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Abstract

This thesis presents work in progress on building an  intelligent 

general purpose, domain-free debugging system  for Pascal program s. 

This system (IDS) is based on Rich’s surface p lan /p lan  calculus graph 

form alism s, and  th is  thesis  develops theory  and  algorithm s for 

performing program understanding within th is framework.

This thesis is in  three parts, the first p a rt describes why an  

ability to do both  plan recognition and general purpose reasoning is 

essential for debugging programs.

The second part of th is thesis describes the plan calculus and 

show s how it offers the ability to com bine bo th  general purpose 

reasoning, and  (graph-based) plan recognition. It then  goes on to 

p re se n t a  new  polynom ial tim e algorithm  (a genera lisa tion  of 

traditional chart parsing for string grammars) for doing bottom -up, or 

top-down, analysis of surface plans. This algorithm is presented in the 

fram ew ork of restric ted  s tru c tu re  sh a rin g  flow graph g ram m ars 

developed for th is purpose. To justify the use  of such  gram m ars th is 

p a rt of the thesis develops the theoiy of determ inistic operations in 

the plan  calculus, and also develops the theory of generalised control 

flow environm ents to ju stify  the way control flow inform ation is 

handled. ,

The final p a rt gives an  overview of IDS, and modifies the above 

algorithm  to cope with various parts of the plan calculus th a t do not 

exactly fit into the framework we have developed. Thus th is  thesis 

gives a  complete account of how to perform plan recognition in Rich’s 

frsimework. This p a rt of the thesis also describes the tran sla tio n  

process from Pascal to surface plans, and p resen ts a  technique for 

transla ting  plans expressed in Rich’s notation, into suitable rules for



the parser to use. Finally it presents some preliminary work on exactly 

how a  debugging system  using  these techn iques m ight go ab o u t 

locating and fixing bugs in programs.
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PART 1 
BACKGROUND



Chapter 1.

The Nature o f  Bogs and  of D ebuggin g, and  th e  Need for 
Program Understanding,

1.1 Introduction and Overview of Thesis.

The research described here is aimed a t creating an  intelligent 

system  capable of aiding program m ers in  the  ta sk  of debugging 

program s. As com puter hardw are becom es cheaper the  cost of 

producing and  m aintaining software is becoming the major factor in 

m ost applications. In addition, decreasing costs and increasing power 

of the hardw are m eans th a t projects are becoming increasingly more 

am bitious and complex, and hence more error-prone and indeed there 

appears to be a  “complexity barrier” [Winograd 1973] past which it is 

very difficult if no t im possible to go. It is therefore becom ing 

increasing ly  n ecessa ry  to use  the  com puter itse lf to aid  the  

program mer in producing correct software. One approach to th is is the 

attem pt to build ftdly autom ated program synthesis system s [Barstow 

1979, M anna and W aldinger 1979]. These would only require the 

program m er to provide a  very high-level specification of w hat the 

program  is to do and  the  syn thesis system  would autom atically  

generate a  correct program to carry out the program m er's intentions. 

Although m uch interesting work has been done on autom atic program 

synthesis it seem s unlikely th a t really usab le system s will become 

available in the near future.

An approach m uch more likely to lead to a  working system in the 

foreseeable future is th a t of the "programmer's apprentice ' [Hewitt and 

Smith 1975, Rich and Schrobe 1978, Rich 1981, W aters 1982]. Such a 

system  has a  large am ount of knowledge abou t program m ing. For 

instance it knows the various standcird ways of sorting a  list num bers. It
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also has knowledge about common data structures and implementation 

techniques etc. The system can then use th is knowledge to relieve the 

program m er of m any of the details associated w ith im plem enting 

various algorithm s etc. However it would expect the program m er to 

supply the high-level algorithm to be used. It could also check code 

given by the programmer for consistency with w hat it knows.

An intelligent debugging system is more m odest in its aim s th an  

a  full program m er's apprentice which also aims to help program m ers 

w ith the coding process itself. However it is clear th a t a  debugging 

system needs to be able to understand and (possibly) suggest edits to a  

program in exactly the same way eis a  programmer's apprentice system. 

F u rtherm ore , su ch  a  debugging system  would be an  essen tia l 

com ponent of a  full program m er’s apprentice system, and one can 

therefore quite easily imagine enlarging such a  debugging system  to a 

full program m er's apprentice. Partly because of th is, build ing  an  

intelligent debugging system  is clearly a  very large and  difficult 

undertaking , and accordingly is as yet unfinished. This thesis will 

describe w ork cu rren tly  in progress on build ing  an  in te lligen t 

debugging system (IDS) for Pascal progreims. This work is heavily based 

on R ich ’s [1981] p lan  ca lcu lu s  w hich  provides th e  form al 

underp inn ings for the Program m er’s Apprentice project [Rich and  

Schrobe 1978]]. Despite its power and expressivity however, full use of 

the plan calculus has been frustrated by lack of a  proper algorithm for 

perform ing plan  recognition, although Wills [1986, 1990] h as  done 

some work on this. Most of th is thesis will be devoted to giving an  

acco u n t of, and  ju stifica tion  for, a  new algorithm  (based on a 

generalisation  of ch a rt parsing applicable to graph-like s tru c tu re s  

known as flowgraphs) for doing this. The later part of the thesis will 

m ake some prelim inary suggestions on how the information provided 

by the plan recognition process can be lised to locate (and sometimes
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repair) bugs in programs. Much of the work described here has been 

reported elsewhere [Lutz 1984a, 1984b, 1986, 1989a, 1989b, 1991], 

b u t th is account will provide more details, and place it all in  context. 

The long term  aim of this research [Lutz 1984a] is to build a  system  

capable of helping the program m er to locate and  fix erro rs in  

program s. IDS will ultimately attem pt to integrate a  whole variety of 

m ethods and sources of inform ation (described below) to help it in 

debugging, ra th er in the way an  expert program m er does. However, 

the work described here is an  initial attem pt tow ards a  debugging 

system  using  only the basic techniques of p lan  m atching combined 

with a  theorem prover [Lutz 1984b] to arrive a t a  high-level description 

of w hat the program (or part of it) does and how it does it. So far only 

the plan m atching part of this work is complete, b u t detailed scenarios 

based  on th is p lan  m atching will be presented to show how logical 

inconsistencies (a notion made more precise below) can  be found in  

programs, and how suggestions can be made as to how to correct the 

code, based on near-m isses to known plans. These near-m isses are 

quite  explicitly found by our p lan  recognition algorithm . At the 

m om ent no a ttem pt has been made to use inform ation im plicit in 

variable nam es and so on. Despite th is it will be argued th a t IDS’s 

approach is powerful enough to duplicate m any of the capabilities of 

o ther debugging system s [e.g. Lukey 1978, Soloway, Ehrlich, Bonar, 

and  G reenspan  1982, Jo h n so n  1986] for syn tactically  correct 

program s, except for where these system s m ake use  of problem  

specific knowledge. More importantly the power and generality of the 

representation m ethods used by IDS potentially enable it to deal with 

p rogram s involving such  th ings as  recursive and  non-recursive 

procedure calls, value and reference param eter passing, records and 

pointers, as well as the full range of data types available in Pascal. Thus 

IDS can  deal w ith program s involving dynam ic d a ta  s tru c tu re s
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im plem ented  u sin g  po in ters and  records, un like  th e  system s 

m entioned  above. IDS a ttem p ts where possib le to be language 

independen t so as to facilitate the application of any  techniques 

developed to o ther programming languages. In doing th is  it draws 

heavily on the work of Rich, Schrobe, and W aters [Rich 1981, Rich and 

Schrobe 1978, W aters 1978, 1979, 1982] whose developm ent of the 

Program m er's Apprentice project a t MIT represen ts a  m ajor a ttem pt 

a t  representing the knowledge underlying programming. To a  lesser 

extent it draws on the work of Laubsch and E isenstadt [1980] whose 

w ork on an  intelligent debugger for SOLO program s b ea rs  some 

similarities to that described here. Their w ork has also been 

significantly influenced by th a t of Rich, Schrobe, and W aters.

A part from the  practical u ses such  a  system  w ould have, 

debugging is also an  interesting area in  its own right for Artificial 

Intelligence research. Programs are am ongst the m ost complex objects 

available for study, and raise all kinds of interesting questions about the 

in terp lay  between knowledge representation  add  general reasoning 

abilities. It is the contention of this thesis th a t in order to successfully 

reason about program s in order to debug them  we need the ability to 

move sm oothly from making use of “compiled” knowledge, expressed 

a s  ru le s  cap tu rin g  an  experienced p rogram m er’s know ledge of 

program m ing techniques and algorithms, to general reasoning  from 

first principles to cope with novel or unexpected features of programs, 

and  we hope to show th a t the plan calculus as developed by Rich 

[1981] provides a  suitable framework for doing this.

The organisation of the thesis is as follows. The rest of th is 

chap ter will d iscuss the natu re  of bugs, and of debugging, and  will 

p resen t the case th a t the ability to recognise occurrences of standard  

p lans (programming clichés) in a  program is a  prerequisite for the
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ability to find and repair bugs in it. It will also be argued th a t the ability 

to reason in a  general way about programming constructs is also vital. 

C hapter 2 will p resent a  survey of other program understand ing  and 

debugging system s. C hapter 3 will give an account of Rich’s [1981] 

work which provides the theoretical underpinnings enabling both  plan 

recognition and general reasoning to be com bined. C hapter 4 will 

extend the theory of the plan calculus in order to justify  m any of the 

operations performed by IDS’s plan recognition system. C hapter 5 will 

give an  account of the underlying algorithm used for plan recognition 

by IDS. It in troduces the notions of context-free flowgraph gram m ars 

(based on Feder’s [1971] plex grammars), and context-free structu re- 

sharing  flowgraph gram m ars, which are no t only capable of fairly 

d irec tly  expressing  m any of R ich’s ideas, b u t  also  could find 

applicability in other domains (e.g. electronic circuit analysis). It then  

goes on to describe a  new (polynomial time) algorithm for recognising 

diagram s generated by such grammars. Chapter 6 will give an  overview 

of IDS and describe the translation  process from Pascal program s to 

R ich’s surface p lan  formalism. C hapter 7 will describe the  p lan  

recognition module itself, including modifications needed in order to 

enable the algorithm described in Chapter 5 to cope with those parts  

of R ich’s form alism  which do no t exactly fit the pu re  flowgraph 

form alism s introduced there. It will also describe the conversion of 

p lans as described in Chapter 3 into flowgraph gram m ar rules suitable 

for u se  by the  parser. C hapter 8 will give an  accoun t of IDS’s 

understand ing  abilities on various example programs, and C hapter 9 

will d iscuss how its approach to debugging using this m echanism  can 

be used to find and repair simple bugs in programs. Finally Chapter 10 

will give our conclusions, and summ arise future work th a t still needs to 

be done.



1.2 A categorisation of bugs

It is possible to distinguish several different types of error th a t 

can  occur in program s, and several au th o rs  have a ttem p ted  to 

categorise these. As these authors all either use different terminology, 

or use the same terminology to mean different things, and because the 

m otivations behind the different taxonomies are often different from 

th a t of th is project, a  new taxonomy will be presented here. Before 

doing this, however, a  brief description will be given of some of these 

o ther taxonom ies so th a t the sim ilarities and differences betw een 

them  wUl become more apparent.

The m ain  d istinction underlying the different taxonom ies is 

between those motivated by an in terest in the psychological processes 

which cause programmers to make errors, and those motivated by an  

in terest in autom atically identifying and repairing the errors, although 

there is of course some overlap between these. The work of Youngs 

[1974], an d  S chiie iderm an [1980] ty p ifie s* th e  psychologically  

m otivated work, while th a t of G oldstein [1974] and  M illar and  

Goldstein [1977] typifies the second type of work. The work of the 

Cognition and Programming Project a t Yale [Johnson, Soloway, Cutler 

and  D raper 1983, Spohrer, Pope, Lipman, Sack, Freim an, Littm an, 

Johnson, and Soloway 1985] falls into both camps to some extent but, 

as their work is primarily aimed at novice programmers £tnd deals with 

the m isconceptions novices have, does not fully address the kinds of 

errors more expert programmers make.

Youngs [1974] classifies program m ing errors into syntactic, 

semantic, logical, and clerical errors. Syntactic errors are errors in the 

use of the syntax of the programming language and are easily detected 

by compilers. Sem antic errors occur when a program  requires the
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com puter to do something either impossible or contradictory e.g. read 

from a  closed file. Normally such errors would give rise to run-tim e 

error m essages. Logical errors occur w hen the program  is a  valid 

program  in th a t it will run  to completion w ithout any obvious sign of 

there having been an error (such as an  error message) b u t the program 

does no t in fact do w hat it is supposed to' Clerical errors are due to 

such  things as mistyping, or using a  text editor carelessly. Clearly, a  

study  of clerical errors is of great in terest to someone designing text 

editors, b u t is of less in terest to an automatic debugging assistan t. The 

distinction between sem antic and logical errors could form the basis 

for a  debugging system  (e.g. an  expert system  using  run-tim e error 

m essage information) bu t, as will be seen la ter, the definition of 

sem antic error can be widened to encompass m any of the bugs Youngs 

would classify as logical, leading to a  clearer relationship between the 

k inds of bug in a  program, and the techniques needed in order to 

debug it.

Schneiderm an 's [1980] taxonomy depends m uch more on a  

psychological model of the program m ing process. In h is  model 

program m ers begin by forming a  m ental model of the problem and its 

solution (the internal semantics), and then  bring general programming 

knowledge, and  knowledge of the specific program m ing language 

being used, to convert th is internal description into an  actual program 

to solve the problem . Schneiderm an also m akes the  d istinction  

between syntactic and semantic errors, and also assum es th a t syntactic 

errors are easily caught by compilers. In his taxonomy sem antic errors 

include all other kinds of bug th a t can occur in program s, and he 

subdiv ides these  into two fu rther categories. The firs t of these  

corresponds to errors in  the conversion process from the in ternal 

sem antics to the ac tual program, and the second to an  incorrect 

conversion from the problem to the internal sem antics. Schneiderm an
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points out th a t the first type of error is m uch more easily debugged 

th a n  the second, which may involve a  com plete redesign of the 

solution, or of the programming strategy.

G oldstein 's [1974] bug taxonom y is based  on a  theory  of 

program m ing as a  planning activity. This views program m ing as a  

process of finding a  plan (a sequence of steps) which achieves some 

goal. Each step in the program may in  tu rn  have prerequisites th a t 

need to be true before the step can be carried out, th u s  giving rise to 

subgoals th a t need to be planned for. Under this view there are several 

kinds of bugs th a t can occur. The first of these is w hat Goldstein term s 

a  linear m ain-step failure, and occurs when a  sub-plan in the program 

fails to achieve the goals it is supposed to, independently of the other 

steps in the program. This kind of bug can be fixed by repairing th is 

sub-p lan  in  isolation. The second type of bug is w hat he term s a  

preparation error. This corresponds to the situation when the sub-plan 

concerned does solve its goals under certain assum ptions abou t the 

program sta te  on entry to the Sub-plan, b u t thes^ assum ptions are not 

necessarily always true. To fix this kind of bug it is necessary to insert a  

new step which sets up the conditions assum ed by the faulty sub-plan. 

The th ird  kind of bug is w hat Goldstein term s a  non-linear m ain step 

failure. This type of bug arises from non-linear in teraction between 

sub-plans, and in general is very hard to fix. Sometimes th is kind of 

bug can be fixed by suitably interleaving the steps of the sub-plans, or 

by adding extra steps to one or both of the sub-plans which are not 

strictly  necessary to achieve the goals the sub-p lan  is designed to 

achieve, b u t which are there to eliminate the unw anted interaction. In 

addition Goldstein distinguishes between w hat he term s theory bugs, 

and w hat he term s procedure bugs. Theory bugs correspond to the 

case where the initial goals as derived from the problem statem ent are 

in error, often because of m isunderstand ings abou t the  problem
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domain. Procedure bugs are bugs in the implementation of a  program 

to solve the problem. All the above types of bugs are special cases of 

procedure bugs. To fix theoiy bugs an automatic system would also have 

to have knowledge of the domain, not ju s t  general program m ing 

knowledge.

Miller and Goldstein's [1977] taxonomy h as  m uch in  common 

with th a t ju s t  described. They also view the programming process as a  

planning activity. However, they provide a  "planning gram m ar " which 

specifies how p lans may be combined to provide higher level plans. 

Given th e ir  p lann ing  gram m ar, they  th en  d is tin g u ish  betw een 

syntactic, semantic, and pragmatic bugs. Miller and Goldstein use  the 

term  syntactic' to describe the case where the basic plan gram m ar is 

violated. For instance, the grammar may specify th a t a  particu lar plan 

needs a  particular type of sub-plan a t a  particular place in a  plan, and if 

th is is missing then  there is a  syntactic error. Note th a t th is  is not the 

sam e as an  error in the use of the syntax of a  particular programming 

language. It really falls into one of the categories th a t Youngs or 

S chneiderm an  would term  sem antic or logical. Sem antic bugs, 

according to Goldstein and Miller, occur when a  syntactically (in their 

sense) optional com ponent is missing from a  plan, b u t is required by 

the na tu re  of the problem the program is attem pting to solve. These 

bugs fall roughly under Youngs' notion of logical error since they give 

rise to a  fully functioning program which simply does not do w hat it is 

supposed to. Finally, pragm atic bugs occur when an  inappropriate 

choice (with respect to the problem) of plan h as  been m ade. Again, 

th is type of bug falls under Youngs' notion of logical error.

Jo h n so n  e t cd.'s [1983] and S pohrer et a l.'s  [1985] bug  

classification depends both on a  library of stereotypical programming 

plans, and on the problem the program is trying to solve. Given these



11

two dim ensions they have developed a large catalogue of several 

hundred  different types of bug, ranging from the fact th a t a  particular 

plan needed to solve a  particular problem is missing, to a  description 

of all the different ways novices might mis-implement a  specific plan. 

Because of the detailed natu re  of this catalogue they can  give very 

specific advice to novice progreunmers on how to fix the  bug, or on 

w hat m isconception about looping constructs the novice is suffering 

from. However, following th is particu lar route seem s unrealistic  for 

expert program m ers given the likely com binatorial explosion in  bug 

types. However, as p art of a  tutoring system, their approach works 

weU. as evidenced by the success of Johnson's system PROUST [1986],

This project is using the taxonomy shown in Figure 1.1. The 

sim plest distinction it makes is th a t between syntactic and  sem antic 

errors. Syntactic errors are easily caught by compilers, and th is project 

will assum e th a t the programs it is looking a t are syntactically correct. 

In the  case of novice program m ers, all k inds of m uch  deeper 

m isconceptions may m anifest themselves as syfitactic errors, b u t as 

th is  research  is aimed a t more experienced program m ers, it is 

assum ed th a t error m essages from the compiler will be sufficient to 

enable the programmer to fix th is type of error.

Sem antic errors correspond to the case where the program  in some 

sense does not "do w hat it is supposed to". To arrive a t this taxonomy it 

h a s  been  assum ed  th a t program m ers, w hen confronted w ith a 

problem, come up with some sort of solution, or high-level design, 

corresponding to Schneiderm an's interned sem antics. Now there are 

two cases - either their design is correct, or it is not (this la tte r case 

corresponds to Goldstein's theory bug category, and to Schneiderm an's 

category of bugs arising from an incorrect conversion to the internal 

semantics). In either case they now attem pt to implement their design
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as a  program. In the case where their design is indeed correct b u t they 

m is-im plem ent it (corresponding to G oldste in 's p rocedu re  bug 

category, and to Schneiderm an's class of errors which arise from an 

incorrect transform ation from the internal sem antics), there are two 

types of error th a t can occur:

Type 1. These e rro rs  m an ifest them selves a s  in te rn a l 

inconsistencies of one kind or another between parts  of the program. 

Simple examples are trying to read from a  closed device, or passing an 

u n so rted  lis t th rough  to some piece of code im plem enting  an  

algorithm  which expects a sorted list as input. This type of bug 

includes Youngs' semantic errors as special cases, b u t widens the class 

of inconsistencies considered. As will be seen later, because th is 

project is based  on a  library of programming "cliches", th is  category 

also corresponds to Miller and Goldstein's syntactic error category, 

since the p lan  library  can be viewed as a  g ram m ar for correct 

p rog ram s, an d  th e  g ram m ar does no t p erm it th is  k ind  of 

inconsistency.

Type 2. Programs containing (only) this type of error manifest 

them selves as correct (internally consistent) program s for some other 

problem. An example might be if the programmer w as trying to write 

some code to sort some num bers into ascending order, b u t used "<" 

instead  of ">" so th a t their program  sorted into descending order. 

Their code would be a  perfectly valid solution to a  different problem 

from the one they were trying to solve. Note tha t so far as an  autom atic 

debugging system  is concerned there is no difference betw een the 

case where th is  happened because of w hat Youngs term s a clerical 

error, and the  case where th is happened because the program m er 

m isunderstood the effect of the particu lar sorting p lan  being used.
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Miller and Goldstein’s semantic and pragmatic bugs both fall into this 

category.

On the other hand, if the programmer's high-level plan does no t 

in  fact solve the problem, there are again several ways in which errors 

can m anifest themselves:

Type 3. These errors also m anifest them selves as in ternal 

in co n sis ten c ies  in the  program . The program m er is  try ing  to 

implement her design (even though it won't tu rn  out to be the solution 

to the problem) and has made similar kinds of errors to those of type 

1. Thus the design contains a theory bug, b u t Type 1 procedure bugs 

have also been made. An example might be if the program m er has 

decided th a t one way of accu ra te lv  calculating the square root of a  

num ber x is to find the largest integer whose square is less than  x, and 

the sm allest integer whose square is bigger than  x, and then  do linear 

interpolation. This clearly is not a  correct plan for com puting square 

roots. Now suppose the programmer goes on to im plem ent their plan, 

b u t m akes an  error in the code which looks for the two appropriate 

integers, which m anifests itself as an  inconsistency between various 

sub  p arts  of th is code. This is sim ilar to a  type 1 bug, b u t even if 

co rrected  th e  program  would still no t be correct so far a s  the  

program m er was concerned. In fact the corrected progreim would now 

contain a  type 5 bug (see below).

Type 4. These errors are sim ilar to those of type 2. The 

program m er has inadvertently managed to implement a  different plan 

from the one intended. In this case the design contains a  theory bug, 

b u t Type 2 procedure bugs have also been made.

Type 5. This corresponds to the case where program m ers 

actually implement their proposed (faulty) solution correctly. In such  a
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program  all parts  of the program do exactly w hat the program m er 

expects, b u t still does not solve the problem. This corresponds to a  

pure theory bug in Goldstein's terminology.

Notice th a t these error types are in increasing order of difficulty 

so far as locating and correcting them  is concerned. Type 1 and type 3 

errors are in some sense errors whatever the purpose of the program. 

Because of th is it seems reasonable to try and a t least locate these 

types of errors completely autom atically. If it is assum ed  th a t the 

programs being debugged are not by complete novices, then  it is likely 

th a t the program will be a  reasonable attem pt a t an  im plem entation of 

the program m er's intentions, and hence if a  program  contains only 

type 1 errors then  it can quite possibly be debugged into a  correct 

program  automatically. At worst autom atic debugging m ay tu rn  the 

program into one with a  type 2 error (which may or m ay not have been 

there initially). Programs with type 2 errors can  be debugged by 

in teracting  w ith the programmer. This is because the program m er 

knows the intended high-level plan and hence fehould be able to give 

information about w hat various parts  of the program should be doing. 

In contrast, although type 3 errors can also be autom atically detected, 

removal will leave a  program with type 4 or type 5 errors. Again the 

type 4 errors m ay be "corrected " by interacting with the programmer, 

b u t only to a  program with a  type 5 error. Type 5 errors can be very 

hard  to fix, even for skilled programmers. This is because the program 

will not do w hat it is supposed to, in the sense th a t it doesn 't solve the 

original problem, bu t all parts of the program do w hat the programmer 

expects since the program is a correct im plem entation of the design. 

Essentially fixing this type of bug can involve a complete redesign of all 

or part of the program.
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1.3 Sources of Knowledge for Program Understanding and Debugging.

In order to debug a com puter program it is necessary to develop 

an  understanding  of the progreim and to use th is understand ing  to 

p in p oin t the p laces w here w h at the program actually does differs from 

w hat one would expect knowing the purpose of the program . It is 

helpful to th ink  of an  intelligent debugging system  as an  experienced 

programmer whose advice may be sought when one is faced with a  bug 

one does no t understand  in a  program. Such an  expert program m er 

will use several techniques and sources of information to help h im /h er 

understand and debug the program, These include the following:

(1) p lan  r e c o g n itio n  - th is  is the  techn ique w here by 

recognising the form of all or part of a  program one can recognise w hat 

it does i.e. th is is "programming cliche" recognition,

(2) symbolic evaluation of, and general reasoning about, a p iece 

of code - th is involves actually analysing code to see w hat it does, and 

arriving a t a  description (either formal or informal) of its effects. This 

technique is often used on novel code i.e. code th a t does not fit any 

cliche known to the program m er. This situation  can occur for two 

reasons - either the program writer has thought of a  new technique 

(relative to the techniques captured  by the cliches known to the 

debugging programmer) to achieve some standard  operation, or they 

are im plem enting code corresponding to no know n operation b u t 

which is essential to achieve some precondition of the code which 

follows. In the first case, the  debugger can  com pare the  effect 

description she has bu ilt up  of the code with the effects of known 

plans. If these are equivalent then  effectively the debugger can trea t 

the code as if a  known plan had been used in the code instead of the 

u n usua l code. In this case th is can then  feed into the process of plan
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recognition in the code. The second case is more problem atical, in 

th a t the only description of the unusucd code is the re su lt of the 

symbolic evaluation. In this case the best th a t can be done is to try and 

show  th a t  th e  effect descrip tion  does indeed  ach ieve som e 

precondition of tlie plaji(s) it feeds into, iii which case the role of this 

code in the program has been established. This will alm ost certainly 

involve some kind of general reasoning. Indeed, even in the case where 

two cliches (one of which feeds into the other) have been recognised, 

b u t which do not jointly constitute a  ‘higher-level’ cliche, then  again 

some kind of general reasoning will be necessary to show consistency, 

and establish the roles, of the two plans.

(3) reasoning backwards from the m anifestation of an  error to 

its  source.

In applying these techniques the program m ing expert will use 

information from the following sources:

(i) interaction with the program's author*

(ii) meaningful variable names.

(iii) comments in the program.

(iv) program segmentation into functions and procedures.

(v) data  input to and output from the program.

(vi) run-tim e error messages.

(vii) trace output.

Plan recognition and symbolic evaluation are used by the expert 

to gain an  understanding of the program. This m eans th a t s /h e  would 

then  be able to:
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(a) describe the program in term s of some high-level plan of 

which the program is an  implementation.

(b) describe how the various p a r ts  of th e  program  are  

im plem entations of sub -p lan s.

(c) describe how these sub-plans interact to achieve the overall 

goal(plan) of the program.

Conversely if a  programmer can do these three things one would 

then  say s /h e  has an  understanding of the program, and it is in  th is 

sense that the term  "understanding" will be used from now on.

It is clear from th is  definition th a t  the  p rocess of p lan  

recognition is really the key to program understanding. Now, when an  

expert looks a t a  piece of code which, say, sorts a  se t of num bers, s /h e  

does not a t random  try plans s /h e  knows until one is found which fits. 

The process of plan recognition is clearly guided by clues, and  these 

clues come from item s (i) to (iv) in the above* list of of sources of 

inform ation used by expert programmers. In particu lar th ings like the 

use of a  procedure nam e "sort" should suggest th a t as a  first attem pt 

one should look a t all the methods one knows for sorting. Obviously, 

program  com m ents, information supplied by the program  w riter as 

answ ers to questions about the program, and the way the program is 

segm ented can all provide useful information to guide the process of 

plan recognition.

However it is possible th a t some pieces of code m ight not m atch 

any plans known to the expert. In th is case the expert would alm ost 

certainly try  a  process of symbolic evaluation (probably described by 

the expert by some term such as "mental evaluation") to try and see 

w hat th a t piece of code does. It may then become apparen t th a t the
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piece of code does perform some known function, albeit in a  different 

fashion to previously encountered methods. One can then  say th a t the 

expert programmer has again recognised the plan for which th is code 

was an  implementation, the only difference being th a t th is  time the 

plan was recognised by reasoning about the code ra th e r th a n  ju s t  

m atching against a  library of previously known plans.

W hen debugging program s there are essentially two processes 

used by expert programmers. The first of these is really an  application 

of the process of program understanding described above. If, while 

attem pting to understand  the program, the expert finds examples of 

code which alm ost m atch known plans then  s /h e  has alm ost certainly 

located an error, particularly if this near-m atch occurs where there is 

some inconsistency in the use of known plans. In th is case edits can be 

suggested which would correct the plan. Alternatively a  piece of code 

m ay be recognised as the implementation of some plan  b u t th is plan 

does not achieve w hat the program's author says it should. In th is case 

code which implements the desired plan can possibly be suggested. At 

the  very least the  m ism atch can be pointed out. This debugging 

method can be used to locate errors of types 1 (and 3) in programs.

The o ther debugging m ethod uses the rem aining sources of 

inform ation available to the program m er i.e. the d a ta  in p u t to, and 

ou tpu t from, the program, system generated run-tim e error messages, 

and  trace  inform ation. The above debugging m ethod using  p lan  

recognition alone is really only used by program m ers on sm allish 

program s. W hen debugging larger and more complex program s the 

advice-giving expert will u se  the in p u t/o u tp iit  d a ta  and  trace  

inform ation together w ith inform ation from the  program 's au th o r 

an d /o r  the run-tim e error messages to locate the places in the code an 

error first becam e apparent. S /h e  would then  a ttem p t to "reason
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backwards" from th is place to the place in the code which originally 

caused the error. This "reasoning backwards" process is really one of 

isolating all and only th a t code which could have affected the place 

where the error became apparen t [Weiser 1982], and one can then  

reason about th is subsection of the code using all the techniques of 

plan recognition etc. E)xpert programmers will often assum e parts  of 

the code to be correct and reason about the re s t of the code using 

these assum ptions. Only if the error can't be found, or if some piece of 

evidence leads to a  contradiction will these p a rts  of the  code be 

examined in  detail. In addition certain run-tim e error m essages will 

suggest very specific errors to expert programmers, and they may well 

ju s t  search the code looking for a  very specific piece or type of code 

which their experience tells them  is often the cause of the particu lar 

run-tim e error in question.

In the long term  it is intended th a t IDS should tiy  to use all 

these techniques and sources of information in order to b y  and repair 

bugs of types 1 to 4 in programs. However, for the moment, effort has 

entirely been concentrated on the plan recognition process, as th is not 

only provides m uch of the machinery needed to apply other techniques 

as well, bu t also provides m uch of the information th a t other debugging 

techniques would need. Things like use of variable nam es etc. could 

provide useful inpu t to the plan recogniser to guide the search  for 

p lans, b u t th is  is really an  efficiency issue, although  of course 

inappropriate nam ing of variables and procedures could be considered 

a  type of bug if looked a t from a m aintenance point of view. Plan 

recognition  (com bined w ith  theorem  proving a n d /o r  sym bolic 

evaluation) really ju s t  gives one a  handle on type 1 (and type 3) bugs, 

and it is on these th a t the rest of th is thesis will concentrate. This 

approach should therefore perhaps be called intention-free debugging.
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and is based on the following assum ption (which will be referred to as 

the Normal Use Heuristic):

If a  programmer uses a standard plan in a  program then, as a  
first hypothesis, assum e they are using it deliberately in 
o rder to achieve the resu lts  of operations commonly 
im plem ented  by th a t  p lan , and  th a t  th e re fo re  the  
preconditions for these operations should be met.

This assum ption  is needed because, generally speaking, program s in

them selves are not inconsistent, or incorrect. Program s are only

incorrect with respect to the programm er’s in tentions, and if these

are  n o t available then  showing a program  to be incorrect is no t

possible. So, w ithout a  specification the best we can hope to do is to

find internal inconsistencies in the code (type 1 errors). Although it is

possible for a  program to be internally inconsistent in such  a  way th a t

sim ple reasoning about the source code m ight detect, th is  is not

generally the case. An example where this might be true is in the case

of a  program  which attem pts to take the square root of a  negative
*

n u m b er (in a  program m ing language w ithout com plex num bers). 

