
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards an Intelligent Debugging System for Pascal
Programs: On the Theory and Algorithms of Plan
Recognition in Rich’s Plan Calculus
Thesis
How to cite:

Lutz, Rudi (1993). Towards an Intelligent Debugging System for Pascal Programs: On the Theory and Algorithms of
Plan Recognition in Rich’s Plan Calculus. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1992 Rudi Lutz

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

W 114645
U«R65TfllCTt3

Towards An Intelligent Debugging

System For Pascal Programs:

On The Theory And Algorithm s

Of Plan Recognition

In Rich’s Plan Calculus

Rudi Lutz B.Sc. M.Sc.

Thesis subm itted in partial fulfillment of requirem ents for Ph.D. in

Artificial Intelligence, April 1992.

(Revised February 1993)

The Open University
Milton Keynes MK7 6AA

UJK.

Üaîfe b | su'onwisiDPi : 2 5 rA 1 4 ^ 2

©Sj avioïà V\arcV\

ProQuest Number: 27701236

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27701236

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

This thesis presents work in progress on building an intelligent

general purpose, domain-free debugging system for Pascal program s.

This system (IDS) is based on Rich’s surface p lan /p lan calculus graph

form alism s, and th is thesis develops theory and algorithm s for

performing program understanding within th is framework.

This thesis is in three parts, the first p a rt describes why an

ability to do both plan recognition and general purpose reasoning is

essential for debugging programs.

The second part of th is thesis describes the plan calculus and

show s how it offers the ability to com bine bo th general purpose

reasoning, and (graph-based) plan recognition. It then goes on to

p re se n t a new polynom ial tim e algorithm (a genera lisa tion of

traditional chart parsing for string grammars) for doing bottom -up, or

top-down, analysis of surface plans. This algorithm is presented in the

fram ew ork of restric ted s tru c tu re sh a rin g flow graph g ram m ars

developed for th is purpose. To justify the use of such gram m ars th is

p a rt of the thesis develops the theoiy of determ inistic operations in

the plan calculus, and also develops the theory of generalised control

flow environm ents to ju stify the way control flow inform ation is

handled. ,

The final p a rt gives an overview of IDS, and modifies the above

algorithm to cope with various parts of the plan calculus th a t do not

exactly fit into the framework we have developed. Thus th is thesis

gives a complete account of how to perform plan recognition in Rich’s

frsimework. This p a rt of the thesis also describes the tran sla tio n

process from Pascal to surface plans, and p resen ts a technique for

transla ting plans expressed in Rich’s notation, into suitable rules for

the parser to use. Finally it presents some preliminary work on exactly

how a debugging system using these techn iques m ight go ab o u t

locating and fixing bugs in programs.

Table of Contents

PART 1. BACKGROUND ... 1

Chapter 1. The Nature of Bugs and of Debugging, and

the Need for Program U nderstanding................................ 2

1.1 Introduction and Overview of Thesis...............2

1.2 A categorisation of bugs... 7

1.3 Sources of Knowledge for Program

Understanding and Debuggng..16

Chapter 2. Other Work on Program U nderstanding

and Debuggng.. 23
2.1 MYCROFT... 26

2.2 Ruth’s W ork..26

2.3 LAURA........................,......... ;................ 29

2.4 PROUST.. 29

2.5 PUDSY..32

2.6 Eisenstadt et al.’s SOLO Debugger........................33A
2.7 rrSY ... 34

2.8 AURAC...34

2.9 TALUS... 35

2.10 PHAENARETE..36

2.11 Elsom-Cook’s Lisp Debugger............................ 38

2.12 The Programmer’s Apprentice P roject 39

2.13 SNIFFER.. 40

2.14 Shapiro’s Prolog Debugger........................... 40

2.15 Summary and Conclusions.....................................42

PART 2. THEORY AND ALGORITHMS 44

Chapter 3. The Plan Calculus.. 45

3.1 An Informal A ccount..46

3.1.1 Surface P lans...46

3.1.2 The Plan Library......................................51

3.2 Sem antics... 62

3.2.1 The Compact Notation........................... 62

3.2.1.1 The Basic Notation....................... 62

3.2.1.2 Inheriting Constraints Via

Specialisation and Extension L inks...65

3.2.1.3 Overlays and Data Plans............. 69

3.2.2 The Underlying Logic.................................. 74

3.2.3 Semantic Domains and Behaviour

Functions...................... ;.................................... 75

3.2.4 Axiomatising Operations, Plans, and

Overlays..89

3.2.4.1 Data P lans..................................89

3.2.4 2 Data Overlays..............................90

3 2.4.3 Basic Operations, Tests, and

Jo in s .. 91

3.2.4.4 Temporal P lan s 93

3.2.4.5 Temporal Overlays....................94

3.3 Plan Recognition and Inference in the Plan

Calculus...95

Chapter 4. Elxtensions and Modifications of the

Theoiy..:.. 112

4.1 Control-Flow Environm ents 112

4.2 Generalised Control-Flow Environm ents 116

4 3 Plan Conditions and Control-Flow

Environments for Plans (Simple P lans)................. 119

4.4 Generalised Cflows !..129

4.5 More Complex Plans and their Plan

Conditions...132

4.5 The Collapsing Operation.....................................135

4.6 Generalised Jo in s ...144

4.7 Complex Elxamples... 148

Chapter 5. Chart Parsing of Flowgraphs 165

5.1 Introduction and Motivation165

5.2 Notation and Definitions... 166

5.3 Chart Parsing of Context-free Flowgraphs 171

5.4 Complexity Analysis..178

5.4.1A Pofynomial Bound..................................... 178

5.4.2 Finding All P arses............................ 184

5.5 Chart Parsing of Structure-Sharing

Flowgraphs. .. 184

5.6 D^enerate Flowgraphs...189

5.6.1 Anomalous Ebcample 1............ 189

5.6.2 Anomalous Example 2 191

5.7 Discussion. ...193

5.8 Applications..................'................ 194

PART 3. IDS 197

Chapter 6. An Overview of IDS, and The Translation

M odule.. 198

6.1 Overall S tructure of IDS... 198

6.2 The T ranslator..200

6.2 .1 R ecursive D escen t D ata Flow

Analysis.. 200

6.2.1.1 Declarations......................... 204

6.2.1.2 Translating Expressions and

Assignment S ta tem ents........................2 0 5

6.2.1.3 Translating Conditionsd '
S tatem en ts... 210

6.2.1.4 Translating Loops..................... 216

6.2.1.5 Translating Procedures and

Procedure C alls....................................... 220

6.2.2 Mutable Functions and Side Effects...223

6.2.2.1 Dealing with Records andA
P oin ters............. ...2 2 5

6.2.2 2 Dealing with Arrays....................227

6.3 Limitations of the Recursive Descent

Approach............................:..235

6.4 General Limitations ... 235

Chapter 7. The Plan Recognition System And The

Plan Library..239

7.1 Dealing with Overlays and Data A bstraction.... 239

7.2 Problems with Control Flow. 245

7.3 Tests and Joins............................ 246

7.4 Recursive Roles in Loops..................................... 256

7 5 Breaking Programs up into Smaller

S egm ents....................... 257

7.6 Program Transform ations.......................... 259

7.7 Related Program understanding Work.................264

7.8 The Plan Library... 270

7.8.1 Translating Plans into Flowgraph

Rules..273

7.8.1.1 Translating Temporal Plans

into Rule Form.. 276

7.8.1.2 Translating Temporal

Overlays into Rule Form............................296

7.8.2 Additional Plans Needed to Cope

with User Defined Data Types.............................300

Chapter 8. Program Understanding in P ractice.............. 314

8.1 Understanding Programs using Plan

Diagram s... 316

Chapter 9. Towards a Debugging System................................356

9.1 Debugging Programs Using Plan diagram s 356

9.2 Duplicating PROUST...365
»

Chapter 10. Conclusions and Future Work.........................370

10.1 W hat has been achieved?...................................370

10.2 O utstanding Problems.. 372

10.3 Future Research..375

10.4 Conclusions... 378

R eferences................................. 379

Table of Figures

Figure 1.1 A Taxonomy of Errors 12

Figure 3.1 A Simple Surface Plem 47

Figure 3.2 Surface Plan For A Simple Loop 50

Figure 3.3 Trailing Generation and Search 56

Figure 3.4 Trailing-Generation+Search->Intemal-Thread-Find 59

Figure 3.5 Partial Trailing Generation and Search 66

Figure 3.6 Surface Plan For Add 4-Numbs Etc. E^xample 97

Figure 3.7 Plans and Overlays For Add-4-Numbs Etc. Eixample 98

Figure 4.1 Surface Plan Annotated With Controlling Conditions 118

Figure 4.2 Rule With Variables Denoting Controlling Conditions 122

Figure 4.3 Abs Rule 125

Figure 4.4 Abs Surface Plan 125

Figure 4.5 Abs Surface Plan With Neg Before Conditional 125

Figure 4.6 Multiple Cond Rule 133

Figure 4.7 Nested Sub-Plans 133
»

Figure 4.8 S tructure Sharing ' 136

Figure 4.9 Example Showing Need For Collapsing 138

Figure 4.10 Set-Find Example 138

Figure 4.11 Two Instances of Op Operation 141

Figure 4.12 Cascades of Joins 141

Figure 4.13 Jo in with Identical Inputs 147

Figure 4.14 Jo in Collapsing 147

Figure 4.15 F, G, Z Rules 149

Figure 4.16 Unoptimised Graph 150

Figure 4.17 Optimised Graph 152

Figure 4.18 F Found in Optimised Graph 153

Figure 4,19 G Found in Optimised Graph 155

Figure 4.20 Trying to Find a Z 156

Figure 4.21 Test Conditions Moved As Global As Possible 161

Figure 4.22 Collapsed 4.21 162

Figure 5.1 Simple Flowgraph And Rules 167

Figure 5.2 The Joining Operation 174

Figure 5.3 S tructure Sharing Without No Sharing Check 176

Figure 5.4 S tructure Sharing and Collapsing Phenomena 186

' Figure 5.5 Anomalous Example 1 190

Figure 5.6 Explanation of Anomalous Example 1 190

Figure 5.7 Anomalous Example 2 192

Figure 5.8 Explanation of Anomalous E^xample 2 192

Figure 5.9 A 3-Bit Addition Circuit 195

Figure 5.10 A Digital Circuit Grammar 196

Figure 6.1 System Overview 199

Figure 6.2 G raph For y=x+(y+z)*3 209

Figure 6.3 Graph For Conditional 215

Figure 6.4 Graph For Loop 221

Figure 6.5 Graph For x^.next^.numb=3 ̂ 226

Figure 6.6 Graph For Arrays (Pure Mutable Sequence Approach) 229

Figure 6.7 Graph For Arrays(Pure Arrayaccess Approach) 231

Figure 6.8 Graph For Arrays (Mixed Approach) 233

Figure 6.9 Collapsed 6.8 234

Figure 6.10 Graph For a(6]=z; y:=a[3*i-j] 237

Figure 6.11 Graph For a[6)=z; y:=a(3*i-j] when 3*i-j=6 237

Figure 7.1 Bump+Update 240

Figure 7.2 Bump+Update->Push 240

Figure 7.3 Use of Data Plan and Data Overlay Databases 243

Figure 7.4 Iterative Termination 247

Figure 7.5 Iterative Accumulation 249

Figure 7.6 New Jo ins and Tie-points For Data Plans and Overlays 251

Figure 7.7 New Jo ins for Internal Tie-points of Conditionals 253

Figure 7.8 Matching Through Joins 254

Figure 7.9 Controlling Conditions After Matching Through Jo ins 255

Figure 7.10 Some Simple Program Transformations 260

Figure 7.11 Surface Plan Containing Iterative Flag Test 262

Figure 7.12 Fig. 7.11 After Iterative Flag Test Removal Applied 263

Figure 7.13 Deterministic Node Choice in Brotsky’s Algorithm 267

Figure 7.14 “Com er Turning” To Find More Near-misses 269

Figure 7.15 Using Fan-In For Joins, and Straight-Through Arcs 271

Figure 7.16 Rules For Pascal Tests 272

Figure 7.17 A Typical Rule Right-Hand Side 274

Figure 7.18 Constraint Hierarchy 286

Figure 7.19 Substitution Hierarchy 287

Figure 7.20 Internal Labelled Thread Add 294

Figure 7.21 Array of Sets (Implemented By Linked Records) 299

Figure 7.22 Surface Plan For Code Which Adds Element Into List

a[j] 301

Figure 7.23 Spliceafter And Spliceafter->Intemal-Thread-Add 303

Figure 7.24 After Recognition of Intemal-Thread-Add 304

Figure 7.25 After Recognition of Intemal-Labelled-Thread-Add 306

Figure 7.26 After Recognition of Set-Add 307

Figure 7.27 After @Function-To-Iterator Recognised 310

Figure 7.28 After @Function-To-Set Recognised 311

Figure 7.29 After #Newarg On Function-To-Set Recognised 312

Jhlgure 8.1 Maxmin Surface Plan (Loop Only) 315

Figure 8.2 After Not Removal Etc. 317

Figure 8.3 Binrel+Join->@Choice 318

Figure 8,4 After Greater And Lesser Found 319

Figure 8.5 Showing Iterative Accumulation 321

Figure 8.6 Showing Iterative Readln 322

Figure 8.7 Iterative-Readln->Readall And Iterative-Accumulation-

>Aggregate(Max) 323

Figure 8.8 Final Analysis Of Maxmin Loop 324

Figure 8.9 Findplace Surface Plan 327

Figure 8.10 After Not Removal 329

Figure 8.11 After N-Join-O utput Joins Created 330

Figure 8.12 After Iterative Flag Test Removal 331

Figure 8.13 After Composite Object Grouping 334

Figure 8.14 Terminated-Iterative-Generation+Search 335

Figure 8.15 After Recognition Of Terminated-Iterative-

G eneration+Search 336

Figure 8.16 ©Successor+Terminated-Iterative-

G eneration+Search 338

Figure 8.17 After Recognition of Terminated-Trailing-

G eneration+Search 339

Figure 8.18 After Recognition of Intemal-Thread-Find 340

Figure 8.19 After Recognition of Intemal-Labelled-Thread-Find 341
*

Figure 8.20 Addtolist Surface Plan 343

Figure 8.21 After Recognition Of Spliceafter 344

Figure 8.22 After Recognition Of Intemal-Labelled-Thread-Add

And New-Labelled-Root 345

Figure 8.23 Main Program Surface Plan 346

Figure 8.24 Findplace And Addtolist Part Of Surface Plan 348

Figure 8.25 Ordered-Labelled-Thread-Insert Plan 349

Figure 8.26 Collapsed Version Ordered-Labelled-Thread-Insert 350

Figure 8.27 Findplace+Addtolist Showing Ordered-Labelled-

Thread-Insert Plan 351

Figure 8.28 Main Program After Recognition Of Ordered-

Labelled-Thread Insert 353

Figure 8.29 Final Analysis 354

Figure 9.1 Buggy Program’s Cyclic List Behaviour 357

Figure 9.2 Partial Spliceafter Plan 359

Figure 9.3 Partially Understood Addtolist 360

Figure 9.4 Findplace And Addtolist Part Of Surface Plan 362

Figure 9.5 Buggy Rainfall Program Surface Plan 367

* Acknovdedgements

This thesis is dedicated to my daughter R uth, w ithout whom th is

thesis inight have been finished a long time ago, b u t who h as kept me

in touch with w hat is im portant in life.

I would like to thank:

Marc E isenstadt and Steve Isard for being willing to help and advise.

Caroline for putting up with me through the bad parts of writing this.

Liz for helping with Ruth when it was necessary.

PART 1
BACKGROUND

Chapter 1.

The Nature o f Bogs and of D ebuggin g, and th e Need for
Program Understanding,

1.1 Introduction and Overview of Thesis.

The research described here is aimed a t creating an intelligent

system capable of aiding program m ers in the ta sk of debugging

program s. As com puter hardw are becom es cheaper the cost of

producing and m aintaining software is becoming the major factor in

m ost applications. In addition, decreasing costs and increasing power

of the hardw are m eans th a t projects are becoming increasingly more

am bitious and complex, and hence more error-prone and indeed there

appears to be a “complexity barrier” [Winograd 1973] past which it is

very difficult if no t im possible to go. It is therefore becom ing

increasing ly n ecessa ry to use the com puter itse lf to aid the

program mer in producing correct software. One approach to th is is the

attem pt to build ftdly autom ated program synthesis system s [Barstow

1979, M anna and W aldinger 1979]. These would only require the

program m er to provide a very high-level specification of w hat the

program is to do and the syn thesis system would autom atically

generate a correct program to carry out the program m er's intentions.

Although m uch interesting work has been done on autom atic program

synthesis it seem s unlikely th a t really usab le system s will become

available in the near future.

An approach m uch more likely to lead to a working system in the

foreseeable future is th a t of the "programmer's apprentice ' [Hewitt and

Smith 1975, Rich and Schrobe 1978, Rich 1981, W aters 1982]. Such a

system has a large am ount of knowledge abou t program m ing. For

instance it knows the various standcird ways of sorting a list num bers. It

3

also has knowledge about common data structures and implementation

techniques etc. The system can then use th is knowledge to relieve the

program m er of m any of the details associated w ith im plem enting

various algorithm s etc. However it would expect the program m er to

supply the high-level algorithm to be used. It could also check code

given by the programmer for consistency with w hat it knows.

An intelligent debugging system is more m odest in its aim s th an

a full program m er's apprentice which also aims to help program m ers

w ith the coding process itself. However it is clear th a t a debugging

system needs to be able to understand and (possibly) suggest edits to a

program in exactly the same way eis a programmer's apprentice system.

F u rtherm ore , su ch a debugging system would be an essen tia l

com ponent of a full program m er’s apprentice system, and one can

therefore quite easily imagine enlarging such a debugging system to a

full program m er's apprentice. Partly because of th is, build ing an

intelligent debugging system is clearly a very large and difficult

undertaking , and accordingly is as yet unfinished. This thesis will

describe w ork cu rren tly in progress on build ing an in te lligen t

debugging system (IDS) for Pascal progreims. This work is heavily based

on R ich ’s [1981] p lan ca lcu lu s w hich provides th e form al

underp inn ings for the Program m er’s Apprentice project [Rich and

Schrobe 1978]]. Despite its power and expressivity however, full use of

the plan calculus has been frustrated by lack of a proper algorithm for

perform ing plan recognition, although Wills [1986, 1990] h as done

some work on this. Most of th is thesis will be devoted to giving an

acco u n t of, and ju stifica tion for, a new algorithm (based on a

generalisation of ch a rt parsing applicable to graph-like s tru c tu re s

known as flowgraphs) for doing this. The later part of the thesis will

m ake some prelim inary suggestions on how the information provided

by the plan recognition process can be lised to locate (and sometimes

4

repair) bugs in programs. Much of the work described here has been

reported elsewhere [Lutz 1984a, 1984b, 1986, 1989a, 1989b, 1991],

b u t th is account will provide more details, and place it all in context.

The long term aim of this research [Lutz 1984a] is to build a system

capable of helping the program m er to locate and fix erro rs in

program s. IDS will ultimately attem pt to integrate a whole variety of

m ethods and sources of inform ation (described below) to help it in

debugging, ra th er in the way an expert program m er does. However,

the work described here is an initial attem pt tow ards a debugging

system using only the basic techniques of p lan m atching combined

with a theorem prover [Lutz 1984b] to arrive a t a high-level description

of w hat the program (or part of it) does and how it does it. So far only

the plan m atching part of this work is complete, b u t detailed scenarios

based on th is p lan m atching will be presented to show how logical

inconsistencies (a notion made more precise below) can be found in

programs, and how suggestions can be made as to how to correct the

code, based on near-m isses to known plans. These near-m isses are

quite explicitly found by our p lan recognition algorithm . At the

m om ent no a ttem pt has been made to use inform ation im plicit in

variable nam es and so on. Despite th is it will be argued th a t IDS’s

approach is powerful enough to duplicate m any of the capabilities of

o ther debugging system s [e.g. Lukey 1978, Soloway, Ehrlich, Bonar,

and G reenspan 1982, Jo h n so n 1986] for syn tactically correct

program s, except for where these system s m ake use of problem

specific knowledge. More importantly the power and generality of the

representation m ethods used by IDS potentially enable it to deal with

p rogram s involving such th ings as recursive and non-recursive

procedure calls, value and reference param eter passing, records and

pointers, as well as the full range of data types available in Pascal. Thus

IDS can deal w ith program s involving dynam ic d a ta s tru c tu re s

5

im plem ented u sin g po in ters and records, un like th e system s

m entioned above. IDS a ttem p ts where possib le to be language

independen t so as to facilitate the application of any techniques

developed to o ther programming languages. In doing th is it draws

heavily on the work of Rich, Schrobe, and W aters [Rich 1981, Rich and

Schrobe 1978, W aters 1978, 1979, 1982] whose developm ent of the

Program m er's Apprentice project a t MIT represen ts a m ajor a ttem pt

a t representing the knowledge underlying programming. To a lesser

extent it draws on the work of Laubsch and E isenstadt [1980] whose

w ork on an intelligent debugger for SOLO program s b ea rs some

similarities to that described here. Their w ork has also been

significantly influenced by th a t of Rich, Schrobe, and W aters.

A part from the practical u ses such a system w ould have,

debugging is also an interesting area in its own right for Artificial

Intelligence research. Programs are am ongst the m ost complex objects

available for study, and raise all kinds of interesting questions about the

in terp lay between knowledge representation add general reasoning

abilities. It is the contention of this thesis th a t in order to successfully

reason about program s in order to debug them we need the ability to

move sm oothly from making use of “compiled” knowledge, expressed

a s ru le s cap tu rin g an experienced p rogram m er’s know ledge of

program m ing techniques and algorithms, to general reasoning from

first principles to cope with novel or unexpected features of programs,

and we hope to show th a t the plan calculus as developed by Rich

[1981] provides a suitable framework for doing this.

The organisation of the thesis is as follows. The rest of th is

chap ter will d iscuss the natu re of bugs, and of debugging, and will

p resen t the case th a t the ability to recognise occurrences of standard

p lans (programming clichés) in a program is a prerequisite for the

6

ability to find and repair bugs in it. It will also be argued th a t the ability

to reason in a general way about programming constructs is also vital.

C hapter 2 will p resent a survey of other program understand ing and

debugging system s. C hapter 3 will give an account of Rich’s [1981]

work which provides the theoretical underpinnings enabling both plan

recognition and general reasoning to be com bined. C hapter 4 will

extend the theory of the plan calculus in order to justify m any of the

operations performed by IDS’s plan recognition system. C hapter 5 will

give an account of the underlying algorithm used for plan recognition

by IDS. It in troduces the notions of context-free flowgraph gram m ars

(based on Feder’s [1971] plex grammars), and context-free structu re-

sharing flowgraph gram m ars, which are no t only capable of fairly

d irec tly expressing m any of R ich’s ideas, b u t also could find

applicability in other domains (e.g. electronic circuit analysis). It then

goes on to describe a new (polynomial time) algorithm for recognising

diagram s generated by such grammars. Chapter 6 will give an overview

of IDS and describe the translation process from Pascal program s to

R ich’s surface p lan formalism. C hapter 7 will describe the p lan

recognition module itself, including modifications needed in order to

enable the algorithm described in Chapter 5 to cope with those parts

of R ich’s form alism which do no t exactly fit the pu re flowgraph

form alism s introduced there. It will also describe the conversion of

p lans as described in Chapter 3 into flowgraph gram m ar rules suitable

for u se by the parser. C hapter 8 will give an accoun t of IDS’s

understand ing abilities on various example programs, and C hapter 9

will d iscuss how its approach to debugging using this m echanism can

be used to find and repair simple bugs in programs. Finally Chapter 10

will give our conclusions, and summ arise future work th a t still needs to

be done.

1.2 A categorisation of bugs

It is possible to distinguish several different types of error th a t

can occur in program s, and several au th o rs have a ttem p ted to

categorise these. As these authors all either use different terminology,

or use the same terminology to mean different things, and because the

m otivations behind the different taxonomies are often different from

th a t of th is project, a new taxonomy will be presented here. Before

doing this, however, a brief description will be given of some of these

o ther taxonom ies so th a t the sim ilarities and differences betw een

them wUl become more apparent.

The m ain d istinction underlying the different taxonom ies is

between those motivated by an in terest in the psychological processes

which cause programmers to make errors, and those motivated by an

in terest in autom atically identifying and repairing the errors, although

there is of course some overlap between these. The work of Youngs

[1974], an d S chiie iderm an [1980] ty p ifie s* th e psychologically

m otivated work, while th a t of G oldstein [1974] and M illar and

Goldstein [1977] typifies the second type of work. The work of the

Cognition and Programming Project a t Yale [Johnson, Soloway, Cutler

and D raper 1983, Spohrer, Pope, Lipman, Sack, Freim an, Littm an,

Johnson, and Soloway 1985] falls into both camps to some extent but,

as their work is primarily aimed at novice programmers £tnd deals with

the m isconceptions novices have, does not fully address the kinds of

errors more expert programmers make.

Youngs [1974] classifies program m ing errors into syntactic,

semantic, logical, and clerical errors. Syntactic errors are errors in the

use of the syntax of the programming language and are easily detected

by compilers. Sem antic errors occur when a program requires the

8

com puter to do something either impossible or contradictory e.g. read

from a closed file. Normally such errors would give rise to run-tim e

error m essages. Logical errors occur w hen the program is a valid

program in th a t it will run to completion w ithout any obvious sign of

there having been an error (such as an error message) b u t the program

does no t in fact do w hat it is supposed to' Clerical errors are due to

such things as mistyping, or using a text editor carelessly. Clearly, a

study of clerical errors is of great in terest to someone designing text

editors, b u t is of less in terest to an automatic debugging assistan t. The

distinction between sem antic and logical errors could form the basis

for a debugging system (e.g. an expert system using run-tim e error

m essage information) bu t, as will be seen la ter, the definition of

sem antic error can be widened to encompass m any of the bugs Youngs

would classify as logical, leading to a clearer relationship between the

k inds of bug in a program, and the techniques needed in order to

debug it.

Schneiderm an 's [1980] taxonomy depends m uch more on a

psychological model of the program m ing process. In h is model

program m ers begin by forming a m ental model of the problem and its

solution (the internal semantics), and then bring general programming

knowledge, and knowledge of the specific program m ing language

being used, to convert th is internal description into an actual program

to solve the problem . Schneiderm an also m akes the d istinction

between syntactic and semantic errors, and also assum es th a t syntactic

errors are easily caught by compilers. In his taxonomy sem antic errors

include all other kinds of bug th a t can occur in program s, and he

subdiv ides these into two fu rther categories. The firs t of these

corresponds to errors in the conversion process from the in ternal

sem antics to the ac tual program, and the second to an incorrect

conversion from the problem to the internal sem antics. Schneiderm an

9

points out th a t the first type of error is m uch more easily debugged

th a n the second, which may involve a com plete redesign of the

solution, or of the programming strategy.

G oldstein 's [1974] bug taxonom y is based on a theory of

program m ing as a planning activity. This views program m ing as a

process of finding a plan (a sequence of steps) which achieves some

goal. Each step in the program may in tu rn have prerequisites th a t

need to be true before the step can be carried out, th u s giving rise to

subgoals th a t need to be planned for. Under this view there are several

kinds of bugs th a t can occur. The first of these is w hat Goldstein term s

a linear m ain-step failure, and occurs when a sub-plan in the program

fails to achieve the goals it is supposed to, independently of the other

steps in the program. This kind of bug can be fixed by repairing th is

sub-p lan in isolation. The second type of bug is w hat he term s a

preparation error. This corresponds to the situation when the sub-plan

concerned does solve its goals under certain assum ptions abou t the

program sta te on entry to the Sub-plan, b u t thes^ assum ptions are not

necessarily always true. To fix this kind of bug it is necessary to insert a

new step which sets up the conditions assum ed by the faulty sub-plan.

The th ird kind of bug is w hat Goldstein term s a non-linear m ain step

failure. This type of bug arises from non-linear in teraction between

sub-plans, and in general is very hard to fix. Sometimes th is kind of

bug can be fixed by suitably interleaving the steps of the sub-plans, or

by adding extra steps to one or both of the sub-plans which are not

strictly necessary to achieve the goals the sub-p lan is designed to

achieve, b u t which are there to eliminate the unw anted interaction. In

addition Goldstein distinguishes between w hat he term s theory bugs,

and w hat he term s procedure bugs. Theory bugs correspond to the

case where the initial goals as derived from the problem statem ent are

in error, often because of m isunderstand ings abou t the problem

10

domain. Procedure bugs are bugs in the implementation of a program

to solve the problem. All the above types of bugs are special cases of

procedure bugs. To fix theoiy bugs an automatic system would also have

to have knowledge of the domain, not ju s t general program m ing

knowledge.

Miller and Goldstein's [1977] taxonomy h as m uch in common

with th a t ju s t described. They also view the programming process as a

planning activity. However, they provide a "planning gram m ar " which

specifies how p lans may be combined to provide higher level plans.

Given th e ir p lann ing gram m ar, they th en d is tin g u ish betw een

syntactic, semantic, and pragmatic bugs. Miller and Goldstein use the

term syntactic' to describe the case where the basic plan gram m ar is

violated. For instance, the grammar may specify th a t a particu lar plan

needs a particular type of sub-plan a t a particular place in a plan, and if

th is is missing then there is a syntactic error. Note th a t th is is not the

sam e as an error in the use of the syntax of a particular programming

language. It really falls into one of the categories th a t Youngs or

S chneiderm an would term sem antic or logical. Sem antic bugs,

according to Goldstein and Miller, occur when a syntactically (in their

sense) optional com ponent is missing from a plan, b u t is required by

the na tu re of the problem the program is attem pting to solve. These

bugs fall roughly under Youngs' notion of logical error since they give

rise to a fully functioning program which simply does not do w hat it is

supposed to. Finally, pragm atic bugs occur when an inappropriate

choice (with respect to the problem) of plan h as been m ade. Again,

th is type of bug falls under Youngs' notion of logical error.

Jo h n so n e t cd.'s [1983] and S pohrer et a l.'s [1985] bug

classification depends both on a library of stereotypical programming

plans, and on the problem the program is trying to solve. Given these

11

two dim ensions they have developed a large catalogue of several

hundred different types of bug, ranging from the fact th a t a particular

plan needed to solve a particular problem is missing, to a description

of all the different ways novices might mis-implement a specific plan.

Because of the detailed natu re of this catalogue they can give very

specific advice to novice progreunmers on how to fix the bug, or on

w hat m isconception about looping constructs the novice is suffering

from. However, following th is particu lar route seem s unrealistic for

expert program m ers given the likely com binatorial explosion in bug

types. However, as p art of a tutoring system, their approach works

weU. as evidenced by the success of Johnson's system PROUST [1986],

This project is using the taxonomy shown in Figure 1.1. The

sim plest distinction it makes is th a t between syntactic and sem antic

errors. Syntactic errors are easily caught by compilers, and th is project

will assum e th a t the programs it is looking a t are syntactically correct.

In the case of novice program m ers, all k inds of m uch deeper

m isconceptions may m anifest themselves as syfitactic errors, b u t as

th is research is aimed a t more experienced program m ers, it is

assum ed th a t error m essages from the compiler will be sufficient to

enable the programmer to fix th is type of error.

Sem antic errors correspond to the case where the program in some

sense does not "do w hat it is supposed to". To arrive a t this taxonomy it

h a s been assum ed th a t program m ers, w hen confronted w ith a

problem, come up with some sort of solution, or high-level design,

corresponding to Schneiderm an's interned sem antics. Now there are

two cases - either their design is correct, or it is not (this la tte r case

corresponds to Goldstein's theory bug category, and to Schneiderm an's

category of bugs arising from an incorrect conversion to the internal

semantics). In either case they now attem pt to implement their design

12

errors

syiiLacüc
errors

seinaiiUo
errors

program
containing error

is attempted
implementation

of incorrect
solution to
problem

Type 5 Error
corresponds to

correct
implementation of

intended but wrong
high-level plan

program
containing error

is attempted
Implementation

of correct
solution to

problem

Type 3 Error
manifests as

internal
inconsistency

Type 1 Error
manifests as

internal
inconsistency

Type 4 Error
corresponds to incorrect

implementation
masquerading as

correct implementation
of some other plan

Type 2 Error
corresponds to incorrect

implementation
masquerading as

correct implementation
of some other plan

Figure L IA taxonomy of Errors

13

as a program. In the case where their design is indeed correct b u t they

m is-im plem ent it (corresponding to G oldste in 's p rocedu re bug

category, and to Schneiderm an's class of errors which arise from an

incorrect transform ation from the internal sem antics), there are two

types of error th a t can occur:

Type 1. These e rro rs m an ifest them selves a s in te rn a l

inconsistencies of one kind or another between parts of the program.

Simple examples are trying to read from a closed device, or passing an

u n so rted lis t th rough to some piece of code im plem enting an

algorithm which expects a sorted list as input. This type of bug

includes Youngs' semantic errors as special cases, b u t widens the class

of inconsistencies considered. As will be seen later, because th is

project is based on a library of programming "cliches", th is category

also corresponds to Miller and Goldstein's syntactic error category,

since the p lan library can be viewed as a g ram m ar for correct

p rog ram s, an d th e g ram m ar does no t p erm it th is k ind of

inconsistency.

Type 2. Programs containing (only) this type of error manifest

them selves as correct (internally consistent) program s for some other

problem. An example might be if the programmer w as trying to write

some code to sort some num bers into ascending order, b u t used "<"

instead of ">" so th a t their program sorted into descending order.

Their code would be a perfectly valid solution to a different problem

from the one they were trying to solve. Note tha t so far as an autom atic

debugging system is concerned there is no difference betw een the

case where th is happened because of w hat Youngs term s a clerical

error, and the case where th is happened because the program m er

m isunderstood the effect of the particu lar sorting p lan being used.

14

Miller and Goldstein’s semantic and pragmatic bugs both fall into this

category.

On the other hand, if the programmer's high-level plan does no t

in fact solve the problem, there are again several ways in which errors

can m anifest themselves:

Type 3. These errors also m anifest them selves as in ternal

in co n sis ten c ies in the program . The program m er is try ing to

implement her design (even though it won't tu rn out to be the solution

to the problem) and has made similar kinds of errors to those of type

1. Thus the design contains a theory bug, b u t Type 1 procedure bugs

have also been made. An example might be if the program m er has

decided th a t one way of accu ra te lv calculating the square root of a

num ber x is to find the largest integer whose square is less than x, and

the sm allest integer whose square is bigger than x, and then do linear

interpolation. This clearly is not a correct plan for com puting square

roots. Now suppose the programmer goes on to im plem ent their plan,

b u t m akes an error in the code which looks for the two appropriate

integers, which m anifests itself as an inconsistency between various

sub p arts of th is code. This is sim ilar to a type 1 bug, b u t even if

co rrected th e program would still no t be correct so far a s the

program m er was concerned. In fact the corrected progreim would now

contain a type 5 bug (see below).

Type 4. These errors are sim ilar to those of type 2. The

program m er has inadvertently managed to implement a different plan

from the one intended. In this case the design contains a theory bug,

b u t Type 2 procedure bugs have also been made.

Type 5. This corresponds to the case where program m ers

actually implement their proposed (faulty) solution correctly. In such a

15

program all parts of the program do exactly w hat the program m er

expects, b u t still does not solve the problem. This corresponds to a

pure theory bug in Goldstein's terminology.

Notice th a t these error types are in increasing order of difficulty

so far as locating and correcting them is concerned. Type 1 and type 3

errors are in some sense errors whatever the purpose of the program.

Because of th is it seems reasonable to try and a t least locate these

types of errors completely autom atically. If it is assum ed th a t the

programs being debugged are not by complete novices, then it is likely

th a t the program will be a reasonable attem pt a t an im plem entation of

the program m er's intentions, and hence if a program contains only

type 1 errors then it can quite possibly be debugged into a correct

program automatically. At worst autom atic debugging m ay tu rn the

program into one with a type 2 error (which may or m ay not have been

there initially). Programs with type 2 errors can be debugged by

in teracting w ith the programmer. This is because the program m er

knows the intended high-level plan and hence fehould be able to give

information about w hat various parts of the program should be doing.

In contrast, although type 3 errors can also be autom atically detected,

removal will leave a program with type 4 or type 5 errors. Again the

type 4 errors m ay be "corrected " by interacting with the programmer,

b u t only to a program with a type 5 error. Type 5 errors can be very

hard to fix, even for skilled programmers. This is because the program

will not do w hat it is supposed to, in the sense th a t it doesn 't solve the

original problem, bu t all parts of the program do w hat the programmer

expects since the program is a correct im plem entation of the design.

Essentially fixing this type of bug can involve a complete redesign of all

or part of the program.

16

1.3 Sources of Knowledge for Program Understanding and Debugging.

In order to debug a com puter program it is necessary to develop

an understanding of the progreim and to use th is understand ing to

p in p oin t the p laces w here w h at the program actually does differs from

w hat one would expect knowing the purpose of the program . It is

helpful to th ink of an intelligent debugging system as an experienced

programmer whose advice may be sought when one is faced with a bug

one does no t understand in a program. Such an expert program m er

will use several techniques and sources of information to help h im /h er

understand and debug the program, These include the following:

(1) p lan r e c o g n itio n - th is is the techn ique w here by

recognising the form of all or part of a program one can recognise w hat

it does i.e. th is is "programming cliche" recognition,

(2) symbolic evaluation of, and general reasoning about, a p iece

of code - th is involves actually analysing code to see w hat it does, and

arriving a t a description (either formal or informal) of its effects. This

technique is often used on novel code i.e. code th a t does not fit any

cliche known to the program m er. This situation can occur for two

reasons - either the program writer has thought of a new technique

(relative to the techniques captured by the cliches known to the

debugging programmer) to achieve some standard operation, or they

are im plem enting code corresponding to no know n operation b u t

which is essential to achieve some precondition of the code which

follows. In the first case, the debugger can com pare the effect

description she has bu ilt up of the code with the effects of known

plans. If these are equivalent then effectively the debugger can trea t

the code as if a known plan had been used in the code instead of the

u n usua l code. In this case th is can then feed into the process of plan

17

recognition in the code. The second case is more problem atical, in

th a t the only description of the unusucd code is the re su lt of the

symbolic evaluation. In this case the best th a t can be done is to try and

show th a t th e effect descrip tion does indeed ach ieve som e

precondition of tlie plaji(s) it feeds into, iii which case the role of this

code in the program has been established. This will alm ost certainly

involve some kind of general reasoning. Indeed, even in the case where

two cliches (one of which feeds into the other) have been recognised,

b u t which do not jointly constitute a ‘higher-level’ cliche, then again

some kind of general reasoning will be necessary to show consistency,

and establish the roles, of the two plans.

(3) reasoning backwards from the m anifestation of an error to

its source.

In applying these techniques the program m ing expert will use

information from the following sources:

(i) interaction with the program's author*

(ii) meaningful variable names.

(iii) comments in the program.

(iv) program segmentation into functions and procedures.

(v) data input to and output from the program.

(vi) run-tim e error messages.

(vii) trace output.

Plan recognition and symbolic evaluation are used by the expert

to gain an understanding of the program. This m eans th a t s /h e would

then be able to:

18

(a) describe the program in term s of some high-level plan of

which the program is an implementation.

(b) describe how the various p a r ts of th e program are

im plem entations of sub -p lan s.

(c) describe how these sub-plans interact to achieve the overall

goal(plan) of the program.

Conversely if a programmer can do these three things one would

then say s /h e has an understanding of the program, and it is in th is

sense that the term "understanding" will be used from now on.

It is clear from th is definition th a t the p rocess of p lan

recognition is really the key to program understanding. Now, when an

expert looks a t a piece of code which, say, sorts a se t of num bers, s /h e

does not a t random try plans s /h e knows until one is found which fits.

The process of plan recognition is clearly guided by clues, and these

clues come from item s (i) to (iv) in the above* list of of sources of

inform ation used by expert programmers. In particu lar th ings like the

use of a procedure nam e "sort" should suggest th a t as a first attem pt

one should look a t all the methods one knows for sorting. Obviously,

program com m ents, information supplied by the program w riter as

answ ers to questions about the program, and the way the program is

segm ented can all provide useful information to guide the process of

plan recognition.

However it is possible th a t some pieces of code m ight not m atch

any plans known to the expert. In th is case the expert would alm ost

certainly try a process of symbolic evaluation (probably described by

the expert by some term such as "mental evaluation") to try and see

w hat th a t piece of code does. It may then become apparen t th a t the

19

piece of code does perform some known function, albeit in a different

fashion to previously encountered methods. One can then say th a t the

expert programmer has again recognised the plan for which th is code

was an implementation, the only difference being th a t th is time the

plan was recognised by reasoning about the code ra th e r th a n ju s t

m atching against a library of previously known plans.

W hen debugging program s there are essentially two processes

used by expert programmers. The first of these is really an application

of the process of program understanding described above. If, while

attem pting to understand the program, the expert finds examples of

code which alm ost m atch known plans then s /h e has alm ost certainly

located an error, particularly if this near-m atch occurs where there is

some inconsistency in the use of known plans. In th is case edits can be

suggested which would correct the plan. Alternatively a piece of code

m ay be recognised as the implementation of some plan b u t th is plan

does not achieve w hat the program's author says it should. In th is case

code which implements the desired plan can possibly be suggested. At

the very least the m ism atch can be pointed out. This debugging

method can be used to locate errors of types 1 (and 3) in programs.

The o ther debugging m ethod uses the rem aining sources of

inform ation available to the program m er i.e. the d a ta in p u t to, and

ou tpu t from, the program, system generated run-tim e error messages,

and trace inform ation. The above debugging m ethod using p lan

recognition alone is really only used by program m ers on sm allish

program s. W hen debugging larger and more complex program s the

advice-giving expert will u se the in p u t/o u tp iit d a ta and trace

inform ation together w ith inform ation from the program 's au th o r

an d /o r the run-tim e error messages to locate the places in the code an

error first becam e apparent. S /h e would then a ttem p t to "reason

20

backwards" from th is place to the place in the code which originally

caused the error. This "reasoning backwards" process is really one of

isolating all and only th a t code which could have affected the place

where the error became apparen t [Weiser 1982], and one can then

reason about th is subsection of the code using all the techniques of

plan recognition etc. E)xpert programmers will often assum e parts of

the code to be correct and reason about the re s t of the code using

these assum ptions. Only if the error can't be found, or if some piece of

evidence leads to a contradiction will these p a rts of the code be

examined in detail. In addition certain run-tim e error m essages will

suggest very specific errors to expert programmers, and they may well

ju s t search the code looking for a very specific piece or type of code

which their experience tells them is often the cause of the particu lar

run-tim e error in question.

In the long term it is intended th a t IDS should tiy to use all

these techniques and sources of information in order to b y and repair

bugs of types 1 to 4 in programs. However, for the moment, effort has

entirely been concentrated on the plan recognition process, as th is not

only provides m uch of the machinery needed to apply other techniques

as well, bu t also provides m uch of the information th a t other debugging

techniques would need. Things like use of variable nam es etc. could

provide useful inpu t to the plan recogniser to guide the search for

p lans, b u t th is is really an efficiency issue, although of course

inappropriate nam ing of variables and procedures could be considered

a type of bug if looked a t from a m aintenance point of view. Plan

recognition (com bined w ith theorem proving a n d /o r sym bolic

evaluation) really ju s t gives one a handle on type 1 (and type 3) bugs,

and it is on these th a t the rest of th is thesis will concentrate. This

approach should therefore perhaps be called intention-free debugging.

21

and is based on the following assum ption (which will be referred to as

the Normal Use Heuristic):

If a programmer uses a standard plan in a program then, as a
first hypothesis, assum e they are using it deliberately in
o rder to achieve the resu lts of operations commonly
im plem ented by th a t p lan , and th a t th e re fo re the
preconditions for these operations should be met.

This assum ption is needed because, generally speaking, program s in

them selves are not inconsistent, or incorrect. Program s are only

incorrect with respect to the programm er’s in tentions, and if these

are n o t available then showing a program to be incorrect is no t

possible. So, w ithout a specification the best we can hope to do is to

find internal inconsistencies in the code (type 1 errors). Although it is

possible for a program to be internally inconsistent in such a way th a t

sim ple reasoning about the source code m ight detect, th is is not

generally the case. An example where this might be true is in the case

of a program which attem pts to take the square root of a negative
*

n u m b er (in a program m ing language w ithout com plex num bers).

However, the program discussed in Chapter 9 w ith its pointer reversal

bug, is no t inconsisten t in any direct sense. It will ru n , and will

produce output, and conceivably could be w hat the program m er had

in tended , especially if all we were shown w as its in p u t-o u tp u t

behaviour. In order to find this bug by inspecting the code we need the

Normal Use Heuristic, since it is only under this assum ption th a t we

can in general meaningfully say tha t plans and operations in a program

are inconsisten t w ith each other. Note th a t if we include single

operations as p lans in the above assum ption then th is covers things

like the above sqrt bug as well. Without this heuristic, plan recognition,

even combined with a plan based theorem prover, would not in general

be able to find type 1 bugs in programs, since all we would be able to

deduce is th a t the programmer had used some standard plans in a

22

non-standard msinner for reasons best known to themselves. This is of

course possible since the program m er might for example have been

trying to see w hat error message the system gives when an attem pt is

m ade to take the square root of a negative num ber, or they m ight

deliberately have w ritten som e non -term in atin g p iece o f code in order

to te s t som ething ou t repeatedly, knowing full well th a t they would

need to in terrup t the code externally (using <CTRL>-C say) in order to

term inate it. It is not really reasonable to expect a debugging system to

cope with th is type of (normally temporary) code, and we will assum e

th a t the above assum ption is reasonable for code subm itted to IDS.

23

Chapter 2.
Other Work on Program U n d erstan d in g an d D eb u ggin g

By now a large num ber of systems have been proposed an d /o r

built which perform program understanding a n d /o r debugging. These

system s vary greatly in the knowledge representation techniques th a t

they use, their range of applicability, the languages they are intended

for, the type of user they are aimed at, and so on. This chapter will

d iscuss these system s, paying particu lar atten tion to the following

questions:

(1) Is the system intended for use by novices or experts (or
both)?

(2) How are programs represented internally by the system?

(3) How is programming knowledge represented?

(4) Does the system use general reasoning techniques such as a
theorem prover or symbolic evaluation?

(5) How does the system locate errors?

(6) W hat strategies does the system use to repair errors once
found?

(7) Does the system make use of a bug catalogue, or other
library of common errors?

(8) W hat range of programs in the language a n d /o r domain can
the system cope with?

(9) W hat are the particu lar strengths and w eaknesses of the
system ?

Having described all these systems we will then be in a position

to draw some general conclusions about work on intelligent debugging

and understcinding, and this will enable a proper evaluation of IDS’s

approach. This will pave the way for showing (in Chapter 9) how some

24

of these other system s’ capabilities could be reproduced in a system

using IDS’s approach, and w hat may need adding to it to duplicate

those th a t can’t.

There are several mgdn dim ensions along w hich the system s

described below can be classified. The first of these is essentially to do

with generality i.e. w hat range of programs can the system deal with?

This issue is related to how m uch knowledge the system s have to have

in advance about the problem th a t the program it is being asked to

debug is supposed to solve. Some systems only work on a very narrow

range (two or three in some cases) of problems for which the system

h as extremely detailed knowledge of possible solution strategies (e.g.

R uth [1973, 1976], Johnson[1986]). O ther system s only work for

problem s for which the system already has an example solution (e.g.

Adams and Laurent [1980], M urray [1986]). On the other hand there

are system s which attem pt to be more general. These essentially fall

into three categories - those th a t require a specification of some type

to be subm itted along with the program (e.g. Üukey's [1978] system

PUDSY, and Goldstein’s [1974] system MYCROFT), those th a t simply

take a program and attem pt to debug it as best they can (e.g. Wertz

[1987], and IDS itself), and those th a t take a program and an example

of its intended behaviour (an in p u t/o u tp u t pair) and then attem pt to

debug it (e.g. Shapiro’s [1982] Prolog debugger).

The next factor which can be used to differentiate these systems

is to do with their use of plan recognition versus their use of general

reasoning abilities (e.g. reasoning about the sem antics of program s

using a theorem prover, symbolic evaluation). Of the systems th a t work

on known problems the two m ost successful fall a t opposite ends of

th is division. PROUST [Johnson, 1986] uses p lan recognition alone,

while TALUS [Murray, 1986] uses theorem proving alone. As discussed

25

below, both of these systems present problems with respect to trying

to increase their domain of applicability. One of the contentions of this

thesis is th a t in order to widen the range of program s to which a

debugging system can be applied the system will need to use both of

these techniques. Lukey’s system PUDSY [1978] was an early attem pt

to u se bo th approaches. However, because its p lan recognition

technique was ra th e r sim plistic, it had to fall back on symbolic

evaluation m uch of the time, and this rather limits a system ’s ability (in

particular to cope with larger programs due to problems of scaling).

The system s w hich m ake use of theorem proving/sym bolic

evaluation can be subdivided into two further categories - those which

try to show th a t a program m eets a specification (e.g. PUDSY,

MYCROFT, and E isenstadt and Laubsch’s [1981] SOLO debugger), and

those which attem pt to show equivalence of a program to a standard

reference program (e.g. LAURA [Adams and L aurent, 1980], and

TALUS[Murray, 1986]).

The plan recognition based systems can also be subdivided into

two categories - those which essenticdly use top-down recognition

(analysis by synthesis) (e.g. PROUST, Ruth’s system [1973]), and those

w hich use bottom -up plan recognition (e.g. IDS itself. Wills’ system

[1986, 1990], and PUDSY).

A nother aspec t of these system s w hich can be u sed to

differentiate them is in the techniques they use for suggesting repairs

to programs. In particular, do they use general techniques, or do they

look for specific errors, and make use of “canned repairs” via the use

of a “bug library”.

26

2.1 MYCROFT

One of the earliest attem pts at a debugging system was th a t of

Goldstein [1974]. This system, MYCROFT, w as aim ed a t debugging

simple LOGO programs which drew pictures. Tlie inpu t to tlie system

consisted of a program and a detailed description of the picture it was

supposed to draw. MYCROFT generated a description (plan) of w hat

th e program actually did, and by com paring th is w ith the in p u t

descrip tion of the desired picture, a ttem pted to elim inate bugs.

A lthough an in te re s tin g p roposal MYCROFT w as never fully

implemented, b u t it did a t least point the way for la ter work in th a t it

a ttem p ted to form ulate the debugging p rocess as one of p lan

recognition and repair.

2 .2 Riith’s Work

An early precursor of the work reported here is th a t of R uth

[1974, 1976]. His system, implemented in LISP and CONNIVER, was

capable of recognising simple program s as being im plem entations of

ce rta in algorithm s to perform known ta sk s. As th is system w as

intended for use by novices in a teaching environm ent the problems

the program s were supposed to solve were known in advance, and the

teacher would supply details of common solutions and all their variants

to the system . These would be expressed in a very sim ple

program m ing language containing assignm ents, conditionals, and

loops, with num bers and arrays as the only data types. These algorithm

schem a can be thought of as constitu ting a p lan library. S tuden t

program s are translated into the same simple language, and R uth’s

system would then attem pt to m atch a studen t's program against its

in te rn ^ knowledge of possible solutions (PGMs). Before passing the

studen t program through for full analysis a pre-pass would be made to

27

catch any “trivial” errors. These include such things as pàram eterless

loops w ithout an exit, use of uninitialised variables, and irrational code

such as assignments to a variable followed by another assignm ent to the

sam e variable before the first value has been used, or unreachable code.

These are not repaired, merely reported. Once a program passes th is

initial phase, the m ain analysis uses a process of "reverse synthesis".

This process is analogous to th a t of a parser in a compiler, which

recognises programs as syntactically valid. In this case possible parses

are attem pted in a top-down best-first fashion. The system attem pts to

m atch a program against the PGMs, a t any stage the PGM which

m atches best being chosen as the candidate for further matching. Each

PGM consists of an ordered list of actions (assignments, conditionals,

or loops) which the studen t program should perform. In order to

capture the possible variability in the way each of these actions could

be implemented, R uth’s system makes use of symbolic evaluation, non-

h near program ming techniques, and program transform ations in its

m atching process. For example, if the PGM contains a sequence of

assignm ent statem ents, these are symbolically evaluated to give an

expression E for the value of each of the variables. If the s tu d en t’s

program also contains a sequence of eissignments a t th is point, these

too are symbolically evaluated to give an expression E'. After m aking

appropriate substitutions for variables in E of variables th a t occur in E',

the expression E-E' is then passed over to the MACSYMA system for

simplification. If it simplifies to zero the expressions are equivalent so

the m atch is successful. To match conditionals the system first tries to

m atch the tests in the two conditionals. Since these are all of the form

expl<exp2j or expl=exp2, etc. and the system has the resu lts of the

symbolic evaluation for the variables prior to the test being carried out,

the system uses nonlinear programming to determine if the tests are

equivalent or not. This is not as general as a theorem prover, so won’t

28

always work, b u t is easier and faster. In m atching loops, the m atcher

h as knowledge of various program transform ations th a t preserve the

functionality of loops, and can use these while attem pting to m atch.

Failures to m atch are then taken as indications of errors, which can be

of two m ain types - recoverable errors, and non-recoverable errors.

Non-recoverable errors are taken as a sign th a t m atching aga inst

ano ther PGM should be resumed. Recoverable errors are those th a t the

repair of which would not necessitate major chginges to the source

code. In th is case, a note is made of the error, and the m atching

process continues as if the error had not been found. At the end of this

process the PGM which matched with the least errors (or the least
se rio u s errors) is trea ted as rep resen tin g th e p ro g ram m er’s

in ten tions, and a report is issued spelling out w hat algorithm the

system th inks the studen t was attempting, w hat the errors were, and

how they can be repaired. However, it should be stressed th a t R uth 's

system w as by no m eans general purpose - it h a s to know which

problem the s tu d en t is working on in order to narrow down the

num ber of applicable PGMs. Apart from th is R uth’s system suffered

from m any other limitations. Some of these are related to the poverty

of the programming language used. More serious though is the linear

n a tu re of the PGMs. At their top-level they consist of a sequence of

actions to be carried out. The system is not capable of realising th a t the

order of m any of these is often unim portant (an exception is in the

case of a sequence of assignments). The PGMs should be structu red

more as a partia l ordering. Furtherm ore, to be a general program

understanding system, there would have to be more information about .

the commonalities between various algorithms, not simply information
about the commonalities between variants of algorithms for performing

the sam e task . The system would also need to know abou t d a ta

structuring techniques and so on. If PGMs had these extra capabilities

29

they would probably be m uch more like the plan diagram formalism

used by IDS, and in th is sense Ruth’s system can be seen as an early

attem pt a t a system rather like IDS.

