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Summary .
We introduce a general, flexible, parametric survival modelling framework which encompasses key
shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), var-
ious common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes
defective distributions (cure models). This generality is achieved using four distributional param-
eters: two scale-type parameters – which, respectively, relate to accelerated failure time (AFT)
and proportional hazards (PH) modelling – and two shape parameters. Furthermore, we advocate
“multi-parameter regression” whereby more than one distributional parameter depends on covari-
ates – rather than the usual convention of having a single covariate-dependent (scale) parameter.
This general formulation unifies the most popular survival models, allowing us to consider the prac-
tical value of possible modelling choices. In particular, we suggest introducing covariates through
just one or other of the two scale parameters (covering AFT and PH models), and through a “power”
shape parameter (covering more complex non-AFT/non-PH effects); the other shape parameter
remains covariate-independent, and handles automatic selection of the baseline distribution. We
explore inferential issues and compare with alternative models through various simulation studies,
with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH
parameters. We illustrate the efficacy of our modelling framework using data from lung cancer,
melanoma, and kidney function studies. Censoring is accommodated throughout.

Keywords: Accelerated failure time; Multi-parameter regression; Power generalised Weibull
distribution; Proportional hazards.

1. Introduction

This article is concerned with both theoretical and practical aspects of parametric survival anal-
ysis with a view to providing an attractive and flexible general modelling approach to analysing
survival data in areas such as medicine, population health, and disease modelling. In particular,
focus will be on the choice of an appropriate flexible form for the distribution of the survival out-
come and the efficient use of multi-parameter regression to understand the effects of covariates
on survival.

We consider a univariate lifetime random variable, T > 0, the primary survival outcome,
whose cumulative hazard function (c.h.f.), H(t), is, atypically perhaps, modelled using a flexible
parametric form which we take to be

H(t) = λH0 ((φt)
γ ;κ) , t > 0. (1.1)



2 Kevin Burke & M.C. Jones & Angela Noufaily

Here, H0(·;κ) is an underlying c.h.f. with shape parameter κ, and φ > 0, λ > 0 and γ > 0 are
further parameters with the following distinct interpretations: φ controls the horizontal scaling
of the hazard function, and is well known as the accelerated failure time parameter (also, 1/φ is
the usual distributional scale parameter); λ controls the vertical scaling of the hazard function,
and is well known as the proportional hazards parameter; and γ is a second shape parameter
which is explicitly defined as a power parameter (unlike κ which can enter in potentially more
complicated ways, and might even represent a vector of parameters). Were Y = log(T ) to be
modelled as a location-scale distribution on R, then µ = − log φ and σ = 1/γ would be the
location and scale of that distribution, respectively, these relationships driving our preference to
specify γ as a power parameter rather than as a more general shape parameter. As will be clear
in the sequel, we in fact intend that only one of the scale parameters be present in the model,
i.e., we fix λ = 1 or φ = 1 so that we consider either H0 ((φt)

γ ;κ) or λH0 (t
γ ;κ), respectively.

However, we write the model in a general way (with both λ and φ) for the purpose of unification
of sub-models.

In this article, we also propose a specific choice for H0(t
γ ;κ), namely

HA(t; γ, κ) =
κ+ 1

κ

{(

1 +
tγ

κ+ 1

)κ

− 1

}

, t > 0. (1.2)

corresponding to an adapted form of the “power generalised Weibull” (PGW) distribution intro-
duced by Bagdonaviçius and Nikulin (2002); we will use APGW to stand for “adapted PGW”.
This choice has some major advantages: with just two shape parameters, the full range of sim-
plest hazard shapes, namely, constant, increasing, decreasing, up-then-down or down-then-up
(and no others), are available, the parameters γ and κ controlling this through the way they
control behaviour of the hazard function near zero and at infinity. Here, we use the simple
descriptive terms “up-then-down” and “down-then-up” to avoid the term “bathtub-shaped”,
which is down-then-up but with a flat valley, the clumsy term “upside-down-bathtub-shaped”,
and the terms “unimodal/uniantimodal” which also encompass monotone hazards. Our adap-
tation of the PGW distribution also allows κ to control distributional choice within the family:
for κ ≥ 0, log-logistic and Burr Type XII distributions are the heaviest tailed members, Weibull
distributions (κ = 1) are “central” within the family, and Gompertz-related distributions are
the most lightly tailed. See Section 2 for details of this model, which also include its cure model
special cases when −1 < κ < 0.

Any one or more of the four distributional parameters in model (1.1) can be made to depend,
typically log-linearly, on covariates; such “multi-parameter regression” (Burke and MacKenzie,
2017) is one of the focusses of this work. Indeed, this general formulation covers the most popular
survival models, e.g., the accelerated failure time (AFT) model when φ depends on covariates,
the proportional hazards (PH) model when λ depends on covariates, and semi-parametric ver-
sions when H0 is an unspecified function. In particular, an advantage of considering (1.1) is
that one may evaluate the breadth of possible modelling choices. Our primary focus in this
respect is to consider which distributional parameters should depend on covariates to assess, for
example, whether an AFT model (φ regression) is, in general, likely to provide a superior fit
when compared with a PH model (λ regression), the utility of a simultaneous AFT-PH model
(simultaneous φ and λ regression components; Chen and Jewell (2001)) when κ 6= 1, and the
merits of a shape regression component (γ or κ) in addition to the, more standard, AFT and
PH components.

One might also consider whether or not non-parametric components should be introduced
either for functions of covariates within the regression equations, or for the baseline c.h.f., H0, or
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both. The main reason for our focus on the core model structure rather than the development
of non-/semi-parametric approaches is that, within the survival literature, there is a general
over-emphasis placed on semi-parametric models – compared with other fields of statistics – to
the extent that many useful parametric alternatives do not receive the attention they deserve.
In particular, practitioners are often content with the “flexibility” afforded by a non-parametric
baseline function without concerning themselves with the possibly inflexible structural assump-
tions of the model at hand. Indeed, a structurally flexible parametric framework has the po-
tential to outperform a less flexible semi-parametric model; for example, there might be more
to be gained by contemplating the extension of a PH model (λ regression) to include a γ shape
regression, than by extension to a non-parametric H0. Of course, this is not to downplay the
importance of a sufficiently flexible baseline function, and our proposed choice for H0, (1.2), is
quite general as it covers a wide variety of popular survival distributions.

Lying between fully non-parametric and more traditional parametric approaches, one could
also model the baseline distribution using splines with a fixed set of knots (Whittemore and
Keller, 1986; Efron, 1988). Compared to standard (non/semi-parametric) survival estimators
(i.e., Kaplan and Meier (1958) and Cox (1972)), splines provide an estimate of the baseline
hazard function, h0, and estimation proceeds using full likelihood so that, among other things,
model selection can be carried out using the Akaike or Bayesian Information Criteria (AIC/BIC).
For example, Royston (2001), Royston and Parmar (2002), and Royston and Lambert (2011)
consider survival regression models of the form g(H(t|x)) = ρ(log t) + xTβ where g(·) is a
link function such that g(H) = logH and g(H) = log{exp(H) − 1} correspond respectively to
proportional hazards and proportional odds models, ρ(·) is a natural cubic spline with a fixed
set of knots which describes the baseline distribution, x and β are vectors of covariates and
regression coefficients, respectively, and where (spline-based) time-varying effects (i.e., xTβ(t))
are also possible; see Rosenberg (1995), Kooperberg et al. (1995), and Younes and Lachin (1997)
for related work. More recently, Liu et al. (2018) define so-called “penalized generalized survival
models” which extend the work of Royston et al. to include roughness penalties in the estimation
procedure, and a wider range of splines/smoothers; these models have been implemented in the
rstpm2 package in R (Clements and Liu, 2019). Besides roughness, one can also penalize non-
monotonic H, albeit alternative approaches can guarantee monotonicity (McLain and Ghosh,
2013; Hothorn et al., 2018). Although spline approaches have much to commend them, the
APGW model, in combination with multi-parameter regression, also creates a rich modelling
framework with the comparative advantage of relatively low complexity.

The multi-parameter regression approach considered in this article aligns with the generalized
additive models for location, scale, and shape (GAMLSS) framework (Rigby and Stasinopou-
los, 2005; Stasinopoulos and Rigby, 2007) (which is sometimes referred to as “distributional
regression” (Stasinopoulos et al., 2018b)). The development of GAMLSS has been primarily
focussed on estimation algorithms for these complex models in which each distributional param-
eter can depend on covariates (possibly non-parametrically), may include random effects, and for
a wide variety of distributions; these algorithms have been implemented in the gamlss package
(Stasinopoulos and Rigby, 2019) in R. However, in general, it is unlikely that this full flexibility
(e.g., all parameters are covariate dependent) is required in practice, and, indeed, Stasinopoulos
et al. (2008, p. 2) warn that “the [GAMLSS] models . . . are very flexible and therefore should
be used with care”. Our focus in on such careful modelling: a general model structure which
unifies and extends important existing models, the consideration of which distributional param-
eters might be best suited to covariate modelling, and the interpretation of key sub-models.
Although this article focusses on survival analysis, such considerations are, of course, important
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much more generally. Interestingly, although the gamlss.cens add-on package (Stasinopoulos
et al., 2018a) extends the estimation to censored survival data, GAMLSS does not implement
key sub-models of the APGW (log-logistic, Burr, Gompertz). However, the generalized gamma
is available in GAMLSS, and can produce similar shapes to the APGW (albeit we recommend
the latter – see Section 2.2); it is also possible to add new distributions to the gamlss package
(see Stasinopoulos et al. (2008, Section 4.2)).

After Section 2, in which we justify our choice of baseline distribution and develop its prop-
erties, we consider the extension to regression modelling in Section 3, including model inter-
pretation and estimation. Then, the properties of estimation within this general framework,
and further practical aspects, are explored using simulated and real data in Sections 4 and 5,
respectively (including comparisons with other models in Sections 4.3 and 5.4). Finally, we close
with some discussion in Section 6.

