. A proportion of the iron-oxide in the high-

land simulant is in the form Fe2O3, which is not found 

in lunar material, but is highly reducible and may lead 

the highland simulant to give faster reaction 

rates/higher yields. The lowest yields were obtained 

from the meteorite which has no ilmenite, but reduction 

was evident in pyroxene and olivine, as was found in 

all other samples. Yields may also have been lower in 

the meteorite because the average grain size, a result of 

the manual crushing process, was larger than the lunar 

soil average resulting in a smaller surface area for the 

reaction. The sieving process applied to each sample 

has increased the average grain size and therefore 

yields are expected to be higher in un-sieved samples. 

Conclusions: Lunar soil simulant, lunar meteorite, 

and Apollo soil samples that contain iron-oxide bearing 

minerals such as pyroxene and olivine, along with il-

menite, can be reduced in a static system. This reduc-

tion procedure could be implemented on any instru-

ment suite exploring a planetary surface providing the 

three requisite components; furnace, cold finger, and 

hydrogen are on-board. The technique outlined in this 

work is recommended for use on small scale prospect-

ing instruments as a proof-of-concept for early water 

production on the Moon without any restrictions on 

geographical location. 
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Fig. 2 Example BSE images from the reacted materials. Bright white blebs indicating Fe formation are identified in all sam-

ples. a.) NU-LHT-2M, b.) NWA12592, c.) 10084, and d.) 60500. 
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