2.3 LAURA

Another system aimed a t debugging studen t program s is LAURA,

w ritten by Adam and Laurent [1980]. Their system for debugging

simple FORTRAN programs is in some ways similar to R uth 's system in

th a t again the problem s th a t will be presen ted to the system are

known in advance. However, rather than having someone (the teacher)

attem pt to provide details of all known solutions (and their variants)

for each task as in Ruth's system, LAURA ju s t requires a single correct

program for each task. This is then represented internally by m eans of

an annotated control flow graph. The inpu t s tu d en t program is also

re p re se n te d in th is form. It th e n ap p lies v a rio u s p rogram

transform ation techniques to either or both of these graphs in an

attem pt to recognise the student's program as functionally equivalent
»

to the known correct solution. Should the system find th a t it cannot

transform the two graphs into each other it then used the m ism atches

to point out errors. This system too performed reasonably well on a few

lim ited exam ples. However, control flow g rap h s are no t really

expressive enough to make reasoning about programs, and recognising

plans easy. As a result, their system was more like a system for proving

program equivalence, than like one which attem pts to understand the

program in the sense described in Chapter 1.

2 .4 PROUST

. Of more immediate concern to th is project is the work of the

Cognition and Programming Project group a t Yale University [Ehrlich

and Soloway 1982, Soloway, Bonar, Woolf, Barth, Rubin, and Ehrlich

30

1981, Soloway, Ehrlich, and Bonar 1982, Soloway, Bonar, Ehrlich, and

G reenspan 1982, Soloway et al. 1982, Johnson 1986]. This group is

also attem pting to create a debugging system for Pascal programs, and

like the system s discussed above is aimed a t novice program m ers.

M uch of the ir work is done from the poin t of view of cognitive

psychology since they are in terested in finding o u t exactly w hat

knowledge and understanding expert program m ers have th a t novices

don't. They are also building into the system a cognitive model of the

s tu d e n t so th a t helpful advice pin-pointing exactly the s tu d en t's

m isconceptions can be given. The knowledge of th e ir system is

represented internally in a frame-like formalism (similar to th a t in

[Goldstein and Roberts 1977]) orientated very specifically tow ards

Pascal. Their system PROUST [Johnson 1986], (and its predecessor

MENO-Il) had a large am ount of problem-specific knowledge enabling

it to perform reasonably on programs for a few very specific problems.

This knowledge is plan based, bu t the plans are expressed as program

schem as (with extra information about preconditions, and about w hat

goals the plan can be used to achieve), so the plan m atching process is

e ssen tia lly one of m atch ing ag a in s t th e so u rce code. T his

representation of plans has three m ain drawbacks:

(i) It makes it difficult to apply to languages other than Pascal,

since all the plans would need to translated. This translation may well

prove difficult since m uch Pascal specific knowledge is embedded in

them .

(ii) It makes it hard to verify p lans as reasoning about code

fragm ents Is hard, especially as no attem pt h as been m ade to. really

give a semeintics to the representation. Of course th is could be done,

b u t would require a lot of extra m aehinery (perhaps borrowing from

one or more of the existing m ethods of describing the sem antics of

31

program m ing languages e.g. denotational sem antics, or operational

sem antics).

(iii) It makes it hard to reason about novel parts of the code

th a t do hot m atch known plans. Of course, if the plans were given a

sem antics as ju s t suggested, then whatever underlying program m ing

language sem antics one had used could also be used to reason about

novel pieces of code. In this case the PROUST approach would tu rn

in to som ething ra th e r like a language specific version of the p lan

calculus.

(iv) The approach Is prone to w hat Wills [1991] calls the

‘syntactic variability’ problem. This is that, once programs s ta rt getting

more com plicated, there are often a very large num ber of ways in

which the syntax of the language will allow the programmer to express

a com putation. Some of the differences are very superficial e.g. use of

different variable nam es, differing order of statem ents in cases w hen

the order does not m atter, breaking up expressions into sequences of

assignm ents, and so on. However, when combined, these superficial

differences can make it very hard for a system based on code tem plate

m atch ing to actually find appropriate m atches. The so lu tion in

PROUST is to have large num bers of tem plates th a t attem pt to capture

all the likely variants. This is only really possible by limiting the system

to a few smallish problems.

Because of the lack of sem antics of PROUSTs represen tation

m ethods, it is not really possible for it to recognise inconsistencies in

cirbitrary programs. Instead, the system has to know in advance w hat

goals have to be achieved by the program (eind how these goals in ter

relate), and can then check th a t the program contains p lans which

achieve all these goals. If a program fails to contain a plan to achieve

some goal then a bug has been found. In order to give debugging advice

32

PROUST then m akes use of a very large bug library. This contains

commonly occurring buggy versions of plans, also expressed in the

sam e code tem plate form. If any of these occur in a buggy program,

then very specific debugging advice (stored with the bug ru les in the

library) can be given. This ap p roach enables PROUST to give

astonishingly pertinent advice even for some of the tru ly bizarre errors

th a t novice programmers make. However the price paid is high - the

bug catalogue is very large. E)ven though PROUST can only deal really

effectively w ith one simple programming problem (involving not m uch

more than computing the average of the non-negative num bers read in

from a file or terminal), and ra ther less effectively on a few other

simple problems), the PROUST group have catalogued som ething like

800 different bugs tha t novices make [Johnson et al. 1983, Johnson

and Soloway 1985]. This explosion of bug types, and hence in the size

of the bug library, make it seem unlikely th a t th is approach can be

extended to m uch larger and more complex program s, let alone

arb itrary program s. So, although PROUST is ex^em ely successful a t

tu to rin g s tu d en ts on the few problem s for w hich it h a s a goal

description, and for which it has both the relevant plans and bug rules,

it seems unlikely this can be m uch extended as it stands. Furtherm ore,

as yet their system cannot cope with programs involving such things as

procedures, or pointer variables, and in order to cope w ith these it

would need a m uch richer plan representation m ethod allowing both

for the fact th a t p lans could be split between procedures, and for

reasoning about complex, more abstract, data types.

2.5 PUDSY

Lukey's system PUDSY [Lukey 1978] also aims to debug Pascal

program s. Like IDS, PUDSY attem pts to combine plan recognition and

symbolic evaluation as integrated tools for program understanding .

33

PUDSY attem pted to use clues such as meaningful variable nam es to

help it understand programs, and also used "irrational code" (e.g. an

assignm ent overwriting the result of a previous assignm ent before the

value of the first assignm ent has been used) as an indication of bugs in

a program. Plan recognition in PUDSY is achieved using a variant of the

program schem ata idea, b u t as this idea is not nearly as powerful as the

surface plan formalism discussed in Chapter 3, and suffers from m any

of the same lim itations as PROUST, th is does not lead to such a rich

hierarchical description of the program. Because of th is lack of power

and generality in PUDSY's rep resen ta tio n a l m ethods th e m ain

technique used by PUDSY is th a t of symbolic evaluation of the source

code. However symbolic evaluation is not really powerful enough on its

own to provide the basis of a program understanding system and

accordingly PUDSY can only deal with relatively simple program s e.g.

simple sorting progreims Finally it should be noted tha t, unlike IDS,

PUDSY required a formal specification of w hat the program or

procedure was supposed to do. This specification was included a t the

s ta rt of the program.

2 .6 Eisenstadt et al.'s SOLO Debugger

The debugging system of E isenstad t e t al. (E isenstad t and

Laubsch 1981, E isenstadt, Laubsch, and Kahney 1981] is eiimed at

novices, th is time in the context of teaching A1 programming using the

language SOLO to psychologists. They also rely heavily on the plan

diagram concept, and also use symbolic evaluation as a useful tool in

program understanding . However their system is again not general

purpose because they know in advance w hat problems the students wUl

be tackling. Additionally the language SOLO is very im poverished

(deliberately so, as they are interested in teaching very basic ideas of

programming to essentially non technical students). Accordingly they

34

can use a generalisation of Ruth's technique to understand programs.

The teacher supplies an "effect description " of the desired program. By

symbolic evaluation an effect description is obtained for the studen t's

program . The system then attem pts to m atch these two effect

descriptions. However it m ust be stressed th a t again the teacher has to

supply knowledge of all likely methods of solution to the system.

2.7 rrsY

D om ingue's system [1987] ITSY aimed to tu to r novice LISP

program m ers. Like IDS, it too was based on the p lan diagram

formalism, but, because ITSY did not have a general plan recognition

m odule, it did not try to understand program s as described earlier.

Instead it had a library of “error clichés”, expressed in the sam e

surface plan formalism, and attem pted to find occurrences of these

stereotypical errors in programs by matching against the surface plan

for the program. An occurrence of one of these was then used by the

system to guide the tutoring of the student. So m uch of the work in

ITSY w as really concerned with analysing the kinds of errors th a t

novices make in simple LISP programs, and with devising appropriate

tu toring strategies. In this sense it actually has more in common with

PROUST (although it did not have the same detailed hierarchy of plans

and sub-goals) despite the fact th a t it used the plan diagram concept.

However the idea th a t novices make errors w hich are them selves

clichés, and th a t these can be expressed in th e p lan diagram

formalism, is one which may well need to be incorporated into IDS

were it to be used as the basis of a tutoring system for novices.

2.8AURAC

Hasemer’s system AURAC was also aimed a t tutoring novice SOLO

program m ers. It too had a library of clichés, stored as tem plate

35

patterns corresponding to SOLO source code (independent of the

variable nam es chosen by the programmer) representing such things

as correctly formed switches, conditionals, and loops. In a later version

of the system there were also some algorithmic clichés for specific

tasks. No attem pt was made to translate the programs into some other

representation. This approach worked for AURAC because the tasks

the s tu d en t programs were trying to perform were relatively simple,

enabling the system to have a library of m ost of the clichés the

studen ts would need. Clichés could be recognised even when spread

over large num bers of program segm ents, and AURAC also had a

system of “expecta tions” and “sa tis fac tio n s” w hich w ere ta sk

independent, b u t ensured th a t no unexpected changes were m ade to

the SOLO database. Being so language specific, it is hard to see how

th is approach could be extended to richer languages and more

complex problems, b u t it does represent an early attem pt to perform

the same task as IDS i.e. debug programs with little or no knowledge of

their purpose.

2 .9 TALUS

TALUS [Murray 1986] is a debugging system for s tu d en t LISP

program s, and as such it is one of the m ost successfu l, fully

implemented system s to date. It had information about the tasks the

studen ts had been set, this time in the form of a correct program. It

used symbolic evaluation and a theorem prover to try and show th a t its

stored program was equivalent to the one the studen t had submitted. It

represen ted program m ing knowledge (i.e. com mon solutions) in a

frame-like formalism. TALUS used program transform ation techniques

to simplify the student program, and if the student program failed on a

pre-stored se t of example inpu t-ou tpu t pairs, or if it could not be

proved to be equivalent to the stored solution program then an error

36

w as assum ed to be present. In th is case the stored, correct program

was transform ed until it m atched the studen t program as closely as

possible, and then this closely m atching version was used to suggest

repairs to the studen t program. Because TALUS utilised a very general

technique it was quite successful on a large variety of problems (18 in

all), b u t it could no t cope w ith global (free) variables in function

definitions, or w ith operations w ith side-effects (except in special

cases). However, despite its claims not to use any plan m atching, in

essence TALUS used a very simple form of plan identification, before

sta rting on the process ju s t described. This p lan identification was

essentially based on extracting a few features from the program being

analysed (e.g. recursion type), and these features were then compared

against the features stored against the known solutions. How well the

fea tu res m atched was then used to identify w hich of the known

problem s/possible solutions the student program was m ost likely to be

an a ttem pt at. Because th is feature m atching is quite im poverished

(like m ost p a tte rn recognition work based on feature matching), the

system could get confused. This resulted in TALUS having its own

version of error clichés for some problems. These were “so lu tions”

th a t M urray found studen ts came up w ith quite often for certain

problem s (in particular when they had mis interpreted the problem).

2 .10 PHAENARETE

W ertz’s [1987] PHAENARETE system is a general purpose

debugging system , w ritten in LISP. It aim s to debug novice LISP

program s w ithou t any program specification, and w ith no prior

knowledge of the task the programs subm itted to it are supposed to

perform, and m akes no use of com ments or of user-defined variable

nam es. It w orks directly on the program text, using as its m ain

technique a syntax checker (including a powerful spelling corrector)

37

and a variant of symbolic execution which Wertz calls meta-evaluation.

PHAENARETE rep resen ts its knowledge of program m ing in th ree

form s, corresponding to th ree different types of knowledge. Its

knowledge of syntax is held in the form of procedural specialists.

There is one procedural specialist for each built in function of the LISP

the system is aimed at. Each specialist contains inform ation on the

num ber of argum ents the function takes, and on the types of the

argum ents. Its knowledge of w hat constitutes “good form" in program s

(e.g. a recursive procedure should contain a t least one control flow

p a th through it which is not recursive, and th a t th is should in general

precede any recursive calls) is held as a se t of procedural pragmatic

rules. Its knowledge about the program being analysed (built up as the

analysis proceeds) is held as a set of cognitiue atoms in a database, the

se t of cognitive atom s essentially constitutes a sem antic net [Quillian,

1968] and stores inform ation about the variables and th e ir in te r

re la tionsh ips, especially type inform ation. The stra tegy u sed by

PHAENARETE is essentially one of iterative im provem ent. It m akes

multiple passes over the program, making changes each time, until the

resu ltin g program rem ains unchanged. The firs t p ass essen tially

invokes the spelling corrector, and checks the type and num ber of

argum ents to each call of a function (using the specialists). Where

inconsistencies are found a call is made to a corrector to modify the

program. If the type of some argum ent is unknow n a type consistent

w ith the relevant specialist is hypothesised. This firs t p a ss can

som etim es add th ings like a m issing COND to the program if the

syntax suggests th a t this may have been intended. Subsequent passes

essentially use the m eta-interpreter to propagate types and values of

variables through the sem antic net checking for consistency. Where

inconsistencies are found PHAENARETTE has h eu ris tics (based on

com m on erro rs th a t novice program m ers make) to modify the

38

program . It can also use information from the m eta-in terp reter to

check th a t variables which are involved in exit te s ts from loops or

re c u rs io n s converge to the exit value. W here th ey do n o t

PHAENARETE h as a se t of heuristics to enable it to change the

program in such a way th a t they do. In essence, PHAENARETE

combines searching for error clichés with canned repairs. Many of its

erro r clichés have m uch in common w ith the bug categorisation

developed by Johnson et al. [1983], making it quite a useful system for

novices. However, because PHAENARETE m akes no a ttem p t to

understand a program in the way IDS or PROUST do, it cannot locate

deep sem antic errors. It can find and repair syntax errors, can deal

with such things as uninitialised variables, unreachable code, and can

find and repair simple cases of non-term ination, b u t unfortunately

som etim es tu rn s a program containing su ch surface errors into

program s with deep semantic errors. This is because it h as no way of

recognising th a t b its of code are actually near-m isses to higher level

p lans, and hence cannot use this extra information to guide it in the

repair process. All the examples discussed by Wertz [1987] are very

small, and basically quite simple, so th a t often the strategy enables the

system to repair program s which s ta rt off in an extremely garbled

sta te . However, because of the (quite likely) possibility th a t the

program will be turned into something correct (in the sense th a t it is

syntactically correct, will run, and has “good form”), b u t which does

not do w hat the programmer intended, it is quite hard to imagine this

system being extended to cope with larger m ore complex examples

w ithout the addition of some kind of plan library.

2.11 Elsom Cook s Lisp Debugger

Elsom-Cook’s [1984] Lisp debugger was also aimed a t tutoring

novices. His system did not try to do plan recognition as such, b u t

39

ra th e r concentrated on such things as w hether or not the stu d en t

understood the concepts of function application, recursion and so on.

It tra n s la te d p rogram s in to its own in te rn a l re p re se n ta tio n

(corresponding to a form of operational sem antics for the program),

and passed the re su lt th rough to a special in te rp re te r for th is

rep resen ta tion . Each primitive action in th is rep resen ta tio n had

preconditions th a t had to be satisfied, and the interpreter would check

th a t these held a t the time of execution. Violations would trigger a

tu toring session. M uch of Elsom-Cook’s work w as really devoted to

tu toring strategies, although the attem pt to represen t program s in a

syntax independent form with some sort of underlying sem antics has a

certain am ount in common with the work described here. However,

h is representation was not nearly as rich as the plan calculus (it can

perhaps be seen as equivalent to ju s t the lOSpec p a rt of the plan

calcu lus, d iscussed in C hapter 3, restric ted to sim ply the basic

m achine operations), and as a resu lt can not really be envisaged as

scaling up to deal w ith large complex program s where the errors

involve abstracting away from the underlying d a ta s tru c tu re s and

operations to high-level operations on m uch more abstract data types.

2 .1 2 The Programmer's ^ p r e n tic e Project

The Program m er’s Apprentice Project [Rich and Schrobe 1978,

Rich 1981, W aters 1978, 1979, 1982] is really the project which has

provided the inspiration for, and the basic underlying theory for, the

work described in th is thesis. However, d iscussion of the relevant

p arts of this project will be given where appropriate in the rest of this

thesis, and so will not be repeated here. In particular, m ost of Chapter

3 is devoted to an account of the surface p lan /p lan calculus knowledge

representation technique developed by the above researchers.

40

2.13 SNIFFER

There have been several other debugging system s which have

attem pted to use the plan diagram formalism as their basis, m ost of

which have been ham pered by the lack of a general plan recogniser.

Some of these have been m entioned above. One of the first such

system s was Shapiro 's [1978] SNIFFER system. SNIFFER had three

basic com ponents - a primitive "cliché finder", a "time rover" which

recorded a program 's execution history, and a set of "sniffers" each of

w hich was essentially an expert' on a particu lar type of bug. Each

sniffer utilised inform ation from the time rover and from the cliché

finder. However. Shapiro concluded th a t plan diagram s could not be

fully effective for debugging programs until a full plan recogniser was

available which could cope with such things as p lans being spread out

over more th an one program segment. It would be interesting to re

attem pt SNIFFER’S approach using the work described in th is thesis as

the cliché finder.

2 .1 4 Shapiro's Prolog Debugger

Shapiro’s [1982] system (or ra ther collection of algorithms!) is

ra th e r different to the system s already described. For a s ta rt it does

no t try to recognise plans, or derive symbolic descriptions of the code,

b u t instead relies on examining in detail the actual execution of the

program on a specific in p u t/o u tp u t example which is known to be

incorrect. In essence it is a sophisticated version of the well-known

“fence-posting” technique th a t programmers use when trying to debug

program s This technique involves examining ou tpu t from the program

“betw een” places where the program was known to be functioning

correctly, and a place where it is known to be wrong. Initially these

two places are often the beginning and end of the program. If the

41

program is functioning correctiy a t the place ju s t exam ined, then

ou tpu t is examined between there and the place where it is incorrect.

This process is continued until the place responsible for the incorrect

behaviour is found. Shapiro’s algorithms are only directly applicable to

logic program m ing languages (in particu lar Prolog), and so are no t

directly of in terest to this project, although Renner] 1982] h a s done

some prelim inary work on trying to extend th is approach to o ther

languages.

Once the error has been located (in a specific clause of a Prolog

program), S hap iro ’s algorithm s th en have a variety of h eu ris tic

techniques for repairing the clause in such a way th a t it will now give

the correct behaviour on the buggy example, and also on ^ other

examples of in p u t/o u tp u t behaviour th a t it has previously seen, and

been told are correct. These heuristics are guaranteed to eventually

give a correct program if the system sees enough in p u t/o u tp u t

examples. Although interesting, th is approach does no t seem to be

applicable to anything more th an small simple program s, since the

user is unlikely to be able to provide the correct value for some variable

if th is m ay involve hundreds or th o u san d s of elem ents in some

complicated data structure.

Interestingly, th is system is not confined to program debugging.

It can also be used for inductive program synthesis. By presenting the

system with examples (input/ou tput pairs) of the desired behaviour of

the program it is able to synthesise a program th a t will work correctly

a t least on all the examples it has seen so far, and which is guaranteed

to converge on the desired program after enough examples have been

seen. The technique used by the system is to s ta r t w ith an em pty

program (one w ith no clauses), and then to debug it. As each new

example is presented the program as it stands is either left unchanged

42

if the program works on th is new example, or is debugged into one

th a t will work on this example in addition to earlier ones.

2.15 Summary and Conclusions

M urray [1986] m akes a very strong case in favour of h is program

verification approach to program debugging, while Jo h n so n [1986]

argues equally strongly for plan based program debugging. How can

th ese two viewpoints be reconciled? The an sw er is th a t bo th

techniques will be needed in a debugging system which is intended to

be general purpose. Rich’s] 1981] plan calculus is the only currently

available knowledge rep resen ta tion techn ique w hich offers the

potential ability to move smoothly between both techniques. Both

PROUST and TALUS are used (or are intended for use) solely in a

tutoring environment. In this case the systems have available to them a

se t of possible solutions against which to check the s tu d en t’s program.

So in the case of PROUST the system can check th a t the s tu d en t’s

program contains the plans to achieve the sam e goals as the target

program , while TALUS can try to prove equivalence of the s tu d en t

program to the target program. However, in a situation where a target

program is not available, the TALUS approach reduces to program

verification which is extremely hard and com binatorially explosive,

even assum ing th a t a formal specification is available. The problem with

a pure plan based approach is th a t apart from the basic plans needed,

one also needs an enorm ous num ber (probably com binatorially

explosive!) of p lans or program transform ations to cap tu re m inor

im plem entation variants of the same algorithm. The theorem proving

approach can get round this because of its generality- these variants

can often quite easily be proved equivalent to some standard reference

plan. Working within the plan calculus framework we can get the best

of bo th worlds. First of all, we don’t necessarily need to know the

43

problem in order to try and understand the program since bottom up

plan recognition can lead to an understanding of m uch of the program.

Furtherm ore, as discussed in Chapter 5, th is plan recognition can be

viewed as an efficient form of theorem proving. Additionally we can

always call on a theorem prover to deal with those parts of the program

th a t do not exactly m atch known plans. Additionally, it tu rn s ou t th a t

the near-m isses found by the plan recognition process can be regarded

as failed attem pts to prove some theorem, for which the steps in the

proof have been conveniently grouped together. The missing p a rts of

the near-m iss can be regarded as telling u s how the theorem failed to

be proved. Near-miss correction as proposed in th is thesis can then be

viewed as very sim ilar in some sense to M urray’s technique of

debugging a program by repairing the proof of its equivalence to some

reference function. The rest of this thesis will largely concentrate on

the theory and algorithm s for performing p lan recognition w ithin the

plan calculus.

. - , r

44

PART 2. THEORY AND
ALGORITHMS

45

Chapter 3.

T he Plan C alcu lus

This chap ter will give an account of the p lan ca lcu lus as

developed by Rich [1981]. This is a knowledge rep re sen ta tio n

technique for program s and programming knowledge in procedural

languages with the advantages th a t it has both an intuitive appeal and a

rigourous axiomatic interpretation enabling sound formal reasoning to

be applied. We will begin by giving an in tuitive acco u n t of the

rep resen ta tion , and will then p resen t its form al sem an tics. The

intuitive interpretation of the formalism defines program s and plans as

control and d ata flow graphs. This enables one to regard the plan

library as a graph grammar, and the recognition process as a parsing

process, and chap ters 5 and 7 will p resen t ou r g raph p arsing

algorithm for doing this. It will also be shown how th is apparently

heuristic approach corresponds to theorem proving if we take the

axiomatic view of the plans. This gives our graph recognition algorithm

a sound theoretical basis, unlike other systems which do some kind of

heuristic plan recognition (e.g. Johnson [1986]). It will also be shown

how the formal account justifies some of the more intuitively based

modifications (“hacks”) we have made to the parser, and we will also

give an account of the algorithm we have used to make Rich’s notation

for p lans “m achine-readable”. Other attempts to use Rich’s framework
for program understanding [Wills, 1986,1990] use only a subse t of his

plan library, and the plans have been converted to graphs for parsing

by h an d . O ur system can read the plans in their frame-like notation,

and convert them automatically to appropriate graph structu res. This

conversion process will be described in Chapter 7, and in itself makes

the plan calculus a lot more usable.

46

3.1 An Informal Account

3.1.1 Surface Plans

This project draws upon Rich’s [1981] work in th a t the program

is represented not by its source code b u t by a surface plan. This is

essentially a representation of the program in term s of its control and

and d ata flow. By representing th is graphically we can th ink of the

surface plan as a control and data flow graph. For example, Figure 3.1

shows the surface plan corresponding to the piece of code below:

if x<y then
z:=x+y+l

else
z:=z-l;

In th is diagram control flow is represented by thick (bold) arrows and

d a ta flow is represented by ordinary (thin) arrows. Basic operations

such as applying a binary function(@ blnfuiiction) are shown by boxes

with the operation indicated inside, and with the relevant function and

argum ents as inputs to the box. The result is indicated as an ou tpu t

from the box. Tests, which determine which way control flow will go

depending on the resu lt of applying a binary relation (@binrel) to two

argum ents, or applying a predicate (©predicate) to a single argum ent,

are also shown as boxes, with the relevant rela tion (e.g. ">") or

predicate (e.g. “=nil”) indicated as the first input, and the appropriate

argum ents as the other inputsk The YE)S/NO subpartitions of a test box

indicate which way control flow will go depending on the resu lt of th a t

test. D ata flow between two such boxes indicates th a t data values

 ̂ Sometimes, when it is convenient, test boxes will be shown with the predicate or
binary relation Indicated in the test box, thus reducing the apparent number of inputs,
but this should be seen as merely "syntactic sugar" for the more precise representation.

‘. j t ' ■ V ' -■

47

©blnrel
no I yes

@binfunction

@binfunction

no I yes
join-output

Figure 3.1 A Simple Surface Plan

48

produced by one are used as inputs to the other. Control flow between

two boxes indicates th a t the first box is to have its action performed

before the action corresponding to the second box. We will often

adopt the convention however, th a t control flows will no t be shown

w hen they are actually implied by the d a ta flows. One way of

interpreting such boxes is to regard each box as being a processor in

its own right. Such a processor is "activated" when it h as received

inpu t on all its incoming data flow arcs, and it h as also received a

"control flow token" on its incoming control flow arc if it h as one.

When it is activated it outputs suitable values on its ou tpu t d a ta flow

arcs and outputs a control flow token on its ou tpu t control flow arc if it

exists. These values and tokens then pass, along the arcs to activate

o ther boxes. W here an arc subdivides the value on th e arc is

transm itted along all branches of the arc. Processors corresponding to

tests generate a control flow token on either the YES ou tpu t or the NO

ou tpu t depending on the values of the inputs to the test and the actual

te s t applied. Now the reason for applying tests to d a ta is generally so

th a t one can generate different values depending on the resu lt of the

te s t and then use these values later in the program. To enable later

processors to make use of whichever values are actually generated after

a te st we need somehow to make all of these available as potential

inputs to other processors. Thts is done using join-outputs boxes which

reconnect the separate data flows corresponding to divergent control

flow routes a t tests.

Program segm ents are also indicated by boxes. However these

boxes perform a m ore com plicated operation th a n basic ones.

Subsegm ent nesting is shown by nesting of boxes. Looping constructs

49

have been transla ted to a recursive representation . For example, a

w hile statem ent of the form

while condition do action;

will be interpreted as if it were ju s t a procedure call

loop()

where the procedure loop is defined by:

procedure loop();
begin

if condition then
begin

action;
loop();

end
end;

This h as the advantage of removing cycles from the surface plan th u s

m aking subsequent analysis easier. This kind of recursive subsegm ent

nesting is indicated in plan diagram s by a spiral line connecting the

o u te r segm ent to its inner recursive copy. An exam ple of th is

representation of loops can be seen in Figure 3.2 corresponding to the

code below:

sum:=0;
while not(eof) do
begin

read(n);
sum:=sum+n;

end;

Labels corresponding to variable nam es in the original Pascal

program have been attached to the d ata flow arcs as an aid to

understanding the diagram and in order to enable IDS to converse with

users and suggest edits in term s of the variable nam es with which they

are familiar.

50

not eof file + 0 n

©function

©function

= true
no

read

©blnfunction

no I yes
Join-output

file sum n

Figure 3.2 Surface Plan for Simple Loop

51

Such surface plans can then form the basis of a hiersirchical

system of representations of the program. To go from a lower level

to a higher level in such a hierarchy it is necessary to recognise some

sub graph a t the lower level representation as performing some known

function. The subgraph can then be replaced by a segm ent quite

explicitly rep resen ting the function perform ed. In th is way the

program is progressively represented by h igher £uid h igher level

segments, until a t the top level the program is represented by a simple

graph (possibly a single segment) performing the overall function of

the program. Using th is and the technique of tem poral abstraction

[Waters 1978, 1979, Rich 1981] which enables one to reason about a

se t of sequentially generated items as a single collection it will be

shown in Chapter 8 th a t it is possible to recognise th a t the program

shown on the next page reads num bers from the term inal (or a file),

so rts them into ascending order using a list s tru c tu re , and th en

outpu ts the sorted set of numbers.

3.1.2 The Plan Libraiy.

In order to do the hierarchical recognition ju s t described a

library of commonly occurring programming cliches (whole algorithm s

and even code fragments) is needed, stored in the same plan diagram

formalism. This project has taken as the basis for its lib raiy th a t

developed by Rich [1981], although it has added some new plans of its

own. In principle such a plan library can be used in two ways:

(i) To enable programmers to specify their code a t a high level

in terms of plans in the libraiy, leaving the system to actually
implement the code in the desired language, and

(ii) To analyse code written by a hum an programmer giving the

system a high-level understanding of what the code does and how it

52

program sort(input,output);
type listelement = record

numb : integer;
next : ' l̂istelement;
end

plist = '̂ listelement;
var head, p : plist;

n:

procedure addtolist(n ; integer; t : plist);
var p : plist;
begin

new(p);
p' .̂numb:=n;
if t = nil then

begin
p' .̂next := head;
head:=p;

end
else

end;

begin
p' .̂next:=t' .̂next;
t' .̂next:=p;

end;

procedure findplace(n: integer; var p: plist);
var t : ' l̂istelement;

found: boolean;
begin

if head' .̂numb > n then
p:=nil;

else
begin

p:=head;
t:=p' .̂next;
found:=false;
while not found do

if t o nil then

end;
end;

if t' .̂numb <= n then
begin

p:=t;
t:=t' .̂next;

end
else found:=true

else found:=tnie;

begin
head:=nil;
vdiile not eof do

begin
readln(n);
if headonil then findplace(n.p)
else p:=head;
addtolist(n.p);

end;
p:=head;
while p onil do

begin
writeln(p'^.numb);
p:=p' .̂next;

end;
end.

53

does it, in term s of w hat the overall goal of the code is, and which

parts of the code achieve which sub-goals.

Although there has been some success a t the first of these goals

[Waters 1982], the second has until recently been frustra ted by the

lack of a suitable plan recogniser which could analyse plan diagrams

into their constituent plans, although Brotsky [1984] has done some

w ork on th is . This project h as developed [Lutz 1986, 1989] a

generalisation of traditional chart parsing techniques [Thompson and

Ritchie 1984] which can perform th is recognition task , while Wills

[1986, 1990] modified Brotsky's [1984] algorithm so th a t it is now

sim ilar in some ways to a chart parser, although it does no t ru n

bottom -up quite so naturally. Both Brotsky’s and Wills’ work' will be

d iscussed in detail in C hapter 7. More recently. Wills (personal

communication 1992) has switched to an algorithm substantially based

on th a t described here and in [Lutz 1989].

In th e p lan lib rary there are several d ifferen t k inds of

information. These are:

1. Definitions of primitive operations e.g. © fu n ction which

takes as input a function and an object in the domain of the function

and applies the function to the object producing an object in the range

of the function. Similarly ©blnfunction takes a binary function and two

objects as in p u ts . In addition there are defin itions of common

operations on various types of object e.g. set-add , a binary function

taking a set and an object as inputs and producing a new set (equal to

the input set with the object added to it) as output. Another commonly

used operation is newarg, which takes as inpu t a function and two

objects. Its ou tput is another function equal to the input function in all

ways except th a t its value when applied to the first of the two objects is

54

equal to the second of the two objects. A re la ted operation is

#n ew arg (read im pure newarg), which behaves exactly like newarg

except th a t the ou tpu t function is specified to be the sa m e object as

the input function i.e. they are the same object with different behaviour

a t different lim es , rather th a n d ifferent o b jects . T h is is u se d for

representing things such as array updating, record field updating, list

surgery and other operations th a t change objects by side-effect.

Each primitive operation has associated w ith it p reco n d itio n s

and postconditions. Preconditions are conditions th a t m ust be satisfied

by the inputs of an operation for a use of it to be valid. Postconditions

are conditions satisfied by the outputs of an operation given th a t its

preconditions have been satisfied.
c «

2. D efinitions of prim itive objects (and th e ir properties)

know n to the system e.g. bu ilt-in functions, p red icates, b inary

functions and relations. An example is the binary function for addition,

plus, with the definition specifying such things as type information for

its inputs and outputs, the facts tha t it is associative and commutative,

and th a t it has identity element 0, and so on. O ther functions specified

here are such things as car and edr (for Lisp), and plus-one (a function

which increm ents an integer by one).

3. D efinitions of prim itive d a ta types e.g. in te g e r and

binfunction. Subtype information is also specified.

4. Tem poral p lans specifying a lgo rithm s or com m only

occurring code fragments. Each such plan not only has control cind

data flow inform ation associated with it, b u t may also have additional

constrciints specifying other relationships th a t m u st hold between

p arts of the plan. Note th a t in general we will consider control flow

constra in ts to be such extra constraints on a plan considered as a

55

p attern of d a ta flows. In th is way irrelevant control flow inform ation

occurring in actual programs will be ignored, since the plans will only

specify essential control flow constraints. A good example of a temporal

plan is trailing-generation-and-search, shown in Figure 3.3. This plan

cap tures the data flow pattern common to code which searches d ata

s tru c tu re s for an object satisfying some predicate, keeping track of

both the object it is currently examining, and also the previous object.

An exam ple of su ch (pseudo-) code is show n below (with the

underlined code corresponding to the plan):

repea t
begin

c:=p^.next:

quitloop if pred(c) or c=nil
p:=c:

end
endrepeat::

In th is code the composite function ^.next corresponds to w hat we

have labelled .action.op in the figure, p corresponds to .previous and c

to the ou tp u t from the © fu n c tio n node (labelled .curren t). The

predicate .exit.if.criterion in the figure corresponds to the exit te s t

pred(...) in the code.

5. D ata plans specifying how compound data-objects are built

up out of more primitive ones. Typical examples of th is are plans such

as iterator and labelled thread. An iterator consists of an object, and a

function whose domain and range are both equal to the type of the

object. Such a data object can be used to generate an entire sequence

of objects, starting with the initial object, applying the function to it to

get the second, applying the function to the second to get the third

■ i f . ? >

56

■previous .exitif.criterloD .action.op

\ f \ f

r ^ -
|@functlon|

.current

©predicate
yes I no

\ f \ f

yes I no
I

5ÜÜ0TO

join-outputs

Figure 3 3 Trailing Generation and Search

57

and so on. This is a rem arkably common construct in programming.

For instance using the num ber 1 as the initial object and the function

o n e-p lu s (which adds one to its argument) gives an itera tor which

generates the natu ra l numbers. Alternatively, starting with a list as the

in itia l object and the Lisp function cdr as the function le ts one

generate successive tails of a list as is so often done in program ming.

The labelled thread data type also consists of two parts - a function,

and another compound data type, a thread. A thread consists of a set of

objects and a second injective function mapping the set to itself. The

se t should be thought of as a set of nodes, and the second function as a

successor function which takes a node and re tu rns its successor! So a

th r ea d is really a linesir graph-like structu re . The o ther function

needed w ith the thread to make a labelled thread is the labelling

function. Its domain is the set of nodes in the thread, and it produces

values to be associated with each node. A typical example of a labelled

thread is a Lisp list. The (pointers to) dotted pairs can be thought of as

m aking up the set of nodes, the cdr function is the successor function,

and the car function gives us the value associated with each node. Again

the definitions of such data types specify constra in ts th a t m u st be

satisfied by the parts of the structure. These could be ju s t simple type

information, or could be more complex relationships e.g. th a t a thread

m u st n o t have a cycle i.e. th a t there is no way one can get back to

anywhere earlier in the thread by repeatedly applying the successor

function.

6. D ata Overlays specifying how some d a ta object m ay be

viewed as an implem entation of an object of some other type. These

specify how it is possible to view one type of data object as another. For

instance, the data overlay iterator->thread specifies th a t an iterator can

be regarded as a thread by treating the set of objects generated by the

58

iterator as the set of nodes in the thread, and the function part of the

ite ra to r as the successor function for the thread. This overlay and

o thers like it, play a crucial role in tem poral ab straction , which

bridges the gap between temporal sequences of objects as produced by

loops and iterators, and other non temporal d a ta struc tu res such as

th re a d s , lists, and directed graphs(digraphs). In m any of the diagrams

th a t follow no distinction has been m ade betw een ite r a to r s and

threads, in th a t an initial object and a successor function have been

grouped together as a single object and treated as a thread. This is

purely to avoid having to show multiple levels of analysis in diagram s

which are already complicated enough.

7. Temporal Overlays specifying how a tem poral plan may be

regarded as an implementation of some operation. A good example of

th is is the overlay trailiiig-generation-and-search->intemal-thread-find.

This overlay captures the idea th a t the pattern of code in tra ilin g-

generation-and-search can be used to implement an internal-thread-

flind operation which given a thread and a predicate as input re tu rns

the first node in the thread satisfying the predicate (it also returns the

previous node). Now of course it should be noted th a t the tra iling-

gen eration-and -search plan makes no reference to threads. So the

overlay has to specify which objects being inpu t to the searching plan

can be viewed as constituting a thread, and in w hat way. This is shown

in Figure 3.4, where the constraint underneath the diagram indicates

th a t the .previous object and the .action.op function in p u t to . the

trailing-generation-and-search plan can be grouped together as an

iterator which, when viewed as a thread using the iterator->thread

overlay, forms the input to the intemal-thread-find operation.

Tem poral abstraction, m entioned above, was one of the m ost

im portant notions introduced by Rich and Waters and subsequently

A ' f

59

.previous .exit. If.criterion .action, op

[©function!

.current

©predicate

yes I no

.exit.if
.universe .criterion

Internal
Thread

Find

output previous

.unlverse=
iterator->thread(

lterator(. previous, .action.op))

I
yes I no

join-outputs

output) f \ 1 previous

Figure 3.4
Trailing Generation and Search->Intemal thread Find

60

fu rther developed by E isenstadt and Laubsch [1982]. As alluded to

above, this enables one to view a series of data objects com puted in a

temporal sequence (e.g. the values of a variable as a loop is executed) as

a single d a ta object. This is similar to the point of view program m ers

have when considering a sequence of reads from a file - they can

sw itch between regarding the file as a single stream -like object, or

they can th ink of the tem poral sequence of values produced by the

reads. It is the form alisation of th is reasoning which enables the

Program m er's Apprentice project to take a really high level view of

m any program s and to recognise the common p a tte rn (e.g. filtered

itera tion) beh ind m any different program s and im plem entation

techniques.

There are several advantages to th is m ethod of representing

program s and plans in term s of their control and d a ta flow. These

include:

a) The program representation is no longer dependent on tlie

specific variable nam es chosen by the programmer. Therefore a t least

one type of superficial variation between program s has been removed.

It should be noted in th is connection th a t from a theoretical point of

view variables in a programming language are ju s t a device for ensuring

a desired d a ta flow - it is the data flow th a t is im portant, not the

variables.

b) Many (not all!) struc tu ra lly different program s can be

represented by the sam e surface plan. Thus some other superficial

differences between programs can be eliminated by th is technique. Of

course it is no t possible for any represen tation to be com pletely

canonical with respect to program equivalence. If it were, we could use

th e rep resen ta tion to solve the program equivalence problem (by

61

translating the program s into the representation, and then checking

th a t the representations are the same) which is a well-known non-

decidable problem.

c) It is a language independent representation. Therefore a lot

of the reasoning etc. applied to a program is applicable to programs in

any language. There does, however, need to be a language dependent

translation process to go from the source code to the surface plan of a

program . In order to be able to suggest edits and so on, a language

dependent plan to source code translato r is also needed. These two

m odules apart, m ost of the re s t of the p lan recognition system is

w ritten in a language independent fashion.

d) Plans can be combined in a linear fashion to form new plans

w ithou t the com ponent p lans interfering w ith each other. All th a t

needs to be done is to connect the output data (and control) flows from

the first plan to the appropriate input d a ta (and control) flows of the

second, and provided th a t any special constraints required by the plans

(e.g. type restrictions on the inputs etc.) are satisfied the resulting plan

will be a valid combination of the two original plans.

e) Plans can easily be combined in such a way th a t they share

common sub-plans. This makes it easy to represent and reason about

the common programming practice of not recom puting values which

have already been computed.

This ability to esLSily combine plans enables one to form a library

of commonly occurring plans which can then be p u t together to make

up programs. The recognition process is then primarily one of seeing
how a given program is actually built up from com binations of these

known plans, and debugging can partly be seen as the attem pt to

understand the program using the above recognition technique, noting

62

any near m atches to known plans. Later chapters will describe these

processes in more detail.

3.2 Semantics

In addition to the m any desirable properties described above,

th is representation of program s also has the advantage of having a

properly defined sem antics. As we have presented it so far p lan

d iagram s form a reasonab ly in tu itive and pow erful knowledge

representation technique for program s and program m ing knowledge.

However, AI has been bedevilled a t various times with intuitively based

knowledge representation techniques th a t foundered in various ways

un til they were given a proper sem antics (semantic nets are a case in

point), often based on logic in some way. This section will give a brief

overview of the sem antics of the plan calculus (readers interested in a

full description are referred to Rich [19811) by discussing the trailing-

gen eration+ search plan and the trailing-generation+search->find

overlay described earlier. To do th is will actually involve looking a t

quite a large subset of the plans and overlays we will m ake use of in

la ter chapters.

3.2.1 The Compact Notation

3.2.1.1 The Basic Notation

Rich [19811 defines all the plans and overlays etc, used in the

plan calculus in a compact text-based notation. Some examples of th is

notation (including the trailing-generation+search plan, shown earlier

in Figure 3.3) are given below:

lOspec ©function / .op(function) .input(object) => .output(object)
preconditions .inpute domain(.op)
postconditions apply(. op,. input)=. ou tput

63

Temporal Plan cond *
roles .if(test) .end(join)
constraints cflow(.if.fail, .end.fail)

A cflow(.if.succeed,.end.succeed)

Temporal Plan trailing-generation+search
extension iterative generation trailing-search
roles .current(object) .previous(object) .exit(cond)

. action(©function) .tail(trailing-generation+searcb)
 constraints .current=.action.output a .previous=.action.input

There are several points to be made about this notation. Firstly, it

is frame-like. Each com putational object is defined, first by giving its

type and th en its nam e. For exam ple c o n d and t r a i l i n g

generation+searcb are defined to be temporal plans, while ©function is

defined to be a basic operation of the calculus (using the keyword

lOspec). Then each definition has various “slo ts” associated with it

giving other information. For instance, © function is defined to be a

primitive action with two inputs (the first of which will be referred to

as op and is constrained to be a function, and the second of which will

be referred to as .input and can be any object), and one ou tpu t which

will be referred to as .output. Then ©function has a preconditions slot

which sta tes th a t for an occurrence of © function in a program to be

valid the .input value m ust be in the domain of the function, and a

postconditions slot which states th a t if the preconditions are satisfied

for an instance of ©function, then .output for th a t instance will be equal

to the resu lt of applying the function .op to the input .input. It should

be noted here th a t all basic operations of the calculus (e.g. ©function)

have two situations associated with them - an inpu t situation (.in) and

an ou tpu t situation (.out), denoting the state of the program (i.e. the

values of all objects and data structures etc.) in the program at the time

the action is activated, and after the action has been done. We will use

the symbol _L to denote a situation th a t is never reached. So for

64

example, in a conditional, if the then part is performed as a resu lt of

evaluating the test, then all the actions in the else part have _L as their

input and output situations.

The temporal plan cond corresponds to an abstract conditional.

It has two com ponent parts (referred to as roles) - a t e s t (referred to

as .if), and a join (.exit). Tests all have two ou tpu t situations associated

with them (.succeed and .fail). J o in s (whose function is to reconnect

diverging control flows from te s ts) have two incom ing situa tions

(.succeed and .fail), and the constraints in the cond plan simply state

th a t control m ust ultimately (after £iny actions th a t may or may not be

performed on the succeed or fail sides of the con d) flow from the

.succeed situation of the te st to the .succeed situation of the join , and

sim ilarly for the .fail control flows. Note th a t nothing is said a t th is

level of abstraction about w hat actions (if any) actually happen on the

succeed side or the fail side of the cond, and accordingly nothing is

said about w hat divergent data flows may be reconnected a t the join. If

a plan involves a cond, b u t also involves some actions which produce

d ata values to be connected a t the join then the plans will often specify

a tighter restriction on the jo in of the cond. In particu lar they may

specify th a t the join is a join-outputs (which reconnects a single data

flow from each side of the conditional) or a jo in -2 -o u tp u ts (which

reconnects two such data flows from each side). Examples of this can

be seen in some of the plans given below.

The definition of t r a i l in g - g e n e r a t io n + s e a r c h is more

complicated. It too has a roles slot, specifying w hat actions and objects

are involved in the plan, and what types these actions and objects m ust

have, and how they will be referred to when we need to refer to parts

of the plan. In this case we see tha t trailing-generation+search has five

roles - two ob jects (.previous and .current), a con d , an © fu n ction

65

action, and another trailing-generation+search, making th is into a

recursively defined plan. It also has a constraints slot, specifying extra

inform ation th a t m ust hold between (or about) the roles in order for a

collection of roles of suitable types to constitute an instance of trailing-

generation-i-Search. In this case it specifies th a t the .previous object is

the inpu t to the .input port of the © function .action. Similarly, the

.cu rren t object is the value coming from the .o u tpu t po rt of the

©function.

3.2.1.2 Inheriting Onnstraints Via Specialisation and Extension

Links

If the above were the complete definition, then the resu lting

plan would be th a t shown in Figure 3.5, which clearly is not the "whole

trailing-generation+search plan shown earlier (Figure 3.3). However,

the definition of trailing-generation+search also has a extension slot.

This gives the nam es of other plans to which th is plan is related (by

having ex tra roles and (possibly) constraints) and from w hich it

i n h e r i t s o th er co n s tra in ts . In th is p a rticu la r case, t r a i l in g -

g en era tion + search is defined to be an extension of both itera tiv e -

generation and trailing-search . These plans are given below:

Temporal Plan trailing-search
extension iterative-search trailing
roles .current(object) .previous(object) .exit(cond)

tail(trailing-search)
constraints instance(]oin-two-outputs, .exit.end)

A . current= . exit if .input
A .previous=. exit.end. succeed-input-two

__________ A .tail exit.end.output-twos.exit.end.fail-input-two

66

previous

{©function

V i
if-predicate

yes I no

I Iyes [no
Join-outputs

mmm

Figure 3.5 Partial Trailing Generation and Search

,1 '

67

Temporal Plan iterative-generation
specialization iterative-application
roles .action(@fimction) .tail(iterative-generatioii)

 constraints .action.output=.tail.action.input______

which, as can be seen, add several constraints (and hence arcs of the

graph) .The iterative-gen eration plan corresponds to the pattern of

underlined code below:

repeat
begin

c:=p^.next:

p:=c:
end

endrepeat:

and rep resen ts the common technique of iteratively applying a

function to generate a sequence of objects, each of which is the result

of applying the function to the previous object, while the tra ilin g-

search plan corresponds to the following code:

repeat
begin

c —..... .

quitloop if pred(c) or c=nil
p:=c:

end
endrepeat:

w hich represents iteratively producing some item and testing it for

some condition holding, while keeping track of the previous item. The

first thing to note about this is tha t where one plan is an extension of

68

another then the roles they have in common are given the same names.

This m akes it easy to propagate constraints from a plan to an extension
of th a t plan. Now, trailing-search is itself defined to be an extension of

iterative search and trailing. These are shown below:

Temporal Plan trailing
extension single-recursion
roles .current(object) .previous(object) .tail(trailing)

 constraints .current=.tail.previous_________________

Temporal Plan iterative-search
specialization iterative-termination-predicate

iterative-termination-output
roles .exit(cond) .tail(iterative-search+nil)
constraints . exit, if. input=. exit .end, succeed -input

Trailing itself is an extension of:

Data Plan single recursion
roles . tail(single-recursion+nil)

which adds no further constraints. However, iterative-search is defined

(via its specialization slot), to be a specialisation of two other plans i.e.

iterative-term ination-predicate and iterative-term ination-output.

Specialisation is another method whereby one plan can inherit from

another, b u t unlike extension no extra roles are involved. A plan PI

which is a specialisation of another plan P2 has the sam e roles and

constra in ts as P2, and also has additional constra in ts. Itera tiv e -

term ination-predicate and iterative-term ination-output are shown

below:

Temporal Plan iterative-termination-predicate
specialization iterative-termination
roles .exit(cond) .tail(iterative-termination-predicate+nil)
constraints instance(@ predicate,. exit.if)

A .exit.if.criterion=. ta il.exit. if.criterion

69

Temporal Plan iterative-termination-output
specialization iterative-termination
roles .exit(cond) .tail(iterative-termination-output+nil)
constraints instance (Join-output, .exit, end)

______________ A exit, end.fail-inputs. tail exit.end.output

Both these plans are spedalisations of iterative-termination:

Temporal Plan iterative-termination
extension single-recursion
roles .exit(cond) .tail(iterative-termination+nil)
constraints |.tail=nil <-> .exLt.if.succeeds!]

A cflow(.exit.if.fail,.tail.exit.if.in)
A cflow(.tail.exit.end.out,.exit.end.fail)

Returning to iterative-generation, it in tu rn is a specialisation of

iterative-application:

Temporal Plan iterative-application
extension single-recursion
roles .action(@function) .tail(iterative-application)
constraints .action.op=.tail.action.op

A cflow(.action.out, .tail.action.in)

which adds the final constraints to the graph. In th is way it can be seen

th a t p lan diagram s acquire their data and control flow arcs by a

complicated process of inheriting them from other plans.

3.2.1.3 Overlays and Data Plans

Now we can tu rn our a tten tion to the overlay t r a i l in g -

generation+search'>find. which states how an instance of a trailing

generation+search plan in a program can be viewed as an in ternal-

thread-find operation as discussed earlier in this chapter. We begin by

70

giving the appropriate definitions of the various d a ta s tru c tu re s

involved:

Data Plan digraph
 roles .nodes(set) .edge(binrel)

This defines a directed graph to be a se t of nodes together with an

edge rela tion on the se t of nodes. T r e e s are defined to be a

specialisation of digraphs such th a t they have a root (i.e. a node such

th a t every other node can be reached from it following edges of the

graph), and are non-cyclic:

Data Plan tree
specialization digraph
roles .nodes(set) .edge(binrel)
properties VG instance(tree,G) z) [Vxy root(G,x) a root(G,y) 3x=y]
definition instance(tree,G) = [instance(digraph,G)

A 3x[root(G,x)]
A Vx[-iSuccessor*(G,x,x)]]

Finally threads are defined to be specialisation of trees such th a t every

node has a unique successor:

Data Plan thread
specialization tree
roles .nodes(set) .edge(many-to-one)
properties VT instance (thread ,T) 3

[Vxy [terminal(T,x) a terminal(T,y) 3 x=y]
A Vxyz [successor(T,x,y) a successor(T,z,y) 3

x=z] 1

It should be noted th a t both of these have an extra properties slot

which sta tes useful properties of the data type involved. The relations

etc. used in the above definitions are given below:

Binrel node : digraph x object boolean
definition node(G,x) = (x e G.nodes)

71

Trirel successor : digraph x object x object boolean
definition successor(G,x,y) =

[node(G.x) a node(G.y)
______________________________ A binapply(G.edge,x.y)=true]

Trirel successor* : digraph x object x objeçt -> boolean
 definition successor*(G.x.y) = 31 successom(i,G.x.y)

Quadrel successom : natural x digraph x object x object -> boolean
definition successom(i,G,x,y) =

[[i=l A successor(G,x,y)l
V 3z[successor(G,x,z)

____________ A successom(oneminus(i).G.z,y)]]_____

Binrel root : digraph x object -> boolean
definition root(G,x) = Vy[(node(G,y) a x.̂ y) => successor*(G,x,y)]

Binrel terminal : digraph x object boolean
definition terminal(G.x) = [node(G.x) a -i3y successor(G.x.y)]

Now the primitive operation in ternal-thread-tind can be defined. It

takes as input a thread and a predicate, and outputs two nodes (.output

and .previous) of the thread. The first of these nodes (.output) satisfies

the predicate, and the other (.previous) is the predecessor of .output in

the thread:

lOspec intem al-thread find / .universe(thread) .criterion(predicate)
=> .output(object) .previous(object)

extension digraph-find
preconditions 3x [node(.universe,x) a apply(.criterion,x)=true

A-iroot(.universe,x)]
postconditions successor(.universe,.previous,.output)

Internal-thread-find is defined as an extension of ano ther primitive

action digraph find:

72

lOspec digraph-find / .universe(digraph) .criterion(predicate) =>
.output(object)

preconditions 3x [node(.universe,x) a apply(.criterion,x)=true]
postconditions node(.universe, .output)

____________________ A applyt.criterion,.output)=true__________

The overlay trailing-generation+search->find expresses the fact th a t an

instance of the trailing-generation+search plan described above can be

used to im plem ent (or alternatively, can be viewed as) an in tern a l-

thread-find operation. It too is expressed in the frame-like notation:
Temporal Overlay trailing-generation+search->find :

trailing-generation+search > intemal-thread-find
correspondences

generator->digraph(temporal-iterator(trailing-generation+search))
= internal thread-6nd universe

A trailing-generation+search .exit .if. criterion=
intemal-thread-find. criterion

A trailing-generation+search.exit.end.output=
intemal-thread-find. output

A trailing-generation+search. exit, end .two=
intemal-thread-find.previous

A trailing-generation+search.action.in=intemal-thread-find.in
A trailing-generation+search.exit.Out=intemal-thread-find.out

The new ex tra slo t here is c o r r e s p o n d e n c e s , s ta tin g th e

correspondences between the various inputs to the in ternal-thread-

find operation, and the various parts of the trailing-generation+search

plan. The last five of these correspondences are straightforward, b u t

the first is ra ther more involved and needs commenting on. It sta tes

that:

generator->digraph(temporal-iterator(trailing-generation+search))
= intemal-thread-find universe

w hich m akes use of two overlays - the tem poral overlay tem poral-

iterator, and the data overlay generator->digraph. Temporal-iterator

73

(see below for a formal deiinition) enables one to view an iter a tiv e -

gen era tion plan as an iterator data plan, in which the seed of the

iterator is the initial input to the iterative generation, and the function

of the ite r a to r is the function which is iteratively applied in the

iterative generation plan. The data overlay generator->digraph enables

one to view a generator (of which an iterator is a special case) as a

digraph (of which a thread is a special case). In th is case (that of

iterators) it reduces to the iterator->thread overlay discussed earlier.