However, the program discussed in Chapter 9 w ith its pointer reversal 

bug, is no t inconsisten t in any direct sense. It will ru n , and will 

produce output, and conceivably could be w hat the program m er had 

in tended , especially if all we were shown w as its in p u t-o u tp u t 

behaviour. In order to find this bug by inspecting the code we need the 

Normal Use Heuristic, since it is only under this assum ption th a t we 

can  in general meaningfully say tha t plans and operations in a  program 

are  inconsisten t w ith each other. Note th a t if we include single 

operations as p lans in the above assum ption then  th is covers things 

like the above sqrt bug as well. Without this heuristic, plan recognition, 

even combined with a plan based theorem prover, would not in general 

be able to find type 1 bugs in programs, since all we would be able to 

deduce is th a t the programmer had used some standard  plans in a
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non-standard msinner for reasons best known to themselves. This is of 

course possible since the program m er might for example have been 

trying to see w hat error message the system gives when an  attem pt is 

m ade to take the square root of a  negative num ber, or they m ight 

deliberately  have w ritten som e non -term in atin g  p iece o f code in  order 

to te s t som ething ou t repeatedly, knowing full well th a t they would 

need to in terrup t the code externally (using <CTRL>-C say) in order to 

term inate it. It is not really reasonable to expect a  debugging system  to 

cope with th is type of (normally temporary) code, and we will assum e 

th a t the above assum ption is reasonable for code subm itted to IDS.
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Chapter 2.
Other Work on Program U n d erstan d in g  an d  D eb u ggin g

By now a  large num ber of systems have been proposed an d /o r  

built which perform program understanding a n d /o r  debugging. These 

system s vary greatly in the knowledge representation techniques th a t 

they use, their range of applicability, the languages they are intended 

for, the  type of user they are aimed at, and so on. This chapter will 

d iscuss these system s, paying particu lar atten tion  to the  following 

questions:

(1) Is the system  intended for use by novices or experts (or 
both)?

(2) How are programs represented internally by the system?

(3) How is programming knowledge represented?

(4) Does the system use general reasoning techniques such as a  
theorem prover or symbolic evaluation?

(5) How does the system locate errors?

(6) W hat strategies does the system use to repair errors once 
found?

(7) Does the system  make use of a  bug catalogue, or other 
library of common errors?

(8) W hat range of programs in the language a n d /o r  domain can 
the system cope with?

(9) W hat are the particu lar strengths and w eaknesses of the 
system ?

Having described all these systems we will then  be in a  position 

to draw some general conclusions about work on intelligent debugging 

and understcinding, and this will enable a proper evaluation of IDS’s 

approach. This will pave the way for showing (in Chapter 9) how some
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of these other system s’ capabilities could be reproduced in a  system 

using IDS’s approach, and w hat may need adding to it to duplicate 

those th a t can’t.

There are several mgdn dim ensions along w hich the system s 

described below can be classified. The first of these is essentially to do 

with generality i.e. w hat range of programs can the system  deal with? 

This issue is related to how m uch knowledge the system s have to have 

in advance about the problem th a t the program it is being asked to 

debug is supposed to solve. Some systems only work on a  very narrow 

range (two or three in some cases) of problems for which the system 

h as extremely detailed knowledge of possible solution strategies (e.g. 

R uth  [1973, 1976], Johnson[1986]). O ther system s only work for 

problem s for which the system already has an example solution (e.g. 

Adams and Laurent [1980], M urray [1986]). On the other hand  there 

are system s which attem pt to be more general. These essentially fall 

into three categories - those th a t require a  specification of some type 

to be subm itted along with the program (e.g. Üukey's [1978] system  

PUDSY, and  Goldstein’s [1974] system MYCROFT), those th a t simply 

take a  program  and attem pt to debug it as best they can (e.g. Wertz 

[1987], and IDS itself), and those th a t take a  program and an  example 

of its intended behaviour (an in p u t/o u tp u t pair) and then  attem pt to 

debug it (e.g. Shapiro’s [1982] Prolog debugger).

The next factor which can be used to differentiate these systems 

is to do with their use of plan recognition versus their use of general 

reasoning abilities (e.g. reasoning about the sem antics of program s 

using a  theorem prover, symbolic evaluation). Of the systems th a t work 

on known problems the two m ost successful fall a t opposite ends of 

th is division. PROUST [Johnson, 1986] uses p lan  recognition alone, 

while TALUS [Murray, 1986] uses theorem proving alone. As discussed
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below, both of these systems present problems with respect to trying 

to increase their domain of applicability. One of the contentions of this 

thesis is th a t in order to widen the range of program s to which a  

debugging system can be applied the system will need to use both of 

these techniques. Lukey’s system PUDSY [1978] was an  early attem pt 

to u se  bo th  approaches. However, because its  p lan  recognition 

technique was ra th e r sim plistic, it had  to fall back  on symbolic 

evaluation m uch of the time, and this rather limits a  system ’s ability (in 

particular to cope with larger programs due to problems of scaling).

The system s w hich m ake use  of theorem  proving/sym bolic 

evaluation can be subdivided into two further categories - those which 

try  to show th a t a  program  m eets a  specification (e.g. PUDSY, 

MYCROFT, and E isenstadt and Laubsch’s [1981] SOLO debugger), and 

those which attem pt to show equivalence of a  program  to a  standard  

reference program  (e.g. LAURA [Adams and  L aurent, 1980], and  

TALUS[Murray, 1986]).

The plan recognition based systems can also be subdivided into 

two categories - those which essenticdly use  top-down recognition 

(analysis by synthesis) (e.g. PROUST, Ruth’s system [1973]), and those 

w hich use bottom -up plan recognition (e.g. IDS itself. Wills’ system  

[1986, 1990], and PUDSY).

A nother aspec t of these  system s w hich can  be u sed  to 

differentiate them is in the techniques they use for suggesting repairs 

to programs. In particular, do they use general techniques, or do they 

look for specific errors, and make use of “canned repairs” via the use 

of a  “bug library”.
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2.1 MYCROFT

One of the earliest attem pts at a  debugging system  was th a t of 

Goldstein [1974]. This system, MYCROFT, w as aim ed a t debugging 

simple LOGO programs which drew pictures. Tlie inpu t to tlie system  

consisted of a  program and a  detailed description of the picture it was 

supposed to draw. MYCROFT generated a  description (plan) of w hat 

th e  program  actually  did, and  by com paring th is  w ith the in p u t 

descrip tion  of the desired picture, a ttem pted  to elim inate bugs. 

A lthough  an  in te re s tin g  p roposal MYCROFT w as never fully 

implemented, b u t it did a t least point the way for la ter work in th a t it 

a ttem p ted  to form ulate the debugging p rocess as  one of p lan  

recognition and repair.

2 .2  Riith’s Work

An early precursor of the work reported here is th a t of R uth 

[1974, 1976]. His system, implemented in LISP and CONNIVER, was 

capable of recognising simple program s as being im plem entations of 

ce rta in  algorithm s to perform  known ta sk s. As th is  system  w as 

intended for use by novices in a  teaching environm ent the problems 

the program s were supposed to solve were known in advance, and the 

teacher would supply details of common solutions and all their variants 

to  the  system . These would be expressed  in  a  very sim ple 

program m ing language containing assignm ents, conditionals, and 

loops, with num bers and arrays as the only data  types. These algorithm 

schem a can  be thought of as constitu ting a  p lan  library. S tuden t 

program s are translated  into the same simple language, and R uth’s 

system  would then  attem pt to m atch a  studen t's  program  against its 

in te rn ^  knowledge of possible solutions (PGMs). Before passing the 

studen t program through for full analysis a  pre-pass would be made to
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catch any “trivial” errors. These include such things as pàram eterless 

loops w ithout an  exit, use of uninitialised variables, and irrational code 

such  as assignments to a  variable followed by another assignm ent to the 

sam e variable before the first value has been used, or unreachable code. 

These are not repaired, merely reported. Once a  program  passes th is 

initial phase, the m ain analysis uses a  process of "reverse synthesis". 

This process is analogous to th a t of a  parser in a  compiler, which 

recognises programs as syntactically valid. In this case possible parses 

are attem pted in a  top-down best-first fashion. The system attem pts to 

m atch  a  program  against the PGMs, a t any stage the  PGM which 

m atches best being chosen as the candidate for further matching. Each 

PGM consists of an  ordered list of actions (assignments, conditionals, 

or loops) which the studen t program  should perform. In order to 

capture the possible variability in the way each of these actions could 

be implemented, R uth’s system makes use of symbolic evaluation, non- 

h near program ming techniques, and program transform ations in its 

m atching process. For example, if the PGM contains a  sequence of 

assignm ent statem ents, these are symbolically evaluated to give an  

expression E for the value of each of the variables. If the s tu d en t’s 

program  also contains a  sequence of eissignments a t th is point, these 

too are symbolically evaluated to give an  expression E'. After m aking 

appropriate substitutions for variables in E of variables th a t occur in E', 

the expression E-E' is then  passed over to the MACSYMA system  for 

simplification. If it simplifies to zero the expressions are equivalent so 

the m atch is successful. To match conditionals the system first tries to 

m atch the tests in the two conditionals. Since these are all of the form 

expl<exp2j or expl=exp2, etc. and the system  has the resu lts of the 

symbolic evaluation for the variables prior to the test being carried out, 

the system  uses nonlinear programming to determine if the tests  are 

equivalent or not. This is not as general as a  theorem prover, so won’t
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always work, b u t is easier and faster. In m atching loops, the m atcher 

h as  knowledge of various program transform ations th a t preserve the 

functionality of loops, and can use these while attem pting to m atch. 

Failures to m atch are then taken as indications of errors, which can be 

of two m ain types - recoverable errors, and non-recoverable errors. 

Non-recoverable errors are taken  as a sign th a t m atching  aga inst 

ano ther PGM should be resumed. Recoverable errors are those th a t the 

repair of which would not necessitate major chginges to the source 

code. In th is case, a  note is made of the error, and the  m atching 

process continues as if the error had not been found. At the end of this 

process the PGM which matched with the least errors (or the least 
se rio u s  errors) is trea ted  as rep resen tin g  th e  p ro g ram m er’s 

in ten tions, and a report is issued spelling out w hat algorithm  the 

system  th inks the studen t was attempting, w hat the errors were, and 

how they can be repaired. However, it should be stressed  th a t R uth 's 

system  w as by no m eans general purpose - it h a s  to know which 

problem  the s tu d en t is working on in  order to narrow  down the 

num ber of applicable PGMs. Apart from th is R uth’s system  suffered 

from m any other limitations. Some of these are related to the poverty 

of the programming language used. More serious though is the linear 

n a tu re  of the PGMs. At their top-level they consist of a  sequence of 

actions to be carried out. The system is not capable of realising th a t the 

order of m any of these is often unim portant (an exception is in the 

case of a  sequence of assignments). The PGMs should be structu red  

more as a  partia l ordering. Furtherm ore, to be a  general program  

understanding system, there would have to be more information about . 

the commonalities between various algorithms, not simply information 
about the commonalities between variants of algorithms for performing 

the  sam e task . The system  would also need to know abou t d a ta  

structuring  techniques and so on. If PGMs had these extra capabilities
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they would probably be m uch more like the plan diagram  formalism 

used by IDS, and in th is sense Ruth’s system can be seen as an early 

attem pt a t a  system rather like IDS.

2.3  LAURA

Another system aimed a t debugging studen t program s is LAURA,

w ritten  by Adam and Laurent [1980]. Their system  for debugging

simple FORTRAN programs is in some ways similar to R uth 's system in

th a t again the problem s th a t will be presen ted  to the system  are

known in advance. However, rather than  having someone (the teacher)

attem pt to provide details of all known solutions (and their variants)

for each task  as in Ruth's system, LAURA ju s t requires a  single correct

program for each task. This is then represented internally by m eans of

an  annotated  control flow graph. The inpu t s tu d en t program  is also

re p re se n te d  in  th is  form. It th e n  ap p lies  v a rio u s  p rogram

transform ation  techniques to either or both  of these graphs in  an

attem pt to recognise the student's program as functionally equivalent
»

to the known correct solution. Should the system  find th a t it cannot 

transform  the two graphs into each other it then  used the m ism atches 

to point out errors. This system too performed reasonably well on a  few 

lim ited exam ples. However, control flow g rap h s  are no t really 

expressive enough to make reasoning about programs, and recognising 

plans easy. As a  result, their system was more like a system for proving 

program  equivalence, than  like one which attem pts to understand  the 

program  in the sense described in Chapter 1.

2 .4  PROUST

. Of more immediate concern to th is project is the work of the 

Cognition and Programming Project group a t Yale University [Ehrlich 

and Soloway 1982, Soloway, Bonar, Woolf, Barth, Rubin, and Ehrlich
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1981, Soloway, Ehrlich, and Bonar 1982, Soloway, Bonar, Ehrlich, and 

G reenspan 1982, Soloway et al. 1982, Johnson  1986]. This group is 

also attem pting to create a  debugging system  for Pascal programs, and 

like the system s discussed above is aimed a t novice program m ers. 

M uch of the ir work is done from the poin t of view of cognitive 

psychology since they are in terested in finding o u t exactly w hat 

knowledge and understanding expert program m ers have th a t novices 

don't. They are also building into the system a  cognitive model of the 

s tu d e n t so th a t  helpful advice pin-pointing exactly the  s tu d en t's  

m isconceptions can  be given. The knowledge of th e ir  system  is 

represented  internally  in a  frame-like formalism (similar to th a t in 

[Goldstein and Roberts 1977]) orientated very specifically tow ards 

Pascal. Their system  PROUST [Johnson 1986], (and its predecessor 

MENO-Il) had a  large am ount of problem-specific knowledge enabling 

it to perform reasonably on programs for a  few very specific problems. 

This knowledge is plan based, bu t the plans are expressed as program 

schem as (with extra information about preconditions, and about w hat 

goals the plan can be used to achieve), so the plan m atching process is 

e ssen tia lly  one of m atch ing  ag a in s t th e  so u rce  code. T his 

representation of plans has three m ain drawbacks:

(i) It makes it difficult to apply to languages other than  Pascal, 

since all the plans would need to translated. This translation may well 

prove difficult since m uch Pascal specific knowledge is embedded in 

them .

(ii) It makes it hard to verify p lans as reasoning about code 

fragm ents Is hard, especially as no attem pt h as  been m ade to. really 

give a  semeintics to the representation. Of course th is could be done, 

b u t would require a  lot of extra m aehinery (perhaps borrowing from 

one or more of the existing m ethods of describing the sem antics of
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program m ing languages e.g. denotational sem antics, or operational 

sem antics).

(iii) It makes it hard to reason about novel parts of the code 

th a t do hot m atch known plans. Of course, if the plans were given a  

sem antics as ju s t  suggested, then whatever underlying program m ing 

language sem antics one had used could also be used to reason about 

novel pieces of code. In this case the PROUST approach would tu rn  

in to  som ething ra th e r like a  language specific version of the  p lan  

calculus.

(iv) The approach Is prone to w hat Wills [1991] calls the  

‘syntactic variability’ problem. This is that, once programs s ta rt getting 

more com plicated, there are often a  very large num ber of ways in 

which the syntax of the language will allow the programmer to express 

a  com putation. Some of the differences are very superficial e.g. use of 

different variable nam es, differing order of statem ents in cases w hen 

the  order does not m atter, breaking up expressions into sequences of 

assignm ents, and so on. However, when combined, these superficial 

differences can make it very hard for a  system based on code tem plate 

m atch ing  to actually  find appropriate m atches. The so lu tion  in  

PROUST is to have large num bers of tem plates th a t attem pt to capture 

all the likely variants. This is only really possible by limiting the system 

to a  few smallish problems.

Because of the lack of sem antics of PROUSTs represen tation  

m ethods, it is not really possible for it to recognise inconsistencies in 

cirbitrary programs. Instead, the system has to know in advance w hat 

goals have to be achieved by the program (eind how these goals in ter

relate), and can then  check th a t the program contains p lans which 

achieve all these goals. If a  program fails to contain a  plan to achieve 

some goal then  a  bug has been found. In order to give debugging advice



32

PROUST then  m akes use of a  very large bug library. This contains 

commonly occurring buggy versions of plans, also expressed in  the 

sam e code tem plate form. If any of these occur in a  buggy program, 

then  very specific debugging advice (stored with the bug ru les in the 

library) can  be given. This ap p roach  enables PROUST to give 

astonishingly pertinent advice even for some of the tru ly  bizarre errors 

th a t novice programmers make. However the price paid is high - the 

bug catalogue is very large. E)ven though PROUST can only deal really 

effectively w ith one simple programming problem (involving not m uch 

more than  computing the average of the non-negative num bers read in 

from a  file or terminal), and ra ther less effectively on a  few other 

simple problems), the PROUST group have catalogued som ething like 

800 different bugs tha t novices make [Johnson et al. 1983, Johnson  

and Soloway 1985]. This explosion of bug types, and hence in the size 

of the bug library, make it seem unlikely th a t th is  approach can  be 

extended to m uch larger and more complex program s, let alone 

arb itrary  program s. So, although PROUST is ex^em ely successful a t 

tu to rin g  s tu d en ts  on the  few problem s for w hich it h a s  a  goal 

description, and for which it has both the relevant plans and bug rules, 

it seems unlikely this can be m uch extended as it stands. Furtherm ore, 

as  yet their system  cannot cope with programs involving such things as 

procedures, or pointer variables, and in order to cope w ith these it 

would need a  m uch richer plan representation m ethod allowing both 

for the fact th a t p lans could be split between procedures, and  for 

reasoning about complex, more abstract, data types.

2.5  PUDSY

Lukey's system  PUDSY [Lukey 1978] also aims to debug Pascal 

program s. Like IDS, PUDSY attem pts to combine plan recognition and 

symbolic evaluation as integrated tools for program  understanding .
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PUDSY attem pted to use clues such  as meaningful variable nam es to 

help it understand  programs, and also used "irrational code" (e.g. an  

assignm ent overwriting the result of a  previous assignm ent before the 

value of the first assignm ent has been used) as an  indication of bugs in 

a  program. Plan recognition in PUDSY is achieved using a  variant of the 

program schem ata idea, b u t as this idea is not nearly as powerful as the 

surface plan formalism discussed in Chapter 3, and suffers from m any 

of the same lim itations as PROUST, th is does not lead to such  a rich 

hierarchical description of the program. Because of th is lack of power 

and  generality  in PUDSY's rep resen ta tio n a l m ethods th e  m ain  

technique used by PUDSY is th a t of symbolic evaluation of the source 

code. However symbolic evaluation is not really powerful enough on its 

own to provide the basis of a  program understanding system  and 

accordingly PUDSY can only deal with relatively simple program s e.g. 

simple sorting progreims Finally it should be noted tha t, unlike IDS, 

PUDSY required  a  formal specification of w hat the program  or 

procedure was supposed to do. This specification was included a t the 

s ta rt of the program.

2 .6  Eisenstadt et al.'s SOLO Debugger

The debugging system  of E isenstad t e t al. (E isenstad t and 

Laubsch 1981, E isenstadt, Laubsch, and Kahney 1981] is eiimed at 

novices, th is time in the context of teaching A1 programming using the 

language SOLO to psychologists. They also rely heavily on the plan 

diagram  concept, and also use symbolic evaluation as a  useful tool in 

program  understanding . However their system  is again not general 

purpose because they know in advance w hat problems the students wUl 

be tackling. Additionally the language SOLO is very im poverished 

(deliberately so, as they are interested in teaching very basic ideas of 

programming to essentially non technical students). Accordingly they
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can use a generalisation of Ruth's technique to understand  programs. 

The teacher supplies an "effect description " of the desired program. By 

symbolic evaluation an  effect description is obtained for the studen t's  

program . The system  then  attem pts to m atch  these  two effect 

descriptions. However it m ust be stressed th a t again the teacher has to 

supply knowledge of all likely methods of solution to the system.

2.7 rrsY

D om ingue's system  [1987] ITSY aimed to tu to r  novice LISP 

program m ers. Like IDS, it too was based  on the p lan  diagram  

formalism, but, because ITSY did not have a  general plan recognition 

m odule, it did not try  to understand  program s as described earlier. 

Instead  it had  a  library of “error clichés”, expressed in  the  sam e 

surface plan  formalism, and attem pted to find occurrences of these 

stereotypical errors in programs by matching against the surface plan 

for the program. An occurrence of one of these was then  used by the 

system  to guide the tutoring of the student. So m uch of the work in 

ITSY w as really concerned with analysing the kinds of errors th a t 

novices make in simple LISP programs, and with devising appropriate 

tu toring strategies. In this sense it actually has more in common with 

PROUST (although it did not have the same detailed hierarchy of plans 

and  sub-goals) despite the fact th a t it used the plan diagram concept. 

However the  idea th a t novices make errors w hich are them selves 

clichés, and  th a t  these can be expressed in  th e  p lan  diagram  

formalism, is one which may well need to be incorporated into IDS 

were it  to be used as the basis of a  tutoring system for novices.

2.8AURAC

Hasemer’s system AURAC was also aimed a t tutoring novice SOLO 

program m ers. It too had a  library of clichés, stored as tem plate
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patterns  corresponding to SOLO source code (independent of the 

variable nam es chosen by the programmer) representing such  things 

as correctly formed switches, conditionals, and loops. In a  later version 

of the system  there were also some algorithmic clichés for specific 

tasks. No attem pt was made to translate the programs into some other 

representation. This approach worked for AURAC because the tasks 

the s tu d en t programs were trying to perform were relatively simple, 

enabling the  system  to have a  library of m ost of the clichés the 

studen ts  would need. Clichés could be recognised even when spread 

over large num bers of program  segm ents, and  AURAC also had  a 

system  of “expecta tions” and  “sa tis fac tio n s” w hich  w ere ta sk  

independent, b u t ensured th a t no unexpected changes were m ade to 

the SOLO database. Being so language specific, it is hard  to see how 

th is  approach  could be extended to richer languages and  more 

complex problems, b u t it does represent an  early attem pt to perform 

the same task  as IDS i.e. debug programs with little or no knowledge of 

their purpose.

2 .9  TALUS

TALUS [Murray 1986] is a  debugging system  for s tu d en t LISP 

program s, and  as such  it is one of the  m ost successfu l, fully 

implemented system s to date. It had information about the tasks the 

studen ts had been set, this time in the form of a  correct program. It 

used symbolic evaluation and a theorem prover to try and show th a t its 

stored program was equivalent to the one the studen t had submitted. It 

represen ted  program m ing knowledge (i.e. com mon solutions) in  a 

frame-like formalism. TALUS used program transform ation techniques 

to simplify the student program, and if the student program failed on a 

pre-stored se t of example inpu t-ou tpu t pairs, or if it could not be 

proved to be equivalent to the stored solution program  then  an  error
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w as assum ed to be present. In th is case the stored, correct program  

was transform ed until it m atched the studen t program  as closely as 

possible, and then  this closely m atching version was used  to suggest 

repairs to the studen t program. Because TALUS utilised a  very general 

technique it was quite successful on a  large variety of problems (18 in 

all), b u t it could no t cope w ith global (free) variables in function 

definitions, or w ith operations w ith side-effects (except in  special 

cases). However, despite its claims not to use any plan m atching, in 

essence TALUS used a  very simple form of plan identification, before 

sta rting  on the process ju s t  described. This p lan  identification was 

essentially based on extracting a  few features from the program  being 

analysed (e.g. recursion type), and these features were then  compared 

against the features stored against the known solutions. How well the 

fea tu res m atched was then  used  to identify w hich of the  known 

problem s/possible solutions the student program was m ost likely to be 

an  a ttem pt at. Because th is feature m atching is quite im poverished 

(like m ost p a tte rn  recognition work based on feature matching), the 

system  could get confused. This resulted in TALUS having its  own 

version of error clichés for some problems. These were “so lu tions” 

th a t M urray found studen ts  came up  w ith quite often for certain  

problem s (in particular when they had mis interpreted the problem).

2 .10  PHAENARETE

W ertz’s [1987] PHAENARETE system  is a  general purpose 

debugging system , w ritten in LISP. It aim s to debug novice LISP 

program s w ithou t any program  specification, and  w ith no prior 

knowledge of the task  the programs subm itted to it are supposed to 

perform, and  m akes no use of com ments or of user-defined variable 

nam es. It w orks directly on the program  text, using  as its m ain 

technique a  syntax checker (including a  powerful spelling corrector)
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and a  variant of symbolic execution which Wertz calls meta-evaluation. 

PHAENARETE rep resen ts  its knowledge of program m ing in  th ree  

form s, corresponding to th ree different types of knowledge. Its 

knowledge of syntax is held in the form of procedural specialists. 

There is one procedural specialist for each built in function of the LISP 

the system  is aimed at. Each specialist contains inform ation on the 

num ber of argum ents the function takes, and on the types of the 

argum ents. Its knowledge of w hat constitutes “good form" in program s 

(e.g. a  recursive procedure should contain a t least one control flow 

p a th  through it which is not recursive, and th a t th is should in general 

precede any recursive calls) is held as a  se t of procedural pragmatic 

rules. Its knowledge about the program being analysed (built up  as the 

analysis proceeds) is held as a  set of cognitiue atoms in  a  database, the 

se t of cognitive atom s essentially constitutes a  sem antic net [Quillian, 

1968] and stores inform ation about the variables and  th e ir in te r

re la tionsh ips, especially type inform ation. The stra tegy  u sed  by 

PHAENARETE is essentially one of iterative im provem ent. It m akes 

multiple passes over the program, making changes each time, until the 

resu ltin g  program  rem ains unchanged. The firs t p ass  essen tially  

invokes the spelling corrector, and checks the type and num ber of 

argum ents to each call of a  function (using the specialists). Where 

inconsistencies are found a call is made to a  corrector to modify the 

program. If the type of some argum ent is unknow n a  type consistent 

w ith  the relevant specialist is hypothesised. This firs t p a ss  can  

som etim es add th ings like a  m issing COND to the program  if the  

syntax suggests th a t this may have been intended. Subsequent passes 

essentially use the m eta-interpreter to propagate types and values of 

variables through the sem antic net checking for consistency. Where 

inconsistencies are found PHAENARETTE has h eu ris tics  (based on 

com m on erro rs  th a t  novice program m ers make) to modify the
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program . It can also use information from the m eta-in terp reter to 

check th a t variables which are involved in exit te s ts  from loops or 

re c u rs io n s  converge to the  exit value. W here th ey  do n o t 

PHAENARETE h as a  se t of heuristics to enable it to change the 

program  in  such  a  way th a t they do. In essence, PHAENARETE 

combines searching for error clichés with canned repairs. Many of its 

erro r clichés have m uch in common w ith the  bug  categorisation 

developed by Johnson  et al. [1983], making it quite a  useful system for 

novices. However, because PHAENARETE m akes no a ttem p t to 

understand  a  program in the way IDS or PROUST do, it cannot locate 

deep sem antic errors. It can find and repair syntax errors, can deal 

with such  things as uninitialised variables, unreachable code, and can 

find and repair simple cases of non-term ination, b u t unfortunately  

som etim es tu rn s  a  program  containing su ch  surface errors into 

program s with deep semantic errors. This is because it h as  no way of 

recognising th a t b its of code are actually near-m isses to higher level 

p lans, and hence cannot use this extra information to guide it in the 

repair process. All the examples discussed by Wertz [1987] are very 

small, and basically quite simple, so th a t often the strategy enables the 

system  to repair program s which s ta rt off in  an  extremely garbled 

sta te . However, because of the (quite likely) possibility  th a t  the 

program  will be turned into something correct (in the sense th a t it is 

syntactically correct, will run, and has “good form”), b u t which does 

not do w hat the programmer intended, it is quite hard  to imagine this 

system  being extended to cope with larger m ore complex examples 

w ithout the addition of some kind of plan library.

2.11 Elsom Cook s Lisp Debugger

Elsom-Cook’s [1984] Lisp debugger was also aimed a t tutoring 

novices. His system did not try to do plan recognition as such, b u t
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ra th e r concentrated on such  things as w hether or not the stu d en t 

understood the concepts of function application, recursion and so on. 

It tra n s la te d  p rogram s in to  its  own in te rn a l re p re se n ta tio n  

(corresponding to a  form of operational sem antics for the program), 

and  passed  the  re su lt th rough  to a special in te rp re te r for th is  

rep resen ta tion . Each primitive action in th is  rep resen ta tio n  had  

preconditions th a t had to be satisfied, and the interpreter would check 

th a t these held a t the time of execution. Violations would trigger a 

tu toring  session. M uch of Elsom-Cook’s work w as really devoted to 

tu toring strategies, although the attem pt to represen t program s in a 

syntax independent form with some sort of underlying sem antics has a 

certain  am ount in common with the work described here. However, 

h is representation was not nearly as rich as the plan calculus (it can 

perhaps be seen as equivalent to ju s t  the lOSpec p a rt of the plan 

calcu lus, d iscussed  in C hapter 3, restric ted  to sim ply the  basic 

m achine operations), and as a  resu lt can not really be envisaged as 

scaling up to deal w ith large complex program s where the errors 

involve abstracting  away from the underlying d a ta  s tru c tu re s  and 

operations to high-level operations on m uch more abstract data  types.

2 .1 2  The Programmer's ^ p r e n tic e  Project

The Program m er’s Apprentice Project [Rich and Schrobe 1978, 

Rich 1981, W aters 1978, 1979, 1982] is really the project which has 

provided the inspiration for, and the basic underlying theory for, the 

work described in th is thesis. However, d iscussion  of the relevant 

p arts  of this project will be given where appropriate in the rest of this 

thesis, and so will not be repeated here. In particular, m ost of Chapter 

3 is devoted to an  account of the surface p lan /p lan  calculus knowledge 

representation technique developed by the above researchers.
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2.13 SNIFFER

There have been several other debugging system s which have 

attem pted to use  the plan diagram formalism as their basis, m ost of 

which have been ham pered by the lack of a  general plan recogniser. 

Some of these have been m entioned above. One of the first such  

system s was Shapiro 's [1978] SNIFFER system. SNIFFER had  three 

basic com ponents - a  primitive "cliché finder", a  "time rover" which 

recorded a  program 's execution history, and a set of "sniffers" each of 

w hich was essentially an  expert' on a  particu lar type of bug. Each 

sniffer utilised inform ation from the time rover and from the cliché 

finder. However. Shapiro concluded th a t plan diagram s could not be 

fully effective for debugging programs until a  full plan recogniser was 

available which could cope with such things as p lans being spread out 

over more th an  one program segment. It would be interesting to re 

attem pt SNIFFER’S approach using the work described in th is thesis as 

the  cliché finder.

2 .1 4  Shapiro's Prolog Debugger

Shapiro’s [1982] system  (or ra ther collection of algorithms!) is 

ra th e r different to the system s already described. For a  s ta rt it does 

no t try  to recognise plans, or derive symbolic descriptions of the code, 

b u t instead relies on examining in detail the actual execution of the 

program  on a  specific in p u t/o u tp u t example which is known to be 

incorrect. In essence it is a  sophisticated version of the well-known 

“fence-posting” technique th a t programmers use when trying to debug 

program s This technique involves examining ou tpu t from the program 

“betw een” places where the program  was known to be functioning 

correctly, and a  place where it is known to be wrong. Initially these 

two places are often the beginning and end of the program. If the
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program  is functioning correctiy a t the place ju s t  exam ined, then  

ou tpu t is examined between there and the place where it is incorrect. 

This process is continued until the place responsible for the incorrect 

behaviour is found. Shapiro’s algorithms are only directly applicable to 

logic program m ing languages (in particu lar Prolog), and  so are no t 

directly of in terest to this project, although Renner] 1982] h a s  done 

some prelim inary work on trying to extend th is  approach to o ther 

languages.

Once the error has been located (in a  specific clause of a  Prolog 

program ), S hap iro ’s algorithm s th en  have a  variety  of h eu ris tic  

techniques for repairing the clause in such a  way th a t it will now give 

the  correct behaviour on the buggy example, and also on ^  other 

examples of in p u t/o u tp u t behaviour th a t it has previously seen, and 

been told are correct. These heuristics are guaranteed to eventually 

give a  correct program  if the system  sees enough in p u t/o u tp u t  

examples. Although interesting, th is approach does no t seem  to be 

applicable to anything more th an  small simple program s, since the 

user is unlikely to be able to provide the correct value for some variable 

if th is  m ay involve hundreds or th o u san d s of elem ents in  some 

complicated data  structure.

Interestingly, th is system is not confined to program  debugging. 