2. The Specific Model for H0

2.1. Basic Definition and Properties
We recommend for general use the APGW distribution with c.h.f. given by (1.2) and hazard
function is

hA(t; γ, κ) = γtγ−1

(

1 +
tγ

κ+ 1

)κ−1

, t > 0. (2.3)

This is a tractable distribution with readily available formulae for its (unimodal) density, survivor
and quantile functions also. It comes about by a particular vertical and horizontal rescaling of
the original PGW distribution which has c.h.f. HN (t; γ, κ) = (1+tγ)κ−1 (see Bagdonaviçius and
Nikulin (2002), Nikulin and Haghighi (2009) and Dimitrakopoulou et al. (2007); the γ = 1 special
case of HN is the extended exponential distribution of Nadarajah and Haghighi (2011)). This
resulting APGW distribution then retains attractive shape properties of the PGW distribution’s
hazard function, includes important survival distributions as special and limiting cases and
extends to cure models, as we now show.

First, for fixed γ, κ > 0,

hA(t; γ, κ) ∼ γ tγ−1 as t→ 0 and hA(t; γ, κ) ∼ (κ+ 1)1−κγ tκγ−1 as t→ ∞.

The power parameter γ controls the behaviour of the hazard function at zero: it goes to
0 (constant)∞ as γ > (=) < 1. As t → ∞, the hazard function goes to 0 (constant)∞ as
κγ < (=) > 1. In fact, the APGW hazard function joins these tails smoothly in such a way that
its hazard shapes are readily shown to be as listed in Table 1. Whenever the hazard function is

non-monotone, its mode/antimode is at {(1− γ)(κ+ 1)/(κγ − 1)}1/γ .
Defining HA by (1.2) allows us to identify an especially large number of special and limiting

cases, many important and well known, some less so, as listed in Table 2. (For the “Weibull
extension” distribution, see Chen (2000) and Xie et al. (2002).) The shapes of their hazard
functions, which are also given in Table 2, reflect the general shape properties of Table 1,
of course. Note that the Gompertz hazard function, hA(t; γ = 1, κ = ∞) = exp(t), including
both vertical and horizontal scaling parameters is λφ exp(φt), and this can be reparameterized
as λ∗ exp(φt) to arrive at the familiar form due to Gompertz (1825); see the Supplementary
Material for more Gompertz-related discussion.

It can be shown that the APGW distribution retains membership of the log-location-scale-log-
concave family of distributions of Jones and Noufaily (2015) and therefore, inter alia, unimodality
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Table 1. Shapes of PGW hazard func-
tions

γ κγ shape
1 1 constant

≤ 1 ≤ 1 decreasing
≤ 1 ≥ 1 down-then-up
≥ 1 ≤ 1 up-then-down
≥ 1 ≥ 1 increasing

Here, pairs of ≤’s and/or ≥’s
include the convention “and not
both equal at once”.

Table 2. Special and limiting cases of APGW distributions
κ HA shapes of hA distribution others encompassed

0 log(1 + tγ) decreasing, log-logistic HA × λ⇒ Burr type XII
up-then-down

1 tγ decreasing, Weibull γ = 1 ⇒ exponential
constant,
increasing

2 tγ + 1
6 t

2γ decreasing, γ = 1 ⇒ linear hazard
down-then-up,
increasing

∞ et
γ

− 1 increasing, HA × λ⇒ Weibull extension;
down-then-up HA × λ, γ = 1 ⇒ Gompertz
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of densities. We also now note, for future reference, the attractive form of the quantile function
associated with HA, namely QA(u) = {HA(− log(1− u); 1, 1/κ)}1/γ ≡ QA1(u;κ)

1/γ .
The new adaptation can also be used to widen the family of PGW distributions by taking

−1 < κ < 0. For clarity, temporarily define ψ = κ+1 so that 0 < ψ < 1. The APGW c.h.f. can
then be written as

HA(t; γ, ψ) =
ψ

1− ψ

(

1−
1

{1 + (tγ/ψ)}1−ψ

)

.

This corresponds to a cure model with cure probability pψ ≡ limt→∞ exp(−HA(t; γ, ψ)) =

exp{−ψ/(1 − ψ)}. Since the (improper) survival function is in this case of the form p
1−SC(t)
ψ ,

this cure model has an interpretation as the distribution of the minimum of a Poisson number
of random variables (e.g. cancer cells, tumours), each following the lifetime distribution with
survival function SC (e.g. Tsodikov et al. (2003)); here, the Poisson parameter is ψ/(1−ψ) and
SC(t) = {1 + (tγ/ψ)}ψ−1 is the survival function of a scaled Burr Type XII distribution. The
hazard functions hA(t; γ, ψ) follow the shape of their ψ → 1 limit — the log-logistic — being
decreasing for γ ≤ 1 and up-then-down otherwise.

The PGW distribution, and in slightly more complicated form the APGW distribution,
exhibit interesting frailty relationships between members of the families with different values of
κ. We defer consideration of these frailty links to Jones et al. (2020) where we exploit them
to obtain a useful bivariate shared frailty model with PGW/APGW marginal distributions. In
addition, PGW and APGW distributions are written as linear transformation models in the
Supplementary Material.

2.2. Why This Particular Choice for H0?
The PGW/APGW distribution shares the set of hazard behaviours listed in Table 1 with two
other established two-shape-parameter lifetime distributions centred on the Weibull distribution,
namely, the generalised gamma (GG) and exponentiated Weibull (EW) distributions; see Jones
and Noufaily (2015). Indeed, Rubio et al. (2019) choose to perform parametric survival analysis
using the EW distribution for this reason. See Figure 1 for many examples of just how similar the
hazard shapes of all three distributions are; in Figure 1, we have chosen the scale parameter such
that each distribution has median one, used the PGW vertical scaling and otherwise specified
shape parameters γ, κ > 0 only so that all three hazard functions behave as tγ−1 as t → 0 and
as tκγ−1 as t→ ∞.

Further effort to choose shape parameters to match hazard functions or other aspects of the
distributions even more closely is possible and has been pursued for the EW and GG distribu-
tions by Cox and Matheson (2014) and extended to the PGW distribution (what they call the
generalised Weibull distribution) by Matheson et al. (2017). Cox and Matheson (2014) state that
the “agreement between the two distributions [GG and EW] in our various comparisons, both
graphically and in terms of the K–L [Kullback-Leibler] distance, is striking”; after a similar K–L
matching exercise, Matheson et al. (2017) state that “the survival and hazard functions of the
[PGW] distribution and its matched GG are visually indistinguishable.” It remains, therefore,
to choose between APGW, GG and EW distributions on other grounds. The GG distribution in-
cludes the Weibull and gamma distributions as special cases and the log-normal as a limiting one;
the EW distribution includes the Weibull and exponentiated exponential distributions. Thus,
while each includes the Weibull distribution, only the APGW includes the log-logistic, Burr,
and Gompertz distributions (somewhat more commonly-used in survival literature than, say,
the gamma, log-normal, or exponentiated exponential distributions) along with a cure model,
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Fig. 1. Hazard functions of PGW (solid), GG (dashed), and EW (dot-dashed) distributions for the values
of γ and κγ specified along the top and down the left-hand side of the figure, respectively. In each case,
the scale parameter is chosen such that the median of the distributions is one. Figures on the main
diagonal of the matrix of figures, in each of which the PGW, GG and EW hazard functions are identical,
correspond to Weibull distributions, the figure in the centre to the exponential distribution.
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where a single shape parameter, κ, selects among these distributions. We have been unable to
match the number of APGW’s advantageous properties as in the previous subsection by simi-
larly adapting either the GG or EW distributions; we prefer the breadth of/difference between
the wide range of distributions encompassed by the APGW distribution; and we appreciate the
greater tractability of the APGW distribution both mathematically and computationally (for
instance, its hazard function has a simpler form compared with the GG — which involves an
incomplete gamma function — and the EW).

3. Regression

3.1. Modelling Choices
Within our proposed APGW modelling framework, there are four parameters, φ, λ, γ, and κ,
which could potentially depend on covariates. Note that most classical modelling approaches
are based on having a single covariate-dependent distributional parameter, which we refer to
as single parameter regression (SPR), where, understandably, there is a particular emphasis
on scale-type parameters, e.g., the accelerated failure time (AFT) model (φ regression) and
the proportional hazards (PH) model (λ regression). However, in line with the flexibility of
the APGW distribution itself, we also consider taking a flexible multi-parameter regression
(MPR) approach in which more than one parameter may depend on covariates (cf. Burke and
MacKenzie (2017), and references therein, for details of multi-parameter regression); this MPR
activity might also be referred to as “distributional regression” (Stasinopoulos et al., 2018b).
The most general linear APGW-MPR is, therefore, given by

log(φ) = xT τ, log(λ) = xTβ, log(γ) = xTα, log(κ+ 1) = xT ν,

where log-link functions are used to respect the positivity of the parameters φ, λ and γ, with
a slightly different link function for κ to accommodate the fact that, within our APGW, it can
take values in the range (−1,∞) (see Section 2.1), x = (1, x1, . . . , xp)

T is a vector of covariates,
and τ = (τ0, τ1, . . . , τp)

T , β = (β0, β1, . . . , βp)
T , α = (α0, α1, . . . , αp)

T , and ν = (ν0, ν1, . . . , νp)
T

are the corresponding vectors of regression coefficients. In practice, we may not necessarily have
the same set of covariates appearing in all regression components, and, in our current notation,
this can be handled by setting various regression coefficients to zero.

As mentioned in Section 1, we could extend the above regression specification via non-
parametric regression functions of x, but this is beyond the scope of this paper and, indeed,
the MPR approach is, in itself, already flexible without this added complexity. Furthermore,
although the general APGW-MPR model offers the opportunity of four regression components
simultaneously, this full flexibility is unlikely to be required in practice. In particular, it is well
known that φ and λ coincide in the Weibull distribution so that only one scale parameter is
needed in this case, i.e., φ and λ are non-identifiable when κ = 1. Moreover, our numerical
studies (Sections 4 and 5) suggest that, outside of the Weibull, this is effectively much more
generally true. Specifically, although φ and λ are theoretically identifiable in the non-Weibull
cases, the parameters are nonetheless nearly non-identifiable in finite samples, which is an ap-
parently new finding in the literature. Thus, in general, we should fix either φ = 1 or λ = 1,
but we would not simultaneously fix φ = λ = 1 as a scale parameter is a core component for
most statistical models. (We would expect similar considerations to apply to the work of Rubio
et al. (2019), in a closely related context; they allude to numerical difficulties when n = 1000
[the smallest sample size they consider].)