So th is correspondence essentially captures the notion th a t w hen we

w ish to view a trailing-generation+search plan as implem enting an

intem al-thread-find operation, the thread involved is th a t obtained by

viewing the tem poral stream of objects produced by the g en era tio n

p a rt of the plan as constituting a thread.

Temporal Overlay temporal-iterator : iterative-generation > iterator
correspondences iterative-generation .action.input=dterator .seed
 A function->hinrel(iterative-generation .action, op) =iterator.op

Finally, for completeness, we give the definitions of the o ther

basic types, relations and functions used in the above plan definitions:

Type function
subtype object

Type predicate
subtype function
definition instance (predicat e , F) =

[instance(function,F) a range-type(F) =boolean]

Test © predicate / .criterion(predicate) .input(object)
condition apply(.criterion,.input) =true _______

74

Type many-to-one
subtype binrel
definition instance(many-to-one,R) = [instance(binrel,R)

A Vxyz[binapply(R,x,y)?true a binapply(R,x,z)=true
 ___ => y=z]]

Dota Overlay function->binrel : function -> many-to-one
definition R=function->binrel(F,s) =
___________ Vxy[apply(function(F.s).x)=y <-» binapply(R.x.y)=true]

Type binfunction
subtype object

Type binrel
subtype binfunction
definition instance(binrel,F) =

______________ [instance(binfunction,F) a binrange-type(F)=boolean]

3.2 .2 The Underlying Logic

In the above section Rich’s notation for defining plans in the plan

calculus h as been dem onstrated. Hayes [19791 showed how to give a

formal sem antics to frame-like systems using logic, and indeed Rich’s

sem an tics for th e above fram e-like no ta tion u ses a very sim ilar

technique. However, ra ther than using standard first order predicate

logic, he uses a situational calculus similar to th a t of Green [1969] and

McCarthy and Hayes [1969]. This is a first order logical language with

all the u su a l paraphernalia associated w ith these i.e. symbols for

functions and relations and constants, the usual logical connectives and

quantifiers, and with equality. It also includes set theory (via e cind g),

and integer arithm etic. It could easily be extended to include real

arithm etic. Examples of (an abbreviated form of) the language have

already been met above in various slots (such as the preconditions and

postconditions slots) of the plan frames.

75

3.2.3 Semantic Domains and Behaviour Functions

The key to understanding the axiomatisation of the various plans

and overlays is the notion of behaviour functions. Because we wish to be

able to talk about viewiiig a data object as tlie iniplemeiitatioii of some

other (often more abstract) data object we wish to be able to specify

w hich properties of the object we are cu rren tly in te rested in.

Furtherm ore, since m ost interesting program m ing languages enable

one to m anipulate pointers, and we wish to be able to switch from the

point of view in which we regard a pointer (in Lisp say) as pointing to a

dotted pair, to the point of view in which we regard the pointer as

pointing to a list, again we need to be able to specify which behaviour

(or properties) of the pointer we are in terested in. Both of these

requirem ents are met by the introduction of behaviour functions.

The basic idea behind th is is th a t the ‘rea l’ objects we are

interested in are abstract m athem atical objects such as integers, sets,

sequences, functions, graphs, lists (thought of as a singly recursive data

s tru c tu re w ithout regard to im plem entation details) and so on.

Program s are concerned with m anipulating values of one type or

another. These values are either constan t objects (e.g. the integer 3

appearing as a literal in a program, or the empty list), or are the values

of variables, or are values stored in data structures, or are functions of

o ther values. Because program s (in imperative languages) have state

the behaviour of a program at a given point in its execution (a situatiorii

is determined by the behaviour of the objects stored in variables and

data-structures in th a t situation (given tha t constants always behave the

sam e way). So we wish to have a c le ^ way of ta lk ing abou t the

behaviours of objects a t different points in time. In order to do this it is

necessary to distinguish carefuUy between the identity of an object and

its behaviour in order to enable us to say tha t the same object behaves

76

differently a t different points in time. So let the set of object identities

be N, and let U be the space of possible behaviours. So N consists of

such things as:

a) a se t of objects (‘cells’ in memory) for each record type

defined in the program. These should be th o u g h t of as

constan t object identities, reflecting the fact th a t a given

record is the sam e record, even if the values in it change

over time.

b) a set of function identities, reflecting the fact th a t we will

som etim es w ish to ta lk abou t function objects w hose

behaviour changes over time. As will be seen later, field

access functions for record types will come in to th is

category, and if we model arrays as m utable function objects

then the array identities (perhaps thought of as locations in

memory) come into this category

while U consists of such things as:

a) everything in N

b) the set of integers

c) the se t of sequences (thought of as functions from integers

to other values)

d) the set of lists (thought of as abstrac t recursively defined

m athem atical entities)

e) a set of functions

f) a set of binary functions

g) a set of records, corresponding to filled in’ record cells i.e.

the set of possible values a cell of the appropriate type could

in principle take on.

h) a set of threads as discussed earlier.

77

i) a set of pointers such tha t for each record ‘cell’ there is a

pointer to it.

In addition U has subsets corresponding to all the d ata types defined in

the plan library (e.g. iterators, directed graphs, etc.). Note th a t N is a

subset of U.

N should be thought of as a set of nam es’ for m utable objects^.

For example a record cell’ should be thought of as the nam e of an

actual record. The fact th a t we can alter the contents of the fields of a

record cell then corresponds to the fact th a t the record behaviour’ of

the cell can change even though the cell itself does not.

Rich[1981] calls the various subdom ains of U Behaviour Tÿpes.

Also defined on U is a set of type predicates (one for each behaviour

type) such as isinteger, isbinfunction etc., which re tu rn true on objects

of the appropriate type and false otherwise.

Note th a t the set of functions includes the function which

m aps a pointer to a record cell to the cell concerned, and the set of

b inary functions includes such things as ‘+’. The set of functions also

includes the field accessing functions (treated as m utable - see below)

for each record type.

2 Note that our discussion of this differs from that given in Rich[1981] in that we are
treating identities as being different from pointers. This is because Rich’s ideas were
largely developed in the context of Lisp, in which all mutable objects sue represented by
pointers to the objects i.e. the identity of the object is given by a pointer to it. In Pascal it
is possible to have a variable which a record (say) i.e. the identity of the record is
carried by the cell concerned, and this is different to the case where we have a pointer to
the cell. So, in our listelement example, in Pascal it is possible to have the following
declarations:

var X: listelement;
var y: '^listelement

and these have to be handled differently. This situation is not possible in Lisp.

78

This means th a t a declaration like the following:

type listelement = record
num b : integer;
next : ^listelement;

end;
plist = ^listelement;

resu lts in N containing a set of listelement cells, and U contains the

se t of pointers to these cells (one pointer for each cell) and the se t of

listelem ent records (corresponding to all possible values the record

cells can have considered as records).

Let S denote a set of situations (times). S is totally ordered, since

we are dealing with sequential computations. The ordering is given by

a prim itive relation p re c e d e s , which is essentially defined on the

ac tions represen ting a program by the sequen tia l n a tu re of the

program . In order to be able to ta lk about actions th a t are never

performed we introduced the situation 1 .1 is a bottom element of this

ordering i.e.

V s[precedes(s,l)]

We can now define the binary relation cflow by:

cfiow(s,t) = precedes(s,t) a [s=_L <-+ t= l]

Now introduce a function:

BEHAVIOUR: U x S ^ U

which m aps objects (and object identities) in a given situation (time) to

their behaviours (values) in tha t situation (time). The first thing to note

about this is that:

Vxsl [xeU A xg N] 3 BEHAVIOUR(x,s)=x]

79

since elem ents of U which are not ‘nam es’ are ab s tra c t co n stan t

m athem atical objects. For instance we cannot alter a po in ter - a

variable whose value is a pointer can alter, bu t the pointer itself cannot,

since, considered as a cell’, the object the pointer is pointing to

canno t change so th a t it is a different cell. Similarly an integer is

always the same integer, so its behaviour does not change. However, for

an object in N, BEHAVIOUR m aps the object to the appropriate object

representing its primitive behaviour a t the given time. For example, if

X is a listelement cell, then BEHAVIOUR(x,s) would be the listelem ent

record object (in U) corresponding to the cell filled in with whatever

values it h as in it a t time s. This enables u s to express the fact th a t a

listelem ent record (corresponding to a listelem ent cell x) is different

in situations s and t by:

BEHAVIOUR(x,s) ^ BEHAVIOUR(x,t)

Secondly, this enables us to express the fact th a t a given object x

is an integer a t some time s by:

isinteger(BEHAVIOUR(x, s)) =true

Similarly, we can express the fact th a t an object x is a listelem ent

record a t time s by:

islistelement(BEHAVIOUR(x,s))=true

and in general we can express the fact th a t an object x has behaviour T

a t time s by:

isT(BEHAVIOUR(x,s))=true

80

For each behaviour type T in U (with associated predicate isT) we can

now define a behaviour function T: U x S -> U by

Vxys[T(x,s)=y <->

[[BEHAVIOUR(x.s)=y a isT(y)] v

3z[BEHAVIOUR(x,s)=z a -,isT(z) a y=unde/ined]l]

So to express the fact th a t the behaviour of some object x a t time s is

an integer it is sufficient to write:

integer(x,s) ̂ undefined

and to express the fact th a t the behaviour of x a t time s is a listelement

record we can write:

listelem ent(x,s) 7 ̂undefined

and in general, if we w ant to express the fact th a t an object h as

behaviour T we can write:

instance(x,T)

as a shorthand for

3ys[T(y,s)=x a x^undefined]

Now a program m ing language only provides the program m er

with a set of facilities for creating and m anipulating a fairly small set of

d a ta types. All others m ust be implemented in term s of these basic

types. For instance, the subse t of Pascal th a t we are considering

provides one with num bers, arrays, records, and pointers, and other

types such as lists, directed graphs, threads, and sets m ust be built up

ou t of these basic ones. Furtherm ore, all the basic operations of the

language only operate on objects of these basic types. So a t the surface

plan level i.e. before any analysis of the function of the prograim, only

81

these primitive data types can occur. If we wish to view a program as

opera ting on o ther d a ta types no t d irectly su p p o rted by the

programming language we need a m echanism for viewing the primitive

data objects as implementing the more abstract ones.

In programming languages primitive objects are norm ally either

rep resen ted directly in some way (e.g. in tegers are norm ally

rep resen ted as b inary integers, a record ‘cell’ is a collection of

contiguous memory locations), or they are represented by a pointer to

a d irect represen tation of the object. Now, com pound objects (i.e.

those with components) and objects pointed to by pointers have the

property th a t they are m utable [Rich 1981J. In the case of pointers for

instance, th is m eans tha t it is possible to change the object pointed a t

(by side-effect), w ithout changing the pointer itself. Furtherm ore, as

already stated above, if this is done it may not affect all views of the

pointer. For instance, suppose P is a pointer to a list constructed out of

linked records. Then, if we change the second elem ent of the list by

simply updating the appropriate field of the second record in the list,

then three points should be noted:

(i) P itself is unchanged

(ii) The record pointed to by P is unchanged

(iii) The list pointed to by P has changed

In order to deal with this we need to specify w hat view of an object we

are interested in, and a t what time (in w hat situation). We also need to

be able to specify the connection between the records involved and the

list built up out of them. Behaviour functions enable u s to formalise all

of this. So far we have only discussed the basic behaviour functions.

Data overlays correspond to more complex behaviour functions built up

out of other behaviour functions.

82

So consider the following piece of Pascal code:

type listelement = record
num b : integer;
next : ^listelement;

end;
plist = ^listelement;

For the m om ent th is can be taken as defining a behaviour function

lis te lem en t which m aps objects of type listelem ent a t a given time to

them selves, and listelem ent cells to their record behaviour (at th a t

time), and if a t a given time p is a pointer to a listelement (p is of type

plist) then the behaviour function ^listelem ent m aps p to itself (at th a t

time). More formally, the above declaration defines the following

(recursively defined) datatypes and behaviour functions:

DataPlan listelem ent
Roles numb(integer) next(^listelement)

and

DataType ^listelement
Dejmitton y = ^listelem ent(x,s) ++ (x=nil a y=nü] v

______3z [apply(^,y)=z a z undefined a lis te lem en t(z, s) ̂undefined]

So, in the following piece of code:

var X, y :plist;
begin

new(x); /*value of x is a pointer p i to a record
cell ree l (say)*/,

x^.numb:=l;
new(y); /*value of y is a pointer p2 to a record

cell rec2(say)*/
y^.numb:=2;
y^.next:=nil;
x^.next:=y; /*situation s i* /

y^.numb:=3; /*situation s2*/

end;

83

we see th a t the following behaviour holds in situation s 1 :

^ liste lem en t(pi ,sl)= p i where apply('^,pl)=recl

^listelem ent(p2 ,sl)= p2 where apply(^,p2)=rec2

listelem ent(recl , s i) = <listelement 1, p2>

listelem ent(rec2 , s i) = <listelement 2, nil>

while in situation s2 we have the following:

M istelem ent(pl ,s2)= p i where apply(^.pl)=recl

^listelem ent(p2 ,s2)= p2 where apply('^,p2)=rec2

listelem ent(rec 1 , s2) = <listelement 1, p2>

listelem ent(rec2 , s2) = <listelement 3, nil>

From this it can clearly be seen th a t x and y themselves (the pointers)

have no t changed betw een s itua tions s i and s2 an d th a t the

lis te lem en t behaviour of the object x is pointing to has not changed.

This deals with properties (i) and (ii) above. To deal w ith property (iii)

above we need to introduce an overlay which s ta tes the connection

between the listelem ent behaviour of an object and the lis t behaviour of

the sam e object. We also need an overlay w hich describes the

connection between ^ liste lem en t behaviours and l is t behaviours.

Overlays will be discussed more fully below, b u t for the m om ent it is

sufficient to observe th a t th is can be formalised by defining overlays

listelem ent->list and ^listelement->list as follows:

Data Overlay listelement->list : listelement list
Définition a=listelem ent->list(p,s) =

[[instance(list, a) a head (a)=numb (lis telem en t(p , s)) a

tail(a)=^listelement->list(next(listelement(p,s)),s)]]

and

84

Dota Overlay ^listelem ent->list : ^listelem ent —> list+nil
Definition a= '^listelem ent->list(p,s) =
I [a=nil A p=nil] v
[instance(list, a)
A head (a)=numb (liste lem ent (apply (^, M istelement(p,s)),s))
A tail(a)=^listelem ent->list(next(listelem en t(apply(^,

___ ^listelem ent(p,s)).s)).s)]]

This defines a mapping from objects with liste lem en t or ^ liste lem en t

behaviour to objects with list behaviour. From this it can be seen that:

^listelem ent->list(p 1 ,sl) = w where

head(w)=numb(listelement(apply(^, ^listelem ent(p 1,s 1)),s 1))

=numb(listelement(apply(^, p i),si))

=numb(listelement(rec 1 ,s 1))

= 1 .

and

tail(w)=^listelement->list(
next(listelement(apply(^, '^listelement (p 1,s i)) ,s i)) ,s i)

= '^listelement->list(next(listelement (apply ('̂ ,p 1), s 1)), s 1)

= '^listelement->list(next(listelement(recl ,s l)),s 1)

= '^listelement->list(p2,s 1)

= w l

where

head(wl)= numb(listelement(apply('^, '^listelem ent(p2,sl)),sl))

= numb(listelement(apply('^, p2),sl))
(since p2='^listelem ent(p2,sl))

= numb(listelemeh t (rec2, s 1))

= 2

85

and

taiU w l)

='^li8telement->list(
next (lis telem en t (apply , '^listelement (p2,s i)) ,s i)),s i)

= '^listelement->list(next(listelement(apply('^, p2), s 1)), s 1)

= '^listelement->list(next(listelement(rec2,s 1)) ,s 1)

= '^listelement->list(nil,s 1) =nil

which is equivalent to stating tha t

'^listelement->list(x ,sl)= [1 2]

in more conventional notation. In a similar m anner it can be deduced
th a t

'^listelement->list(x,s2) = [1 3],

and hence point (iii) above can be dealt with.

A subtle point now arises. The account ju s t given is not how this

behaviour will be recognised in practice since it involves defining

overlays from user defined data types to the bu ilt in standard types.

Because we cannot know in advance what data types users will define,

nor how they will use them, this cannot easily be done. Instead we will

sw itch our point of view from one in which we regard the field

accessing functions (numb and next in th is case) as ro le s of the

b eh av io u rs of (mutable) objects, to one in which we regard them as

m utab le functions operating directly on (now immutable) listelem ent

cell objects. Let u s denote the role selecting functions (operating on

behaviours) by num b and next, and denote the corresponding mutable

functions by NUMB and NEXT respectively. Then the relationship

between these two views is given by:

86

Vps apply(fuiiction(NUMB,s),p)=numb*(Ustelemeiit(p,s))

Vps apply(fuiiction(NEXT,s),p)=next(listelement(p,s))

This allows us to no longer treat Ustelement cells as nam es (in N), bu t

a s c o n s ta n t im m utab le ob jects (in U) w ith fixed prim itive

l i s t e l e m e n t c e l l behav iour, w ith a sso c ia ted type p red ica te

islistelementcell. This am ounts to redefining BEHAVIOUR so th a t if x

is a listelem ent cell then:

Vs[BEHAVIOUR(x.s)=x]

and to defining the behaviour fimction listelem entcell by:

Vxys[listelementcell(x,s)=y <->

[[BEHAVIOUR(x,s)=y a islistelementceU(y)] v

Bz[BEHAVIOUR(x,s)=z a -iislistelementcell(z) a y=unde/inedl]l

This m eans th a t the behaviour function lis te lem en t as we defined it

earlier now yields undefined on listelement cells. Instead we now need

to define an overlay listelem entcell->listelem ent by:

Data Oveday listelementcell->listelement: listelementcell-^ listelem ent
D ^ n ition a=listelementcell->listelement(p^s) =

instance (a, listelement)
A numb(a)=apply(function(NUMB,s), listelem entcell(p))
A next(a) =apply(function(NEXT,s), listelem entcell(p))

giving us:

Vps apply (function (NUMB. s),p) =
numb(listelementcell->listelement(p,s))

Vps apply(function(NEXr,s),p) =
next(listelem entcell->listelem ent(p , s))

and the whole of our earlier analysis can now be redone in th is

framework, giving the same resu lts (provided we also redefine the

overlays and datatypes given earlier so th a t they too are based on

87

lis te le m e n tc e ll behaviour). This also m eans th a t the only primitive

m utable objects are now the m utable access functions and m utable

functions corresponding to arrays. Arrays will be d iscussed fu rther

la ter on. However, it should be noted th a t if a com pound d ata object

depends in any way on mutable objects in its definition, then it too will

be mutable.

This approach has several advantages. F irst of all, as will be

discussed in Chapter 6, it enables the translation process to be more

accurate in reflecting the true data flows in the presence of compound

d a ta objects, since the objects are now not viewed as having changed.

Instead record updates can now be modelled as #new arg operations

w ith the (m utable) record accessing functions being changed.

Secondly, since reasoning about side-effects and structu re sharing is in

general very difficult (even though the above formalisation enables one

to do it) it is intended th a t common techniques utilising side effects

should be captured in the plan library. This tu rns out to be m uch easier

using the m utable function approach since it avoids the necessity for

defining overlays from user defined data types to the standard more

abstract ones. This is because, provided the m utable functions and the

pattern of accesses and updates in which they are used, m atch suitable

plans in the library, the functions and the pointers often tu rn out to

directly im plem ent abstract data types. So for instance, in order to

obtain a th r ea d we need a se t of objects (the pointers) and two

functions (a successor function, and a labelling function). By virtue of

the plans used it is often easy (indeed autom atic given our parsing

approach described in C hapters 5 and 7) to recognise th a t the

functions NEXT and NUMB are playing these roles. Once one h as

recognised th a t there is a thread in the program, existing overlays

(such as th r e a d -> lis t) can replace the special pu rpose overlay

introduced above. This subject will be discussed further in Chapter 7.

88

It should be noted tha t we now really have two sorts of behaviour

functions. These are:

a) prim itive behav iour fu n ctio n s defined in te rm s of

BEHAVIOUR. Any such behaviour T satisfies:

Vxy[[3s[T(x,s)=yI] z> Vt[T(y,t)=yU

b) non-primitive behaviour functions, defined in term s of the

primitive ones. These are all overlays of the form B >C where B and C

are primitive behaviour functions. These all satisfy:

Vxy([3s[B->C(x,s)=y]] => Vt[C(y,t)=ylI

One further point needs to be made here. For reasons which will

become apparent when we discuss the parsing process, values in U-N

will be called tie-points. So a tie-point t l which is an object of type T

will satisfy:

Vs [T (tl,s)= tll

The interpretation of this is th a t a tie-point is a constan t value (in U)

with behaviour T (i.e. is of type T). Note th a t this does not m ean th a t all

views of th is tie-point are constant. For instance, in our listelem ent

example above,

^listelem eiitcell(p l,sl) = ^listelem entcell(pl,s2)

and are represented by the same tie-point, bu t

^listelem entcell->list(pl,sl) ̂^listelem entcell->list(pl,s2)

a re d iffe ren t, n o t only from each o th e r, b u t a lso from

^ lis te lem en tce ll(y ,s l) , and should be represented by two new tie-

points. So if an action produces some value (primitive behaviour of

89

some object) as its output, this will be a tie-point, and th is tie-point

will be an input to any other operation which takes th a t value as input.

In the graph representing the surface plan for a program tie-points

will be represented as a small filled-in circle on the data-flow arc from

the action which produced it. Data flow arcs will go from the tie-point,

to the inputs of any operations using it, representing the fact th a t the

relevant value has not changed between the ou tpu t situation of the

‘producing’ action, and the input situation of the consum ing’ action. If

the recognition process dem ands th a t we take another view of a tie-

point then new tie-points representing these new behaviours will be

in tro d u ced as th e p arsing proceeds. The problem of properly

connecting these new tie-points to operations producing and using

them will be dealt with by overlays, as explained in Chapter 7.

3.2.4 Axiomatising Operations, Plans, and Overlays

All the various operations, plans, and overlays are axiomatised

w ithin the plan calculus. There is an algorithmic procedure for going

from the frame notation described above, to sets of axioms for each

p lan etc. The resu lts of this procedure will simply be illustrated by

example here, since full details can be found in Rich [19811.

3.2.4.1 Data Plans

D ata plans are axiomatised in two parts. The first of these is an

axiom telling u s when two instances of a da ta p lan are equal. The

second is an axiom telling us under w hat circum stances we have an

instance of the data plan, and when we have one w hat properties it has.

So, for the data type list, whose compact specification is:

Data Plan list
roles .head(object) .tail(list+iiil)

90

we obtain as the first axiom:

VaPpqs[[a=list(p,s) a p=list(q,s) a head(a)=head(p)
Alist(tail(a),s)=list(tail(p),s)l => a=p]

and for the second axiom we have:

Vxys[[x^undefined a [y=nil v \is>t{y,s)^undejined]] <->
3ap[a=list(p,s) a a^undefined a head(a)=x a tail(a)=y] 1

3.2.4 2 Data Overlavs

D ata overlays give rise to two “totality” axioms and a formal

definition. The totality axioms guarantee the existence of appropriate

d a ta objects, and the formal definition defines the rela tionsh ips

between them. An example is:

Data Overlay fimction->biiiTel : function —> many-to-one
définition R=function->binrel(F,s) =

Vxy[apply(fimction(F,s),x)=ÿ <-> binapplyfR,x,y)=true]

which enables u s to view a function as a b inaiy relation in which two

objects are related if the function applied to the first object is the

second object. The totality axioms are:

Vxs[fnnction(x,s)#unde/bied => 3y[y=function->binrel(x,s)]]

Vys[many-to-one(y,s)9tunde/ined => 3x[y=function->binrel(x,s)]]

and the definition of function >binrel is essentially th a t given in the

definition slot of the compact notation:

R=fimction->binTel(F,s) =
instance (many-to-one, R)

A Vxy[apply(function(Fis),x)=y<-^binapply(R,x,y)=truel

91

3.2.4.3 Basic Operations. Tests, and Joins

Basic operations of the calculus are defined by lOspec definitions.

An example is the digraph-find operation shown again below:

lOspec d igraph-find / .universe(digraph) .criterion(predicate) =>
.output(object)

preconditions 3x [node(.universe.x) a apply(.criterion,x)=truel
postconditions node(.universe,.output) a

apply(.criterion,. output)=true

This is converted to the following two axioms:

Vap [[d ig raph find(a) a d ig raph find(p) a in(a)=in(P)
A out(a)=out(P) A universe(a)=universe(p)
A criterion (a)=criterion(p) a output(a)=output(p)]

=> a=p 1

and
Vwxuts[[precedes(s,t) a

[s#_L =>
I A digraph(w ,s)^unde/ined
A predicate(x,s);*undeflned
A u^undeftned
A 3yl node(digraph(w.s),y)

A apply(predicate(x, s) ,y)=true]
A node(digraph(w, s) ,u)
A apply(predicate(x,s),u)=true]]l

<-> 3a[digraph-find(a) a in(a)=s a out(a)=t
A universe (a) =w a criterion(a)=x

A output(a)=u 1 1

The first of these axioms simply tells us under w hat conditions we can

consider two instances of a d ig rap h -fin d operation to be equal - they

are equal iff their inpu t and ou tpu t situations are equal and if their

in p u t roles are equal, and their ou tpu t roles are equsd. The second

axiom is more interesting It tells u s th a t if we have appropriate data

objects satisfying all the various constra in ts, th en there exists a

92

d ig r a p h -f in d operation which rela tes all these objects in the

appropriate way. Alternatively, if we have a digraph-find operation in a

plan we can use th is axiom to deduce the properties of the d ata objects

involved.

The axiom atisation of tests will also be illustrated by example.

Consider the test © predicate, whose compact definition is:

Test © pred icate / .criterion(predicate) .input(object)
condition apply(.criterion, .input) =true

T ests have th ree situ a tio n s associated w ith them , th e ir in p u t

s itu a tio n (in), th e ir succeed situa tion (succeed) an d th e ir fail

s itu a tio n (fail). The above definition is converted to the following

axioms:

Vap [[© predicate(a) a ©predicate(P) a in(a)=in(P)
A fail(a)=fail(p) a succeed (a)=succeed(p)
A criterion(a)=criterion(p) a input(a)=input(p)]

=> a=P 1
and

Vwxuts[[precedes(s.t) a precedes(s,u) a [u=_L v t=_L]
A [S9tJ_ => [[U 9t ± V t ^ L]

A x^undefined
A predicate(w ,s)^unde/ined
A [t^l apply(predicate(w,s),x)=true]]]]

<-> 3a[©predicate(a) a in(a)=s a succeed(a)=t
A fail(a)=u A criterion(a)=w
A input (a) =x]]

Jo in s are axiom atised similarly. Jo in s also have th ree situa tions

associated with them - two input situations (succeed and fail) and an

o u tp u t situation(out). We will again illustrate the axiom atisation by

exam ple. So consider a jo in -o u tp u t operation w hose com pact

specification is as follows:

93

Join join-output / .succeed-input(object) .fail-input(object) =>
.output(object)

Postconditions [fail(join-output)^l 3 output=fail-input]
_____________A [succeed(join-output)#l 3 output=succeed-input]

This is converted to the following axioms:

Vap[[join-output(a) a join-output(p) a succeed (a)=succeed(P)
A fail(a)=fail(P) a out(a)=out(p)
A succeed-input(a)=succeed-input(P)
A fail-input(a)=fail-input(P)
A output(a)=output(p)l 3 a=p]

and^
Vwxyutsl [[u=l V t=l] A It^l 3 [s=t A w=x]l A [u^l 3 [s=u A w=y]]]

<-> 3a[join-output(a) a out(a)=s a succeed(a)=t
A fail(a)=u A output(a)=w a succeed -input(a) =x

A fall-input(a)=y]]

Simple jo ins (i.e. with no outputs) correspond to the same axioms with

all mention of succeed-input, fail-input, and output omitted. Jo in -2-

outputs is also veiy similar,

3.2.4.4 Temporal Plans

The conversion of temporal plans to their axiomatic form will be

illustrated using the trailing-generation+search plan discussed earlier,

and whose definition is given again below:

 ̂The second axiom we give here differs from that given in Rich 11981] in order to avoid
possible contradictions arising when we consider the axiom for deterministic
operations discussed in chapter 4. Our axiom still captures the essentials of what a join
operation does.

94

Temporal Plan trailing-generation+search
extension iterative generation tiailing-search
roles .current(object) . previous (object) .exit(cond)

.action(©function) .tail(trailing-generation+search)
 constraints .current=.action.output a .previous=.action.input

The first axiom again gives u s conditions u n d e r w hich two

instances of a plan are equal:

Vap[[trailing-generation+search(a) a trailing-generation+search(p)
A cu rren t (a)=curr en t (p) a previous(a)=previous(p)
A exit(a)=exit(p) a action(a)=action(P) a tail(a)=tail(p)] 3 a=p]

T his axiom sim ply s ta te s th a t two in s tan ce s of a t r a i l i n g

gencration+search plan are equal if their input and ou tpu t situations

are equal and if all their roles are equal.

The second axiom is again the more interesting of the two in th a t it

specifies how the various roles of the plan are related and implicitly

cap tu res the inheritance of constraints etc. from the p lans of which

th is one is an extension

Vuvxyzstl [3a[iterative-generation(a) a action(a)=x a tail(a)=y]
A 3p [trailing-search(p) a current(P)=z

A previous(p)=u a exit(P)=v a tail(P)=y]
A z=output(x) A u=input(x)l

<-> 35[trailing-generation+search(5)
A current(5)=z a previous(5) =u
A exit(5)=v A action(5)=x a tail(0)=y]]

It is th is axiom which underlies plan recognition since it sta tes th a t if

one has a collection of roles satisfying all the right constraints then the

existence of a trailing-generation+search plan is guaranteed.

3.2.4.5 Temporal Overlavs

These are axiomatised in a similar fashion to d a ta overlays by

m eans of two “totality” axioms, and a formal definition. For example:

95

Temporal Overlay trailing-generation+search->find :
trailing-generation+search > intemal-thread-find

correspondences
generator->digraph(temporal-iterator(trailing-generation+se£irch))

= intem al-thread -find. universe
A traillng-generation+searcli. exit .if. criterion:

iutemal-thread-find. criterion
A trailing-generation+search .exit. end .ou tpu t:

intemal-thread-find. output
A trailing-generation+search exit end tw o:

intemal-thread-find.previous
A trailing-generation+search.action.in:i]itemal-thTead-find.in
A trailing-generation+search.exit.out:intemal-thread-find.out

corresponds to the two axioms:

Va[trailing-generation+search(a) 3

3p[intemal-thread-find(p)
A p:trailing-geneTation+search->find(a)]]

vp[intemal-thread-£iiid(P) 3

3a[trailing-generation+searchCa)
A p:trailing-generation+8earch->£lnd(a)]]

and has the formal definition:

p:trailing-geiieration+seaTch->iind(a) =
[intemal-thread-findlp)

A generator->digraph(temporal-iterator(a))
:thread(universe(p))

A predicate(criterion(if(exit(a))))=predicate(criterion(p))
A output(end(exit(a))):output(p)
A two(end(exit(a))):previous(p)
A in(action(a)):in(p)
A out(exit(a)):out(P)]

3.3 Plan Recognition and Inference in the Plan Calculus

As alluded to earlier, the system will use a process of plan recognition

whereby instances of plans (thought of as graphs) which occur in the

96

surface plan of programs will be explicitly represented by a single node

representing the plan. These, in tu rn can form p arts of higher level

p lans which will also be represented by single nodes. In th is way the

system will build up a high level description of the program. Now the

graphs representing plans can be thought of as forming the rules for

some kind of graph g ram m ar (a flowgraph gram m ar) and the

recognition process then becomes one of parsing the surface plan

according to the grammar. Chapters 5 and .7 will describe th is process

in some detail. However, in order to be sure th a t this process has some

kind of theoretical basis, it would be nice if the steps of the parsing

process could be viewed as some kind of inference process, and th is is

exactly w hat the sem antics ju s t described give us. On the one hand we

have the intuitive notion of programs represented as control and data

flow graphs, and the recognition process is one of finding subgraphs

corresponding to im plem entations of program m ing clichés. On the

other hand we can view this process as inference in the p lan calculus.

A simple (rather artificial) example will make th is clearer. Suppose we

have the partial surface plan shown in Figure 3.6, and the plans and

overlays shown^ in Figure 3.7. The surface plan can be expressed as the

following (partial) statem ent in the situational logic:

^Note that when we are thinking of temporal plans sis r u l e s of a graph grammar we will
show the graph for the plan on the right-hand side of the arrow in the rule, and the left-
hand side will be a “box” representing the whole plan. Overlays will be represented by
rules in which the right-hand side of the rule represents the plan or operation occurring
to the left of the arrow in the overlay nsime, and the left-hand side represents the plan or
operation to the right of the arrow in the overlay name (i.e. the arrow directions are
reversed in the diagrams). This is to facilitate thinking of the rules (either plans or
overlays) in the normal way that one thinks of production rules in a grammar.
Furthermore, we will often use the words “plein" and "rule" interchangeably.

97

opl
plus

op2

op3

@bln-
(unction

@bln-
fiinctlon

@bln-
fimctlon

Figure 3.6 Surface Plan For Add-4-Nnmbs Rxample

98

Rule for Temporal Plan Two-Adds
addl

plus @bln-
fiinction

two-adds
@bin-

ninctlon
t4

Rule for Temporal Overlay Two-Add8->Add-3-Niimbg

add-3-
4̂9 a numbs

t4 two-adds

Rule for Temporal Plan Add-3-Numbs+Add
plug— ------c m ^

H 2 add-3-
numbst3-.-0---- +add

adds

add-3-
numbs

add
@bln-

function
ts

Rule for Temporal Overlay Add-3-Numbs+add->Add-4-Numbfi
£lys.

numbs
add-3-
numbs
+add

Figure 3.7 Rules and Overlavs for Add-4-Numbs EbcAmple

99

precedes(in(opl),out(opl).... a(1)
precedes(in(op2),out(op2).... a .. (2)
precedes(in(op3),out(op3).... a(3)
cflow(out(opl),in(op2)) a .. (4)
cflow(out(op2),in(op3)) a .. (5)
@binfimction(opl) a .. (6)
@binfimction(op2) a .. (7)
@binfunction(op3) a ..(8)
op(op 1)=plus A ... (9)
op(op2)=plus A (10)
op(op3)=plus A... (11)
inputl(opl)=a a ... (12)
lnput2(opl)=b A..(13)
inputl(op2)=output(op l) a...(14)
input2(op2)=c a ... (15)
input 1 (op3) =output(op2) a(16)
input2(op3)=d a ...(17)

where a, b, c, and d have been used to denote whatever (integer) values

the inputs have i.e.

a=integer(a,in(opl)) a au^undejined a (18)

b=integer(b.in(opl)) a b^undejmed a (19)

c=integer(c,in(op2)) a c^undejined a .. (2 0)

d=integer(d,in(op3)) a d^undefined................................. (21)

We can assum e (18)-(21) have been proven to follow from the

behaviour of the re s t of the surface plan, or can be assum ed as

properties of any values input to the program.

The plans, overlays, and basic actions, and their corresponding

axioms are given by:

100

lOspec add-4-num bs / .input 1 (integer) .input2(integer)
.input3(integer) .input4(integer)

=> . output(integer)
Postconditions
.output=binapply(plus, binapply(plus, binapplytplus, .input 1, .input2),

.input3). .input4)

Axinmft for add-4-mimhft

VaP [[add '4-num bs(a) a add-4-nnm bs(p) a in(a)=in(p) a out(a)=out(p)
A in p u t 1(a) = inputl(p) a input2(a)=input2(P)
A input3(a)=input3(p)A input4(a)=input4(p)
A output(a)=output(P)l => a=P 1

Vuwxyzts[[precedes(s,t) a [s#1 =>
[t;6l A integer(w,s)9Êunde/ïned a integeT[x,s)^imdeJmed
A integer(y,s)^unde/lned a integeT[z,s]^undeJined
A integer(u,t)5tunde/ined
A u=binapply(plus ,binapply(plus,binapply (plus, w,x) ,y,z)]]]

o Ba[add-4-numbs(a) a in(a)=s a out(a)=t a inputl(a)=w
A input2(a)=x a input3(a)=y a input4(a)=z
A output(a)=u]]

lOspec add '3 -num bs / .inputl (integer) .input2(integer)
.input3(integer) => .output(integer)

Postconditions
.output=binapply(plus. binapply(plus, .inpu tl. .input2). .input3)

101

Axioms for add-S-ntunbs '

Vap [[add-3-num bs(a) a add-3 -num bs(p) a in(a)=in(p) a out(a)=out(p)
A inputl(a)= inputl(P) a input2(a)=input2(p)
A input3(a)=input3(P) a output(a)=output(p)] => a=p]

Vuxyzts[[precedes(s.t) a =>
[W± A integer(x,s);tunde/ined

A integer(y,s)?tunde/îned a integer(z,s)î6unde/îned
A integer(u,t)9tunde/iried
A u=binapply(plus,binapply(plus,x,y),z)]]]

<-> Ba[add-3-numbs(a) a in(a)=s a out(a)=t a inpu tl(a)= x
_________________ A input2(g)=y a input3(a)=z a output(g)=u J]

Temporal Plan two adds
roles .addl(@binfimction) .add2(@binfimction)
constraints .addl.op=plus a .add2.op=plus

A .add2.inputl= .addl,output
A cflow(.addl.out, ,add2.in)

A xiom s for Two-Adds

Vgp[[two-adds(g) a two-adds(p) a addl(g)=addl(P) a add2(g)=add2(p)]
z> g=p]

Vgp[[@binfunction(g) a @binfunction(p) a op(g)=plus a op(P)=plus
A in p u t l(p)=output(g) a cflow(out(g), in(P))]

38[two-adds(0) a addl(6)=g a add2(5)=p]]

Temporal Overlay two-adds->add-3-numbs : tw o-adds > add-3-num bs
correspondences add-3-num bs.input 1 = tw o-adds.add 1 .input 1

A add-3-niimbs.input2=two-add8.add 1 .iiipul2
A add-3-nmnbs. input3=tw o-adds. add2. input2
A add-3-numbs.output=two-adds. add2.output
A add-3-m im bs in=tw o-adds.addl in
A add-3-num bs .out=two-adds. add2. out

102

Axioms and Definition for Temporal Overlay Two-Adds->Add-3-Niimha

Valtwo-adds(a) => 3P[add-3-nnmbs(p) a p=two-adds >add-3-nnmbs(a)]]

vp[add-3-numbs(p) =) 3a[two-adds(a) a p=two-adds->add-3-numbs(a)]]

Dftfinition

p=two-adds->add-3-numbs(a) = [add-3-numbs(p)
A inputl(p)= inputl (add 1 (a))
A input2 (p) =input2 (add 1 (a))
A input3(p)=input2(add2(a))
A output(P)=output(add2 (a))
A in(P)=in(addl(a))
A out(p)=out(add2 (a))]

Temporal Plan add-3-nnmbs+add
roles .add3(add-3-nnmbs) .add(@binfimction)
constraints .add.op=plus

A .add.inputl= .add3.output
A cflow(.add3.out, .add.out)

Axioms for Add-3-Numbs+Add

Vap[[add-3-nnmbs+add(a) a add-3-nnmbs+add(p) a add3(a)=add3(p)
A add(a)=add(p)l z> a=P)

Vap[[add-3-nnmbs (a) a @binfunction(p) a op(p)=plus
A inputl(p)=output(a) a cflow(out(a), in(P))]

<-> 35[add-3-nnmbs+add(6) a add3(6)=a a add(6)=p]]

103

Temporal Overlay add-3-nnmbs+add->add-4-niimbs :
add-3-numbs+add > add-4-numbs

correspondences
add-4-numbs.input 1 =add-3-numbs+add. addS .input 1

A add-4-numbs.input2=add-3-numbs+add.add3.input2
A add-4-numbs.input3=add-3-niimbs+add.add3.input3
A add-4-niimbs.input4=add-3-niimbs+add.add.input2
A add-4-numbs.output=add-3-niimbs+add.add.output
A add-4-numbs in=add-3-niimbs+add.add3 in
A add-4-numbs.out=add-3-numbs+add.add.out

A xiom s and D efin ition for
Temporal Overlay Add-3-Nnmbs+Add->Add-4-Nnmbs

Va[add-3-numbs+add(a) 3 3p[add-4-nnmbs(p)
A p=add-3-nnmbs+add->add-4-nnmbs(a)]]

Vp[add-4-numbs(P) => 3a[add-3-numbs+add(a)
A p=add-3-nnmbs+add->add-4-nnmbs(a)]]

Definition
p=add-3-nnmbs+add->add-4-nnmbs(a) = [add-4-nnmbs(p)

A inputl(P)=inputl(add3(a))
A input2(p)=input2(add3(a))
A input3(P)=input3(add3(a))
A input4(p)=input2(add(a))
A output(p)=output(add (a))..
A in(p)=in(add3(a))

 A out(P)=out(add(a))l

The definition of @binfunction is:

lOSpec @binfimction / .opfbinfimction) .inputl(object) .input2(object)
=> .output(object)

Preconditions binapply(.op, .inputl, ,input2)^undejined
Postconditions binapply(.op, .inputl, .input2)=.output

104

The axioms for this are:

Axinma for ©binfunction

Vap [[@binfunction(a) a @binfunction(p) a in(a)=in(p) a out(a)=out(p)
A in p u t 1 (a) =inputl(p) a input2 (a)=input2 (p) a op(a)=op(p)
A output (a)=o utp u t (P)] Z) a=p]

Vuxyftsllprecedes(s,t) a [s ^ l

[t^tl A x^undefined
A y=^undeftned
A u^undejmed
A hiniunction{{,s)^undejmed
A binapply(biiifimction(f.s),x.y)9«^unde/îned
A u=binapply(binfiiiictioii(f.ë),x,y)]]]

<-4 Ba[@binfunction(a) a in(a)=s a out(a)=t a in p u tl (a) =x
_________ ________A input2 (a)=y a op(a)=f a output(a)=u]]___________

Finally we need the definition of plus itself:

Binfimction plus : integer x integer -> integer
Properties instance (aggregative-binfimction. plus) a identity (plus)=0

The details of the definition of an aggregative-binfunction are irrelevant

here, and will be omitted for clarity, b u t it should be noted th a t the

first line if th is definition tells us that:

Vxy[[instance (x, integer) a instance(y, integer)] =)

instance(binapply(plus,x,y), integer)]

The first thing to note is th a t we can show th a t th is piece of surface

p lan perform s an add-4-num bs operation on a,b,c, and d w ithout

recourse to anything other them the properties of plus, © binfunction,

add-4-num bs, and the axiomatic formulation of the surface plan itself

(i.e. w ithout using any of the plans and overlays above). A brief (and

simplified) account of how this is done is as follows:

105

First note th a t there are two cases we have to deal with - the

case w hen in(opl)9tj_ and the case when in(opl)=±. Assum e th a t the

first case holds i.e.:

in (o p 1)?̂ J_............. (2 2)

From statem ents 22, 1, 12, 13, 18, 19, the definition of plus, and the

axioms for © binfim ction we can deduce tha t

out(opl)?tX... (23)

A a.^undeftned... (24)

A h^uTvdefined (25)

A output(op 1)?^und^ned... (26)

A p lu s ^ u n d e /in e d '.................................. (27)

A binapply(plus, a, h)^undejined (28)

A output(op 1) =binapply(plus, a, b)...................................... (29)

A instance(ou tpu t(op 1), in teger).....................................(30)

From 23, and 4 we can deduce tha t

precedes(out(op 1) ,in(op2))...(31)

in(op2)9tX ... (32)

from which (in a very similar fashion) we can deduce

out(op2)îél... (33)

A in p u t l(o p 2)îéu n d e/m ed (34)

A c^undefined... (35)

A output(op2)?t undefined..(36)

A p lu s^ tu n d e /in e d .. (37)

A binapply(plus, inputl(op2), c)^undefined (38)

A output(op2)=binapply(plus, inputl(op2), c) (39)

A instance(ou tpu t(op2), integer).....................................(40)

106

From 33, and 5 we can deduce tha t

precedes(out(op2),in(op3))...(41)

in (op3)9 t± ;.. (42)

from which we can deduce

out(op3)?^l... (43)

A in p u tl(o p 3)9tu n d e /in e d ..(44)

A d^imdefined............... i...(45)

A output(op3)?tunde/ined..(46)

A plus^undefined .. (47)

A binapply(plus, inputl(op3), d)^undefined..................... (48)

A output(op3)=binapply(plus, inputl(op3), d)................. (49)

A instance(output(op3), in teger).....................................(50)

Now from 49, 39, and 29 we can deduce th a t

output(op3) -binapply(plus, binapply(plus,

binapply(plus, a, b), c), d) (51)

It then follows from the axiom for add-4-num bs,the transitivity of thé

precedes relation, 18, 19, 20, 21, 34, and 35 th a t there exists an add-

4-num bs operation, taking a, b, c, and d as inputs and whose ou tput

satisfies 51.

We then have to deal with the second case i.e. when in(opl)=X.

This is ra ther simpler, in th a t thé definition of precedes, X, and the

transitiv ity of precedes tells u s th a t out(op3)=X. From th is and the

axiom for add-4-num bs we can deduce the existence of an add-4-

numbs operation taking a, b, c, and d as inputs.

107

Note th a t in the above we have made a lot of implicit use of the

fact that:

Vxy[[3s[T(x,s)=y]] z> Vt[T(y,t)=y]]

for prim itive behaviours T, of which (of course) in te g e r is one. A

theorem prover would of course have had to do th is explicitly. Also

note th a t we essentially had to compute (a large part of) the transitive

closure of the p recedes relation. If th is surface plan had been m uch

larger, possibly with intermediate actions between the actions we have

show n, th en the direct control flow links betw een the operations

m ight no t have existed, and so com puting (a large p a r t of) the

transitive closure of precedes would have involved a lot more effort.

E^ven for these ra th er simple operations th is is a lot of work,

especially for a forward-chaining theorem prover (corresponding to

bottom -up analysis) which might have thousands of axioms to deal with

if the plan library an d /o r the surface plan were large.

On the other hand, use of the plans and overlays can greatly

simplify th is deductive process. Indeed, one view of the p lans and

overlays is th a t they are pre-proved lemmas which the theorem prover

can then use. Using the plans and overlays, the recognition process

goes like this:

From the definition of the two-adds plans, and 4, 6 , 7, 9, 10, and

14 we can deduce the existence of a two-adds plein, consisting of op l

and op2. If we call this plan two-adds 1 then we have immediately:

tw o-ad d s(tw o-ad d sl) ... (230

A addl (two-adds l)= o p l..................................... (240

A a d d 2 (t w o - a d d s l) = o p 2 ..(2 5 0

108

Using the axioms for tw o-adds->add-3-num bs we can deduce the

existence of an ad d -3 -num bs operation (let u s call it ad d -3-num bs 1)

satisfying the following:

add-3-num bs(add-3-nunibs 1) ... (260

A input 1 (add-3-num bsl)=a.. (270

A in p u t2 (a d d -3 -n u m b sl)= b (280

A in p u t3 (ad d -3 -n u m b sl)= c ..(290

A ou tpu t(add-3 -num bsl)= ou tpu t(op2)........................ (300

A in(add-3-num bsl)= in(opl).. (310

A o u t(ad d -3 -n u m b sl)= o u t(o p 2).................................... (320

From the axiom for the plan add-3-num bs+add we can now deduce the

existence of an a d d -3 -n u m b s+ a d d p lan (add-3-num bs+add 1 say)

satisfying:

add-3-num bs+add(add-3-num bs+addl)...........................(330

A add3(add-3-num bs+addl)=add-3-num bsl.................. (340

A add(add-3-num bsl)=op3.. (350

From th is and the axioms for the overlay add-3 -n iim bs+ add-> add-4 -

num bs we can deduce the existence of an add-4-num bs operation (add-

4 -num bsl say), satisfying:

add-4-num bs(add-4-num bsl)... (360

A Input 1 (add-4-num bsl)=a.. (37)

A in p u t2 (ad d -4 -n u m b sl)= b ... (380

A input3(add-4-num bs l)=c.. (390

A in p u t4 (a d d -4 -n u m b s l)= d ... (400

A output(add-4-num bs 1)=output(op3).............................. (410

A in (add-4 -num bsl)= in (op l).. (420

A out(add-4-num bsl)=out(op3).. (430

109

Note th a t if we then assum e (or prove from other parts of the plan)

th a t in(opl)9t± then we can immediately deduce from the existence of

this plan that:

precedes(in(op 1) ,out(op3))

A out(op3);^l

A output(op3) =binapply(plus,

binapply(plus, binapply(plus. a, b). c), d)

w ithout having to compute the transitive closure of precedes.

It should be clear from the above th a t the plan calculus provides

an extremely powerful technique for reasoning about program s, both

from first principles, and from recognition of plans (clichés) occurring

in them. Indeed the example ju s t analysed, although simple, illustrates

the ability it provides to recognise w hat a program does even if the

program m er h as used plans not in the library. For if the plans and

overlays used had not been there we have showed how a plan calculus

based system , using a theorem prover, could still recognise the

function of the surface plan. Equally well, if the surface plan being

analysed had corresponded to:

2 *((a+b)/2 +(c+d)/2) (say)

instead of

a+b+c+d

it could still have recognised the a d d -4 -n u m b s operation being

performed from the axiomatisations of plus, times, and divides. On the

other hand we have shown how, when the program m er does use

standard plans (and it is hoped th a t eventually the library will contain

enough p lans to be applicable to m ost programs!) th is deductive

process can be greatly simplified.

110

Although we have shown how the deductive process is simplified

by the use of plans and overlays, it is still a lot of work for a standard

theorem prover to do this. This is because such a theorem prover

(being general purpose) cannot make use of the inheren t s tru c tu re

presen t in surface plans, and the axioms corresponding to plans and

overlays. T his s tru c tu re is m ade exp lic it in th e g rap h ica l

representation. So if we could write a special purpose theorem prover

with knowledge of th is structu re (perhaps indexing and grouping the

axiom s and derived theorem s in clever ways) then th is deduction

process could be made m uch more efficient in th a t it would avoid blind

alleys and unnecessary work. In the deductive process above we

showed none of the additional work a theorem prover m ight have

done, b u t only the direct proof of the existence of the add-4-num bs

operation. In chapters 5 and 7 we will present a graph parser, capable

of recognising the occurrences of plans in the surface plan treated as a

graph, by treating plans and overlays as rules of a graph gram m ar.

Because th is parser makes use of the graph-like structure of the rules

and surface plan, it can be thought of as ju s t such a special purpose

theorem prover.

Complete grammatical entities found by the parser correspond to

theorem s th a t have been proved from the axioms for the plans and the

“facts" describing the initial surface plan. The partia l gram m atical

entities th a t are found can be viewed as partia l proofs, where the

information in a partial entity specifying w hat would need to be found

in the graph in order to complete the entity corresponds to w hat still

needs to be shown in order to complete the proof. In th is case near

m iss recognition and repair can be viewed as being similar to M urray’s

[19861 TALUS system which repairs bugs by repairing a proof of the

Ill

equivalence of the program to a known program, except th a t in th is

case we are repairing the proof of equivalence to a known plan.

112

Chapter 4.

E^ensdons and M odifications o f the Theory.

W hen trying to recognise plans using a graph p arse r there are

various situations which can cause problems. The first of these is to do

with problems caused by non-standard (i.e. not in accordance with the

plan library) control-flow. This can often resu lt in code for which the

graph is apparently unrecognisable as the cliché it actually represents.

This is particularly so when combined with another problem th a t can

occur. This is associated with optim isations - if a program m er has

e ith e r

(i) m ade unforeseen optim isations involving sharing p arts of

two or more plans in their code, or

(ii) failed to make optimisations assum ed by the plan library i.e.

a plan involves some action feeding its output(s) to more

th an one place, b u t the program m er h a s duplicated the

action instead,

th en th is can give rise to problems for a graph based p arse r as in

either case the surface plan th a t is being analysed differs from w hat

one would get from pure rule rewriting (treating the p lan library as

productions in a grammar).

4.1 Control-Flow Environments

In order to d iscuss the problem s caused by n o n -s tan d a rd

control-flow, and the problems caused by optim isation (or the lack of

it), we need to look at control flow in a bit more detail. The first thing

to rem ember is th a t precedes is a total ordering on the situations in a

113

program, and th a t 1 (used to denote situations th a t are never reached)

is a bottom element of this ordering i.e.

Vs[precedes(s,±)l

Of course, which situations are not reached will vary between instances

of actual com putations (runs of the program) represented by the graph.

This m eans th a t for m ost situations in the graph, we canno t say

definitely th a t they are equal to X, or th a t they are not, although we can

state the conditions under which they will be X. However, we can often

say th a t a situation s will be X if and only if some other situation t is X.