It can also be used for inductive program synthesis. By presenting the 

system  with examples (input/ou tput pairs) of the desired behaviour of 

the program  it is able to synthesise a program th a t will work correctly 

a t least on all the examples it has seen so far, and which is guaranteed 

to converge on the desired program after enough examples have been 

seen. The technique used by the system  is to s ta r t w ith an  em pty 

program  (one w ith no clauses), and then  to debug it. As each new 

example is presented the program as it stands is either left unchanged
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if the program works on th is new example, or is debugged into one 

th a t will work on this example in addition to earlier ones.

2.15 Summary and Conclusions

M urray [1986] m akes a  very strong case in favour of h is program  

verification approach to program  debugging, while Jo h n so n  [1986] 

argues equally strongly for plan based program debugging. How can 

th ese  two viewpoints be reconciled? The an sw er is th a t  bo th  

techniques will be needed in a  debugging system which is intended to 

be general purpose. Rich’s] 1981] plan calculus is the only currently  

available knowledge rep resen ta tion  techn ique w hich  offers the  

potential ability to move smoothly between both  techniques. Both 

PROUST and TALUS are used (or are intended for use) solely in a 

tutoring environment. In this case the systems have available to them  a 

se t of possible solutions against which to check the s tu d en t’s program. 

So in the case of PROUST the system  can check th a t the s tu d en t’s 

program  contains the plans to achieve the sam e goals as the target 

program , while TALUS can try  to prove equivalence of the s tu d en t 

program  to the target program. However, in a  situation  where a  target 

program  is not available, the TALUS approach reduces to program  

verification which is extremely hard  and com binatorially explosive, 

even assum ing th a t a  formal specification is available. The problem with 

a  pure plan based approach is th a t apart from the basic plans needed, 

one also  needs an enorm ous num ber (probably com binatorially  

explosive!) of p lans or program  transform ations to cap tu re  m inor 

im plem entation variants of the same algorithm. The theorem  proving 

approach can get round this because of its generality- these variants 

can often quite easily be proved equivalent to some standard  reference 

plan. Working within the plan calculus framework we can get the best 

of bo th  worlds. First of all, we don’t necessarily need to know the
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problem in order to try and understand the program since bottom  up 

plan recognition can lead to an understanding of m uch of the program. 

Furtherm ore, as discussed in Chapter 5, th is plan recognition can  be 

viewed as an  efficient form of theorem  proving. Additionally we can 

always call on a  theorem prover to deal with those parts  of the program 

th a t do not exactly m atch known plans. Additionally, it tu rn s ou t th a t 

the near-m isses found by the plan recognition process can be regarded 

as  failed attem pts to prove some theorem, for which the steps in the 

proof have been conveniently grouped together. The missing p a rts  of 

the  near-m iss can  be regarded as telling u s  how the theorem failed to 

be proved. Near-miss correction as proposed in th is thesis can then  be 

viewed as very sim ilar in some sense to M urray’s technique of 

debugging a  program by repairing the proof of its equivalence to some 

reference function. The rest of this thesis will largely concentrate on 

the  theory and algorithm s for performing p lan  recognition w ithin the 

plan calculus.
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Chapter 3.

T he Plan C alcu lus

This chap ter will give an  account of the  p lan  ca lcu lus as 

developed by Rich [1981]. This is a  knowledge rep re sen ta tio n  

technique for program s and programming knowledge in  procedural 

languages with the advantages th a t it has both an  intuitive appeal and a 

rigourous axiomatic interpretation enabling sound formal reasoning to 

be applied. We will begin by giving an  in tuitive acco u n t of the 

rep resen ta tion , and  will then  p resen t its  form al sem an tics. The 

intuitive interpretation of the formalism defines program s and plans as 

control and d ata  flow graphs. This enables one to regard the  plan 

library as a  graph grammar, and the recognition process as a  parsing 

process, and  chap ters  5 and 7 will p resen t ou r g raph  p arsing  

algorithm  for doing this. It will also be shown how th is  apparently  

heuristic  approach corresponds to theorem  proving if we take the 

axiomatic view of the plans. This gives our graph recognition algorithm 

a  sound theoretical basis, unlike other systems which do some kind of 

heuristic plan recognition (e.g. Johnson  [1986]). It will also be shown 

how the formal account justifies some of the more intuitively based 

modifications (“hacks”) we have made to the parser, and we will also 

give an account of the algorithm we have used to make Rich’s notation 

for p lans “m achine-readable”. Other attempts to use Rich’s framework 
for program understanding [Wills, 1986,1990] use only a  subse t of his 

plan library, and the plans have been converted to graphs for parsing 

by h an d . O ur system can read the plans in their frame-like notation, 

and convert them  automatically to appropriate graph structu res. This 

conversion process will be described in Chapter 7, and in itself makes 

the plan calculus a  lot more usable.
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3.1 An Informal Account

3.1.1 Surface Plans

This project draws upon Rich’s [1981] work in th a t the program 

is represented not by its source code b u t by a  surface plan. This is 

essentially a  representation of the program in term s of its control and 

and d ata  flow. By representing th is graphically we can  th ink  of the 

surface plan as a  control and data flow graph. For example, Figure 3.1 

shows the surface plan corresponding to the piece of code below:

if  x<y then 
z:=x+y+l

else
z:=z-l;

In th is diagram control flow is represented by thick (bold) arrows and 

d a ta  flow is represented by ordinary (thin) arrows. Basic operations 

such  as applying a  binary function(@ blnfuiiction) are shown by boxes 

with the operation indicated inside, and with the relevant function and 

argum ents as  inputs to the box. The result is indicated as an  ou tpu t 

from the box. Tests, which determine which way control flow will go 

depending on the resu lt of applying a binary relation (@binrel) to two 

argum ents, or applying a  predicate (©predicate) to a  single argum ent, 

are  also shown as boxes, with the relevant rela tion  (e.g. ">" ) or 

predicate (e.g. “=nil”) indicated as the first input, and the appropriate 

argum ents as the other inputsk  The YE)S/NO subpartitions of a  test box 

indicate which way control flow will go depending on the resu lt of th a t 

test. D ata flow between two such boxes indicates th a t data  values

 ̂ Sometimes, when it is convenient, test boxes will be shown with the predicate or 
binary relation Indicated in the test box, thus reducing the apparent number of inputs, 
but this should be seen as merely "syntactic sugar" for the more precise representation.
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©blnrel
no I yes

@binfunction

@binfunction

no I yes 
join-output

Figure 3.1 A Simple Surface Plan



48

produced by one are used as inputs to the other. Control flow between 

two boxes indicates th a t the first box is to have its action performed 

before the action corresponding to the second box. We will often 

adopt the convention however, th a t control flows will no t be shown 

w hen they  are actually  implied by the d a ta  flows. One way of 

interpreting such boxes is to regard each box as being a  processor in 

its  own right. Such a  processor is "activated" when it h as  received 

inpu t on all its incoming data  flow arcs, and it h as  also received a 

"control flow token" on its incoming control flow arc if it h as  one. 

When it is activated it outputs suitable values on its ou tpu t d a ta  flow 

arcs and outputs a  control flow token on its ou tpu t control flow arc if it 

exists. These values and tokens then pass, along the arcs to activate 

o ther boxes. W here an  arc subdivides the  value on th e  arc  is 

transm itted  along all branches of the arc. Processors corresponding to 

tests  generate a control flow token on either the YES ou tpu t or the NO 

ou tpu t depending on the values of the inputs to the test and the actual 

te s t applied. Now the reason for applying tests to d a ta  is generally so 

th a t one can generate different values depending on the resu lt of the 

te s t and then  use these values later in the program. To enable later 

processors to make use of whichever values are actually generated after 

a  te st we need somehow to make all of these available as potential 

inputs to other processors. Thts is done using join-outputs boxes which 

reconnect the separate data  flows corresponding to divergent control 

flow routes a t tests.

Program segm ents are also indicated by boxes. However these 

boxes perform  a  m ore com plicated operation  th a n  basic  ones. 

Subsegm ent nesting is shown by nesting of boxes. Looping constructs
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have been transla ted  to a  recursive representation . For example, a 

w hile statem ent of the form

while condition do action;

will be interpreted as if it were ju s t a  procedure call

loop( )

where the procedure loop is defined by:

procedure loop( );
begin

if condition then  
begin

action; 
loop( );

end
end;

This h as  the advantage of removing cycles from the surface plan th u s 

m aking subsequent analysis easier. This kind of recursive subsegm ent 

nesting  is indicated in plan diagram s by a spiral line connecting the 

o u te r segm ent to its  inner recursive copy. An exam ple of th is  

representation of loops can be seen in Figure 3.2 corresponding to the 

code below:

sum:=0;
while not(eof) do 
begin

read(n);
sum:=sum+n;

end;

Labels corresponding to variable nam es in the original Pascal 

program  have been attached to the d ata  flow arcs as an  aid to 

understanding the diagram and in order to enable IDS to converse with 

users and suggest edits in term s of the variable nam es with which they 

are familiar.
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not eof file +  0 n

©function

©function

= true
no

read

©blnfunction

no I yes
Join-output

file sum n

Figure 3.2 Surface Plan for Simple Loop
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Such surface plans can then form the basis of a  hiersirchical 

system of representations of the program. To go from a  lower level 

to a  higher level in such a  hierarchy it is necessary to recognise some 

sub graph a t the lower level representation as performing some known 

function. The subgraph  can then  be replaced by a  segm ent quite 

explicitly rep resen ting  the function perform ed. In th is  way the  

program  is progressively represented  by h igher £uid h igher level 

segments, until a t the top level the program is represented by a  simple 

graph (possibly a  single segment) performing the overall function of 

the  program. Using th is and the technique of tem poral abstraction  

[Waters 1978, 1979, Rich 1981] which enables one to reason about a  

se t of sequentially generated items as a  single collection it will be 

shown in Chapter 8 th a t it is possible to recognise th a t the program  

shown on the next page reads num bers from the term inal (or a  file), 

so rts  them  into ascending order using a  list s tru c tu re , and  th en  

outpu ts the sorted set of numbers.

3.1.2 The Plan Libraiy.

In order to do the hierarchical recognition ju s t  described a  

library of commonly occurring programming cliches (whole algorithm s 

and even code fragments) is needed, stored in the same plan diagram  

formalism. This project has taken as the basis for its  lib raiy  th a t 

developed by Rich [1981], although it has added some new plans of its 

own. In principle such a  plan library can be used in two ways:

(i) To enable programmers to specify their code a t a  high level 

in  terms of plans in the libraiy, leaving the system to actually 
implement the code in the desired language, and

(ii) To analyse code written by a hum an programmer giving the 

system a high-level understanding of what the code does and how it
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program sort(input,output); 
type listelement = record

numb : integer; 
next : ' l̂istelement; 
end

plist = '̂ listelement; 
var head, p : plist; 

n:

procedure addtolist(n ; integer; t : plist);
var p : plist;
begin

new(p); 
p' .̂numb:=n; 
if t = nil then 

begin
p' .̂next := head; 
head:=p;

end
else

end;

begin
p' .̂next:=t' .̂next;
t' .̂next:=p;

end;

procedure findplace(n: integer; var p: plist); 
var t : ' l̂istelement; 

found: boolean;
begin

if head' .̂numb > n then 
p:=nil;

else
begin

p:=head; 
t:=p' .̂next; 
found:=false; 
while not found do

if t o  nil then

end;
end;

if t' .̂numb <= n then 
begin

p:=t;
t:=t' .̂next;

end
else found:=true 

else found:=tnie;

begin
head:=nil; 
vdiile not eof do 

begin
readln(n);
if headonil then findplace(n.p)
else p:=head;
addtolist(n.p);

end; 
p:=head; 
while p onil do 

begin
writeln(p'^.numb);
p:=p' .̂next;

end;
end.
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does it, in term s of w hat the overall goal of the code is, and which 

parts of the code achieve which sub-goals.

Although there has been some success a t the first of these goals 

[Waters 1982], the second has until recently been frustra ted  by the 

lack of a  suitable plan recogniser which could analyse plan diagrams 

into their constituent plans, although Brotsky [1984] has done some 

w ork on th is . This project h as  developed [Lutz 1986, 1989] a 

generalisation of traditional chart parsing techniques [Thompson and 

Ritchie 1984] which can perform th is recognition task , while Wills 

[1986, 1990] modified Brotsky's [1984] algorithm  so th a t it is now 

sim ilar in some ways to a  chart parser, although it does no t ru n  

bottom -up quite so naturally. Both Brotsky’s and Wills’ work' will be 

d iscussed  in  detail in  C hapter 7. More recently. Wills (personal 

communication 1992) has switched to an algorithm substantially  based 

on th a t described here and in [Lutz 1989].

In th e  p lan  lib rary  there  are several d ifferen t k inds of 

information. These are:

1. Definitions of primitive operations e.g. © fu n ction  which 

takes as input a  function and an  object in the domain of the function 

and applies the function to the object producing an  object in the range 

of the function. Similarly ©blnfunction takes a  binary function and two 

objects as in p u ts . In addition there are defin itions of common 

operations on various types of object e.g. set-add , a binary function 

taking a  set and an  object as inputs and producing a  new set (equal to 

the input set with the object added to it) as output. Another commonly 

used  operation is newarg, which takes as inpu t a  function and two 

objects. Its ou tput is another function equal to the input function in all 

ways except th a t its value when applied to the first of the two objects is
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equal to the  second of the two objects. A re la ted  operation  is 

#n ew arg (read  im pure newarg), which behaves exactly like newarg 

except th a t the ou tpu t function is specified to be the sa m e object as 

the input function i.e. they are the same object with different behaviour 

a t  different lim es , rather th a n  d ifferent o b jects . T h is  is  u se d  for 

representing things such as array updating, record field updating, list 

surgery and other operations th a t change objects by side-effect.

Each primitive operation has associated w ith it p reco n d itio n s 

and postconditions. Preconditions are conditions th a t m ust be satisfied 

by the inputs of an  operation for a  use of it to be valid. Postconditions 

are conditions satisfied by the outputs of an  operation given th a t its 

preconditions have been satisfied.
c «

2. D efinitions of prim itive objects (and th e ir  properties) 

know n to the  system  e.g. bu ilt-in  functions, p red icates, b inary  

functions and relations. An example is the binary function for addition, 

plus, with the definition specifying such things as type information for 

its inputs and outputs, the facts tha t it is associative and commutative, 

and th a t it has identity element 0, and so on. O ther functions specified 

here are such  things as car and edr (for Lisp), and plus-one (a function 

which increm ents an  integer by one).

3. D efinitions of prim itive d a ta  types e.g. in te g e r  and 

binfunction. Subtype information is also specified.

4. Tem poral p lans specifying a lgo rithm s or com m only 

occurring code fragments. Each such plan not only has control cind 

data  flow inform ation associated with it, b u t may also have additional 

constrciints specifying other relationships th a t  m u st hold between 

p arts  of the plan. Note th a t in general we will consider control flow 

constra in ts to be such  extra constraints on a plan considered as a
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p attern  of d a ta  flows. In th is way irrelevant control flow inform ation 

occurring in actual programs will be ignored, since the plans will only 

specify essential control flow constraints. A good example of a  temporal 

plan is trailing-generation-and-search, shown in Figure 3.3. This plan 

cap tures the data  flow pattern  common to code which searches d ata  

s tru c tu re s  for an  object satisfying some predicate, keeping track  of 

both the object it is currently examining, and also the previous object. 

An exam ple of su ch  (pseudo-) code is show n below (with the  

underlined code corresponding to the plan):

repea t
begin

c:=p^.next:

quitloop if pred(c) or c=nil 
p:=c:

end
endrepeat::

In th is  code the composite function ^.next corresponds to w hat we 

have labelled .action.op in the figure, p corresponds to .previous and c 

to the ou tp u t from the © fu n c tio n  node (labelled .curren t). The 

predicate .exit.if.criterion in the figure corresponds to the  exit te s t 

pred(...) in the code.

5. D ata plans specifying how compound data-objects are built 

up  out of more primitive ones. Typical examples of th is are plans such 

as iterator and labelled thread. An iterator consists of an  object, and a  

function whose domain and range are both equal to the type of the 

object. Such a  data  object can be used to generate an  entire sequence 

of objects, starting with the initial object, applying the function to it to 

get the second, applying the function to the second to get the third
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Figure 3 3 Trailing Generation and Search
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and  so on. This is a  rem arkably common construct in programming. 

For instance using the num ber 1 as the initial object and the function 

o n e-p lu s (which adds one to its argument) gives an itera tor which 

generates the natu ra l numbers. Alternatively, starting with a  list as the 

in itia l object and  the Lisp function cdr as the  function  le ts one 

generate successive tails of a  list as is so often done in program ming. 

The labelled thread data type also consists of two parts  - a  function, 

and another compound data type, a  thread. A thread consists of a  set of 

objects and a  second injective function mapping the set to itself. The 

se t should be thought of as a  set of nodes, and the second function as a  

successor function which takes a  node and re tu rns its successor! So a  

th r ea d  is really a  linesir graph-like structu re . The o ther function 

needed w ith the thread  to make a  labelled thread is the labelling 

function. Its domain is the set of nodes in the thread, and it produces 

values to be associated with each node. A typical example of a  labelled  

thread is a  Lisp list. The (pointers to) dotted pairs can be thought of as 

m aking up the set of nodes, the cdr function is the successor function, 

and  the car function gives us the value associated with each node. Again 

the  definitions of such data  types specify constra in ts th a t m u st be 

satisfied by the parts of the structure. These could be ju s t  simple type 

information, or could be more complex relationships e.g. th a t a  thread  

m u st n o t have a  cycle i.e. th a t there is no way one can get back to 

anywhere earlier in the thread by repeatedly applying the successor 

function.

6. D ata Overlays specifying how some d a ta  object m ay be 

viewed as an  implem entation of an  object of some other type. These 

specify how it is possible to view one type of data object as another. For 

instance, the data  overlay iterator->thread specifies th a t an  iterator can 

be regarded as a thread by treating the set of objects generated by the
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iterator as the set of nodes in the thread, and the function part of the 

ite ra to r as the successor function for the thread. This overlay and 

o thers like it, play a  crucial role in tem poral ab straction , which 

bridges the gap between temporal sequences of objects as produced by 

loops and iterators, and other non temporal d a ta  struc tu res such  as 

th re a d s , lists, and directed graphs(digraphs). In m any of the diagrams 

th a t  follow no distinction has been m ade betw een ite r a to r s  and 

threads, in th a t an  initial object and a  successor function have been 

grouped together as a  single object and treated as a  thread. This is 

purely to avoid having to show multiple levels of analysis in diagram s 

which are already complicated enough.

7. Temporal Overlays specifying how a  tem poral plan may be 

regarded as an  implementation of some operation. A good example of 

th is is the overlay trailiiig-generation-and-search->intemal-thread-find. 

This overlay captures the idea th a t the pattern  of code in tra ilin g-  

generation-and-search can be used to implement an  internal-thread- 

flind operation which given a  thread and a  predicate as input re tu rns 

the first node in the thread satisfying the predicate (it also returns the 

previous node). Now of course it should be noted th a t the tra iling-  

gen eration-and -search  plan makes no reference to threads. So the 

overlay has to specify which objects being inpu t to the searching plan 

can  be viewed as constituting a  thread, and in w hat way. This is shown 

in Figure 3.4, where the constraint underneath  the diagram  indicates 

th a t  the  .previous object and the .action.op function in p u t to . the 

trailing-generation-and-search  plan can be grouped together as an 

iterator which, when viewed as a thread using the iterator->thread  

overlay, forms the input to the intemal-thread-find operation.

Tem poral abstraction, m entioned above, was one of the m ost 

im portant notions introduced by Rich and Waters and subsequently
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fu rther developed by E isenstadt and Laubsch [1982]. As alluded to 

above, this enables one to view a series of data  objects com puted in  a  

temporal sequence (e.g. the values of a  variable as a  loop is executed) as 

a  single d a ta  object. This is similar to the point of view program m ers 

have when considering a  sequence of reads from a  file - they can 

sw itch between regarding the file as a  single stream -like object, or 

they can th ink  of the tem poral sequence of values produced by the 

reads. It is the form alisation of th is reasoning which enables the 

Program m er's Apprentice project to take a  really high level view of 

m any program s and to recognise the common p a tte rn  (e.g. filtered 

itera tion) beh ind  m any different program s and  im plem entation  

techniques.

There are several advantages to th is  m ethod of representing  

program s and  plans in term s of their control and d a ta  flow. These 

include:

a) The program representation is no longer dependent on tlie 

specific variable nam es chosen by the programmer. Therefore a t least 

one type of superficial variation between program s has been removed. 

It should be noted in th is connection th a t from a  theoretical point of 

view variables in a  programming language are ju s t  a  device for ensuring 

a  desired d a ta  flow - it is the data  flow th a t is im portant, not the 

variables.

b) Many (not all!) struc tu ra lly  different program s can  be 

represented by the sam e surface plan. Thus some other superficial 

differences between programs can be eliminated by th is technique. Of 

course it is no t possible for any represen tation  to be com pletely 

canonical with respect to program equivalence. If it were, we could use 

th e  rep resen ta tion  to solve the program  equivalence problem  (by
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translating  the program s into the representation, and then  checking 

th a t the  representations are the same) which is a  well-known non- 

decidable problem.

c) It is a  language independent representation. Therefore a  lot 

of the reasoning etc. applied to a program is applicable to programs in 

any language. There does, however, need to be a language dependent 

translation process to go from the source code to the surface plan of a  

program . In order to be able to suggest edits and so on, a  language 

dependent plan to source code translato r is also needed. These two 

m odules apart, m ost of the re s t of the p lan  recognition system  is 

w ritten in a  language independent fashion.

d ) Plans can be combined in a  linear fashion to form new plans 

w ithou t the com ponent p lans interfering w ith each other. All th a t 

needs to be done is to connect the output data  (and control) flows from 

the first plan to the appropriate input d a ta  (and control) flows of the 

second, and provided th a t any special constraints required by the plans 

(e.g. type restrictions on the inputs etc.) are satisfied the resulting plan 

will be a  valid combination of the two original plans.

e ) Plans can easily be combined in such a  way th a t they share

common sub-plans. This makes it easy to represent and reason about 

the common programming practice of not recom puting values which 

have already been computed.

This ability to esLSily combine plans enables one to form a  library 

of commonly occurring plans which can then  be p u t together to make 

up  programs. The recognition process is then primarily one of seeing 
how a  given program is actually built up from com binations of these 

known plans, and debugging can partly be seen as the attem pt to 

understand  the program using the above recognition technique, noting



62

any near m atches to known plans. Later chapters will describe these 

processes in more detail.

3.2  Semantics

In addition to the m any desirable properties described above, 

th is  representation of program s also has the advantage of having a 

properly defined sem antics. As we have presented  it so far p lan  

d iagram s form a reasonab ly  in tu itive and  pow erful knowledge 

representation  technique for program s and program m ing knowledge. 

However, AI has been bedevilled a t various times with intuitively based 

knowledge representation techniques th a t foundered in various ways 

un til they were given a  proper sem antics (semantic nets are a  case in 

point), often based on logic in some way. This section will give a  brief 

overview of the sem antics of the plan calculus (readers interested in  a 

full description are referred to Rich [19811) by discussing the trailing- 

gen eration+ search  plan and the trailing-generation+search->find  

overlay described earlier. To do th is will actually involve looking a t 

quite a  large subset of the plans and overlays we will m ake use of in 

la ter chapters.

3.2.1 The Compact Notation

3.2.1.1 The Basic Notation

Rich [19811 defines all the plans and overlays etc, used in the 

plan  calculus in a  compact text-based notation. Some examples of th is 

notation (including the trailing-generation+search plan, shown earlier 

in  Figure 3.3) are given below:

lOspec ©function /  .op(function) .input(object) => .output(object)
preconditions .inpute domain(.op)
postconditions apply(. op,. input)=. ou tput
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Temporal Plan cond *
roles .if(test) .end(join) 
constraints cflow(.if.fail, .end.fail)

A cflow(.if.succeed,.end.succeed)

Temporal Plan trailing-generation+search
extension iterative generation trailing-search
roles .current(object) .previous(object) .exit(cond)

. action(©function) .tail(trailing-generation+searcb)
 constraints .current=.action.output a  .previous=.action.input

There are several points to be made about this notation. Firstly, it 

is frame-like. Each com putational object is defined, first by giving its 

type and  th en  its  nam e. For exam ple c o n d  and  t r a i l i n g  

generation+searcb are defined to be temporal plans, while ©function is 

defined to be a  basic operation of the calculus (using the keyword 

lOspec). Then each definition has various “slo ts” associated with it 

giving other information. For instance, © function  is defined to be a 

primitive action with two inputs (the first of which will be referred to 

as op and is constrained to be a  function, and the second of which will 

be referred to as .input and can be any object), and one ou tpu t which 

will be referred to as .output. Then ©function has a  preconditions slot 

which sta tes th a t for an occurrence of © function  in a  program  to be 

valid the .input value m ust be in the domain of the function, and a 

postconditions slot which states th a t if the preconditions are satisfied 

for an  instance of ©function, then .output for th a t instance will be equal 

to the resu lt of applying the function .op to the input .input. It should 

be noted here th a t all basic operations of the calculus (e.g. ©function) 

have two situations associated with them - an  inpu t situation (.in) and 

an  ou tpu t situation (.out), denoting the state of the program  (i.e. the 

values of all objects and data structures etc.) in the program at the time 

the action is activated, and after the action has been done. We will use 

the  symbol _L to denote a situation  th a t is never reached. So for
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example, in a  conditional, if the then  part is performed as a  resu lt of 

evaluating the test, then all the actions in the else part have _L as their 

input and output situations.

The temporal plan cond corresponds to an  abstract conditional. 

It has two com ponent parts (referred to as roles) - a  t e s t  (referred to 

as .if), and a  join  (.exit). Tests all have two ou tpu t situations associated 

with them  (.succeed and .fail). J o in s (whose function is to reconnect 

diverging control flows from te s ts )  have two incom ing situa tions 

(.succeed and .fail), and the constraints in the cond plan simply state 

th a t control m ust ultimately (after £iny actions th a t may or may not be 

performed on the  succeed or fail sides of the con d ) flow from the 

.succeed situation of the te st  to the .succeed situation of the join , and 

sim ilarly for the .fail control flows. Note th a t nothing is said a t th is 

level of abstraction about w hat actions (if any) actually happen on the 

succeed side or the fail side of the cond, and accordingly nothing is 

said about w hat divergent data flows may be reconnected a t the join. If 

a  plan involves a  cond, b u t also involves some actions which produce 

d ata  values to be connected a t the join  then the plans will often specify 

a  tighter restriction on the jo in  of the cond. In particu lar they may 

specify th a t the join  is a  join-outputs (which reconnects a  single data 

flow from each side of the conditional) or a  jo in -2 -o u tp u ts  (which 

reconnects two such data flows from each side). Examples of this can 

be seen in some of the plans given below.

The definition of t r a i l in g - g e n e r a t io n + s e a r c h  is more 

complicated. It too has a  roles slot, specifying w hat actions and objects 

are involved in the plan, and what types these actions and objects m ust 

have, and how they will be referred to when we need to refer to parts 

of the plan. In this case we see tha t trailing-generation+search has five 

roles - two ob jects (.previous and .current), a  con d , an © fu n ction
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action, and another trailing-generation+search, making th is into a 

recursively defined plan. It also has a  constraints slot, specifying extra 

inform ation th a t m ust hold between (or about) the roles in order for a  

collection of roles of suitable types to constitute an  instance of trailing- 

generation-i-Search. In this case it specifies th a t the .previous object is 

the inpu t to the .input port of the © function  .action. Similarly, the 

.cu rren t object is the value coming from the .o u tpu t po rt of the 

©function.

3.2.1.2 Inheriting Onnstraints Via Specialisation and Extension

Links

If the above were the complete definition, then  the  resu lting  

plan would be th a t shown in Figure 3.5, which clearly is not the "whole 

trailing-generation+search plan shown earlier (Figure 3.3). However, 

the definition of trailing-generation+search also has a  extension slot. 

This gives the nam es of other plans to which th is plan is related (by 

having ex tra  roles and  (possibly) constraints) and  from w hich it 

i n h e r i t s  o th er co n s tra in ts . In th is  p a rticu la r  case, t r a i l in g -  

g en era tion + search  is defined to be an extension of both itera tiv e -  

generation and trailing-search . These plans are given below:

Temporal Plan trailing-search
extension iterative-search trailing
roles .current(object) .previous(object) .exit(cond) 

tail(trailing-search)
constraints instance(]oin-two-outputs, .exit.end)

A . current= . exit if .input 
A .previous=. exit.end. succeed-input-two 

__________ A .tail exit.end.output-twos.exit.end.fail-input-two
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Temporal Plan iterative-generation
specialization iterative-application
roles .action(@fimction) .tail(iterative-generatioii)

 constraints .action.output=.tail.action.input______

which, as can be seen, add several constraints (and hence arcs of the 

graph) .The iterative-gen eration  plan corresponds to the pattern  of 

underlined code below:

repeat
begin

c:=p^.next:

p:=c:
end

endrepeat:

and  rep resen ts  the common technique of iteratively  applying a 

function to generate a  sequence of objects, each of which is the result 

of applying the function to the previous object, while the tra ilin g-  

search plan corresponds to the following code:

repeat
begin

c —..... .

quitloop if pred(c) or c=nil
p:=c:

end
endrepeat:

w hich represents iteratively producing some item and  testing  it for 

some condition holding, while keeping track of the previous item. The 

first thing to note about this is tha t where one plan is an  extension of
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another then the roles they have in common are given the same names. 

This m akes it easy to propagate constraints from a  plan to an  extension 
of th a t plan. Now, trailing-search is itself defined to be an  extension of 

iterative search and trailing. These are shown below:

Temporal Plan trailing
extension single-recursion
roles .current(object) .previous(object) .tail(trailing) 

 constraints .current=.tail.previous_________________

Temporal Plan iterative-search
specialization iterative-termination-predicate 

iterative-termination-output 
roles .exit(cond) .tail(iterative-search+nil)
constraints . exit, if. input=. exit .end, succeed -input

Trailing itself is an extension of:

Data Plan single recursion
roles . tail(single-recursion+nil)

which adds no further constraints. However, iterative-search is defined 

(via its specialization slot), to be a  specialisation of two other plans i.e. 

iterative-term ination-predicate and iterative-term ination-output. 

Specialisation is another method whereby one plan can inherit from 

another, b u t unlike extension no extra roles are involved. A plan PI 

which is a  specialisation of another plan P2 has the sam e roles and 

constra in ts  as P2, and also has additional constra in ts. Itera tiv e -  

term ination-predicate and iterative-term ination-output are shown 

below:

Temporal Plan iterative-termination-predicate 
specialization iterative-termination
roles .exit(cond) .tail(iterative-termination-predicate+nil)
constraints instance(@ predicate,. exit.if)

A .exit.if.criterion=. ta il.exit. if.criterion
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Temporal Plan iterative-termination-output 
specialization iterative-termination 
roles .exit(cond) .tail(iterative-termination-output+nil)
constraints instance (Join-output, .exit, end) 

______________ A exit, end.fail-inputs. tail exit.end.output

Both these plans are spedalisations of iterative-termination:

Temporal Plan iterative-termination  
extension single-recursion  
roles .exit(cond) .tail(iterative-termination+nil)
constraints |.tail=nil <-> .exLt.if.succeeds! ]

A cflow(.exit.if.fail,.tail.exit.if.in)
A cflow(.tail.exit.end.out,.exit.end.fail)

Returning to iterative-generation, it in tu rn  is a  specialisation of 

iterative-application:

Temporal Plan iterative-application  
extension single-recursion
roles .action(@function) .tail(iterative-application)
constraints .action.op=.tail.action.op

A cflow(.action.out, .tail.action.in)

which adds the final constraints to the graph. In th is way it can be seen 

th a t  p lan  diagram s acquire their data  and control flow arcs by a 

complicated process of inheriting them  from other plans.