A good practical choice is composed of the following pieces: (a) only one scale parameter
(φ or λ) depends on covariates, while the other is fixed at one as mentioned above, (b) the γ
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shape parameter may depend on covariates, and (c) the κ shape parameter is constant, i.e.,
only the intercept, ν0, is non-zero in the ν vector. This choice provides a useful framework
which incorporates, depending on the choice of scale regression, either an AFT (τ) or PH (β)
component, allows for non-AFT/non-PH effects via the α coefficients associated with the power
parameter (Section 3.2), and automatically selects the underlying baseline distribution via ν0
from a range of popular survival distributions (Table 2) including defective distributions, i.e.,
cure models (Section 2.1).

3.2. Suggested models: M(τ, α) and M(β,α)
Let M(τ, α) and M(β, α) denote the two models suggested in the previous paragraph, e.g., the
latter is the model with β and α regression components, along with the shape parameter ν0 (but
where τ is a vector of zeros). More generally, beyond these two models, we will use this notation
throughout the paper where the arguments of M(·) indicate which regression components are
present in the model, the absence of either β or τ indicating that this is a vector of zeros.
Irrespective of the presence of α or ν regression components in this M(·) notation, we assume
that α0 and ν0 are always present since these are needed to characterise the baseline distribution
and the shape of its hazard function (see Tables 1 and 2). Thus, for example, M(τ) and M(β)
are, respectively, AFT and PH models with two shape parameters (α0 and ν0), M(β, α, ν) is a
model which extends the suggested M(β, α) model so that the ν regression component is also
present, and M(β, τ, α, ν) is the most general APGW-MPR model.

We first consider model M(τ, α) which extends the basic AFT model, M(τ), via the incor-
poration of the α regression component. Now suppose that xj is a binary covariate and let
x(−j) = (1, x1, . . . , xj−1, 0, xj+1, . . . , xp)

T be the covariate vector with xj set to zero so that we

may write xT τ = xjτj + xT(−j)τ and xTα = xjαj + xT(−j)α. As this model extends the AFT

model, it is natural to consider its quantile function which is given by

Q(u|x) = exp(−xT τ)QA1(u;κ)
exp(−xTα)

where QA1(u) = HA(− log(1− u); 1, 1/κ) is the “baseline” quantile function defined in Sec-
tion 2.1. We can then inspect the quantile ratio

QRj(u) =
Q(u|xj = 1)

Q(u|xj = 0)
= exp(−τj)QA1(u;κ)

exp(−xT
(−j)α){exp(−αj)−1}

where we see that αj is the key parameter in determining the u-dependence. In particular, since
QA1(u;κ) is an increasing function of u, QRj(u) increases when αj < 0, decreases when αj > 0,
and is constant (i.e., the usual AFT case) when αj = 0. Hence, the αj coefficient characterises
the nature of the effect of the binary covariate xj , and provides a test of the AFT property for
that covariate.

Now consider the model M(β, α) which extends the PH model, M(β) , and whose hazard
function is given by

h(t|x) = exp(xTβ)hA(t; exp(x
Tα), κ)

where hA(t; γ, κ) is defined in (2.3). The hazard ratio for the binary covariate xj is

HRj(t) =
h(t|xj = 1)

h(t|xj = 0)
= exp(βj + αj) t

exp(xT
(−j)α){exp(αj)−1}g(t;αj , x

T
(−j)α, κ)
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where

g(t;αj , x
T
(−j)α, κ) =

(

texp(αj+xT
(−j)α) + κ+ 1

texp(x
T
(−j)α) + κ+ 1

)κ−1

.

Clearly, αj characterises departures from proportional hazards as HRj(t) is a constant when
αj = 0. For κ ≥ 0, we have that limt→0HRj(t) = 0 and limt→∞HRj(t) = ∞ when αj > 0,
while limt→0HRj(t) = ∞ and limt→∞HRj(t) = 0 when αj < 0. Furthermore, it can be shown
that HRj(t) varies monotonically in t in the following cases: (i) κ ≥ 1, or (ii) 0 < κ < 1 and
αj /∈ (log κ,− log κ). (We do not know about monotonicity or otherwise in the remaining cases.)

From the above we see that, within the suggested M(τ, α) and M(β, α) models, the param-
eters play the following roles: the scale coefficients (τ or β) control the overall size of the effect
where negative coefficients correspond to longer lifetimes; the α shape coefficients describe how
covariate effects vary over the lifetime, i.e., permitting non-AFT and non-PH effects; and the
ν0 shape parameter characterises the baseline distribution. Note that we could, alternatively,
achieve non-constant covariate effects via the ν regression component rather than the α com-
ponent, i.e., using M(β, ν) rather than M(β, α). However, in this case, the interpretation is
that such non-constant effects are due to populations which arise from structurally different
distributions, rather than different shapes within a given baseline distribution. The latter is
arguably more natural as it creates a separation of parameters whereas, in the former, distribu-
tion selection and non-constant covariate effects are intertwined. Of course, this is not to say
that models with ν components instead of, or in combination with, α components will never be
useful in practice. However, we are highlighting practical merits of the M(τ, α) and M(β, α)
models and, indeed, the general use of these models is motivated by the numerical studies of
Sections 4 and 5.

3.3. Estimation
Consider the model formulation given in (1.1) with all four regression components, i.e., the
M(τ, β, α, ν) model. (While we advocate the special cases M(τ, α) or M(β, α), we write the
estimation equations in a general form below so as to unify all potential model structures. In
particular, estimation of both τ and β is not recommended in practice.) Let φi = exp(xTi τ),
λi = exp(xTi β), γi = exp(xTi α) and κi = exp(xTi ν)− 1 be the covariate-dependent distributional
parameters for the ith individual with covariate vector xi = (1, xi1, . . . , xip)

T , and τ , β, α, and
ν are the associated vectors of regression coefficients. Let p∗ = p + 1 denote the length of xi.
Allow independent censoring by attaching to each individual an indicator δi which equals one
if the response is observed, and zero if it is right-censored. The log-likelihood function is then
given by

ℓ(θ) =

n
∑

i=1

[

δi

{

log

(

λiγizi
ti

)

+m0(zi;κi)

}

− λiH0(zi;κi)

]

where θ = (τT , βT , αT , νT )T , zi = (φiti)
γi and, in our proposed APGW case,

H0(z;κ) = HA(z; 1, κ) =
κ+ 1

κ

{(

1 +
z

κ+ 1

)κ

− 1

}

,

m0(z;κ) = log h0(z;κ) = (κ− 1) log

(

1 +
z

κ+ 1

)

.
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As usual, the log-likelihood function can be maximised by solving the score equations

(UTτ X, U
T
β X, U

T
αX, U

T
ν X)T = 04p∗×1

where X is an n× p∗ matrix whose ith row is xi, 04p∗×1 is a 4p∗ × 1 vector of zeros and Uτ , Uβ,
Uα, and Uν are n× 1 vectors whose ith elements are as follows:

Uτ,i = γi
[

δi{1 + zim
′
0(zi;κi)} − λizih0(zi;κi)

]

Uβ,i = δi − λiH0(zi;κi)

Uα,i = δi[1 + log(zi){1 + zim
′
0(zi;κi)}] − λizi log(zi)h0(zi;κi)

Uν,i = (κi + 1){δim
(κ)
0 (zi;κi)− λiH

(κ)
0 (zi;κi)}

where

H
(κ)
0 (z;κ) =

∂

∂κ
H0(z;κ)=

{κH0(z;κ) + κ+ 1}m0(z;κ)

κ(κ − 1)
−
H0(z;κ)

κ(κ+ 1)
−
zh0(z;κ)

κ+ 1

m
(κ)
0 (z;κ) =

∂

∂κ
m0(z;κ)=

m0(z;κ)

κ− 1
−
zm′

0(z;κ)

κ+ 1
.

The score equations can be solved by iteratively solving the system of equations














XTW
(j)
ττ X XTW

(j)
τβ X XTW

(j)
ταX XTW

(j)
τν X

XTW
(j)
τβ X XTW

(j)
ββX XTW

(j)
βαX XTW

(j)
βν X

XTW
(j)
ταX XTW

(j)
βαX XTW

(j)
ααX XTW

(j)
αν X

XTW
(j)
τν X XTW

(j)
βν X XTW

(j)
αν X XTW

(j)
νν X

























τ (j+1) − τ (j)

β(j+1) − β(j)

α(j+1) − α(j)

ν(j+1) − ν(j)











=















XTU
(j)
τ

XTU
(j)
β

XTU
(j)
α

XTU
(j)
ν















for θ(j+1) = (τ (j+1)T , β(j+1)T , α(j+1)T , ν(j+1)T )T . The weight matrix Wττ is an n × n diagonal
matrix whose diagonal entries are given by −∂Uτ/∂τ0, where differentiation applies elementwise
to the vector Uτ ; the other weight matrices are defined similarly. In the Supplementary Mate-
rial, we provide the functional form for all second derivatives (i.e., the weight matrices), and R

code implementing the above Newton-Raphson (NR) procedure – both our own implementation
and another using the in-built nlm function. As a long-standing R optimiser, the latter NR
implementation is likely to be more stable than our own; it can also efficiently calculate first
and second derivatives numerically (but our experience suggests that providing first derivatives
speeds up computations). Note that gamlss uses variations of the above NR estimation pro-
cedure (extended to handle non-parametric additive terms and random effects), namely: the
CG (Cole and Green, 1992) and RS (Rigby and Stasinopoulos, 1996) algorithms, where the lat-
ter ignores the cross-derivatives (i.e., it only uses Wττ , Wββ, Wαα, and Wνν); see Rigby and
Stasinopoulos (2005, Appendix B) for further details.