For instance, all the situations occurring on the succeed side of a cond

will be X if the test fails i.e. if the succeed situation of the test is X. So

we can define an equivalence relation « on the set of situations in a

program by:

s«t = [s^± t^ l]

We will refer to the equivalence classes u n d er « as control-flow

environm ents, and say th a t s and t are in the sam e control-flow

en v iro n m e n t if s«t. We will write env(s) to denote the control-flow

environm ent in which situation s occurs. Note th a t the form of the

axiomatisation of operations:

V...st[[precedes(s,t) a [s?̂ X z) [t#X a . . .]]

<-> 3a I op(a) A in(a)=s a out(a)=t a . . .]]

implies tha t the input and output situations of operations m ust always

be in the sam e control flow environment. This m eans th a t for any

operation o p l, we can refer to the control flow environm ent envgpi of

the operation.

If S and T denote control-flow environments, then we can define

the relation subenv(S.T) by:

114

subenv(S, T) = 3a[test(a) a in(a)G S a

[env(fail(a))=T v env(succeed(a))=T]]

We can now define a relation encloses on control-flow environm ents
hy:

VST [encloses(S.T) <-> [subenv(S.T) v 3C[subenv(S.C)
A encloses(C.T) 11

and then define a relation <cf on control-flow environments by:

S < c fT = S=T V encloses(S,T)

which defines a partial ordering on control-flow environments. We will

call two control-flow environm ents S and T co m p arab le iff either

S<c fT or T<c fS holds, and we will say S is the outerm ost of two

comparable control-flow environments S and T iff S<cfT, otherwise we

will say it is the innerm ost. We will also denote the control-flow

environm ent containing X by X. It should also be noted tha t, as a

resu lt of the axiomatisation of tests, the above definitions imply that:

I subenv(S.T) a S=X] z> T=X

This in tu rn implies that:

[encloses(S,T) a S=X] z> T=X

It should also be noted th a t in a consistent program, if we assum e th a t

the initial situation s q (the s ta rt of the program) is not equal to X, and

if we assum e th a t any external files ̂ used by the program contain

suitable sequences of objects, then it follows from the axiom atisations

of all the operations occurring in a surface plan th a t the only way in

which a situation can equal X is by being in a branch of a cond. As a

re su lt every control-flow environm ent T (apart from s q) h as a test

We Include terminal Input and output as a type of file.

115

Test(T) associated with it. The form of the axiom atisation of tests also

tells u s th a t every test X (say) has some condition C(X)2 associated with

it such tha t

[succeed(X)9t l o {in(X)9t l a C(X)|]

A [faÜ(X)9t± <-̂ [inOQ^l A -nC(X)ll

which is equivalent to:

[env(succeed(X))5t i o [env(in(X))9^lA C(X)]]

A [env(fail(X))?tX<-> [env(in(X))9t±A -iC(X)]]

We will denote env(succeed(X)) by succ(X) and env(fail(X)) by fail(X).

This m eans th a t we can associate a condition Cond(T) w ith every

control-flow environm ent T. If we call th e in itia l control-flow

environm ent (the one which contains the initial situation so of the

program) then we define:

Cond(Eo)=true

The condition for o ther control-flow en v iro n m en ts is defined

recursively by:

dfF l- A C(Test(E)) if E is succ(Test(E))
“ ̂ lCond(env(in(Test(E)))) a -.C(Test(E)) if E is fail(Test(E))

We now note th a t the following relationship holds between a control-

flow environment E and its condition Cond(E):

E t̂ I ^ Cond(E)

Since any operation op in the surface plan occurs in a control-flow

environment this tells us that:

envop?î=l<-> Cond(envop)

2 Note that C(X) is the actual condition tested for by the test, not the entire sequence of
conditions which must be true for this part of the program to be reached.

116

We will call Cond(envop) the controlling condition for the action op,

and the above simply states that any operation is executed if and only if

its controlling condition is true. We can now rewrite the axioms for an

operation in term s of the controlling operations for the situations

involved, as follows:

V...st[[precedes(s,t) a [Cond(s) Cond(t)l a (Cond(s) => ...11

f-» 3a [op(a) A in(a)=s a out(a)=t a . . .]]

4.2 Generalised Control Flow Environments

Up until now we have been treating control-flow environm ents as

the objects which define their associated conditions. We will now

sw itch viewpoint and regard the conditions as defining the control

flow environments. For a condition X we define:

Env(X) = (s: s^^l X}

This is a m uch more general notion since the condition X can be any

condition, no t ju s t one associated with an actual sequence of tests in a

program. We will refer to such environmerits as generalised control-

flow en v iro n m en ts , and the associated conditions will be called

genersdised controlling conditions. For operations in the program this

switch of viewpoint edso entails regarding their controlling conditions

as fundam ental, rather than the control-flow environments. For actions

occurring in the surface plan for a program the controlling conditions

are simply the ones associated with the (non-generalised) control-flow

environm ents discussed earlier. However, it wül tu rn ou t th a t allowing

operations and plans found by the recognition process to be associated

with generalised controlling conditions rather than ju s t with the actual

conditions associated with tests in the program, has far-reaching and

117

im portant implications, and enables us to deal with the first two of the

problems discussed above.

So, ra th e r th a n associa ting control flow or control-flow

environm ents w ith each operation we will associate a (generalised)

con tro lling condition . T ests will get th ree su c h ex p ressio n s,

corresponding to their in, succeed, and fail controlling conditions, and

jo ins will similarly get three controlling conditions. These controlling

conditions are simply those associated with the appropriate (non

generalised) control flow environments. Each such condition will be a

svmbolic expression. Each test X, with condition C()Q, is given a unique

variable (e.g. Z), which denotes C(X), and so, if the symbolic expression

denoting the controlling condition for in(X) is P (say), then succeed(X)

and any actions and tests in the same control flow environment will get

(P A Z), and fail(X) and any operations and te s ts in th e sam e

environm ent will get symbolic expression (P a -,Z). The actions in the

in itial environm ent simply get true. This can all be done by the

transla tion program as described in C hapter 6 . The re su lt of th is

process is illustrated in Figure 4.1. Note th a t the length of these

expressions depends on the level of nesting of conditionals th a t occurs

in the program . In m ost program s th is is no t very large, so the

expressions will not be terribly long. It should also be noted th a t such

expressions can be used in two ways - the first is to reason with them

using prepositional logic as will be shown later, and the second is to

use them as names of environments. In m ost cases actions and so on

recognised by the recognition system will ac tually have control

conditions corresponding to the original control environm ents in the

program (i.e. those defined by sequences of tests). In th is case the

relation encloses(A,B) defined earlier can be checked for by simply

checking th a t the expression for A is a prefix of the expression for B

e.g. if A has expression XaY as its controlling expression, and B has

118

testl
P IaX

P IaXaY

P IaXaY

P IaXaY

P I aX

Figure 4.1 S irface Plan Annotated with
Controlling Conditions

119

expression X aY aZ then it follows th a t encloses(A,B) holds. Note also

th a t XaYaZ => XaY holds, and in general

encloses(A,B) <-> Cond(B) 3 Cond (A)

holds. From now on we will treat this as the definition of encloses.

4 .3 Plan Conditions and Control Flow Environments for Plans (Simple

Plans)

Now we will consider how plans are handled. We note first of all

th a t the constraints fall into two categories. The first of these is simply

the collection of d a ta flow co n stra in ts and type inform ation on

operations. These are w hat the parser described in C hapters 5 and 7

actually checks. The second is a set of control flow constraints. These

can be rewritten in the form of relationships between the control-flow

environm ents (and hence the controlling conditions) of the actions

occurring in the plan. There is actually a th ird class of constra in ts

implicit in the com pact notation for p lans which is m ade explicit in

the axiomatic form of the plans - this class consists of a se t of precedes

re la tions between various situations occurring in the plan. These

relationships actually come from the cflow constra in ts, and will be

separa ted ou t a s described below. Finally there is an o th er se t of

constrain ts consisting of conditions th a t the d ata objects m ust satisfy

(e.g. type information). Both of these last two types of constraint will be

assum ed to be checked for by some other m echanism (e.g. when the

parser recognises a plan, the plan will be passed to a theorem prover

to check these other constraints). So from now on we will assum e

when discussing plan recognition tha t the plan does not have any such

constraints or, equivalently th a t they are all true. In Chapter 9 we will

re tu rn to the subject of these other constraints.

120

The general form of the defining axiom for a plan P w ith roles

rolei...rolen is as follows:

VRi...Rn [[T(Ri...Rn) a D(Ri...Rn) a Reqs(Ri...Rn)]

3a[P(a) A rolei(a)=Ri a . . . a rolen(a)=RnlI

where T(Ri...Rn) represents the set of precedes inform ation and type

constraints on data objects, D(Ri...Rn) represents the se t of constraints

on the types of the actions and on the data flows between them , and

R eqs(R i...R n) is the set of control flow constrain ts. Now w hat the

parser actually finds is a set of operations Ai...An such th a t D(Ri...Rn)

holds, and assum ing T(Ai...An) is satisfied, it now has to check th a t the

control flow constra in ts Reqs(Ai...An) are satisfied. Now the roles

R i...R n have an associated set of controlling conditions ci...Cm^. and it

will be shown below how Reqs(Ri...Rn) can be rew ritten in term s of

Cl...Cm- Now the plan instance (i.e. Ai...An) has an associated set of

control-flow environm ents envi...envm . with associated controlling

conditions Xi...]Qn, which satisfy tlie following:

[e n v i ; 6JLf4 X i l a . . . a [e n V n i9 -̂L<- ̂ X m l

Now a plan is only valid if the following holds for it:

Reqs(Ai...An) a [en v i^ tl^ Xi] a . . . a [e n v m ^ ± < r ^ Xml

which simply states that the roles of a valid plan both execute when

they do (as implied by their control-flow environm ents) and m ust

satisfy the requirem ents of the plan. We will refer to th is requirem ent

as the consistency requirem ent for the plan.

 ̂Note that there may be more C| than Rj since some of the roles may be tests or joins, and
these have more than one control flow environment associated with them.

121

So the p arser m ust check th a t the consistency requirem ent

holds for any plan it has tentatively found. It will do th is by checking

th a t a condition, known as the plan condition, is satisfiable for the

plan. If the plein condition is simply true, then the plan is valid and

satisfies the consistency requirem ent. If the p lan condition is no t

satisfiable (i.e. the plan condition is always false for Ai...An) then Ai.. JVn

cannot be the roles of a valid plan. If the plan condition is neither

simply true or false, then we have recognised a p lan conditionally. If

the p lan is ‘executed’ under circum stances when the plan condition is

no t tru e then, although (some of) the actions have been carried out,

th is execution instance cannot be regarded as an execution of the

plan, b u t merely as the execution of (some of) its components. If on the

other hand it is executed’ under circum stances which m ake the plan

condition true, then under these circum stances we can regard it as the

execution of a valid plan.

For th e m om ent we will assum e th a t th e p lan s we are

considering are simple i.e. they have a t m ost a single te s t/jo in (cond)

in them . More complex plans will be d iscussed la ter. The p lan

condition for a simple plan is very simple to construct. Suppose we

have a p lan w ith action roles R i...R n w ith corresponding control

conditions ci...Cni, and control flow requirem ents Reqs(Ri...Rn). Note

th a t the ci...Cm represent variables which denote whatever the actual

controlling conditions may be w hen a p lan is recognised in the

program. Figure 4.2 illustrates this convention for trailing-generation-

and-search. Now Reqs(Ri...Rn) always consists of the conjunction of a

se t of control flow requirem ents. These are all of the form (although

later we will introduce other forms):

cflow(s,t)

122

.previous .exit.if.crlterion .actlon.op

w jr
@function|

.current

Q \ f V
©predicate

E l

U I I

OÜÜDÜÜÜO

V
join-outputs

W

\ f \ f

P. Q. R. S. T, U, V, and W are variables
denoting actual controlling conditions

when the action roles are matched
against actions in a program

Figure 4.2 Trailing Generation and Search Rule
Illustrating Variables Denoting Cnntrnlling

Conditions

123

where s and t are input or output situations of some of R i...R n. This

means:

precedes(s.t) a [s ^ l <-> t?t_L]

As discussed above precedes(s,t) is bundled in w ith T(Ri...Rn), so we

are left with:

[s^l <-> t^tl 1

From our definition of control-flow environm ents and controlling

conditions, we know th a t [s^± => t;&_L] if and only if Cond(s) => Cond(t),

and as a resu lt (s^tJ. <-> t ^ l] if and only if Cond(s) <-» Cond(t). This

enables u s to express all the control flow con stra in ts in te rm s of

controlling conditions.

So all the constraints are of the form:

Cl Cj

and the plan condition is simply the conjunction of all of these coming

from Reqs(Ri...Rn). Now when an actual plan is found by the parser, we

get actual roles Ai...An m atched against the roles R i...R n of the plan

definition. These roles have actual control conditions Xi...Xm m atched

aga inst ci...Cm in the rule. The plan condition for th is actual plan

instance is therefore the plan condition for the rule, with ci...Cm

substituted for by Xi...!5Qn- It is this substitution which guarantees th a t if

a role executes in a plan when the plan condition is true th en the

req u irem en ts for th e role are sa tisfied , an d th a t w hen the

requirem ents are satisfied then the role will execute. We will now

illustrate this by example.

124

Consider the abs plan^ given below:

Temporal Plan abs
Roles .if[@binrel) .end(join-output) .action(@fimctioii)
Constraints .if.op=less .if.two=0 .action,op=neg

.action.input=. if. one

.end.fail-input=.if.one

.end. succeed -input=. action. output
cflow(.if. succeed, .action.in)
cflow(.action.out, .end.succeed)
cflow(.if.fail, .end.fail)

In the axiomatic formulation of the above p lan the control flow

constraints tu rn into:

precedes(.if.succeed,.action.in) a [.if.succeed^tl <-> .action.in^tJ.]

precedes(.action.out, .end.succeed) a [.action.out;&_L 4 4 .end.succeed^tJ.]

precedes(.if.fail,.end.fail) a [.if.fail^^l <-> .end.fail^^l]

As m entioned earlier, the precedes part of these will be dealt w ith

separately, and the rem ainder are equivalent to assertions abou t the

contro lling conditions for the associa ted s itu a tio n s i.e. if the

controlling condition for .if.succeed, .if.fail, .end.succeed, .end.fail, and

.action, are Csucceed. Cfaii, Jsucceed. Jfail and A respectively, then the

above tu rns into:

[^succeed <-> A] a (A <-> Jsucceed 1 ^ [Cfail <-> Jfail 1

which is the plan condition for this plan.

The associated rule (viewed as a graph) is shown in Figure 4.3.

Now consider the surface plan shown in Figure 4.4. A ssum ing the

parser has m atched all the roles of the plan rule against the surface

^ This is essentially the plan as given in Rich[1981). Later on we will show that the
control flow constraints are actually much stronger than is necessary since they
prevent us from recognising valid variants of the plan. This is true for most of Rich’s
plans, and we will discuss the conditions under which they can and should be weakened.

125

'Cln

Csucc
CfaÜ

îmctionlA

JCail Jsucc

out

Figure 4.3
Abs Rule

PaX

iinction lP A X

PaX

Figure 4.4
Abs Surface Plan

@binrel

PaX

PaX

Figure 4.5
Abs Surface Plan
With Neg Before

Conditional

126

plan and checked th a t all the data flows are satisfactory, then we have

the following values for the controlling conditions in the plan:

A P a X

Csucceed P A X

Cfail P a -hX

Jsucceed P a X

Jfall P A ^

Cin P

Jout P

Substituting these into the plan condition gives us the following:

[(P A X) (P A X)] A [(P A X) (P A X)] A [(P A -iX) W (P A -nX)]

w hich reduces to true. This m eans th a t the p lan is com pletely

satisfactory . Now suppose the program being analysed had the

following piece of code in it:

y:= -x;

if x<0 then
z:=y

else
z:=x;

corresponding to the graph shown in Figure 4.5. The p arse r will

tentatively recognise this as an instance of the abs plein on the beisis of

the d a ta flows, and then will proceed to evaluate the p lan condition.

This time we get the following values for the controlling conditions in

the plan:

127

A P

Csucceed P a X

Cfall P A-nX

Jsucceed P a X

Jfall P a - tX

Cln P

Jout P

and substitu ting these into the plan condition we get:

[(P A X) P]1 A ICP A X) P] A I(P A -nX) (P A -nX)]

which after simplification reduces to:

P=>X

Up until now we have been talking about plans ‘executing’ as if it was

the plans we were interested in. Of course this is not quite accurate - it

is the operations implemented by plans th a t we are really interested

in. The sw itch of viewpoint from p lans to operations is done by

overlays. So suppose we had an overlay abs->absop (say), which took u s

from the abs plan to some operation which re tu rns the absolute value

of its input. These could have been defined as follows:

lOSpec absop /.input(in teger) => .output(lnteger)
Postconditions .output=absolute-value(.input)

TemporalOverlay abs->absop
Correspondences absop.input=abs.if.one a absop.output=abs.end.output
______________ A absop.in=abs.if.in a absop.out=abs.end.out_________

This tells u s w hat the inpu t and ou tpu t situa tions of the a b so p

operation are in term s of situations in the abs plan In controlling

condition term s it tells us th a t the controlling condition for the absop

128

operation is the same as tha t of the test and join in the abs plan, in the

case of valid plans.

However, in this case discussed above we have a conditional plein.

W hat are its input and output situations, and w hat is its controlling

condition? The general answer to this is as follows:

Suppose we have a plan instance P, and an overlay P >@ with the

inpu t situation of P given by sp, and outpu t situation given by tp, and

the controlling condition of 9 given by Cond(env(sp)) in the case of a

valid plan. Then, for a plan instance P with condition C, we define:

{sp if Cond(env(sp))AC h o ld s
U otherwise

and similarly for out(Q). In other words we regard the input situation of

9 as being equal to JL if either the input situation given by the plan is ±,

or the plan condition does not hold. Note th a t for valid plans i.e. those

whose plan condition is true, this ju s t simply reduces to the original

definiUoii.

It should also be clear from the above th a t the controlling

condition for 9 is simply given by:

Cond(env(sp))AC

This is interpreted as meaning th a t a conditional p lan executes in a

generalised control flow environment, whereas a valid plan executes in

a norm al (non-generalised) control flow environment.

Now, returning to the abs example where the plan condition was

P z> X, the controlling condition for the absop operation is therefore

given by Pa(P z> X). This reduces to:

PaX

129

This implies th a t we have recognised the plan provided it executes in

an environm ent in which both P (whatever it is), and X (i.e. x<0) are

true i.e. we have recognised the plan bu t only th ink it works when x is

negative. Clearly, we would have hoped to recognise th is as an abs plan

in environm ent P, since th is is actually w hat th e code does. The

problem here, however, is not the generalised control flow m achinery

we have set up. For suppose we had a similar plan involving a square

root operation, and the plan specified th a t th is happens on the x>0

side of the test. If the programmer had actually w ritten code in which

the square root operation appeared before the te s t th en th is code

would clearly only work conditionally (i.e. provided x >0). So the

recogniser is actually only doing what it should. The problem in the abs

case is th a t the abs plan is actually over-specified. It insists th a t the

negation operation happen inside the conditional, w hereas th is is not

essential since the test is not actually setting up a precondition of the

operation, unlike the square root case. The problem is th a t in Rich’s

[1981] plan library cflow is used for all control flow constraints, and

th is is too strong a constraint.

4 .4 Generalised Cflows

In order to enable u s to express weaker control flow constraints

th an ju s t cflow, we define the following:

sctlow(s,t) = [s#_L =) t?t± J

and

ncflow(s,t) = [t#± 3 1

and

pcflow(s,t) = precedes(s,t) a ncflow(s,t)

130

The in terpretation of these is th a t an scflow constra in t between two

situations m eans th a t s is sufficient for t i.e. if s is reached then t m ust

be reached (or have been reached) as well, b u t places no constraints on

w hether or not s is actually reached if t is reached. On the other hand,

an ncflow constraint tells us th a t s is necessary for t i.e. t cannot occur

un less s occurs, b u t places no constra in ts on w hether or no t t is

actually reached if s is reached. A pcflow constra in t between two

situations s and t tells us tha t s is necessary for t, and th a t s m ust occur

before t.

We note first of all th a t cflow(s.t) is equivalent to

scflow(s,t) A pcflow(s,t)

and th a t Rich uses cflow constraints everywhere in his p lans w hen

there is a data flow between two actions in the plan, or when an action

occurs on one or o ther side of a testi In troducing the w eaker

constra in ts scflow and ncflow enables us to be less restrictive w hen

expressing plans. When there is a data flow between two actions A and

B such th a t A produces a value used by B, and A and B are expected to

be in the same control flow environment, then we should use a cflow

constrain t as Rich does. However, if there is a d a ta flow between two

actions A and B such tha t A produces a value used by B, b u t B could be

in a different control flow environment from A. (as is usually the case

with an action feeding its outpu t to a join) then a pcflow constra in t

should be used, since we w ant to express the fact th a t for B to execute,

A m ust execute first. If we wish to express th a t if some condition is

satisfied th en we w ant to perform some action, then an scflow

constraint should be used, and if we wish to express the fact th a t some

action should be performed if and only if some condition is satisfied

then we should use both an ncflow and an scflow constraint. So, in the

131

square root example above we need an ncflow and an scflow constraint,

b u t in the abs example we only need an scflow constraint. It should be

noted th a t th is m eans th a t all constraints can be written in one of the

two forms:

Az)B or Af->B

So, suppose the abs plan is redefined as follows:

Temporal Plan abs
Roles .ifl@binrel) .end(join-output) .action(@fimction)
Constraints .if.op=less .if.two=0 .action.op=neg

.action.input=.if.one

.end.faÜ-input=.if.one

.end.succeed-input=.action.output
 ̂ scflow(.if. succeed,.action.in)

cflow(.if.succeed, .end.succeed)
pcflowf.action.out, .end.succeed)
cflow(.if.fail, .end.fail)

then we get the following plan condition:

[^succeed 3 A] a [Jsucceed ^ A] a [Jfall < ̂,Cfaii J a [Csucceed ^ Jsucceed 1

Now w hen m atching against the graph in Figure 4.5 we still get the

sam e values for the control conditions in the plan i.e.

A P

Csucceed P a X

Cfall P a - X

Jsucceed P a X

Jfall P A ^

Cln P

Jout P

[Csucceed ^ A] a [Jsucceed ^ A] a [Jfaii Cfail 1 a [Csucceed ^ Jsucceed Jbut

when we substitu te these into the plan condition we get:

132

[(P A X) 3 P] A [(P A X) 3 PI A [(P A -X) (P A -nX)]

A [(P A -X) (P A -nX)]

which simplifies to true. So we have correctly recognised the plan as

being valid (and unconditional).

4.5 More Complex Plans and their Plan Conditions

So far we have only discussed plans with a t m ost one cond inside them.

Constructing the plan condition for a more complex plan, i.e. one with

more than one cond, is similar, b u t more complicated. Consider the

rule shown in Figure 4,6, and suppose its control flow constraints are
given by:

P 3R A

Q=>S A
T 3V A

U 3M a

K3V A

L 3 M a

T<->K A
TJ<-̂ L A
P<-XJ A

J 3R

Now we analyse th is set of constraints, and break it up into disjoint

su b se ts such th a t each subset is a maximal se t of m utuallv in te r

dependent constraints. By this is m eant tha t each subset S satisfies the

following two properties:

(1) For each constraint C in S, all other constrain ts involving

either of the two variables in C are also in S, and

(2) S cannot be broken down any further into subsets satisfying

property (1).

133

testl

test2

H mR

Figure 4,6
A Multiple Cond

Rule

The nested "sub
plans" shown
contribute to the
plan condition for
the rule as
described in the
text.

Figure 4.7
Rule With Nested Sub-Plans

134

So, for the above rule, the maximcil m utually in ter dependent subsets

are:

{P3R, J=)R, P<^J} {Qz>S} {ToV, Kz>V. T<^K} {U=>M, LoM .UoL}

T hese su b se ts essen tia lly correspond to d ifferent contro l flow

environm ents w ithin the rule. They correspond to constra in ts which

m ust be satisfied in each environment. Now although these subsets are

in d ep en d en t in te rm s of the variables involved, they are no t

in d e p en d en t in th e sense th a t the env ironm ent of a te s t is

“responsible” for setting up conditions so th a t the constrain ts in each

sub-branch of the te st are satisfied. So, in th is rule (Figure 4.6), there

is a condition imposed on test2, namely that:

S A (T<->V A V<->K A T4“>K) a a a U < - > L)

should hold. This is equivalent to regarding the test test2 as being part

of a sub-p lan w ith its own plan condition, and the above expression

gives the true generalised controlling condition for th is test. Note how

the ex tra p a rts of th is condition come from the su b se ts of the

co n s tra in ts corresponding to T and U, i.e. the fail and succeed

environm ents of the test. If th is condition does no t hold a t the te s t

then we cannot be sure th a t the constraints for the branches of the

test will be satisfied when the plan executes.

This m eans th a t the constraint Qz>S should really be:

Q=>[S A (T<^V A V<->K A T<^K) A (U<->M a M<^L a U<->L)1

So conditions in p lans should really be propagated up the p lan as

implied in Figure 4.7. This m eans tha t the plan condition for the rule

above is:

135

[Pz)R A Jz)R A Pe>J]

A [Qz3[S A (T<->V A V<->K A T<->K) a (U < - > M a M < - > L a U < - > L)] J

We will re tu rn to this example towards the end of the chapter.

4.5 The Collapsing Operation

W hen a program m er has m ade un fo reseen op tim isa tions

involving sharing p arts of two or more p lans in th e ir code, the

resulting surface plan can be different from w hat one might expect. An

example is shown in Figure 4.8, where the programmer has decided to

implement a plan given by rule a) in the figure, using rules b) and c) to

im plem ent the subplans, which should give rise to the plan d) as a

resu lt. However the program m er has realised th a t th is involves

redundan t com putation and has implemented the plan as graph e). A

theorem proving system based on the formal sem antics of the plan

calculus would have no problems with this, since there is nothing in

the axioms to prevent such sharing (we would ju s t end up deducing

th a t the two sub-plans have the same inpu t situations), b u t a graph

recognition process might. Discussion of how th is is dealt with will be

delayed until the next chapter where a parsing algorithm for flowgraph

gram m ars will be presented which explicitly allows such sharing.

Indeed the parse r would have to go to quite a lot of trouble (by

im plem enting w hat we have called the no-sharing check) to prevent

th is from happening. The main point to note here is th a t th is sharing

of sub-parts of plans is allowed by the underlying plan calculus, th u s

justifying our use of a parser which also allows it.

On the other hand, the case where the programmer has failed to

make optim isations assum ed by the plan library (i.e. a plan involves

some action feeding its output(s) to more th an one place, b u t the

programmer has duplicated the action instead) is more problematical.

136

a) — X

b) D

c) B E

d)

e)

Figure 4.8
Structure Sharing

137

An example is shown in Figure 4.9(a). This shows the case where a

program m er has performed some action twice in the program , when

they could have performed it only once, as shown in Figure 4.9(b). An

example in code might be:

y:=f(a)+c;

z:=f(a)+d

We w ant first of all to recognise tha t an action has been repeated,

and secondly to realise tha t this is equivalent to:

w:=f(a); /*f has no side effectsll*/
y:=w+c;

z:=w+d

W hat th is am ounts to is the need to recognise graphs like those in

Figure 4.9 as equivalent. Doing th is really am ount to identifying the

duplicated actions and their outputs, and operations for which this can

be done will be called collapsible.

Now it m ight be wondered why this is an issue. Why can 't all

operations with the same inputs be collapsed? The issue is not even

th a t we have specified th a t f has no side effects, for if it did it would

have as inpu t some of the m utable functions, and would ou tpu t new

values for some of these. In this case the second occurrence of f would

have different inpu ts , so the com m ent w as really for clarity of

exposition. It tu rn s ou t th a t in fact m ost operations w ith the same

in p u ts can be collapsed, b u t no t all. The problem can be seen by

considering Figure 4.10. The point here is th a t even though the two

138

a) P rogram

b) Rule

Figure 4.9
Program With Unnecessarily

Duplicated Actions

Two I set
Rules I find!

find I and I set
firsti I find I

A.
set set
find find

A graph tha t
should not be
collapsed

Figure 4.10
The set-find example

139

se t-fin d operations^ have the same inputs, their ou tpu ts are not the

sam e value, since one has been implemented by a find-first operation,

and the other by a find-last operation®. The point here is not th a t we

have to worry about w hether or not two operations th a t we wish to

collapse have been implemented by the same underlying plan or not,

since th is would be unnecessarily restrictive. For in stance it would

prevent us from recognising th a t the o u tp u ts from a bubb le-so rt

procedure and a merge- sort procedure were the sam e if the two

procedures received the same inputs. The real problem with set-find is

th a t it is not determ inistic i.e. its definition tells u s w hat properties its

ou tpu t satisfies, and guarantees tha t such an object exists, b u t does not

tell u s which object it actually is, since there could be many. Hence one

possible implementation, using a list to represen t the set, could find

th e firs t elem ent of the list satisfying the relevant property, and

ano ther im plem entation, could find the la s t elem ent satisfying the

property. Since these objects are different, we cannot identify the tie-

points representing them.

It follows from this th a t the only operations which are collapsible

are the deterministic ones i.e. those which, given a se t of inputs to the

operation, have uniquely determ ined ou tputs. To m ake th is precise

consider an operation op, whose specification and corresponding

axioms (rewritten in term s of controlling conditions) are of the form:

lOSpecop in i(B i)...inn(B n) => outi(C i).. outm(Cm)
Preconditions lepre(ini inn)
Postconditions leppst(ini,... ,in n .o u ti,... ,outn)

and

® We are treating sets here as If they were bags i.e. they are allowed to contain repeated
elements.
® find-first and find-last are not plans currently in the library. They are fictional plans
with suggestive names to illustrate the problem.

140

Vap [op (a) A op(P) A ini(a)=ini(P) a . . . a inn(a)=inn(P)
A outi(a)=outi(p) A ... A outtn(a)=outm(P)
A in(a)=in(p) a out(a)=out(P)] z) a=P]

Vxi...Xnyi...ymStI [precedes(s,t) a [Cond(s) <-4 Cond(t)]
A [Cond(s) 3

[t;6_L A B i(x i,s) ^ undefined
A ... A Bn(xn,s) undefined

A C i(y i,t) # undefined
A ... A Cmfym.t) ^ undefined

A lepre(Bi(xi,s),...,Bn(X n,s))
A lep ost(B i(x i,s),...,B n (X n ,s),C i(y i,t) Cmfym.t)) 111

<-> 3a [op (a) A in(a)=s a out(a)=t
A ini(a)=xi a . . . a inn(a)=Xn

______________________ A outi(a)=yi A ... A outni(a)=yml 1______________

where lepre and Icpost represent the logical expressions m aking up the

pre- and post conditions of the operation. We say th a t th is operation is

determ inistic if and only if the following condition holds:

There exist functions fi,...,fm such th a t

V(xxi...xnyi...ymst[1 op(a) a in(a)=s a out(a)=t
A ini(a)=xi A ... A inn(a)=xn
A outi(a)=yi A ... A outm(a)=yml ^

I C i(y i,t)= fi(B i(x i,s) Bn(xn.s))
A ... A C m (y m ,t)= fm (B i(x i,s),...,B n (x n ,s)) 1

In other words, there is a pure functional relationship between the

inpu ts and the outputs to an operation. It should be noted th a t th is

functional re la tionsh ip can be either im plicit or explicit in the

operation definition. Obviously, those where it is explicit are easier to

recognise, b u t even where it is implicit it is still a logical consequence

of the definition. Accordingly, we can pre-analyse the plan library and

work ou t w hich operations are determ inistic. To show th a t the

co llapsing operation is ju stified u n d e r the p lan ca lcu lu s for

determ inistic operations, consider Figure 4.11, which shows two

141

t î 4 4 ... t;.

. o I . o I j o I x o l
1̂ ^ 1m

j.o2 io2i.o2 xo2
1̂ ^

Figure 4.11
Two Instonres of op operation

t3 t4

t2 c2

^lvc2

t l c3 clvc2

'clvc2vc3

c4 clvc2vc3

clvc2vc3vc4

can be
replaced by

t l t2 t3 t4

4jc3|c21<^

clvc2vc3vc4

t5

15

Figure 4.12
Cascades of Joins

142

instances o p l and op2 of an op operation, w ith common in p u t tie-

points. Bearing in mind (from the earlier discussion of tie-points) th a t

(refer to Figure 4.11 for the notation)

t»i = B 1 (in 1 (op 1) ,in(op 1)) = B i(ini(op2).in(op2))
A ... A t*n = B n (in n (op l),in (op l)) = B n (in n (op 2),in (op 2))

A t°^i = C i(outi(opl),out(opl))
A . . . A to^m = Cm(outm(opl),out(opl))

A t°^i = C 1 (out 1 (op2), out(op2))
A . . . A to^m = Cm(outm(op2),out(op2))

we can deduce th a t

to i 1 =t°^ 1 =f 1 (t̂ 1,..., t*n) A
t° 12=t°^2=f2 (t̂ 1, .., t^n) A

t° 1......t*n)

so the ou tpu t tie-points of the two operations can be identified. Using

to ij to stand for both to^i and t°2j, we can go fu rther tlian this, and

actually replace the two operations by a single one. Since we are

dealing with actual instances of an op operation we can deduce :

[Cond(in(opl)) =>
[t*i ̂undefined a . . . a t^n ̂undefined
A to ll ̂ undefined a ... a toim ̂undefined
A lepre(t* 11...,t*n)
A lepost(t*l,...,tln,toh,...,tolm) 11

and

[Cond(in(op2)) z>
[th ̂ undefined a . . . a t*n undefined
A toi 1 undefined a . . . a toim ̂undefined
A lGpre(t*l*
A lCpost(t ̂1,... , t *n, ^ 1, - ,to ig)̂ 11

143

from which it follows that^:

I [Cond(opl) V Cond(op2)l =>
I t^i ̂ undefined a . . . a t*n ̂undefined
A to il undefined a . . . a to i^ ̂undefined
A lepre(t^li’*-.t^n)
A lCpost(t^l, 11

Now suppose th a t we define two new situations s i and s2 as follows:

81 =minprecedes(in(op 1) ,in(op2))

s2=m inprecedes(out(op 1), out(op2))

where minprecedes(s.t) is simply the earliest (according to precedes) of

s and t (or either of them if they are equal). Clearly,

sl?fc± o (Cond(in(opl)) v Cond(in(op2))]

s2^1 <-> [Cond(out(opl)) v Cond(out(op2))]

from which it follows th a t the controlling condition for s i and s 2 is

[Cond(in(opl)) v Cond(in(op2))]. In other words s i and s2 occur in

th e g en e ra lise d co n tro l flow en v iro n m en t d e te rm in e d by

[Cond(in(opD) v Cond(in(op2))]. Additionally, the following is true of

s i and s2 :

p re c e d e s (s l,s 2)

Accordingly, we can deduce (from the axioms for op) th a t there exists

an instance of the op operation with input situation s i , ou tput situation

s 2 , in p u ts and ou tpu ts the same as op l and op2 , and controlling

condition given by (Cond(in(opl)) v Cond(in(op2))J. Furtherm ore, th is

new instance actually implies the existence of the original two. and so

can replace them. Since the ‘tru e ’ in terpretation of the graph for . a

program is really the set of axioms for the operations and control and

 ̂We are using the identity [A 3 C] a [B C] = [(A v B) 3 C]

144

d a ta flows between them , and the axioms obey the u su a l ru le of

substitutivity, we see tha t we can therefore use either of t^^i or t°^i (for

any l<i<m) anywhere they occur in the axioms. In p articu lar th is

m eans th a t we can connect anything th a t was connected to any of the

o u tpu ts from op2 , to the corresponding ou tpu ts from o p l instead ,

w ithout changing the semantics of the graph. So whenever we have two

operations of the same type with the same inputs we can replace them

by a single operation with the same inputs, the sam e ou tpu ts , and

controlling condition equal to the d isjunction of the controlling

conditions for the original two operations. T hus, the collapsing

operation performed by the parser described in the next two chapters

h as a sound formal justification, rather than ju s t being a “hack”.

4 .6 Generalised Joins

Before we can dem onstrate how all of th is is p u t to use, we need

to deal with a problem caused by joins. Joins are ra ther strange entities

since they represen t no real computation, b u t are merely presen t to

rejoin diverging control flows and to give us a single tie-point in d a ta

flow graphs to represent the several values th a t an object could have

depending on which way the computation went. Thus they are really an

artifact of the representation we are using. In principle we could take

any two disjoint situations (i.e. two situations s and t such th a t [s^± <r>

t=_L]), and tie-points representing values in those situations and add a

jo in w ith these tie-points as inpu ts, and a new o u tp u t tie-point

rep resen ting the value of the inpu ts in both situations. Note th a t

add ing su ch a jo in sim ply adds new axiom s to the axiom atic

representation of the program - it does not involve changing any of the

existing axioms or situations in any way. It tu rn s out th a t we will often

need to add such joins.

145

It actually tu rns out to be useful to define a more general notion

of jo in . Let u s define an n -jo in -o u tp u t by the following schem a,

modelled on the definition for join-output given in Chapter 3.

Jo fn n-join-output / .inputi(object)inputn(object) s>.output(object)
Postconditions [succeedi(n-join-output);&l =) .output= .inputil

» * •

A [succeedn(n-join-output)?tl 3 . output= .inputnl

In th is schem a succeed 1 ...succeedn represent n inpu t situations. This

is converted to the following axiom schema:

VaP([n-join-output(a) a n-join-output(P)
A succeed i(a)=succeedi(p)

• • •

A succeedn(ot)=succeedn(p)
A out(a)=out(P)
A inpu t 1 (a)=input 1 (p)

«

A inputn(a) =inputn(P)
A output(a)=output(p)l =) a=p]

and
Vwxi...XnSti...tn[[[nonei(ti...tn) v ... v nonen(ti...tn)l

A [ti9t± 3 [s=ti A w=xi)]
• • •

A [tn^l =) [s=tn A w=Xnll 1

<-4 3a[n-join-output(a) a out(a)=s
A succeed 1 (a) =ti

A -

A succeedn (a)=u
A output(a)=w
A inputi(a)=xi

A . . .

A inputi(a)=Xn]]

146

where nonei(ti...tn) is defined by^:

nonejft][...tn) — t%—-L a . . . a h-% —_L a tj+i— a . . . a tn”-f

For an n-join-output the input controlling conditions ci . Cn are simply

those of the corresponding in p u t s itua tions, and the controlling

condition of its output situation is given by:

C l V . . . V Cn

Now in the surface plan for a program, as well as in the ru les in the

library, “cascades” of jo in s like those shown in Figure 4.12 will be

replaced by single n-joins as shown in the figure. Furtherm ore, if the

parse r is looking for a jo in with known in p u ts and know n in p u t

controlling situations, and it cannot find a jo in w ith these inpu ts and

these controlling situations then it will simply introduce one as th is

has no effect on the interpretation of the program. To do th is it will

crea te a new tie-poin t representing the o u tp u t of the j o in (i.e.

representing the ‘merged’ data values). It will also sometimes tu rn out

th a t the parser will be looking for a join like th a t shown in Figure 4.13.

In th is case it can deduce tha t the output tie-point is actually the same

tie-point as the inputs.

One last point needs to be made here. There is a special form of

the collapsing operation applicable to joins. The situation in which this

a r ise s is sh ow n in Figure 4 .1 4 w here the i^h in p u t to an n -jo in is the

sam e as the jth inpu t to an m -jo in . Then, provided th a t the ith

contro lling condition ci of the first jo in and the jth con tro lling

condition dj of the second join satisfy:

Cl <-> d j

® Strictly speaking we ought to wony about the end cases of i=l and i=n in this
definition, but given that the meaning is clear, it will be left as it is.

147

c2
A
1

c l Figure 4.13 A Join With Identical Inputs
lvc2

s i s2 sm

62 dmcn

c 1 vc2 V . .. vciv... vcn dlvd2v...vdjv...vdm

tl t2 tl tn s i s2 sj-1 sJ+1 sm

c l c2 ci cn dl d2 ij-1 ij+1 dm

c 1 vc2v... vciv.. .vcn
vd 1 vd2v... vdj-1 vdj+1V.. .vdm

Figure 4.14 Join Collapsing

148

then we can collapse the jo in into an (m +n-l)-jo in as shown in the

figure, provided that:

(c i V . . . V C i-i V C i+ i V . . . V Cn) - • (d l V . . . V d j - i V C j+i v . . . v d m)

i.e. provided they are all disjoint.

4.7 Complex Examples

Now we are in a position to dem onstrate the power of all th is

m achinery for control flow condition m anipulation, and s tru c tu re

sharing and collapsing (and in the next two chapters we will describe a

parser th a t can do both of these).

Consider the rules shown in Figure 4.15 (we have omitted data

flow arcs for clarity). These correspond to clichés which could have

been coded (schematically) as follows:

F if te s tl then B else C

G if te s tl then D else 0

Z if test2 then F else G

resulting in code for Z:

if test2 then
if te s tl then B else C

else
if te s tl then D else C

This would have resulted in the graph shown in Figure 4.16, and this

would have been easily recognised. However suppose the programm er

had optimised their code into the following:

if te s tl then
if tests then B else D

else
C

149

Plan Condition for Both X and Y
(U<->Q)A(Vf̂ R)A(Q=>S)A(Ui3S)A(R=>T)ACV3T)

f .

s | s ^ J ^ l r

i
te s tl

r 7
Rule for F Rule for G

i
te sts

u

f
V

Rule for Z

Plan Condition for Z
(U<^Q)a(V<->R)a(Qz>S)a(U3S)a(Rz>T)a(Vz)T)

Figure 4.15
Rules for F. G. and Z

150

PIa X

1a X
testl te s tl

p l A - « X a - ' \ PIa XaZ
PIa Xa

P I a X a PIa XaZ

jIa-̂ XaYplA -> Xa -• Y PIa XaZ

PIaX

Figure 4.16
Unoptimised Graph

V. ' ' " y T ' ' % - x -7" - % - - - - .- v ' ■ ' ; ; '

151

Even people have to th ink quite h ard to recognise th is as

equivalent to the earlier code, and this is reflected in the difficulty of

seeing th a t the surface plan for this code, shown in Figure 4.17, is not

only equivalent to th a t shown in Figure 4.16, b u t h as been derived from

the sam e clichés. We will now show how the notion of generalised

control-flow environments enables this.

Figure 4.18 shows the situation after the p arse r h as found

suitable operations satisfying the data flow constra in ts (which we have

not shown). It then evsiluates the plan condition, using the following

substitutions:

p PI
9 PIa^
R PIaX
S PIa-X
T PIaXaY
U PlA-iX
V PIaX
W PI

The plan condition for the rule for F is:

(U<->Q)a(Vo R)a(9 z>S)a(U3S)a(Rz>T)a(Vz>T)

After substituting the above values and simplifying we get:

(P1aX)3Y)

which gives u s (assuming the input situation of F is given by the input

to the test):

P Ia(-lXvY)

152

PIaX

• \ p 1aX

- / ^ D i a X a y

X a-.Y | I |P 1 aX/

PIaX

Figure 4.17
Optimised Graph

153

t c s t i

- p I p pi/yC\Ÿ-

Figure 4.18
F Found In Optimised Graph

154

for its controlling condition. Notice how th is confirms the in tu ition

th a t th is plan works if te s tl fails(-iX), or if test2 succeeds(Y), b u t not

otherwise.

In a similar fashion a candidate G plan is found (Figure 4.19), and

th is time its controlling condition evaluates to:

Pl'^(-tXv-.Y)

Now the parser is essentially in the position shown in Figure 4.20.

Suppose it has found th a t test2 and the F gind G plans ju s t found satisfy

the d a ta flow constra in ts needed. Then it will be in the position of

looking for an appropriate join (as required by the rule in Figure 4.15).

However, there is no such join in the program, since the data ou tpu ts

(which we have not shown) of both the F and G p lans are the d a ta

o u tp u ts from the 3-join in Figures 4.18 and 4.19. However, we are

effectively looking for a join like th a t shown in Figure 4.20, where the

inpu ts on both sides of the join are the same. The plan condition for

th is rule for Z is also:

(U<^Q)a(V<^R)a(Qz>S)a(U3S)a(R=>T)a(V=>T)

and so far the substitutions are:

p PIaX
9 PIaXa- iY
R PIaXaY
S P Ia(^ v- iY)
T P Ia(-X vY)
U ??
V ??
W ??

In th is situation, where the parser is looking for a jo in to jo in the

o u tp u ts from two (or more) operations, and cannot find one in the

program it can ju s t add one with input conditions equal to the input

155

P IaXaY

• p I a ' ~ » X - t p l A ^ ^ Y I p i A X A ? !

Figure 4.19
G Found In Optimised Graph

156

tcst2

Looking for a join
like this

Figure 4.20
Trying to Find a Z

157

conditions of the corresponding brsinches of the tests in the plan. As

stated earlier this cannot alter the behaviour of the graph. In this case

this would result in:

U PIaXa- iY
V PIaXaY
W (P1aXa^Y)v(P1aXaY)=P1aX

Before continuing with the analysis, it should be noted that the input

data objects to this join are identical, and hence the output is the same

as the output from both of the two sub-plans.

If we make these substitutions into the plan condition

we get:

((P1aXa-.Y)<^(P1aXa-,Y)) a ((P1aXaY)<^(P1aXaY))

A((PlAXA-.Y)=>(PlA(-nXv-.Y))) A ((P1aXa^Y)z>(P1 A(-nXv-iY)))

A((PlAXAY)n(PlA(^vY))) a ((P1aXaY)3(P1a(^vY)))

which simplifies to:

true

giving us:

PIaX

for the controlling condition of the Z operation (since PIaX is the

controlling condition of its input situation which is the input situation

of the Y test). First of all note that although the components of this

were conditional, the environment in which it is finally recognised

(PIaX) together with the test involved, actually imply the conditions of

all the sub-plans, so it has ended up unconditional and can execute*

within a normal non-generalised control flow environment.

This is good, but not quite what was hoped for, since although we

have recognized that there is a Z in the program, it is within the

158

conditional (X test) ra ther than being a t “top-level”. However, we can

do better th an this. Suppose the input tieipoints (which we have not

shown) to the Y -test come from before the X -test in the original

surface plan. The test Y is really testing w hether some condition holds

of various data objects, so it is really checking w hether some condition

C(Bi(pi,in(Y)) Bn(pn.hi(Y))) holds or not, where p i pn represen t

the d a ta objects involved and in(Y) represents the inpu t situation to the

Y test, and B i,...,B n represent the relevant behaviours of the objects

pi . - - . pn- Saying th a t inpu t tie-points come from before the te s t (say

from situation in(X)) means that:

B i(pi,in (Y))=B i(p i,in (X)) a . . . a Bn(pn,inCY))=Bn(pn.in(X))

This m eans tha t the condition C satisfies:

C(B 1 (p 1 ,in(X)).....Bn(pn.in(X)))=C(B i (p i ,in(Y)),... ,Bn(pn.in(Y)))

Now suppose we define a situation Ssucceed by:

_ fin(X) if C (B i(p i,in (X)) Bn(pn.in(X))) h o ld s
Ssucceed- otherwise

and define another situation Sfaii by:

_ fin(X) if-.(C(Bi(pi,in(X)) Bn(pn,in(X)))) holds
[1 otherwise

Now th e s itu a tio n s in(X), Ssucceed , and Sfaii. and th e condition

C(Bi(pi,in(X)),...,Bn(pn,in(X))) satisfy the axioms for tests, from which

we can deduce th a t there exists a test with inpu t situation in(X), and

succeed and fail situations given by Ssucceed. and Sfaii, and with

condition C(B i (p i ,in(X)),... ,Bn (pn ,in(X)))=Y. So we have deduced the

existence of a Y test, with controlling condition PI (the sam e as the X

test); Note th a t th is test has the same inputs as the original test, so will

still satisfy the d a ta flow constraints th a t the original te s t satisfied.

159

Under m ost circum stances this is not a particularly useful deduction to

make, since plans involving this new test are usually ju s t “pulled back”

into where they would have been had we not m ade the deduction by

the controlling conditions of the other actions in the plan. However, in

th is case, when we use th is test, with the F and G plans found earlier

we get the substitutions:

P P I
Q PlA-nY
R P IaY
S PI a(—iXv—iY)
T P I a(^ vY)
U P I a-hY
V P IaY
W (P1a-,Y)v(P1aY)=P1

giving u s the plan condition:

((P1a-.Y)<^(P1a-.Y))

a(P1aY)<^(P1aY))

a((P1a-,Y)z>(P1a(-.Xv-,Y)))

a((P 1 a-.Y)3(P 1 a(-.Xv-.Y}))

a ((P1aY)z>(P1a(-iXvY)))

a((P1a(-.XvY))d (P1a(-.XvY)))

which also reduces to:

true

However, th is time the environm ent of the resulting Z is P I, so we

have recognised the same plan as we would have recognised had the

surface plan been tha t of Figure 4.16.

Note th a t th is analysis depended on the inpu ts to the Y-test

coming from before the X-test. This can be checked by tlie parser.

However, rather than having the parser do this every time it may w ant

160

find more general p lans, we adopt the following strategy. Before

parsing surface plans, all tests are analysed and given the least strong

controlling condition th a t is com patible w ith all th e ir in p u ts . In

practice th is m eans th a t we look a t all the in p u t tie-points t i . . . tn to

each test, and look a t the controlling conditions Ci..,Cn for tlie actions

w hich produced these inpu ts . We th e n take as the controlling

condition of the test the condition ciAC2 A...ACn. Since all the inputs to

an action m ust come from environments which enclose the action, this

will simplify down to the innerm ost environm ent of those producing

the inputs to the test. Doing th is would m ean th a t the parser would

have found the correct analysis of the surface plan above w ithout need

to deduce the existence of the te st in a different environm ent from

th a t in which it occurs, since th is would have effectively been done

before the parsing started.

Now we will consider an example in which both collapsing and

th e generalised control flow m achinery are needed in order to

recognise the plan. Consider the rule d iscussed earlier, shown in

Figure 4.6, with plan condition:

[Pz)R A J 3 R A P<-kJ1

A [Q zd[S a (T<->V a V<->K a a a a U <—̂ L)]]

and suppose the programmer has code resulting in the surface plan

shown in Figure 4.21. First of all, note th a t the tests have already been

trea ted as having the outerm ost controlling condition possible, as

described in the previous example. Now note th a t we can collapse both

instances of te s t l , and both instances of C, resulting in the graph

shown in Figure 4.22. Now assum ing the d a ta flows (still not shown)

are satisfactory the parser will identify the obvious nodes as being part

of a Z plan, albeit rather a strange one. It will then attem pt to evaluate

the plan condition. The appropriate substitu tions (given by the

r . V ' " f ,

161

plA -"X

p l A - i ^

p l A - I X a

p l A -• Xa

p l A -« Z

Ia Xa

yI I blA-.XAY

1a XaZ

P Ia XaZ

p l A - i X

plA -«X

Figure 4.21
Surface Plan of 4.16. with Controlling Conditions of Tests

Made as Global as Possible

162

PIa X

testl

Ia XaYp l A

Figure 4.22
Collapsed 4.21

163

m atching of nodes in the graph against nodes in the rule done during

the data flow parsing) are:

w PI
p PIa- iY
9 PIaY
R PIa- iY
S PI
T P1a-X
U PIaX
V PIa^XaY
M PIaXaY
J PIa- iY
K PIa^XaY
L PIaXaY
N PI

Substituting into the plan condition gives u s

[((P1a-.Y)=>(P1a-.Y)) a ((P1a-.Y)3(P1a-.Y)) a ((PlA-nY)<^(PlA-.Y))l
A [(P1aY)3

[PI A [((P1a-,X)<^(P1a^XaY)) a ((PlA-TXAY)o(PlA-nXAY))
A ((P1a^ <->(P1a^XaY))1

A [((P1aX)<->(P1aXaY)) a ((P1aXaY)<^(P1aXaY))
A ((P 1 aX3<->(P1aX aY))111

w hich simplifies to true. So th is is an unconditional p lan and its

controlling condition is given by PI. In other words, despite the lack of

optim isation done by the progrgimmer, we have m anaged to recognise

the standard plan. This illustrates very nicely the power of collapsing

and generalised control flow environments.

Now it may be thought th a t th is involves m anipulating ra th e r

nas ty prepositional formulae. However, there are two points to note.

Firstly, the plan condition for rules can be worked ou t in advance of

parsing, so th is is a one-off expense. Secondly, although in principle

doing th is k ind of sim plification to prepositional form ulae is NP-

164

complete (it involves satisfiability as a special case) there are various

redeeming factors which make it not too bad in practice. The first of

these is th a t in most cases plans do not tu rn up in these bizarre ways,

and when they do the “contortions” seem to be fairly localised. This

m eans there are not usually too m any variables in vo lved , so the

formulae are usually quite small (or a t least all have common prefixes,

which can be lumped together into a single variable like the variable PI

th a t we have been using in the examples, which m eans we can in

practice deal with small formulae). The second is th a t plan conditions

normally break down into well defined sub expressions corresponding

to the maximal sets of interdependent variables discussed above, and

th ese sub expressions can be sim plified independen tly , before

evaluating the entire plan condition. The third redeem ing feature is

tha t, as sta ted already, and as can be seen in the worked examples

above, a great m any of the expressions involved are either trivial to

verify, or can be checked syntactically, by seeing if one expression is a

prefix of another.

165

Chapter 5.

Chart Parsing of Flowgraphs

5.1 Introduction and Motivation.

Many applications make use of diagram s to represen t complex

objects. Examples are electrical circuit diagrams, as well as the surface

p lan s we are considering here. In such app lica tions it is often

necessary to system atically recognise how some diagram h as been

pieced together from other diagrams. This is analogous to the parsing

problem for strings, and th is chapter will p resen t a generalisation of

chart parsing [Thompson and Ritchie, 1984] able to cope with the case

where the object being parsed is some kind of diagram (a flowgraph)

and the gram mar is an appropriate type of graph gram m ar (a flowgraph

gram m ar). Often the various com ponents of the diagram s can be

regarded as producers of values which are fed as in p u ts to o ther

com ponents which in tu rn produce values to be passed on elsewhere. A

feature th a t often occurs is struc tu re sharing , w hen one com ponent

feeds one or more of its resu lts to more th an one other com ponent

(fan-out). In th is situation the source com ponent can be viewed as

playing more than one role in the whole structure, and could have been

duplicated so th a t separate copies of the com ponent were responsible

for each of these roles. This leads to no change in functionality,

although there may be a loss in efficiency as m easured by the num ber

of com ponents (electrical circuit case), or com putational effort and

code size (plan diagram case). This chapter also discusses the problem

of diagram recognition in the case where structure sharing is edlowed,

noting th a t we w ant to perm it structure sharing, b u t not enforce it.