3.2.1.3 Overlays and Data Plans

Now we can  tu rn  our a tten tion  to the  overlay t r a i l in g -  

generation+search'>find. which states how an instance of a  trailing

generation+search  plan in a  program can be viewed as an  in ternal- 

thread-find operation as discussed earlier in this chapter. We begin by
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giving the appropriate definitions of the  various d a ta  s tru c tu re s  

involved:

Data Plan digraph
 roles .nodes(set) .edge(binrel)

This defines a  directed graph to be a  se t of nodes together with an  

edge rela tion  on the se t of nodes. T r e e s  are defined to be a  

specialisation of digraphs such th a t they have a  root (i.e. a  node such  

th a t every other node can be reached from it following edges of the 

graph), and are non-cyclic:

Data Plan tree
specialization digraph 
roles .nodes(set) .edge(binrel)
properties VG instance(tree,G) z) [Vxy root(G,x) a  root(G,y) 3x=y] 
definition instance(tree,G) = [ instance(digraph,G)

A 3x[root(G,x)]
A Vx[-iSuccessor*(G,x,x)]]

Finally threads are defined to be specialisation of trees such th a t every 

node has a  unique successor:

Data Plan thread
specialization tree
roles .nodes(set) .edge(many-to-one)
properties VT instance (thread ,T) 3

[ Vxy [terminal(T,x) a  terminal(T,y) 3  x=y]
A Vxyz [successor(T,x,y) a  successor(T,z,y) 3

x=z] 1

It should be noted th a t both of these have an  extra properties slot 

which sta tes useful properties of the data type involved. The relations 

etc. used in the above definitions are given below:

Binrel node : digraph x object boolean
definition node(G,x) = (x e G.nodes)
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Trirel successor : digraph x object x object boolean
definition successor(G,x,y) =

[node(G.x) a  node(G.y) 
______________________________ A binapply(G.edge,x.y)=true]

Trirel successor* : digraph x object x objeçt -> boolean
 definition successor*(G.x.y) = 31 successom(i,G.x.y)

Quadrel successom  : natural x digraph x object x object -> boolean
definition successom(i,G,x,y) =

[ [i=l A successor(G,x,y)l 
V 3z[successor(G,x,z)

____________  A successom(oneminus(i).G.z,y)]]_____

Binrel root : digraph x object -> boolean
definition root(G,x) = Vy[(node(G,y) a  x.̂ y) => successor*(G,x,y)]

Binrel terminal : digraph x object boolean
definition terminal(G.x) = [node(G.x) a  -i3y successor(G.x.y)]

Now the primitive operation in ternal-thread-tind  can be defined. It 

takes as input a  thread and a  predicate, and outputs two nodes (.output 

and .previous) of the thread. The first of these nodes (.output) satisfies 

the predicate, and the other (.previous) is the predecessor of .output in 

the thread:

lOspec intem al-thread find /  .universe(thread) .criterion(predicate)
=> .output(object) .previous(object)

extension digraph-find
preconditions 3x [node(.universe,x) a  apply(.criterion,x)=true

A-iroot(.universe,x) ] 
postconditions successor(.universe,.previous,.output)

Internal-thread-find  is defined as an  extension of ano ther primitive 

action digraph find:
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lOspec digraph-find /  .universe(digraph) .criterion(predicate) =>
.output(object)

preconditions 3x [node(.universe,x) a  apply(.criterion,x)=true] 
postconditions node(.universe, .output)

____________________ A applyt.criterion,.output)=true__________

The overlay trailing-generation+search->find expresses the fact th a t an  

instance of the trailing-generation+search plan described above can be 

used  to im plem ent (or alternatively, can be viewed as) an  in tern a l-  

thread-find operation. It too is expressed in the frame-like notation:
Temporal Overlay trailing-generation+search->find :

trailing-generation+search > intemal-thread-find
correspondences

generator->digraph(temporal-iterator(trailing-generation+search))
= internal thread-6nd universe 

A trailing-generation+search .exit .if. criterion=
intemal-thread-find. criterion 

A trailing-generation+search.exit.end.output=
intemal-thread-find. output 

A trailing-generation+search. exit, end .two=
intemal-thread-find.previous 

A trailing-generation+search.action.in=intemal-thread-find.in 
A trailing-generation+search.exit.Out=intemal-thread-find.out

The new  ex tra  slo t here is c o r r e s p o n d e n c e s , s ta tin g  th e  

correspondences between the various inputs to the in ternal-thread- 

find operation, and the various parts of the trailing-generation+search  

plan. The last five of these correspondences are straightforward, b u t 

the first is ra ther more involved and needs commenting on. It sta tes 

that:

generator->digraph(temporal-iterator(trailing-generation+search))
= intemal-thread-find universe

w hich m akes use of two overlays - the tem poral overlay tem poral-  

iterator, and the data overlay generator->digraph. Temporal-iterator
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(see below for a  formal deiinition) enables one to view an  iter a tiv e -  

gen era tion  plan as an  iterator data  plan, in which the seed of the 

iterator is the initial input to the iterative generation, and the function 

of the ite r a to r  is the function which is iteratively applied in  the 

iterative generation plan. The data overlay generator->digraph enables 

one to view a  generator (of which an iterator is a  special case) as a  

digraph  (of which a  thread  is a  special case). In th is case (that of 

iterators) it reduces to the iterator->thread overlay discussed earlier. 

So th is correspondence essentially captures the notion th a t w hen we 

w ish to view a  trailing-generation+search plan as implem enting an  

intem al-thread-find operation, the thread involved is th a t obtained by 

viewing the tem poral stream  of objects produced by the g en era tio n  

p a rt of the plan as constituting a thread.

Temporal Overlay temporal-iterator : iterative-generation > iterator 
correspondences iterative-generation .action.input=dterator .seed 
 A function->hinrel(iterative-generation .action, op) =iterator.op

Finally, for completeness, we give the definitions of the o ther 

basic types, relations and functions used in the above plan definitions:

Type function
subtype object

Type predicate
subtype function
definition instance (predicat e , F) =

[instance(function,F) a  range-type(F) =boolean]

Test © predicate /  .criterion(predicate) .input(object) 
condition apply(.criterion,.input) =true _______
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Type many-to-one 
subtype binrel
definition instance(many-to-one,R) = [ instance(binrel,R)

A Vxyz[binapply(R,x,y)?true a  binapply(R,x,z)=true 
 _________________________________________________________ => y=z] ]

Dota Overlay function->binrel : function -> many-to-one
definition R=function->binrel(F,s) =
___________  Vxy[apply(function(F.s).x)=y <-» binapply(R.x.y)=true]

Type binfunction
subtype object

Type binrel
subtype binfunction
definition instance(binrel,F) =

______________ [instance(binfunction,F) a  binrange-type(F)=boolean]

3.2 .2  The Underlying Logic

In the above section Rich’s notation for defining plans in the plan 

calculus h as  been dem onstrated. Hayes [19791 showed how to give a 

formal sem antics to frame-like systems using logic, and indeed Rich’s 

sem an tics for th e  above fram e-like no ta tion  u ses  a  very sim ilar 

technique. However, ra ther than  using standard  first order predicate 

logic, he uses a  situational calculus similar to th a t of Green [1969] and 

McCarthy and Hayes [1969]. This is a  first order logical language with 

all the  u su a l paraphernalia  associated w ith these i.e. symbols for 

functions and relations and constants, the usual logical connectives and 

quantifiers, and with equality. It also includes set theory (via e cind g ), 

and  integer arithm etic. It could easily be extended to include real 

arithm etic. Examples of (an abbreviated form of) the language have 

already been met above in various slots (such as the preconditions and 

postconditions slots) of the plan frames.
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3.2.3 Semantic Domains and Behaviour Functions

The key to understanding the axiomatisation of the various plans 

and overlays is the notion of behaviour functions. Because we wish to be 

able to talk about viewiiig a  data object as tlie iniplemeiitatioii of some 

other (often more abstract) data object we wish to be able to specify 

w hich properties of the object we are cu rren tly  in te rested  in. 

Furtherm ore, since m ost interesting program m ing languages enable 

one to m anipulate pointers, and we wish to be able to switch from the 

point of view in which we regard a  pointer (in Lisp say) as pointing to a  

dotted pair, to the point of view in which we regard the pointer as 

pointing to a  list, again we need to be able to specify which behaviour 

(or properties) of the pointer we are in terested  in. Both of these 

requirem ents are met by the introduction of behaviour functions.

The basic idea behind th is is th a t the ‘rea l’ objects we are 

interested in  are abstract m athem atical objects such  as integers, sets, 

sequences, functions, graphs, lists (thought of as a  singly recursive data 

s tru c tu re  w ithout regard to im plem entation details) and  so on. 

Program s are concerned with m anipulating values of one type or 

another. These values are either constan t objects (e.g. the  integer 3 

appearing as a  literal in a  program, or the empty list), or are the values 

of variables, or are values stored in data  structures, or are functions of 

o ther values. Because program s (in imperative languages) have state  

the behaviour of a  program at a  given point in its execution (a situatiorii 

is determined by the behaviour of the objects stored in variables and 

data-structures in th a t situation (given tha t constants always behave the 

sam e way). So we wish to have a c le ^  way of ta lk ing  abou t the 

behaviours of objects a t different points in time. In order to do this it is 

necessary to distinguish carefuUy between the identity of an  object and 

its behaviour in order to enable us to say tha t the same object behaves



76

differently a t different points in time. So let the set of object identities 

be N, and let U be the space of possible behaviours. So N consists of 

such things as:

a) a  se t of objects (‘cells’ in memory) for each record type 

defined in  the program. These should be th o u g h t of as  

constan t object identities, reflecting the fact th a t a  given 

record is the sam e record, even if the values in  it change 

over time.

b) a  set of function identities, reflecting the fact th a t we will 

som etim es w ish to ta lk  abou t function  objects w hose 

behaviour changes over time. As will be seen later, field 

access functions for record types will come in to  th is  

category, and if we model arrays as m utable function objects 

then  the array identities (perhaps thought of as locations in 

memory) come into this category

while U consists of such things as:

a) everything in N

b) the set of integers

c) the se t of sequences (thought of as functions from integers

to other values)

d) the set of lists (thought of as abstrac t recursively defined 

m athem atical entities)

e ) a  set of functions

f ) a  set of binary functions

g) a  set of records, corresponding to filled in’ record cells i.e. 

the set of possible values a  cell of the appropriate type could 

in principle take on.

h) a set of threads as discussed earlier.
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i) a  set of pointers such tha t for each record ‘cell’ there is a  

pointer to it.

In addition U has subsets corresponding to all the d ata  types defined in 

the plan library (e.g. iterators, directed graphs, etc.). Note th a t N is a  

subset of U.

N should be thought of as a  set of nam es’ for m utable objects^. 

For example a  record cell’ should be thought of as  the nam e of an  

actual record. The fact th a t we can alter the contents of the fields of a 

record cell then corresponds to the fact th a t the record behaviour’ of 

the cell can change even though the cell itself does not.

Rich[1981] calls the various subdom ains of U Behaviour Tÿpes. 

Also defined on U is a  set of type predicates (one for each behaviour 

type) such  as isinteger, isbinfunction etc., which re tu rn  true  on objects 

of the appropriate type and false otherwise.

Note th a t the set of functions includes the function which 

m aps a  pointer to a  record cell to the cell concerned, and  the set of 

b inary  functions includes such things as ‘+’. The set of functions also 

includes the field accessing functions (treated as m utable - see below) 

for each record type.

2 Note that our discussion of this differs from that given in Rich[1981] in that we are 
treating identities as being different from pointers. This is because Rich’s ideas were 
largely developed in the context of Lisp, in which all mutable objects sue represented by 
pointers to the objects i.e. the identity of the object is given by a pointer to it. In Pascal it 
is possible to have a variable which a record (say) i.e. the identity of the record is 
carried by the cell concerned, and this is different to the case where we have a pointer to 
the cell. So, in our listelement example, in Pascal it is possible to have the following 
declarations:

var X: listelement; 
var y: '^listelement 

and these have to be handled differently. This situation is not possible in Lisp.
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This means th a t a  declaration like the following:

type listelement = record
num b : integer; 
next : ^listelement; 

end;
plist = ^listelement;

resu lts  in N containing a  set of listelement cells, and  U contains the 

se t of pointers to these cells (one pointer for each cell) and the se t of 

listelem ent records (corresponding to all possible values the record 

cells can have considered as records).

Let S denote a  set of situations (times). S is totally ordered, since 

we are dealing with sequential computations. The ordering is given by 

a  prim itive relation p re c e d e s , which is essentially  defined on the 

ac tions represen ting  a  program  by the sequen tia l n a tu re  of the  

program . In order to be able to ta lk  about actions th a t are never 

performed we introduced the situation 1 .1  is a  bottom element of this 

ordering i.e.

V s[precedes(s,l)]

We can now define the binary relation cflow by:

cfiow(s,t) = precedes(s,t) a  [s=_L <-+ t= l]

Now introduce a  function:

BEHAVIOUR: U x S ^ U

which m aps objects (and object identities) in a  given situation (time) to 

their behaviours (values) in tha t situation (time). The first thing to note 

about this is that:

Vxsl [xeU A xg N] 3  BEHAVIOUR(x,s)=x]



79

since elem ents of U which are not ‘nam es’ are ab s tra c t co n stan t 

m athem atical objects. For instance we cannot alter a  po in ter - a 

variable whose value is a  pointer can alter, bu t the pointer itself cannot, 

since, considered as a  cell’, the object the pointer is pointing to 

canno t change so th a t it is a  different cell. Similarly an  integer is 

always the same integer, so its behaviour does not change. However, for 

an  object in N, BEHAVIOUR m aps the object to the appropriate object 

representing its primitive behaviour a t the given time. For example, if 

X is a  listelement cell, then BEHAVIOUR(x,s) would be the listelem ent 

record object (in U) corresponding to the cell filled in with whatever 

values it h as  in  it a t time s. This enables u s to express the fact th a t a  

listelem ent record (corresponding to a  listelem ent cell x) is different 

in situations s and t  by:

BEHAVIOUR(x,s) ^ BEHAVIOUR(x,t)

Secondly, this enables us to express the fact th a t a  given object x 

is an  integer a t some time s by:

isinteger(BEHAVIOUR(x, s)) =true

Similarly, we can  express the fact th a t an  object x is a  listelem ent 

record a t time s by:

islistelement(BEHAVIOUR(x,s))=true

and in general we can express the fact th a t an object x has behaviour T 

a t time s by:

isT(BEHAVIOUR(x,s))=true
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For each behaviour type T in U (with associated predicate isT) we can 

now define a  behaviour function T: U x S -> U by

Vxys[ T(x,s)=y <->

[[BEHAVIOUR(x.s)=y a  isT(y)] v  

3z[BEHAVIOUR(x,s)=z a  -,isT(z) a  y=unde/ined]l]

So to express the fact th a t the behaviour of some object x  a t time s is 

an  integer it is sufficient to write:

integer(x,s)  ̂ undefined

and to express the fact th a t the behaviour of x a t time s is a  listelement 

record we can write:

listelem ent(x,s) 7  ̂undefined

and  in general, if we w ant to express the fact th a t an  object h as  

behaviour T we can write:

instance(x,T)

as a  shorthand for

3ys[T(y,s)=x a  x^undefined]

Now a  program m ing language only provides the  program m er 

with a  set of facilities for creating and m anipulating a  fairly small set of 

d a ta  types. All others m ust be implemented in term s of these basic 

types. For instance, the subse t of Pascal th a t  we are considering 

provides one with num bers, arrays, records, and pointers, and other 

types such as lists, directed graphs, threads, and sets m ust be built up 

ou t of these basic ones. Furtherm ore, all the basic operations of the 

language only operate on objects of these basic types. So a t the surface 

plan level i.e. before any analysis of the function of the prograim, only
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these primitive data types can occur. If we wish to view a  program as 

opera ting  on o ther d a ta  types no t d irectly  su p p o rted  by the  

programming language we need a m echanism  for viewing the primitive 

data  objects as implementing the more abstract ones.

In programming languages primitive objects are norm ally either 

rep resen ted  directly  in  some way (e.g. in tegers  are  norm ally  

rep resen ted  as b inary  integers, a  record ‘cell’ is a  collection of 

contiguous memory locations), or they are represented by a  pointer to 

a  d irect represen tation  of the object. Now, com pound objects (i.e. 

those with components) and objects pointed to by pointers have the 

property th a t they are m utable [Rich 1981J. In the case of pointers for 

instance, th is m eans tha t it is possible to change the object pointed a t 

(by side-effect), w ithout changing the pointer itself. Furtherm ore, as 

already stated above, if this is done it may not affect all views of the 

pointer. For instance, suppose P is a  pointer to a  list constructed out of 

linked records. Then, if we change the second elem ent of the list by 

simply updating the appropriate field of the second record in the list, 

then  three points should be noted:

(i) P itself is unchanged

(ii) The record pointed to by P is unchanged

(iii) The list pointed to by P has changed

In order to deal with this we need to specify w hat view of an  object we 

are interested in, and a t what time (in w hat situation). We also need to 

be able to specify the connection between the records involved and the 

list built up out of them. Behaviour functions enable u s to formalise all 

of this. So far we have only discussed the basic behaviour functions. 

Data overlays correspond to more complex behaviour functions built up 

out of other behaviour functions.



82

So consider the following piece of Pascal code:

type listelement = record
num b : integer; 
next : ^listelement; 

end;
plist = ^listelement;

For the  m om ent th is can be taken as defining a behaviour function 

lis te lem en t which m aps objects of type listelem ent a t a  given time to 

them selves, and  listelem ent cells to their record behaviour (at th a t 

time), and if a t a  given time p is a  pointer to a listelement (p is of type 

plist) then  the behaviour function ^listelem ent m aps p to itself (at th a t 

time). More formally, the above declaration defines the  following 

(recursively defined) datatypes and behaviour functions:

DataPlan listelem ent
Roles numb(integer) next(^listelement)

and

DataType ^listelement
Dejmitton y  = ^listelem ent(x,s) ++ (x=nil a  y=nü] v  

______3z [ apply(^,y)=z a  z undefined a  lis te lem en t(z, s)  ̂undefined]

So, in the following piece of code:

var X, y :plist; 
begin

new(x); /*value of x is a  pointer p i  to a  record 
cell ree l (say)*/, 

x^.numb:=l;
new(y); /*value of y is a  pointer p2 to a  record 

cell rec2(say)*/ 
y^.numb:=2; 
y^.next:=nil;
x^.next:=y; /*situation s i* /

y^.numb:=3; /*situation s2*/

end;
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we see th a t the following behaviour holds in situation s 1 :

^ liste lem en t(pi ,sl)=  p i  where apply('^,pl)=recl 

^listelem ent(p2 ,sl)= p2 where apply(^,p2)=rec2 

listelem ent(recl , s i)  = <listelement 1, p2> 

listelem ent(rec2 , s i)  = <listelement 2, nil> 

while in situation s2 we have the following:

M istelem ent(pl ,s2)= p i where apply(^.pl)=recl 

^listelem ent(p2 ,s2)= p2 where apply('^,p2)=rec2 

listelem ent(rec 1 , s2) = <listelement 1, p2> 

listelem ent(rec2 , s2) = <listelement 3, nil>

From this it can clearly be seen th a t x and y themselves (the pointers) 

have no t changed betw een s itua tions s i  and  s2  an d  th a t  the  

lis te lem en t behaviour of the object x is pointing to has not changed. 

This deals with properties (i) and (ii) above. To deal w ith property (iii) 

above we need to introduce an overlay which s ta tes  the connection 

between the listelem ent behaviour of an object and the lis t behaviour of 

the  sam e object. We also need an  overlay w hich describes the  

connection between ^ liste lem en t behaviours and  l is t  behaviours. 

Overlays will be discussed more fully below, b u t for the m om ent it is 

sufficient to observe th a t th is can be formalised by defining overlays 

listelem ent->list and ^listelement->list as follows:

Data Overlay listelement->list : listelement list
Définition a=listelem ent->list(p,s) =

[ [instance(list, a) a  head (a)=numb (lis telem en  t(p , s)) a  

tail(a)=^listelement->list(next(listelement(p,s)),s)]]

and
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Dota Overlay ^listelem ent->list : ^listelem ent —> list+nil
Definition a= '^listelem ent->list(p,s) =
I [a=nil A p=nil] v 
[ instance(list, a)
A head (a)=numb (liste lem ent (apply (^, M istelement(p,s)),s))
A tail(a)=^listelem ent->list(next(listelem en t(apply(^, 

___________________________________________ ^listelem ent(p,s)).s)).s)]]

This defines a mapping from objects with liste lem en t or ^ liste lem en t  

behaviour to objects with list behaviour. From this it can be seen that:

^listelem ent->list(p 1 ,sl) = w where

head(w)=numb(listelement(apply(^, ^listelem ent(p 1,s 1 )),s 1 )) 

=numb(listelement(apply(^, p i),si))

=numb(listelement(rec 1 ,s 1))

= 1 .

and

tail(w)=^listelement->list(
next(listelement(apply(^, '^listelement (p 1,s i)) ,s i)) ,s i)

= '^listelement->list(next(listelement (apply ('̂  ,p 1 ), s 1 )), s 1 )

= '^listelement->list(next(listelement(recl ,s l)),s 1)

= '^listelement->list(p2,s 1)

= w l

where

head(wl)= numb(listelement(apply('^, '^listelem ent(p2,sl)),sl))

= numb(listelement(apply('^, p2),sl))
(since p2='^listelem ent(p2,sl))

= numb(listelemeh t (rec2, s 1 ))

=  2
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and

taiU w l)

='^li8telement->list(
next (lis telem en t (apply , '^listelement (p2,s i)) ,s i)),s i)

= '^listelement->list(next(listelement(apply('^, p2), s 1 )), s 1 )

= '^listelement->list(next(listelement(rec2,s 1)) ,s 1)

= '^listelement->list(nil,s 1) =nil

which is equivalent to stating tha t

'^listelement->list(x ,sl)= [1 2]

in  more conventional notation. In a  similar m anner it can be deduced 
th a t

'^listelement->list(x,s2) = [1 3],

and hence point (iii) above can be dealt with.

A subtle point now arises. The account ju s t  given is not how this 

behaviour will be recognised in practice since it involves defining 

overlays from user defined data types to the bu ilt in standard  types. 

Because we cannot know in advance what data  types users will define, 

nor how they will use them, this cannot easily be done. Instead we will 

sw itch our point of view from one in which we regard the field 

accessing functions (numb and next in th is case) as ro le s  of the 

b eh av io u rs  of (mutable) objects, to one in which we regard them  as 

m utab le  functions operating directly on (now immutable) listelem ent 

cell objects. Let u s  denote the role selecting functions (operating on 

behaviours) by num b and next, and denote the corresponding mutable 

functions by NUMB and NEXT respectively. Then the relationship  

between these two views is given by:
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Vps apply(fuiiction(NUMB,s),p)=numb*(Ustelemeiit(p,s))

Vps apply(fuiiction(NEXT,s),p)=next(listelement(p,s))

This allows us to no longer treat Ustelement cells as nam es (in N), bu t 

a s  c o n s ta n t im m utab le  ob jects (in U) w ith  fixed prim itive 

l i s t e l e m e n t c e l l  behav iour, w ith  a sso c ia ted  type p red ica te  

islistelementcell. This am ounts to redefining BEHAVIOUR so th a t if x 

is a  listelem ent cell then:

Vs[ BEHAVIOUR(x.s)=x] 

and to defining the behaviour fimction listelem entcell by:

Vxys[ listelementcell(x,s)=y <->

[[BEHAVIOUR(x,s)=y a  islistelementceU(y)] v  

Bz[BEHAVIOUR(x,s)=z a  -iislistelementcell(z) a  y=unde/inedl]l

This m eans th a t the behaviour function lis te lem en t as we defined it 

earlier now yields undefined on listelement cells. Instead we now need 

to define an overlay listelem entcell->listelem ent by:

Data Oveday listelementcell->listelement: listelementcell-^ listelem ent 
D ^ n ition  a=listelementcell->listelement(p^s) =

instance (a, listelement)
A numb(a)=apply(function(NUMB,s), listelem entcell(p))
A next(a) =apply(function(NEXT,s), listelem entcell(p))

giving us:

Vps apply (function (NUMB. s),p) =
numb(listelementcell->listelement(p,s))

Vps apply(function(NEXr,s),p) =
next(listelem entcell->listelem ent(p , s))

and  the  whole of our earlier analysis can now be redone in th is 

framework, giving the same resu lts (provided we also redefine the 

overlays and datatypes given earlier so th a t they too are based on
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lis te le m e n tc e ll behaviour). This also m eans th a t the only primitive 

m utable objects are now the m utable access functions and m utable 

functions corresponding to arrays. Arrays will be d iscussed  fu rther 

la ter on. However, it should be noted th a t if a  com pound d ata  object 

depends in any way on mutable objects in its definition, then  it too will 

be mutable.

This approach has several advantages. F irst of all, as will be 

discussed in Chapter 6, it enables the translation process to be more 

accurate in reflecting the true data  flows in the presence of compound 

d a ta  objects, since the objects are now not viewed as having changed. 

Instead record updates can now be modelled as #new arg operations 

w ith  the  (m utable) record accessing functions being  changed. 

Secondly, since reasoning about side-effects and structu re sharing is in 

general very difficult (even though the above formalisation enables one 

to do it) it is intended th a t common techniques utilising side effects 

should be captured in the plan library. This tu rns out to be m uch easier 

using the m utable function approach since it avoids the necessity for 

defining overlays from user defined data types to the standard  more 

abstract ones. This is because, provided the m utable functions and the 

pattern  of accesses and updates in which they are used, m atch suitable 

plans in the library, the functions and the pointers often tu rn  out to 

directly im plem ent abstract data  types. So for instance, in order to 

obtain  a  th r ea d  we need a  se t of objects (the pointers) and two 

functions (a successor function, and a labelling function). By virtue of 

the plans used it is often easy (indeed autom atic given our parsing 

approach  described in C hapters 5 and 7) to recognise th a t the 

functions NEXT and NUMB are playing these roles. Once one h as 

recognised th a t there is a thread  in the program, existing overlays 

(such as th r e a d -> lis t)  can replace the special pu rpose overlay 

introduced above. This subject will be discussed further in Chapter 7.
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It should be noted tha t we now really have two sorts of behaviour 

functions. These are:

a) prim itive behav iour fu n ctio n s defined in  te rm s of 

BEHAVIOUR. Any such behaviour T satisfies:

Vxy[[3s[T(x,s)=yI] z> Vt[T(y,t)=yU

b) non-primitive behaviour functions, defined in term s of the 

primitive ones. These are all overlays of the form B >C where B and C 

are primitive behaviour functions. These all satisfy:

Vxy([3s[B->C(x,s)=y]] => Vt[C(y,t)=ylI

One further point needs to be made here. For reasons which will 

become apparent when we discuss the parsing process, values in U-N 

will be called tie-points. So a  tie-point t l  which is an  object of type T 

will satisfy:

Vs [T (tl,s )= tll

The interpretation of this is th a t a  tie-point is a  constan t value (in U) 

with behaviour T (i.e. is of type T). Note th a t this does not m ean th a t all 

views of th is tie-point are constant. For instance, in our listelem ent 

example above,

^listelem eiitcell(p l,sl) = ^listelem entcell(pl,s2)

and are represented by the same tie-point, bu t

^listelem entcell->list(pl,sl)  ̂^listelem entcell->list(pl,s2)

a re  d iffe ren t, n o t only from  each  o th e r, b u t  a lso  from  

^ lis te lem en tce ll(y ,s l) , and should be represented by two new tie- 

points. So if an  action produces some value (primitive behaviour of
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some object) as its output, this will be a  tie-point, and th is tie-point 

will be an input to any other operation which takes th a t value as input. 

In the graph representing the surface plan for a  program  tie-points 

will be represented as a  small filled-in circle on the data-flow arc from 

the action which produced it. Data flow arcs will go from the tie-point, 

to the inputs of any operations using it, representing the fact th a t the 

relevant value has not changed between the ou tpu t situation  of the 

‘producing’ action, and the input situation of the consum ing’ action. If 

the  recognition process dem ands th a t we take another view of a  tie- 

point then  new tie-points representing these new behaviours will be 

in tro d u ced  as th e  p arsing  proceeds. The problem  of properly  

connecting these new tie-points to operations producing and using 

them  will be dealt with by overlays, as explained in Chapter 7.

3.2.4 Axiomatising Operations, Plans, and Overlays

All the various operations, plans, and overlays are axiomatised 

w ithin the plan calculus. There is an  algorithmic procedure for going 

from the frame notation described above, to sets of axioms for each 

p lan  etc. The resu lts  of this procedure will simply be illustrated  by 

example here, since full details can be found in Rich [19811.

3.2.4.1 Data Plans

D ata plans are axiomatised in two parts. The first of these is an  

axiom telling u s  when two instances of a  da ta  p lan  are equal. The 

second is an  axiom telling us under w hat circum stances we have an  

instance of the data plan, and when we have one w hat properties it has. 

So, for the data type list, whose compact specification is:

Data Plan list
roles .head(object) .tail(list+iiil)
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we obtain as the first axiom:

VaPpqs[[a=list(p,s) a  p=list(q,s) a  head(a)=head(p)
Alist(tail(a),s)=list(tail(p),s)l => a=p ]

and for the second axiom we have:

Vxys[ [ x^undefined a  [y=nil v  \is>t{y,s)^undejined] ] <->
3ap[a=list(p,s) a  a^undefined a  head(a)=x a  tail(a)=y] 1

3.2.4 2 Data Overlavs

D ata overlays give rise to two “totality” axioms and a  formal 

definition. The totality axioms guarantee the existence of appropriate 

d a ta  objects, and the formal definition defines the rela tionsh ips 

between them. An example is:

Data Overlay fimction->biiiTel : function —> many-to-one
définition R=function->binrel(F,s) =

Vxy[apply(fimction(F,s),x)=ÿ <-> binapplyfR,x,y)=true]

which enables u s  to view a  function as a  b inaiy  relation in which two 

objects are related if the function applied to the first object is the 

second object. The totality axioms are:

Vxs[fnnction(x,s)#unde/bied => 3y[y=function->binrel(x,s)]] 

Vys[many-to-one(y,s)9tunde/ined => 3x[y=function->binrel(x,s)]]

and the definition of function  >binrel is essentially th a t given in the 

definition slot of the compact notation:

R=fimction->binTel(F,s) =
instance (many-to-one, R)

A Vxy[apply(function(Fis),x)=y<-^binapply(R,x,y)=truel
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3.2.4.3 Basic Operations. Tests, and Joins

Basic operations of the calculus are defined by lOspec definitions. 

An example is the digraph-find operation shown again below:

lOspec d igraph-find  /  .universe(digraph) .criterion(predicate) =>
.output(object)

preconditions 3x [node(.universe.x) a  apply(.criterion,x)=truel 
postconditions node(.universe,.output) a

apply(.criterion,. output)=true

This is converted to the following two axioms:

Vap [[ d ig raph  find(a) a  d ig raph  find(p) a  in(a)=in(P)
A out(a)=out(P) A universe(a)=universe(p)
A criterion (a)=criterion(p) a  output(a)=output(p)]

=> a=p 1

and
Vwxuts[ [precedes(s,t) a  

[s#_L =>
I A digraph(w ,s)^unde/ined 
A predicate(x,s);*undeflned 
A u^undeftned
A 3yl node(digraph(w.s),y)

A apply(predicate(x, s) ,y)=true]
A node(digraph(w, s) ,u)
A apply(predicate(x,s),u)=true]]l 

<-> 3a[ digraph-find(a) a  in(a)=s a  out(a)=t 
A universe (a) =w a  criterion(a)=x 

A output(a)=u 1 1

The first of these axioms simply tells us under w hat conditions we can 

consider two instances of a  d ig rap h -fin d  operation to be equal - they 

are equal iff their inpu t and ou tpu t situations are equal and if their 

in p u t roles are equal, and their ou tpu t roles are equsd. The second 

axiom is more interesting It tells u s th a t if we have appropriate data  

objects satisfying all the various constra in ts, th en  there  exists a
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d ig r a p h -f in d  operation which rela tes all these  objects in  the 

appropriate way. Alternatively, if we have a  digraph-find operation in a  

plan we can use th is axiom to deduce the properties of the d ata  objects 

involved.

The axiom atisation of tests will also be illustrated by example. 