Note that the elements Uτ,i, Uβ,i and Uα,i above are written generically so that they apply to
any model of the form given in (1.1), i.e., they are not specific to the APGW case; the form of

Uν,i, on the other hand, uses the way in which H0 and hence H
(κ)
0 and m

(κ)
0 depend on κ. Thus,

although the APGW is certainly a flexible choice (see Section 2), the first three score components
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extend immediately to other baseline distributions by replacing H0 (and, consequently, m0 and
m′

0). Estimation then proceeds once the functional form of Uν,i has been re-evaluated.

Furthermore, one may, alternatively, prefer to maintain an unspecified baseline distribution,
whereby ν represents an infinite-dimensional (possibly covariate-independent) parameter vec-
tor. In this case, estimation equations for the regression coefficients τ , β, and α can be based
on (UTτ X, U

T
β X, U

T
αX) where H0 is replaced with an appropriate non-parametric estimator

(and, similarly, for m0 and m′
0). However, while non-parametric estimation of H0 is reasonably

straightforward (say, using a Nelson-Aalen-type estimator), it is well known that terms such as
m0 and m′

0, which involve h0 and h′0, are more difficult to estimate consistently (albeit spline
and kernel smoothing could be used (Anderson and Senthilselvan, 1980; Ramlau-Hansen, 1983;
Tanner and Wong, 1983; Whittemore and Keller, 1986)). We note that semi-parametric versions
of the M(τ, β) and M(τ, α) models have respectively been developed by Chen and Jewell (2001)
and Burke et al. (2019). However, we are unaware of a semi-parametric M(τ, β, α) model in
the literature. In any case, such semi-parametric models are beyond the scope of the current
paper and, indeed, a flexible parametric framework can cover a wide variety of applications
as previously discussed in Section 1. Lastly, although we have considered estimation based on
right-censored data here, because we are working parametrically, it is, of course, straightforward
to deal with left-censoring, interval-censoring, and also truncation.

4. Simulation Studies

4.1. Without Covariates
Before considering estimation in the presence of covariates, we first investigate estimation
in the context of the APGW model with no covariates. Thus, we simulated data from
the APGW distribution parameterised in terms of the following unconstrained parameters:
τ = log φ, β = log λ, γ = logα and ν = log(κ + 1). The values of the first three param-
eters were fixed at τ = 0.8, β = 0.5, α = −0.3, respectively, while ν was varied such that
ν ∈ {0.00, 0.22, 0.41, 0.69, 1.10, 1.61,∞} (rounded to two decimal places); note that ν = 0,
ν = 0.69 and ν = ∞ produce distributions related, respectively, to the log-logistic (κ = 0),
Weibull (κ = 1) and Gompertz (κ = ∞) distributions (see Table 2). Furthermore, the sam-
ple size was fixed at 1000 and censoring times were generated from an exponential distribution
such that, for each ν value, the censoring rate was fixed at approximately 30%. Within each
of the seven simulation scenarios (i.e., varying ν), we fitted three different models with the aim
of understanding the identifiability of parameters in a finite, but reasonably large, sample: (i)
estimate all parameters, (ii) fix β at its true value, and (iii) fix β at zero. Thus, τ , α and ν
are estimated in all three models. Other simulation scenarios with additional sample sizes (100
and 500) and censoring proportion (60%) can be found in the Supplementary Material, and the
results are similar to what we present here (except for commensurately increased biases and
standard errors).

Each scenario was replicated 1000 times, and the results are contained in Table 3. Clearly,
estimation is unstable in model (i), i.e., standard errors are large. This instability arises as a
consequence of attempting to estimate the scale parameters, τ and β, simultaneously. Indeed, in
all cases where these parameters are estimated simultaneously, we have found that corr(τ̂ , β̂) ≈ 1.

Of course, it is well known that τ̂ and β̂ are perfectly co-linear in the Weibull case (ν = 0.69),
but it is interesting to find that this extends (approximately) beyond the Weibull distribution.
This appears to be a new finding in survival modelling and implies that these parameters play
somewhat similar roles across a range of popular lifetime distributions (it also explains the large
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standard errors observed in Table 2 of Chen and Jewell (2001)). This instability vanishes once
β is fixed. In particular, when β is set to its true value of β = 0.5 (i.e., model (ii)), the estimates
display very little bias. Moreover, when β is set to an incorrect value, β = 0.0 (i.e., model (iii)),
τ̂ converges consistently to a value in the range 1.4–1.5 which compensates for the incorrect
specification of β and varies smoothly with ν; the value of ν̂ changes somewhat from its value
in model (ii), but, interestingly, α̂ does not. Furthermore, the fitted survivor curves for both
models (not shown) are close to the truth, i.e., there is no reduction in quality of model fit as a
consequence of fixing β to zero. Similarly (but not shown here), estimation is also stable if τ is
fixed and β is estimated, and the fitted survivor curves are again close to the truth. Therefore,
the choice of scale — either τ or β (fixing the other to zero) — behaves, approximately, as a
model reparameterisation (which it is, exactly, in the Weibull case).

We note that, for both models (ii) and (iii), the standard error of ν̂ can be large when ν
is large. However, this is not a concern as it is a consequence of the fact that the APGW
distribution changes very little over a range of large ν values. That being said, when considering
the extension to covariates, the fact that ν coefficients can grow large and have large standard
errors can in turn lead to estimation instability, particularly when there are multiple covariates;
therefore, keeping ν covariate-independent means that only one parameter can exhibit this
behaviour, and this is straightforward to handle. By contrast, we can see that estimation of
the α shape parameter is much more stable which is one reason for preferring that covariates
enter through this parameter. (Another is the natural interpretation of model components as
discussed in Section 3.2.)

4.2. With a Covariate
We simulated survival times according to the APGW distribution with parameters φ = exp(τ0+
τ1X), λ = exp(β), γ = exp(α0 + α1X), and κ = exp(ν) − 1 where X ∼ Bernoulli(0.5), ν was
varied according to the set {0.00, 0.22, 0.41, 0.69, 1.10, 1.61,∞}, and the remaining parameter
values were fixed at τ0 = 0.8, τ1 = 0.6, β = 0.0, α0 = 0.2, and α1 = −0.5; these values
were selected to yield realistic survival times. In the notation of Section 3.2, the true model is
M(τ, α). As in Section 4.1, the sample size and censoring proportion were, respectively, set at
1000 and 30% (with censoring times generated from an exponential distribution). Within each
of the seven scenarios (i.e., varying ν), we fitted the following three regression models: the more
general M(τ, β, α), the true M(τ, α), and the misspecified M(β, α), respectively. The results,
based on 1000 simulation replicates, are given in Table 4.

Mirroring the case with no covariates (Section 4.1), we find that estimation is unstable when
attempting to estimate τ and β coefficients simultaneously in M(τ, β, α), whereas estimation is
stable in both the trueM(τ, α) and the misspecifiedM(β, α) models. In the latter, β coefficients
converge consistently to values varying smoothly with ν. The results are broadly similar for
smaller sample sizes of n = 500 and n = 100, and a higher censoring proportion of 60%, but
again, of course, the biases and standard errors increase in these “lower information” scenarios
(see Supplementary Material). Since, in theory (i.e., infinite samples), τ and β are only non-
identifiable in the Weibull case, we also considered a much larger sample size of n = 5000 (see
Supplementary Material); the results for M(τ, β, α) are more stable especially for the highly-
non-Weibull cases (κ near to zero or infinity), but even larger samples would be required for
close-to-Weibull cases (κ close to one).

We now consider model fit by inspecting the estimated baseline survivor curves, i.e., the
survivor curve for an individual with X = 0 which we denote by S0(t). In particular, we focus
on this estimated baseline survivor function evaluated at three true quantiles, namely, Q0(u), u =
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Table 3. Median and standard error (in brackets) of estimates

Model ν τ̂ β̂ α̂ ν̂

(i) β : est

0.00 1.87 (6.93) -0.21 (4.98) -0.26 (0.12) 0.18 (4.38)
0.22 2.24 (11.52) -0.54 (8.38) -0.26 (0.15) 0.39 (7.24)
0.41 2.83 (11.55) -0.98 (8.58) -0.26 (0.20) 0.49 (7.55)
0.69 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1.10 0.83 (4.30) 0.38 (3.32) -0.33 (0.14) 1.18 (6.82)
1.61 0.53 (2.76) 0.57 (2.13) -0.32 (0.11) 12.32 (6.47)
∞ 1.10 (1.53) 0.19 (1.21) -0.32 (0.09) 13.04 (6.40)

(ii) β : true

0.00 0.81 (0.15) 0.50 — -0.30 (0.05) 0.00 (0.11)
0.22 0.79 (0.15) 0.50 — -0.30 (0.05) 0.23 (0.15)
0.41 0.80 (0.15) 0.50 — -0.30 (0.05) 0.40 (0.19)
0.69 0.79 (0.15) 0.50 — -0.30 (0.06) 0.71 (0.31)
1.10 0.79 (0.16) 0.50 — -0.30 (0.06) 1.12 (1.59)
1.61 0.80 (0.14) 0.50 — -0.30 (0.05) 1.65 (3.72)
∞ 0.84 (0.09) 0.50 — -0.28 (0.04) 13.05 (6.23)

(iii) β : zero

0.00 1.52 (0.12) 0.00 — -0.29 (0.05) 0.15 (0.09)
0.22 1.50 (0.13) 0.00 — -0.29 (0.06) 0.33 (0.12)
0.41 1.49 (0.13) 0.00 — -0.30 (0.05) 0.48 (0.14)
0.69 1.48 (0.13) 0.00 — -0.30 (0.06) 0.68 (0.19)
1.10 1.44 (0.13) 0.00 — -0.31 (0.06) 0.99 (0.27)
1.61 1.44 (0.14) 0.00 — -0.31 (0.06) 1.27 (1.46)
∞ 1.42 (0.13) 0.00 — -0.31 (0.06) 2.04 (4.50)

All numbers are rounded to two decimal places. For the models with fixed parameters, the “estimated”
value shown is the value at which the parameter is fixed, and its standard error is then indicated by “—”.
Since τ and β are not simultaneously identifiable in the Weibull case (ν = 0.69), all values are indicated
by ∗ in Model (i) where both are to be estimated.
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Table 4. Median and standard error (in brackets) of estimates

Model(τ, β, α)