The symmetric case of structure sharing arising through fan-in,

ra th e r th an fan-ou t is not dealt with explicitly in th is chapter.

166

However, the parsing algorithm is easily modified to cope w ith it, the

necessary modifications to the algorithm being sim ilar to those needed

for fan-out.

5.2 Notation and Definitions.

Flowgraphs and flow grammars will be defined as special cases of

plex languages and plex grammars first studied by Feder [1971]. Much

of the terminology used will be borrowed from th a t for conventional

string languages and grammars, and readers unfam iliar w ith th is are

referred to [Aho and Ullman, 1977]. A plex is a struc tu re consisting of

labelled nodes having an arbitrary num ber, n, of d istinct a tta c h in g

p o in ts , used to join nodes together. A node of th is kind is called an n-

a ttach ing poin t entity (NAPE). A ttaching points of NAPEs are not

connected directly together, b u t are connected via interm ediate points

know n as tie-poin ts. A single tie-poin t m ay be responsib le for

connecting together two or more attaching points. If the direction of

the connections is im portant then the plex is known as a directed

plex. Many types of graph structure (e.g. webs [Pfaltz and Rosenfeld,

1969, Rosenfeld and Milgram, 1972], directed graphs, and indeed,

strings) can be regarded as special cases of directed plexes. We will

only consider the special case of directed plexes in which each NAPE's

a ttach ing points (from now on called ports) are subdivided into two
!

m utually exclusive groups, known as inpu t ports (restricted to only

have incoming connections) and ou tput ports (restricted to only have

outgoing connections). We will further restrict ourselves to the special

case in which each port of a NAPE is only connected to a single tie-

po in t. T his type of plex will be called a f lo w g ra p h and is a

generalisation of Brotsky's use [1984] of the term. See Figure 5.1 (top)

for an example of a simple fiowgraph.

' i - v
• y ^ ^

167

A
A -

I

t pTit

u

1

120 1
s

â
s
fc
a
g

a
Ü
io>o
a
o

g
< b

a o u

A 4

2.
a
1N
2
a
5)
b.

a
g
S
a

I
lO
<u

= E

t

l l '

168

J u s t as a set of strings constitutes a language, so a se t of plexes

constitutes a plex language, and it is possible to define a plex gram m ar

and the plex language generated by a plex gram m ar. Similar rem arks

apply to flowgraphs, webs, and graphs etc.

A production in a string gram m ar specifies how one string may

be replaced by another, either in producing strings or in recognising

them. In plex gram m ars the same is true b u t we encounter a difficulty

(due to the 2-dimensional nature of plexes) not apparen t in the string

case. In the string case a production like

A ==> aXYb

applied to a string

....dAe (sEQ̂

resu lts in the string

....daXïbe.....

and the question of how the replacem ent string is to be embedded in

the host string in place of A never arises because there is a single

obvious choice i.e. whatever is to the left of A in the original string is to

the left of the replacing string, and similarly on the right. In the graph

case we no longer have th is simple left-right ordering on the NAPEs

and th is question of embedding becomes m uch more com plicated.

Most of the discussion of th is topic is in the web and graph gram m ar

literatu re (e.g. [Pfaltz and Rosenfeld, 1969, Rosenfeld and Milgram,

19721), b u t m ost of it applies (with some slight modifications) to the

flowgraph case as well. The approach taken here is to specify with each

production which tie-points on the left hand side correspond to which

tie-points on the right and then connect everything connecting to one

169

of these left hand tie-polnts (from the surrounding subgraph) to its

corresponding right-hand tie-point.

We define a flowgraph gram m ar G to be a 4-tuple (N .T .P.S)

where:

N is a finite non-empty set of NAPEs known as nonterm inals.

T is a finite non-empty set of NAPEs known as term inals.

P is a finite set of productions.

S is a special member of N known as the initial (or start)

NAPE

and the intersection of N and T must be empty.

If we arbitrarily order the input and ou tpu t ports of a NAPE then

each NAPE in a flowgraph can be represented in the form of a triple

(NAPE-label, input list, output list)

where NAPE-label is the label on the NAPE, and in p u t list is a list in

w hich the i^ entry is the tie-point to which the î h in p u t port is

connected. Similarly the output list specifies to which tie-point each of

th e o u tp u t ports is connected. Using th is convention a com plete

fiowgraph G can be represented els a set G ̂ (known els the com ponent

set) of such triples.

With the above conventions the productions in a flowgraph

grEimmar have the generEd form

A. I/Q ——> C Rj Rq

170

w here

A is know n as the left-side s tru c tu re , rep resen ted a s a

com ponent set

C is known as the right-side s tru c tu re , rep resen ted as a

com ponent set

I4 is the left-side input tie-point list

Rj is thé right-side input tie-point list

Lq is the left-side output tie-point list

and Rq is the right-side output tie-point list.

Li and Rf m ust be of the same length, as m ust Lq and Rq , and specify

how an instance of the right-side structu re is to be embedded into a

s truc tu re W containing an instance of the left side structu re which is

being rewritten according to the production. We define the arity of the

left side of the rule to be the ordered pair (I L| I . I Lq I) and the arity of

the right side of the rule to be the ordered pair (I R i I , IRqI). So this

requirem ent simply states th a t the left- and right-side arities m ust be

the same. The rewriting and embedding is done as follows:

The instance of the left side structu re is removed from W and

replaced by an instance of the right-side structu re . Now, for each tie-

poin t X in L| any previous connections from NAPEs in W to X are

replaced by connections from the same attaching points of the same

NAPEs to the corresponding tie-point in Rj . The same is done for tie-

points in Lq and R q . Note tha t one can eliminate the need for explicit

storing of R i and R q by simply using the sam e variable nam es oh the

left and right hand sides of the production to denote corresponding

tie-points.

171

J u s t as in the string case, by considering various restrictions on

the form of X and Y in a production of the form:

X==>Y

one can arrive a t the notions of context-sensitive, context-free, and

reg u la r languages [Ehrig, 1979]. In p a rticu la r , re s tr ic tin g the

productions to have a single NAPE in their left-side structure gives us

the flowgraph equivalent of context-free string languages, and we will

only concern ourselves with these from now on. In th is case we no

longer need to store L) and Lq since the inpu t and ou tpu t lists of the

single triple on the left of the production already specify th is

information. See Figure 5.1 for an example of the notation and of the

rewriting process.

5.3 Chart Parsing of Context-free Flowgraphs.

In a chEirt parser, assertions about w hat h as been found by the

parsing algorithm are kept in a "database” known as the c h a r t. Such

assertions will be called covering patches (or simply patches), and are

of two kinds - complete patches and partial patches. A complete patch

is a sta tem ent th a t a complete gramm atical entity (corresponding to

some term inal or non term inal symbol of the gram m ar) h as been

found. Partial patches are assertions th a t p a rt of some gram m atical

entity has been found, and about w hat would need to be found in order

to complete the gram m atical entity concerned. One can th ink of a

p a tch as being a closed loop drawn round som e subgraph of the

flowgraph, indicating th a t this subgraph corresponds to all or part of

some grammatical entity as defined by the gramm ar. If we regard the

righ t-side s tru c tu re s of ru les as u n in s tan tia ted tem plates, then

com plete p a tch es w ith non term inal labels co rrespond to the

occurrence of an instantiation of the right-side structu re of some rule.

172

th u s forming an occurrence of the left-side structure of the rule. Partial

patches correspond to partially instantiated instances of the right-side

structure of some rule, and thus to partially recognised instances of the

left-side structu re of the rule. Each patch A contains the following

information:

1) la b e lfA) - th e nam e of th e g ram m atica l en tity

corresponding to the patch, and is always one of the term inal or non

term inal symbols of the grammar.

2) inputsfAl - a set of input tie-points for the patch.

3) outputsfAl - a set of output tie-points for the patch.

4) com ponentsfA l - a list of the other patches involved in

m aking up th is patch i.e. w hat o ther p a tch es have been u sed to

recognise th is patch.

5) needed (A) - a description of w hat else needs to be found to

complete the patch. In the case of a complete patch th is will be empty,

and for partial patches will be a flowgraph structure, represented as a

list of triples.

For a partial patch, the input and ou tput tie-points (i.e. those by

w hich the patch connects to the surrounding flowgraph) are each

subdivided into two categories - the set of active tie-points where the

patch itself is still seeking other com ponents to a ttach to these tie-

points, and the set of inactive tie-points which are those which would

be inputs or outputs of the patch were it complete. A NAPE needed by

a partial patch will be called immediatelv needed if any of its tie-points

are active. The components entry of a patch lists (instantiated versions

of) those NAPEs in the right-side structure of the rule which have been

completely instantiated, and the needed entry lists un instan tiated (as

173

yet) parts of the rule. Note tha t some of the tie -p o in ts in the n eeded

entry may be instantiated. These are where the needed NAPEs connect

to the ones already found. We will say th a t a p artia l p a tch A is

extendible by a complete patch B (or tha t B can extend A) in the case

w here A im m ed iately n eed s a patch of the sam e type as B and the

instan tia ted tie-points in th is needed patch do not conflict w ith any

instantiations actually occurring in B.

The essence of the chart parsing strategy can then be stated as

follows:

Every time a complete patch is added to the ch a rt a search is

made for any partial patches immediately needing a patch of the sort

ju s t added a t the appropriate place. For each of these partial patches a

new patch is made extending it by the complete one, and th is new

patch is then added to an agenda of patches to be processed a t some

appropriate time. Similarly, every time a partial patch is added to the

chart a search is made for any complete patches which could be used

to extend the partia l patch ju s t added, and if any are found new

patches are made which extend the partial one, and these are added to

the agenda to be processed when appropriate. Note th a t patches are

only ever added to the chart. They are never removed, th u s avoiding

the need to redo work tha t has been done before.

It should be clear from th is th a t the basic operation of the

algorithm is th a t of joining a complete patch to a partial patch to make

a new enlarged patch. Figure 5.2 shows a partial patch being joined to a

complete patch to make a new patch (the enclosing box). The resulting

patch has the sam e items in its com ponents en try as the original

partial patch plus the complete patch. Its needed entry is equal to th a t

174

New Active
New
Inactive
Ins

New Peuilal
Patch

Inactive

Connect
to old

active
outs

Active

Inacü

Old active outs Old active ins

Old
Inactive
Outs

Figure 5.2
The Joining Operation

175

of the original partial patch m inus the needed patch corresponding to

the complete patch. Note tha t the m atching of a needed patch to an

ac tual com plete patch may introduce fu rther in stan tia tions of tie-

points in the needed en try of the new patch. On connecting the two

patches all the inactive tie-points of the partial patch rem ain inactive.

Some of its active tie-points will correspond to tie-po in ts of the

complete patch (this is where the two patches actually join). O ther

active tie-points rem ain active in the new patch since it is still looking

for other patches to attach to them. Of the complete patch 's (input and

ou tput) tie -po in ts some have already been m entioned i.e. those

connecting directly to the partia l patch. O thers will become new

inactive tie-points of the resulting patch since it will not be looking for

anything to a ttach to them. However other (input and output) tie-

po in ts of the com plete patch m ay now become active (viewed as

belonging to the new patch) since it may now expect other patches to

a tta c h to them in order to com plete itself. Provided all these

distinctions are kept clear there is no great difficulty in implementing

the joining operation.

One fu rth e r poin t ought to be m ade here. W ith the jo ining

operation as ju s t described a certain limited sort of structu re sharing

happens automatically. This is illustrated in Figure 5.3. If we wish to

prevent th is th en w hen trying to extend a partia l pa tch P by a

complete patch C, the parser m ust check (recursively!) th a t none of

the com ponents of P have any sub-com ponents in common with C. If

th is is done, then no structure sharing a t any level can arise. This

check will be referred to as the no-sharing check.

The initialisation of the chart and the agenda now needs to be

described. To begin with a complete patch is m ade for each of the

term inal NAPEs in the original graph, and these are added to the

r Y

176

Some
Rules

D

B E

Graph being parsed

''A'' Patch • •

D

7777)r;̂ : : . . :.
E

B" Patch

'X' Patch

Figure 5.3
Occurence of Structure Sharing Without No Sharing Check

177

agenda. If the algorithm is to be run top-down then an additional step

is needed in which partial patches with empty com ponents entries are

m ade for every rule in the gram m ar w hose left side s tru c tu re is

labelled by the s ta rt symbol of the grammar. Each such rule leads to

several such empty patches, one for each perm utation of the inpu t tie-

points of the original graph. The in ac tiv e -in p u ts and ac tiv e -o u tp u ts

en tries for each of these patches are the perm uted inputs. The needed

en trv is ju s t the right-side structure of the rule with any appropriate

instantiations of the tie points occurring in it. These patches are also

added to the agenda.

The complete algorithm is shown below:

initialise chart and agenda;
until the agenda is empty do

pick a patch A from the agenda;
unless A is already in the chart then

add A to the chart;
if A is complete then

for each partial patch B in chart extendible by A do
make a new patch extending B with A and put on agenda;

endfor;
if bottom-up then

for each rule R in P such that rhs(R) has an input NAPE labelled by
label(A) do

for each such NAPE X in R do
make new empty patch B with label(B)=lhs(I^ and

needed(B)=ihs(R) with instantiations dependent on match between
X and A and

inputs(B)=inputs(A) and
active-outputs(B)=inputs(A);

add B to agenda;
endfon

endfor;
endif;

else
for each complete patch B in chart which can extend A do

make a new patch extending A with B and put on agenda;
endfor;
if top-down then

for each object C immediately needed by A do
for each rule R In P with lhs(R)=label(C) do

make new empty patch B with label(B)=label(C) and
needed(B)=rhs(R) with instantiations dependent on match

between C and lhs(R) and
inputs(B)=inputs(C) and
actlve-outputs(B)=inputs(C);

add B to agenda;
endfor

endfor
endif

endif
endunless

enduntil;

178

W hen th is algorithm te rm inates the p arse is regarded as

successful if the chart contains a complete patch for S whose in p u ts

and o u tp u ts entries are the same as the input and ou tpu t tie-points of

the graph being parsed.

The only remaining issue is how to organise the chart so th a t it

can be searched efficiently. The chart is first of all divided into two

p arts , one for complete patches, and one for partia l. The p a r t for

complete patches is organised as two arrays, one for indexing each

p atch by its inputs, and one for indexing by its o u tpu ts . So each

complete patch is entered several times into the chart, once for each

of its inputs and outputs. For further efficiency each of the elements in

these arrays is a hash table and the patches are actually entered into

these hashed by the ir label. This enables efficient retrieval of all

patches w ith a particular label a t a particular place in the graph. In a

sim ilar fashion partial patches are entered into their part of the chart

indexed by their input and output tie-points, and hashed by the labels

of each of the patches they im m ediatelv need. Note th a t there may be

several of these.

Finally, note th a t a sim ilar trick can be used to store the

g ram m ar ru les them selves in order to enable efficient retrieval of

appropriate rules.

5.4 Complexity Analysis

5.4.1 A Polynomial Bound

In th is section a relatively informal argum ent will be given to

show th a t the algorithm ju s t presented runs in time polynomial in the

size (m easured by the num ber of tie-points T) of the graph being

179

parsed. It is not the intention here to give a tight upper bound on the

running time, bu t simply to show th a t it is indeed polynomial. So, let

G=number of NAPEs in the graph being parsed

T=numbcr of tie-points in the graph being parsed

K=maximum num ber of inputs to a NAPE

M=maximum num ber of outputs from a NAPE

L=number of possible labels

R=number of rules in the grammar

Q=maximum num ber of NAPEs in the right-side stru c tu re of a

rule

A=maximum possible num ber of active tie-points in a partia l

patch.

It should be noted th a t K, M, L, R, Q, and A all depend on the

grammar, and are independent of the graph being parsed.

Now it should be noted that, for the purposes of adding new

patches to the chart, patches are only distinguished according to some

of the information contained in them, rather th an strict equality being

necessary. Complete and partial patches will be dealt with separately:

Complete patches are distinguished which differ in a t least one

of the ir in p u t tie-points, their ou tpu t tie-points, or the ir label. The

m axim um num ber of inputs and maximum num ber of o u tp u ts in a

patch is determ ined by the grammar, as is the num ber of possible

labels. So the num ber of possible complete patches in the ch a rt is

bounded above by the product of L and the num ber of possible ways of

selecting a t m ost K out of T tie-points, and the num ber of possible

180

w ays of choosing a t m ost M out of T tie-po in ts. This gives u s

0 (L.tK+M) complete patches altogether. Note also th a t a sim ilar

argum ent shows th a t a t a given set of K (input) tie-points, there are at

most 0(TM) complete patches with a given label.

Partial patches are distinguished which differ in a t least one of

the ir inactive in p u t tie-points, their inactive o u tp u t tie-points, their

label, or in w hat they need in order to complete them selves (their

needed entiy). Now, a partial patch essentially represents the partially

recognised right side structure of a rule. The rule used determ ines the

label, and there are a t most 2Q subsets of the (at most) Q NAPEs in the

rule th a t could still be needed. Each such subset determ ines a se t of (at

most) A active tie-points for the patch. So there can be a t m ost

0 (R.2 Q .tA .tK .tM) = 0(R.29.tA+K+M) partial patches altogether. In

fact there will be very m uch less than this, as th is includes complete

p a tch es w ith no th ing needed, and (more im portantly) ignores

completely additional constraints implied by the connectivity of the

graph concerned.

Now a further point needs to be dealt with. The basic operation

of the chart parsing algorithm involves extending partia l patches by

complete ones. So for a given partial patch we need to know w hat is

the largest num ber of complete patches th a t could possibly extend it.

The partial patch can be extended a t any of its (at most) A active tie-

points, and any complete patch which could extend it m u st join a t

least one of these tie-points, and m ust share a label with a t least one of

the NAPEs immediately required by the partial patch. So there are at

m ost 0(A .Q .T^+M ‘ 1) such complete p a tch es th a t need to he

considered. Similarly, given a complete patch, it can be seen th a t there

are a t m ost 0 ((K + M) . R . 2 9 . T ^ + M + A - 1) possible m atching partia l

patches.

181

Now we can use these upper bounds to dem onstrate both th a t

the algorithm term inates and th a t it does so in polynom ial time.

Suppose the algorithm is running, and let N denote the num ber of

times we have been round the main loop.

Let:

C^=num ber of complete patches in the chart after iteration N

PN=number of partial patches in the chart after iteration N

AN=length of agenda after iteration N

Then in the top-down case we have the following relations:

Ao=G+Rs-(number of perm utations of inputs of graph) where R s
is the num ber of rules for S (the s ta rt symbol).

Co=0

P0=0

and for the (N+l)th iteration

An +1 '
'= An -1 if patch is already present in chart
<=AN-1+AQT^+M"f+QR if patch partial and not in chart
<=An -1+(K+M).R29t ^ ’*'M+A-1 if patch complete eind not in chart

{= Cn if patch chosen is already present in chart
= Cn if patch chosen is partial and not in chart
= Cn+1 if patch chosen is complete and not in chart

r= PN if patch chosen is already present in chart
PN+ 1 j = PN+1 if patch chosen is partial and not in chart

1= Pn if patch chosen is complete and not in chart

In the bottom -up case we have the following relations:

Ao=G

Co=0

Po=0

182

and for the (N+l)th iteration,

{= An-1 if patch chosen is already present in chart
<= AN-l+A.Q.Ti^+M-1 jf patch partial and not in chart
<=AN-1 +(K+M).R.2 9 -Ti^+M+A-1 +QR if complete and not in chart

r= Cn if patch chosen is already present in chart
Cn + 11 = CN if patch chosen is partial and not in chart

1= Cn +1 if patch chosen is complete and not in chart

{= Pn if patch chosen is already present in chart
= f^+ 1 if patch chosen is partial and not in chart
= Pn if patch chosen is complete and not in chart

Note th a t th is m eans th a t in both the bottom-up case and the top-down

case both Cn and Pn are monotonie functions (as a function of N). As

d iscussed earlier both sire bounded above. Therefore after some

num ber of iterations they m ust both h it their maximum value (which

will norm ally be m uch less than the crude figures given above). Once

th is happens all patches on the agenda m ust be already present in the

ch a rt and An decreases by one on each subsequent iteration until it

reaches 0 (an em pty agenda), and the algorithm term inates. Now on

each iteration it can be seen tha t either:

(i) both Cn and Pn remain constant (in which case An decreases)

or (ii) Pn increases by 1, and items are possibly added to the agenda

or (iii) Cn increases by 1, and items are possibly added to the agenda.

Now, from the above it can be seen tha t a t m ost 0(L .T^+^) iterations

involve adding a complete patch to the chart and add some item s to

the agenda, and a t m ost 0(R.2Q.T^+^+M) iterations involve adding a

partia l patch to the chart and add some items to the agenda All the

o ther iterations simply remove items from the agenda. So how m any

item s get added to the agenda?

This is given by:

183

(no. of item s in in itia l agenda)+(no. added for com plete

patches)+(no. added for partial patches)

In the top down case this is:

<= AO + 0(L.t K+M).0((K+M).R.29.t K+M+A-1) +

0(R .29.tA+K+M).(0(A.Q.t K+M-1)) + Q.R)

which clearly has a polynomial bound. Similarly, in the bottom -up case

th is is:

<= AO + 0(L.t K+M).(0((K+M).R.2Q.t K+M+A-1) + Q.R) +

0(R .29.tA+K+M) .o (A.Q.t K+M-1)

w hich again is clearly polynomiEilly bounded. So, in both cases the

num ber of item s added to the agenda, w hich is the sam e as the

num ber of itera tions performed by the algorithm , is polynomially

bounded. Now, how m uch work is done on each of these iterations?

The cost of seeing if a patch is already in the ch a rt can be done in

polynomial time. This is because (even with no clever indexing) there

are a t m ost a polynomial num ber of patches in the chart th a t need to

be checked. The cost of checking if one patch is extendible by another

can be done in constant time^ (depending on the grammar), as can the

 ̂ It depends on checking that the instantiated tie-points of the two patches are

compatible with each other, emd the number of tie-points involved depends on the

grammar. If the no-sharing check is included, then the cost will no longer be constant,

but can be done in time at most 2QG since, the partial patch can have at most Q

components, each of which is ultimately made up of at most G NAPEs, and the complete

patch is also made up of at most G NAPEs, at lowest level. Checking for intersection of

two sets can be done in time linear in the sum of the sizes of the two sets. This is still

polynomial, so does not affect the analysis.

184

cost of making a new patch. All the costs involved in checking rules

etc. are purely a function of the gram m ar. So the to tal cost of the

algorithm is easily seen to have an upper bound which is a polynomial

function of T.

5.4.2 Finding All Parses

It should be noted th a t a lthough the algorithm perform s

flowgraph recognition in polynomial time, it does not find all parses in

polynomial time. This is because for some flowgraphs and some

gram m ars there may well be an exponential num ber of parses (this is

even true of Earley’s algorithm operating on strings!). The algorithm

will however find a parse if one exists. If an application requires all

possible parses, then the algorithm can be modified to store any patch

w hich is equal to one already in the chart in term s of its inpu ts ,

ou tputs, and label, b u t n o t equal in term s of its c o m p o n en ts , in an

auxiliary d ata structure. At the end of the parsing there will then be

enough information around in the chart and the auxüiaiy data structure

to enable subsequent calculation of all possible parses.

5.5 Chart Parsing of Structure-Sharing Flowgraphs.

As stated in the introduction we are also in terested in the case

where stru c tu re sharing is allowed. To m ake th is more precise we

define a relation co llap ses on the set of flowgraphs over some set of

NAPEs by:

G2 collapses G1 iff G1 and G2 are flowgraphs, and G l^ contains

two tr ip le s of th e form T l= (A ,(t i t n) , (x i , . . . ,xm)) an d

T 2 = (A ,(ti,...,tn) ,(y i..... ym)). and G2^ can be obtained from G l^ by

removing these two triples and replacing them by a single triple of the

form T 3 = (A ,(t i , . . . ,tn) ,(z i zm)) and then replacing all occurrences of

X I,.,.,x m and y i , . . . ,ym by z i , . . . ,zm respectively th ro u g h o u t the

185 .

remaining triples. In other words, G2 collapses G1 iff G1 contains two

instances of some NAPE A (say) which have the same inputs, and G2 is

identical to G1 except th a t the two instances of A have been replaced

by a single instance of A (with the same inputs) and all NAPES which

originally con n ected to the ou tpu ts of one or other of the two in sta n ces

of A now connect to the single instance (in G2). This am oun ts to

identifying the two instances of A and their corresponding tie-points.

The reflexive, transitive, symmetric closure of co llap ses is then

an equivalence relation (share-equivalence) on the set of flowgraphs,

and we then w ant any parsing algorithm which can recognise some

graph G to also be able to recognise any flowgraphs share-equivalent to

G. We also w ant the grammatical formalism used to be able to generate

not only the flowgraphs derivable directly from the grammar, b u t also

all share-equivalent flowgraphs. This can be done if we allow a t any

point in the generation of a flowgraph the replacem ent of the graph so

far generated (Gl) by any graph G2 for which either G1 collapses G2 qt

G2 c o lla p s e s G l. A flowgraph gram m ar w ith the addition of th is

rewriting rule will be referred to as a (full} structu re sharing flowgraph

gram m ar (a SSFG). Figure 5.4 illustrates several phenom ena th a t can

occur with SSFGs, and which motivated the above definition.

Now, it tu rn s ou t th a t th is idea of s tru c tu re sharing flowgraph

gram m ars is almost w hat we need to capture the structure sharing th a t

occurs in program s, except that, for reasons already d iscussed in

C hapter 4, we do not w ant to allow anv two NAPEs sharing the same

in p u ts to be collapsed, b u t only NAPEs with appropriate labels. To

accomplish th is we define a slightly more general notion, A restric ted

structu re sharing flowgraph grammar (RSSFG) is a 5-tuple (N,T,P,S,R)

where N, T, P, S are the same as for ordineiry context free flowgraph

186

Right-hand side of Non-sharing form
of Rule

Two

Some Rules

Two Possible Graphs

A B

A C

Possible
Graphs

/
B

/
B

C C

E

F -------- /

n
U ^ E

F

Figure 5.4
Structure Sharing and Collapsing Phenomena

187

grammars, and N u T 3 r . r is the set of NAPEs for which collapsing

is allowed, and we modify the above definition of collapses as follows:

G2 R-collapses G1 iff G1 and G2 are flowgraphs, and G l^ contains two

tr ip le s of th e form T l= (A ,(ti , . . . , t n). (x i , . . . ,Xm)) a n d

T2=(A ,(ti,...,tn).(yi....,ym)). where AgR and G2^ can be obtained from

G l^ by removing these two triples and replacing them by a single

triple of the form T3=(A ,(ti,...,tn).(zi,...,zm)) and then replacing all

occurrences of x i xm and y i ym by z i zm respectively

throughout the remaining triples. In other words, G2 R-collapses G1 iff

G1 contains two instances of some NAPE A (whose label is in R) which

have the same inputs, and G2 is identical to G1 except th a t the two

instances of A have been replaced by a single instance of A (with the

sam e inputs) and all NAPE^ which originally connected to the outputs

of one or other of the two instances of A now connect to the single

instance (in G2).

The reflexive, transitive, symmetric closure of R -collapses is also

an equivalence relation (R-share-equivalence) on the set of flowgraphs,

and we then w ant any parsing algorithm which can recognise some

graph G to also be able to recognise any flowgraphs R -share-equivalent

to G. We also w ant the gramm atical formalism used to be able to

generate not only the flowgraphs derivable directly from the gram m ar,

b u t also all R-share-equivalent flowgraphs. This can be done if we allow

a t any point in the generation of a flowgraph the replacem ent of the

graph so far generated (Gl) by any graph G2 for which e ither G1 R-

collapses G2 or G2 R-collapses G l. It is the addition of th is rewriting

rule which tu rn s an ordinary flowgraph gram m ar into a re s tr ic te d

s tru c tu re sh arin g flowgraph gram m ar (RSSFG). If R = 0 then the

gram m ar is an ordinary flowgraph grammar, and if R= N uT then we

get a (full) structure sharing flowgraph gram m ar as defined earlier.

188

To see how the chart parsing algorithm can be modified to cope

with RSSFGs it should first be noted th a t for any flowgraph G there is a

sm allest flowgraph Gmin which is R-share-equivalent to G. Secondly it

should be noted th a t the right-side structure of any rule in a RSSFG

can be replaced by any flowgraph R-share-equivalent to it w ithout

altering the generative capacity of the gram m ar. We can therefore

define a canonical form for an RSSFG in which each rule of the form:

A ==> B

has been replaced by the rule:

A ==> Emin.

So the first change to the algorithm is actually to change the

gram m ar to its canonical form, and to use th is new form of the

gram m ar for parsing. The second change is to the action of adding a

complete patch to the chart. Previously the only check th a t was done

w as to see if the patch was already in the chart. Now the algorithm

m u st additionally check th a t the label of the patch is in R, and th a t

there is no other patch with the same label and the same inputs in the

chart. If there is then the algorithm m ust collapse the new patch and

the one th a t was there already into a single patch with a new set of

ou tpu t tie-points and identify the original ou tpu ts of the two patches

w ith these new tie-points. Provided tie-points in the various triples

m aking up the patches £U"e represented as pointers to pointers to tie-

points (rather than storing the tie-points directly in the triples) then

sim ply changing the values of the second se t of po in te rs will

implement the identification universally throughout all patches in the

chart. If the information tha t collapsing has been done is needed by an

application the algorithm can m ake a note of th is fact e ither by

189

annotating the tie-points involved or by an assertion held separately.

Finally, the no-sharing check m ust be omitted.

5 .6 Degenerate Flowgraphs

With the adgorithm Just described there are several apparen t

anom alies th a t can occur. The following two examples were originally

poin ted o u t to me by Linda Wills (personal com m unication) as

problem s for the chart parser. However, in the light of the above

discussion of structure sharing and collapsing of flowgraphs, they can

be seen as na tu ra l and indeed desirable consequences of the theory

provided that the other components of the program understanding
system are capable of reasoning about the seemingly anomalous patches

th a t are recognised.

5.6.1 Anomalous Example 1

The first example is where we have a rule:

A [tl t2] Its t4] ==> I [b [tl] [tS tSll [d [t5 t2] [t4]]]

and input graph:

[lb [1] [2 311 [d 13 21 [4] II

which is recognised by the parser as:
1

[A [1 21 12 411

in which a cyclic stru c tu re has been recognised even though the

original graph had no cycles! Figure 5.5 shows the situation. Now, if we

allow structu re sharing and collapsing, then as can be seen in Figure
5.6, such a degenerate flowgraph arises quite naturally.

190

Rule

t l

t2

Its
't4

t l
b

ts

d
t2 t4

Graph

Recognised As

2\

2 .

4

Figure 5.5
A nom olous Exam ple 1

Anomolous Example 1 Arises
from collapsing this graph

Figure 5.6
Explanation of Anomolous Ê xample 1

191

5.6.2 Anomalous Example 2

The second example is where we have a rule:

A [t l t21 [ts t4] ==> [[c [tl] [ts te i I
[d [ts t7] [t4] I
[a [t6] [tS] I
[a [t2] [t71] 1

and we have input graph:

[[c [1] [2 SI 1 [a [S] [4] 1 [d [2 4] [S]]]

In this case the parser recognises:

[A [1 S] [4 S ll

This time we have no cycles, b u t one of the in ternal tie-points of a

patch is also functioning as one of its inputs. Figure S.7 shows this

situation. Again, if we allow structure sharing and collapsing we can see

th a t th is phenomenon may arise quite naturally, as shown in Figure 5.8.

If we in terp ret th is in programming term s, it would appear tha t, in

general, su ch degenerate flowgraphs rep resen t the case w here a

program m er has realised that, in order to prevent a com putation being

done twice w hen some initialisation code before the call of some

operation duplicates some of the internal details of the implementation

of the operation, th a t she can expand the operation ‘in-line’ and

remove redundant com putations. In th is case we do actually w ant the

system to recognise the high level description of the operation even

th o u g h the code (and graph) m ay look ra th e r s tran g e as an

implementation of it.

192

Rule

t2

Recognised As

±

3

±
T

Figure 5.7
Anomolous Example 2

Anomolous E^xample 2 Arises
from collapsing this graph

Collapse c
then a

Figure 5.8
Explanation of Anomolous Example 2

193

5.7 Discussion

Although there is quite a lot of litera tu re on the generative

abilities of various types of graph grammar formalisms (see e.g. [Ehrig,

1 9 7 9 , Feeler, 1 971 , Pu, 1974, Gonzalez and Thom ason, 1 9 7 8 , Pfaltz

an d Rosenfeld, 1 9 6 9 , Rosenfeld and M ilgram, 1 9 7 2]), th e re is

relatively little on parsing strategies, except for ra th e r restric ted

classes of graph and web grammars [e.g. Della Vigna and Ghezzi, 1978].

In its top-down strictly left-to-right form chart parsing of context-free

string languages corresponds to Earley's algorithm [Earley, 1970],

which was generalised by Brotsky [1984] to parsing flowgraphs of the

kind described here, except th a t his algorithm could no t cope w ith

fan-out a t tie-points. However the approach taken here can also ru n

bottom -up, which is particularly useful in applications in w hich we

w ant to recognise as m uch as possible even though full recognition may

be impossible (because of errors in the graph, or because the gram m ar

is necessarily incomplete). Wills [1986 , 1990] has modified Brotsky's

algorithm to cope with fan-out, b u t her algorithm only ru n s in a

pseudo-bottom -up fashion by starting it running top-down looking for

every possible non-terminal at every possible place in the graph.

A particular advantage of a chart parser is th a t it quite explicitly

keeps a record of all partia l patches it finds. This is usefu l in

applications for which we may not ju s t wish to verify th a t some graph

can be generated from some grammar, b u t also to enable the system to

m ake suggestions based on "near-miss" inform ation abou t how to

correct the graph. It is in such applications th a t it m ay be useful to

modify the algorithm to run right-to-left as well, since th is m ay enable

one to find more “near-m isses” (i.e. those missing the ir s ta rt NAPES)

th an one would find if the parser only ran left-to-right.

194

5.8 Applications

The algorithm ju s t described forms the basis for the p lan recognition

process performed by IDS. However, as will be seen in th e next

chapter, there are m any features of tlie plan calculus tlia t do not

exactly fit the formalisms we have ju s t described. Accordingly, the

description of how this algorithm has to be modified to perform plan

recognition will be delayed until Chapter 7 (after we have discussed

the translation process from programs to surface plans), and Chapter 8

will give detailed examples of the plan recognition process on actual

program s. However, as stated a t the beginning of th is chapter, there

are other domains in which a similar ability to parse flowgraphs would

be useful. In particular, digital circuit analysis is a domain which fits

the s tru c tu re -sh arin g flowgraph formalism especially well. We will

illu stra te th is with an example. Consider Figure 5.9 which shows a

circuit which performs addition of 3-bit num bers. The gram m ar shown

in Figure 5.10 is capable of generating such a circuit, and the parser

does indeed recognise this circuit as produced by the gram m ar. It

would be in teresting to try and build a tu toring system for digital

circuit design based on this chart parsing algorithm, where near-m iss

inform ation provided by the p arser could again form the b as is for

guiding the tutoring strategy.

195

Al'
B? NOT SI

[QT
NOT

AND
ORAND

A2 NOT
B2̂ NOT 82

ORNOT
fOT

AND ORAND

A3
B^

NOT
NOTOR S3

ORfOT
NOT

AND
ORAND

Figure 5.9
A 3-Bit Addition Circuit

196

HA

NOT

AND

NOT
OR

Cin-
A- FA

Cout = »
Cin

CoutHA
HA

OR

3-Bit
S I

Al—
HI----

82
A2----
B 2----

S3
A3----
B3— I

FA

FA

FA

Figure 5.10
Addition Circuit Grammar

197

PART 3. IDS

198

Chapter 6.

An Overview of IDS, and The Translation Module

This chapter will give an overview of IDS - the m ain modules,

how they interact, and the sta te of im plem entation etc. It will also

discuss the translation from Pascal to surface plans.

6.1 Overall Structure of IDS

The overall structu re of IDS as finally envisaged is shown in

Figure 6.1. As can be seen there is m uch still rem aining to be

im plem ented. Of the m issing modules the reason m aintenance and

theorem proving/symbolic evaluation m odules are perhaps the m ost

im portant since these are language independent p arts of the system.

Additionally, the transla to r from surface p lans back to Pascal also

rem ains to be written. However, enough h as been im plem ented to

show the feasibility of the p lan calcu lus app roach to program

understanding using chart parsing as the basic recognition technique,

and to allow very detailed descriptions of how debugging would work if

the o ther m odules were implemented. The strategy IDS will use to

debug programs is the following:

(a) Translate the program into its surface plan.

(b) Try to u n d e rs tan d the program by recogn ising all

occurrences of library plans. Make a note of any "near" matches.

(c) Symbolically evaluate any rem aining (i.e. unrecognised)

parts of thé surface plan.

(d) Check for broken preconditions of any of the recognised

plans.

199

t|fiIftlîa bb

II |pl

ip ||l
0co
T3

1
II

î
S i 0

I
(D
Si

200

(e) Use n ear m atch inform ation and b roken precondition

information to try and repair the program.

(f) Translate the debugged surface plan back into the source

language.

The rest of th is chapter will give an account of the translation

module, and Chapter 7 will describe the recogniser in full detail, and

describe the translation process from Rich’s plan notation to graph

like rules suitable for use by the recogniser.

6 .2 The Translator

One of the main parts of the work described here has been the

im plem entation of a Pascal-to-Surface-Plan translator. This transla to r

can cope with a large subset of Pascal, and the structure is such th a t it

can easily be extended to cope with m ost of the rest. As implemented

so far it can cope w ith assignm ents, procedures and functions,

num bers, records and pointers, arrays, if s ta tem en ts , and while

sta tem ents. Because Pascal is quite a large language with a complex

syntax (at least compared to LISP) the translation program is quite

large, b u t follows the pattern of a recursive descent parser for Pascal.

6.2.1 Recursive Descent Data Flow Analysis

We can th ink of the process of translating a Pascal program into

its surface plan as analogous to the process performed by a compiler

which tran sla te s program s into m achine code, the difference being

th a t in th is case the ta rge t language is th a t of surface p lans.

Accordingly, we perform the translation in m uch the same fashion as a

compiler, interleaving the parsing and the surface plan generation.

Since the gram m ar for Pascal can be expressed in an LL(1) form it can

be parsed in a straightforward recursive descent fashion. J u s t like a

201

compiler, the transla to r makes use of a symbol table, which, since

Pascal is a lexically scoped language, can have a stack-like structure. At

any given point in the parsing process the symbol table contains

entries for each nam e th a t has been encountered (declared) so far in

the program, and which is not yet out of scope. The entry for each

variable contains the following information:

1) its name

2) its lexical level

3) which procedure it was declared in

4) w hich tie-po in t in the su rface p lan being generated

represents the value of the variable

5) its kind (e.g. simple variable, or, if a formal param eter

w hether it is call-by-value or call-by-reference, is it a record accessing

function, and so on)

6) its type (e.g. integer, real, boolean, pointer to a record type,

procedure etc.)

7) definition information - this is an entry which can take on

any of the values “defined”, “undefined”, or “possibly undefined”, and

enables the transla to r either to issue w arnings to the program m er

about variables th a t are or may be undefined when they are used, or to

pass on to the recogniser as an indication of actual or possible bugs.

If the type is procedure, the entry for the procedure will also

contain the following information:

8) the indices (in the symbol table) of the non-local variables

used by the procedure, and the indices (in the symbol table) of the

non-local variables updated by the procedure.

202

It is item 4) in th is lis t which essen tia lly co n stitu tes the

difference between the transla to r and a compiler. It corresponds to

the symbol table entry where a compiler would hold the address of the

variable. In a compiler the address of a variable is fixed for the duration

of the translation process. However, in the translato r th is entry should

be thought of as the “current address” i.e. the curren t tie-point in the

graph representing th a t variable, and th is will vary as the translation

proceeds. The symbol table th u s provides a m apping between nam es

and tie-points, which we can th ink of as constituting an environment

in w hich the transla tion takes place. So for exam ple if we are

translating a statem ent of the form:

x:=y+z;

the translator can generate an @Pbinfimction node^ in the surface plan,

w ith in p u t .op coming from a tie-point representing “+”, and inpu t

. in p u t 1 coming from the tie point (obtained from the symbol table)

corresponding to y, and input .input2, coming from whatever tie-point

rep resen ts z. A new tie-point is generated to rep resen t the ou tpu t

from th is node, and this is then stored in the symbol table against x.

This changes the environm ent, and the su b seq u en t sta tem en t is

analysed in this new environment. We will refer to a mapping between

nam es and tie-points as a data flow environment. At any particular time

 ̂ In the translation process we generate @Pbinfunction (apply Pascal blnfunction)

rather than @binfunction since the Pascal operators have different (more specicilised)

preconditions than the more general ones in the plan calculus. For example, addition in

Pascal is only correct if the result is between -mazint and mazint. This can be a source

of errors, and so representing the operators differently enables us to capture this. Of

course we use overlays to map from the Pascal operators to the more general ones. This

same comment applies to all the operators generated by the translator.

203

the mapping held in the symbol table will be referred to as the current

d a ta flow environm ent (CDFE). There will also be a global variable

representing the current controlling condition (CCFE).

T ie-points represen ting known constan ts (e.g.

“true", “false”, nil, “0” etc.) are held in a separate table (actually a

hash table), so tha t when the translator needs to connect an operation

to one of these it can simply look in the table to flnd which tie-point

rep resen ts th a t value. This table is initialised a t the s ta r t of the

translation process, and if new constants (e.g. 99999) are encountered

a new tie point is created to represent th is value and stored in the

known constants table.

Each ordinary (i.e. not a test or join) operation (NAPE) generated

by the translator is represented as a list of the form:

[NAPE-type [NAPE-inputs] [NAPE-outputs] Control-flow information]

and for ordinary operations the control flow information is simply the

controlling condition for the NAPE.

Tests are represented in the form:

(test-type [test inputs] [Cm C su cce ed Cfaii]]

w here C in , C s u c c e e d . and C fa ii are the inpu t, succeed, and fail

controlling conditions for the test.

Jo ins are represented in the form:

[join-output [succeed-input fail-input] [join-output] [J su c c e e d J fa il d o u d l

w here J s u c c e e d . Jfail. and J o u t . are the succeed, fail, and ou tp u t

controlling conditions for the join.

204

The g raphs being generated are all held in a fram e-like

structu re , with a frame for each sub graph being generated. A su b

graph is generated for each conditional, while loop, and procedure,

and the graph for the main program consists of any actions it actually

contains directly, and a NAPE representing each subgraph it m ay

contain. Similarly, the sub-graphs, may contain NAPEs representing

o ther subgraphs. In the description th a t follows the su b -g rap h

currently being generated will be referred to as the curren t segm ent.

The translation process will now be described. Rather th an going

th ro u g h th is syn tax sta tem ent by syntax sta tem en t, we will only

describe enough of m ain syntax forms we can currently deal w ith to

m ake the technique clear. The o ther syntax form s th a t we can

currently deal with are dealt with in a very similar fashion to those we

do describe. In w hat follows we will use, as part of the m eta language

for describ ing Pascal,angle brackets (< and >)to denote sy n tax

elem ents, and curly brackets ({ and }) do denote zero or m ore

repetitions of whatever they enclose, and we use a vertical b ar (I) to

denote a choice of forms. We will also use the brackets ([and]) to

indicate an optional p a rt of the syntax, and will u se double quotes (“

a n d ”) to indicate ac tual term inal item s th a t are expected in the

program a t th a t point.

6 .2 .1 .1 D ec la ra tio n s

Obviously, declarations add no nodes to the graph of the curren t

segment. W hat they do is add new entries to the CDFE (symbol table).

Variable declarations simply add a new entry for the variable being

declared, w ith all the usua l information a compiler would have, and

w ith th e defin ition inform ation p a rt of the en try being se t to

“undefined”. The cu rren t translator does not handle m any of the

205

possible Pascal type declarations, other than the various num ber types,

and records and arrays. If a variable is declared as being an array, then

an entry is added to the symbol table for this variable. It is flagged as

“defined". This is because, except for the case where an array is used

before any assignm ents to any of its fields, it is in general very difficult

to tell w ithout doing a lot of sophisticated reasoning w hether or not a

particu lar entry in the array is undefined or not. This sort of ta sk is

best left to the plan recognition/theorem proving p arts of IDS rather

th an burdening the translator with this task. The declaration of a new

record type leads to new symbols being added to the symbol table - one

for each of the record fields. So a declaration like th a t discussed in

earlier chapters:

type listelement = reco rd
num b : integer;
next : '^listelement;

end;

plist = '^listelement;

leads to entries being made in the symbol table for num b and next.

These are flagged as being “defined”. Note th a t declaring a variable as

being a record type also leads to a “defined” variable, b u t th a t

declaration of a variable as being a pointer type leads to an “undefined”

variable. This is because, in the case of the variable being a record, we

are thinking of it as an immutable record cell (as discussed in Chapter

3) and hence the declaration actually defines it. However, a pointer

variable does not become defined until it is given a value.

6.2.1.2 Translating Expressions and Assignment Statements

We W Ü 1 discuss this by considering the following fragm ent of

Pascal syntax:

206

<assignm ent-statem ent> ::== <variable access> <expression>;

<variable access> ::== <entire v a riab lo I <component v a ria b lo
I <identified v a riab lo

<expression> ::== [<sign>] <term> {<adding-operator> <term>}

<sign> ::== “+” I

<adding-operator> ::== “+” I “or” 1“-”

<tenn> ::== <factor> {<multiplying operator> <factor> }

<multiplying-operator> ::== “*” I “/ ” I “div” I “m od” I “and”

<factor> ::== -cvariable access> I <unsigned-constant>

I “(” <expression> “)”

The <com ponent-variable> and <identifled-variable> form s will be

covered by the discussion of records and arrays la ter in th is chapter.

So let us consider a statem ent of the form:

y:= x+(y+z)*3

As in a norm al recursive descent compiler, there is a procedure for

dealing with each of the syntax forms of the language. However, the

procedures for <expression>, <term>, and <factor> all re tu rn a result,

which is the tie-point in the graph being generated which represents

the resu lt of the <expression>, <term>, or <factor>. So, the translator

calls the procedure for <assignment statem ent>, and m akes a note of

which variable (y) occurs on the left of the assignm ent. It then calls the

procedure for dealing with an <expressions>. Since th is m ust be of

the form:

[<sign>] <term> {<adding-operator> <term>}

it first m akes a note of any <sign> if there is one, and proceeds to call

th e <term> procedure, which generates th e g raph for w hatever

<term> is actually present in the <expression> being analysed, and

re tu rn s the o u tp u t tie-point representing the re su lt of the s u b

207

expression corresponding to the <term>. Let u s call th is tie-point

tsofcir. If there was a <sign> then an ©Pfunction node is generated,

tak ing as its .op inpu t the tie-point representing the u n ary m inus

operation (obtained from the known constants table), and taking as its

.in p u t in p u t the tie-point t s o fa r - A new tie poin t is generated to

represent the ou tpu t of this © Pfunction, and tsofeir is now set to th is

tie-point.

Now, if there is an <adding-operator> present, then the <term>

procedure is called again to return its result (whieh will be referred to

as tn ex t) . the result of the next sub expression. Now an ©Pbinfunction

node is generated in the graph with its .op inpu t being the tie point

corresponding to whatever the actual <adding-operator> was, and its

two o ther inpu ts being t s o f a r and t n e x t - A new tie-point is again

generated to represent the output of this node, and tso fa r is set to this.

In th is fashion we eventually arrive a t a situation w here we have

generated the graph for the <expression>, and have a tie-point t s o fa r

representing the resu lt of executing the graph corresponding to the

<expression>. This is then returned back to the calling procedure (in

th is case for recognising an <assignment statement>) as the resu lt of

the <expression>. The <assignment statem ent> procedure then stores

th is tie-point in the symbol table against whatever the variable on the

left was, in place of its , old value. So in this case the entiy for y in the

symbol table is changed to tsofar-

The <term> procedure works in a very sim ilar fashion to the

<expression> procedure, except th a t it generates @Pbinfimction nodes

w ith “m ultiplication” operators rather than “addition”.

C onstan ts and variables in expressions are dealt w ith by the

<factor> procedure. If the <factor> procedure finds a variable when it

is called, it looks up the symbol table and returns as a result whatever

208

tie-point currently represents the value of th a t variable, un less the

definition inform ation for th a t variable is “undefined” or “possibly

undefined”. In this case it generates a warning message, and re tu rn s a

tie -po in t corresponding to an undefined value (from the know n

co n s tan ts table). It now flags the variable as “defined” to avoid

generating m ultiple warnings. If the <factor> procedure h a s been

called by the procedure for translating conditional s ta tem en ts (or

inside part of the the procedure for translating loops which deals with

the body of the loop) then the warning is “possible use of undefined

variable”, since th is code may or may not be executed depending on

the resu lt of the test a t the time the program is executed. If it is not

inside a conditional, then the warning is “use of undefined variable”.

If the <factor> procedure finds a constant, it then looks up the

known constan ts table to see if this constant already h as a tie-point

associated with it. If so it return this one, otherwise it generates a new

tie-point, stores it in the known constants table against the constant,

and re tu rns this new tie-point as its result.

If the <factor> procedure finds an embedded sub-expression (in

brackets) th en it re tu rn s the resu lt of calling the <expression>

procedure recursively.

Also note th a t a statem ent like this cannot alter the controlling

conditions in any way. So all the generated nodes (NAPEs) get the

cu rren t controlling condition as their controlling condition.

So suppose that, when the translator s ta rt dealing with the above

statem ent, the symbol table contains the following entries:

y tie-point t l

X tie-point t2

z tie-point t3

209

ttimes tplus tl
X
t2 t3 tthree

©Pbinfunction

©Pbinfunction

©Pbinfunction

t6 (newy)

Figure 6.2
Graph For v:=x+fv+z)*3

210

and th a t the current controlling condition is P. Then the NAPEs added

to th e g raph for the cu rren t segm ent by th is expression are

represented by:

[@Pbinfunction [tpius t2 t5] [t6] P]
I@Pbinfunction [ttimes t4 tthree) [t5] P]
[©Pbinfunction [tpius t l t3][t4] P]

where t4, t5, and t6 are new tie-points, t t im e s and tpius are the tie-

poin ts representing the “+” and operators, and t th r e e rep resen ts

the value “3” and may or may not be a new tie-point depending on

w hether or not the constant 3 has appeared in the program prior to

th is statem ent. The graph corresponding to this is shown as Figure 6.2.,

After this graph has been generated the symbol table contains

the following entries:

y tie-point t6

X tie-point t2

z tie- point t3

6.2.1.3 Translating Conditional Statements

Conditional statem ents are more interesting. In the m ost general

case they have the following form:

If <condition> th e n <statem entl> e lse <statem ent2>

where <condition> is an <expression> which evaluates to a boolean

value, and < sta tem entl> and <statem ent2> are any valid Pascal

sta tem en ts . This is translated as follows. F irst the <condition> is

translated, ju s t by calling the procedure for expressions. A test node is

then generated which takes as input the (boolean) ou tpu t from the part

of the surface plan corresponding to <condition>. Cm for the test is the

cu rren t controlling condition C c u r r e n t - A new symbol representing the

211

te st is generated (X say) and new controlling conditions CcurrentAX and

CcurrentA-iX are created and assigned to C su cceed and C faii for the test. A

copy of the current data flow environment (CDFE) is then saved (i.e.

the symbol table is saved) in C D F E s a v e d . as is the curren t controlling

cond ition (C C F E s a v e d) - C s u c c e e d is then assigned to C C F E , and

< statem entl> is then processed. At the end of th is process CDFE is

saved again (C D F E su c c e e d)- C D F E is then restored from the old saved

copy (i.e. C D F E is se t to C D F E s a v e d) . and C C F E is set to C fa ii. Now

<statem ent2> is processed. At the end of th is process, jo in -ou tpu t

nodes are created, with J o u t set to C m , J s u c c e e d set to C su c c e e d . and J fa ii

se t to Cfaii. To determine the succeed data flows and the fall data flows

connecting to the join-outputs, the CDFE (which is now actually the fail

d a ta flow environment) and the saved succeed d ata flow environm ent

C D F E s u c c e e d are com pared w ith the original saved d a ta flow

en v iro n m en t C D F E s a v e d - Any entry which is different in either

CDFE(fail) or C D F E su c c e e d from the entry in C D F E S a v ed has a join-output

NAPE created for it. The succeed-input of the jo in is the value in

CDFEsucceed, and the fail-input is the corresponding value in CDFE. A

new tie-point is then created for the output from the join-output, and

th is is used to update appropriate entry in the C D F E s a v e d - I f one of

either the succeed input or the fail input to the join is undefined then

the new tie-point is flagged as “possibly undefined” (by storing th is

inform ation in the symbol table against the appropriate variable. After

th is h a s been done for all entries in the symbol table w hich have

changed on one or other or both branches of the conditional, the CDFE

is set equal to C D F E s a v e d - The curren t controlling condition is then

reset to w hat it was on entry to this procedure i.e. Cm

So, consider the following piece of code:

212

if a<3 and b<2 then
begin

y:=a+b;
z:=false;
c:=a

end
else

begin
y=a-b;
z:=true;
d:=b

end;

and suppose th a t the symbol table contains the following entries when

the statem ent is analysed:

a ... t l

b ... t2

c ... t3

d ... t4

y ... t5

z ... tfrue

W hen the <condition> is processed we get the following:

[[©Pbinfiinction (tand t7 t8][t9] P]

[©Pbinrel [tiess t2 ttwolItS] P]

[©Pbinrel [tiess t l t th r e e l[t7] P]

1

where as usual P is the current controlling condition, t7, t8, and t9 are

new tie-points, and ttw o and tthree represent the obvious constants.

Now the te s t node is generated, w ith two new controlling

conditions:

[Ptest [t91[P PaX PA-.X]

213

The symbol table is now saved, the current controlling condition set to

PaX, and the statem ents in the then part of the conditional translated.