Consider the test © predicate, whose compact definition is:

Test © pred icate  /  .criterion(predicate) .input(object)
condition apply(.criterion, .input) =true

T ests  have th ree  situ a tio n s associated  w ith them , th e ir  in p u t 

s itu a tio n  (in), th e ir  succeed  situa tion (succeed ) an d  th e ir  fail 

s itu a tio n  (fail). The above definition is converted to the  following 

axioms:

Vap [[ © predicate(a) a  ©predicate(P) a  in(a)=in(P)
A fail(a)=fail(p) a  succeed (a)=succeed(p)
A criterion(a)=criterion(p) a  input(a)=input(p)]

=> a=P 1
and

Vwxuts[ [precedes(s.t) a  precedes(s,u) a  [u=_L v  t=_L]
A [S9tJ_ => [ [U 9t ±  V t ^ L ]

A x^undefined 
A predicate(w ,s)^unde/ined 
A [t^l apply(predicate(w,s),x)=true]]]]

<-> 3a[ ©predicate(a) a  in(a)=s a  succeed(a)=t
A fail(a)=u A criterion(a)=w 
A input (a) =x ] ]

Jo in s  are axiom atised similarly. Jo in s  also have th ree  situa tions 

associated with them  - two input situations (succeed and fail) and an  

o u tp u t situation(out). We will again illustrate the axiom atisation by 

exam ple. So consider a  jo in -o u tp u t  operation  w hose com pact 

specification is as follows:
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Join join-output /  .succeed-input(object) .fail-input(object) =>
.output(object)

Postconditions [fail(join-output)^l 3  output=fail-input]
_____________A [succeed(join-output)#l 3  output=succeed-input]

This is converted to the following axioms:

Vap[[ join-output(a) a join-output(p) a succeed (a)=succeed(P)
A fail(a)=fail(P) a out(a)=out(p)
A succeed-input(a)=succeed-input(P)
A fail-input(a)=fail-input(P)
A output(a)=output(p)l 3  a=p ]

and^
Vwxyutsl [[u=l V t=l] A It^l 3  [s=t A w=x]l A [u^l 3  [s=u A w=y]]] 

<-> 3a[ join-output(a) a out(a)=s a succeed(a)=t
A fail(a)=u A output(a)=w a succeed -input(a) =x 

A fall-input(a)=y ]]

Simple jo ins (i.e. with no outputs) correspond to the same axioms with 

all mention of succeed-input, fail-input, and output omitted. Jo in -2-  

outputs is also veiy similar,

3.2.4.4 Temporal Plans

The conversion of temporal plans to their axiomatic form will be 

illustrated using the trailing-generation+search plan discussed earlier, 

and whose definition is given again below:

 ̂The second axiom we give here differs from that given in Rich 11981] in order to avoid 
possible contradictions arising when we consider the axiom for deterministic 
operations discussed in chapter 4. Our axiom still captures the essentials of what a join 
operation does.
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Temporal Plan trailing-generation+search
extension iterative generation tiailing-search
roles .current(object) . previous (object) .exit(cond)

.action(©function) .tail(trailing-generation+search)
 constraints .current=.action.output a  .previous=.action.input

The first axiom again gives u s  conditions u n d e r w hich two 

instances of a  plan are equal:

Vap[[ trailing-generation+search(a) a  trailing-generation+search(p)
A cu rren t (a)=curr en t (p) a  previous(a)=previous(p)
A exit(a)=exit(p) a  action(a)=action(P) a  tail(a)=tail(p)] 3  a=p]

T his axiom  sim ply s ta te s  th a t two in s tan ce s  of a  t r a i l i n g  

gencration+search plan are equal if their input and ou tpu t situations 

are equal and if all their roles are equal.

The second axiom is again the more interesting of the two in th a t it 

specifies how the various roles of the plan are related and implicitly 

cap tu res the inheritance of constraints etc. from the p lans of which 

th is one is an  extension

Vuvxyzstl [ 3a[ iterative-generation(a) a  action(a)=x a  tail(a)=y]
A 3p [ trailing-search(p) a  current(P)=z

A previous(p)=u a  exit(P)=v a  tail(P)=y]
A z=output(x) A u=input(x)l 

<-> 35[ trailing-generation+search(5)
A current(5)=z a  previous(5) =u 
A exit(5)=v A action(5)=x a  tail(0)=y]]

It is th is axiom which underlies plan recognition since it sta tes th a t if 

one has a  collection of roles satisfying all the right constraints then  the 

existence of a  trailing-generation+search plan is guaranteed.

3.2.4.5 Temporal Overlavs

These are axiomatised in a  similar fashion to d a ta  overlays by 

m eans of two “totality” axioms, and a  formal definition. For example:
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Temporal Overlay trailing-generation+search->find :
trailing-generation+search > intemal-thread-find

correspondences
generator->digraph(temporal-iterator(trailing-generation+se£irch))

= intem al-thread -find. universe 
A traillng-generation+searcli. exit .if. criterion:

iutemal-thread-find. criterion 
A trailing-generation+search .exit. end .ou tpu t:

intemal-thread-find. output 
A trailing-generation+search exit end tw o:

intemal-thread-find.previous 
A trailing-generation+search.action.in:i]itemal-thTead-find.in 
A trailing-generation+search.exit.out:intemal-thread-find.out

corresponds to the two axioms:

Va[trailing-generation+search(a) 3

3p[ intemal-thread-find(p)
A p:trailing-geneTation+search->find(a)]]

vp[intemal-thread-£iiid(P) 3

3a[ trailing-generation+searchCa)
A p:trailing-generation+8earch->£lnd(a)]]

and has the formal definition:

p:trailing-geiieration+seaTch->iind(a) =
[ intemal-thread-findlp)

A generator->digraph(temporal-iterator(a))
:thread(universe(p)) 

A predicate(criterion(if(exit(a))))=predicate(criterion(p)) 
A output(end(exit(a))):output(p)
A two(end(exit(a))):previous(p)
A in(action(a)):in(p)
A out(exit(a)):out(P) ]

3.3  Plan Recognition and Inference in the Plan Calculus

As alluded to earlier, the system will use a  process of plan recognition

whereby instances of plans (thought of as graphs) which occur in the
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surface plan of programs will be explicitly represented by a  single node 

representing the plan. These, in  tu rn  can form p arts  of higher level 

p lans which will also be represented by single nodes. In th is way the 

system  will build up a high level description of the program. Now the 

graphs representing plans can be thought of as forming the rules for 

some kind of graph  g ram m ar (a flowgraph gram m ar) and  the  

recognition process then  becomes one of parsing  the surface plan 

according to the grammar. Chapters 5 and .7 will describe th is process 

in  some detail. However, in order to be sure th a t this process has some 

kind of theoretical basis, it would be nice if the steps of the parsing 

process could be viewed as some kind of inference process, and th is is 

exactly w hat the sem antics ju s t  described give us. On the one hand we 

have the intuitive notion of programs represented as control and data  

flow graphs, and the recognition process is one of finding subgraphs 

corresponding to im plem entations of program m ing clichés. On the 

other hand  we can view this process as inference in the p lan  calculus. 

A simple (rather artificial) example will make th is clearer. Suppose we 

have the partial surface plan shown in Figure 3.6, and the plans and 

overlays shown^ in Figure 3.7. The surface plan can be expressed as the 

following (partial) statem ent in the situational logic:

^Note that when we are thinking of temporal plans sis r u l e s  of a graph grammar we will 
show the graph for the plan on the right-hand side of the arrow in the rule, and the left- 
hand side will be a “box” representing the whole plan. Overlays will be represented by 
rules in which the right-hand side of the rule represents the plan or operation occurring 
to the left of the arrow in the overlay nsime, and the left-hand side represents the plan or 
operation to the right of the arrow in the overlay name (i.e. the arrow directions are 
reversed in the diagrams). This is to facilitate thinking of the rules (either plans or 
overlays) in the normal way that one thinks of production rules in a grammar. 
Furthermore, we will often use the words “plein" and "rule" interchangeably.
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Figure 3.6 Surface Plan For Add-4-Nnmbs Rxample
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Rule for Temporal Plan Two-Adds
addl

plus @bln-
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two-adds
@bin-
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t4

Rule for Temporal Overlay Two-Add8->Add-3-Niimbg

add-3-
4̂9 a numbs

t4 two-adds

Rule for Temporal Plan Add-3-Numbs+Add
plug— ------c m  ^

H 2 add-3-
numbst3-.-0---- +add

adds

add-3-
numbs

add
@bln-

function
ts

Rule for Temporal Overlay Add-3-Numbs+add->Add-4-Numbfi
£lys.

numbs
add-3-
numbs
+add

Figure 3.7 Rules and Overlavs for Add-4-Numbs EbcAmple
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precedes(in(opl),out(opl).... a .................................... ........(1)
precedes(in(op2),out(op2).... a .............................................. (2)
precedes(in(op3),out(op3).... a .............. ...............................(3)
cflow(out(opl),in(op2)) a ...................................................... (4)
cflow(out(op2),in(op3)) a ...................................................... (5)
@binfimction(opl) a ................................................................ (6)
@binfimction(op2) a ................................................................ (7)
@binfunction(op3) a ................................................................(8)
op(op 1 )=plus A ..................................................................... (9)
op(op2)=plus A ........................ (10)
op(op3)=plus A..................................................................... (11)
inputl(opl)=a a ....................................................................... (12)
lnput2(opl)=b A........................................................................(13)
inputl(op2)=output(op l) a...............................................(14)
input2(op2)=c a ....................................................................... (15)
input 1 (op3) =output(op2) a .......................................(16)
input2(op3)=d a ...................................................................(17)

where a, b, c, and d have been used to denote whatever (integer) values 

the inputs have i.e.

a=integer(a,in(opl)) a  au^undejined a ................................. (18)

b=integer(b.in(opl)) a  b^undejmed a ................................ (19)

c=integer(c,in(op2)) a  c^undejined a .............................................. (2 0 )

d=integer(d,in(op3)) a  d^undefined................................. (21)

We can  assum e (18)-(21) have been proven to follow from the 

behaviour of the re s t of the surface plan, or can be assum ed  as 

properties of any values input to the program.

The plans, overlays, and basic actions, and their corresponding 

axioms are given by:



100

lOspec add-4-num bs /  .input 1 (integer) .input2(integer)
.input3(integer) .input4(integer)

=> . output(integer)
Postconditions
.output=binapply(plus, binapply(plus, binapplytplus, .input 1, .input2),

.input3). .input4)

Axinmft for add-4-mimhft

VaP [[add '4-num bs(a) a  add-4-nnm bs(p) a  in(a)=in(p) a  out(a)=out(p) 
A in p u t 1(a) = inputl(p) a  input2(a)=input2(P)
A input3(a)=input3(p)A input4(a)=input4(p)
A output(a)=output(P)l => a=P 1

Vuwxyzts[[precedes(s,t) a  [s#1 =>
[t;6l A integer(w,s)9Êunde/ïned a  integeT[x,s)^imdeJmed 
A integer(y,s)^unde/lned a  integeT[z,s]^undeJined 
A integer(u,t)5tunde/ined
A u=binapply(plus ,binapply(plus,binapply (plus, w,x) ,y,z)]]] 

o  Ba[add-4-numbs(a) a  in(a)=s a  out(a)=t a  inputl(a)=w  
A input2(a)=x a  input3(a)=y a  input4(a)=z 
A output(a)=u ]]

lOspec add '3 -num bs /  .inputl (integer) .input2(integer)
.input3(integer) => .output(integer)

Postconditions
.output=binapply(plus. binapply(plus, .inpu tl. .input2). .input3)
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Axioms for add-S-ntunbs '

Vap [[add-3-num bs(a) a  add-3 -num bs(p) a  in(a)=in(p) a  out(a)=out(p) 
A inputl(a)= inputl(P ) a  input2(a)=input2(p)
A input3(a)=input3(P) a  output(a)=output(p)] => a=p ]

Vuxyzts[[precedes(s.t) a  =>
[W± A integer(x,s);tunde/ined 

A integer(y,s)?tunde/îned a  integer(z,s)î6unde/îned 
A integer(u,t)9tunde/iried 
A u=binapply(plus,binapply(plus,x,y),z)]]]

<-> Ba[add-3-numbs(a) a  in(a)=s a  out(a)=t a  inpu tl(a)= x  
_________________ A input2(g)=y a  input3(a)=z a  output(g)=u J]

Temporal Plan two adds
roles .addl(@binfimction) .add2(@binfimction) 
constraints .addl.op=plus a  .add2.op=plus 

A .add2.inputl= .addl,output 
A cflow(.addl.out, ,add2.in)

A xiom s for Two-Adds

Vgp[[two-adds(g) a  two-adds(p) a  addl(g)=addl(P) a  add2(g)=add2(p)]
z> g=p]

Vgp[ [@binfunction(g) a  @binfunction(p) a  op(g)=plus a  op(P)=plus 
A in p u t l(p)=output(g) a  cflow(out(g), in(P))]

38[two-adds(0) a  addl(6)=g a  add2(5)=p ]]

Temporal Overlay two-adds->add-3-numbs : tw o-adds > add-3-num bs
correspondences add-3-num bs.input 1 = tw o-adds.add 1 .input 1 

A add-3-niimbs.input2=two-add8.add 1 .iiipul2 
A add-3-nmnbs. input3=tw o-adds. add2. input2 
A add-3-numbs.output=two-adds. add2.output 
A add-3-m im bs in=tw o-adds.addl in 
A add-3-num bs .out=two-adds. add2. out
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Axioms and Definition for Temporal Overlay Two-Adds->Add-3-Niimha

Valtwo-adds(a) => 3P[add-3-nnmbs(p) a  p=two-adds >add-3-nnmbs(a)]] 

vp[add-3-numbs(p) =) 3a[two-adds(a) a  p=two-adds->add-3-numbs(a)]]

Dftfinition

p=two-adds->add-3-numbs(a) = [ add-3-numbs(p)
A inputl(p)= inputl (add 1 (a)) 
A input2 (p) =input2  (add 1 (a)) 
A input3(p)=input2(add2(a)) 
A output(P)=output(add2 (a)) 
A in(P)=in(addl(a))
A out(p)=out(add2 (a))]

Temporal Plan add-3-nnmbs+add
roles .add3(add-3-nnmbs) .add(@binfimction) 
constraints .add.op=plus

A .add.inputl= .add3.output 
A cflow(.add3.out, .add.out)

Axioms for Add-3-Numbs+Add

Vap[[add-3-nnmbs+add(a) a  add-3-nnmbs+add(p) a  add3(a)=add3(p) 
A add(a)=add(p)l z> a=P)

Vap[ [add-3-nnmbs (a) a  @binfunction(p) a  op(p)=plus 
A inputl(p)=output(a) a  cflow(out(a), in(P))]

<-> 35[add-3-nnmbs+add(6) a  add3(6)=a a  add(6 )=p ]]
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Temporal Overlay add-3-nnmbs+add->add-4-niimbs :
add-3-numbs+add > add-4-numbs

correspondences
add-4-numbs.input 1 =add-3-numbs+add. addS .input 1 

A add-4-numbs.input2=add-3-numbs+add.add3.input2 
A add-4-numbs.input3=add-3-niimbs+add.add3.input3 
A add-4-niimbs.input4=add-3-niimbs+add.add.input2 
A add-4-numbs.output=add-3-niimbs+add.add.output 
A add-4-numbs in=add-3-niimbs+add.add3 in 
A add-4-numbs.out=add-3-numbs+add.add.out

A xiom s and D efin ition  for
Temporal Overlay Add-3-Nnmbs+Add->Add-4-Nnmbs

Va[add-3-numbs+add(a) 3  3p[add-4-nnmbs(p)
A p=add-3-nnmbs+add->add-4-nnmbs(a)]]

Vp[add-4-numbs(P) => 3a[add-3-numbs+add(a)
A p=add-3-nnmbs+add->add-4-nnmbs(a)]]

Definition
p=add-3-nnmbs+add->add-4-nnmbs(a) = [ add-4-nnmbs(p)

A inputl(P)=inputl(add3(a)) 
A input2(p)=input2(add3(a)) 
A input3(P)=input3(add3(a)) 
A input4(p)=input2(add(a))
A output(p)=output(add (a)).. 
A in(p)=in(add3(a))

  A out(P)=out(add(a))l

The definition of @binfunction is:

lOSpec @binfimction /  .opfbinfimction) .inputl(object) .input2(object)
=> .output(object) 

Preconditions binapply(.op, .inputl, ,input2)^undejined 
Postconditions binapply(.op, .inputl, .input2)=.output
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The axioms for this are:

Axinma for ©binfunction

Vap [[@binfunction(a) a  @binfunction(p) a  in(a)=in(p) a  out(a)=out(p) 
A in p u t 1 (a) =inputl(p) a  input2 (a)=input2 (p) a  op(a)=op(p)
A output (a)=o utp u t (P) ] Z) a=p ]

Vuxyftsllprecedes(s,t) a  [ s ^ l

[t^tl A x^undefined 
A y=^undeftned 
A u^undejmed
A hiniunction{{,s)^undejmed 
A binapply(biiifimction(f.s),x.y)9«^unde/îned 
A u=binapply(binfiiiictioii(f.ë),x,y)]]]

<-4 Ba[@binfunction(a) a  in(a)=s a  out(a)=t a  in p u tl (a) =x 
_________ ________A input2 (a)=y a  op(a)=f a  output(a)=u ]]___________

Finally we need the definition of plus itself:

Binfimction plus : integer x integer -> integer
Properties instance (aggregative-binfimction. plus) a  identity (plus)=0

The details of the definition of an  aggregative-binfunction are irrelevant 

here, and will be omitted for clarity, b u t it should be noted th a t the 

first line if th is definition tells us that:

Vxy[ [instance (x, integer) a  instance(y, integer) ] =)

instance(binapply(plus,x,y), integer)]

The first thing to note is th a t we can show th a t th is piece of surface 

p lan  perform s an  add-4-num bs operation on a,b,c, and d w ithout 

recourse to anything other them the properties of plus, © binfunction, 

add-4-num bs, and the axiomatic formulation of the surface plan itself 

(i.e. w ithout using any of the plans and overlays above). A brief (and 

simplified) account of how this is done is as follows:
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First note th a t there are two cases we have to deal with - the 

case w hen in(opl)9tj_ and the case when in(opl)=±. Assum e th a t the 

first case holds i.e.:

in (o p  1 )?̂ J_.............   (2 2 )

From statem ents 22, 1, 12, 13, 18, 19, the definition of plus, and the 

axioms for © binfim ction we can deduce tha t

out(opl)?tX................................................................................. (23)

A a.^undeftned........................................................................... (24)

A h^uTvdefined  ........................................................... ..(25)

A output(op 1 )?^und^ned...............................................  (26)

A p lu s ^ u n d e /in e d ............................. '.................................. (27)

A binapply(plus, a, h)^undejined  ..............................(28)

A output(op 1 ) =binapply(plus, a, b )...................................... (29)

A instance(ou tpu t(op  1 ), in teger).....................................(30)

From 23, and 4 we can deduce tha t

precedes(out(op  1 ) ,in(op2 ))...................................................(31)

in(op2)9tX ................................................................................. (32)

from which (in a  very similar fashion) we can deduce

out(op2)îél................................................................................. (33)

A in p u t l(o p 2 )îéu n d e/m ed  .......................................(34)

A c^undefined........................................................................... (35)

A output(op2 )?t undefined........................................................(36)

A p lu s^ tu n d e /in e d ................................................................ (37)

A binapply(plus, inputl(op2), c)^undefined  ..........(38)

A output(op2)=binapply(plus, inputl(op2), c ) ................. (39)

A instance(ou tpu t(op2), integer).....................................(40)
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From 33, and 5 we can deduce tha t

precedes(out(op2),in(op3))...................................................(41)

in (op3)9 t± ............. ;.................................................................. (42)

from which we can deduce

out(op3)?^l................................................................................. (43)

A in p u tl(o p 3 )9tu n d e /in e d ..................................................(44)

A d^imdefined............... i...........................................................(45)

A output(op3)?tunde/ined........................................................(46)

A plus^undefined ................................................................ (47)

A binapply(plus, inputl(op3), d)^undefined..................... (48)

A output(op3)=binapply(plus, inputl(op3), d )................. (49)

A instance(output(op3), in teger).....................................(50)

Now from 49, 39, and 29 we can deduce th a t

output(op3) -binapply(plus, binapply(plus,

binapply(plus, a, b), c), d) (51)

It then  follows from the axiom for add-4-num bs,the transitivity of thé 

precedes relation, 18, 19, 20, 21, 34, and 35 th a t there exists an  add- 

4-num bs operation, taking a, b, c, and d as inputs and whose ou tput 

satisfies 51.

We then have to deal with the second case i.e. when in(opl)=X. 

This is ra ther simpler, in th a t thé definition of precedes, X, and the 

transitiv ity  of precedes tells u s th a t out(op3)=X. From th is and the 

axiom for add-4-num bs we can deduce the existence of an  add-4-  

numbs operation taking a, b, c, and d as inputs.
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Note th a t in the above we have made a  lot of implicit use of the 

fact that:

Vxy[[3s[T(x,s)=y]] z> Vt[T(y,t)=y]]

for prim itive behaviours T, of which (of course) in te g e r  is one. A 

theorem  prover would of course have had to do th is explicitly. Also 

note th a t we essentially had to compute (a large part of) the transitive 

closure of the p recedes relation. If th is surface plan had  been m uch 

larger, possibly with intermediate actions between the actions we have 

show n, th en  the  direct control flow links betw een the  operations 

m ight no t have existed, and so com puting (a large p a r t of) the 

transitive closure of precedes would have involved a  lot more effort.

E^ven for these ra th er simple operations th is  is a  lot of work, 

especially for a  forward-chaining theorem  prover (corresponding to 

bottom -up analysis) which might have thousands of axioms to deal with 

if the plan library an d /o r the surface plan were large.

On the other hand, use of the plans and overlays can greatly 

simplify th is deductive process. Indeed, one view of the  p lans and 

overlays is th a t they are pre-proved lemmas which the theorem  prover 

can  then  use. Using the plans and overlays, the recognition process 

goes like this:

From the definition of the two-adds plans, and 4, 6 , 7, 9, 10, and 

14 we can deduce the existence of a  two-adds plein, consisting of op l 

and  op2. If we call this plan two-adds 1 then we have immediately:

tw o-ad d s(tw o-ad d sl) ....................................................... (230

A addl (two-adds l)= o p l..................................... (240

A a d d 2 ( t w o - a d d s l ) = o p 2  ..........................................................( 2 5 0
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Using the axioms for tw o-adds->add-3-num bs we can deduce the 

existence of an  ad d -3 -num bs operation (let u s  call it ad d -3-num bs 1) 

satisfying the following:

add-3-num bs(add-3-nunibs 1 ) ............................................. (260

A input 1 (add-3-num bsl)=a.................................................. (270

A in p u t2 (a d d -3 -n u m b sl)= b .......................... .................. (280

A in p u t3 (ad d -3 -n u m b sl)= c ............................................(290

A ou tpu t(add-3 -num bsl)= ou tpu t(op2)........................ (300

A in(add-3-num bsl)= in(opl).............................................. (310

A o u t(ad d -3 -n u m b sl)= o u t(o p 2 ).................................... (320

From the axiom for the plan add-3-num bs+add we can now deduce the 

existence of an  a d d -3 -n u m b s+ a d d  p lan  (add-3-num bs+add 1 say) 

satisfying:

add-3-num bs+add(add-3-num bs+addl)...........................(330

A add3(add-3-num bs+addl)=add-3-num bsl.................. (340

A add(add-3-num bsl)=op3.................................................. (350

From th is and  the axioms for the overlay add-3 -n iim bs+ add-> add-4 - 

num bs we can deduce the existence of an add-4-num bs operation (add- 

4 -num bsl say), satisfying:

add-4-num bs(add-4-num bsl)............................................. (360

A Input 1 (add-4-num bsl)=a.................................................. (37 )

A in p u t2 (ad d -4 -n u m b sl)= b ........................................... (380

A input3(add-4-num bs l)=c.................................................. (390

A in p u t4 (a d d -4 -n u m b s  l)= d ........................................... (400

A output(add-4-num bs 1 )=output(op3).............................. (410

A in (add-4 -num bsl)= in (op l).............................................. (420

A out(add-4-num bsl)=out(op3).......................................... (430
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Note th a t if we then  assum e (or prove from other parts  of the plan) 

th a t in(opl)9t± then  we can immediately deduce from the existence of 

this plan that:

precedes(in(op 1) ,out(op3))

A out(op3);^l

A output(op3) =binapply(plus,

binapply(plus, binapply(plus. a, b). c), d)

w ithout having to compute the transitive closure of precedes.

It should be clear from the above th a t the plan calculus provides 

an  extremely powerful technique for reasoning about program s, both 

from first principles, and from recognition of plans (clichés) occurring 

in  them. Indeed the example ju s t  analysed, although simple, illustrates 

the ability it provides to recognise w hat a  program  does even if the 

program m er h as  used plans not in the library. For if the plans and 

overlays used had not been there we have showed how a  plan calculus 

based  system , using  a  theorem  prover, could still recognise the 

function of the surface plan. Equally well, if the surface plan being 

analysed had corresponded to:

2 *((a+b)/2 +(c+d)/2 ) (say)

instead of

a+b+c+d

it could still have recognised the a d d -4 -n u m b s operation  being 

performed from the axiomatisations of plus, times, and divides. On the 

other hand  we have shown how, when the program m er does use 

standard  plans (and it is hoped th a t eventually the library will contain 

enough p lans to be applicable to m ost programs!) th is  deductive 

process can be greatly simplified.
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Although we have shown how the deductive process is simplified 

by the use of plans and overlays, it is still a  lot of work for a  standard  

theorem  prover to do this. This is because such  a  theorem  prover 

(being general purpose) cannot make use  of the inheren t s tru c tu re  

presen t in surface plans, and the axioms corresponding to plans and 

overlays. T his s tru c tu re  is m ade exp lic it in  th e  g rap h ica l 

representation. So if we could write a  special purpose theorem  prover 

with knowledge of th is structu re (perhaps indexing and grouping the 

axiom s and derived theorem s in clever ways) then  th is deduction 

process could be made m uch more efficient in th a t it would avoid blind 

alleys and unnecessary  work. In the deductive process above we 

showed none of the additional work a  theorem  prover m ight have 

done, b u t only the direct proof of the existence of the add-4-num bs  

operation. In chapters 5 and 7 we will present a  graph parser, capable 

of recognising the occurrences of plans in the surface plan treated as a  

graph, by treating plans and overlays as rules of a  graph gram m ar. 

Because th is parser makes use of the graph-like structure of the rules 

and  surface plan, it can be thought of as ju s t  such a  special purpose 

theorem  prover.

Complete grammatical entities found by the parser correspond to 

theorem s th a t have been proved from the axioms for the plans and the 

“facts" describing the initial surface plan. The partia l gram m atical 

entities th a t are found can be viewed as partia l proofs, where the 

information in a  partial entity specifying w hat would need to be found 

in  the graph in order to complete the entity corresponds to w hat still 

needs to be shown in order to complete the proof. In th is case near 

m iss recognition and repair can be viewed as being similar to M urray’s 

[19861 TALUS system  which repairs bugs by repairing a  proof of the
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equivalence of the program to a known program, except th a t in th is 

case we are repairing the proof of equivalence to a  known plan.
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Chapter 4.

E^ensdons and M odifications o f the Theory.

W hen trying to recognise plans using a  graph p arse r there are 

various situations which can cause problems. The first of these is to do 

with problems caused by non-standard (i.e. not in accordance with the 

plan library) control-flow. This can often resu lt in  code for which the 

graph is apparently unrecognisable as the cliché it actually represents. 

This is particularly so when combined with another problem  th a t can 

occur. This is associated with optim isations - if a  program m er has 

e ith e r

(i) m ade unforeseen optim isations involving sharing  p arts  of 

two or more plans in their code, or

(ii) failed to make optimisations assum ed by the plan library i.e. 

a  plan involves some action feeding its  output(s) to more 

th an  one place, b u t the program m er h a s  duplicated the 

action instead,

th en  th is can give rise to problems for a  graph based  p arse r as in 

either case the surface plan th a t is being analysed differs from w hat 

one would get from pure rule rewriting (treating the p lan  library as 

productions in a  grammar).

4.1 Control-Flow Environments

In order to d iscuss the problem s caused  by n o n -s tan d a rd  

control-flow, and the problems caused by optim isation (or the lack of 

it), we need to look at control flow in a  bit more detail. The first thing 

to rem ember is th a t precedes is a  total ordering on the situations in a
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program, and th a t 1  (used to denote situations th a t are never reached) 

is a  bottom element of this ordering i.e.

Vs[precedes(s,±)l

Of course, which situations are not reached will vary between instances 

of actual com putations (runs of the program) represented by the graph. 

This m eans th a t for m ost situations in the graph, we canno t say 

definitely th a t they are equal to X, or th a t they are not, although we can 

state the conditions under which they will be X. However, we can often 

say th a t a  situation s will be X if and only if some other situation t  is X. 

For instance, all the situations occurring on the succeed side of a  cond 

will be X if the test fails i.e. if the succeed situation of the test is X. So 

we can  define an  equivalence relation « on the set of situations in a  

program by:

s«t = [s^± t^ l ]

We will refer to the  equivalence classes u n d er « as  control-flow 

environm ents, and say th a t s and t  are in the sam e control-flow  

en v iro n m e n t if s«t. We will write env(s) to denote the control-flow 

environm ent in which situation s occurs. Note th a t the form of the 

axiomatisation of operations:

V...st[ [precedes(s,t) a  [s?̂ X z) [t#X a  . . . ] ]

<-> 3a I op(a) A in(a)=s a  out(a)=t a  . . . ]  ]

implies tha t the input and output situations of operations m ust always 

be in the sam e control flow environment. This m eans th a t for any 

operation o p l, we can refer to the control flow environm ent envgpi of 

the operation.

If S and T denote control-flow environments, then  we can define 

the relation subenv(S.T) by:
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subenv(S, T) = 3a[test(a) a  in(a)G S a

[env(fail(a))=T v env(succeed(a))=T]]

We can now define a  relation encloses on control-flow environm ents 
hy:

VST [encloses(S.T) <-> [subenv(S.T) v 3C[ subenv(S.C)
A encloses(C.T) 11

and then define a  relation <cf on control-flow environments by:

S < c fT  = S=T V encloses(S,T)

which defines a  partial ordering on control-flow environments. We will 

call two control-flow environm ents S and T co m p arab le  iff either 

S<c fT or T<c fS holds, and we will say S is the outerm ost of two 

comparable control-flow environments S and T iff S<cfT, otherwise we 

will say it is the  innerm ost. We will also denote the control-flow 

environm ent containing X by X. It should also be noted tha t, as a  

resu lt of the axiomatisation of tests, the above definitions imply that:

I subenv(S.T) a  S=X] z> T=X

This in tu rn  implies that:

[ encloses(S,T) a  S=X] z> T=X

It should also be noted th a t in a  consistent program, if we assum e th a t 

the initial situation s q  (the s ta rt of the program) is not equal to X, and 

if we assum e th a t any external files ̂  used by the program  contain 

suitable sequences of objects, then it follows from the axiom atisations 

of all the operations occurring in a surface plan th a t the only way in 

which a  situation can equal X is by being in a branch of a  cond. As a  

re su lt every control-flow environm ent T (apart from s q ) h as a  test

We Include terminal Input and output as a type of file.
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Test(T) associated with it. The form of the axiom atisation of tests also 

tells u s  th a t every test X (say) has some condition C(X)2 associated with 

it such tha t

[succeed(X)9t l  o  {in(X)9t l  a  C(X)|]

A [faÜ(X)9t± <-̂  [inOQ^l A -nC(X)ll 

which is equivalent to:

[env(succeed(X))5t i o  [env(in(X))9^lA C(X)]]

A [env(fail(X))?tX<-> [env(in(X))9t±A -iC(X)]]

We will denote env(succeed(X)) by succ(X) and  env(fail(X)) by fail(X). 