ν τ̂0 τ̂1 β̂0 β̂1 α̂0 α̂1 ν̂0

0.00 0.98 (1.21) 0.55 (1.28) -0.20 (1.37) 0.02 (0.70) 0.23 (0.13) -0.50 (0.18) 0.05 (0.76)
0.22 0.98 (1.40) 0.51 (2.08) -0.20 (1.63) 0.04 (1.61) 0.23 (0.17) -0.50 (0.24) 0.27 (0.44)
0.41 1.00 (1.65) 0.57 (2.95) -0.24 (1.99) 0.10 (2.48) 0.24 (0.18) -0.51 (0.26) 0.40 (0.39)
0.69 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1.10 0.39 (1.50) 0.08 (2.88) 0.35 (1.89) 0.21 (2.66) 0.17 (0.12) -0.49 (0.18) 1.31 (6.88)
1.61 0.55 (1.00) 0.47 (1.62) 0.26 (1.34) -0.04 (1.61) 0.19 (0.12) -0.51 (0.18) 2.60 (7.04)
∞ 0.88 (0.53) 0.69 (0.88) -0.14 (0.81) -0.06 (0.99) 0.21 (0.12) -0.51 (0.17) 15.12 (6.46)

Model(τ, α)

ν τ̂0 τ̂1 β̂0 β̂1 α̂0 α̂1 ν̂0

0.00 0.80 (0.09) 0.60 (0.13) 0.00 — 0.00 — 0.21 (0.06) -0.50 (0.06) 0.00 (0.06)
0.22 0.81 (0.09) 0.60 (0.12) 0.00 — 0.00 — 0.21 (0.06) -0.50 (0.06) 0.22 (0.09)
0.41 0.80 (0.08) 0.59 (0.10) 0.00 — 0.00 — 0.20 (0.06) -0.50 (0.06) 0.40 (0.11)
0.69 0.79 (0.08) 0.60 (0.10) 0.00 — 0.00 — 0.20 (0.06) -0.50 (0.06) 0.70 (0.17)
1.10 0.80 (0.09) 0.60 (0.09) 0.00 — 0.00 — 0.20 (0.06) -0.50 (0.06) 1.12 (0.84)
1.61 0.81 (0.08) 0.60 (0.08) 0.00 — 0.00 — 0.20 (0.07) -0.50 (0.06) 1.59 (2.44)
∞ 0.82 (0.05) 0.62 (0.06) 0.00 — 0.00 — 0.22 (0.05) -0.50 (0.06) 13.16 (6.78)

Model(β, α)

ν τ̂0 τ̂1 β̂0 β̂1 α̂0 α̂1 ν̂0

0.00 0.00 — 0.00 — 0.88 (0.11) 0.03 (0.08) 0.18 (0.05) -0.52 (0.05) -0.36 (0.12)
0.22 0.00 — 0.00 — 0.91 (0.11) 0.04 (0.08) 0.18 (0.06) -0.51 (0.06) -0.06 (0.15)
0.41 0.00 — 0.00 — 0.93 (0.13) 0.05 (0.09) 0.19 (0.06) -0.50 (0.06) 0.21 (0.21)
0.69 0.00 — 0.00 — 0.98 (0.13) 0.06 (0.09) 0.20 (0.06) -0.50 (0.06) 0.72 (0.35)
1.10 0.00 — 0.00 — 1.03 (0.14) 0.07 (0.11) 0.22 (0.06) -0.50 (0.07) 1.83 (4.33)
1.61 0.00 — 0.00 — 1.18 (0.10) 0.08 (0.12) 0.27 (0.05) -0.50 (0.07) 15.16 (6.52)
∞ 0.00 — 0.00 — 1.54 (0.10) 0.10 (0.14) 0.37 (0.05) -0.48 (0.07) 16.88 (1.28)

All numbers are rounded to two decimal places. For the models with fixed parameters, the “es-
timated” value shown is the value at which the parameter is fixed, and its standard error is then
indicated by “—”. Since τ and β are not simultaneously identifiable in the Weibull case (ν = 0.69),
all values are indicated by ∗ for Model(τ, β, α).
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Fig. 2. Boxplots of estimated baseline survivor probabilities evaluated at the true 90th, 50th, and 10th
percentile times, respectively (such that the true probabilities are 0.1, 0.5, and 0.9), vertically stacked for
each of four fitted models indicated by the x-axis labels.
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0.1, 0.5, 0.9, since Ŝ0(Q0(u)) is an estimate of the probability 1− u. Boxplots of these estimates
over simulation replicates arising from the true model, M(τ, α), and the misspecified model,
M(β, α), are shown in Figure 2. We also display the estimates from two simpler (misspecified)
models, M(τ) and M(β), wherein X has been dropped from the α component (specifically, α1

is set to zero in these simpler models). Clearly both M(τ, α) and M(β, α) fit the data very well
(apart from a little bias in M(β, α) when ν = ∞), i.e., the choice of using a τ or β regression
component does not alter the model fit much (again mirroring the findings of Section 4.1).
On the other hand, when the α regression is dropped, the quality of the model fit decreases
considerably as this represents a model misspecification in a much stronger sense than switching
from M(τ, α) to M(β, α).

4.3. Simulations with multiple covariates and model comparisons
The primary focus of the above simulation studies (Sections 4.1 and 4.2) was to show that
the PH-type (β) and AFT-type (τ) parameters are close to being interchangeable in a range
of distributions beyond the Weibull (where it is well-known that PH and AFT models are
equivalent), and that shape regression (via α) is a fruitful activity, i.e., theM(τ, α) andM(β, α)
models we suggest in Section 3.2 are likely to be more useful in practice than M(τ, β). In this
section, we focus specifically on M(β, α), investigating estimation performance with multiple
covariates, and when the baseline model may be non-APGW; similar results can be obtained
by focussing on M(τ, α). We also compare the model fit with the generalized survival spline
models of Liu et al. (2018) – available in the rstpm2 package in R (Clements and Liu, 2019) –
and the Cox PH model.

We simulated survival times according to a model with cumulative hazard function given by
λH0 (t

γ) with parameters λ = exp(β0+β1X1+β2X2+β3X3+β4X4), γ = exp(α0+α1X+α2X2+
α3X3+α4X4), and κ = exp(ν)− 1 where X1,X2 ∼ Normal(0, 0.5) and X3,X4 ∼ Bernoulli(0.5),
and the parameter values were fixed at β0 = −1.0, β1 = β2 = β3 = β4 = −0.5, α0 = 0.2,
α1 = α3 = 0.5, and α2 = α4 = 0.0; note, therefore, that X2 and X4 have the PH property on
account of their α coefficients being zero. The baseline cumulative hazard function was either
that of an APGW model where ν = log κ ∈ {0.00, 0.69,∞}, or a non-APGW model given by

H0(t;ω) =
1

2
t2 −

1

3
t3 +

1

4
t4 −

ω

π
{cos(πt)− 1}

where ω ∈ {0, 1, 2}. The hazard function for this latter model is given by h0(t;ω) = t −
t2 + t3 + ω sin(πt): it increases for ω = 0 and has two turning points (i.e., the hazard shape
is “up-then-down-then-up”) for ω ∈ {1, 2}. Both the sample size and censoring proportion
were varied, n ∈ {500, 1000} and c ∈ {30%, 60%} (with censoring times generated from an
exponential distribution), and, in all cases, we fitted the M(β, α) APGW model which is, of
course, misspecified when the baseline model is given by H0(t;ω) above.

The results, based on 1000 simulation replicates, are given in Table 5. Note that we have
pooled the results for β̂1, β̂2, β̂3, and β̂4 into a “β̂1,2,3,4” column, with similarly defined “α̂1,3”
and “α̂2,4” columns; this was done as the individual results were numerically very similar (but
these individual results can be found in the Supplementary Material where we also show a
smaller sample size of n = 100). In all cases where the truth is APGW, we find the estimates
have little bias. Furthermore, the standard errors are not large relative to the average estimates
(except that of ν̂0 when ν = ∞ which is to be expected). Thus, the estimates are recoverable
for reasonable sample sizes and censoring proportions; of course, as expected, both bias and
variability increase for the larger sample size and smaller censoring proportion. Interestingly,
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Table 5. Median and standard error (in brackets) of estimates

Truth: APGW

c n ν β̂0 β̂1,2,3,4 α̂0 α̂1,3 α̂2,4 ν̂0

0.3 500 0.00 -1.01 (0.14) -0.51 (0.17) 0.22 (0.11) 0.49 (0.15) 0.01 (0.15) 0.00 (0.03)
0.69 -1.03 (0.14) -0.50 (0.17) 0.20 (0.10) 0.50 (0.08) -0.01 (0.08) 0.71 (0.13)
∞ -0.96 (0.13) -0.51 (0.14) 0.24 (0.08) 0.50 (0.06) 0.01 (0.06) 16.62 (10.23)

1000 0.00 -1.01 (0.10) -0.50 (0.12) 0.21 (0.08) 0.50 (0.10) 0.00 (0.11) 0.00 (0.02)
0.69 -1.01 (0.10) -0.50 (0.12) 0.20 (0.07) 0.50 (0.06) 0.00 (0.05) 0.70 (0.09)
∞ -0.98 (0.09) -0.51 (0.10) 0.23 (0.06) 0.50 (0.04) 0.00 (0.04) 16.69 (9.88)

0.6 500 0.00 -1.02 (0.15) -0.50 (0.19) 0.23 (0.13) 0.50 (0.16) 0.00 (0.16) 0.00 (0.06)
0.69 -1.03 (0.17) -0.50 (0.18) 0.21 (0.12) 0.50 (0.10) -0.01 (0.10) 0.72 (0.20)
∞ -0.96 (0.16) -0.52 (0.17) 0.25 (0.10) 0.51 (0.08) 0.01 (0.08) 17.23 (21.93)

1000 0.00 -1.00 (0.11) -0.50 (0.13) 0.21 (0.09) 0.50 (0.11) 0.00 (0.11) 0.00 (0.04)
0.69 -1.01 (0.11) -0.50 (0.13) 0.20 (0.08) 0.51 (0.07) 0.00 (0.07) 0.70 (0.12)
∞ -0.96 (0.11) -0.51 (0.12) 0.23 (0.07) 0.51 (0.06) 0.00 (0.06) 16.45 (10.30)