This gives rise to:

[@ Pbinfunction [tplus [t l t2][tl0] PaX]

and the sym bol table (CDFE^succeed) is now:

a ... t l

b ... t2

c ... t l

d ... t4

y ... tlO

z tfa lse

C D F E is th en resto red from C D F E s a v e d . th e c u rre n t controlling

condition is set to Pa- iX, and the else branch is then processed. This

gives us:

[©Pbinfunction [tminus t l t2][tl 1] Pa-iX]

and the symbol table (CDFE) is now:

a ... t l

b ... t2

c ... t3

d ... t2

y ... t i l

Z ... ttrue

C D F E s u c c e e d and C D F E are now compared with C D F E s a v e d - I t can be

seen th a t on the then side variables c, y, and z have altered, while on

the else side variables y,z, and d have altered. A jo in is therefore

created for each variable in the union of these two sets of variables,

giving us:

214

[[join-output [tl t3][tl2] PaX P a-iX P]

(join-output [tlO t l l] [t l3] PaX P a-iX P]

(join-output [tfalse ttruel[tl4] PaX P a - X P]

(join-output [t4 t2][tl5] PaX P a-iX P]

The graph for the whole conditional s ta tem en t is show n in

Figure 6.3. Note th a t we have shown all the joins as a single jo in with

several succeed and fail inputs rather than as several joins with a single

succeed and a single fail inpu t each. In the segm ent containing the

conditional a NAPE is added representing th is conditional, with inputs

corresponding to the variables whose values were used inside the

conditional statem ent before they were updated (if they were updated

a t all), and outputs corresponding to the outputs from the join, and any

variab les th a t were altered inside the <condition> p a r t of the

statem ent. How can we tell which variables are used in a segment?

W hen transla ting anything, it is the <factor> procedure m entioned

earlier w hich is actually responsible for dealing w ith variable (or

constant) usage. If it is dealing with either a constant, or a variable,

th en it follows th a t th is variable or constan t m u st be u se d by the

cu rren t segment. However, it does not follow th a t because a variable is

used inside a segment th a t its value m ust be an inpu t to the current

segm ent, since the segment might update a variable before using its

value. So the translator m aintains two lists for the cu rren t segment.

One is the list Vupdated. of all variables which are updated in the

cu rren t segment. This list is kept up to date by the <assignm ent

sta tem ent> transla to r (and the procedure responsible for adding a

node represen ting ano ther segm ent to the cu rren t segm ent). The

other list Vused is the list of all variables which are used before being

updated So when the <factor> procedure is dealing with a variable it

checks to see if tha t variable has been updated in this segment. If not.

215

ttrue

a b
t l tthree t2 ttwo tplus

t3 tand
tminus/ tiess

©Pbinrel ©Pbinrel

©Pbinmnction

I

©Pbiiminction©Pbinfunctlon Pa-X

PA-.X

tl3 tl4 tl2 tl5
P

a z C d

Figure 6.3
Graph for Conditional

216

then th is use of the variable m ust represent a value flowing into the

curren t segment from outside. In this case, provided the variable is not

already present in Vused h is added to it. If constants are used they are

sim ply added to Vused- It is th is list Vused w hich is u sed by the

tran sla to r for conditionals and loops to work ou t the in p u ts to the

segment. In the case of the conditional ju s t discussed, Vused contains:

la b less false plus m inus true]

so in its enclosing segment the conditional is represented by:

[conditional 1 (tl t2 tiess tfalse tplus tminus ttrueî(tl2 t l 3 t l 4 t l 5 | P]

Of course when th is NAPE is added to the graph of its enclosing

segm ent, the CDFE of th a t segm ent m ust be updated so th a t the

variab les in V used now have the ou tpu t tie-poin ts of the loop or

conditional associated with them.

6.2.1.4 Translating Loops

Loops are by far the hardest case to deal with. They are dealt

with in a similar fashion to conditionals, although the actual processing

is more involved. We will illustrate it with reference to a while loop of

the form:

while <condition> do <statement>;

O ther loops (for loops, and repeat ... u n til ... loops) are dealt with

similarly. First of all note tha t a loop can be thought of as a conditional,

w ith an empty e lse part, and with a recursive role representing the

whole loop again in the then part. This recursive role comes after the

graph for the body of the loop. Note too tha t, in a while loop, the

<condition> is part of the loop since it is re-evaluated each time round

the loop. So, before translating <condition> a copy of CDFE is saved

217

(the pre-condition d a ta flow environm ent C D F E p r e c o n d it io n) - The

<condition> is then translated as before, and its ou tput is connected to

a te s t node, ju s t as in the case of conditional statem ents. As before two

new controlling conditions PaX (C su cceed) and Pa- X (Cfaii) are created.

The curren t data flow environment is again saved by copying (the post

condition d a ta flow environm ent C D F E p o s t c o n d i t io n) - The cu rren t

controlling condition is then set to C s u c c e e d and the <statem ent> is

then translated. At this point a recursive role m ust be generated. To do

th is we need to know which variables pass their values into the loop so

th a t we can pass the tie-points representing the values of these same

variables after the body of the loop has been executed through to the

recursive role. This is done by looking a t which variables have either

been simply used, or have been used before being updated, inside the

loop. These constitute the external inputs to the loop. Assuming for the

m om ent th a t we can identify these, th en the tie-po in ts of the

corresponding variables in the current data flow environment are made

the inpu ts to the recursive role. Now, to compute the ou tpu ts of the

recursive role, we have to look a t which variables are altered in the

loop. These correspond to those entries in the cu rren t d a ta flow

environm ent which are different from entries in the precondition

environm ent^. Since these variables are altered in the loop they m ust

be ou tpu ts from the loop. Of course the recursive role m ust alter these

sam e variables, and hence for each of these variables, a new tie-point is

created as the corresponding output from the recursive role. For each

of these variables the current d a ta flow environm ent is updated with

the corresponding new tie-point, giving u s the correct d a ta flow

^Note that we have to look at the precondition environment, since it is possible that

evaluating the condition might alter the values of some variables (if say it involved a

function call).

■y

218

environm ent following the recursive role. We now have to generate

jo in -ou tpu t nodes, to reconnect diverging d a ta values after the te s t

node. J u s t as in the case of a conditional, we generate a jo in-output

node for each variable th a t has changed in either the then p art or the

e ls e part of tlie conditional. However, in th is case the e ls e p art is

em pty, so the succeed data flow environm ent is sim ply th a t ju s t

com puted (C D F E) , and the fail data flow environm ent is simply the

saved post condition environment C D F E p o s tc o n d it io n - So we only need

to compare C D F E with C D F E p o stco n d itio n , and for each variable th a t now

h as a different tie-point associated with it we create a jo in -ou tpu t

node, with succeed input coming from CDFE, and fall input coming
from C D F E p o s tc o n d it io n - For each of these a new tie-point is created to

represent the output after the join, and the entries for the appropriate

variables in C D F E are now Updated with these new tie-points.

So consider the following piece of code:

sum:=0 ;
sum squares :=0 ;
i:= l;
while i< 1 0 do

begin
sum:=sum+i;
sum squares :=sumsquares+i*i;
i:=i+l;

end;

Suppose th a t the curren t controlling condition is P. Then on entry to

the loop the symbol table contains the following entries:

i .. lone

sum......................... iaero

sumsquares........... tzero

219

This is saved as C D F E p reco n d itio n - Then the condition is processed. This

adds the following N A P E to the graph for the loop:

[©Pbinrel [tiess tone ttenlltU P]

C D F E p o s t c o n d i t i o n is then saved (it happens to be the sam e as

C D F E p r e c o n d it io n) - A te s t N A P E is then generated (with appropriate

succeed and fail controlling conditions):

[Ptest [tl] P PaX Pa^]

The body of the loop is then processed, adding the following NAPEs:

[©Pbinfunction [tpius tzero tonel[t2] PaX]

[©Pbinfunction [ttimes tone tonelltS] PaX]

[@Pbinfunction [tpius tzero t3][t4] PaX]

[©Pbinfunction [tpius tone tone][t5] PaX]

where t2, t3, t4, and t5 are all new tie-points. The symbol table (CDFE)

is now in the state:

it5

sum........................ t2

sumsquares...........t4

The Vused list for the loop segment is now:

V u s e d = [less plus sum i sum squares times 1 1 0]

The recursive role is now generated. Its inpu ts are the tie points

representing the objects in Vused- Its outputs are new tie-points for all

the variables which have changed since entering the loop. These are i.

220

sum , and su m sq u ares since these all have d ifferent values in

CDFEprecondition and CDFE. So we generate a recursive role:

[recursive [tiess tpius t2 t5 t4 ttimes tone ttenllt6 t7 t8] PaX]

a iid th e sym b ol tab le is updated w ith th e n ew tie -p o in ts g iv ing u s

CDFE:

i t6

sum........................ t7

sumsquares.... t8

A join outputs-node is now generated for each of these variables, with

succeed inpu t coming from this environment, and fail in p u t coming

from CDFEpostcondition. and a new tie-point for each join’s output. This

adds the following NAPE)s:

(join-output [t6 t o n e l [t 9] PaX Pa- iX P]

(join-output [t7 t z e r o K t l O] PaX Pa-X P]

(join-output [t8 t z e r o K t l l] PaX Pa-X P]

This is shown in Figure 6.4. In the segment containing the loop it is

represented as a single NAPE with inputs given by the variables in

Vused. and outputs given by the outputs of the join(s). i.e.

[whileloop 1 [tiess tplus tzero tone tzero ttimes tone tten](t9 tlO t i l] P]

Again, when this is added to the graph of the segment containing the

loop, its CDFE must be updated appropriately.

6 .2.1.5 Translating Procedures and Procedure Calls

Subject to the limitations discussed below, procedure definitions

are handled as if they were a complete program. At the s ta rt of the

221
tplus tone

tiess ttimes ttentzero

isquareisu

©Pbinrel

Ptest
PaX

w w

©FbinfunctionPaX

©FbiiifunctionPaX

@Pbinfunction PaX

PaX@Pbinfunction

PaX

join
tio t l l

sum
sum
squares

Figure 6 .4
Graph For L o g o

222

procedure definition new control and d a ta flow environm ents are

created. These have all the variables etc. th a t are currently in scope,

b u t have new “undefined non-local” tie-points associated w ith them .

This is to avoid generating error m essages when the procedure is

being analysed, since of course we can only tell a t the place where a

p rocedure is called w hether or no t its non-local variab les are

undefined. Formal param eters are treated exactly as a norm al recursive

d escen t com piler would, b u t have “unassigned form al” tie-po in ts

associa ted w ith them . Analysis of the procedure body etc th en

proceeds exactly as for a main program, producing a surface plan for

the procedure. This is stored in a frame-like structure , w ith slots for

the procedure nam e, its surface plan, its formal param eter inputs, its

non-local in p u ts and ou tpu ts (non-local variables altered by the

procedure are treated as outputs). Call-by-reference is treated as if it

were call-by-value-result, which is equivalent provided th a t in a call of

th e procedure there is no aliasing of a call-by-reference ac tu a l

param eter with a non-local variable used by the procedure. So call by

reference param eters are also treated as output variables.

When a procedure call is encountered a node representing a call

of the procedure is inserted into the surface p lan being generated.

This node has inpu ts corresponding to all the inpu ts of the surface

plan for the procedure, and these inputs are connected to the curren t

surface plan in such a way th a t non-local inputs are the tie-points in

the curren t dataflow environment corresponding to the variables used

in the procedure. It is here th a t any errors to do w ith undefined

variables are detected. A new tie-point is created for each ou tpu t from

the procedure, and the current data flow environment is then updated

to reflect the fact tha t these variables have had their values updated.

223

6.2.2 Mutable Functions and Side Effects

As promised above, we will now discuss the way in which arrays

and records are dealt with. This is closely related to the phenom ena of

m u tab le fu n ction s and sid e effects discussed earlier in Chapter 3. Now

program s w hich operate by side-effect p resen t g reat difficulties for

d a ta flow analysis, upon which the translation process described above

depends. The only way in which side effects can occur is if we update

s tru c tu re s of some sort. This corresponds to changing the roles of

some d ata object. As stated earlier though, ra th e r th a n viewing the

structures themselves as having changed, we will view this as a change
to the (now mutable) accessing functions for the d ata type involved. So,

for instance, a statem ent like:

z:=x.numb (where x is a listelement, and z is an integer)

will be treated as if it were something rather like:

z: =apply_function(numb ,x)

and

x.numb:=z (where x is a listelement, and z is an integer)

will be treated as if it were:

num b :=newarg(numb ,x, z)

This approach h as the effect th a t all inform ation abou t side

effects etc. is carried by the mutable access functions. This m eans th a t

the only information th a t is relevant when we need to determ ine the

behaviour of some object in a situation are the cu rren t values of the

m u tab le access functions in th a t s itu a tio n For in s tan ce , the

224

lis te lem en tce ll'> list behaviour function, which formerly w as defined

by:

a=listelem entcell->list(p,s) =
[[instanceflist, a)

A head(a)=numb(listelementcell->listelement(p,s))
A tail(a)=^lis telem en tcell>>list (next (

li8telem entcell->listelem ent(p,s)),s)]]

can now be rewritten as:

a=listelementcell->li8t(p,s) s
I [instance(list, a)

A head (a)=apply (function (NUMB, s) ,p)
A tail(a)='^li8telementcell->li8t(apply(function(NEXr,s),p),s)]]

and the dependence of the behaviour function Ii8telem entcell->li8t on

the m utable functions NUMB and NEXT is now m ade explicit. This

m eans th a t the Ii8telementcell->li8t behaviour of an object X a t time s,

depends on the (function) behaviour of NUMB and NEXT a t time s, and

the Ii8telexnentcell->li8t behaviour of X a t time t will only necessarily

be the same if the (function) behaviour of NUMB and NEXT h as not

changed betw een s and t. Of course, additional reasoning will be

required if NUMB and NEXT are changed between s and t in such a

way as not to effect the Ii8telem entcell-> li8t behaviour of X (e.g. by

altering an sdtogether separate list im plem ented using listelem ent

cells as the building blocks) in order to recognise th a t the behaviour of

X is still the same. However, th is is Ju st a reflection of the fact th a t

reasoning about side effects is difficult in general, and the underlying

philosophy of the plan calculus, and of the graph parsing recognition

process we will present later, is to try and capture as m any possible

common uses of side effects as plans, in order to try to alleviate the

necessity for general reasoning. However, in order to make it easier for

the p lan recognising system , described in the nex t chap ter, to

225

recognise these standard (side-effecting) plans, it is im portant th a t the

surface plan reflect as closely as possible the tru e d a ta flows th a t

actually happen in the program. This means th a t the m utable functions

NUMB and NEXT in the above example m ust be treated as values which

are passed around by the program, and the correct curren t values of

these should be used in all the appropriate places. This can be

achieved simply by treating num b and next as ordinary variables, with

values NUMB and NEIXT respectively.

6.2.2.1 Dealing with Records and Pointers

As described above, a record declaration is interpreted as
defining a class of objects whose type is the record type. However,

ra th e r th an regarding these objects as m utable objects w hich are

accessed or updated by the field selector functions for the records of

th a t type we choose to regard the objects as fixed, and the field

selector functions as mutable. So a statem ent of the form:

z:=7 .field

w here y is a record and field is one of the fields of the record, is

treated simply as if it were the application of function field to object y,

and th is is represented in the surface plan by an © fu n ctio n node,

w hose .op in p u t is the tie-point in the CDFE represen ting fie ld .

Similarly,

xÆeld:=y

is treated as changing the definition of the function field so th a t on all

objects other than x it has the same value as before, b u t on x it now has

the value y. This is represented by an #newarg operation in the surface

plan with .op being the tie-point for field, .arg being the tie-point for x,

and .value being the tie-point for y. The CDFE is then updated with the

‘ 226

A X next numb 3

©function

©function

I ©function

new
numb
function

Figure 6.5
Graph For x^.next^.numb:=3

227

value of fie ld now being represented by the (newly created) tie-point

representing the output from the #newarg operation.

Pointers are treated similarly as being a type of object w ith

b e in g treated a s a fu n ction w h ich m a p s p o in ters to o b jec ts . T h is

approach enables the system to (say) recognise a list implemented as a

chain of linked records as constitu ting a th r ea d , w ith (fieldo^)^

constitu ting the successor function (via the overlay c o m p o s e d -

fun ction s-> fu nctio ii). and the pointers them selves constitu ting the

nodes of the thread. This approach means th a t a statem ent like:

x^.next^.numb := 3;

will be represented by a graph like th a t shown in Figure 6.5.

6.2.2.2 Dealing with Arrays

Although the approach we have ju s t outlined works quite well for

records (and cons-cells in Lisp), it does give u s a problem with arrays.

The problem essentially tu rns out to be one of naming. For instance,

we can model one dimensional arrays as m utable sequences i.e. as a

subtype of functions. Such an array A (say) is similar to a record in the

sense th a t it can be viewed as a compound data object with fields, and

so ought in principle be capable of being dealt with in a similar fashion.

However, the reason why we can take the approach outlined above with

records is th a t the access functions are nam ed. This m eans th a t we can

tell whenever one of them is used or altered - it is clear from the

syn tax of the program m ing language - and th is meeins th a t the

translation process from a program to a surface plan can always ensure

th a t the tie-point representing the current value of one of these named

3
° is used to denote function composition. So (f®g)(x)=f[g(x)).

228

access functions is passed th rough to ac tions w hen necessary .

However, in the case of an array A we do not have these nam ed access

procedures. E)ven if we were to name them som ething like Ai, A2 , A3 ,

etc., where

Ai(ifg=A(l] and A2 (A)=AI21 and A3 (A)=AI31 etc.

we still would not be able to tell in general which one was being used

(or updated) since programs often contain statem ents like:

A[2*i-J]:=3

and we would not know which of the access functions was actually

being updated. In the case ju s t mentioned, where we have a n am ed

array, the approach of treating the aixay as a m utable function works

quite well, since we now have a name for the function being updated,

and a s ta tem en t like the above can be modelled as an # n e w a r g

operation on the mutable array A. This am ounts to treating the whole

array itself as analogous to a m utable field accessing function on

records, where the domain of the m utable array function is now the set

of im m utable in tegers (or a t least an appropriate su b se t of the

integers). However, consider the following case:

var a : array!l..n] of ^array[l..m] of integer;

and consider a statem ent sequence like:

a[il^(j]:=3; (1)

x:=a[i]^(j] (2)

From one point of view statem ent (1) leaves the array a unchanged,

since a is a n array of pointers and none of these have changed. This

m eans th a t a[i]^ represents the same value in statem ents 1 and 2 (i.e.

229

1 j

©function

W ©function

Y ©function

Z ©function

©function

Figure 6 . 6
Graph for Arravsfpure mutable sequence approach)

230

the identity of the array involved is the same in both situations) since

^ is an immutable function. However, using this object in statem ent 2

involves using the sequence^ behaviour of the array a[i]^ and th is h a s

changed. The problem can be made clearer if by considering Figure

6 .6 , showing the relevant parts of the surface plan for the above code.

This diagram essentially reflects the difficulty th a t a transla to r has in

determ ining the true d ata flows. Following the approach discussed

earlier of treating arrays as sequences (i.e. functions) would lead to the

plan diagram shown. This is highly misleading, since in the light of the

earlier discussion of collapsing, we would naturally w ant to collapse the

two © fu n ction operations labelled X and Y in the figure, and then

collapse the two ©function operations labelled W and Z. However th is

would lead to identifying tie-points t l and t2 , whereas really tie-points

t l and t3 should be identified. In fact the problem is worse th an this.

As can be seen from the diagram, t3 does not connect up in any way to

the re s t of the graph, and would th u s appear to be a completely

red u n d an t com putation, whereas it actually does have an effect. It

should be noticed th a t the axiomatic formulation of the plan calculus

does not have this problem. This is because the syntactic form of the

axioms distinguishes between object identities and object behav iours,

whereas the graph form only passes behaviours eiround. In the absence

of side effects this is fine, since the objects are all then immutable, and

we do no t need to distinguish the behaviour of an object from its

identity since the behaviour of the object is the same in all situations. If

we were to trea t tie-points as representing identities of objects ra ther

th an behaviours we would again get into trouble, since th is would now

lead u s to identify tie-points t3 and t2 (and tl) , giving rise to cycles in

the graph, as well as forcing u s to continually reason about the

 ̂sequence is a subtype of function.

231

arrayaccess a i

@binfunctlon

function

I #newbinarg
new
arrayaccei
function/

ibinfiinction

îbnSïonI

@binfunction

Figure 6.7
Graph For Arrays (pure arravaccess approachl

232

situa tions in which we were considering the tie-points. This would

m ake a graph recognition approach to program understand ing very

difficult.

The solution to this is to adopt an approach sim ilar to th at of the

case of records. We can treat arrays as im m utable objects (perhaps

thought of as array ‘cells’), with a m utable binary access function array

access defined on it i.e. an array access A[i] can be treated as if it were:

binapply(array-access,i,A)

and array updates can be modelled by an #newbinarg^ operation. This

resu lts in Figure 6.7, which is better, b u t now we are no longer (from

the graph alone) able to collapse anything. The best solution, and the

one we will adopt, is a mixed strategy. Named arrays (i.e. those

identified by a variable name in the program) will be treated as m utable

functions as before. Unnamed arrays i.e. those which are com ponents

of d a ta struc tu res, will be treated as im m utable, w ith the m utable

function array access defined on them. This gives rise to Figure 6 .8 ,

which collapses into Figure 6.9, which is probably the m ost intuitively

correct representation of what is going on. It should be noted th a t if

the plan recognition demands it we can always move from the point of

 ̂newbinarg is not an operation defined In Rlch[1981], We have Introduced It In order to

model array updates. Its ‘compact’ definition Is:

lOSpec newbinarg .old(blnfunctlon) .eng 1 (object) .ai^(object) .Input(object)
=> .new(blnfunctlon)

Preconditions lnstance(argtype-one(.old),cirgl) a lnstance(argtype-two(.old),arg2)
A instance(range-type(.old)..input)

Postconditions blnapply(.new,.argl,.arg2)=.Input
AV3Q^[blnapply(.old.x,y)=z A»t.aigl a ŷ ?Jaig2 3 blnapply(.new.x,y)=y]

A aigtype-one(.new)=argtype-one(.old)
A aigtype-two(.new)=aigtype-two(.oId)
A blrirange-^rpe(.riew)=blrirarige-type(.old)

#newbinarg Is defined as a specialization of newbinarg In which .old=.new

233

arrayaccess

Function

ibinfunctlon

Figure 6.8
Graph For Arrays (Mixed Approach)

234

arrayaccess

L i
^ ü n c ü o n l

/
nction

I #newbinarg

blmiinction

Figure 6.9
Collapsed Version of Figure 6.8

235

view we have when using array access to access arrays, to one in which

we have a mutable array via overlays like @binfimction+two->@fimction

and binfimction+two->functioii. This am ounts to currying array access

on its second argum ent (the array) to get a m utable function which

behaves exactly like the array (treated as a mutable function).

6.3 lim itations of the Recursive Descent ̂ p roach

The recursive descent approach to translating Pascal program s

into a surface plan cannot deal with all program s. In particu lar, it

cannot deal with programs involving forwardly defined procedures, or

recursive procedures. This is because, when we process a procedure

call, in order to correctly join it to the surface plan being generated we

need the following information about a procedure:

a) w hat non-local vgiriables it accesses or updates

b) which of its formal param eters are call-by-reference ra ther

than call-by-value.

This requires the procedure (or function) to have been previously

analysed. It would not be hard to modify our transla to r to cope with

these types of procedure. All tha t would be required is a pre-pass over

th e program collecting the above inform ation according to the

techniques outlined in Hecht [1977]. The current translator could then

use th is information when required.

6.4 General lim itations

There is however a more serious lim itation of any d a ta flow

analysis technique. This is concerned with program s which have data

s tru c tu re s which share parts or all of their su b stru c tu re . We have

already touched on this when discussing arrays and records above. The

236

solution we described there a t least has the property th a t it does not

produce positively misleading data flows. However, w ithout genersd

reasoning, it is not possible for the data flow diagram representing the

program to always reflect the true data flows, and hence th is is another

reason why a general puipose program understanding and debugging

system m u st include a powerful reasoning system w hich is well-

integrated w ith any plan recognition process. Consider the program

fragment below:

a[6]:=z;

y:=a[3*i-jj;

This would give rise to the graph shown in Figure 6.10. However,

suppose th a t 3*i-j actually evaluates to 6 . In th is case the graph ought

to be th a t shown in Figure 6.11. This am ounts to being able to identify

t l and the tie-point representing 6 , as well as t2 and the tie-point for

z, in Figure 6.10.

This problem is really inheren t in the whole surface p lan

approach to representing programs. Indeed it is quite likely to be

in h e ren t in any program analysis System th a t aim s to cope w ith

anything other th an purely functional languages. At the m om ent the

b es t we can hope for is to capture the m ost common usages of side

effect in p lans, and leave more general cases for w hen the p lan

recogniser has been supplemented by a plan calculus theorem prover.

Related to this problem is th a t of variable aliasing. If a procedure

uses a non-local variable x, and a call of the procedure has x passed as

th e ac tua l param eter corresponding to a call-by-reference formal

argum ent, then the resulting true d ata flow diagram m ay be quite

different to th a t obtained under the assum ption th a t x and the formal

param eter were different. In this case the procedure ought to be

237

a 6 z

V U|#newar^J

3 1 j

©function

L U
t

binnineticn

pbînûînctîoîn

Figure 6.10
Graph For af61:=z: v:=af3*i-i1

a 6 z

#newarg

Figure 6 11
Graph For af61:=z; y:=af3*i-j1

When 3*i-i=6

238

retranslated under th is assum ption to get a true description of th is

particu lar call. This has not been done, so our approach currently

suffers from the limitation th a t it cannot cope with th is particu lar type

of call. In general th is can be quite hard to recognise, and more work

will need to be done on this. Note tha t this can happen even if there is

no structure sharing of data structures going on.

Finally it shou ld be noted th a t we have excluded from

consideration in all of this the goto statem ent. This is because th is

introduces cycles into the surface plan, and everything we have done

assum es the surface plan is not cyclic. In particular, if there are cycles

it is m uch harder to assign an interpretation to tie-points as being

behaviours of specific objects a t specific tim es. To deal w ith g o to

sta tem ents, it would probably be better to restru c tu re the program

first using any of the available techniques for doing th is, and then

analyse the result.

239

Chapter 7.

Thft Plan Recognition System And Thm Plan Tjbrarv

The ch a rt parse r described in C hapter 5 clearly h as m any

features making it suitable for program understanding w ithin the plan

ca lcu lus/p lan diagram formalism. In particular we will trea t the plan

library as defining a set of rules for a restricted s truc tu re -sharing

flowgraph gram m ar, where the se t R of collapsible operations is

precisely the se t of deterministic operations as defined in C hapter 4.

However, there are m any features of th is form alism which do not

exactly fit the flowgraph formalism as described so far. This chapter

will describe the various features of plan diagram s and the plan

calculus which an unmodified flowgraph parser cannot cope with, and

describe the changes necessary. As this project is currently only using

the p arser in a bottom -up mode, the changes described below have

only actually been implemented for bottom -up parsing. However, it

would not be difficult to do them for top-down parsing as well, and

indeed if th is system were to be incorporated into a tu toring system

along the lines of PROUST [Johnson, 1986] this would be necessary.

7.1 Dealing with Overlays and Data Abstraction.

As discussed in Chapter 3, the plan library no t only contains

tem poral p lan s - it also contains tem poral and d a ta overlays.

Additionally, it cdso contains data plans. Each programming cliché is

encoded as a temporal plan. A typical example is bump+update, shown

in Figure 7.1. This can be encoded very nicely in the flowgraph

formalism, and recognised quite easily (ignoring constraints on the tie-

points), using the flowgraph parser as described already. However it

should be noted th a t the constraints actually imply two views of the

inputs t l and t2. These are:

2 4 0

+update

tl.

t3

©oneminus
t5 newterm

vdiere upper-segment(tl,t2) and
upper-segment(t4,t5)

Figure 7.1
Riimp-mpflate

» +update

where
t6 =upper-segment->list(upper-segment(t 1 ,t2)) and

t7=upper-segment->list(upper-segment(t4,t5))

Figure 7.2
Bump+update->push

241

(a) They are simply two data values providing in p u ts to the

plan.

(b) They are the components of a compound d ata struc tu re (a

data plan in Rich’s terminology) known as an upper-segment.

Similarly, there are two views of the outputs from the plan. Of course

the co n stra in ts them selves can be checked ju s t like any o ther

constrain ts a t the time the plan is recognised (has a complete patch

corresponding to it added to the cheirt). However, the problem s

in troduced by such d ata p lans are m ade clear once we consider

tem poral overlays. Consider the overlay bump+update>>push, which

captures the idea th a t an upper-segm ent can be used to implement a

sta ck , and th a t adding a new element to the bottom of the upper-

seg m en t can be viewed as pushing an element onto a sta ck (here a

stack is thought of as a list, with new elements pushed onto the front).

Figure 7.2 shows this overlay. Here we immediately ru n into a problem

using tlie flowgraph formalism described earlier. Rules in a context-

free flowgraph gram m ar have to have the same arities for their left and

right and sides. This is clearly true for bum p+update itself and this

poses no problem s. However, if we try and cap tu re th e overlay

bump+update->pusb as a rule we find th a t we have a problem. The left

hand side of the rule has arity (2 ,1), while the right hand side has arity

(3,2). Furtherm ore, although the tie-point t3 occurs as inpu t on both

sides of the overlay, th is Is not true of t 6 and any tie-point of the

b um p+ up date plan. It does not even correspond to the com pound

object (the upper-segm ent) represented by t l and t2. It corresponds

to the u p p er -seg m en t viewed as a l is t (via a d a ta overlay u p p er-

segm ent->list). To cope with these features the basic bottom -up chart

parser presented in Chapter 5 is modified as follows:

242

(1) Rules(plans) and tem poral overlays are rep resen ted

separately. The rules are used to drive the parsing as described in

Chapter 6 .

(2) When a complete patch is added to the chart its constraints

are checked. If any of these constraints correspond to the fact th a t

some of the tie-points occurring in the patch are the com ponents of a

com pound d ata object (a data plan) then, provided these tie-points

have not been recognised as forming an instance of the com pound

d a ta type previously in the recognition process, a new tie-point is

created and an assertion stored in a da ta-p lan d a tab ase stating the

relationship between the new tie-point and the ones occurring in the

patch. This handles all data plans since we now have explicit single tie-

poin ts representing com pound d a ta objects m ade up of a su itab ly

ordered collection of other tie-points.

(3) Once the data-p lans have been dealt w ith as described

above, the set of temporal overlays is con su lted to see if there are any

overlays applicable to the patch ju s t added. A new complete p a tch

corresponding to the left hand side of the overlay is created and added

to the chgirt. Tie-points in the new patch corresponding exactly to tie-

points in the old patch are used directly. If the overlay specifies th a t a

tie-point in the new patch corresponds to a data-plan type view of tie-

points in the old patch then again, if this data-plan h as not been used

on th ese tie -po in ts previously a new tie -po in t is crea ted and

inform ation about it stored in the data-plan database. If the overlay

specifies th a t a tie-point in the new patch corresponds to a data-

overlay of tie -p o in ts in the old p a tch (or to som e d a ta -p lan

corresponding to tie-points in the patch) then , if th is data-overlay has

not been used on these tie-points previously a new tie-point is created

and information about it stored in a data-overlav database. Figure 7.3

243

Graph to be parsed

©oneminus newterm

Patch added
to chart

Data-plan
Database

bump+update [6 is upper-segment(1 ,2)1
[7 is upper-segment(5,4)i

Data-plan Database

[6 is upper-segment(1 ,2)1
[7 is upper-segment(5,4)l

Data-Qverlav Database

[8 is upper-segment->list(6)l
[9 is upper-segment->list(7)i

Figure 7.3
Use of Data Plan and Data Overlay D atabases

244

shows this process a t work. It is this ability of the modified parser to

deal w ith com pound d ata objects th a t leads to its ability to analyse

program s to a high degree of abstraction, and th a t m akes it the fullest

im plem entation of Rich’s ideas on program understanding. It is worth

noting th a t the parser could also easily be modified to cope with data

plans and overlays when running in top-down mode, although th is has

not yet been done in this project.

It should be noted tha t the fact tha t we can do the above is both a

consequence of, and enforces, the following:

1) As stated already in Chapter 3 all tie-points represent a specific

behaviour of some specific object a t a specific time.

2) Different behaviours of the same object a t the same time will be

represented by different tie-points. Since the only behaviours

directly applicable to the values m anipulated by a program are

the primitive behaviour functions the only ways in which an

object can have more than behaviour is by m eans of data overlays

m apping the primitive values to o ther (more abstract) d a ta

values, or by being considered to be p arts of some com pound

data object. So, these tie-points representing other behaviours of

the object will all be new tie-points with assertions in the data-

overlay database. Since, for all primitive behaviours B we have the

following:

VCpst [C(B(p,s).t)=C(B(p.s),s)l

and for all non-primitive behaviours B->C we have:

Vpst lB->C(B(p.s).t)=B->C(B(p.s).s)]

245

th ese tie -po in ts will also all behave properly w hen used

elsewhere

3) If a behaviour B (say) of some m utable object p is different in

s itu a t io n s s and t (i.e. B (p ,s)^ B (p ,t)) th en B (p .s) will be

represented by a different tie-point to B(p,t).

7.2 Problems with Control Flow

The next problem is th a t plan diagrams actually have two types of

connections between nodes, whereas the flowgraph formalism only has

one. These two types are data flow arcs, and control flow arcs. Now if

control flow arcs were of the same fixed natu re as the d ata flow arcs

then we could have dealt with them simply by using the la s t (for

example) of the en tries in the inpu ts of a pa tch to rep resen t the

incoming control flow, and the last of the ou tpu ts to rep resen t the

outgoing control flow. However, because of the way parts of a plan can

be widely separated in the program source code, the control flow

between two parts of a plan can be separated by a large num ber of

other operations. Furtherm ore, often the order in which two plans will

be executed is often irrelevant, even though the control flow between

them will be determined by the original program.

The key to performing control flow checking is to use the notion

of control flow environm ents, and more particu larly the notion of

controlling conditions, as described in Chapter 4. In order to deal with

 ̂ It should be noted that this is a consequence of the fact that all structures such as lists

will be recognised via a sequence of overlays such as iterator->thread, and thread->li8t.,

and iterators will be recognised as instances of compound data objects (consisting of a

seed and a m u t a b l e function), thus implicitly (via the mutable function) carrying the

relevant pant of their situation around with them.

246

control flow constrain ts every complete patch in the ch a rt is given a

controlling condition as follows:

1) Primitive patches (i.e. those corresponding in a one-to-one

fash ion w ith nodes in the surface p lan of th e program being

recognised) are given the controlling condition of th e ir originating

node. These nodes get th e ir controlling conditions d u rin g the

transla tion process from source code to surface p lan (described in

Chapter 6).

2) A part from the patches for primitive operations, patches

will in general contain sub-patches. The controlling condition for a

patch is com puted from the controlling conditions of its com ponents,

using the notion of plan conditions as described in C hapter 4. This

serves both to compute the controlling condition for the patch, and to

check th a t the com ponent p a tches have th e rig h t contro lling

conditions to satisfy the control flow constraints.

7.3 Tests and Joins

Most of the im portant control flow (in the sense th a t the program

would com pute a different function were it to be changed) information

in surface plans is carried by te st and jo in nodes in the surface plan,

and these can pose severe problems for the m atching process. The

m ain reason for th is is th a t the parsing process is data-flow driven -

partia l patches are only ever extended by complete patches which

m a tch im m ed ia te lv n e e d e d en tries in the p a rtia l pa tch . An

imm ediately needed entry is a needed entry some of whose inpu t or

ou tpu t tie-points have been instantiated (i.e. there is d a ta flow from

one or more of the (already found) components of the patch). However,

te st nodes have no output data flows so they do not necessarily connect

in any direct way to the rest of the graph other than via their control

247

m

Figure 7 A
Iterative Termination

248

flow arcs, so it can be difficult for pure data flow parsing to recognise

some plans involving tests. Similarly some plans only specify th a t they

need a Join (i.e. no data flows are specified in the plan a t all for them)

which again makes it impossible for pure data flow parsing to find such

jo ins. However, all the examples of th is phenom enon th a t we have

encountered happen in one of the following situations:

1) plans like itérative-term ination. shown in Figure 7.4. which

are so general as to be of little use in themselves. Their m ain function

in the p lan calculus is to provide basic building blocks upon which

other p lans can be defined. Despite this we m ay wish to find them in

order to provide a theorem prover with inform ation to ass is t it in its

reasoning. It should be noted th a t there are cflow arcs (i.e. ncflow and

scflow arcs) between the test and the join in such plans.

2) Plans like iterative-accum ulation. shown in Figure 7.5. Such

plans have the property tha t the joins a t least have data flow arcs which

connect to the rest of the plan. Again there are cflow arcs between the

te s t and the corresponding join.

3) The general case of trying to m atch a te s t to its corresponding

jo in (in e.g. a cond). This is not possible by pure d a ta flow parsing,

since there is no direct connection between them .

However, the common property th a t all of these have is th a t

there are cflow links between the te st and its join. For the very general

p lans (e.g. a plain cond with no data flows involved anywhere, or a pure

iterative-term ination plan) we have decided to insist th a t the m atching

be s tr ic t i.e. the corresponding control flow environm ents m u st be

stric tly equal. So provided t e s t s and jo in s are stored in the chart

indexed by all their controlling conditions, as well as by their input

249

add

Figure 7.5
Iterative Accumulation

250

a n d /o r ou tpu t tie-points, then they can easily be found. Note th a t for

other plans (e.g. iterative-accumulation) we have decided to adopt the

following strategy:

Leave finding the test (un less it has been identified by d ata flows

to one or more of its inputs) until both sides of the jo in have been

instantiated by data flow parsing (note tha t because of the possibility of

n-join-output nodes one side of the Join will not necessarily tell u s the

other). This will happen automatically since none of the inpu ts to the

needed te s t node will get instantiated in the case of a p lan where the

inpu ts to the te s t do not feed to anywhere else in the plan. Now look

for a t e s t such th a t the three control flow environm ents of the t e s t

enclose the corresponding control flow environments of the join . This

condition is imposed by the cflow constraint between the te s t and the

jo in . This is a very severe constraint on the control flow environments

and, given the indexing of te s ts by their control flow environm ents,

and the form of the controlling conditions we are dealing with, in

w hich the encloses relation can be recognised syn tactically (as

m entioned in Chapter 4), enables reasonably rapid identification of the

correct tçst.

Another problem which the parser has to deal with occurs when,

as a resu lt of d a ta overlays or data plans, new tie-points are created

inside a conditional, and these have to be com m unicated to whatever

follows the jo in in the conditional. An example is shown in Figure

7.6(a). In th is case we really need to add a new jo in with th is new tie-

point as an input to the join (as well as a tie-point corresponding to the

sam e overlay of the corresponding tie-points on the other side of the

jo in) , and to create an ex tra ou tpu t tie-poin t rep resen ting the

co rrespond ing overlay of the corresponding o u tp u ts from the

conditional, as shown in Figure 7.6(b).

/ y ' t* -; ■■ : -

251

a)

plan

□ □
an overlay or data
plan of these
tie-points

b)

new join created
with inputs and output
corresponding to
overlay or data plan of
appropriate tie-points

\
1 1

T T T
Figure 7.6

New Joins and Tie points Corresponding to
Data Plans or Overlavs

252

Another case in which joins can cause problems is the case when

an appropriate jo in does not even exist. This happens w hen we have

partially recognised a plan in which the actions which define the jo in

we are looking for (i.e. whose outputs should connect to it) are either

in generalised control flow environm ents i.e. we have conditional

plans, or are inside a conditional, b u t feed the ir o u tp u ts to other

actions in the conditional, rather than to a join Figure 7.7(a) illustrates

th is situation. As noted in Chapter 4 however, adding a jo in with the

ap p ro p ria te controlling conditions changes no th in g ab o u t the

sem antics of the graph, so in th is case we simply create a jo in on

demand, as shown in Figure 7.7(b).

There is one final problem caused by jo in s . This occurs in

situations like th a t shown in Figure 7.8 where in order to recognise a

plan (albeit conditionally) we need to m atch th rough a foin. Note th a t

th is m atching through a jo in m ight be required in either direction

through the join. This is in some ways a rather nasty problem as it can

potentially happen every time we need to extend a partia l patch. The

solution we have adopted is to flag each tie-point th a t is an input to a

jo in as a “jo in -inpu t” tie-point, and to flag every tie-point th a t is an

o u tp u t from a join as a “jo in-output” tie-point. Then two tables are

m aintained (actually hash tables) - one table for inputs to jo in s giving

the corresponding ou tpu t tie-point, and one table for ou tpu ts from

jo ins, giving all the corresponding inputs. This enables the parser to

rapidly find the appropriate m atching tie-points on the other side of

jo in s . Note th a t when m atching through a jo in , whichever patch is

feeding in to the jo in m ust be treated as if its controlling condition

were th a t of the branch of the jo in it is feeding into (even if it is not),

otherwise the parser can be misled into thinking it has found a plan

with a weaker controlling condition than it actually has. Figure 7.9

253

a)

Rul(

Graph

b)

Partial A
needing join

new join
created

new
tie-point

Figure 7.7
New Joins For Internal Tie-points

of Conditionals

254

if test then X else Y endif;
=> if test then A.B else C.B endif;
=> if test then A else C endif; B;

jointest

jointest

To recognise the
shaded area as an instance of
X we need to m atch through
the join.

Figure 7.8
Matching Through Joins

255

Rule

6

■ 1 r

9
A is outside
conditional

PaX W This plan is conditional
with plan condition
Pf^PAX
Its controlling condition
is PaX.

Figure 7.9
Controlling Conditions After

Matching Through Joins

256

illu s tra te s the problem . This is achieved by sim ply adding the

requirem ent:

(controlling condition of exit of join)

<r̂ (controlling condition of appropriate branch of join)

to the plan condition of the patch being extended, which ensures th a t

we get the right controlling condition for the whole patch.

One final point needs to be re-em phasised here. Despite the fact

th a t all jo in s actually only have a single succeed and fail input, and

hence a single output, we will continue to show jo in s w ith m ultiple

in p u ts and ou tpu ts in diagram s ra ther than showing m ultiple jo in s

This is purely to keep the num ber of NAPEs in diagrams to a minimum.

7.4 Recursive Roles in Loops

Loops, represented recursively as described earlier, also pose

problems of arity matching. This is because the recursive role in a loop

essentially represents the whole loop, and a loop may have m ultiple

p lans w ithin it. Each of these plans, as specified in the plan library,

expects a recursive role of the same arity as the plan itself. So again

th is m atching m ust be handled separately, and is essentially dealt with

by allowing the recursive role in a loop to m atch recursive roles in

p lans p rov ided th a t it is appropriately connected. This is done by

leaving the m atching of the recursive role until all the connections to it

are known, in which case we ju s t have to check th a t the inpu ts to the

required recursive role are inpu ts in the actual recursive role which

correspond to the inpu ts to the plan in the loop as a whole, or if the

plan does not specify any inputs to the recursive role, b u t simply th a t it

is recursive, then the m atch is simply taken to succeed.

257

7.5 Breaking Programs up into Smaller Segments

The surface plan corresponding to a program can be very large.

R ather th an dealing with it as a single undifferentiated graph it is

broken up, by the translator from source code to surface plan, into a

hierarchical arrangem ent of smaller pieces (henceforth referred to as

segments). Each segment corresponds to some meaningful piece of the

source program, and m ay themselves refer to o ther segm ents. For

in stance each loop in the program corresponds to a loop segm ent

(which is recursive), a conditional corresponds to a conditional

segm ent, and so on. Each procedure definition also gives rise to a

segment, and other parts of the surface plan can use th is segm ent as if

it were a primitive. Similarly, a segment containing a loop will u se it as

if it were a primitive. This results in the m ain program ’s surface plan

mostly consisting of segments.

The parsing algorithm’s initialisation phase is then modified as

follows:

1) F irst of all complete patches are added to the ch a rt for

each primitive operation occurring in the segment.

2) For each non-primitive segm ent X in the segm ent being

considered the ch a rt parser calls itself recursively w ith X as the

segm ent being analysed. This creates a new separate chart for X. For

loops and conditionals the patches in this chart are simply added into

th e ‘calling c h a r t’. For procedure calls copies of th e p a tch es

(appropriately modified to m aintain the connectivity of the surface

plan) for the procedure are added to the m ain (calling) chart.

Controlling conditions are handled as follows:

258

For loops and conditionals the outerm ost controlling condition

environm ent is th a t of the "calling" segment. Controlling conditions

are simply included along with the patches when they are added back

to the calling chart. When procedures are analysed they are given a

token initial controlling condition. When a procedure call is analysed

its patches are copied into the calling chart as described above and the

initial controlling condition is substitu ted for by th e calling ch a rt’s

environm ent. Any sub-environm ents of the procedure are substitu ted

for by appropriate new sub-environments of the calling chart.

Note th a t partial patches are added before com plete ones, and

th a t if a patch is an extension of another, then the extended patch is

added first, ensuring th a t a m inim um of work a lready done is

duplicated.

This m echanism has several advantages. Firstly, w hen analysing

loops, the single recursive role in the loop segm ent m u s t be the

recursive role for any iterative plans being reeognised in the loop.

Secondly, although it involves copying patches (appropriately modified)

from the chart representing the analysis of a procedure into the chart

for a segm ent w hich calls the procedure, i t does n o t involve

rean a ly sin g the procedure as in-line code expansion p rio r to

translation , or ‘in-graph’ graph expansion prior to analysis would. It

m ay even m ake it possible to only copy som e of th e p a tch es

(representing the system ’s best guess at the function of the procedure

or loop or whatever) although for safety a t the m om ent all the patches

are copied. Thirdly, this mechanism makes it m uch easier to deal with

some of the program transformation issues discussed below.

259

7.6 Program Transformations

Another problem th a t occurs when m atching real program s is

th a t often the surface plan contains some subgraph corresponding to

some standard p lan in the libraiy, bu t it is not in the standard form. An

example of th is will be seen in Chapter 8, and this m akes it necessary

to perform various transform ations on the graph in order to convert it

into a form in which standard plans can be recognised. For example

th is m ay involve transform ing the graph from one obtained from a

program involving a w h ile loop to the graph th a t would have been

obtained had the program been coded using a repeat ... until loop.

There are several types of program transform ation performed by

the parser. Some of these are simply handled by rules, and to some

ex ten t sim ply rep resen t m athem atical p roperties of the various

operators involved. They are there simply to avoid the need for a

theorem prover to deduce the relevant properties. It should be noted

th a t the need for these ru les is one of the m ain eritieism s th a t

Murray! 1986] m akes of the plan diagram formalism. However, adding a

rule expressing the relevant relationship, does no t seem any worse

than adding an axiom as he would have in h is system. The other type of

transform ations are m ueh more like the various loop transform ation

operations th a t Murray] 1986] applies to program s to get them into a

standard form.

The first class of transform ations (i.e. those handled by rules)

includes rules for doing such things as:

1) h o t rem oval. This is done by ru les like th a t shown in

7.10(a). This simply adds a patch with the same inputs as the n o t/te s t

com bination , and w ith the su cceed /fa il contro lling cond itions

reversed.

260

a) m
©Pbinrell

Ptest

t l t2 t3

i W
@binrel

b) + tl t2 + t2 tl

C)

t3

<= t2 t3

LLL

t3

>= t3 t2

m
©binrel V ©binrel
y 1 n ------7 y 1 n

<= t2 t3W 1 > t2 t31 w
©binrel

= >
©binrel

y 1 n n 1 y

Figure 7.10
Simple Program Transformation Rules

261

2) expressing com m utativity and o ther re la tio n sh ip s of

opera to rs . For example the rule shown in Figure 7.10(b) expresses the

fact th a t addition is commutative. Similarly their are a whole collection

of ru les for expressing relationships between and abou t the various

com parison operators. For instance Figure 7.10(c) shows some of these

for and so on.

The second class of transformations are m uch more like w hat are

normally thought of as program transformations. Although more will no

doubt need to be added, there is only one of these a t the moment:

3) ite ra tive flag te s t rem o v a l. This is u sed w hen the

program m er has used a “flag” to control the iteration, ra th e r th an the

te s t th a t “really” controls the iteration. This is seen in the following

type of code:

flag:=false;
while not flag do
begin

if condition then
begin

flag:=true
end

end;

where the true controlling condition is actually the condition indicated

in the code tem plate above. In surface plan term s th is corresponds to

Figure 7.11. As can be seen, the crucial factors for determ ining

w hether or not an iterative flag test is being used are the following:

a) The initial te s t is guaranteed to succeed (in the sense th a t

the loop will be entered, rather than being exited immediately).

262

value 1 (flag)
value2

@blnrel

Figure 7.11
Surface Plan Containing An Iterative Flag Test

263

Figure 7.12
After Removal of Iterative Flag Test

264

b) There is a jo in before the recursive role in the loop such

th a t one branch of the jo in sets the flag to a value (i.e. value2 in the

diagram) which will cause the loop to exit next time round. In th is

case, provided there is no computation in the loop before the initial

test, the loop can be transformed by simply removing the initial t e s t

and its corresponding join, and moving the recursive role to before the

join. Figure 7.12 shows the transformed version. Note th a t th is can be

done by simply changing the controlling conditions on the recursive

role to th a t of the branch of the loop which passes the initial value of

the flag out, and removing all reference to the controlling condition of

the initial te s t in the controlling conditions of aU the other actions in

the loop.

7.7 Related Program understanding Work

The work which has the m ost similarity to th a t reported in th is

and the previous chapter is th a t done by Brotsky [1984], and Wills

[1986,1990]. Brotsky developed a parser which generalises Earley’s

[1970] algorithm for context-free string gram m ars to flowgraphs of the

sam e type as those considered here, a lthough h is no ta tion and

formalisms were different. In particular he had no explicit m ention or

representation of tie-points. Brotsky’s algorithm also could no t cope

w ith fan-out, or fan-in from or to nodes, m aking it no t directly

applicable to parsing of surface plans. Furthermore, his algorithm runs

in a s tr ic tly top-dow n le ft-to -righ t fash ion . Wills[1986,1.990]

generalised Brotsky’s algorithm to cope with fan-in and fan-out, and

has used th is generalised parser to produce a program understander

(known as the Recogniser) which does a similar job to th a t described

in this chapter, b u t which is more limited in a variety of ways. She also

ran into m any of the same problems we encountered, although her

265

solutions are often different. This section will describe their work, and

the ways in which it differs from th a t described in this thesis.

As already stated, Brotsky’s parser is a generalisation of Earley’s

[1970] algorithm for parsing context free string languages. It can be

though t of as using the gram m ar to construct a non-determ inistic

finite-state push-down autom ata for recognising flowgraphs generated

by the grammar. If this autom aton then operates in a strictly top-down

left-to-right fashion we obtain Brotsky’s algorithm. His algorithm works

by m aintaining a t any time a list of all the possible sta tes in which the

autom aton could be. Since the autom aton is non-determ inistic there

will in general be several such states. Any such sta te consists of the

sta tes of each recogniser and the sub-recognisers it has called. A state

is described by several pieces of information:

(i) Where in the graph it was started (called)

(ii) Where in the graph it has got to.

(iii) W hat sub-recognisers it has invoked a t the place it has

reached.

(iv) W hat recogniser invoked th is one i.e. w hich o th e r

recogniser it should re tu rn control to if it completes its recognition

task.

The first three of these items are very similar to information the

ch a rt p arse r keeps in its patches, (i) corresponds to the in p u t tie-

points of a patch, (ii) corresponds to the active tie-points of a partial

patch, and (iii) corresponds essentially to the needed entry in a patch.

There is no analogue to (iv) in the chart parser, unless one regards the

whole ch a rt as in some sense recording th is inform ation. This

sim ilarity reflects the fact that Earley’s algorithm can be viewed as an

early form of ch a rt parser running in strictly top-down, left-to-right

fashion, and indeed Brotsky’s algorithm can be viewed as a special case

266

of the p arser presented here. However, there are various im portant

differences between the chart parser presen ted in th is thesis and

Brotsky’s algorithm.

The first, and perhaps most im portant, of these, is the fact th a t

Brotsky’s algorithm only ru n s top-down. This gives h is algorithm a

slight efficiency advantage compared to the top-down chart parser, in

th a t ra th er th an having to search the chart (albeit efficiently) to find

o u t w hich patches can be extended by a new com plete one, he

explicitly keeps track of this with each patch (item (iv) above). This is

possible because of the top-down nature of the parsing, and indeed, in

top-dow n mode, our p arse r could easily be modified to do th is .

However h is algorithm can n o t ru n bo tto m -u p , an d so Will’s

generalisation of Brotsky’s algorithm essentially s ta rts the parser off in

top-down mode a t every point in the graph, looking for every possible

non-termingd, th u s simulating a sort of bottom-up parsing.

There is ano ther m ajor difference betw een the ch a rt p arse r

presented here and in Lutz[1986, 1989] and Brotsky’s algorithm. The

chart parser actually constructs extra patches, no t corresponding to

any th a t his algorithm constructs. This is because, although Brotsky’s

p a rse r co rresp o n d s to the sim u la tion of a n o n -d e te rm in is tic

autom aton, there is one source of non-determ inism , inheren t in the

parsing problem, th a t is ignored by h is algorithm . The scanning

operation of his algorithm always chooses a node in the graph to read

next, and the item s constructed follow from th is choice. A different

choice of node to read next will in general lead to a different set of

item s being constructed. For an example of th is see Figure 7.13. The

ch a rt parser adopts a different strategy - where there is a choice of

nodes th a t could be read next (i.e. where there is more than one patch

th a t could a t a particular time extend a given partial patch) the chart

267

item

If Brotsky's algorithm has found the item(patch)
shown, then it has a choice of whether to
extend it with B or C. If C chosen we get:

and there is now a choice about whether this is
extended by B or D. His algorithm cannot go back
and form the item consisting of A and B.

The chart parser described in this thesis will form
patches A, AB, AC, ABC, ACB, ACD, etc.