This m eans th a t we can associate a  condition Cond(T) w ith every

control-flow  environm ent T. If we call th e  in itia l control-flow

environm ent (the one which contains the initial situation  so of the

program) then  we define:

Cond(Eo)=true

The condition  for o ther control-flow  en v iro n m en ts is defined 

recursively by:

dfF l- A C(Test(E)) if E is succ(Test(E))
“   ̂ lCond(env(in(Test(E)))) a -.C(Test(E)) if E is fail(Test(E))

We now note th a t the following relationship holds between a  control- 

flow environment E and its condition Cond(E):

E t̂ I ^  Cond(E)

Since any operation op in the surface plan occurs in a  control-flow 

environment this tells us that:

envop?î=l<-> Cond(envop)

2 Note that C(X) is the actual condition tested for by the test, not the entire sequence of 
conditions which must be true for this part of the program to be reached.
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We will call Cond(envop) the controlling condition for the action op, 

and the above simply states that any operation is executed if and only if 

its controlling condition is true. We can now rewrite the axioms for an  

operation in term s of the controlling operations for the  situations 

involved, as follows:

V...st[ [precedes(s,t) a  [Cond(s) Cond(t)l a  (Cond(s) => ...11 

f-» 3a [ op(a) A in(a)=s a  out(a)=t a  . . . ]  ]

4.2  Generalised Control Flow Environments

Up until now we have been treating control-flow environm ents as 

the  objects which define their associated conditions. We will now 

sw itch viewpoint and regard the conditions as defining the control 

flow environments. For a  condition X we define:

Env(X) = (s: s^^l X}

This is a  m uch more general notion since the condition X can be any  

condition, no t ju s t  one associated with an actual sequence of tests  in a 

program. We will refer to such environmerits as generalised control- 

flow en v iro n m en ts , and  the associated conditions will be called 

genersdised controlling conditions. For operations in the program this 

switch of viewpoint edso entails regarding their controlling conditions 

as fundam ental, rather than  the control-flow environments. For actions 

occurring in the surface plan for a program the controlling conditions 

are simply the ones associated with the (non-generalised) control-flow 

environm ents discussed earlier. However, it wül tu rn  ou t th a t allowing 

operations and plans found by the recognition process to be associated 

with generalised controlling conditions rather than  ju s t  with the actual 

conditions associated with tests in the program, has far-reaching and
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im portant implications, and enables us to deal with the first two of the 

problems discussed above.

So, ra th e r  th a n  associa ting  control flow or control-flow  

environm ents w ith each operation we will associate a  (generalised) 

con tro lling  condition . T ests will get th ree  su c h  ex p ressio n s, 

corresponding to their in, succeed, and fail controlling conditions, and 

jo ins will similarly get three controlling conditions. These controlling 

conditions are simply those associated with the appropriate  (non

generalised) control flow environments. Each such condition will be a 

svmbolic expression. Each test X, with condition C()Q, is given a  unique 

variable (e.g. Z), which denotes C(X), and so, if the symbolic expression 

denoting the controlling condition for in(X) is P (say), then  succeed(X) 

and any actions and tests in the same control flow environment will get 

(P A Z), and  fail(X) and  any operations and  te s ts  in  th e  sam e 

environm ent will get symbolic expression (P a  -,Z). The actions in the 

in itial environm ent simply get true. This can all be done by the 

transla tion  program  as described in C hapter 6 . The re su lt of th is 

process is illustrated  in Figure 4.1. Note th a t the length of these 

expressions depends on the level of nesting of conditionals th a t occurs 

in  the program . In m ost program s th is is no t very large, so the 

expressions will not be terribly long. It should also be noted th a t such 

expressions can be used in two ways - the first is to reason with them  

using prepositional logic as will be shown later, and the second is to 

use  them  as names of environments. In m ost cases actions and so on 

recognised by the recognition system  will ac tually  have control 

conditions corresponding to the original control environm ents in the 

program  (i.e. those defined by sequences of tests). In th is  case the 

relation encloses(A,B) defined earlier can be checked for by simply 

checking th a t the expression for A is a  prefix of the expression for B 

e.g. if A has expression XaY as its controlling expression, and B has
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expression X aY aZ then  it follows th a t encloses(A,B) holds. Note also 

th a t XaYaZ => XaY holds, and in general

encloses(A,B) <-> Cond(B) 3  Cond (A)

holds. From now on we will treat this as the definition of encloses.

4 .3  Plan Conditions and Control Flow Environments for Plans (Simple 

Plans)

Now we will consider how plans are handled. We note first of all 

th a t the constraints fall into two categories. The first of these is simply 

the  collection of d a ta  flow co n stra in ts  and  type inform ation on 

operations. These are w hat the parser described in  C hapters 5 and 7 

actually checks. The second is a  set of control flow constraints. These 

can be rewritten in the form of relationships between the control-flow 

environm ents (and hence the controlling conditions) of the actions 

occurring in the plan. There is actually a  th ird  class of constra in ts 

implicit in the com pact notation for p lans which is m ade explicit in 

the axiomatic form of the plans - this class consists of a  se t of precedes 

re la tions between various situations occurring in  the plan. These 

relationships actually come from the cflow constra in ts, and will be 

separa ted  ou t a s  described below. Finally there is an o th er se t of 

constrain ts consisting of conditions th a t the d ata  objects m ust satisfy 

(e.g. type information). Both of these last two types of constraint will be 

assum ed to be checked for by some other m echanism  (e.g. when the 

parser recognises a plan, the plan will be passed to a  theorem  prover 

to  check these other constraints). So from now on we will assum e 

when discussing plan recognition tha t the plan does not have any such 

constraints or, equivalently th a t they are all true. In Chapter 9 we will 

re tu rn  to the subject of these other constraints.
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The general form of the defining axiom for a  plan P w ith roles 

rolei...rolen is as follows:

VRi...Rn [ [T(Ri...Rn) a  D(Ri...Rn) a  Reqs(Ri...Rn )]

3a[P(a) A rolei(a)=Ri a  . . .  a  rolen(a)=RnlI

where T(Ri...Rn) represents the set of precedes inform ation and type 

constraints on data objects, D(Ri...Rn) represents the se t of constraints 

on the types of the actions and on the data  flows between them , and 

R eqs(R i...R n  ) is the set of control flow constrain ts. Now w hat the 

parser actually finds is a  set of operations Ai...An such  th a t D(Ri...Rn) 

holds, and assum ing T(Ai...An) is satisfied, it now has to check th a t the 

control flow constra in ts  Reqs(Ai...An) are satisfied. Now the  roles 

R i...R n have an associated set of controlling conditions ci...Cm^. and it 

will be shown below how Reqs(Ri...Rn) can be rew ritten in  term s of 

Cl...Cm- Now the plan instance (i.e. Ai...An) has an  associated set of 

control-flow  environm ents envi...envm . with associated  controlling 

conditions Xi...]Qn, which satisfy tlie following:

[ e n v i ; 6JLf4  X i l  a  . . .  a  [e n V n i9 -̂L<-  ̂ X m l  

Now a  plan is only valid if the following holds for it:

Reqs(Ai...An) a  [en v i^ tl^  Xi] a  . . .  a  [ e n v m ^ ± < r ^  Xml

which simply states that the roles of a valid plan both  execute when 

they  do (as implied by their control-flow environm ents) and  m ust 

satisfy the requirem ents of the plan. We will refer to th is requirem ent 

as the consistency requirem ent for the plan.

 ̂Note that there may be more C| than Rj since some of the roles may be tests or joins, and 
these have more than one control flow environment associated with them.
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So the p arser m ust check th a t the consistency requirem ent 

holds for any plan it has tentatively found. It will do th is by checking 

th a t a  condition, known as the plan condition, is satisfiable for the 

plan. If the plein condition is simply true, then  the plan is valid and 

satisfies the consistency requirem ent. If the p lan  condition is no t 

satisfiable (i.e. the plan condition is always false for Ai...An) then  Ai.. JVn 

cannot be the roles of a  valid plan. If the plan condition is neither 

simply true  or false, then  we have recognised a  p lan  conditionally. If 

the p lan  is ‘executed’ under circum stances when the plan condition is 

no t tru e  then, although (some of) the actions have been carried out, 

th is execution instance cannot be regarded as an  execution of the 

plan, b u t merely as the execution of (some of) its components. If on the 

other hand  it is executed’ under circum stances which m ake the plan 

condition true, then under these circum stances we can regard it as the 

execution of a  valid plan.

For th e  m om ent we will assum e th a t  th e  p lan s  we are 

considering are simple i.e. they have a t m ost a  single te s t/jo in  (cond) 

in  them . More complex plans will be d iscussed  la ter. The p lan  

condition for a  simple plan is very simple to construct. Suppose we 

have a  p lan  w ith action roles R i...R n  w ith corresponding control 

conditions ci...Cni, and control flow requirem ents Reqs(Ri...Rn). Note 

th a t the ci...Cm represent variables which denote whatever the actual 

controlling conditions may be w hen a  p lan  is recognised in the 

program. Figure 4.2 illustrates this convention for trailing-generation- 

and-search. Now Reqs(Ri...Rn) always consists of the conjunction of a  

se t of control flow requirem ents. These are all of the form (although 

later we will introduce other forms):

cflow(s,t)
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where s and t  are input or output situations of some of R i...R n. This 

means:

precedes(s.t) a  [ s ^ l  <-> t?t_L ]

As discussed above precedes(s,t) is bundled in  w ith T(Ri...Rn), so we 

are left with:

[s^l <-> t^tl 1

From our definition of control-flow environm ents and  controlling 

conditions, we know th a t [s^± => t;&_L ] if and only if Cond(s) => Cond(t), 

and as a resu lt (s^tJ. <-> t ^ l  ] if and only if Cond(s) <-» Cond(t). This 

enables u s  to express all the control flow con stra in ts  in te rm s of 

controlling conditions.

So all the constraints are of the form:

Cl Cj

and the plan condition is simply the conjunction of all of these coming 

from Reqs(Ri...Rn). Now when an  actual plan is found by the parser, we 

get actual roles Ai...An m atched against the roles R i...R n of the plan 

definition. These roles have actual control conditions Xi...Xm m atched 

aga inst ci...Cm in the rule. The plan condition for th is actual plan 

instance is therefore the plan condition for the rule, with ci...Cm 

substituted for by Xi...!5Qn- It is this substitution which guarantees th a t if 

a  role executes in a  plan when the plan condition is true  th en  the 

req u irem en ts  for th e  role are sa tisfied , an d  th a t  w hen  the  

requirem ents are satisfied then  the role will execute. We will now 

illustrate this by example.
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Consider the abs plan^ given below:

Temporal Plan abs
Roles .if[@binrel) .end(join-output) .action(@fimctioii)
Constraints .if.op=less .if.two=0 .action,op=neg 

.action.input=. if. one 

.end.fail-input=.if.one 

.end. succeed -input=. action. output 
cflow(.if. succeed, .action.in) 
cflow(.action.out, .end.succeed) 
cflow(.if.fail, .end.fail)

In the axiomatic formulation of the above p lan  the control flow 

constraints tu rn  into:

precedes(.if.succeed,.action.in) a  [.if.succeed^tl <-> .action.in^tJ. ] 

precedes(.action.out, .end.succeed) a  [.action.out;&_L 4 4  .end.succeed^tJ. ] 

precedes(.if.fail,.end.fail) a  [.if.fail^^l <-> .end.fail^^l ]

As m entioned earlier, the precedes part of these will be dealt w ith 

separately, and the rem ainder are equivalent to assertions abou t the 

contro lling  conditions for the associa ted  s itu a tio n s  i.e. if the  

controlling condition for .if.succeed, .if.fail, .end.succeed, .end.fail, and 

.action, are Csucceed. Cfaii, Jsucceed. Jfail and A respectively, then  the 

above tu rns into:

[^succeed <-> A] a  (A <-> Jsucceed 1 ^ [Cfail <-> Jfail 1 

which is the plan condition for this plan.

The associated rule (viewed as a  graph) is shown in Figure 4.3. 

Now consider the surface plan shown in Figure 4.4. A ssum ing the 

parser has m atched all the roles of the plan rule against the surface

^  This is essentially the plan as given in Rich[1981). Later on we will show that the 
control flow constraints are actually much stronger than is necessary since they 
prevent us from recognising valid variants of the plan. This is true for most of Rich’s 
plans, and we will discuss the conditions under which they can and should be weakened.
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plan and checked th a t all the data  flows are satisfactory, then  we have 

the following values for the controlling conditions in  the plan:

A P a X

Csucceed P A X

Cfail P a -hX

Jsucceed P a X

Jfall P A ^

Cin P

Jout P

Substituting these into the plan condition gives us the following:

[(P A X) (P A X)] A [(P A X) (P A X)] A [(P A -iX) W  (P A -nX)]

w hich reduces to true. This m eans th a t the p lan  is com pletely 

satisfactory . Now suppose the program  being analysed  had  the 

following piece of code in it:

y:= -x;

if x<0 then 
z:=y

else
z:=x;

corresponding to the graph shown in Figure 4.5. The p arse r will 

tentatively recognise this as an instance of the abs plein on the beisis of 

the d a ta  flows, and then  will proceed to evaluate the p lan  condition. 

This time we get the following values for the controlling conditions in 

the plan:
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A P

Csucceed P a X

Cfall P A-nX

Jsucceed P a X

Jfall P a - tX

Cln P

Jout P

and substitu ting these into the plan condition we get:

[(P A  X) P]1 A ICP A X) P] A I(P A -nX) (P A -nX)]

which after simplification reduces to:

P=>X

Up until now we have been talking about plans ‘executing’ as if it was 

the plans we were interested in. Of course this is not quite accurate - it 

is the operations implemented by plans th a t we are really interested 

in. The sw itch of viewpoint from p lans to operations is done by 

overlays. So suppose we had an overlay abs->absop (say), which took u s 

from the abs plan to some operation which re tu rns the absolute value 

of its input. These could have been defined as follows:

lOSpec absop /.input(in teger) => .output(lnteger)
Postconditions .output=absolute-value(.input)

TemporalOverlay abs->absop
Correspondences absop.input=abs.if.one a  absop.output=abs.end.output 
______________ A absop.in=abs.if.in a  absop.out=abs.end.out_________

This tells u s  w hat the inpu t and ou tpu t situa tions of the a b so p  

operation are in term s of situations in the abs plan  In controlling 

condition term s it tells us th a t the controlling condition for the absop
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operation is the same as tha t of the test and join in the abs plan, in the 

case of valid plans.

However, in this case discussed above we have a  conditional plein. 

W hat are its input and output situations, and w hat is its  controlling 

condition? The general answer to this is as follows:

Suppose we have a  plan instance P, and an  overlay P >@ with the 

inpu t situation of P given by sp, and outpu t situation given by tp, and 

the controlling condition of 9  given by Cond(env(sp)) in  the case of a  

valid plan. Then, for a  plan instance P with condition C, we define:

{sp  if  Cond(env(sp))AC h o ld s  
U  otherwise

and similarly for out(Q). In other words we regard the input situation of 

9  as being equal to JL if either the input situation given by the plan is ±, 

or the plan condition does not hold. Note th a t for valid plans i.e. those 

whose plan condition is true, this ju s t  simply reduces to the original 

definiUoii.

It should  also be clear from the above th a t the controlling 

condition for 9  is simply given by:

Cond(env(sp))AC

This is interpreted as meaning th a t a  conditional p lan  executes in  a  

generalised control flow environment, whereas a  valid plan executes in 

a  norm al (non-generalised) control flow environment.

Now, returning to the abs example where the plan condition was 

P z> X, the controlling condition for the absop operation is therefore 

given by Pa(P z> X). This reduces to:

PaX
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This implies th a t we have recognised the plan provided it executes in 

an  environm ent in which both P (whatever it is), and  X (i.e. x<0) are 

true i.e. we have recognised the plan bu t only th ink  it works when x  is 

negative. Clearly, we would have hoped to recognise th is as an  abs plan 

in  environm ent P, since th is  is actually  w hat th e  code does. The 

problem here, however, is not the generalised control flow m achinery 

we have set up. For suppose we had a  similar plan involving a  square 

root operation, and the plan specified th a t th is  happens on the x>0 

side of the test. If the programmer had actually w ritten code in which 

the  square  root operation appeared before the te s t th en  th is  code 

would clearly only work conditionally (i.e. provided x  >0). So the 

recogniser is actually only doing what it should. The problem in the abs 

case is th a t the abs plan is actually over-specified. It insists  th a t the 

negation operation happen inside the conditional, w hereas th is is not 

essential since the test is not actually setting up  a  precondition of the 

operation, unlike the square root case. The problem is th a t in Rich’s 

[1981] plan library cflow  is used for all control flow constraints, and 

th is is too strong a  constraint.

4 .4  Generalised Cflows

In order to enable u s to express weaker control flow constraints 

th an  ju s t  cflow, we define the following:

sctlow(s,t) = [s#_L =) t?t± J

and

ncflow(s,t) = [t#± 3  1

and

pcflow(s,t) = precedes(s,t) a  ncflow(s,t)



130

The in terpretation of these is th a t an scflow constra in t between two 

situations m eans th a t s is sufficient for t  i.e. if s is reached then t  m ust 

be reached (or have been reached) as well, b u t places no constraints on 

w hether or not s is actually reached if t  is reached. On the other hand, 

an  ncflow constraint tells us th a t s is necessary for t  i.e. t  cannot occur 

un less s occurs, b u t places no constra in ts on w hether or no t t  is 

actually  reached if s is reached. A pcflow constra in t between two 

situations s and t  tells us tha t s is necessary for t, and th a t s m ust occur 

before t.

We note first of all th a t cflow(s.t) is equivalent to 

scflow(s,t) A pcflow(s,t)

and th a t Rich uses cflow constraints everywhere in  his p lans w hen 

there is a  data  flow between two actions in the plan, or when an  action 

occurs on one or o ther side of a  testi In troducing  the  w eaker 

constra in ts scflow and ncflow enables us to be less restrictive w hen 

expressing plans. When there is a  data flow between two actions A and 

B such th a t A produces a  value used by B, and A and B are expected to 

be in the same control flow environment, then  we should use a  cflow 

constrain t as Rich does. However, if there is a  d a ta  flow between two 

actions A and B such tha t A produces a value used by B, b u t B could be 

in a  different control flow environment from A. (as is usually the case 

with an  action feeding its outpu t to a join) then  a  pcflow constra in t 

should be used, since we w ant to express the fact th a t for B to execute, 

A m ust execute first. If we wish to express th a t if some condition is 

satisfied th en  we w ant to perform some action, then  an  scflow 

constraint should be used, and if we wish to express the fact th a t some 

action should be performed if and only if some condition is satisfied 

then we should use both an ncflow and an scflow constraint. So, in the
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square root example above we need an ncflow and an  scflow constraint, 

b u t in  the abs example we only need an scflow constraint. It should be 

noted th a t th is m eans th a t all constraints can be written in one of the 

two forms:

Az)B or Af->B 

So, suppose the abs plan is redefined as follows:

Temporal Plan abs
Roles .ifl@binrel) .end(join-output) .action(@fimction) 
Constraints .if.op=less .if.two=0 .action.op=neg 

.action.input=.if.one 

.end.faÜ-input=.if.one 

.end.succeed-input=.action.output 
 ̂ scflow(.if. succeed,.action.in)

cflow(.if.succeed, .end.succeed) 
pcflowf.action.out, .end.succeed) 
cflow(.if.fail, .end.fail)

then  we get the following plan condition:

[^succeed 3  A] a  [Jsucceed ^  A] a  [Jfall <  ̂,Cfaii J a  [Csucceed ^  Jsucceed 1

Now w hen m atching against the graph in Figure 4.5 we still get the 

sam e values for the control conditions in the plan i.e.

A P

Csucceed P a X

Cfall P a - X

Jsucceed P a X

Jfall P A ^

Cln P

Jout P

[Csucceed ^  A] a  [Jsucceed ^  A] a  [Jfaii Cfail 1 a  [Csucceed ^  Jsucceed Jbut 

when we substitu te  these into the plan condition we get:



132

[(P A X) 3  P] A [(P A X) 3  PI A [(P A -X) (P A -nX)]

A [(P A -X) (P A -nX)]

which simplifies to true. So we have correctly recognised the plan as 

being valid (and unconditional).

4.5 More Complex Plans and their Plan Conditions

So far we have only discussed plans with a t m ost one cond inside them. 

Constructing the plan condition for a  more complex plan, i.e. one with 

more than  one cond, is similar, b u t more complicated. Consider the 

rule shown in Figure 4,6, and suppose its control flow constraints are 
given by:

P 3R  A

Q=>S A
T 3V  A 

U 3M  a  

K3V A 

L 3 M  a  

T<->K A 
TJ<-̂ L A
P<-XJ A

J 3R

Now we analyse th is set of constraints, and break it up  into disjoint 

su b se ts  such  th a t each subset is a  maximal se t of m utuallv  in te r

dependent constraints. By this is m eant tha t each subset S satisfies the 

following two properties:

( 1 ) For each constraint C in S, all other constrain ts involving 

either of the two variables in C are also in S, and

(2) S cannot be broken down any further into subsets satisfying 

property (1).
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testl

test2

H mR

Figure 4,6 
A Multiple Cond 

Rule

The nested "sub
plans" shown 
contribute to the 
plan condition for 
the rule as 
described in the 
text.

Figure 4.7 
Rule With Nested Sub-Plans
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So, for the above rule, the maximcil m utually in ter dependent subsets 

are:

{P3R, J=)R, P<^J} {Qz>S} {ToV, Kz>V. T<^K} {U=>M, LoM .UoL}

T hese su b se ts  essen tia lly  correspond to d ifferent contro l flow 

environm ents w ithin the rule. They correspond to constra in ts which 

m ust be satisfied in each environment. Now although these subsets are 

in d ep en d en t in  te rm s of the  variables involved, they  are  no t 

in d e p en d en t in  th e  sense  th a t  the  env ironm ent of a  te s t  is 

“responsible” for setting up conditions so th a t the constrain ts in each 

sub-branch  of the te st are satisfied. So, in th is rule (Figure 4.6), there 

is a  condition imposed on test2, namely that:

S A  (T<->V A  V<->K A  T4“>K) a  a  a  U < - > L )

should hold. This is equivalent to regarding the test test2  as being part 

of a  sub-p lan  w ith its own plan condition, and the above expression 

gives the true generalised controlling condition for th is test. Note how 

the  ex tra  p a rts  of th is condition come from the  su b se ts  of the 

co n s tra in ts  corresponding to T and U, i.e. the fail and  succeed 

environm ents of the test. If th is condition does no t hold a t the te s t

then  we cannot be sure th a t the constraints for the branches of the

test will be satisfied when the plan executes.

This m eans th a t the constraint Qz>S should really be:

Q=>[S A (T<^V A V<->K A T<^K) A (U<->M a  M<^L a  U<->L)1

So conditions in p lans should really be propagated up  the p lan  as 

implied in Figure 4.7. This m eans tha t the plan condition for the rule 

above is:
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[Pz)R A Jz)R A Pe>J]

A [Qz3[S A (T<->V A V<->K A T<->K) a  ( U < - > M  a  M < - > L  a  U < - > L ) ] J  

We will re tu rn  to this example towards the end of the chapter.

4.5 The Collapsing Operation

W hen a  program m er has m ade un fo reseen  op tim isa tions 

involving sharing  p arts  of two or more p lans in th e ir code, the  

resulting surface plan can be different from w hat one might expect. An 

example is shown in Figure 4.8, where the programmer has decided to 

implement a  plan given by rule a) in the figure, using rules b) and c) to 

im plem ent the subplans, which should give rise to the plan d) as a  

resu lt. However the program m er has realised  th a t  th is  involves 

redundan t com putation and has implemented the plan as graph e). A 

theorem  proving system  based on the formal sem antics of the plan 

calculus would have no problems with this, since there is nothing in 

the axioms to prevent such sharing (we would ju s t  end up  deducing 

th a t the two sub-plans have the same inpu t situations), b u t a  graph 

recognition process might. Discussion of how th is is dealt with will be 

delayed until the next chapter where a  parsing algorithm for flowgraph 

gram m ars will be presented which explicitly allows such  sharing. 

Indeed the parse r would have to go to quite a  lot of trouble (by 

im plem enting w hat we have called the no-sharing check) to prevent 

th is from happening. The main point to note here is th a t th is sharing 

of sub-parts of plans is allowed by the underlying plan calculus, th u s 

justifying our use of a  parser which also allows it.

On the other hand, the case where the programmer has failed to 

make optim isations assum ed by the plan library (i.e. a  plan involves 

some action feeding its output(s) to more th an  one place, b u t the 

programmer has duplicated the action instead) is more problematical.
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a) — X

b) D

c) B E

d)

e)

Figure 4.8 
Structure Sharing
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An example is shown in Figure 4.9(a). This shows the case where a 

program m er has performed some action twice in the program , when 

they could have performed it only once, as shown in Figure 4.9(b). An 

example in code might be:

y:=f(a)+c;

z:=f(a)+d

We w ant first of all to recognise tha t an  action has been repeated, 

and secondly to realise tha t this is equivalent to:

w:=f(a); /*f has no side effectsll*/ 
y:=w+c;

z:=w+d

W hat th is am ounts to is the need to recognise graphs like those in 

Figure 4.9 as  equivalent. Doing th is really am ount to identifying the 

duplicated actions and their outputs, and operations for which this can 

be done will be called collapsible.

Now it m ight be wondered why this is an  issue. Why can 't all 

operations with the same inputs be collapsed? The issue is not even 

th a t we have specified th a t f has no side effects, for if it did it would 

have as inpu t some of the m utable functions, and would ou tpu t new 

values for some of these. In this case the second occurrence of f would 

have different inpu ts , so the  com m ent w as really for clarity  of 

exposition. It tu rn s  ou t th a t in fact m ost operations w ith the same 

in p u ts  can be collapsed, b u t no t all. The problem can be seen by 

considering Figure 4.10. The point here is th a t even though the two
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a) P rogram

b) Rule

Figure 4.9 
Program With Unnecessarily 

Duplicated Actions

Two I set
Rules I find!

find I and I set
firsti I find I

A.
set set
find find

A graph tha t 
should not be 
collapsed

Figure 4.10 
The set-find example
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se t-fin d  operations^ have the same inputs, their ou tpu ts  are not the 

sam e value, since one has been implemented by a  find-first operation, 

and the other by a find-last operation®. The point here is not th a t we 

have to worry about w hether or not two operations th a t we wish to 

collapse have been implemented by the same underlying plan or not, 

since th is would be unnecessarily restrictive. For in stance it would 

prevent us from recognising th a t the o u tp u ts  from a  bubb le-so rt 

procedure and a  merge- sort procedure were the  sam e if the  two 

procedures received the same inputs. The real problem with set-find is 

th a t it is not determ inistic i.e. its definition tells u s  w hat properties its 

ou tpu t satisfies, and guarantees tha t such an object exists, b u t does not 

tell u s  which object it actually is, since there could be many. Hence one 

possible implementation, using a  list to represen t the  set, could find 

th e  firs t elem ent of the list satisfying the relevant property, and  

ano ther im plem entation, could find the la s t elem ent satisfying the 

property. Since these objects are different, we cannot identify the tie- 

points representing them.

It follows from this th a t the only operations which are collapsible 

are the deterministic ones i.e. those which, given a  se t of inputs to the 

operation, have uniquely determ ined ou tputs. To m ake th is  precise 

consider an  operation op, whose specification and  corresponding 

axioms (rewritten in term s of controlling conditions) are of the form:

lOSpecop in i(B i)...inn(B n) => outi(C i).. outm(Cm)
Preconditions lepre(ini inn)
Postconditions leppst(ini,... ,in n .o u ti,... ,outn)

and

® We are treating sets here as If they were bags i.e. they are allowed to contain repeated 
elements.
® find-first and find-last are not plans currently in the library. They are fictional plans 
with suggestive names to illustrate the problem.
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Vap [ op (a) A  op(P) A  ini(a)=ini(P) a  . . .  a  inn(a)=inn(P)
A  outi(a)=outi(p) A  ... A  outtn(a)=outm(P)
A  in(a)=in(p) a  out(a)=out(P) ] z )  a=P ]

Vxi...Xnyi...ymStI [precedes(s,t) a  [Cond(s) <-4 Cond(t)]
A  [Cond(s) 3

[t;6_L A  B i(x i,s )  ^ undefined 
A  ... A  Bn(xn,s) undefined 

A  C i(y i,t)  #  undefined 
A  ... A  Cmfym.t) ^  undefined 

A  lepre(Bi(xi,s),...,Bn(X n,s))
A lep ost(B i(x i,s),...,B n (X n ,s),C i(y i,t) Cmfym.t)) 111

<-> 3a [ op (a) A  in(a)=s a  out(a)=t 
A  ini(a)=xi a  . . .  a  inn(a)=Xn 

______________________ A  outi(a)=yi A  ... A  outni(a)=yml 1______________

where lepre and Icpost represent the logical expressions m aking up the 

pre- and post conditions of the operation. We say th a t th is operation is 

determ inistic if and only if the following condition holds:

There exist functions fi,...,fm such th a t

V(xxi...xnyi...ymst[ 1 op(a) a  in(a)=s a  out(a)=t
A ini(a)=xi A ... A inn(a)=xn 
A outi(a)=yi A ... A outm(a)=yml ^

I C i(y i,t)= fi(B i(x i,s )  Bn(xn.s))
A ... A C m (y m ,t)= fm (B i(x i,s),...,B n (x n ,s)) 1

In other words, there is a  pure functional relationship between the 

inpu ts and the outputs to an  operation. It should be noted th a t th is 

functional re la tionsh ip  can be either im plicit or explicit in  the 

operation definition. Obviously, those where it is explicit are easier to 

recognise, b u t even where it is implicit it is still a  logical consequence 

of the definition. Accordingly, we can pre-analyse the plan library and 

work ou t w hich operations are determ inistic. To show th a t  the 

co llapsing  operation  is ju stified  u n d e r the  p lan  ca lcu lu s  for 

determ inistic operations, consider Figure 4.11, which shows two
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t î  4  4  ... t;.

. o I . o I j o I  x o l  
1̂ ^  1m

j.o2 io2i.o2  xo2 
1̂ ^

Figure 4.11 
Two Instonres of op operation

t3 t4

t2 c2

^lvc2

t l  c3 clvc2

'clvc2vc3

c4 clvc2vc3

clvc2vc3vc4

can be 
replaced by

t l  t2 t3 t4

4jc3|c21<^

clvc2vc3vc4

t5

15

Figure 4.12 
Cascades of Joins
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instances o p l and op2 of an op operation, w ith common in p u t tie- 

points. Bearing in mind (from the earlier discussion of tie-points) th a t 

(refer to Figure 4.11 for the notation)

t»i = B 1 (in 1 (op 1) ,in(op 1)) = B i(ini(op2).in(op2))
A ... A t*n = B n (in n (op l),in (op l)) = B n (in n (op 2),in (op 2))

A t°^i = C i(outi(opl),out(opl))
A  . . .  A  to^m = Cm(outm(opl),out(opl))

A t°^i = C 1 (out 1 (op2), out(op2))
A  . . .  A  to^m = Cm(outm(op2),out(op2))

we can deduce th a t

to i 1 =t°^ 1 =f 1 (t̂  1,..., t*n) A 
t°  12=t°^2=f2 (t̂  1, .., t^n) A

t° 1......t*n)

so the ou tpu t tie-points of the two operations can be identified. Using 

to ij to stand  for both to^i and t°2j, we can go fu rther tlian  this, and 

actually  replace the two operations by a  single one. Since we are 

dealing with actual instances of an op operation we can deduce :

[Cond(in(opl)) =>
[ t*i  ̂undefined a  . . .  a  t^n  ̂undefined 
A to ll  ̂ undefined a  ... a  toim  ̂undefined 
A lepre(t* 11...,t*n)
A lepost(t*l,...,tln,toh,...,tolm) 11

and

[Cond(in(op2)) z>
[ th   ̂ undefined a  . . .  a  t*n undefined 
A toi 1 undefined a  . . .  a  toim  ̂undefined 
A lGpre(t*l*
A lCpost(t  ̂1,... , t *n, ^ 1, - ,to ig )̂ 11
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from which it follows that^:

I [Cond(opl) V Cond(op2)l =>
I t^i  ̂ undefined a  . . .  a  t*n  ̂undefined 
A to il undefined a  . . .  a  to i^   ̂undefined 
A lepre(t^li’*-.t^n)
A lCpost(t^l, 11

Now suppose th a t we define two new situations s i  and s2 as follows:

81 =minprecedes(in(op 1) ,in(op2)) 

s2=m inprecedes(out(op 1 ), out(op2))

where minprecedes(s.t) is simply the earliest (according to precedes) of 

s and t  (or either of them if they are equal). Clearly,

sl?fc± o  (Cond(in(opl)) v Cond(in(op2))] 

s2^1 <-> [Cond(out(opl)) v Cond(out(op2))]

from which it follows th a t the controlling condition for s i  and s 2  is 

[Cond(in(opl)) v Cond(in(op2))]. In other words s i  and s2 occur in 

th e  g en e ra lise d  co n tro l flow en v iro n m en t d e te rm in e d  by 

[Cond(in(opD) v Cond(in(op2))]. Additionally, the following is true  of 

s i  and s2 :

p re c e d e s (s l,s 2 )

Accordingly, we can deduce (from the axioms for op) th a t there exists 

an  instance of the op operation with input situation s i ,  ou tput situation 

s 2 , in p u ts  and ou tpu ts the same as op l and op2 , and  controlling 

condition given by (Cond(in(opl)) v Cond(in(op2))J. Furtherm ore, th is 

new instance actually implies the existence of the original two. and so 

can  replace them. Since the ‘tru e ’ in terpretation of the graph for . a  

program is really the set of axioms for the operations and control and

 ̂We are using the identity [A 3  C] a  [B C] = [(A v  B) 3  C]
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d a ta  flows between them , and the axioms obey the u su a l ru le of 

substitutivity, we see tha t we can therefore use either of t^^i or t°^i (for 

any  l<i<m) anywhere they occur in the axioms. In p articu lar th is  

m eans th a t we can connect anything th a t was connected to any of the 

o u tpu ts  from op2 , to the corresponding ou tpu ts  from o p l instead , 

w ithout changing the semantics of the graph. So whenever we have two 

operations of the same type with the same inputs we can replace them  

by a  single operation with the same inputs, the sam e ou tpu ts , and 

controlling condition equal to the d isjunction  of the controlling 

conditions for the  original two operations. T hus, the  collapsing 

operation performed by the parser described in the next two chapters 

h as  a  sound formal justification, rather than  ju s t  being a  “hack”.