Truth: non-APGW

c n ω β̂0 β̂1,2,3,4 α̂0 α̂1,3 α̂2,4 ν̂0

0.3 500 0 -2.04 (0.21) -0.44 (0.25) 1.07 (0.14) 0.47 (0.08) -0.02 (0.08) 1.07 (0.24)
1 -1.67 (0.19) -0.47 (0.20) 0.37 (0.09) 0.49 (0.08) -0.01 (0.08) 4.03 (10.25)
2 -1.31 (0.16) -0.53 (0.18) 0.17 (0.06) 0.54 (0.07) 0.03 (0.07) 18.08 (9.20)

1000 0 -2.01 (0.15) -0.42 (0.17) 1.07 (0.09) 0.47 (0.06) -0.03 (0.06) 1.05 (0.16)
1 -1.64 (0.14) -0.46 (0.14) 0.37 (0.07) 0.49 (0.05) -0.01 (0.06) 3.10 (8.39)
2 -1.31 (0.11) -0.52 (0.13) 0.16 (0.04) 0.53 (0.05) 0.02 (0.05) 17.78 (9.02)

0.6 500 0 -2.11 (0.25) -0.45 (0.30) 1.01 (0.18) 0.47 (0.10) -0.03 (0.10) 1.22 (1.19)
1 -1.60 (0.22) -0.52 (0.23) 0.35 (0.10) 0.52 (0.09) 0.00 (0.09) 3.97 (9.77)
2 -1.19 (0.20) -0.56 (0.20) 0.20 (0.08) 0.57 (0.08) 0.04 (0.08) 3.08 (9.26)

1000 0 -2.04 (0.18) -0.44 (0.20) 1.01 (0.12) 0.47 (0.07) -0.02 (0.07) 1.16 (0.23)
1 -1.59 (0.17) -0.49 (0.16) 0.36 (0.07) 0.51 (0.06) 0.00 (0.06) 3.10 (8.05)
2 -1.16 (0.15) -0.55 (0.14) 0.20 (0.07) 0.57 (0.06) 0.04 (0.06) 2.74 (6.94)

All numbers are rounded to two decimal places. β̂1,2,3,4 pools results for β̂1, β̂2, β̂3, and β̂4
which are numerically close, and α̂1,3 and α̂2,4 are similarly defined.
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Table 6. Survivor curve distances

Truth: APGW non-APGW

c n ν M(β, α) M(τ, α) GS Cox ω M(β, α) M(τ, α) GS Cox

0.3 500 0.0 2.3 4.2 3.1 2.7 0 1.1 1.4 1.6 2.5
0.7 1.2 1.4 1.4 2.9 1 2.1 2.6 2.1 4.3
∞ 1.3 1.8 2.4 4.2 2 3.5 3.8 2.5 5.7

1000 0.0 1.6 4.0 2.3 2.1 0 0.9 1.1 1.3 2.2
0.7 0.7 1.0 1.0 2.4 1 1.8 2.3 1.6 3.9
∞ 0.9 1.4 1.6 3.8 2 3.1 3.4 2.0 5.2

0.6 500 0.0 3.9 5.2 5.4 4.7 0 1.6 1.8 2.0 3.1
0.7 2.5 2.8 2.6 5.3 1 2.7 3.2 3.9 5.2
∞ 2.0 2.4 3.2 4.9 2 4.2 4.6 3.6 6.7

1000 0.0 2.8 4.7 3.7 3.7 0 1.1 1.4 1.6 2.7
0.7 1.6 2.0 1.9 4.7 1 2.2 2.8 2.1 4.7
∞ 1.3 1.9 2.6 4.4 2 3.8 4.1 2.7 6.2

Numbers are multiplied by 100 and rounded to one decimal place. GS is the generalized
survival spline model.

when the truth is non-APGW, and ignoring the intercepts (which vary from the truth to adapt
to the non-APGW baseline), we see that the estimates are still not terribly biased. This suggests
that covariate effects can be robust to baseline model misspecification (at least of the sort we
consider here). Indeed, in the analysis of a kidney dataset (see Sections 5.3 and 5.4), we find
that the hazard ratios in our model are numerically very similar to those of spline-based models
even though the fit to the Kaplan-Meier survivor curves is not perfect.

In addition to M(β, α), we also fitted: M(τ, α), a generalized survival spline model (GS),
and a Cox PH model. For the generalized survival spline model, the cumulative hazard function
was specified as logH(t|x) = ρ0(log t; df0) + x1ρ1(log t; df1) + x2ρ2(log t; df2) + x3ρ3(log t; df3) +
x4ρ4(log t; df4) where the ρ(·; df)’s are natural cubic spline functions with df degrees of freedom.
For simplicity, we fixed df0 = df1 = df2 = df3 = df4 and selected this value by minimising
BIC. A more complex estimation procedure would make use of penalized splines, but this is
quite computationally intensive with multiple spline functions. (We revisit computational cost
in Section 5.4.) For a given covariate profile, xi = (x1i, x2i, x3i, x4i)

T , the distance between the
true and estimated survivor curves is

di =

∫ tmax

0

∣

∣

∣
Ŝ(t|xi)− S(t|xi)

∣

∣

∣
dt

where the integral is truncated at some tmax since the Cox model is undefined beyond the largest
observed time if it is censored, and spline models are not so well defined beyond this point either.
This distance metric, averaged over individual covariate profiles and simulation replicates, and
for all four fitted models, is shown in Table 6. Note that we set tmax equal to the largest observed
time (be it censored or not) in each given simulation replicate.

Firstly, we see that overall the fit is better (distance is smaller) when the sample size is larger
and the censoring proportion is smaller. When the truth is APGW, M(β, α) (the true model)
provides the best fit. However, except in one case, when the truth is non-APGW with ω ∈ {1, 2},
the GS (generalized survival) model does expectedly better since the “up-then-down-then-up”
hazard shape is not within the APGW class of shapes; the exception to this is the case where
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c = 0.6, n = 500, ω = 1. The amount of improvement of GS over APGW is never very great,
however, and APGW performance remains adequate. On the other hand, M(β, α) does well
when ω = 0 since the hazard is increasing – a shape within the APGW class. Except in the
ν = 0.0 cases, the M(β, α) and M(τ, α) distances are fairly similar, which is not unexpected
given the results of Sections 4.1 and 4.2. The Cox PH model does not do well overall since the
true model is non-PH due to the α effects of X1 and X3.

5. Data Analysis

5.1. Lung Cancer
We now consider our modelling framework in the context of a lung cancer study which was
the subject of a 1995 Queen’s University Belfast PhD thesis by P. Wilkinson (see Burke and
MacKenzie (2017)). This study concerns 855 individuals who were diagnosed with lung cancer
between 1st October 1991 and 30th September 30 1992, who were then followed up until 30th
May 1993 (approximately 20% of survival times were right-censored). The main aim of this study
was to investigate differences between the following treatment groups: palliative care, surgery,
chemotherapy, radiotherapy, and a combined treatment of chemotherapy and radiotherapy. In
our analysis we take palliative care (which is a non-curative treatment providing pain relief)
as the reference category. Note that, while various other covariates were captured for each
individual, our main aim here is to explore the flexibility of our general modelling scheme in the
context of the treatment variable.

As discussed in Section 3, we advocate the use of M(β, α) and M(τ, α) since they offer
a flexible extension of the popular PH and AFT models (i.e., M(β) and M(τ), respectively)
in which the α coefficients indicate non-PH/non-AFT effects (see Section 3.2), and where the
baseline distribution is selected via the parameter ν0 = log(κ + 1). Thus, we fitted these two
models, and their simpler PH and AFT counterparts, to the lung cancer data. We also fitted
M(β, ν) andM(τ, ν) for comparison, albeit we have argued in Section 3.2 that these are perhaps
somewhat less natural. These six fitted models are summarised in Table 7.

We immediately see that the largest AIC/BIC values are associated with the simpler single
component (i.e., τ and β only) models which suggests that these models are not sufficiently
flexible to capture the more complex non-PH/non-AFT effects observed here. Although, in this
particular application, the AFT (τ only) model has lower AIC/BIC values than that of the PH
(β only) model, the fit can be greatly improved by modelling shape (either α or ν) in addition to
scale. Although the best-fitting model here isM(β, ν), the difference is negligible compared with
the models we favour, M(β, α) and M(τ, α). Interestingly, these latter two models have very
close AIC/BIC values, indicating that the choice of τ or β component is not at all important here
(in line with the findings of Section 4.2). The use of more than two regression components did not
yield further improvements in fit (models not shown), and, moreover, estimation of such models
tends to be unstable — particularly, of course, those with two scale regression components (see
also Section 4). Note that we have also avoided shape-only regression models, i.e., M(α), M(ν),
and M(α, ν), as, typically, models without scale components are not of interest, and, as we
would expect, these models fit the current data very poorly indeed (with ∆AIC > 600).

We now consider the PH-APGW model, M(β), and the two associated shape-regression
extensions, M(β, α) and M(β, ν), in more detail. The advantage, in terms of model fit, of shape
regression components is clear from Figure 3, while theM(β, α) and M(β, ν) models themselves
are virtually indistinguishable. Table 8 displays the estimated regression coefficients. We can
see that both M(β) and M(β, α) suggest a baseline distribution which is between a log-logistic
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Table 7. Summary of models fitted to lung cancer data

Model M(β) M(τ) M(β, α) M(τ, α) M(β, ν) M(τ, ν)

dim(θ) 7 7 11 11 11 11

ℓ(θ̂) -1956.5 -1943.5 -1927.0 -1926.6 -1925.9 -1930.3

∆AIC 53.1 27.2 2.2 1.5 0.0 8.9

∆BIC 34.1 8.2 2.2 1.5 0.0 8.9

ℓ(θ̂), the value of the log-likelihood; dim(θ), the dimension of the
model, i.e., number of parameters; ∆AIC, the AIC values for each
model minus AICM(β,ν) = 3873.8 (the lowest AIC in the set); ∆BIC,
analogous to ∆AIC where the lowest BIC is BICM(β,ν) = 3926.1.
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Fig. 3. Kaplan-Meier survivor curves (step, solid) for lung cancer treatment groups (P = palliative, C
= chemotherapy, R = radiotherapy, CR = chemotherapy and radiotherapy, and S = surgery) with fitted
curves overlayed for M(β) (solid), M(β, α) (dashed), and M(β, ν) (dotted).
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Table 8. Selected lung cancer models.