Figure 7.13
Deterministic Node Choice in Brotsky's Algorithm

268

p a rs e r c o n s tru c ts p a tc h es (item s in B ro tsk y ’s term inology)

corresponding to extending the patch with each separately. This can

m ean the chart parser does redundant work. However th is w as a quite

deliberate decision, as ultimately the chart parser h as been designed

for program debugging, and this can enable it to find more near-m isses

than Brotsky’s algorithm would.

Related to th is last point is another difference between the chart

parser and Brotsky’s algorithm. This is to do with the fact th a t the

ch a rt parser can “tu rn com ers’’̂ i.e. the chart parser can bypass a

node in the graph, and then, because it has active inpu t as well as

o u tp u t edges can still find the node it has bypassed . B rotsky’s

algorithm cannot do this because it insists th a t a node is only eligible

to be read, if all its input tie-points connect to the item (patch) so far.

Again this is useful if as many near-m isses as possible are to be found.

Figure 7.14 illustrates this point.

As already stated, Wills(1986, 1990] has used Brotsky’s algorithm

as the basis for her work on plan recognition within the plan calculus.

Apart from the fact th a t it is not so adept a t finding near-m isses as the

system described here, there are various other im portant differences.

The m ain one is th a t as yet her recogniser cannot cope a t all with data

plans and data overlays, which greatly restricts the kinds of p lans th a t

can be recognised. As a result of this it also cannot really cope a t all

w ith program s involving side-effects.

Her system also uses the notion of control-flow environm ents

(indeed the terminology is hers - I originally used the phrase “m utually

 ̂This phrase was used by Linda Wills when we were discussing our different approaches

to the plan recognition problem.

269

Chart parser can recognise this partial patch
even if B is missing, since it can bypsiss B, and
"turn a comer" back from E to find D.

Brotsky’s algorithm can only find the item below:

since it cannot "read" E until both C and D have
been "read", and it can't get to D unless B is
present.

Figure 7.14
"Comer Turning" To Find More Near-Misses

270

occurring actions” to capture the same idea). However, the notion of

generalised control-flow environments and their relation to controlling

conditions, used by the chart parser is new and enables it to recognise

meiny plans th a t her system would fail to recognise, especially those

like the ones described in Chapter 4.

There are m any other relatively minor ways in which the system

described here and Wills’ differ. For instance she h as done away with

Joins altogether, representing them by w hat would be fan-in a t tie-

points in our system. This is quite nice in many ways, as it avoids the

need to m atch through joins as described above, b u t does cause a

problem with “straight-through arcs” (see Figure 7.15 for an example).

This leads to her having to annotate the data flow arcs themselves with

control-flow environment information, in order to deal w ith this. Her

solution also avoids a problem with the transitivity of joins, discussed

in Wills [1990]. In IDS this is avoided by the in troduction of n-join-

ou tpu t nodes as described in Chapter 4. Her solution also avoids the

problem of dealing with joins in programs involving lots of succeed,

and fail inputs and of trying to match them against say a join-2-outputs

node in a plan. In our case we have made all jo ins essentially join-

output, thus avoiding the problem.

Finally, it should be noted that, as already remarked. Wills’ about-

to-be forthcoming thesis (personal communication) is now substantially

based upon the chart parser presented here and in Lutz[1989J.

7.8 The Plan Library

Although m ost of the plan library is taken directly from Rich

[1981], and interested readers are referred there for a complete list of

all the plans and overlays we have “borrowed”, it has been necessary to

add a few of our own. Some of the plans we have added have ju s t been

271

represented
by Wills as:

i.e. fan-in
indicates a
join

However, plans with "straight-through" arcs
cause problems, since this approach would
cause one to identify üe-points tha t should
not be identified.

The two tie-points
indicated should
not be identified.

Figure 7.15
Straight-through Arcs, and Fan-in to Represent Joins

ta t2 t3

272

©Pbinrel t l t2 t3

Ptest ©binrel
n 1 y y 1 n

t l t2

©Ppredicate t l t2

Ptest ©Dredicate
n 1 y y 1 "

Figure 7.16
Rules for Pascal Tests

273

ones mapping Pascal operations onto plan calculus ones. We have not

used the plan calculus ones directly in the translation process because

they do not always have exactly the same semantics, and a t some point

these should be a given a proper semantics within the plan calculus. At

the m om ent these plans are simply given to the system directly as

gram m ar ru les, ra th e r th an as p lans and overlays etc. in R ich’s

compact notation. An example of such a rule (for Pascal tests) is shown

in Figure 7.16.

7.8.1 Translating Plans into Flowgraph Rules

So far we have seen how plans expressed in the com pact fram e-

like notation can be viewed as graphs by interpreting the constraints as

arcs of the graph. However, th is has been done informally. Wills

[1986,1990] has used a subset of Rich’s plan library in her program

recognition system, b u t has converted the pleins to graphs by hand. Not

only is th is tedious, b u t is also error-prone, particularly when the final

p lan lib rary m ight contain thousands of p lans. This project h a s

autom ated the conversion of Rich’s plans to graphs, so one of the

achievem ents of the work reported here is to essentially m ake Rich’s

notation m achine readable, so th a t the recognition process can use

p lans expressed as graphs which are guaranteed to correspond to the

p lans as expressed in the com pact notation , and hence to the

inference ru les as described above. The conversion p rocess is

surprisingly tricky to get right, so will be described in some detail.

However, before describing th is translation process it is necessary to

describe the format in which the graphs will be represented.

A rule will be expressed as a list of nodes (which as seen in

Chapter 5 are referred to as NAPEs). There will be one NAPE for each

box(action) in the graph. Each operation NAPE will be represented as a

274

tless t l tzero

tneg

@binre

@fimction

join-output

Figure 7.17
A typical rule right hand side

275

4-elem ent structure . The first element will simply be the type of the

corresponding action (e.g. ©binfunction). H ie second elem ent will be

an ordered list of the inputs to the NAPE, and the th ird elem ent will

be an ordered list of the outputs from the NAPE. Where the i^h ou tpu t

of one NAPE connects to the jth input of another, the i^h entry in the

ou tpu t list of the first NAPE will be equal to the j th entry in the input

lis t of the second. The last entry will be a variable denoting the

controlling condition of the NAPE.

Test NAPEs are represented by a 5 elem ent s tructu re . The first

elem ent is the type of te st (e.g. @binrel or © predicate), the second is

an in p u t lis t as described above, and the la s t th ree are variables

denoting the controlling conditions for the te s t itself and its succeed

and fail environments.

N -jo in-outpu t NAPEs are rep resen ted by an n+4 elem ent

structure. The first element is the word “join-output”, the second is an

in p u t list (with n inputs) as described above, the th ird is a single

elem ent ou tpu t list, and the last n+1 elem ents consist of variables

denoting the controlling conditions for each of the n inputs, followed

by a variable for the controlling condition of the jo in itself.

Where an input value flows into more than one inpu t port of the

NAPEs in the graph, all the appropriate entries in the relevant input

lists will all have the same value. So the plan in Figure 7.17, will be

represented as follows:

[[@binrel [tless t l tzero] P Q R]
[©function [tneg tl][t2] 8]
(join-output [tl t2][t3] T U V jj

T his is very like the notation used in C hapter 6 for representing

surface plans, except th a t in rules the “tie-points” will be variables

276

ra th er than actual tie-points. The one exception to this is when a rule

references a known constant, in which case it will have the sam e

(instantiated i.e. non-variable) tie-point in the appropriate places in the

inpu t or outpu t lists of the rule, as would the surface plan if a program

referenced the constant.

7.8.1.1 Translating Temporal Plans into Rule Form.

The tran sla tio n process from p lans expressed in the p lan

n o ta tio n to graph-like ru les for use in the recognition process

proceeds as follows:

1) The plans are read in, and stored in simple KRL-like frames

[Bobrow and Winograd, 1977a, 1977b], with the obvious slots such as

preconditions, postconditions, and constraints etc.

2) lOSpecs are used to define the set of possible nodes which

can occur in rules. Essentially the information in an lOspec is used to

decide how m any inputs the operation has, and how m any outputs. The

order in which these occur in the plan definition is used to determine

the order in which the inputs will appear in the inputs list to a NAPE

representing an operation of th is type. The nam es of the inpu ts are

used as suffixes to determine the nam es of the inputs to any NAPEs of

th is type occurring as roles in a rule. So, if a rule has a role op l (say) of

type ©binfunction, then initially it will be represented by a NAPE of the

form:

[©binfunction
[opl.op op l.inpu t 1 opl.input2]
[opl.output]

]

2) D ata plan definitions are processed to determ ine w hat roles

an instance of the data plan will have.

277

3) Temporal Plans are processed. For each tem poral plan, a list

of its roles is first constructed. These are then separated into d ata

roles, and operation roles. Each role has a nam e and a type. The right

hand side of the rule is constructed as follows:

a) Each operation role is converted into a NAPE as described

above. This gives us a completely unconnected graph structu re G since

no two NAPE)S have any inputs or outputs in common.

b) The co n stra in ts for the p lan are collected together. As

described eeirlier th is may involve recursively following sp ecia liza tion

and ex ten sio n links in the frame structure to collect together all the

relevant constraints. When we follow these links, if a plan reached in

th is way h as not been processed yet, then it is processed. As will be

seen th is processing essentially involves making substitu tions for some

of the tie-points in the input or output lists of the NAPES representing

the plan (to represent the data flows). These substitu tions, cdong with

the constrain ts are passed back up the recursive call (to process the

node) to the plan which caused the call to be made. So a plan when

being processed has a set of constraints, and a se t of substitu tions

which have been made in plans of which this one is a specialisation or

extension. The full set of constraints for the plan are those which it has

inherited (passed up from the recursion) together w ith its own

constraints. These are then separated into various categories. The first

of these consists of all the control flow constrain ts. These are dealt

w ith separately, as described below. The second category is th a t of

extra type restrictions on the roles. These are all of the form:

instance(<object or action>, <type>)

and are dealt w ith simply by choosing for each <object or action>

m entioned the m ost restrictive of the type constra in ts available. The

278

rem aining constraints all represent data flows of one kind or another.

The main steps of the processing of these data flow constraints are:

Step 1 Create “tem plate” NAPEs for each non-recursive operation

ro le in the plan. This effectively gives u s a com pletely

unconnected graph for the right hand side of the rule.

Step 2 Process any non-recursive constraints i.e. those not flowing

to or from recursive roles of the plan. This “connects u p ”

the graph created in step 1 so th a t it is consistent with the

non-recursive constraints.

Step 3 If the plan has a recursive role, then:

(a) Work oiit the input and outputs of the graph created so far.

Create a “tem plate” for the recursive role, consistent w ith

these inputs and outputs.

(b) Now process the rem aining (i.e. recursive) constra in ts, if

any. This connects the recursive role (if any) to the rest of

the graph.

(c) Work out the inputs and ou tpu ts of the resulting graph.

Remove the recursive role from the graph, and replace by a

new one, compatible with these new inpu ts and ou tpu ts ,

and any substitu tions th a t have been made. This graph

forms the right hand side of the rule.

Step 4 Create the left hand side of the rule.

This will now be illu stra ted by a sequence of exam ples, each

illustrating some new subtlety, since this is the easiest way to explain

the process in detail. To sta rt with we will consider quite a simple plan

- iterative-application. Its compact definition is given below:

279

Temporal Plan iterative-application
extension single-recursion
roles .action(©function) .tail(iterative-application)
constraints .action.op=.tail.action.op

A cflow(.action.out, .tail.action.in)

First the constraints are collected together. Iterative-application

is an extension of single-recursion, which has no constraints, so the

full se t of con stra in t consists simply of those com ing from the

definition of itera tive-ap p lica tion itself. These are divided into the

categories mentioned above, and the data flow constrain ts are:

.action.op=.tail.action.op

Step 1 . Since action is defined to be an © function, and the definition

of © function tells the system th a t an © function takes two inpu ts .op

and .input, and produces a single output .output, a NAPE is created for

th is role:

[©function [action op action input][action.output] action.cf]

The recursive role is left for the moment.

Step 2 . Now, the constraints not involving .tail are processed. In th is

case there a ren ’t any, so the non-recursive p a r t of the p lan is

considered finished.

Step 3 fal. Now the NAPEs so far are an alysed to find the inputs and

ou tpu ts to the graph. In this case these are:

INPUTS action.op .action.input

OUTPUTS .action.output

A recursive role is now created, with the same inputs ând outputs, bu t

with nam es prefixed by .tail. This gives us:

280

[[©function [.action.op .action.input][.action.output] .action.cf]

[recursive [.tail.action.op .tail.action.input][.tail.action.output] .tail.cf]]

for the complete graph so far.

Step 3 fbl. Now the remaining data flow constraints are processed. We

have one only:

. action. op=. tail, action. op

This is used to substitu te .action.op for .tail.action.op throughout the

graph, and the set of remaining constraints. In this case th is results in:

[[©function [.action.op .action.input][.action.output] .action.cf]

[recursive [.action.op .tail.action.input][.tail.action.output] .tail.cf]]

for the graph. The substitu tion made is stored in th e fram e for

iterative-application, for use during the processing of other plans and

overlays.

Step 3 fc). This alm ost gives u s the right hand side of the rule, except

th a t we need to create a new recursive role for it (with inpu ts £ind

ou tpu ts th a t correspond to the inputs and ou tpu ts of the graph as a

whole. The graph so far created is analysed to see w hat its inpu ts and

ou tpu ts are. This is done by collecting all the inpu ts to all the NAPEs

(apart from the recursive role) as a set of potential inputs to the graph.

Similarly, a set of potential outputs is created. Note th a t the recursive

role is not considered as contributing to these, since it is considered

“in te rna l” to the plan. The set of potential inpu ts is analysed to see

which of them are not produced as outputs from any action (including

the recursive role). These form the true inputs to the graph. Similarly

the set of potential outputs is analysed to see which do not feed in as

281

inpu ts to any action (including the recursive role). These form the set

of true outputs. In th is case this gives us:

INPUTS .action.op .action.input

OUTPUTS .action.output

Now the recursive role is removed, and replaced by a new one with

inpu ts and ou tpu ts created as follows (note in th is case th is will not

change anything, b u t it will in later examples!):

For each inpu t to the graph as a whole create an inpu t to the

recursive role, b u t prefixed with .tail. Then look up the table of

substitu tions (essentially in reverse) to find out w hat nam e is actually

being used for this. If there is an entry in the table use th a t nam e,

otherwise use the nam e as it is. The outputs are treated similarly.

Step 4 . Finally the left hand side of the ru le can be created. It

essentially consists of a single NAPE with nam e equal to the nam e of

the plan, and inputs and outputs those ju s t com puted (the true inputs

and outputs). This gives us:

(iterative-application
[.action.op .action.input][.action.output] cf] =>
[[©function [.action.op .action.input][.action.output] .action.cf]
[recursive [.action.op .tail.action.input][.tail.action.output] .tail.cf]]

in a similar notation to th a t used in Chapter 5. If another plan P is an

extension or specialisation of iterative application , then its full set of

constraints, together with the substitutions used, will be passed up to

P when required.

As a second example, consider the plan iter a tiv e -sea rc h . Its

definition is:

282

Temporal Plan iterative-search
specialization iterative-termination-predicate

iterative-termination-output
roles .exit(cond) . tail(iterative-search+nil)
constraints . exit .if.input=. exit. end, succeed-input

As can be seen it is a specialisation of iterative-term ination-predicate

and iterative-termination-output. These two plans are processed in the

sam e way as ite r a tiv e -a p p lica tio n , so when ite r a t iv e -s e a r c h is

processed it receives the following constraints and substitu tions from

itera tiv e -term in a tio n -p red ica te (we will m iss ou t the control flow

constraints in this discussion):

CONSTRAINTS instance(©predicate, .exit.if)
. exit. if.criterion=. ta il. exit. if. criterion

SUBSTITUTIONS exit.if. criterion FOR . tail, exit .if. criterion

and the following constra in ts and su b stitu tio n s from i t e r a t iv e -

termination-output:

CONSTRAINTS instance(join-output,.exit.end)
exit .end. fail-input=.tail, exit. end. ou tput

SUBSTITUTIONS exit.end.fail-input FOR .tail.exit.end.output

These substitu tions are completely compatible w ith each o ther (i.e.

nothing in one set of substitutions over-rides som ething in the other),

so the union of them is simply formed. The constra in ts coming from

the ite r a t iv e -s e a r c h itself are now added to these (they too are

compatible), giving a final set of substitutions:

exit.if.criterion FOR .tail.exit.if.criterion

exit.end.fail-input FOR .tail.exit.end.output

.exit.if.input FOR .exit.end.succeed-input

283

and now the iterative-search plan can be processed. It has two roles -

.exit, a cond, and the recursive role. However, cond is a plan in its own

right, so its roles and constraints are fetched. Its roles are .if(test) and

.end(join), and the constraints are all control flow constraints, whose

processing will be briefly described later. So the true roles of iterative-

search are .exit.if, .exit.end, and the recursive role. W hen we collect all

the constraints together, we find th a t the .exit.end role is constrained

to be a join-output, and the .exit.if role is an ©predicate. So,

Step 1. The following two NAPEs are created:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.succeed .exit.if.fail]

[join-output [.exit. end. succeed-input .exit.end.fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail.exit.end.out]

Step 2. The substitutions above are now separated into those involving

the recursive role, and those th a t do not. The la tte r are substitu ted

into the graph so far, giving:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in iexit.if.succeed .exit.if.fail]

[join-output [.exit.if.input . exit. end .fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail.exit.end.out]

Step 3 (al. This graph is then processed to find its inputs and outputs.

These are:

INPUTS .exit.if.criterion .exit.if.input .exit.end.fail-input

OUTPUTS ex it end output

284

A recursive role is now created for the graph, giving us:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.succeed .exit.if.fail]

[join-output [.exit.if.input .exit.end.fail-input]
[.exit.end.output] .exit.end.succeed .exit.end.fail .exit.end.out]

[recursive [tail.exit.if.criterion
.tail.exit.if.input .tail.exit.end.fail-input]

[.tail.exit.end.output] .tail.cf]

Step 3 flpl. The remaining substitutions are now made into this:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in : exit.if.succeed .exit.if.fail]

[join-output [.exit.if.input .exit.end.fail-input]
[.exit.end.output] .exit.end.succeed exit.end.fail .exit.end.out]

[recursive [exit.if.criterion .tail.exit.if.input .tail.exit.end.fail-input]
[exit.end.fail-input] .tail.cf]

Step 3 (cl. The true inputs and outputs to this are:

INPUTS .exit.if.criterion .exit.if.input

OUTPUTS .exit.end.output

A new recursive role is now created:

[recursive [.tail.exit.if.criterion .tail.exit.if.input]

[.tail.exit.end.output] .tail.cf]

and, by looking up the table of substitutions, we see th a t for instance

.tail.exit.if.criterion has been replaced by ..exit.if.criterion. So we make

th is replacem ent in the new recursive role, and similarly for its other

inputs and outputs. This finally gives us (after Step 4):

285

[iterative-search [.exit.if.criterion .exit.if.input][.exit.end.output] cf] =>
[©predicate [.exit.if.criterion .exit.if.input]

.exit.if.in .exit.if.succeed .exit.if.fail]
(join-output [.exit.if.input .exit.end.fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail .exit.end.out]
[recursive [exit.if.criterion .tail.exit.if.input]

[exit.end.fail-input] .tail.cf]

for the entire rule.

As a third example, consider the plan trailing-search:

Temporal Plan trailing-search
extension iterative-search trailing
roles .current(object) .previous(object) .exit(cond)

.tail(trailing-search)
constraints instance(join-two-outputs, .exit.end)

A .current=.exit.if.input
A . previous=. exit. end. succeed -input-two

______________ A .tail.exit.end.output-two=.exit.end.fail-input-two

It inherits constraints from both iterative-search (just discussed) and

tra ilin g . From ite r a tiv e -sea rc h it inherits the su b stitu tio n s ju s t

discussed, and from trailing it inherits (Figures 7.18 and 7.19 show the

way constraints and substitutions are passed up the hierarchy):

.current FOR .tail.previous

These are compatible with each other, b u t care m u st be taken when

these are combined with the substitutions implied by the definition of

trailing-search itself:

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

since there is a conflict with those from iterative-search:

286

single-recursion
No Constraints

iterative-termination
cflow(exit.if.fail.tall.exit.lf.ln)

low(tall.exit.end.out, exlt.end.fail)

iterative-termination-
predicate

instance(@predlcate,exlt.lf)
exlt.lf.crlterlon=tall.exlt.lf.crlterlon ----term ination-output

instance(joln-outputodt.end)
exlt.end.fall-lnput=tall.exlt.end.output

iterative-search
exlt.lf.lnput=exlt.end.succeed-lnput

trailing
.current=.tall.prevlous

iterative application
.actlon.op=.tall.action.op

cflowi.actlon.out, .tall.actlon.ln)\
trailinf» s e a r e h

Instance^ oln-two-outputs, exit.end)
.current=.exlt.lf.lnput

.prevlous=.exlt.end.succeed-lnput-two
.tall.exlt.end.output-two=0 dt.end.fall-lnput-two

iterative-generation
.actlon.output=.tall.actlon.lnput

trailin g-generation+search
.current=.actlon.output
.prevlous=. action. Input

Figure 7.18
Constraint Heirarchv for

Traiiing-Generation+Search

287

single-recursion
No Substitutions

iterative-termination

iterative-teimination-
predicate

.If.crlterlon FOR tall.exlt.lf.criterlon iterative-
term ination-output

t.end.fail-input FOR tad.exit.end.outpul

trailing
.current FOR .tail.preidousiterative-search

.exit.if.input FOR .exit.end.succeed-input
.exltif.criterlon FOR .tail.exit.if.criterion

.exit.end.fail-input FOR .tail.exit.end.output

iterative-application
.action.op FOR .tail.action.op trailing search

.current FOR .exit.end.succeed-input
.exit.if.criterion FOR .tail.exit.if.criterion

.exit.end.fail-input FOR .tail.exitend.output
.current FOR .tail.prevlous
.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two
.tail.exit.end.output-two FOR .exit.end.fail-input-two

iterative-generation
.action.output FOR .tail.action.input

.action.op FOR .tail.action.op

trailing-generation+search
.cunent FOR .tail.prevlous

.action.op FOR .tail.action.op
.current FOR .exit.end.succeed-input

.exit.if.criterion FOR .tail.exit.if.criterion
.exit.end.fail-input FOR .tail.exit.end.output

.current FOR .tail.prevlous
.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two
.tail.exitend.output-two FOR .exit.end.fail-input-two

.current FOR action.output
.previous FOR .actlon.input

Figure 7.19
Substitution Heirarchv

288

exit. if. criterion FOR . ta il. exit. if. criterion

exit.end.fail-input FOR .tail.exit.end.output

.exit.if.input FOR .exit.end.succeed-input

since they could over-ride the use of exit.if.input. These substitu tions

m ust be reco n c iled , which involves choosing one of the conflicting

substitutions, and replacing it by the other. In th is case th is gives u s as

the full set of substitutions:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

exit.if.criterion FOR .tail.exit.if.criterion

exit.end.fail-input FOR .tail.exit.end.output

.current FOR exit, end. succeed -input

Now the graph for the right hand side of the rule can be created. From

the full set of constraints passed up, and the roles of the plan itself, we

see th a t the NAPE)s in the plan are .exit.if[@predicate), .exit.end(join-

two-outputs), and a recursive role.

Step 1 . As before, the non-recursive NAPEs are processed first, giving:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[. exit, end . succeed-input .exit, end. fail-input

. exit. end. succeed -input-two . exit. end.fail-input-two]
[.exit, end. output . exit.end.output-two]
. exit. end. succeed . exit, end. fail. exit, end. out]

289

Step 2 . As before, the substitutions not involving .tail are made first,

giving:

[©predicate [.exit.if.criterion .current]
exit.if.in exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .exit.end.fail-input-two]
[. exit, end. output . exit. end. output-two]
.exit.end.succeed .exit.end.fail.exit.end.out]

Step 3 fal. This is now processed, to yield a recursive role. This results

in:

[recursive
[tail. exit .if. criterion .tail, current .tail.exit.end.fail-input

.tail.previous .tail.exit.end.fail-input-two]
[.tail.exit.end.output .tail.exit.end.output-two] .tail.cf]

Step 3 fbl. The rem aining substitu tions are m ade into the resulting

graph, giving:

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .tail.exit.end.output-two]
[. exit, end. output .exit.end. output-two]
. exit. end. succeed . exit. end. fail. exit, end. out]

[recursive
[exit.if.criterion .tail.current .tail.exit.end.fail-input

.current .tail.exit.end.fail-input-two]
[exit.end.fail-input.tail.exit.end.output-two] .tail.cf]

Step 3 fcl. Tlie true inputs and outputs for tills are com puted as;

INPUTS .exit.if.criterion .current .previous

OUTPUTS .exit.end.output .exit.end.output-two

290

Use these to create the new recursive role. .

Step 4 . Finally we get:

[trailing-search [.exit.if.criterion .current .previous]
[exit.end.output .exit.end.output-two] cf] =>

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .tail.exit.end.output-two]
[.exit.end.output .exit.end.output-two]
,exit.end,succeed ,exit,end,fail ,exit,end,outl

[recursive
[exit.if.criterion .tail.current .current]
[exit.end.fail-input.tail.exit.end.output-two] .tail.cf]

for the entire rule.

Now consider the trailing-generation+search plan (discussed in

C hapter 3):

Temporal Plan trailing-generation+search
extension iterative-generation trailing-search
roles .current(object) .previous(object) .exit(cond)

. acüon(©fimction) . tail(trailing-generation+search)
constraints .current=.action.output a .previous=.action.input

It inherits the following substitutions from trailing-search:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

exit.if.criterion FOR .tail.exit.if.criterion

exit.end.fail-input FOR .tail.exit.end.output

.current FOR . exit. end. succeed -input

291

and the following from iterative-generation (processed as described

above):

.action.output FOR .tail.action.input

.action.op FOR .tail.action.op

These are completely compatible, so are simply added into the full set

of substitutions for the plan. The substitutions implied by the definition

of trailing-generation+search itself are:

.current FOR .action.output

.previous FOR .actlon.input

These are then reconciled with the above substitutions, yielding:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

. exit .if. criterion FOR .tail.exit.if.criterion

.exit.end.fail-input FOR .tail.exit.end.output

.current FOR .exit.end.succeed-input

.current FOR .tail.action.input ... (*)

.action.op FOR .tail.action.op

.current FOR .action.output

.previous FOR .action.input

However, this is not quite right. The substitution indicated (*) needs to

be altered. This is because of the way in which we process substitutions

n o t involving .tail first, which m eans th a t w hen we m ake the

substitution .previous FOR .action.input in the graph, we get as Input to

the ©function NAPE .previous (instead of .action.input). This m eans

th a t when we create the recursive role we end up giving it an inpu t of

292

.tail.previous, instead of .ta il.action.input which is referred to in the

other substitutions. So, when we make the first substitu tions (the ones

no t involving .tail), we m ust also adjust the rem aining substitu tions so

th a t if we make a substitution of the form A FOR B we m ust replace any

occurrence of .tail.B in the remaining substitu tions by .tailJ^. In this

case th is will give u s .current FOR .tail.previous, which happens to be

one of the substitutions we already have for this plan, b u t in m any cases

it won’t be.

So, processing the rule as before, bu t taking note of the above subtlety,

yields the rule:

[trailing-generation+search [.exit.if.criterion .action.op .previous]

[.exit.end.output.exit.end.output-two] cf] =>

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.succeed .exit.if.fail]

[©function [.action.op .previous][.current] .action.cf]
[j oin-two-outputs

[.current .e^dt.end.fail-input
.previous .tail.exit.end.output-two]

[. exit, end. o u tp u t . exit. end. output-two]
.exit.end.succeed .exit.end.fail .exit.end.out]]

[recursive [exit.if.criterion .action.op .current]
[.exit.end.fail-input .tail.exit.end.output-two] .tail.cf]

which a little thought will show corresponds to Figure 3.4.

It should of course be stressed th a t the process for plans w ithout

recursive roles is exactly the same as this, w ithout all the “m essing

about” with the recursive roles.

Control flow constraints are used to create the plan condition, as

described in Chapter 4. The variables for each control environm ent are

those indicated on the right hand side of the above rules. The control

flow constra in ts passed up the inheritance hierarchy (in exactly the

293

sam e fashion as the data flow constraints), together with any coming

from roles which are plans (e.g. cond), are grouped together and

processed as indicated in Chapter 4 to form the plan condition, which

is then substitu ted for the variable cf on the left hand side of the rule.

Before going on to describe the processing of tem poral overlays,

we will briefly describe how plans containing roles w hich are d a ta

plans (rather th an simple objects) are processed. Consider the plan:

TemporalPlan intemal-labelled-thread-add
Roles .old(labelled-thread) .add(intemal-thread-add) .update(newarg)

.new(labelled-thread)
Constraints .old.spine=.add.old a .old.label=.update.old

A .add.input=.update.arg a .add.new=.new.spine
A . update. new=. new. label

This is the plan shown in Figure 7.20, which essentially adds a new

node into a thread, and updates the labelling function on the new node.

It is the abstraction of adding a new element into a list implemented

by linked objects of some type or other. When the rule is processed the

definitions of the data plans are accessed, and used to create nam es for

the roles of the d a ta plans themselves. In th is case th is gives u s

.old.spine and .old.label for the .old role, and .new.spine and .new.label

for the .new role. Assertions are stored with the rule stating:

. old=labelled-thread(.old.spine, .old.label)

.new=labelled-thread (.new. spine, new.label)

F u rth e r more, th is is done recursively. So, since .new .spine and

.old.spine are both th reads (this inform ation is obtained from the

definition of a labelled thread) we also add assertions:

. old. spine=thread(. old. spine .nodes, .old. sp ine. edge)

.new. spine=thread(.new. spine.nodes, .new. sp ine. edge)

294

spine ,old(labelled-thread)

.update.add

iew(labelled-thread)

newarg
internal
thread

add

Figure 7.20
Internal Labelled Ttiread Add

295

since we cannot know how deeply into th is s tru c tu re the ru le (or

overlays of the plan) may need to go. It also helps in connecting the

p lan up to o ther p lans as the parsing proceeds. Now the ru le is

processed exactly as before, b u t with the additional step th a t any

substitu tions th a t are made in the NAPEs of the rule are also m ade into

these assertions. This results in the rule:

[intem al-labelled-thread-add [.old.spine .update.arg
.old.label .update.input]

[.add.new .update.new] cf] =>
(intem al-thread -add (.old.spine .update. arg] [. add .new] .add.cf]
[newarg [.old.label .update.arg .update.input]

[.update.new] .update.cf]

with data plan assertions:

.old=labelled-thread(.old.spine, .old.label)

.new=labelled-thread(.add.new, .update.new)

. old. spine=thread (. old. spine .nodes, .old. spine, edge)

. add . new=thread(. new. spine .nodes, . new. spine. edge)

These assertions (or a t least copies of them) are included in each

p a rtia l p a tch for th is p lan. As the tie-poin ts in the p a tch get

in s tan tia ted (when the patch is extended) the in s tan tia tio n s are

propagated into the assertions, enabling the proper creation of, or

m atching against, assertions in the data plan database as the parsing

proceeds (as described in 7.1). So these assertions m u st be considered

part of the rule.

296

7.8.1.2 Translating Temporal Overlays into Rule Form

Now we are ready to discuss the conversion of tem poral overlays.

Consider the overlay:

Temporal Overlay trailing-generation+search->Gnd :
trailing-generation+search > intemal-thread-find

correspondences
generator->digraph(temporal-iterator(trailing-generation+search))=

intemal-thread-find.universe
A trailing-generation+search . exit.if. criterion=

in temal-thread-flnd. criterion
A trailing-generation+search. exit end. output=

intemal-thread-find.output
A trailing-generation+search.exit.end two=

intemal-thread-find.previous
A trailing-generation+search.action.in=dntemal-thread-find.in
A trailing-generation+search.exit.out=intemal-thread-flnd.out

The rule corresponding to a temporal overlay A >B is expressed in the

form:

NAPE for A => NAPE for B

So the left hand side of this rule is created essentially by copying the

left hand side of the rule for the plan trailing-generation+search, giving

us:
1

[trailing-generation+search [.exit.if.criterion .action.op .previous]
[.exit.end.output.exit.end .output-two] cf]

The right hand side is created initially by instantiating a NAPE for the

appropriate action, based on the lOSpec definition for the action. This

gives us:

[intem al-thread-find [.universe .criterion][.ou tpu t previous] cf]

297

Now the correspondences are processed, and used to define a se t of

su b stitu tio n s. Most of these are straightforw ard and give u s the

following substitu tions (we can ignore those to do w ith in p u t and

ou tpu t situations as these are handled by the plan conditions etc., as

described in Chapter 4):

exit.if.criterion FOR .criterion
.exit.end.output FOR .output
.exit.end.two FOR .previous

However, the first needs more processing. It states:

generator->digraph(temporal-iterator(trailing-generatioii+search))=
intemal-thread-find.universe

Such nested overlays are processed recursively. The innerm ost one is:

temporal-iterator(trailing-generation+search)

where the temporal-iterator overlay is defined by:

TempoToi Overlay temporal-iterator : iterative-generation -> iterator
correspondences iterative-generation.action.input=iterator.seed

A fimction->hinrel(iterative-generation.action.op)=iterator.op

This is used to create assertions about the d a ta objects involved. It

s ta rts by making an assertion:

tnew=iterator(tnew. seed, tnew.op)

where tnew is a new name. Now the substitu tions stored w ith each

plan come into effect. From the definition of tem poral iterator it needs

to know which name in the trailing-generation+search plan (viewed as

an itera tiv e-g en era tio n of which it is an extension] corresponds to

action.input. Looking up the table of substitutions it finds th a t .previous

was used for this purpose. So it can substitute .previous into the above

assertion, giving:

298

tnew=iterator(.previous, tnew.op)

Now it tries to find a substitution for tnew.op. This resu lts in another

assertion:

tnew. op=function->binrel(. action, op)

and again it looks in the table of substitutions to find th a t .action.op is

the nam e used. It has now finished with the innerm ost overlay, so

these assertions are passed back out, and it now m akes an assertion:

. universe=generator->digraph(tnew)

So the overlay is finally represented by the rule:

[trailing-generation+search [.exit.if.criterion .action.op .previous]
[.exit.end.output.exit.end.output-two] cf] =>

[intem al-thread-find [.universe .exit.if.criterion]
[.exit.end.output .exit.end.two] cf]

together with the assertions:

tnew=iterator(.previous, tnew.op)

tnew. op=function ->binrel(. action. op)

.universe=generator->digraph(tnew)

These are used during the parsing process as described in 7.1 to add

assertions to the data plan and data overlay databases.

One more point needs to be made. The variables (names of tie-

points) in a plan are made into a table which is included in the patch

information when an empty patch corresponding to a plan is created.

This table is used to store information about which ac tual tie-point

each nam e gets instantiated to during the parsing process. Then, when

an overlay is made of a plan instance, this table can be consulted “by

the overlay”, in order to work out how to instantiate its own tie-points.

299

0 3 -C E 1
I i~H~Fn

03
I f—4 3 3

1_U CQ-HZEl
03
CQ-̂ OEl
03

Figure 7.21
An Array of Setsfimplemented as linked records)

300

W ithout the mapping from nam es to instantiated tie-points, the overlay

m echanism could not work.

7 .8 .2 Additional Plans Needed to Cope with User Defined Data

Types

It has been mentioned several times th a t u ser defined d a ta types

will be dealt w ith by m eans of overlays such as th r ea d -> lis t etc.

However there is a problem th a t arises as a result of the way we have

treated data overlays of tie-points. Consider the case of an array, where

the entries in the entries in the array are lists implemented by m eans

of linked records. The situation is shown in Figure 7.21. Now the

proper analysis of th is may be th a t we have a sequence (the array) of

se ts (implemented as lists). H ash tables are an example where th is

kind of anedysis is necessary in order to recognise th a t h ash table

lookup is sometimes used simply as a membership test. So suppose we

have the following declarations:

type listelement = record
num b : integer;
next : ^listelement;

end;
plist = ^listelement;

var a: array] 1.30] of plist;
n : integer;
p, q : plist;

and suppose th a t somewhere in the program we have the following

piece of code:

301

'^NEXT

n ew

#newaig

#newarg

©function

©function

Figure 7.22
Surface Plan for Code which Adds

New Element Into List afil

302

new(q);
q^.numb:=n;
p:=a(jl;
q- ̂.next: . next;
p^.next:=q;

which splices a new element into the list afj). The surface plan^ for this

is shown in Figure 7,22. Before going on to describe the recognition

process it is im portant to note th a t from now on, w hen we are

describing the recognition process we will usually ta lk abou t it as

resulting in a graph of some sort. This is not strictly accurate since, of

course, w hat h as really happened is th a t some patches have been

added to the chart. However, it is not feasible to show all the patches,

so we simply show the ones th a t are relevant in understand ing the

m ain steps whereby som ething is recognised. It should always be

understood th a t in fact there will be lots of other patches in the chart

ap a rt from the ones we show, and lots added between the steps we

show.

Now suppose the parser goes to work on this, and it recognises

th is as involving an # se t-a d d operation. To do th is it h as to first

recognise the shaded part of the surface plan as a # sp licea fter plan,

shown in Figure 7.23, then use the overlay sp liceafter> > iiitern al-

thread-add, also shown in Figure 7.23. This results in Figure 7.24, It

then has to recognise the shaded portion of th is as forming an

 ̂Note that we have already grouped the function and NUMB together as a composed

function object for cleirity. This would have been done via the composed-functions-

>function overlay in the library.

303

t l t2 t3 14

t t t t
©function

newarg

newarg

iterator

t l t2 t3 t4

t t 11
spliceaiter internal thread

Twhere
t6=iterator->thread(iterator(t2, t4))

and
t7=iterator->thread(iterator(t5. t4))

Figure 7,23
Spliceaiter and

Overlay Splideafter->Intemal-Thread-Add

304

V̂ NEXr

new

©function

iterator.

thread

#intemal
thread

add

. .) iterator

Figure 7.24
After Internal Tliread Add

305

intem al-labelled-thread-add, resulting in Figure 7.25, and then uses

another overlay internal-labelled-thread-add->set-add to give Figure

7.26. This is all fine, b u t we now have a problem. The s e t h as been

recognised via a sequence of overlays, first of all grouping the tie-point

representing p with the tie-point representing NEXT together as an

iterator and this is represented by a new tie-point a s described above.

A nother new tie-point is then created represen ting th is it e r a to r

viewed as a th r e a d , and th is new tie-point is the in p u t to the

sp liceafter operation. This thread was then grouped with the tie-point

for NUMB, to form an instance of the d a ta p lan la b e lled -th rea d ,

represented by yet another new tie-point, which is the in p u t to the

in tem al-labelled -thread-add operation. Finally, using the labelled-

thread->set overlay applied to the labelled-thread tie-point gives u s yet

an o th er new tie-poin t representing the s e t , and the s e t (and its

updated version) have become ra th e r detached from the function

which was supposed to have produced it in the first place. This would

m ake it ra th er hard for a data-flow based parser to recognise plans

involving fu n c tio n s w ith se ts as values (where th e se ts are

implemented via some other data structure), unless the parser were to

spend a lot of its time computing something a b it like the “transitive

closure” of the assertions in the data plan and data overlay databases.

However, it tu rn s out th a t to deal with th is we do need to change the

recogniser as such. We do, however, need to add a variety of extra

p lans and overlays not discussed in Rich[1981] to the plan library.

Some of these are given below:

DataPlan composite-functions
Roles .op 1 (function) .op2(function)
Constraints dom ain-type(. op2)=range-type(. op 1)

______A range-type(.op2)=domain-type(.op2)

306

'̂ NEXr

\

new

©function

Iterator

tread

labelled
Svthread

#lntemal
labelled-thread

add

; labelled
. y thread

Figure 7.25
After Internal Labelled Thread Add

307

'^NEXT

©function

iterator

thread
labelled
SJthread

#set
add

set

Figure 7.26
After Set Add

308

EkjtaOverlay composite-fimctioiis->fimction
Definition F=composite-fimctionS'>fimction(p.s) =
[ins tance (function, F)

A [[apply(function(F,s) ,x)=y]
<-> [lterator(y,s) undefined
A iterator(y,s).seed=apply(composlte-fimctlons(p,s).opl ,x)
A iterator(y. s) .op=fimction->binrel(composite-functioiis(p, s) .op2, s)J

TemporalPlan ©function-composite
Roles .action(©function) .comp(composite-functions) .gen(iterator)
Constraints .action.op=.comp.opl

A .gen.seed=.action.output
_________ A .gen.op=function->binrel(.comp.op2)_________________

TemporolOverlay ©function-composite->©function-to-iterator
Correspondences

©function-to-iterator.op=
composite-functions->function(©function-compo8ite.comp)

A ©function-to-iterator.input=©function-composite.action.input
A @function-to-iterator.output=@function-composite.gen______________

These first four plans and overlays are w hat are required to recognise

functions which give iterators as their result (where the functions are

implemented as a function which returns the seed of the iterator). The

co m p o site -fu n ctio n object involved essentially groups the iterating

function of the iterator together with the function).

DataPlan composite-functions+label
Roles .comp(composite-functions) .label(function)
Constraints dom ain-type(.label)=range-type(. com p.op 1)

309

TemporalPlan ©fimction-composite+label
Extension ©function-composite
Roles

.action(©function-composite) .comp+lab(composite-function+label)
iabt(labeUed-thread)

Constraints .labt.spine=iterator->thread(.action.gen)
A . labt. label=. comp+lab. label

_________ A . action. comp=. comp+lab. comp___________

DataOverlay composite-functions+label->function
Definition F=composite-functions+label->function(p,s) =
[ins tance(function, F)

A [[apply(function(F,s),x)=yl
labelled-threadly.s) ̂urvdefined

A labelled-thread(y.s).spine=
iterator->thread(apply (function (p. com p. op 1. s) ,x), s)

Alabelled-thread(y,s).label=composite-functions+label.label

TemporolOverlay ©function-composite+label->
©function-to-labelled-thread

Correspondences
©fimction-to-labelled-thread.op=
composite-functions+label->function(

©function-composite+labei.comp+lab)
A ©function-to-labelled-thread.input=

©function-composite+label.action.action.input
A ©function-to-Iabelled-thread.output=©function-composite+label.labt

These plans are w hat is needed in order to deal w ith functions which

produce labelled threads (an abstraction of lists bu ilt ou t of linked

records).

In addition for each data-type B we need operations of the

general form:

310

:xr

©tunction-
to-lterator

iterator

thread

#set
add

set

F i^ e 7.27
After @function-to-iterator recognised

311

'̂ NEXr
^NUMB

m m i:m:

m m
iterator &

#Six labelled
Vthread

iiili

ÿÿWXW

Figure 7.28
After ©function-to-set recognised

312

'̂ NEXT

function-
to-set

ShmcOraï-
to-set

iterator

üiread
labelled
Vthread

#set
add

set

#newarg

new
function-to-set

Figure 7.29 =
After #newarg of function-to-6et recognised

313

lOSpec @fimction-to-B
Specialisation ©function
Constraints range-type(.op)=B

The operations ©function-to-iterator and ©function-to-labelled-thread,

used above, are specific examples of this general form. Finally, for each

data-overlay of the form B->C we need an overlay of the general form:

TemporalOverlay ©function-to-B->©functioh-to-C
Correspondences ©function-to-C.op=©function->B.op

A ©function-to-C.input=©function->B.input
 A ©function-to-C.output=B->C(©function->B.output)

Combining these with plans and overlays of the general form:

TemporalPlan ©function+#action
Roles .action(©function) .impure(#action)
Constraints .action.output=.im pure.input

and

TemporalOverlay ©function+#action->#newarg
Correspondences #newarg,op=©function+#action.action.op
#newarg.arg=©fùnction+#action.action.outpiit
#newarg.value=©function+#action.impure.output__________

gives u s all the machinery we need in order to make sure that:

a) p lan s connect up properly even after recognising d a ta

abstractions, and

b) we realise th a t some views of functions change when we side

effect the structures they compute.

This process is illustrated for the above example in Figures 7.27-7.29.

It should again be noted tha t the reason we need all of th is is because

we are dealing with graphs which do not distinguish properly between

the behaviours and identities of objects.

314

Chapter 8.

Program Understanding in Practice

Before showing how a com bination of p lan recognition and

general reasoning on plan diagrams can enable IDS to find type 1 (and

type 3) errors in programs it is instructive to see plan recognition in

practice. This h as previously been described in a variety of papers

[Rich 1981, Wills 1986 and 1990, W aters 1978, Schrobe, W aters, and

Sussm an 1979], b u t the process is not as entirely straightforward as

their descriptions would suggest. Many of the dlfiûculties arise from the

fact th a t the program s considered here have no t been w ritten using

KBEMacs [Waters 1982] so th a t the particularly close m atch between

the progreuns and the plan library th a t Rich and W aters have in the

first place does not exist in our case. Furtherm ore, no o ther system

can cope w ith the d a ta overlays etc involved in com pound d a ta

s tru c tu re s such as the ones we are considering. In addition, as

m entioned earlier, it is not possible to have a completely canonical

rep resen ta tio n of program s, and a certa in am o u n t of w hat are

essentially program transform ation techniques have to be used to get

round some of the differences between the actual surface plans th a t

arise in practice and the plans in the plan library. Furtherm ore (and

perhaps obviously) the language being used h as an affect on the way

people not only do, b u t even can, write their code, and th is leads yet

again to the actual sinface plans differing in significant ways from the

plans in the library. So the process of understanding a correct program

will be shown first, and in the next chapter it will be shown how this

differs in the case where the program has a bug in it. In w hat follows

reference will be made not only to the plans and overlays already

discussed, b u t also to meiny from Rich's library, using his original

terminology (to avoid introducing yet more jargon into the program

315
input

eof file > -maxlnt < maxint

©blnrel

p | y

©blnrel
n I y

\ w /
p |y

3Ü01

Figure 8.1
Max-Min Surface Plan (loop only)

316

understanding literature). Hopefully it will be clear w hat these pleins

and overlays are. and readers requiring more information are referred

to (Rich 1981].

8.1 Understanding Programs using Plan Diagrams

To begin with we will consider a fairly simple program, whose

analysis is quite straightforward:

program fllemaxmin(input.output):
var n. biggest, smallest : Integer;
begin

biggest: = -maxint:
smallest:= maxint:
while not eof do
begin

readln(n):
if n>biggest then

biggest-=n: ^
if n<smallest then

smallest:=n
end;
writeln(biggest):
writeln(smallest) :

end.

This program com putes the largest, and sm allest of a se t of

num bers in a file. In th is program the plans for com puting the largest

and sm allest of a set of num bers share the code for actually sequentially

generating the set of numbers. The surface plan for its loop is shown in.

Figure 8.1.

The ana lysis of th is loop proceeds in several stages (not

necessarily in the order given):

Step 1. Using the overlays discussed in Chapter 7, first of all

the not is removed, essentially by interchanging the succeed and fail

controlling conditions of the test.

Step 2 . The rules for rewriting conditions such as “a<b” in

term s of "b>=" described in Chapter 7 come into effect. This gives us

the plan diagram shown in Figure 8.2.

317

input
eof file >= -maxint <= maxint

. 3pi5lSte| \

readln

©blnrel

©blnrel

3Ü0Î

Figure 8.2
After Not Removal Etc.

318

t l

\
©blnre
y I p

nr
@binrel+Join

Bbimunction

V
where

t2=binrel->binchoice(t 1)

NOTE: If t l= "<=" then
binrel->binchoice(t l)="lesser".
If tl= ">=" then
binrel->binchoice(t 1)="greater".

Figure 8.3
Binrel+J oin->@Choice

319

Input
eof file >= -maxint <= maxint

f \
BpœalStël \

0blnfunctlon

\f\f

Bblnfunctlon

Figure 8.4
After Greater And Lesser Found

320

Step 3. The shaded areas of Figure 8.2 are now recognised as

being instances of @binrel+join plans. Using the overlay shown in

Figure 8.3, these are recognised as implementing choice operations i.e.

operations which choose between their inputs depending on the resu lt

of the test. In p articu la r they are recognised a s im plem enting

choosing the greater of two num bers (greater), and choosing the lesser

of two numbersClesser), plans. This results in Figure 8.4.

Step 4 . Now the shaded portion of Figure 8.5 is recognised as

being an instance of an ite r a t iv e -a c c u m u la t io n plan. I te r a t iv e

accumulation is the plan common to such things as iteratively adding a
set of num bers, iteratively multiplying a set of num bers, and computing

the maximum or minimum of a set of num bers. For instance for adding

a se t of num bers the initial value input into the plan is zero and the

operation is “+". For computing the maximum of a se t of num bers, the

initial value can be anything which is less than th w all the num bers in

the set (maxint in this case), and the operation is greater. In a similar

fashion an iterative accum ulation plan is found involving the le sser

operation. Note th a t a t the moment only the plans have been found -

the step to recognising m ax and m in has not been m ade yet, since

these involve sets, and as yet no sets have been found.

Step 5 . In a similar fashion, a standard (Pascal specific) plan,

iterative-readln, is found. This is shown in Figure 8.6. Notice how all of

these plans share common structure.

Step 6 . Now overlays and tem poral ab strac tio n come into

their own. Figure 8.7 shows two overlays iterative-readln->readall, and

321

<= maxint

readln

i

I sblnninction

Figure 8.5
Showing Iterative Accumulation

. V - ,

322

input
eof file >= -maxint <= maxint

readln

ebinfunction

Bbinninction

Figure 8.6
Showing Iterative Readln

323

eof file

t2

readall

t3

where v
t3=list->set(temporal-abstraction(t 1))

Iterative-readln->readaïl

^predicate

tl
greater

jL L -

r k

t2

1

1 T D i IX

t3
f

where
t2=list->set(temporal-abstraction(t 1))

t3 lterative-accumulation->aggregatefmax)

Figure 8.7
Iterative-readln->reHdall and

Iterative-Accumulation->aggregatefmaxl

324

set

minmax

readall

Figure 8.8
Final Analysis for Max-Min Loop

325

iteraiive-accum ulatioii->aggregate(m ax) i . Suppose iterative-readln>

>readall is done first. As described in Chapter 7, th is adds a readall

patch to the chart, and creates two new tie-points, one corresponding

to the tem poral abstraction of the value o u tp u t from the readln

opera tio n (so th is tie -po in t rep resen ts a lis t) , and th e o ther

representing th is list viewed as a set. Assertions about these are made

in the data-overlay database. Now the i t e r a t iv e a c c u m u la tio n -

>aggregate(maz) overlay is used. This adds a m ax patch to the chart.

Now it tries to create a tie-point corresponding to the tem poral

abstraction of the input to the greater operation. This is the sam e tie-

point as is output from the readln, so when it consults the data overlay

database, it finds the temporal abstraction of th is tie-point has already

been created. So it uses the one th a t is already there. Then it tries to

create a tie-point corresponding to the list-> set view of th is tie-point,

and again it finds it is there already. H ius the m ax operation acquires

as its input set the same set as is output from the readall operation. In

a similar fashion the m in operation is recognised, and it too connects

to the sam e tie-point. So the final analysis of the loop is as shown in

Figure 8.8.

The second program we will consider is the following:

 ̂ S trictly speaking there Eire two overlays involved here - one taking iterative-

accumulation to aggregate eind one taking aggregate, with greater as its input operation

to max.

326

program sort(input.output);
type listelement = reconl

numb : integer;
next : '^listelement;
eat

plist = '̂ listelement;
var head, p : plist;

n:

procedure addtolist(n : integer; t : plist);
var p : plist;
begin

new(p);
p' .̂numb:=n;
if t = nil then

begin
p' .̂next ;= head;
head:=p;

end
else

begin
p' .̂next:=t' .̂next;
t' .̂next:=p;

end;
end;

procedure hndplace(n: integer; var p: plist);
var t : ' l̂istelement;

found : boolean;
begin

if head' .̂numb > n then
p:=nil;

else
begin

p;=head;
t:=p' .̂next;
found:=false;
while not found do

if t o nil then
if t' .̂numb <= n then

begin
p:=b
t:=t' .̂next;

end
else found:=true

else found:=true;

end;
end;

begin
head:=nil;
while not eof do

be^n
readln(n);
if headonil then flndplace(n,p)
else p:=head;
addtolist(n,p);

end;
p:=head;
while ponil do

begin
writeln(p'^.numb);
p:=p' .̂next;

end;
end.

327

head

Cliaisc.

P\K fouhd^

P,
Mr Vn

>1

Î
r ^ - ilOfiinction|

n ^.numb

\ n e x t

V f v ~
I BA I VM I

no I yes± y~Çnll'̂

>r>r>r

■<s>-

Join-outputs

>r>r

I p tound

no yes
join-outputs

1
whlle-
loop

o |®function|
no 1 yes 1 j \ t

<=
no I yes

y t —
function I

no
XIZ;

I yes
lound

join-outputs

n DUDDDDDDüüt

(nü]

YMT _________

Figure 8.9
Findplace Surface Plan

328

This is a m uch more com plicated program w hich reads in

num bers from a file or terminal (one per line) until the end of the file,

and ou tpu ts the num bers in ascending order. It does th is by use of a

linked list which holds the num bers, each new num ber being stored in

the appropriate place in the list. The program contains a couple of user

procedures - findplace, which finds the correct place in the sorted list

where a new num ber is to go, and addtolist, which actually adds in a

new num ber to the list. We will begin by considering the procedure

findplace. Its surface plan is shown as Figure 8.9. In w hat follows we

will no t describe the understanding process in full detail in term s of

patches added to the chart since there are far too m any of these for

the description to be helpful. Instead we will describe the process in

term s of the m ain steps th a t the patches represent, and illustrate it by

diagram s in which each NAPE represents a patch in the chart, b u t in

which only some of the patches have been shown. The understanding

(via p lan recognition) process th u s proceeds in several steps (not

necessarily in the order given):

To sta rt with the loop is analysed, £is follows:

Stép I n e ts are removed, simply by changing the order of

the yes/no labels on the appropriate tests and joins. There is only one

case of this, and the resulting surface plan is shown as Figure 8.10.

This is actually done by the rule, discussed earlier in C hapter 7.

Step 2 The staggered jo in s are tu rned into n -jo in -o u tp u t

joins, as discussed in Chapter 4. This results in Figure 8.11.