4 .6  Generalised Joins

Before we can dem onstrate how all of th is is p u t to use, we need 

to deal with a  problem caused by joins. Joins are ra ther strange entities 

since they represen t no real computation, b u t are merely presen t to 

rejoin diverging control flows and to give us a  single tie-point in  d a ta 

flow graphs to represent the several values th a t an  object could have 

depending on which way the computation went. Thus they are really an  

artifact of the representation we are using. In principle we could take 

any two disjoint situations (i.e. two situations s and t  such th a t [s^± <r> 

t=_L] ), and tie-points representing values in those situations and add a  

jo in  w ith these  tie-points as inpu ts, and a  new o u tp u t tie-point 

rep resen ting  the value of the inpu ts in both  situations. Note th a t 

add ing  su ch  a  jo in  sim ply adds new axiom s to the  axiom atic 

representation of the program - it does not involve changing any of the 

existing axioms or situations in any way. It tu rn s out th a t we will often 

need to add such joins.
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It actually tu rns out to be useful to define a  more general notion 

of jo in . Let u s define an  n -jo in -o u tp u t by the  following schem a, 

modelled on the definition for join-output given in Chapter 3.

Jo fn n-join-output /  .inputi(object) ... .inputn(object) s>.output(object) 
Postconditions [succeedi(n-join-output);&l =) .output= .inputil 

» * •

A [succeedn(n-join-output)?tl 3  . output= .inputnl

In th is schem a succeed 1 ...succeedn represent n  inpu t situations. This 

is converted to the following axiom schema:

VaP([ n-join-output(a) a  n-join-output(P)
A succeed i(a)=succeedi(p)

•  •  •

A succeedn(ot)=succeedn(p)
A out(a)=out(P)
A inpu t 1 (a)=input 1 (p)

«

A inputn(a) =inputn(P)
A output(a)=output(p)l =) a=p ]

and
Vwxi...XnSti...tn[ [ [nonei(ti...tn) v ... v nonen(ti...tn)l

A [ti9t± 3 [s=ti A w=xi)]
•  •  •

A [tn^l =) [s=tn A w=Xnll 1 

<-4 3a[ n-join-output(a) a  out(a)=s 
A succeed 1 (a) =ti

A -

A succeedn (a)=u 
A output(a)=w 
A inputi(a)=xi

A . . .

A inputi(a)=Xn ]]
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where nonei(ti...tn) is defined by^:

nonejft][...tn) — t%—-L a  . . .  a  h-% —_L a  tj+i— a  . . .  a  tn”-f

For an  n-join-output the input controlling conditions ci . Cn are simply 

those of the corresponding in p u t s itua tions, and  the  controlling 

condition of its output situation is given by:

C l V . . .  V Cn

Now in the surface plan for a program, as well as in the ru les in the 

library, “cascades” of jo in s  like those shown in Figure 4.12 will be 

replaced by single n-joins as shown in the figure. Furtherm ore, if the 

parse r is looking for a  jo in  with known in p u ts  and know n in p u t 

controlling situations, and it cannot find a  jo in  w ith these inpu ts and 

these controlling situations then  it will simply introduce one as th is 

has no effect on the interpretation of the program. To do th is  it will 

crea te  a  new tie-poin t representing  the o u tp u t of the  j o in  (i.e. 

representing the ‘merged’ data values). It will also sometimes tu rn  out 

th a t the parser will be looking for a  join  like th a t shown in Figure 4.13. 

In th is case it can deduce tha t the output tie-point is actually the same 

tie-point as the inputs.

One last point needs to be made here. There is a  special form of 

the collapsing operation applicable to joins. The situation in which this 

a r ise s  is  sh ow n  in  Figure 4 .1 4  w here the i^h in p u t to an  n -jo in  is  the  

sam e as the  jth  inpu t to an m -jo in . Then, provided th a t  the ith 

contro lling  condition  ci of the first jo in  and the jth  con tro lling  

condition dj of the second join satisfy:

Cl <-> d j

® Strictly speaking we ought to wony about the end cases of i=l and i=n in this 
definition, but given that the meaning is clear, it will be left as it is.
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c2
A
1

c l Figure 4.13 A Join  With Identical Inputs
lvc2

s i  s2 sm

62 dmcn

c 1 vc2 V . .. vciv... vcn dlvd2v...vdjv...vdm

tl t2 tl tn s i  s2 sj-1 sJ+1 sm

c l c2 ci cn dl d2 ij-1 ij+1 ..... dm

c 1 vc2v... vciv.. .vcn
vd 1 vd2v... vdj-1 vdj+1V.. .vdm

Figure 4.14 Join Collapsing
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then  we can collapse the jo in  into an  (m +n-l)-jo in  as shown in the 

figure, provided that:

( c i  V . . .  V C i-i V C i+ i V . . .  V Cn) - • ( d l  V . . .  V d j - i  V C j+i v  . . .  v  d m )

i.e. provided they are all disjoint.

4.7  Complex Examples

Now we are in a  position to dem onstrate the power of all th is 

m achinery for control flow condition m anipulation, and  s tru c tu re  

sharing and collapsing (and in the next two chapters we will describe a  

parser th a t can do both of these).

Consider the rules shown in Figure 4.15 (we have omitted data  

flow arcs for clarity). These correspond to clichés which could have 

been coded (schematically) as follows:

F if te s tl  then B else C

G if te s tl  then D else 0

Z if test2 then  F else G

resulting in code for Z:

if  test2 then
if  te s tl then B else C

else
if  te s tl then D else C

This would have resulted in the graph shown in Figure 4.16, and this 

would have been easily recognised. However suppose the programm er 

had optimised their code into the following:

if  te s tl then
if  tests then B else D

else
C
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Plan Condition for Both X and Y 
(U<->Q)A(Vf̂ R)A(Q=>S)A(Ui3S)A(R=>T)ACV3T)

f  .

s | s ^  J ^ l r

i
te s tl

r 7
Rule for F Rule for G

i
te sts

u

f
V

Rule for Z

Plan Condition for Z 
(U<^Q)a(V<->R)a(Qz>S)a(U3S)a(Rz>T)a(Vz)T)

Figure 4.15 
Rules for F. G. and Z
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PIa X

1a  X
testl te s tl

p l A  - « X a - ' \ PIa XaZ
PIa Xa

P I a X a PIa XaZ

jIa-̂ XaYplA -> Xa -• Y PIa XaZ

PIaX

Figure 4.16
Unoptimised Graph
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Even people have to th ink  quite h ard  to recognise th is  as 

equivalent to the earlier code, and this is reflected in  the difficulty of 

seeing th a t the surface plan for this code, shown in Figure 4.17, is not 

only equivalent to th a t shown in Figure 4.16, b u t h as  been derived from 

the  sam e clichés. We will now show how the notion of generalised 

control-flow environments enables this.

Figure 4.18 shows the situation  after the  p arse r h as  found 

suitable operations satisfying the data flow constra in ts (which we have 

not shown). It then evsiluates the plan condition, using the following 

substitutions:

p PI
9 PIa^
R PIaX
S PIa-X
T PIaXaY
U PlA-iX
V PIaX
W PI

The plan condition for the rule for F is:

(U<->Q)a(Vo R)a(9 z>S)a(U3S)a(Rz>T)a(Vz>T)

After substituting the above values and simplifying we get:

(P1aX)3Y)

which gives u s  (assuming the input situation of F is given by the input 

to the test):

P Ia(-lXvY)
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PIaX

• \ p 1aX 

- / ^ D i a X a y

X a-.Y | I |P 1 aX/

PIaX

Figure 4.17
Optimised Graph
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t c s t i

- p I p pi/yC\Ÿ-

Figure 4.18
F Found In Optimised Graph
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for its  controlling condition. Notice how th is confirms the in tu ition  

th a t th is plan works if te s tl  fails(-iX), or if test2  succeeds(Y), b u t not 

otherwise.

In a  similar fashion a  candidate G plan is found (Figure 4.19), and 

th is time its controlling condition evaluates to:

Pl'^(-tXv-.Y)

Now the parser is essentially in  the position shown in Figure 4.20. 

Suppose it has found th a t test2 and the F gind G plans ju s t  found satisfy 

the d a ta  flow constra in ts needed. Then it will be in the position of 

looking for an  appropriate join (as required by the rule in Figure 4.15). 

However, there is no such join in the program, since the data  ou tpu ts 

(which we have not shown) of both the F and G p lans are the d a ta  

o u tp u ts  from the 3-join in  Figures 4.18 and 4.19. However, we are 

effectively looking for a  join like th a t shown in Figure 4.20, where the 

inpu ts  on both sides of the join are the same. The plan condition for 

th is rule for Z is also:

(U<^Q)a(V<^R)a(Qz>S)a(U3S)a(R=>T)a(V=>T) 

and so far the substitutions are:

p PIaX
9 PIaXa- iY
R PIaXaY
S P Ia( ^ v- iY)
T P Ia(-X vY)
U ??
V ??
W ??

In th is  situation, where the parser is looking for a  jo in  to jo in  the 

o u tp u ts  from two (or more) operations, and cannot find one in the 

program it can ju s t add one with input conditions equal to the input
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P IaXaY

• p I a ' ~ » X -  t p l A ^ ^ Y I p i A X A ? !

Figure 4.19
G Found In Optimised Graph
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tcst2

Looking for a  join 
like this

Figure 4.20 
Trying to Find a  Z
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conditions of the corresponding brsinches of the tests in the plan. As 

stated earlier this cannot alter the behaviour of the graph. In this case 

this would result in:

U PIaXa- iY 
V PIaXaY
W (P1aXa^Y)v(P1aXaY)=P1aX

Before continuing with the analysis, it should be noted that the input 

data objects to this join are identical, and hence the output is the same 

as the output from both of the two sub-plans.

If we make these substitutions into the plan condition  

we get:

((P1aXa-.Y)<^(P1aXa-,Y)) a  ((P1aXaY)<^(P1aXaY)) 

A((PlAXA-.Y)=>(PlA(-nXv-.Y))) A ((P1aXa^Y)z>(P1 A(-nXv-iY))) 

A((PlAXAY)n(PlA(^vY))) a  ((P1aXaY)3(P1a(^vY)))

which simplifies to: 

true 

giving us:

PIaX

for the controlling condition of the Z operation (since PIaX is the 

controlling condition of its input situation which is the input situation 

of the Y test). First of all note that although the components of this 

were conditional, the environment in which it is finally recognised 

(PIaX) together with the test involved, actually imply the conditions of 

all the sub-plans, so it has ended up unconditional and can execute* 

within a normal non-generalised control flow environment.

This is good, but not quite what was hoped for, since although we 

have recognized that there is a Z in the program, it is within the
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conditional (X test) ra ther than  being a t “top-level”. However, we can 

do better th an  this. Suppose the input tieipoints (which we have not 

shown) to the Y -test come from before the X -test in  the  original 

surface plan. The test Y is really testing w hether some condition holds 

of various data  objects, so it is really checking w hether some condition

C(Bi(pi,in(Y )) Bn(pn.hi(Y))) holds or not, where p i  pn represen t

the d a ta  objects involved and in(Y) represents the inpu t situation to the 

Y test, and B i,...,B n  represent the relevant behaviours of the objects 

pi . - - . pn-  Saying th a t inpu t tie-points come from before the te s t (say 

from situation in(X)) means that:

B i(pi,in (Y ))=B i(p i,in (X )) a  . . .  a  Bn(pn,inCY))=Bn(pn.in(X))

This m eans tha t the condition C satisfies:

C(B 1 (p 1 ,in(X)).....Bn(pn.in(X)))=C(B i  (p i ,in(Y)),... ,Bn(pn.in(Y)))

Now suppose we define a  situation Ssucceed by:

_ fin(X) if  C (B i(p i,in (X )) Bn(pn.in(X))) h o ld s
Ssucceed- otherwise

and define another situation Sfaii by:

_ fin(X) if-.(C(Bi(pi,in(X)) Bn(pn,in(X)))) holds
[1 otherwise

Now th e  s itu a tio n s in(X), Ssucceed , and Sfaii. and  th e  condition 

C(Bi(pi,in(X)),...,Bn(pn,in(X))) satisfy the axioms for tests, from which 

we can  deduce th a t there exists a  test with inpu t situation  in(X), and 

succeed and  fail situations given by Ssucceed. and Sfaii, and  with 

condition C(B i (p i ,in(X)),... ,Bn (pn ,in(X)))=Y. So we have deduced the 

existence of a Y test, with controlling condition PI (the sam e as the X 

test); Note th a t th is test has the same inputs as the original test, so will 

still satisfy the d a ta  flow constraints th a t the original te s t satisfied.
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Under m ost circum stances this is not a  particularly useful deduction to 

make, since plans involving this new test are usually ju s t  “pulled back” 

into where they would have been had we not m ade the deduction by 

the controlling conditions of the other actions in the plan. However, in 

th is case, when we use th is test, with the F and G plans found earlier 

we get the substitutions:

P P I 
Q PlA-nY 
R P IaY 
S PI a(—iXv—iY)
T P I a( ^ vY)
U P I a-hY 
V P IaY
W (P1a-,Y)v(P1aY)=P1 

giving u s  the plan condition:

((P1a-.Y)<^(P1a-.Y))

a(P1aY)<^(P1aY))

a((P1a-,Y)z>(P1a(-.Xv-,Y)))

a((P 1 a-.Y)3(P 1 a(-.Xv-.Y}))

a ((P1aY)z>(P1a(-iXvY)))

a((P1a(-.XvY))d (P1a(-.XvY)))

which also reduces to: 

true

However, th is time the environm ent of the resulting  Z is P I, so we 

have recognised the same plan as we would have recognised had the 

surface plan been tha t of Figure 4.16.

Note th a t th is analysis depended on the inpu ts  to the Y-test 

coming from before the X-test. This can be checked by tlie parser. 

However, rather than  having the parser do this every time it may w ant
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find more general p lans, we adopt the following strategy. Before 

parsing surface plans, all tests are analysed and given the least strong 

controlling condition th a t is com patible w ith all th e ir  in p u ts . In 

practice th is m eans th a t we look a t all the in p u t tie-points t i . . . tn  to 

each test, and look a t the controlling conditions Ci..,Cn for tlie actions 

w hich produced these  inpu ts . We th e n  take  as the  controlling 

condition of the test the condition ciAC2 A...ACn. Since all the inputs to 

an  action m ust come from environments which enclose the action, this 

will simplify down to the innerm ost environm ent of those producing 

the inputs to the test. Doing th is would m ean th a t the parser would 

have found the correct analysis of the surface plan above w ithout need 

to deduce the existence of the te st in a  different environm ent from 

th a t in which it occurs, since th is would have effectively been done 

before the parsing started.

Now we will consider an  example in which both collapsing and 

th e  generalised control flow m achinery are  needed in order to 

recognise the plan. Consider the rule d iscussed  earlier, shown in 

Figure 4.6, with plan condition:

[Pz)R A J 3 R A P<-kJ1

A [Q zd[ S  a  (T<->V a  V<->K  a  a  a  a  U <—̂ L)]]

and  suppose the programmer has code resulting in the surface plan 

shown in Figure 4.21. First of all, note th a t the tests have already been 

trea ted  as having the outerm ost controlling condition possible, as 

described in the previous example. Now note th a t we can collapse both 

instances of te s t l ,  and both instances of C, resulting  in the graph 

shown in Figure 4.22. Now assum ing the d a ta  flows (still not shown) 

are satisfactory the parser will identify the obvious nodes as being part 

of a  Z plan, albeit rather a  strange one. It will then  attem pt to evaluate 

the plan condition. The appropriate substitu tions (given by the
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plA -"X

p l A - i ^

p l A  - I  X a

p l A  -• Xa

p l A  -« Z

Ia Xa

yI I blA-.XAY

1a XaZ

P Ia XaZ

p l A - i X

plA -«X

Figure 4.21
Surface Plan of 4.16. with Controlling Conditions of Tests 

Made as Global as Possible
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PIa X

testl

Ia XaYp l A

Figure 4.22
Collapsed 4.21
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m atching of nodes in the graph against nodes in the rule done during 

the data  flow parsing) are:

w PI
p PIa- iY
9 PIaY
R PIa- iY
S PI
T P1a-X
U PIaX
V PIa^XaY
M PIaXaY
J PIa- iY
K PIa^XaY
L PIaXaY
N PI

Substituting into the plan condition gives u s

[((P1a-.Y)=>(P1a-.Y)) a  ((P1a-.Y)3(P1a-.Y)) a  ((PlA-nY)<^(PlA-.Y))l 
A  [(P1aY)3

[PI A [((P1a-,X)<^(P1a^XaY)) a ((PlA-TXAY)o(PlA-nXAY))
A  ((P1a^ <->(P1a^XaY))1 

A  [((P1aX)<->(P1aXaY)) a  ((P1aXaY)<^(P1aXaY))
A ((P 1 aX3<->(P1aX aY))111

w hich simplifies to true. So th is is an  unconditional p lan  and its  

controlling condition is given by PI. In other words, despite the lack of 

optim isation done by the progrgimmer, we have m anaged to recognise 

the standard  plan. This illustrates very nicely the power of collapsing 

and generalised control flow environments.

Now it may be thought th a t th is involves m anipulating ra th e r 

nas ty  prepositional formulae. However, there are two points to note. 

Firstly, the plan condition for rules can be worked ou t in advance of 

parsing, so th is is a  one-off expense. Secondly, although in principle 

doing th is k ind of sim plification to prepositional form ulae is NP-
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complete (it involves satisfiability as a  special case) there are various 

redeeming factors which make it not too bad in  practice. The first of 

these is th a t in most cases plans do not tu rn  up in these bizarre ways, 

and when they do the “contortions” seem to be fairly localised. This 

m eans there are not usually  too m any variables in vo lved , so  the 

formulae are usually quite small (or a t least all have common prefixes, 

which can be lumped together into a  single variable like the variable PI 

th a t  we have been using in the examples, which m eans we can  in 

practice deal with small formulae). The second is th a t plan conditions 

normally break down into well defined sub expressions corresponding 

to the maximal sets of interdependent variables discussed above, and 

th ese  sub  expressions can  be sim plified independen tly , before 

evaluating the entire plan condition. The third redeem ing feature is 

tha t, as  sta ted  already, and as can be seen in the worked examples 

above, a  great m any of the expressions involved are either trivial to 

verify, or can be checked syntactically, by seeing if one expression is a  

prefix of another.
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Chapter 5.

Chart Parsing of Flowgraphs

5.1 Introduction and Motivation.

Many applications make use of diagram s to represen t complex 

objects. Examples are electrical circuit diagrams, as well as  the surface 

p lan s we are considering here. In such  app lica tions it is often 

necessary  to system atically recognise how some diagram  h as  been 

pieced together from other diagrams. This is analogous to the parsing 

problem  for strings, and th is chapter will p resen t a  generalisation of 

chart parsing [Thompson and Ritchie, 1984] able to cope with the case 

where the object being parsed is some kind of diagram  (a flowgraph) 

and the  gram mar is an  appropriate type of graph gram m ar (a flowgraph 

gram m ar). Often the various com ponents of the  diagram s can  be 

regarded as producers of values which are fed as  in p u ts  to o ther 

com ponents which in tu rn  produce values to be passed on elsewhere. A 

feature th a t often occurs is struc tu re  sharing , w hen one com ponent 

feeds one or more of its resu lts to more th an  one other com ponent 

(fan-out). In th is situation the source com ponent can  be viewed as 

playing more than  one role in the whole structure, and could have been 

duplicated so th a t separate copies of the com ponent were responsible 

for each  of these roles. This leads to no change in functionality, 

although there may be a  loss in efficiency as m easured by the num ber 

of com ponents (electrical circuit case), or com putational effort and 

code size (plan diagram case). This chapter also discusses the problem 

of diagram  recognition in the case where structure sharing is edlowed, 

noting th a t we w ant to perm it structure sharing, b u t not enforce it.

The symmetric case of structure sharing arising through fan-in, 

ra th e r  th an  fan-ou t is not dealt with explicitly in th is  chapter.
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However, the parsing algorithm is easily modified to cope w ith it, the 

necessary modifications to the algorithm being sim ilar to those needed 

for fan-out.

5.2 Notation and Definitions.

Flowgraphs and flow grammars will be defined as special cases of 

plex languages and plex grammars first studied by Feder [1971]. Much 

of the terminology used will be borrowed from th a t for conventional 

string languages and grammars, and readers unfam iliar w ith th is are 

referred to [Aho and Ullman, 1977]. A plex is a  struc tu re  consisting of 

labelled nodes having an arbitrary num ber, n, of d istinct a tta c h in g  

p o in ts , used to join nodes together. A node of th is kind is called an  n- 

a ttach ing  poin t entity  (NAPE). A ttaching points of NAPEs are not 

connected directly together, b u t are connected via interm ediate points 

know n as tie-poin ts. A single tie-poin t m ay be responsib le  for 

connecting together two or more attaching points. If the direction of 

the  connections is im portant then  the plex is known as a  directed 

plex. Many types of graph structure (e.g. webs [ Pfaltz and  Rosenfeld, 

1969, Rosenfeld and Milgram, 1972], directed graphs, and  indeed, 

strings) can  be regarded as special cases of directed plexes. We will 

only consider the special case of directed plexes in which each NAPE's

a ttach ing  points (from now on called ports) are subdivided into two
!

m utually  exclusive groups, known as inpu t ports (restricted to only 

have incoming connections) and ou tput ports (restricted to only have 

outgoing connections). We will further restrict ourselves to the special 

case in which each port of a  NAPE is only connected to a  single tie- 

po in t. T his type of plex will be called a f lo w g ra p h  and  is a  

generalisation of Brotsky's use [1984] of the term. See Figure 5.1 (top) 

for an  example of a simple fiowgraph.
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J u s t  as a  set of strings constitutes a  language, so a  se t of plexes 

constitutes a  plex language, and it is possible to define a  plex gram m ar 

and the  plex language generated by a plex gram m ar. Similar rem arks 

apply to flowgraphs, webs, and graphs etc.

A production in a  string gram m ar specifies how one string may 

be replaced by another, either in producing strings or in recognising 

them. In plex gram m ars the same is true b u t we encounter a  difficulty 

(due to the 2-dimensional nature of plexes) not apparen t in the string 

case. In the string case a  production like

A ==> aXYb

applied to a  string

....dAe (sEQ̂

resu lts in the string 

....daXïbe.....

and  the  question of how the replacem ent string is to be embedded in 

the host string in place of A never arises because there is a  single 

obvious choice i.e. whatever is to the left of A in the original string is to 

the left of the replacing string, and similarly on the right. In the graph 

case we no longer have th is simple left-right ordering on the NAPEs 

and  th is  question of embedding becomes m uch more com plicated. 

Most of the discussion of th is topic is in the web and graph gram m ar 

literatu re  (e.g. [ Pfaltz and Rosenfeld, 1969, Rosenfeld and Milgram, 

19721), b u t m ost of it applies (with some slight modifications) to the 

flowgraph case as well. The approach taken here is to specify with each 

production which tie-points on the left hand side correspond to which 

tie-points on the right and then  connect everything connecting to one
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of these left hand  tie-polnts (from the surrounding  subgraph) to its 

corresponding right-hand tie-point.

We define a  flowgraph gram m ar G to be a  4-tuple (N .T .P.S) 

where:

N is a  finite non-empty set of NAPEs known as nonterm inals.

T is a  finite non-empty set of NAPEs known as term inals.

P is a  finite set of productions.

S is a  special member of N known as the initial (or start)

NAPE

and the intersection of N and T must be empty.

If we arbitrarily order the input and ou tpu t ports of a  NAPE then 

each NAPE in a  flowgraph can be represented in  the form of a  triple

(NAPE-label, input list, output list)

where NAPE-label is the label on the NAPE, and in p u t list is a  list in 

w hich the i^  entry is the tie-point to which the î h in p u t port is 

connected. Similarly the output list specifies to which tie-point each of 

th e  o u tp u t ports is connected. Using th is convention a  com plete 

fiowgraph G can be represented els a  set G  ̂ (known els the com ponent 

set) of such triples.

With the above conventions the productions in a flowgraph 

grEimmar have the generEd form

A. I/Q ——> C Rj Rq
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w here

A is know n as the left-side s tru c tu re , rep resen ted  a s  a  

com ponent set

C is known as the right-side s tru c tu re , rep resen ted  as a  

com ponent set

I4  is the left-side input tie-point list

Rj is thé right-side input tie-point list

Lq is the left-side output tie-point list

and Rq is the right-side output tie-point list.

Li and Rf m ust be of the same length, as m ust Lq and Rq , and specify 

how an  instance of the right-side structu re is to be embedded into a 

s truc tu re  W containing an instance of the left side structu re  which is 

being rewritten according to the production. We define the arity of the 

left side of the rule to be the ordered pair ( I L| I . I Lq I ) and the arity of 

the right side of the rule to be the ordered pair ( I R i I , IRqI). So this 

requirem ent simply states th a t the left- and right-side arities m ust be 

the same. The rewriting and embedding is done as follows:

The instance of the left side structu re  is removed from W and 

replaced by an  instance of the right-side structu re . Now, for each tie- 

poin t X in L| any previous connections from NAPEs in  W to X are

replaced by connections from the same attaching  points of the same 

NAPEs to the corresponding tie-point in Rj . The same is done for tie- 

points in Lq and R q . Note tha t one can eliminate the need for explicit 

storing of R i and R q by simply using the sam e variable nam es oh the 

left and right hand sides of the production to denote corresponding 

tie-points.
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J u s t  as in the string case, by considering various restrictions on 

the form of X and Y in a  production of the form:

X==>Y

one can arrive a t the notions of context-sensitive, context-free, and 

reg u la r languages [Ehrig, 1979]. In p a rticu la r , re s tr ic tin g  the 

productions to have a  single NAPE in their left-side structure gives us 

the flowgraph equivalent of context-free string languages, and we will 

only concern ourselves with these from now on. In th is case we no 

longer need to store L) and Lq since the inpu t and ou tpu t lists of the

single triple on the left of the production  already  specify th is  

information. See Figure 5.1 for an  example of the notation and of the 

rewriting process.

5.3  Chart Parsing of Context-free Flowgraphs.

In a chEirt parser, assertions about w hat h as  been found by the 

parsing algorithm are kept in a  "database” known as the c h a r t. Such 

assertions will be called covering patches (or simply patches), and are 

of two kinds - complete patches and partial patches. A complete patch 

is a  sta tem ent th a t a  complete gramm atical entity  (corresponding to 

some term inal or non term inal symbol of the  gram m ar) h as  been 

found. Partial patches are assertions th a t p a rt of some gram m atical 

entity has been found, and about w hat would need to be found in order 

to complete the gram m atical entity concerned. One can  th ink  of a 

p a tch  as being a  closed loop drawn round som e subgraph  of the 

flowgraph, indicating th a t this subgraph corresponds to all or part of 

some grammatical entity as defined by the gramm ar. If we regard the 

righ t-side  s tru c tu re s  of ru les as u n in s tan tia ted  tem plates, then  

com plete p a tch es w ith non term inal labels co rrespond  to the 

occurrence of an instantiation of the right-side structu re  of some rule.
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th u s forming an  occurrence of the left-side structure of the rule. Partial 

patches correspond to partially instantiated instances of the right-side 

structure of some rule, and thus to partially recognised instances of the 

left-side structu re  of the rule. Each patch  A contains the following 

information:

1 ) la b e lfA )  - th e  nam e of th e  g ram m atica l en tity  

corresponding to the patch, and is always one of the term inal or non

term inal symbols of the grammar.

2) inputsfAl - a  set of input tie-points for the patch.

3 ) outputsfAl - a  set of output tie-points for the patch.

4) com ponentsfA l - a  list of the other patches involved in 

m aking up  th is  patch  i.e. w hat o ther p a tch es have been u sed  to 

recognise th is patch.

5 ) needed (A) - a  description of w hat else needs to be found to 

complete the patch. In the case of a  complete patch th is will be empty, 

and for partial patches will be a  flowgraph structure, represented as a 

list of triples.

For a  partial patch, the input and ou tput tie-points (i.e. those by 

w hich the patch  connects to the surrounding flowgraph) are each 

subdivided into two categories - the set of active tie-points where the 

patch  itself is still seeking other com ponents to a ttach  to these tie- 

points, and the set of inactive tie-points which are those which would 

be inputs or outputs of the patch were it complete. A NAPE needed by 

a  partial patch will be called immediatelv needed if any of its tie-points 

are active. The components entry of a patch lists (instantiated versions 

of) those NAPEs in the right-side structure of the rule which have been 

completely instantiated, and the needed entry lists un instan tiated  (as
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yet) parts  of the rule. Note tha t some of the tie -p o in ts  in the n eeded  

entry  may be instantiated. These are where the needed NAPEs connect 

to the  ones already found. We will say th a t a  p artia l p a tch  A is 

extendible by a  complete patch B (or tha t B can extend A) in the case 

w here A im m ed iately  n eed s a  patch of the sam e type as B and the 

instan tia ted  tie-points in th is needed patch  do not conflict w ith any 

instantiations actually occurring in B.

The essence of the chart parsing strategy can then  be stated  as 

follows:

Every time a  complete patch is added to the ch a rt a  search  is 

made for any partial patches immediately needing a  patch  of the sort 

ju s t  added a t the appropriate place. For each of these partial patches a 

new  patch  is made extending it by the complete one, and th is  new 

patch  is then  added to an agenda of patches to be processed a t some 

appropriate time. Similarly, every time a  partial patch  is added to the 

chart a  search is made for any complete patches which could be used 

to extend the partia l patch  ju s t  added, and if any are found new 

patches are made which extend the partial one, and these are added to 

the agenda to be processed when appropriate. Note th a t patches are 

only ever added to the chart. They are never removed, th u s  avoiding 

the need to redo work tha t has been done before.

It should  be clear from th is th a t the basic operation of the 

algorithm is th a t of joining a  complete patch to a  partial patch to make 

a  new enlarged patch. Figure 5.2 shows a  partial patch being joined to a 

complete patch to make a new patch (the enclosing box). The resulting 

patch  has the sam e items in its com ponents en try  as the original 

partial patch  plus the complete patch. Its needed entry is equal to th a t
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of the original partial patch m inus the needed patch  corresponding to 

the complete patch. Note tha t the m atching of a  needed patch  to an  

ac tual com plete patch  may introduce fu rther in stan tia tions of tie- 

points in the needed en try  of the new patch. On connecting the  two 

patches all the inactive tie-points of the partial patch  rem ain inactive. 

Some of its  active tie-points will correspond to tie-po in ts of the 

complete patch  (this is where the two patches actually join). O ther 

active tie-points rem ain active in the new patch since it is still looking 

for other patches to attach to them. Of the complete patch 's (input and 

ou tput) tie -po in ts some have already been m entioned i.e. those 

connecting directly to the partia l patch. O thers will become new 

inactive tie-points of the resulting patch since it will not be looking for 

anything to a ttach  to them. However other (input and output) tie- 

po in ts of the  com plete patch  m ay now become active (viewed as 

belonging to the new patch) since it may now expect other patches to 

a tta c h  to  them  in order to com plete itself. Provided all these  

distinctions are kept clear there is no great difficulty in implementing 

the joining operation.