Model(β) Model(β, α) Model(β, ν)

Scale Scale Shape Scale Shape

Intercept -1.40 (0.08) -1.13 (0.09) 0.12 (0.07) -1.04 (0.10) 0.21 (0.06)
Palliative 0.00 — 0.00 — 0.00 — 0.00 — 0.00 —
Surgery -2.18 (0.23) -4.77 (0.97) 1.06 (0.28) -3.96 (0.66) 0.55 (0.15)
Chemo -0.38 (0.17) -0.55 (0.33) 0.13 (0.18) -0.60 (0.36) 0.11 (0.13)
Radio -0.56 (0.09) -1.46 (0.21) 0.52 (0.11) -1.48 (0.19) 0.36 (0.06)
C+R -0.86 (0.20) -5.13 (0.96) 1.50 (0.22) -3.57 (0.60) 0.82 (0.13)

α̂0 0.15 (0.08) ∗ 0.27 (0.07)
ν̂0 0.46 (0.06) 0.35 (0.05) ∗

The ∗ symbol indicates that the shape parameter already appears as the intercept in the shape
regression component. Standard errors in brackets.

(ν = 0) and a Weibull (ν = 0.69), while M(β, ν) assumes a separate baseline distribution for
each treatment group. Interestingly, in all three models, all shape parameters (ν and α) are
positive which indicates that the hazards are increasing with time in each treatment group
(Table 1). While all three models are in agreement when it comes to the overall effectiveness
of each treatment as viewed in terms of the scale coefficients (albeit the chemotherapy effect is
only statistically significant inM(β)), the positive shape coefficients inM(β, α) suggest that the
effectiveness of each treatment reduces to some extent over time (see Section 3.2) – especially
in the case of the combined treatment of chemotherapy and radiotherapy.

The hazard ratios for the models in Table 8 are shown in Figure 4 where those of M(β, α)
andM(β, ν) are quite similar. They suggest that while the various treatments reduce the hazard
in the first few months, their effect is weakened over time and, perhaps, even become inferior to
palliative care in the longer term (however, note that very few individuals remain in the sample
beyond 15 months). Clearly SPR models, such as M(β), cannot account for covariate effects of
this sort.

It is worth highlighting the fact that the basic findings here are qualitatively similar to those
of Burke and MacKenzie (2017) who analysed this lung cancer dataset using Mκ=1(β, α), i.e.,
a Weibull MPR model. However, the framework of the current paper permits us to consider
a much wider range of model structures and distributions in which Mκ=1(β, α) appears as
a special case. In particular, M(β, α) from Table 8 yields a 95% confidence interval for κ,
[0.28, 0.57], which does not support the Weibull (κ = 1) baseline distribution. Furthermore,
AICMκ=1(β,α) − AICM(β,α) = 57.6, and we can confirm that the improvement in quality of
fit is most evident in the palliative care group (which Mκ=1(β, α) does not capture so well).
Thus, although the basic findings are unaltered in this particular application, the APGW MPR
approach yields a better solution in which uncertainty in selecting the baseline distribution is
accounted for. Of course, the APGW MPR model will readily adapt to other applications which
might differ significantly (both qualitatively and quantitatively) from Mκ=1(β, α).

5.2. Melanoma
The Eastern Cooperative Oncology Group (ECOG) trial “EST 1684” was a randomized con-
trolled trial to investigate the adjuvant (i.e., post-surgery) chemotherapy drug “IFNα-2b” in
treating melanoma (Kirkwood et al., 1996). The outcome variable was relapse-free survival, i.e.,
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(dashed), and M(β, ν) (dotted). Line of equality (grey) also shown.

Table 9. Summary of models fitted to melanoma data

Model M(β) M(τ) M(β, α) M(τ, α) M(β, ν) M(τ, ν)

dim(θ) 4 4 5 5 5 5

ℓ(θ̂) -368.8 -368.0 -367.7 -367.9 -368.2 -366.6

∆AIC 2.4 0.8 2.1 2.6 3.2 0.0

∆BIC 1.6 0.0 5.0 5.5 6.1 2.9

ℓ(θ̂), the value of the log-likelihood; dim(θ), the dimension of the
model, i.e., number of parameters; ∆AIC, the AIC values for each
model minus AICM(τ,ν) = 743.2 (the lowest AIC in the set); ∆BIC,
analogous to ∆AIC where the lowest BIC is BICM(τ) = 758.6.

time from randomization until the earlier of cancer relapse or death. Patients were recruited to
the study between 1984 and 1990, and the study ended in 1993. In total, 284 patients were re-
cruited of which 140 were assigned to the control group, and 144 were assigned to the treatment
group. This dataset is available in the R package smcure (Chao et al., 2012), and variations of
it have appeared in the cure model literature (Chen et al., 1999; Ibrahim et al., 2001).

As in Section 5.1, we fitted the following models: M(β), M(τ), M(β, α), M(τ, α), M(β, ν),
and M(τ, ν); the results are summarised in Table 9. In this case, the two-component models do
not provide a large improvement over the one-component models, and M(τ) has the lowest BIC
and the second-lowest AIC (M(τ, ν) has the lowest AIC); the AIC and BIC values for M(β)
are not much larger than for M(τ). The models M(β), M(τ), and M(τ, ν) are compared to the
Kaplan-Meier (KM) curves in Figure 5. The fitted M(β) and M(τ, ν) curves are similar, and
are close to the KM curves. The fitted M(τ) curves converge later in time, which, visually, look
worse compared to the KM curves. However, note that there is very little data in the right tail
so that converging curves are plausible when viewed with the level of uncertainty in the tail.

The parameter estimates for M(β), M(τ), and M(τ, ν) are shown in Table 10. Firstly
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Fig. 5. Kaplan-Meier survivor curves (step, solid) for melanoma control and treatment groups with fitted
curves overlayed for M(β) (solid), M(τ) (dashed), and M(τ, ν) (dotted).

note that the scale coefficient of treatment is negative which indicates that treatment improves
survival. Furthermore, forM(β) andM(τ), note that the parameter κ = exp(ν0)−1 is negative,
and, similarly, for M(τ, ν), the estimated κ is negative in each treatment group. Thus, all three
models point towards a cure proportion. The fact that the power shape parameter, γ = exp(α),
is greater than one for all three models means that the hazard function has an up-then-down
shape. This type of hazard function is commonly observed in the cure literature since the
population becomes increasingly composed of cured individuals (i.e., zero hazard) over time.

When −1 < κ < 0, the APGW-MPR cure proportion is given by
exp{λ(κ + 1)/κ} > 0, i.e., the cure proportion depends on κ and λ. Therefore, M(β) and
M(τ, ν) suggest that the cure proportion depends on treatment, while M(τ) suggests that it
does not. The estimated cure proportions, along with 95% confidence intervals, are shown in Ta-

Table 10. Selected melanoma models.

Model(β) Model(τ) Model(τ, ν)

Scale Scale Scale Shape

Intercept 0.60 (0.16) 0.65 (0.14) 0.67 (0.15) -0.45 (0.05)
Control 0.00 — 0.00 — 0.00 — 0.00 —

Treatment -0.36 (0.14) -0.52 (0.20) -0.53 (0.19) -0.14 (0.08)

α̂0 0.36 (0.07) 0.44 (0.08) 0.45 (0.08)
ν̂0 -0.73 (0.11) -0.51 (0.05) ∗

The ∗ symbol indicates that the shape parameter already appears as the intercept
in the shape regression component. Standard errors in brackets.
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Table 11. Estimated melanoma cure proportions with 95% confidence intervals

Model Treatment Control Difference

M(β) 0.30 (0.21,0.39) 0.18 (0.10,0.26) 0.12 (0.03,0.21)

M(τ) 0.22 (0.15,0.30) = Treatment —

M(τ, ν) 0.24 (0.18,0.39) 0.11 (0.09,0.27) 0.12 (-0.02,0.23)

pDifference = pTreatment − pcontrol.

ble 11. Had we fixed to a log-logistic baseline (i.e., κ = 0), the resulting Mκ=0(β) and Mκ=0(τ)
models (not shown) provide an extremely poor fit to the data. This is noteworthy as even the
heaviest-tail non-cure APGW model is not supported by the data (and, of course, a Weibull
baseline is worse still). The heaviness of tail here can only be supported within the APGW
family by a cure model.

5.3. Kidney Function
The Graduate Entry Medical School (GEMS), University of Limerick, Ireland is currently leading
a study which aims to develop Ireland’s first national surveillance system for tracking kidney
disease. The key measure of kidney function is the glomerular filtration rate (GFR) which is the
rate at which filtered blood flows through the kidneys (mL/min/1.73m2), and it is of interest
to explore the relationship between GFR and mortality. We consider a sample of 6157 males
aged 80+ who were recruited during the period 1st January 2007 to 31st December 2012, and
were followed up until the earlier of death (all causes) or 31st December 2013; during the follow
up period, 2692 deaths occurred. These individuals had their GFR values measured on entry
to the study, and were placed into one of five categories: normal kidney function to mild loss
of function (GFR ≥ 60), mild to moderate loss (45 ≤ GFR < 60), moderate to severe loss
(30 ≤ GFR < 45), severe loss (15 ≤ GFR < 30), and kidney failure (GFR < 15). (These are
standard categories used in the renal literature.)

Here we consider only M(β) (a proportional hazards model) and its extension to M(β, α).
Other MPR-APGW models do not fit the data significantly better as could be expected from
Sections 4, 5.1, and 5.2. These fitted models are summarised in Table 12. M(β) has a lower
AIC and BIC, and, moreover, the α coefficients are not statistically significant in M(β, α); thus,
the proportional hazards assumption is supported. Note that κ̂ = exp(ν̂0) − 1 = 1.07 is very
close to a Weibull baseline (and, indeed, the 95% confidence interval for κ includes unity). From
Figure 6 we see that M(β) provides a reasonable fit to the data, but it is certainly not perfect.
The hazard ratios (relative to the GFR ≥ 60 group) from this model are given, respectively, by
1.06, 1.29, 1.74, and 1.85; the increased risk of mortality with declining kidney function is clear.