Step 3 IDS now finds an iterative flag te s t as discussed in

C hapter 7. It can therefore remove the =true te s t (and corresponding

joins), and move the recursive role to within the other two tests, by

changing its controlling condition, and reconnecting appropriately.

329

head n '^.numb

|@functlon|C false 3-1 ©function

p (found) (

yes I no

yes
< =

no i yes

©functiontrue
[ound

no

no

W Y

join-outputs

Figure 8 .1 0
After Not Removal

33 0

head n ^.numb

n ©function
C false >- ^uncüon|

p i found) i ____>

©functionO

<=
esno

found

WWW

n-join-outputs

W T
^es no

Figure 8.11
After n-join-output created

331

head n ^.numb

\ f \ f

l@functlon|
l@functlon|

''.next

i ^ T T I I' m I

\f\f

y— D

V \ f T
1

n- oin-outputs

o |@function|
no 1 ves
1 1 ' " H ' w

< =

V i ' y-'
|@füncUoM

I

\ f \ f \ f

n
m m m m

c«iug»nu»m»̂
tv

C 3

Figure 8 .12
After Iterative Flag Test Removal

332

Note th a t all the other NAPEs (strictly speaking, patches) also have

their controlling conditions altered by this. The resulting plan diagram

is shown in Figure 8.12.2

It is worth commenting here tha t the fact th a t th is last step has

been necessary is really an artifact of Pascal. Pascal does no t use the

McCarthy form (] of the Boolean operators and and or, and evaluates

both conditions C l and C2 in Boolean expressions such as:

C l or C2

The piece of code involved in the graph m anipu lations ju s t

described is actually trying to iterate down a list until either the end of

the list is encountered, or some condition is met. The n a tu ra l way to

code th is would have been something like (the while form of the loop

will continue to be used here):

w hile not(at-end-of-list or condition-met) do ...

Unfortunately th is could not be done in Pascal because the condition to

be met involves dereferencing a pointer which may be nil. Even though

the first part of the test would have detected this, Pascal would go on

to try and evaluate the second part of the or, giving rise to a run-tim e

error. In a language with the McCarthy form of the Boolean operators,

as soon as the first p a rt of the or evaluated to true, the expression

would be considered to be true, and the second condition would not be

evaluated. In a language like this (including LISP) the loop could have

2 In an earlier version of this work (Lutz, 1989) this was achieved by a series of four

separate program transformations. However, our use of n-join-output nodes, rather

than staggered single join-output nodes, and the use of controlling conditions has

greatly simplified the process.

333

been w ritten as above, and the corresponding surface plan would have

been more or less w hat we have now arrived a t after a g raph

transform ation operation.

Step 4. (i) Put term ination tests in standard form. Plans in

the library are stored with the term ination tests on loops being ju s t

th a t i.e. the tests succeed when the loop is to term inate. This step is

actually ra ther sim ilar to the n o t removals of step 1, and is actually

handled by the rules discussed in Chapter 7, which have automatically

given u s patches for all the equivalent variant ways of expressing tests

involving comparison operators.

(ii) Recognise complex predicates (actually th is p art of this

step could have been done a t any time bu t its description has been left

till now). By this is m eant the process of recognising th a t a condition

like

f(x) < n

can be regarded as a complex predicate of x by first of all regarding the

com bination of a binary relation (in this case <) and a fixed value (in

th is case n) as a predicate g defined by

g(y) = true if y < n, and g(y)=false otherwise

and then regarding the combination of a function (in th is case f) and a

predicate (in th is case g defined above) as a 'com pound' predicate h,

defined by:

h(y)=g(f(y))

In th is way both test boxes are replaced by © p re d ic a te boxes

w hich take as in p u t a predicate and an object. If such complex

predicates have an obvious or easily understood name (such as =nil)

head

p\f

334

\f \f
@function|

1
n ^.numb

.next

|@functirâil

\t \t

y C—nïQ
@oreclicate
ves no 1

predicate
f es 1 no

V $— \T
■©function

\f \f \f

kmmmR:
V >r f

1
n- oln-outputs

^ __________________

l 4 Y ^ ~ ~ ^™ f y g ' i c n n

2 1
Figure 8 .13

After Composite Object Grouping Etc.

335

head n ^.numb

©function

©predicate
yes | no

©function

V

n-join-outputs •

J Y
Figure 8 .1 4

Term inated Iterative Generation and Search

336

head n ^.numb

terminated -iterative-
generation+search

w

Figure 8.15
After Recognition of Terminated Iterative Generation and Search

%

337

then th is has been used, otherwise the grouping is shown by shaded

ovals round the appropriately grouped objects. Such shaded objects are

then treated as as single objects which can be inpu ts to (or indeed

o u tp u ts from) com putations in plan diagram s, since in fact they

represen t the new tie-points introduced by d a ta overlays. This is all

done using overlays such as @ function-fpredicate->predicate from

Rich's library. The plan diagram resulting after th is h as been done is

shown in Figure 8.13.

Step 5. The s ta n d a rd p lan , t e r m i n a t e d - i t e r a t i v e -

generation+search, shown shaded in Figure 8.14, is now recognised,

resulting in the plan diagram Figure 8.15. This p lan represen ts the

p lan common to code which searches for some object, re tu rn ing the

object if found, b u t stopping the search w hen there are no more

objects. In this case it returns the final object.

Now the analysis of the loop is finished, so its patches are copied

back in to the ch a rt for tlie m ain-procedure. The ana lysis th en

continues as follows:

Step 6. The p lan @ su e c e s s o r + t e r m in â t e d i t e r a t iv e -

generation+search, shown shaded in Figure 8.16 is recognised. After

applying an overlay @ su ccessor+ term in ated 'itera tive-gen eration

+search->term inated-trailing-generation+search Figure 8.17 is then

obtained.

Step 7. Up till now all tha t has really been recognised is a standard

p a tte rn of code. At th is point however the notion of overlays really

comes into its own, and enables IDS to s ta rt reasoning about the more

ab s trac t operations on more abstract d a ta types th a t th is p a tte rn of

code is actually implementing. In particular IDS recognises th a t the

338

head n ^.numb

©function

=nil

V f̂

terminated-iterative-
generation+search

Figure 8.16
©sucessor+Terminated-Iterative-Generation+Search

339

head

=nll

\ f \ f

n '^.numb

terminated
iterative generation

and search

previous

I ■ yes I
■ J j ô ü ^ u t g u ^ J

a

^.ne t

F igu re 8 .1 7
A fter T erm in a te d T ra ilin g G e n e ra tio n + S ea r ch R e c o g n ise d

340

head '̂ .next '̂ .numb n
truncated
thread

thread I

@predlcate

Internal Thread Find

Figure 8.18
After Internal Thread Find Recognised

341

truncated labelled
^ l^ a d

labelled thread

head ^.numb / n''.next

Internal Labelled
Thread Find

1. ^ I aI jom -output» I

Figure 8.19
After Internal Labelled Thread Find Recognised

342

above plan can be viewed as implementing the in ternal-thread-find

operation discussed earlier, with a nil-terminated thread as input. This

nil-term inated thread essentially is th a t obtained by iterating down the

d a ta structu re starting from head, and using ^.next as the successor

function. In this way we arrive a t Figure 8.18.

Step 10. Finally IDS is able to recognise th a t th is p a tte rn of

code actually implements an intem al-lahelled-thread-find operation,

resulting in Figure 8.19, and this is essentially as high-level as we go

for th is procedure.

In a sim ilar fashion addtolist, whose surface plan is shown as

Figure 8.20, is first of all seen to implement the plan shown in Figure

8.21, in a sim ilar fashion to th a t described in C hapter 7. Then the

com bination of the topm ost newarg (following the new operation) and

the spliceafter is recognised as an intem al-labelled-thread-add-after,

and the two new args are seen as implementing a new -labelled -root

operation resu lting in Figure 8.22. Notice how e a ch o f th e se tw o

operations was split w ith part occurring before the test, and p art after,

and notice also how the topmost newarg is shared between them, thus

dem onstrating the power of structu re sharing, and of the controlling

condition m anipulations. It is partly th is ability of the plan diagram

formalism (and of the chart parsing recogniser th is project is using)

which m akes it so powerful.

Having analysed both procedures to the best of its ability IDS now tu rns

its attention to the m ain program. Its surface plan (or a t least m ost of

it) is show n in Figure 8.23. To analyse th is it su b s titu te s its

understanding of the user procedures findplace and addtolist in place

of the boxes representing the calls to these procedures. Note th a t this

is done with its high-level accounts of w hat the procedures do, so it is

343

'^.numb n ^.next head

head

newarg

If-predlcate
no

newarg

newarg

newarg

no
join-outputs

) (head

Figure 8.20
Addtolist Surface Plan

344

new

head

newarg

If-predlcate
no yes

T Y Y Y
I newarg

''.next

Spliceafter

join-outputs

\(head

Figure 8.21
After Spliceafter Recognised

345

n ^.numb ^.next head

new

I i>TT

\(\<
if-predicate
no 1 yca

T lfv V

no I yes
join-outputs

.belled
thread

internal labelled newlabelledroot
thread add-after

labelled
thread

''.numb ''.next head

Figure 8.22
After Recognition of Internal-Labelled Thread Add-After and

New Labelled Root

346

'^.next '^.numb

.head

input

i (S) ‘

findplac^

r^add to îte î^^

W W W \ f

1
f-predlcat
no

TH+f

I yes

5 i

JÜÜÜÜ

no I yes
jo in -outputs

W V V W.

tto last loop of program
(write out sorted sequence)

Figure 8.23
Main Program Surface Plan

347

a considerable improvement on ju s t replacing procedure calls hy the

body of the procedure (with appropriate substitu tions) as is done in

Wills 19861. W hen th is replacem ent is done clearly p a r t of the

resulting diagram consists of the final diagram s for fin d p la ce and

addtolist (appropriately joined). The resulting diagram (for this part of

the m ain program 's surface plan), after “replacing” cascaded jo ins by

n-join-outputs, is shown in Figure 8.24.

Now. IDS has a plan in its library called ordered-labelled-thread-insert.

This is the plan for inserting a new item in the appropriate place in an

ordered list, and is shown in Figure 8.25. As implied by our discussion

of s tru c tu re sharing flowgraph gram m ars, ru les w hich contain two

nodes with the same label and the same inpu ts are collapsed, before

being used for parsing. So the form of the rule applicable is th a t shown

in Figure 8.26. Using th is rule IDS can recognise th a t there is an

ordered-labelled-thread-insert present in the program, since all the

d a ta flow requirem ents are met. Note tha t it has to m atch th rough the

jo in to realise this. Unfortunately, IDS thinks the resulting plan is in a

conditional control flow environment, since m any of the operations in

the plan (in particular, the intemal-thread-add-after, and the newroot

operations) are n o t in the control flow env ironm ents expected.

Furtherm ore, the resulting controlling condition for the plan, is not

reducible to true using simple prepositional logic. This is because the

variables in the controlling conditions represen ting the two “=nil”

tests are different, and furthermore they do not have the sam e inputs,

so can ’t be collapsed. Figure 8.27 shows the relevant p arts of Figure

8,24. In order to realise th a t the resulting plan condition was in fact

ju s t true, IDS would have to deduce from the pre- and post conditions

associated w ith the in tern al-th read-find th a t the o u tp u t from the

internal-thread-find could not be nil, and th a t the output from the

3 4 8

truncated labelled thread

head i ̂ .next M ^.numb

;
I STu?# I

labelled
thread

Internal
Thread Fine

new

internal labelled
thread add-after newlabelledroot

join-outputs

^.numb ''.next head
Figure 8.24

The FindPlace and Addtolist Part
of Main Program's Surface Plan

349

successor

node

1
=nil

y 1 n

label predicate
(binrel+two)

number

©predicate
newroot

/
internal
thread

find
newroot

Itemai
thread

add-ailer

Figure 8.25
Ordered Labelled Thread Insert Plan

350

root labelled thread successor

node
predicate

(blnrel+two)

number

©predicate

7
Internal
thread

find
newroot

temal
thread

add-after

C lvC 2

C5vC4

Figure 8.26
C o lla p se d ord ered la b e lled th rea d in s e r t p la n

351

=nll
y 1 n ;

head i ''.next m ''.numb

¥ i

i

labelled
thread

Internal
Thread Fine

new

T U

internal labelled
thread add-after newlabelledroot

join-outputs

''.numb ''.n«t head
Figure 8.27

The FindPlace and Addtolist Partnf Main Program's
Surface Plan. Showing Ordered Labelled Thread Insert

352

other two branches of the conditional were always nil. Under these

conditions it could assign appropriate controlling conditions to the

new root and internal- thread-add-after plans, which would resu lt in

the plan condition for the ordered-labelled-thread-insert being true.

So th is plan is recognised conditionally, and until a theorem prover is

available th is is the b es t it can do. The re s t of the d iscussion will

assum e this has been done so the plan is in fact unconditional. Notice,

though, how this plan actually comes from two procedure calls - parts

of the cliche come from one procedure and o ther p a rts from the

second. The resulting surface plan for the m ain program is shown as

Figure 8.28. IDS now recognises two standard plans. The first of these

is term inated-iterative-read (described above), and again th is plan is

recognised as implementing a readall operation which takes a file as

in p u t and produces a finite sequence as output. The other standard

plan recognised is iterative-ordered-labelled-thread-insert, which IDS

then uses an overlay to recognise as an im plem entation of a so r t

operation, temporally abstracting the item s in p u t to the ordered-

labelled-thread-insert operation (which are the sam e items produced

by the iterative-read) as the set input to the sort, and viewing the

labelled thread output from the iterative ordered-labelled thread plan

as the ordered sequence output by the sort. Similarly the final loop is

seen to be implementing a writeall operation, which takes a sequence

and writes it to a file. Thus the whole program is finally represented by

Figure 8.29.

As a final stage, IDS should check (and will once the theorem

prover has been implemented) th a t all the preconditions for all the

various plans and overlays involved in this analysis of the program are

satisfied. If they are all satisfied then the program has been understood

by IDS to the extent tha t its plan library allows. Of course adding more

353

''.next .numb Input

null thread

readm

Thread insert

g
If-predicate

no l yes

mm
V i

no

T O

Join-outputs

V ■
to last loop of program

(write out sorted sequence)

Figure 8.28
After Recognition of Ordered Labelled Thread Insert

354

file

finite sequence of
num bersCD

sorted sequence

file

sort

readall

writeall

F i ^ e 8.29
Final stage of Analysis

355

plans may enable it to give an even higher level description, and it is

simply this ability to add plans which could enable IDS to be used in a

tutoring environment since plans could always be added which encode

knowledge about particular problems the studen t could be working on.

In the case where a plan has been recognised, b u t its preconditions are

violated in some way, then a bug (Type 1 or 3) has been located, and a

debugging strategy m ust be invoked.

356

Chapter 9.

Tow ards a D ebugg in g S y s te m

9.1 Debugging Programs Using Plan diagrams

As already mentioned in Chapter 6, the strategy IDS will use to

debug programs is the following:

(a) Translate the program into its surface plan.

(b) Try to u n d e rs ta n d th e p rogram by recogn ising all

occurrences of libraiy plans, as described in C hapter 8. Make a note of

any "near" matches.

(c) Symbolically evaluate any rem aining (i.e. unrecognised)

p arts of the surface plan i.e. deduce properties of these p arts of the

program using the theorem prover.

(d) Check for broken preconditions of any of the recognised

plans.

(e) Use n ea r m atch inform ation and broken precondition

information to try and repair the program.

(f) T ranslate the debugged surface plan back into the source

language.

This chapter will try to show how this process can be supported

by use of the plan calculus and IDS’s chart parser. It will also discuss

the role to be played by the (as yet) unim plem ented p arts of the

system. Note th a t the only bug types th a t can be found by this approach

alone are type 1 (and type 3), and then only if the normal use heuristic

is a valid assumption.

357

Initial List

8 17 23 25

Item to be inserted 24

8 17 23 25

Intended Behaviour 24

8 17 23

Actual Behaviour

25

24

Figure 9.1
The Buggv Program's Behaviour

358

So suppose tha t, instead of being correct, the program ju s t

analysed had contained a bug, and in particu lar suppose th a t the

procedure a d d to lis t had been the following instead of the earlier

correct version:
procedure addtohstfn : integer, t : plist);
var p : plist;
begin

new(p);
p'̂ .numb:=n;
if t = nil then

begin
p'̂ .next := head;
head:=p;

end
else

end;

begin
t^.next:=p;
p^.next:=t^.next;

end;

The bug in th is procedure is th a t the two lines responsible for

splicing in' the new element into the list have been given in the wrong

order, resulting in the kind of behaviour shown as Figure 9.1. How can

IDS detect and correct this bug?

It s ta rts by trying to understand the program as before, and of

course its analysis of Hndplace is identical to th a t described earlier.

However w hen it tries to analyse a d d to lis t it recognises the n ew -

labelled-root plan as before, bu t is unable to recognise the in ternal-

labelled-thread-add-after plan. However, as IDS uses the generalisation

of c h a rt p arsing to do plan recognition etc., it also bu ild s up

in form ation ab ou t partial p lans th at it recogn ises. In particu lar it finds

the partial sp liceafter plan shown in Figure 9.2. The figure shows the

partial m atch to spliceafter found by IDS, and w hat would be needed to

make it a complete instance of spliceafter. This partial m atch is close

enough for IDS to recognise it as a near miss. However a t th is point

IDS will not categorise this as a bug - it will merely make a note of the

near m iss for future reference. So a t this point the analysis of addtolist

is Figure 9.3 rather than Figure 8.22 as earlier.

359

Correct Spliceafter

©function

newarg

newarg

> rte

[spliceafter (?tl ?t2 ?t3j[?t6ij =>

I (©function l?t2 ?t3][?t4|]
[newarg [?t2 ?tl ?t4][?t5il
[newarg [?t5 ?t3 ?tl][?t611

Buggv Spliceafter
t^.next:=p;
p^.next:= t^.next;

P '^.next t

newarg

©function

newarg

[[©function [4 3] [5)1
[newarg [2 3 lj[4|I
(newarg [4 1 5][6]]

J

I
Matching process gives best partial
m atch as:

[spliceafter [1 4 3][?t61] =
([©function [4 3] [511

[newarg [4 1 51 [611
1

and needing to find an object matching

[newarg [6 3 ll[?t6H

to complete the match.

Figure 9.2
Partial Spliceafter Plan

360

^.numb n

new

i
newarg

©function

I
newarg

^.next

newargi

\n ex t head

\f \f

la b e lled
th rea d

if-predlcate
I yesno

j

\f

tiead

n

newlabelledroot

la b e lled
irea d

no 1 yes
joln- outputs

^ .n u m b) i ^ .n e x t) f \ (h e a d

Figure 9.3
Partiallly Understood Addtolist

361

Now IDS begins analysis of the m ain program as before. When it

s ta rts analysing the concatenation of findplace and ad dto list it finds

th a t it cannot really go any further. So the situation it is in is th a t

shown in Figure 9.4. So it will assum e th a t it has finished its analysis,

and s ta rt trying to verify all the preconditions for the various plans and

overlays. As p a r t of th is process it needs to verify th a t the

preconditions for interaal'labelled-thread-find are satisfied. Now there

are actually two places it has to check these preconditions - on entry

to the loop, and on entry to its tail recursive component. This double

checking corresponds to doing inductive reasoning. One of the

preconditions th a t has to be satisfied is th a t the object inpu t to the

intem al'labelled-thread -ind be a thread. In the outer part of the loop

th is is of course (triviallyI) satisfied by the null thread. However the

inpu t to the internal-labelled-thread-find in the recursive part of the

loop comes from addtolist in the outer part. So IDS has to check th a t

^.num b, ^.next, and head coming from addtolist form a thread. Now

these values come from a join-outputs box, so it has to check th a t the

values input on the success side, and on the failure side of the jo in -

ou tp u ts form a thread. This is clearly true on the success side (they

come from a new -labelled-root plan. However on the other side they

come from the p art of a d d to lis t th a t IDS is unable to recognise.

Therefore IDS symbolically evaluates the unrecognised part of the plan

(the part tha t should be the spliceafter in this case) and deduces th a t

'^.next(objectl) = object 1

where object 1 is the input labelled p in the diagram (note th a t we are

trea ting ^ .next as the nam e of a composite function). This clearly

contradicts the definition of a thread (part of which sta tes th a t there

are no cycles in a th rea d) and so IDS h as located an in te rn a l

inconsistency in its analysis of the program, and hence has located the

362

truncated____
labelled^ ^.next ''.numb

I U-pi CUlUtlC I

z n z d

Internal
Thread Find

Pnëwâi^

no I yes

new

no I yes

newlabelledroot|@Amcüo^

labelled
thread

join-outputs

V I f
^.numb ''.next head

Figure 9.4
Findplace And Addtolist Part of Buggy Program

363

bug. Even in the case where IDS cannot now go on to suggest a "fix",

po in ting o u t where the bug lies could be of g rea t u se to the

program m er. However in th is case IDS should be able to actually

suggest how to fix the bug. It can do this by noticing th a t the piece of

the surface plan it can 't recognise has (partly) been recognised as a

partial spliceafter plan. In addition it notices th a t the best way to tu rn

the unanalysed part of the plan into a complete sp liceafter is to delete

(refer to Figure 9.2 for the notation)

[newarg [2 3 1] [4]]

from the plan and replace it by a new newarg operation

[newarg [6 3 1] [7]]

where 7 is a new tie point. This would give rise to a spliceafter plan

[spliceafter [1 4 3] [7]].

The question then arises as to how this should be connected up to the

surrounding graph in place of the original unrecognised p arts of the

plan. Although the question of how to do this in general is still one of

the ongoing topics of research for this project, in th is case it can do it

by noticing th a t the new node 7 (the ou tpu t of the plan) is replacing

node 6. So it connects node 7 to everything node 6 was previously

connected to. Similarly it notices th a t the only new inpu t is node 4,

replacing node 2. So it connects everything th a t w as connected to

node 2 to node 4. IDS then notices that, if it did this, the analysis can

continue (in fact exactly as described earlier for the original correct

program) and IDS would cirrive a t the same analysis of the program,

with no broken preconditions. So it can ask the user if the program is

indeed trying to sort the input num bers, and if so, can correct the plan

accordingly. Note th a t by keeping track of the variable nam es

364

associated with all the dataflows involved IDS should even be able to

generate the correct code, with the right use of variable nam es. Note

th a t a t th is stage in the development of the project no a ttem pt will

even be m ade to point out (or even recognise) the fact th a t the error

was really ju s t having two Unes in the wrong order. But IDS should be

able to point out the incorrect lines, and the correct versions of them.

Note also th a t even if IDS had not had the plan for sorting in its library

(cind it would be unreasonable to expect it to have every possible plan

for every possible program) it should still in fact be able to correct this

bug, by noticing th a t once it has recognised the spliceafter, and hence

the lab elled -th read -ad d -after plan, it would find that the broken
precondition w as no longer broken. The difference would be th a t it

would query the user about the program at a lower level - instead of

asking if the program was trying to sort, it would have to ask if a

p a rticu la r piece of code was trying to splice a new item in a t a

particu lar place in a linked list s tructure . Notice th a t th is process

m akes it essential to have some kind of reason m aintenance system

closely integrated with both the chart parser and the (unimplemented)

theorem prover/sym bolic evsduation module. This is because IDS will

essentially hypothesise a repair based on the near-m iss information. It

th en

(i) removes some of the original patches th a t were present in the

chart, and

(ii) adds a complete plan (based on the near-m iss information)

and continues with its analysis.

If th is leads to the precondition tha t was previously broken no longer

being broken then IDS asks the user for final confirmation th a t it has

found and repaired the bug. If the precondition is still broken, or

another is broken in its stead as a result of removing or adding patches

365

then IDS will need to retract the changes it h as m ade to the chart

(including removing any new patches added as a resu lt of the chart

parsing continuing after the near-m iss was repaired). Additionally, IDS

should try to avoid having to completely redo all the theorem proving it

h a s done previously. To do both of tliese it really needs a reason

m aintenance system to keep track of which theorem s are currently

believed. Now, as discussed in Chapter 3, patches in the chart also

represen t theorem s so the reason m aintenance system can gdso be

used to keep track of which patches are currently considered to be in

the chart, and which are not. It would be an in teresting research

project in its own right to build such an integrated reason m aintenance

system.

The question of how to generate correct code in term s of

variables the user will recognise is enormously com plicated (but only

slightly in the situation ju s t described!) by the fact th a t the piece of

am ended code may have been through a long sequence of the program

transform ation operations. It is still an area of ongoing research as to

how this can best be dealt with in general.

9.2 Duplicating PROUST

Although, th is work is only now starting to get to the point

where debugging can be tackled in earnest, an indication of how some

of the capabilities of PROUST could be duplicated w ithin the surface

plan formalism discussed in this thesis can be obtained by considering

the program below:

366

program averreilndnput,output);
const

sentlnel=99999;
var

rainfall, averraln, hlghreiin, norain : real;
totalrain, validrains, rednydays, count : real;

begin
read(rainfall);
while rainfaU<0 do read(reiinfall);
wrlteCthe rainfall entered was rainfall. ' inches');
count;=0;
highrain:=0;
while rainfaillosentinel do

begin
if r a in fa ll> h ig h ra in then h ig h ra in := ra in fa ll;
totalrain:=totalrain+rainfall;
count:=count+1 ;
a v e iT £ d n := to ta lra in /co u n t;
validrains:=count-norain;
rainydays: =veilidrains;

end;
writelnCthe number of validrain days entered was

validrains);
writelnCthe averrain was averrain);
writelnCthe highrain is hlghrain);
writelnCthe no. of rainydays in this period was

rainydays);
end.

Clearly there are several th ings wrong w ith th is program .

Perhaps the major fault is th a t instead of being w ritten as a single loop

which processes a number, then reads the next, this program has been
split into two loops, the first of which reads num bers from the input

file until it reaches the first non-negative number. This num ber is then

passed to the second while loop in the program, which since it does

no t itself read in anv num bers, goes into an infinite loop (unless the

first non-negative num ber happens to be the stop sentinel). However,

there are other bugs in this program as well. For instance, two of the

variab les (norain and to ta lrain) used by the second loop are

uninitialised. Finally, although not necessarily an error, there is code

placed w ithin the loop which for efficiency reasons would be better

placed after it (e.g. com putation of averrain, validrains, and rainydays).

All of these can be detected using the plan represen tation already

d iscussed . Figure 9.6 shows the surface plan corresponding to (a

slightly simplified version of) the program above. It is quite clear from

367

read

yes I no

read

DÜDDDD

no
>in-outputs

Input) r W) (lalnlall

(3 ^ ^ junT
ratal rain rain rains days\f\f

no-
ralrno lyes no I yes

whileloop2
I no I yes

subdivideinputs to
outer

whlleloop2

all rain rain
•»»P2 ODDÜOOÜI

no yes

to various write boxes

Figure 9.5
Buggy Rainfall Program Surface Plan

368

this th a t five of the inputs to the second while loop are undefined. In

the case where the first positive num ber read by the program is the

stop sentinel, all of these are connected straight through to the output

of the whileloop. Therefore the whileloop is ill-defined in th is case.

Even if th is first num ber is not the stop sentinel, it can be seen th a t

totalrain and norain are used within the loop and hence these are cases

of uninitialised variables. This is actually detected during the process of

source code to surface plan translation. In addition averrain, validrains,

and rainydays are inputs to the loop bu t are not used within it, merely

updated. This is easily checked for, and the suggestion m ade th a t th is

code be moved outside the loop. The infinite loop is detected by

noticing th a t the variable tested to see if the exit condition holds

(rainfall) is passed unmodified through to the recursive call on the

whileloop 2 segm ent. IDS can suggest correcting th e program

inserting code sim ilar to th a t which produced the initial value passed

to the loop. Certainly this works for this particular program, and part

of the ongoing research on this project is into finding a suitable se t of

heuristic rules for this kind of bug. It may be th a t th is is where IDS will

be able to make use of the Yale group’s bug categorisation.

PROUST also m anaged to recognise th a t th is program w as

attem pting to compute the num ber of positive num bers by subtracting

the num ber of zeros from the num ber of non-negative num bers. It

m anaged to do th is by having a lot of problem-specific knowledge.

Clearly in a general purpose system th is kind of knowledge is no t

available. However if it finds out fi*om the program m er (or elsewhere)

th a t the program is trying to compute the num ber of positive num bers,

and if we include in the plan library a plan representing the fact th a t in

general one can compute the num ber of items in a se t which satisfy

some property by counting the items which do not satisfy the property

369

and subtracting from the total num ber of items in the set, then the

system would be able to suggest a correction to th is part of the code in

Program 2.

370

Chapter 10.

Conclusions and Future Work.

10.1 What has been achieved?

This thesis has been motivated by a wish to build an intelligent

general purpose, domain-free debugging system for Pascal programs,

and h a s p resen ted the case th a t, in order to do th is , program

understanding is necessary. Looking a t other system s for debugging

program s, in p a rticu la r Jo h n so n ’s [1986] system PROUST, and

M urray’s [1986] system TALUS it is clear th a t the strengths of other

system s come from an ability to do plan recognition and general

purpose reasoning, and their weaknesses come from an inability to do

one or other of these. The plan calculus offers the ability to combine

bo th of these as it provides a framework for both general purpose

reasoning using a theorem prover, and graph-based plan recognition,

in a way th a t is probably as syntax independent and language

independent as possible. However, when it came to actually trying to

u s e the p lan calculus, in particu lar to do the graph based plan

recognition, it became clear th a t this is an enormously hard problem

(reflecting th e fact th a t program s are extrem ely h a rd objects to

analyse).

As a result, the work described in this thesis is only now getting

to the point where serious research into its applicability to program

debugging can start. In particular, once an integrated theorem prover,

along the lines of Rich’s [1985] CAKE system, h as been bu ilt then its

potential can seriously be investigated. However, along the way, several

obstacles to using the plan calculus have been overcome. This chapter

will therefore begin by summarising w hat has been achieved.

371

The first achievement, and main one, is th a t we have developed a

new polynomial time algorithm for doing bottom -up, or top-down,

analysis of surface plans. This algorithm has been presented in the

framework of restricted structure sharing flowgraph gram m ars th a t we

have developed for this purpose.

Secondly, we have developed some theory, in particu lar th a t of

determ inistic operations in the plan calculus, and of generalised

control flow environments, and their associated controlling conditions,

th a t enables u s to justify the use of restric ted s tru c tu re sharing

flow graph g ram m ars a s a su itab le fram ew ork for doing p lan

recognition. As part of this it has also become clear th a t m any of Rich’s

p lans are expressed in too restrictive a form (in particu lar his u se of

cflow constra in ts everywhere), and we have developed a distinction

between various types of control flow constraint th a t enable one to be

more expressive, and only impose the restric tions th a t are strictly

necessary. If th is had not been done the parser would either no t have

found plans th a t really were present, or would have found plans not

justified by the plan calculus, thus breaking the tight coupling of w hat

the parser finds and what a theorem prover could have proved.

Thirdly, we have adapted the above algorithm to cope w ith

various p a rts of the plan calculus th a t do no t exactly fit into the

framework we have developed. In particular, techniques have been

developed th a t enable it to cope with plans involving data p lans and

data overlays.

Fourthly, we have identified various new plans th a t are essential

if these modifications are to work properly and enable plans th a t we

recognise to connect up properly for reasoning about side-effects.

372

Additionally, we have written a program (structured in a similar

way to a recursive-descent parser for Pascal) which can translate Pascal

program s into their surface plans, thus enabling them to be analysed

within the framework of the plan calculus.

Finally, we have w ritten a program for tran sla tin g p lans and

overlays, expressed in Rich’s compact notation, into suitable ru les for

the parser to use.

As we are ultimately interested in program debugging, it was also

an interesting question as to w hat kinds of bugs could reasonably be

expected to be found by a system w ith no know ledge of the

p rogram m er’s in ten tions, and no knowledge of th e dom ain, b u t

possessing general program ming knowledge coded as p lans in the

library. Accordingly, we have outlined a new bug classification in order

to try sta te precisely which bugs can be located and (sometimes) fixed

by a such a system which knows nothing abou t the purpose of a

program . Additionally, we have presented some prelim inary work on

exactly how such a debugging system might go about locating and fixing

such bugs.

10.2 Outstanding Problems

As stated, it has been a major aim of this work to try and ensure

th a t there is a tight coupling between w hat the parser does, and w hat

can be deduced from the plan calculus, and in th is it has been partially

successful. However, there are a variety of places where th is goal,

although intuitively satisfied, has not been theoretically dem onstrated.

In particular, the way in which data overlays and pleins have been dealt

w ith , a lthough seem ing to work, does no t fit th e g ram m atical

form alism s we have developed, and as is the way w ith gram m atical

373

formalisms, it is always possible th a t some strange interaction might

occur, although a t the moment this seems unlikely.

Furtherm ore, it seem s likely, even if we could more formally

Justify w hat has been done, perhaps by developing some even more

general gram m atical framework capable of expressing d a ta p lans and

overlays, and their relationship to temporal p lans and overlays more

naturally, th a t we may have reached roughly the limits of w hat can be

done by a pure graph based parser. To some extent we have already

deviated from pure graph parsing in our use of plan conditions etc, b u t

a t least we have kept the added m achinery to sim ple propositional

logic (and even th is in troduces N P-com pleteness in to w hat w as

previously a polynomial algorithm). However it seem s likely th a t even

to do the pure d a ta flow parsing required, in the presence of d a ta

overlays eind so on, may well require more general theorem proving

abilities. For example, more reasoning about the entries in the data-

overlay database will probably be required, as there can be complex

relationships between the entries, which if not realised, ean m ean th a t

one fails to detect plans th a t are present. For example, if one has in the

d ata overlay d ata base the fact tha t one predicate p is the complement

of q, th en one also knows th a t q is the com plem ent of p. At the

m om ent th is is dealt with by adding such an assertion a t the time the

first assertion is added, but, realising the relationships between p and

q, w here p = b in re l+ tw o -> p r e d ic a te (q , t) , com plem ent(p), an d

b in re l+ tw o -> p red ica te (co m p lem en t(q),t)) to take quite a sim ple

example, is currently beyond the system, and can som etim es lead it

into trouble, in the sense th a t it will not realise th a t new tie-point it is

trying to create has already been created. This can mesin th a t p lans

which do in fact connect up, appear not to. Now, it may tu rn out th a t

we can express these relations via a grammar of some kind. If so this

would be a very nice result. Otherwise, w ithout a general theorem

374

prover capable of proving th a t two apparently d istinct tie-points are

actually the same, m any plans will not be recognised. In general it

seem s th a t there are quite a lot of places in the parsing process where

a theorem prover might need to be invoked.

Another area where more work needs to be done is on the sort of

problem encountered in the sorting program in C hapter 8, where a

plan was recognised, b u t with a condition attached, which was in fact

guaranteed to be true. Part of the problem may be soluble w ithout a

general purpose theorem prover if we introduce some sort of notion of

conditional collapsing. This would be some sort of collapsing operation

done only when matching through joins resulted in the realisation that,

u n d e r the condition implied by the b ranch of the jo in m atched

through, two operations were collapsible, resulting in a more complex

condition on the resulting collapsed operation.

A second area where more work needs to be done is in the area

of program treinsformations, expressed as graph transform ations. At

the m om ent these are hedged about with criteria th a t m ust be satisfied

before they are applicable. For example, iterative-flag-test-rem oval,

d iscussed in C hapter 7, requires th a t there be no actions preceding

the flag te s t in a loop to which we intend to apply the transform ation.

This actually requires the recogniser to search the graph to make sure

th is is true. Although not too hard to do, this does not seem to fit in

with the spirit of context free-graph parsing, since we now essentially

have a context-sensitive operation. Such operations may tu rn out to be

necessary, b u t it would be nice if they could be avoided. It may tu rn out

th a t in these situations the theorem prover would come into its own,

by deducing the existence of actions in different contro l flow

environm ents from the ones in which they actually turn up. If these

deductions are added to the chart by the theorem prover, then the

375

chart parser could recognise the plans. However, it is likely th a t th is

will be too inefficient, so probably some graph parsing approach will be

needed. An alternative solution to th is problem would be to adopt

som ething like the PROUST [Johnson 1986] approach which stores

lots of vEiriants of each plan, bu t the likely com binatorial explosion,

especially if there are thousands of plans, make this seem unlikely as a

satisfactory approach.

10.3 Future Research

Of course m uch rem ains to be done to complete th is work. In

particu lar it needs the addition of the (by now often mentionedi)

powerful theorem prover and reason m aintenance system, and m uch

more work needs to be done on heuristics for how to reconnect

rep lacem en t bug-fixes to the su rro u n d in g g raph . It would be

interesting to attem pt to use multiple near-m iss information as a guide

in this process. For instance, if we know there is a bug a t some point in

the program, and there is a near-miss to some plan A a t th a t point, and

p art of w hat is wrong with A is tha t it requires a plan B, b u t cannot find

one, and there is also a near-m iss to a plan B a t th a t point then th is

m utual information ought to help both confirm the hypothesis th a t a B

is required, b u t ought also to aid the system in working out how to

reconnect a repair to B to the surrounding graph.

It w ould also be in te resting to look a t th e various bug

classifications, and repair strategies, developed by other researchers to

see if these are meaningful in fiowgraph term s. If so m any of these

could perhaps be adopted. In particular it would be interesting to try

and build a tutoring system (perhaps ra ther like a com bination of a

high-level PROUST and a high-level TALUS) based on this work.

376

In connection with th is suggestion, it should be noted th a t the

system is now alm ost a t a point where it could be given (by a tutor) a

solution to a problem studen ts are supposed to be working on. The

system could then analyse this in term s of its plan library, and extract a

high-level description of w hat the program does, in term s of high-level

operations, and their inter-relationships. This could ju s t be added to

the system as a rule, like any other in its plan library. W hen the system

tries to understand studen t programs, it could then use a combination

of top-down and bottom -up recognition to try and recognise the rule.

Because of the system ’s (potential) ability to invoke a theorem prover

when confronted with novel code, it should be able to gain some of the

streng ths of TALUS in being able to deal w ith program s containing

such code. On the other hand, its ability to recognise p lans should

enable it to deal with m uch larger and more complex problem s th an

those TALUS can deal with. Furthermore, it should potentially be m uch

m ore able to deal w ith program s th a t work by side-effect, and it

doesn’t take students long before they s ta rt using such programming

techniques, once they are introduced to alm ost any kind of d a ta

structuring, unless they are severely restricted by the language.

However, tutoring novices is likely to necessitate som ething like

PROUST’S approach. As discussed earlier in th is thesis, the approach

to debugging th a t we have adopted requires w hat we called the Normal

Use Heuristic. This was:

If a programmer uses a standard plan in a program then, as a
first hypothesis, assum e they are using it deliberately in
o rder to achieve the re su lts of opera tions com m only
im plem ented by th a t p lan , and th a t the re fo re the
preconditions for these operations should be met.

For more experienced programmers this is probably quite a reasonable

assum ption. However, for complete novices th is is alm ost certainly a

377

really wild assum ption. Apart from the fact th a t novices produce such

bizaire code [Johnson et al. 1983, Soloway et al. 19811 th a t sometimes,

w ithout a deep understanding of the m isconceptions underlying the

production of such code, it is almost impossible to recognise the in tent

behind it, they also often m isunderstand w hat a common programming

technique actually does, so plans tu rn up in totally inappropriate

places. In th is kind of situation, there is probably very little alternative

to some sort of bug catalogue, with appropriate “canned” repairs, and

advice to the studen ts. It is not yet clear how m any of the bugs in

PROUST'S bug catalogue can easily be expressed in flowgraph term s. If

it tu rn s out th a t they can, then the chart parser can simply use these

as yet another set of rules to parse with.

A nother in teresting direction to go from here would be to try

and build a system capable of finding, and possibly repairing bugs of

type 2 and 4. This could involve interacting with the programmer, and

perhaps linking the system to an existing (non-intelligent) interactive

debugger to enable the system to set breakpoints, examine variables

etc. This could perhaps sometimes replace theorem proving in an

attem pt to locate errors.

Yet another girea th a t would be interesting to apply th is work to

is th a t of tu toring digital circuit design. Here the s tru c tu re sharing

flowgraph formalisms fit very closely onto the domain. Furtherm ore, it

m ay be possible to develop something like a plan calcu lus for th is

domain, with overlays stating (say) tha t an addition circuit corresponds

to a high-level operation like adding two num bers, w ith data-overlays

s ta tin g th a t the connection betw een the (say) 8 in p u t lines

representing one of the num bers to be added is given by som ething

like an 8-bits->integer overlay.

378

10.4 Conclusions

Despite the above mentioned problems, the plan calculus seems

to offer more power to analyse and reason about program s th a n any

o ther knowledge represen tation technique curren tly available. The

ability not only to reason about side effects, b u t to reason abou t

program s a t different levels e.g. to switch from record cells to sets, or

to trees, and yet still be able to realise how changes to the structu res

involved a t one level of description affect the other level of description,

is unique, and yet fundam ental to the way in w hich experienced

program m ers seem to th ink about program s. It is hoped th a t th is

thesis takes u s a little closer to actually being to use the plan calculus

a s the basis for autom ated tools to aid program m ers in the ta sk of

debugging, and ultimately in all aspects of the programming process.

379

References
Adam A. and Laurent J . (1980) LAURA A System to Debug S tudent
Programs Artificial Intelligence 15, pp. 75-122.

Aho, A. and Ullman, J.D . (1977) Principles of Com piler Design,
Addison-Wesley, Reading, Mass.

Barstow D.R. (1979) Knowledge-Based ifrogram C onstruction North
Holland. New York.

Bobrow, D.G. and Winograd, T. (1977a) An Overview of KRL, Cognitive
Science 1, pp. 3-46.

Bobrow, D.G. and Winograd, T. (1977b) Experience w ith KRL-0: One
Cycle of a Knowledge Representation Language, Proc. 5 th Int. Jo in t
Conference on AI, MIT. (vol. 1), pp .213-222.

Brotsky, D C. (1984) An Algorithm for Parsing Flow Graphs. Technical
Report Al-TR-704 MIT Artificial Intelligence Laboratory.

Chow A.L., Rudmik R. (1982) The Design of a D ata Flow Analyser Proc
SIGPLAN '82 Sympoium on Compiler Construction. Boston Mass. USA.

Delaney, W.A. (1966) Predicting the Costs of Com puter Programs. D ata
Processing Magazine 32.

Della Vigna, P. and Ghezzi, C. (1978) Context Free Graph Gram m ars.
Information and Control 37, pp. 207-233.

Domingue, J . (1987) ITSY, An Automated Programming Advisor. Tec.
R eport No. 22, H um an Cognition R esearch Laboratory , Open
University, Milton Keynes, U.K.

Ducsisse, M. and Emde, A.M. (1988) A Review of Automated Debugging
S ystem s: Knowledge, S tra teg ies, and T echn iques. Proc. 10th
In ternational Conference on Software Engineering, Singapore, April
1988.

Earley J . (1970) An Efficient Context-Free Parsing Algorithm. CACM
' 13(2) pp.94-102.

Ehrig H. (1979) In troduction to the Algebraic Theory of G raph
G ram m ars (A Survey). G raph G ram m ars and th e ir A pplication to
C om puter Science and Biology, (eds. C laus, V., Ehrig, H. and
Rozenberg, G.) Lecture Notes in Computer Science, Springer-Verlag.

Ehrlich K., Soloway E. (1982) An Empirical Investigation of the Tacit
Plan Knowledge in Programming Research Rep. No. 236 Yale Univ.
Dept. Comp. Sci.

E isenstadt M., Laubsch J . (1981) Domain Specific Debugging Aids for
Novice Programmers Proc. 7th Int. Jo in t Conf on Artificial Intelligence
(lJCAI-81). Vancouver BC, Canada.

380

E isen stad t M., Laubsch J . (1982) Using Tem poral A bstraction to
U nderstand Recursive Programs Involving Side Effects Proc. American
Assoc, of Artificial Intelligence (AAAI-82).

E isen stad t M., L aubsch J . , Kahney H. (1981) C reating Pleaseint
Programming Environments for Cognitive Science S tudents Proc. 3rd
Annual Cognitive Science Conference, Berkeley CA, USA.

Elsom-Cook, M. (1985) Design C onsiderations of an In telligent
Tutoring System for Programming Languages. Ph.D. Thesis, University
of Warwick.

F aust G.G. (1981) Semiautomatic Translation of Cobol into Hibol MIT
Laboratory for Computer Science MIT/LCS/TR-256.

Feder, J . (1971) Plex Languages. Information Sciences, Vol. 3 (1971)
pp. 225-241

Floyd R.W. (1971) Toward Interactive Design of Correct Programs IFIP
1971.

Fu, K.S. (1974) Syntactic Methods in Pattern Recognition, New York:
Academic Press.

G erhart S.L. (1975) Knowledge About Programs: A Model and Case
Study Proc. Int. Conf. on Reliable Software 1975.

Goldstein I.P. (1974) U nderstanding Simple Picture Program s PhD.
Thesis MIT AI Lab. Technical Report 294.

G oldstein I.P., Roberts R.B. (1977) NUDGE, A Knowledge-Based
Scheduling Program Proc. 5th Int. Jo in t Conf. on Artificial Intelligence
(IJCAl-77). Cambridge Mass., USA.

Gonzalez, R.C. and Thom ason, M.G. (1978) S yn tac tic P a tte rn
Recognition: An Introduction. Addison-Wesley.

G reen, C. (1969). Theorem Proving by Resolution as a Basis for
Question-Answering Systems. Machine Intelligence 4, Michie, D. and
Meltzer, B. (eds.) Ekiinburgh University Press.

Hasemer, T. (1983) An Empirically-Based Debugging System for Novice
P rogram m ers. Tech. Report No. 6, H um an Cognition Resesirch
Laboratory, Open University, Milton Keynes, U.K.

Hayes, P. (1979) The Logic of Frames. Frame Conceptions and Text
Understanding, Metzing, D. (ed.), de Gruyter, pp. 46-61.

H echt M.S. (1977) Flow Analysis of C om puter Program s Elsevier
North-Holland Inc. New York.

Hewitt C., Sm ith B. (1975) Towards a Programming Apprentice IEEE
Trans, on Software Engineering 1, 1 pp. 26-45.

Jo h n s o n , W.L. (1986) In ten tio n -B ased D iagnosis of Novice
Programming Errors. Pitman(London).

381

Jo hnson , W.L., Soloway, E., Cutler, B., and Draper, S. (1983) Bug
Catalogue 1 Technical Report YaleU/CSD/RR #286 Dept. Comp. Sci.
Yale University.

King J.C . (1976) Symbolic Ebcecution and Program Testing CACM 19:7
Ju ly 1976

Laubsch J ., E isenstadt M. (1980) Towards an Automated Debugging
A ssis tan t for Novice Program m ers Proc. Artificial Intelligence and
Sim ulated Behaviour Conference (AlSB-80) Amsterdam.

Lukey F .J. (1978) U nderstanding and Debugging Simple Com puter
Programs PhD Thesis, University of Sussex.

Lutz, R.K. (1984a) Towards an Intelligent Debugging System for Pascal
Program s: A Research Proposal. Open University H um an Cognition
Research Laboratory Technical Report No. 8 i^ r l l 1984.

Lutz, R.K. (1984b) Program Debugging by Near-Miss Recognition and
Evaluation. Proc ECAI 1984.

Lutz, R.K. (1986) Diagram Parsing - A New Technique for Artificial
Intelligence. CSRP-054, School of Cognitive and Com puting Sciences,
University of Sussex.

Lutz, R.K. (1989a) C hart Parsing of Flowgraphs. Proc. 11th Jo in t Int.
Conf. on AI. Detroit, USA.

Lutz, R.K. (1989b) Debugging Pascal Programs Using a Flowgraph Chart
Parser. Proc. 2nd Scandinavian conference on AI, Tampere, Finland.

Lutz, R.K. (1991) Plan Diagrams as the Basis for U nderstanding and
Debugging Pascal Programs, in Eisenstadt, M., Raj an. T., and Keane, M.
(Eds.) Novice Programming Environments. London: Lawrence Erlbaum
Associates (in press).

M anna Z. (1974) Mathematical Theory of Computation McGraw-Hill.

M anna Z., W aldinger R. (1979) Synthesis: Dreams => Program s IEEE
Trans, on Software Engineering SE-5, 4.

M cCarthy, J . and Hayes, P. Some Philosophical Problems from the
S tandpoin t of Artificial Intelligence. Machine Intelligence 4, Michie,
D. and Meltzer, B. (eds.) Ekiinburgh University Press.

McGregor, J .J . (1982) Backtrack Search Algorithms and the Maximal
Common Subgraph Problem. Software-Practice and Experience 12, pp.
23-24 (1982).

Miller, M.L. and Goldstein, I.P. (1977) Overview of a Linguistic Theory
of Design. MIT Artificial Intelligence Laboratory AI Memo No. 383A.

M urray, W.R. (1986) Automatic Program Debugging for Intelligent
T u to ring System s. D octoral D isserta tion , A rtificial Intelligence
Laboratory, The University of Texas a t Austin. Ju n e 1986.

382

Persch G., W interstein G. (1978) Symbolic Interpretation and Tracing
of PASCAL Programs Proc. 3rd Int. Conf. Software Eng. 1978.

Pfaltz, J.L., and Rosenfeld, A. (1969) Web Grammars. Proc. IJCAl 1, pp.
609-619.

Q uillian , M.R. (1968) Sem antic Memory. S em antic Inform ation
Processing, Minsky, M. (ed.), MIT Press, Cambridge, MA.

Renner, S. (1982) Location of Logical Errors on Pascal Program s with
an Appendix on Im plem antation Problems in W aterloo PROLOG/C.
Knowledge Based Programming A ssistant Project, University of Illinois
a t Urbana-Champaign Technical Report UlUCDCS-F-82-896.

Rich C. (1981) Inspection Methods in Program m ing MIT Artificial
Intelligence Laboratory Al-TR-604.

Rich, C. (1985) The layered architecture of a system for reasoning
about programs. Proceedings IJCAl-85, Los Angeles. CA pp. 540-546.

Rich, C., Schrobe H. (1978) Initial Report on a Lisp Program m er's
Apprentice IEEE Trans, on Software Eng. SE-4:6, pp. 450-467.

Rosenfeld, A. and Milgram, D.L. (1972) Web A utom ata an d Web
G ram m ars. M achine Intelligence 7 pp.307-324 (eds. Meltzer, B. and
Michie, D.) Eklinburgh University Press.

R uth G.R. (1973) Analysis of Algorithm Im plem entations PhD Thesis
MIT.

R uth G.R. (1976) Intelligent Program Analysis Artificial Intelligence 7,
pp. 65-85.

Schiieiderm an, B. (1980) Softweire Psychology. H um an Factors and
Information Systems. Winthrop Publishers, Inc.

S ch n e id erm an , B. and Mayer, R. (1979) S y n ta c tic /S e m a n tic
In teractions in Programm er Behaviour: A Model and Experim ental
Results. International Journal of Computer and Information Sciences,
8(3) pp. 9-23.

Schrobe H.E. (1979) Dependency Directed Reasoning for Complex
Program U nderstanding MIT Artificial Intelligence Laboratory AI-TR-
503.

Schrobe H.E., W aters R.C., S ussm an G .J. (1979) A H ypothetical
Monologue Illustrating the Knowledge Underlying Program Analysis
MIT Artificial Intelligence Laboratory AI Memo 507.

Shapiro, D.G. (1978) Sniffer: A System th a t U nderstands Bugs. MIT
Artificial Intelligence Laboratory. AI Memo 459.

Shapiro , E. (1982) Algorithmic Program Debugging. MIT Press,
Cambridge, Mass.

Soloway E., Bonar J ., Woolf B., Barth P., Rubin E., Ehrlich K. (1981)
Cognition and Programming: Why Your S tudents Write Those Crazy

383
Programs Proc. National Ekiucational Computing Conference (NECC-81)
pp. 206-219.

Soloway E., Ehrlich K., Bonar J . (1982) Cognitive S tra teg ies and
Looping Constructs: An Empirical Study Research Rep. Yale Univ. Dept.
Comp. Sci.

Soloway E., Ehrlich K., Bonar J ., Greenspan J . (1982) W hat Do Novices
Know About Programming Research Rep. No. 218 Yale Univ, Dept,
Comp. Sci.

Soloway E., Rubin E., Woolf B., Bonar J ., Johnson W.L. (1982) MENO-II:
An AI-Based Programming Tutor Research Rep. No. 258 Yale Univ.
Dept. Comp. Sci.

Spohrer, J.C ., Pope, E., lipm an, M., Sack, W., Freiman, S., Littman, D.,
Johnson , L., and Soloway, E. (1985) Bug Catalogue: II, III, IV. Tech.
Rep. YaleU/CSD/RR #386. Dept. Comp. Sci. Yale University.

Sussm an, G .J. (1978) Slices a t the Boundary Between Analysis and
Synthesis. Artificial Intelligence and Pattern Recognition in Com puter
Aided Design (ed. Latombe) North-Holland.

Thom pson H. and Ritchie, G. (1984) Implementing N atural Language
P arsers. Artificial Intelligence: Tools, Techniques, and Applications
pp.245-300 (eds. O'Shea, T. and Eisenstadt, M.) Harper and Row.

W aters R.C. (1978) Autom atic Analysis of the Logical S truc tu re of
Programs MIT Artificial Intelligence Laboratory Al-TR-492.

W aters R.C. (1979) A Method for Analysing Loop Programs IEEE Trans,
on Software Eng. SE-5:3, pp. 237-247.

W aters R.C. (1982) The Programm er's Apprentice: Knowledge Based
Program Editing IEEE Trans, on Software Eng. SE-8:1, pp. 1-12.

Weiser M. Programmers Use Slices When Debugging (1982) CACM 25,
7.

Wertz, H. (1987) Automatic Correction and Improvement of Programs.
Ellis Horwood Series in Artificial Intelligence.

Wills, L.M. (1986) Automated Program Recognition. MSc Tliesis MIT
Electrical Engineering and Computer Science.

Wills, L.M. (1990) A utom ated Program Recognition: A Feasibility
Dem onstration. Artificial Intelligence 45, pp. 113-171.

W inograd T. (1973) Breaking the Complexity Barrier (Again). Proc.
ACM SIGIR-SIGPLAN Interface Meeting, Nov. 1973.

Youngs, E.A. (1974) H um an Errors in Programming. Int. J . Man-
Machine Studies 6, pp. 361-376.