Although the GFR categories above are standard in the renal literature, it is also of interest to
explore the functional relationship between the original continuous GFR variable and mortality.
Of course, the categorical model forms a discrete approximation to a continuous functional
effect, and, from Table 12 it is clear that the GFR effect is non-linear. We investigated the GFR
effect using a fractional polynomial approach (as this can be implemented straightforwardly
within our optimization scheme without additional complexity). In particular we consider here
a second-order fractional polynomial (higher orders did not improve AIC/BIC) which is defined
as

F2(x) =

{

β1x
(a1) + β2x

(a2), a1 6= a2,

β1x
(a1) + β2x

(a2) log x, a1 = a2,
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Table 12. Model(β) and Model(β, α) for categorical kidney function.

Model(β) Model(β, α)

Scale Scale Shape

Intercept -1.42 (0.06) -1.41 (0.06) -0.66 (0.04)
GFR ≥ 60 0.00 — 0.00 — 0.00 —

45 ≤ GFR < 60 0.06 (0.05) 0.05 (0.06) 0.01 (0.05)
30 ≤ GFR < 45 0.25 (0.05) 0.23 (0.06) 0.04 (0.05)
15 ≤ GFR < 30 0.55 (0.06) 0.56 (0.07) -0.01 (0.05)

GFR < 15 0.62 (0.12) 0.68 (0.12) -0.15 (0.10)

α̂0 -0.66 (0.04) ∗
ν̂0 0.73 (0.10) 0.73 (0.10)

ℓ(θ̂) -6744.3 -6742.4
AIC 13502.5 13506.7
BIC 13549.6 13580.7

The ∗ symbol indicates that the shape parameter already ap-
pears as the intercept in the shape regression component. Stan-
dard errors in brackets. ℓ(θ̂) is the value of the log-likelihood.
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Fig. 6. Kaplan-Meier survivor curves (step, solid) for GFR groups with fitted curves overlayed for M(β)
(solid). Note: the lower limit on the y-axis is 0.3 rather than zero.
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where x(a) = xa(log x)1(a=0) and 1(·) is an indicator function (Royston and Altman, 1994;
Royston and Sauerbrei, 2007; Sauerbrei et al., 2007; Strasak et al., 2011). Typically, a1 and
a2 are selected from the discrete set {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, and we follow this convention
here.

We consider the GFR effect only in the β regression component since, from Table 12, there
is no strong α effect. We refer to this fractional polynomial model as MF (β), The powers
selected (based on the likelihood function) were a1 = a2 = 2, i.e., the GFR effect is modelled as
β1GFR2 + β2GFR2 log GFR. The AIC and BIC values for this model are 13489.7 and 13523.4,
respectively, both lower than those of the categorical effects model, M(β) (see Table 12). For
comparison, we also fitted a model in which GFR enters linearly. This model, which we denote
by ML(β), has much larger AIC (13514.9) and BIC (13541.8) values respectively, i.e., the linear
effect is not supported (as expected from M(β)).

The hazard ratios for MF (β) and ML(β) are shown in Figure 7. The reference GFR value
used is 76 as this is the mean value in the GFR ≥ 60 group; thus, the hazard ratios are broadly
comparable to those of the categorical M(β) which is also shown in Figure 7. We see that
the hazard increases dramatically once the GFR value falls below 60. For comparison, we also
fitted a Cox model where the GFR effect was modelled using penalized B-spines (Eilers and
Marx, 1996); this can be implemented using the pspline function in the survival package in R

(Therneau and Lumley, 2019). The spline effect is quite similar to the fractional polynomial, but
is just outside the confidence interval for the largest GFR values. Note that GAMLSS includes
fractional polynomials, penalized splines and various other additive terms (see Stasinopoulos
and Rigby (2007)).

5.4. Alternative Models
In this section we summarise the results of fitting some alternative models to the three datasets
above, namely, (i) GAMLSS models of Rigby and Stasinopoulos (2005) as implemented in the
gamlss.cens package in R (Stasinopoulos et al., 2018a), and (ii) penalized generalized survival
(GS) models of Liu et al. (2018) implemented in the rstpm2 package in R (Clements and Liu,
2019). Some selected “better-fiting” models appear in Table 13 with further details (including
comparisons with Kaplan-Meier curves) deferred to the Supplementary Material.

Having fitted a wide variety of GAMLSS models to the three datasets, none improved sig-
nificantly on the APGW-MPR models (see Supplementary Material). We should highlight that
this is quite a large data-fitting exercise, and not one to be recommended as a general technique.
This is not a criticism of GAMLSS, which is an impressive algorithmic framework offering many
modelling choices, and note that the GAMLSS team do not necessarily recommend carrying out
such an exercise. However, it is important to consider, among many potential modelling choices,
which are likely to be most useful. We recommend the use of more “general purpose” distri-
butions, and, in particular, advocate the APGW, along with knowledge of where to best place
covariates, e.g., in Section 3, we suggest the use of a (horizontal or vertical) scale parameter,
and a (power) shape parameter. In terms of model fit, only the generalized gamma emerges as a
general competitor to the APGW across all three datasets, but this is expected based on Section
2.2 where we highlight some relative advantages of the APGW. Note from Table 13 that fitting
the APGW is much less computationally intensive than the generalized gamma (likely due to
the non-analytic form of survivor function in the latter), and, although the AIC/BIC values are
slightly higher for the APGW models in the examples considered here, the model fit is similar
(see Supplementary Material).

The GS models do not improve on the APGW model in the case of the lung cancer or
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Fig. 7. Hazard ratios (relative to GFR = 76) for MF (β) with 95% confidence intervals (solid). Hazard
ratios without confidence intervals are also shown for a Cox model with a penalized B-spline effect
(dotted), ML(β) (dash), and M(β) (points) where the points are located on the x-axis according to the
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Table 13. Summary of models

Lung Cancer Melanoma Kidney
(n = 855) (n = 284) (n = 6157)

Model
APGW GAMLSS GS APGW GAMLSS GS APGW GAMLSS GS

M(β, α) GG(2) PGST M(β) GG(1) PGS M(β) GG(1) PGS

dim(θ) 11 11 16.6 4 4 8.1 7 7 13.5

ℓ(θ̂) -1927.0 -1924.9 -1923.6 -368.8 -365.9 -365.9 -6744.3 -6742.9 -6650.6

AIC 3876.0 3871.8 3880.3 745.6 739.9 748.0 13502.5 13499.8 13328.2

BIC 3928.2 3924.0 3959.1 760.2 754.5 777.7 13549.6 13546.9 13377.4

Time 0.57 1.92 501.46 0.06 1.03 0.32 3.00 170.00 30.46

ℓ(θ̂), the value of the log-likelihood; dim(θ), the dimension of the model, i.e., number of parameters
(or effective number of parameters for the GS models); GG(1) and GG(2) are GAMLSS generalized
gamma models where the first has covariate-dependent µ parameter and the second has covariate-
dependent µ and σ parameters (and, here, “µ” and “σ” is GAMLSS notation); PGS, penalized
generalized survival model; PGST, penalized generalized survival model with time-varying coeffi-
cients. Time, average time in seconds for estimation procedure to converge using an Intel R© CoreTM

i5-6200U 2.3GHz processor. The APGW models were fitted to the data using the nlm function in
R where the analytic score functions were provided (see Supplementary Material for R code).
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melanoma datasets, but the improvement is significant in the case of the kidney data where the
APGW model does not fit perfectly. Interestingly, in this latter case, the hazard ratios (not
shown) are almost identical to those of the APGW model. Of course, this spline-based approach
can adapt to any baseline in an essentially “non-parametric” way, but, clearly, this is not always
required; the APGWmodel is a flexible fully parametric model, covering many important hazard
shapes with minimal complexity. Note, in particular, from Table 13 that the penalized splines
approach was quite computationally intensive in the case of the lung cancer data. This is due to
the fact that time-varying coefficients were required necessitating two roughness penalties (one
for the baseline distribution, and one for the time-varying effect).

6. Discussion

Our proposed APGW-MPR modelling framework is highly flexible and can adapt readily to a
wide variety of applications in survival analysis and reliability. In particular, this framework
includes the practically important AFT and PH models, and generalises them through shape
regression components. Furthermore, the APGW baseline model covers the primary shapes of
hazard function (constant, increasing, decreasing, up-then-down, down-then-up) within some of
the most popular survival distributions (log-logistic, Burr type XII, Weibull, Gompertz) using
only two shape parameters.

In practice, the full four-component APGW-MPR model is likely to be more flexible than
is required for most purposes. In fact, we suggest that covariates should appear via just one
scale-type component (τ or β), along with the α shape component which permits survivor
functions with differing shapes and indicates departures from more basic AFT or PH effects,
while ν = log(κ + 1) is a covariate-independent parameter which allows us to choose among
distributions within one unified framework. We have found that the scale-type parameters
(τ and β) are highly intertwined in the sense that they cannot be estimated simultaneously
within the same model reliably, and are highly correlated. This is true across the full range of
distributions (varying ν), going well beyond the well-known Weibull case in which the two scale
components are equivalent. The implication of this is that, in terms of performance gain, the
movement from AFT to PH modelling (or vice versa) might not be very large, whereas we have
found that modelling the shape is a more fruitful alteration to the regression specification.

Finally, the perspective of this paper has been to investigate survival modelling generally, to
cover some of the most popular models, and to discover some of the better modelling choices that
can be made within this framework. Although we have developed these ideas in a fully parametric
context, non-parametric equivalents, while possible, are beyond the scope of the present paper
(but are investigated in a separate line of work (Burke et al., 2019)). However, it is worth
highlighting that perhaps too much emphasis is placed on non-/semi-parametric approaches in
survival analysis whereby undue weight is attached to the flexibility of the baseline distribution
in comparison to the flexibility of its regression structure. Our general approach to survival
modelling provides a framework within which one can consider the most important components
of survival modelling (including which might potentially be modelled non-parametrically), and
we believe that this insight can lead to better modelling practice in general.
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