One fu rth e r poin t ought to be m ade here. W ith the jo ining 

operation as ju s t  described a  certain limited sort of structu re sharing 

happens automatically. This is illustrated in Figure 5.3. If we wish to 

prevent th is  th en  w hen trying to extend a  partia l pa tch  P by a  

complete patch  C, the parser m ust check (recursively!) th a t none of 

the com ponents of P have any sub-com ponents in common with C. If 

th is  is done, then  no structure sharing a t any level can arise. This 

check will be referred to as the no-sharing check.

The initialisation of the chart and the agenda now needs to be 

described. To begin with a  complete patch  is m ade for each of the 

term inal NAPEs in the original graph, and these are added to the



r  Y

176

Some
Rules

D

B E

Graph being parsed

''A'' Patch • •

D

7777)r;̂  : : . .  :.
E

B" Patch

'X' Patch

Figure 5.3
Occurence of Structure Sharing Without No Sharing Check



177

agenda. If the algorithm is to be run  top-down then  an  additional step 

is needed in which partial patches with empty com ponents entries are 

m ade for every rule in the gram m ar w hose left side s tru c tu re  is 

labelled by the s ta rt symbol of the grammar. Each such  rule leads to 

several such empty patches, one for each perm utation of the inpu t tie- 

points of the original graph. The in ac tiv e -in p u ts  and ac tiv e -o u tp u ts  

en tries for each of these patches are the perm uted inputs. The needed 

en trv  is ju s t  the right-side structure of the rule with any appropriate 

instantiations of the tie points occurring in it. These patches are also 

added to the agenda.

The complete algorithm is shown below:

initialise chart and agenda; 
until the agenda is empty do

pick a patch A from the agenda; 
unless A is already in the chart then 

add A to the chart; 
if A is complete then

for each partial patch B in chart extendible by A do
make a new patch extending B with A and put on agenda; 

endfor;
if bottom-up then

for each rule R in P such that rhs(R) has an input NAPE labelled by
label(A) do

for each such NAPE X in R do
make new empty patch B with label(B)=lhs(I^ and

needed(B)=ihs(R) with instantiations dependent on match between
X and A and

inputs(B)=inputs(A) and 
active-outputs(B)=inputs(A); 

add B to agenda; 
endfon 

endfor; 
endif;

else
for each complete patch B in chart which can extend A do 

make a new patch extending A with B and put on agenda; 
endfor;
if top-down then

for each object C immediately needed by A do 
for each rule R In P with lhs(R)=label(C) do

make new empty patch B with label(B)=label(C) and
needed(B)=rhs(R) with instantiations dependent on match 

between C and lhs(R) and 
inputs(B)=inputs(C) and 
actlve-outputs(B)=inputs(C); 

add B to agenda; 
endfor 

endfor 
endif 

endif 
endunless 

enduntil;
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W hen th is  algorithm  te rm inates the p arse  is regarded  as 

successful if the chart contains a  complete patch  for S whose in p u ts  

and o u tp u ts  entries are the same as the input and ou tpu t tie-points of 

the graph being parsed.

The only remaining issue is how to organise the chart so th a t it 

can be searched efficiently. The chart is first of all divided into two 

p arts , one for complete patches, and one for partia l. The p a r t for 

complete patches is organised as two arrays, one for indexing each 

p atch  by its inputs, and one for indexing by its  o u tpu ts . So each 

complete patch is entered several times into the chart, once for each 

of its inputs and outputs. For further efficiency each of the elements in 

these arrays is a  hash  table and the patches are actually entered into 

these  hashed  by the ir label. This enables efficient retrieval of all 

patches w ith a  particular label a t a  particular place in the graph. In a  

sim ilar fashion partial patches are entered into their part of the chart 

indexed by their input and output tie-points, and hashed  by the labels 

of each of the patches they im m ediatelv need. Note th a t there may be 

several of these.

Finally, note th a t a  sim ilar trick  can  be used  to store the 

g ram m ar ru les them selves in order to enable efficient retrieval of 

appropriate rules.

5.4 Complexity Analysis

5.4.1 A Polynomial Bound

In th is  section a  relatively informal argum ent will be given to 

show th a t the algorithm ju s t presented runs in time polynomial in the 

size (m easured by the num ber of tie-points T) of the graph being
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parsed. It is not the intention here to give a tight upper bound on the 

running  time, bu t simply to show th a t it is indeed polynomial. So, let

G=number of NAPEs in the graph being parsed

T=numbcr of tie-points in the graph being parsed

K=maximum num ber of inputs to a  NAPE

M=maximum num ber of outputs from a  NAPE

L=number of possible labels

R=number of rules in the grammar

Q=maximum num ber of NAPEs in the right-side stru c tu re  of a

rule

A=maximum possible num ber of active tie-points in  a  partia l 

patch.

It should be noted th a t K, M, L, R, Q, and  A all depend on the 

grammar, and are independent of the graph being parsed.

Now it should be noted that, for the purposes of adding new 

patches to the chart, patches are only distinguished according to some 

of the information contained in them, rather th an  strict equality being 

necessary. Complete and partial patches will be dealt with separately:

Complete patches are distinguished which differ in  a t least one 

of the ir in p u t tie-points, their ou tpu t tie-points, or the ir label. The 

m axim um  num ber of inputs and maximum num ber of o u tp u ts  in a 

patch  is determ ined by the grammar, as is the num ber of possible 

labels. So the num ber of possible complete patches in the  ch a rt is 

bounded above by the product of L and the num ber of possible ways of 

selecting a t m ost K out of T tie-points, and the num ber of possible
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w ays of choosing a t m ost M out of T tie-po in ts. This gives u s  

0 (L.tK+M ) complete patches altogether. Note also th a t a  sim ilar 

argum ent shows th a t a t a  given set of K (input) tie-points, there are at 

most 0(TM) complete patches with a  given label.

Partial patches are distinguished which differ in a t least one of 

the ir inactive in p u t tie-points, their inactive o u tp u t tie-points, their 

label, or in w hat they need in order to complete them selves (their 

needed entiy). Now, a  partial patch essentially represents the partially 

recognised right side structure of a rule. The rule used determ ines the 

label, and there are a t most 2Q subsets of the (at most) Q NAPEs in the 

rule th a t could still be needed. Each such subset determ ines a  se t of (at 

most) A active tie-points for the patch. So there  can  be a t m ost 

0 (R.2 Q .tA .tK .tM ) = 0(R.29.tA+K+M) partial patches altogether. In 

fact there will be very m uch less than  this, as th is includes complete 

p a tch es  w ith no th ing  needed, and  (more im portantly) ignores 

completely additional constraints implied by the connectivity of the 

graph concerned.

Now a  further point needs to be dealt with. The basic operation 

of the chart parsing algorithm involves extending partia l patches by 

complete ones. So for a  given partial patch we need to know w hat is 

the largest num ber of complete patches th a t could possibly extend it. 

The partial patch can be extended a t any of its (at most) A active tie- 

points, and any complete patch which could extend it m u st join a t 

least one of these tie-points, and m ust share a  label with a t least one of 

the NAPEs immediately required by the partial patch. So there are at 

m ost 0(A .Q .T^+M ‘ 1) such  complete p a tch es th a t need to he 

considered. Similarly, given a  complete patch, it can be seen th a t there 

are  a t m ost 0 ( ( K + M ) . R . 2 9 . T ^ + M + A - 1) possible m atching partia l 

patches.
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Now we can use these upper bounds to dem onstrate both  th a t 

the  algorithm  term inates and th a t it does so in  polynom ial time. 

Suppose the algorithm  is running, and let N denote the num ber of 

times we have been round the main loop.

Let:

C^=num ber of complete patches in the chart after iteration N 

PN=number of partial patches in the chart after iteration N 

AN=length of agenda after iteration N

Then in the top-down case we have the following relations:

Ao=G+Rs-(number of perm utations of inputs of graph) where R s 
is the num ber of rules for S (the s ta rt symbol).

Co=0

P0=0

and  for the (N+l)th iteration

An +1 '
'= An -1 if patch is already present in chart 
<=AN-1+AQT^+M"f+QR if patch partial and not in chart 
<=An -1+(K+M).R29t ^ ’*'M+A-1 if patch  complete eind not in chart

{= Cn if patch chosen is already present in chart 
= Cn if patch chosen is partial and not in chart 
= Cn+1 if patch chosen is complete and not in chart

r= PN if patch chosen is already present in chart 
PN+ 1  j = PN+1 if patch chosen is partial and not in chart 

1= Pn if patch chosen is complete and not in chart

In the bottom -up case we have the following relations: 

Ao=G 

Co=0 

Po=0
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and for the (N+l)th iteration,

{= An-1 if patch chosen is already present in chart 
<= AN-l+A.Q.Ti^+M-1 jf patch partial and not in chart 
<=AN-1 +(K+M).R.2 9 -Ti^+M+A-1 +QR if complete and not in chart

r= Cn  if patch chosen is already present in chart 
Cn + 11 = CN if patch chosen is partial and not in chart

1= Cn +1 if patch chosen is complete and not in chart

{= Pn if patch chosen is already present in chart 
= f^+ 1  if patch chosen is partial and not in chart 
= Pn if patch chosen is complete and not in chart

Note th a t th is m eans th a t in both the bottom-up case and the top-down 

case both  Cn  and  Pn  are monotonie functions (as a  function of N). As 

d iscussed  earlier both  sire bounded above. Therefore after some 

num ber of iterations they m ust both h it their maximum value (which 

will norm ally be m uch less than  the crude figures given above). Once 

th is happens all patches on the agenda m ust be already present in the 

ch a rt and  An  decreases by one on each subsequent iteration until it 

reaches 0 (an em pty agenda), and the algorithm  term inates. Now on 

each iteration it can be seen tha t either:

(i) both Cn  and Pn  remain constant (in which case An  decreases)

or (ii) Pn  increases by 1, and items are possibly added to the agenda

or (iii) Cn  increases by 1, and items are possibly added to the agenda.

Now, from the above it can be seen tha t a t m ost 0(L .T^+^) iterations 

involve adding a  complete patch to the chart and add some item s to 

the agenda, and a t m ost 0(R.2Q.T^+^+M) iterations involve adding a 

partia l patch  to the chart and add some items to the agenda All the 

o ther iterations simply remove items from the agenda. So how m any 

item s get added to the agenda?

This is given by:
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(no. of item s in in itia l agenda)+(no. added  for com plete 

patches)+(no. added for partial patches)

In the top down case this is:

<= AO + 0(L.t K+M).0((K+M).R.29.t K+M+A-1) + 

0(R .29.tA+K+M).(0(A.Q.t K+M-1)) + Q.R)

which clearly has a  polynomial bound. Similarly, in the bottom -up case 

th is is:

<= AO + 0(L.t K+M).(0((K+M).R.2Q.t K+M+A-1) + Q.R) + 

0(R .29.tA+K+M) .o (A.Q.t K+M-1)

w hich again is clearly polynomiEilly bounded. So, in both  cases the 

num ber of item s added to the agenda, w hich is the sam e as the 

num ber of itera tions performed by the algorithm , is polynomially 

bounded. Now, how m uch work is done on each of these iterations? 

The cost of seeing if a  patch is already in  the ch a rt can be done in 

polynomial time. This is because (even with no clever indexing) there 

are a t m ost a  polynomial num ber of patches in the chart th a t need to 

be checked. The cost of checking if one patch is extendible by another 

can be done in constant time^ (depending on the grammar), as can the

 ̂ It depends on checking that the instantiated tie-points of the two patches are 

compatible with each other, emd the number of tie-points involved depends on the 

grammar. If the no-sharing check is included, then the cost will no longer be constant, 

but can be done in time at most 2QG since, the partial patch can have at most Q 

components, each of which is ultimately made up of at most G NAPEs, and the complete 

patch is also made up of at most G NAPEs, at lowest level. Checking for intersection of 

two sets can be done in time linear in the sum of the sizes of the two sets. This is still 

polynomial, so does not affect the analysis.
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cost of making a  new patch. All the costs involved in checking rules 

etc. are purely a  function of the gram m ar. So the to tal cost of the 

algorithm is easily seen to have an upper bound which is a  polynomial 

function of T.

5.4.2 Finding All Parses

It should  be noted th a t a lthough  the  algorithm  perform s 

flowgraph recognition in polynomial time, it does not find all parses in 

polynomial time. This is because for some flowgraphs and  some 

gram m ars there may well be an exponential num ber of parses (this is 

even true  of Earley’s algorithm operating on strings!). The algorithm  

will however find a  parse if one exists. If an  application requires all 

possible parses, then the algorithm can be modified to store any patch 

w hich is equal to one already in the chart in  term s of its inpu ts , 

ou tputs, and label, b u t n o t equal in  term s of its c o m p o n en ts , in an  

auxiliary d ata  structure. At the end of the parsing there will then  be 

enough information around in the chart and the auxüiaiy data  structure 

to enable subsequent calculation of all possible parses.

5.5 Chart Parsing of Structure-Sharing Flowgraphs.

As stated  in the introduction we are also in terested in  the case 

where stru c tu re  sharing  is allowed. To m ake th is more precise we 

define a  relation co llap ses on the set of flowgraphs over some set of 

NAPEs by:

G2 collapses G1 iff G1 and G2 are flowgraphs, and G l^  contains

two tr ip le s  of th e  form  T l= (A ,( t i  t n ) , ( x i , . . .  ,xm  )) an d

T 2 = (A ,(ti,...,tn ) ,(y i..... ym)). and G2^ can be obtained from G l^  by

removing these two triples and replacing them  by a single triple of the

form T 3 = (A ,( t i , . . . ,tn ) ,(z i  zm)) and then  replacing all occurrences of

X I,.,.,x m  and y i , . . . ,ym by z i , . . . ,zm respectively th ro u g h o u t the
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remaining triples. In other words, G2 collapses G1 iff G1 contains two 

instances of some NAPE A (say) which have the same inputs, and G2 is 

identical to G1 except th a t the two instances of A have been replaced 

by a  single instance of A (with the same inputs) and all NAPES which 

originally con n ected  to the ou tpu ts of one or other of the two in sta n ces  

of A now connect to the single instance (in G2). This am oun ts to 

identifying the two instances of A and their corresponding tie-points.

The reflexive, transitive, symmetric closure of co llap ses is then  

an  equivalence relation (share-equivalence) on the set of flowgraphs, 

and we then  w ant any parsing algorithm which can recognise some 

graph G to also be able to recognise any flowgraphs share-equivalent to 

G. We also w ant the grammatical formalism used to be able to generate 

not only the flowgraphs derivable directly from the grammar, b u t also 

all share-equivalent flowgraphs. This can be done if we allow a t any 

point in the generation of a  flowgraph the replacem ent of the graph so 

far generated (Gl) by any graph G2 for which either G1 collapses G2 qt 

G2 c o lla p s e s  G l. A flowgraph gram m ar w ith the addition of th is 

rewriting rule will be referred to as a  (full} structu re  sharing flowgraph 

gram m ar (a SSFG). Figure 5.4 illustrates several phenom ena th a t can 

occur with SSFGs, and which motivated the above definition.

Now, it tu rn s  ou t th a t th is idea of s tru c tu re  sharing  flowgraph 

gram m ars is almost w hat we need to capture the structure sharing th a t 

occurs in program s, except that, for reasons already d iscussed  in 

C hapter 4, we do not w ant to allow anv two NAPEs sharing the same 

in p u ts  to be collapsed, b u t only NAPEs with appropriate labels. To 

accomplish th is we define a  slightly more general notion, A restric ted  

structu re  sharing flowgraph grammar (RSSFG) is a  5-tuple (N,T,P,S,R) 

where N, T, P, S are the same as for ordineiry context free flowgraph
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grammars, and N u  T 3  r . r  is the set of NAPEs for which collapsing 

is allowed, and we modify the above definition of collapses as follows:

G2 R-collapses G1 iff G1 and G2 are flowgraphs, and G l^  contains two 

tr ip le s  of th e  form  T l= (A ,( ti , . . . ,  t n  ). (x i , . . .  ,Xm )) a n d  

T2=(A ,(ti,...,tn).(yi....,ym )). where AgR and G2^ can be obtained from 

G l^  by removing these two triples and replacing them  by a  single 

triple of the  form T3=(A ,(ti,...,tn).(zi,...,zm )) and then  replacing all

occurrences of x i  xm and y i  ym by z i  zm respectively

throughout the remaining triples. In other words, G2 R-collapses G1 iff 

G1 contains two instances of some NAPE A (whose label is in R) which 

have the same inputs, and G2 is identical to G1 except th a t the two 

instances of A have been replaced by a  single instance of A (with the 

sam e inputs) and all NAPE^ which originally connected to the outputs 

of one or other of the two instances of A now connect to the single 

instance (in G2).

The reflexive, transitive, symmetric closure of R -collapses is also 

an  equivalence relation (R-share-equivalence) on the set of flowgraphs, 

and  we then  w ant any parsing algorithm which can  recognise some 

graph G to also be able to recognise any flowgraphs R -share-equivalent 

to  G. We also w ant the gramm atical formalism used  to be able to 

generate not only the flowgraphs derivable directly from the gram m ar, 

b u t also all R-share-equivalent flowgraphs. This can be done if we allow 

a t any point in the generation of a  flowgraph the replacem ent of the 

graph so far generated (Gl) by any graph G2 for which e ither G1 R- 

collapses G2 or G2 R-collapses G l. It is the addition of th is rewriting 

rule which tu rn s  an  ordinary flowgraph gram m ar into a  re s tr ic te d  

s tru c tu re  sh arin g  flowgraph gram m ar (RSSFG). If R = 0  then  the 

gram m ar is an ordinary flowgraph grammar, and if R= N uT  then  we 

get a  (full) structure sharing flowgraph gram m ar as defined earlier.
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To see how the chart parsing algorithm can be modified to cope 

with RSSFGs it should first be noted th a t for any flowgraph G there is a  

sm allest flowgraph Gmin which is R-share-equivalent to G. Secondly it 

should be noted th a t the right-side structure of any rule in a  RSSFG 

can be replaced by any flowgraph R-share-equivalent to it w ithout 

altering the generative capacity of the gram m ar. We can therefore 

define a  canonical form for an RSSFG in which each rule of the form:

A ==> B 

has been replaced by the rule:

A ==> Emin.

So the first change to the algorithm is actually to change the 

gram m ar to its canonical form, and to use th is  new form of the 

gram m ar for parsing. The second change is to the action of adding a 

complete patch  to the chart. Previously the only check th a t was done 

w as to see if the patch  was already in the chart. Now the algorithm 

m u st additionally check th a t the label of the patch is in R, and th a t 

there is no other patch with the same label and the same inputs in the 

chart. If there is then the algorithm m ust collapse the new patch  and 

the one th a t was there already into a single patch with a  new set of 

ou tpu t tie-points and identify the original ou tpu ts of the two patches 

w ith these new tie-points. Provided tie-points in the various triples 

m aking up the patches £U"e represented as pointers to pointers to tie- 

points (rather than  storing the tie-points directly in the triples) then  

sim ply changing the values of the second se t of po in te rs will 

implement the identification universally throughout all patches in the 

chart. If the information tha t collapsing has been done is needed by an 

application the algorithm  can m ake a note of th is  fact e ither by
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annotating the tie-points involved or by an  assertion held separately. 

Finally, the no-sharing check m ust be omitted.

5 .6  Degenerate Flowgraphs

With the adgorithm Just described there are several apparen t 

anom alies th a t can occur. The following two examples were originally 

poin ted  o u t to me by Linda Wills (personal com m unication) as 

problem s for the chart parser. However, in the light of the above 

discussion of structure sharing and collapsing of flowgraphs, they can 

be seen as na tu ra l and indeed desirable consequences of the theory 

provided that the other components of the program understanding 
system  are capable of reasoning about the seemingly anomalous patches 

th a t are recognised.

5.6.1 Anomalous Example 1

The first example is where we have a  rule:

A [tl t2] Its t4] ==> I [b [tl] [tS tSll [d [t5 t2] [t4]]] 

and input graph:

[ lb [1] [2 311 [d 13 21 [4] II 

which is recognised by the parser as:
1

[A [1 21 12 411

in  which a  cyclic stru c tu re  has been recognised even though the 

original graph had no cycles! Figure 5.5 shows the situation. Now, if we 

allow structu re  sharing and collapsing, then as can be seen in Figure 
5.6, such  a  degenerate flowgraph arises quite naturally.
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Figure 5.6
Explanation of Anomolous Ê xample 1
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5.6.2 Anomalous Example 2

The second example is where we have a  rule:

A [ t l  t21 [ts  t4] ==> [ [c [tl]  [ ts  te i I
[d [ts t7] [t4] I 
[a [t6] [tS] I 
[a [t2] [t71 ] 1

and we have input graph:

[ [c [1] [2 SI 1 [a [S] [4] 1 [d [2 4] [S] ] ]

In this case the parser recognises:

[A [1 S] [4 S ll

This time we have no cycles, b u t one of the in ternal tie-points of a  

patch  is also functioning as one of its inputs. Figure S.7 shows this 

situation. Again, if we allow structure sharing and collapsing we can see 

th a t th is phenomenon may arise quite naturally, as shown in Figure 5.8. 

If we in terp ret th is in programming term s, it would appear tha t, in 

general, su ch  degenerate flowgraphs rep resen t the  case w here a  

program m er has realised that, in order to prevent a  com putation being 

done twice w hen some initialisation code before the  call of some 

operation duplicates some of the internal details of the implementation 

of the operation, th a t  she can expand the operation ‘in-line’ and 

remove redundant com putations. In th is case we do actually w ant the 

system  to recognise the high level description of the operation even 

th o u g h  the  code (and graph) m ay look ra th e r  s tran g e  as an  

implementation of it.
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5.7 Discussion

Although there is quite a lot of litera tu re  on the  generative 

abilities of various types of graph grammar formalisms (see e.g. [ Ehrig, 

1 9 7 9 , Feeler, 1 971 , Pu, 1974, Gonzalez and Thom ason, 1 9 7 8 , Pfaltz 

an d  Rosenfeld, 1 9 6 9 , Rosenfeld and M ilgram, 1 9 7 2 ]), th e re  is 

relatively little on parsing  strategies, except for ra th e r  restric ted  

classes of graph and web grammars [e.g. Della Vigna and Ghezzi, 1978]. 

In its top-down strictly left-to-right form chart parsing of context-free 

string  languages corresponds to Earley's algorithm  [ Earley, 1970], 

which was generalised by Brotsky [1984] to parsing flowgraphs of the 

kind described here, except th a t his algorithm  could no t cope w ith 

fan-out a t tie-points. However the approach taken  here can also ru n  

bottom -up, which is particularly useful in applications in  w hich we 

w ant to recognise as m uch as possible even though full recognition may 

be impossible (because of errors in the graph, or because the gram m ar 

is necessarily incomplete). Wills [1986 , 1990] has modified Brotsky's 

algorithm  to cope with fan-out, b u t her algorithm  only ru n s  in  a 

pseudo-bottom -up fashion by starting it running top-down looking for 

every possible non-terminal at every possible place in the graph.

A particular advantage of a  chart parser is th a t it quite explicitly 

keeps a  record of all partia l patches it finds. This is usefu l in  

applications for which we may not ju s t wish to verify th a t some graph 

can be generated from some grammar, b u t also to enable the system to 

m ake suggestions based on "near-miss" inform ation abou t how to 

correct the graph. It is in such applications th a t it m ay be useful to 

modify the algorithm to run  right-to-left as well, since th is m ay enable 

one to find more “near-m isses” (i.e. those missing the ir s ta rt NAPES) 

th an  one would find if the parser only ran left-to-right.
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5.8  Applications

The algorithm ju s t described forms the basis for the p lan  recognition 

process performed by IDS. However, as will be seen  in  th e  next 

chapter, there are m any features of tlie plan calculus tlia t do not 

exactly fit the formalisms we have ju s t  described. Accordingly, the 

description of how this algorithm has to be modified to perform plan 

recognition will be delayed until Chapter 7 (after we have discussed 

the translation process from programs to surface plans), and Chapter 8 

will give detailed examples of the plan recognition process on actual 

program s. However, as stated a t the beginning of th is chapter, there 

are other domains in which a similar ability to parse flowgraphs would 

be useful. In particular, digital circuit analysis is a  domain which fits 

the  s tru c tu re -sh arin g  flowgraph formalism especially well. We will 

illu stra te  th is with an  example. Consider Figure 5.9 which shows a 

circuit which performs addition of 3-bit num bers. The gram m ar shown 

in  Figure 5.10 is capable of generating such a  circuit, and the parser 

does indeed recognise this circuit as produced by the  gram m ar. It 

would be in teresting to try and build a  tu toring  system  for digital 

circuit design based on this chart parsing algorithm, where near-m iss 

inform ation provided by the p arser could again form the  b as is  for 

guiding the tutoring strategy.
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PART 3. IDS
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Chapter 6.

An Overview of IDS, and The Translation Module

This chapter will give an overview of IDS - the m ain modules, 

how they interact, and the sta te  of im plem entation etc. It will also 

discuss the translation from Pascal to surface plans.

6.1 Overall Structure of IDS

The overall structu re  of IDS as finally envisaged is shown in 

Figure 6.1. As can be seen there is m uch still rem aining to be 

im plem ented. Of the m issing modules the reason m aintenance and 

theorem  proving/symbolic evaluation m odules are perhaps the m ost 

im portant since these are language independent p arts  of the system. 

Additionally, the transla to r from surface p lans back  to Pascal also 

rem ains to be written. However, enough h as been im plem ented to 

show  the  feasibility of the p lan  calcu lus app roach  to program  

understanding  using chart parsing as the basic recognition technique, 

and to allow very detailed descriptions of how debugging would work if 

the  o ther m odules were implemented. The strategy IDS will use to 

debug programs is the following:

(a) Translate the program into its surface plan.

(b) Try to u n d e rs tan d  the  program  by recogn ising  all 

occurrences of library plans. Make a note of any "near" matches.

(c) Symbolically evaluate any rem aining (i.e. unrecognised) 

parts of thé surface plan.

(d) Check for broken preconditions of any of the recognised

plans.
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(e) Use n ear m atch  inform ation and b roken  precondition  

information to try and repair the program.

(f) Translate the debugged surface plan back into the source 

language.

The rest of th is chapter will give an  account of the translation  

module, and Chapter 7 will describe the recogniser in full detail, and 

describe the translation process from Rich’s plan notation  to graph

like rules suitable for use by the recogniser.

6 .2  The Translator

One of the main parts of the work described here has been the 

im plem entation of a  Pascal-to-Surface-Plan translator. This transla to r 

can cope with a  large subset of Pascal, and the structure is such  th a t it 

can  easily be extended to cope with m ost of the rest. As implemented 

so far it can  cope w ith assignm ents, procedures and  functions, 

num bers, records and pointers, arrays, if s ta tem en ts , and  while 

sta tem ents. Because Pascal is quite a  large language with a  complex 

syntax  (at least compared to LISP) the translation  program  is quite 

large, b u t follows the pattern of a  recursive descent parser for Pascal.

6.2.1 Recursive Descent Data Flow Analysis

We can th ink of the process of translating a Pascal program into 

its surface plan as analogous to the process performed by a  compiler 

which tran sla te s  program s into m achine code, the difference being 

th a t  in th is  case the ta rge t language is th a t of surface p lans. 

Accordingly, we perform the translation in m uch the same fashion as a  

compiler, interleaving the parsing and the surface plan generation. 

Since the gram m ar for Pascal can be expressed in an  LL(1) form it can 

be parsed in a straightforward recursive descent fashion. J u s t  like a
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compiler, the transla to r makes use  of a  symbol table, which, since 

Pascal is a  lexically scoped language, can have a  stack-like structure. At 

any given point in the parsing process the symbol table contains 

entries for each nam e th a t has been encountered (declared) so far in 

the program, and which is not yet out of scope. The entry  for each 

variable contains the following information:

1 ) its name

2) its lexical level

3 ) which procedure it was declared in

4) w hich tie-po in t in the  su rface p lan  being  generated

represents the value of the variable

5) its kind (e.g. simple variable, or, if a  formal param eter

w hether it is call-by-value or call-by-reference, is it a  record accessing

function, and so on)

6) its type (e.g. integer, real, boolean, pointer to a  record type, 

procedure etc.)

7 ) definition information - this is an  entry which can take on 

any of the values “defined”, “undefined”, or “possibly undefined”, and 

enables the transla to r either to issue w arnings to the  program m er 

about variables th a t are or may be undefined when they are used, or to 

pass on to the recogniser as an indication of actual or possible bugs.

If the type is procedure, the entry for the procedure will also 

contain the following information:

8) the indices (in the symbol table) of the non-local variables 

used  by the procedure, and the indices (in the symbol table) of the 

non-local variables updated by the procedure.
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It is item  4) in th is lis t which essen tia lly  co n stitu tes  the 

difference between the transla to r and a compiler. It corresponds to 

the symbol table entry where a  compiler would hold the address of the 

variable. In a  compiler the address of a variable is fixed for the duration 

of the translation process. However, in the translato r th is entry should 

be thought of as the “current address” i.e. the curren t tie-point in the 

graph representing th a t variable, and th is will vary as the translation 

proceeds. The symbol table th u s  provides a  m apping between nam es 

and tie-points, which we can th ink  of as constituting an  environment 

in  w hich the transla tion  takes place. So for exam ple if we are 

translating a  statem ent of the form:

x:=y+z;

the translator can generate an @Pbinfimction node^ in the surface plan, 

w ith in p u t .op coming from a  tie-point representing  “+”, and  inpu t 

. in p u t 1 coming from the tie point (obtained from the symbol table) 

corresponding to y, and input .input2, coming from whatever tie-point 

rep resen ts z. A new tie-point is generated to rep resen t the ou tpu t 

from th is node, and this is then  stored in the symbol table against x. 

This changes the environm ent, and the su b seq u en t sta tem en t is 

analysed in this new environment. We will refer to a  mapping between 

nam es and tie-points as a  data flow environment. At any particular time

 ̂ In the translation process we generate @Pbinfunction (apply Pascal blnfunction) 

rather than @binfunction since the Pascal operators have different (more specicilised) 

preconditions than the more general ones in the plan calculus. For example, addition in 

Pascal is only correct if the result is between -mazint and mazint. This can be a source 

of errors, and so representing the operators differently enables us to capture this. Of 

course we use overlays to map from the Pascal operators to the more general ones. This 

same comment applies to all the operators generated by the translator.
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the mapping held in the symbol table will be referred to as the current 

d a ta  flow environm ent (CDFE). There will also be a  global variable 

representing the current controlling condition (CCFE).

T ie-points represen ting  known constan ts  (e.g.

“true", “false”, nil, “0” etc.) are held in a  separate table (actually a 

hash  table), so tha t when the translator needs to connect an  operation 

to one of these it can simply look in the table to flnd which tie-point 

rep resen ts  th a t value. This table is initialised a t the s ta r t  of the 

translation  process, and if new constants (e.g. 99999) are encountered 

a  new tie point is created to represent th is value and stored in  the 

known constants table.

Each ordinary (i.e. not a  test or join) operation (NAPE) generated 

by the translator is represented as a  list of the form:

[NAPE-type [NAPE-inputs] [NAPE-outputs] Control-flow information]

and for ordinary operations the control flow information is simply the 

controlling condition for the NAPE.

Tests are represented in the form:

(test-type [test inputs] [Cm C su cce ed  Cfaii]]

w here C in ,  C s u c c e e d .  and C fa ii  are the inpu t, succeed, and  fail 

controlling conditions for the test.

Jo ins are represented in the form:

[join-output [succeed-input fail-input] [join-output] [J su c c e e d  J fa il d o u d l

w here J s u c c e e d .  Jfail. and J o u t .  are the succeed, fail, and  ou tp u t 

controlling conditions for the join.
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The g raphs being generated are all held  in  a  fram e-like 

structu re , with a  frame for each sub graph being generated. A su b 

graph is generated for each conditional, while loop, and procedure, 

and the graph for the main program consists of any actions it actually 

contains directly, and a  NAPE representing each  subgraph  it m ay 

contain. Similarly, the sub-graphs, may contain NAPEs representing 

o ther subgraphs. In the description th a t follows the  su b -g rap h  

currently being generated will be referred to as the curren t segm ent.

The translation process will now be described. Rather th an  going 

th ro u g h  th is  syn tax  sta tem ent by syntax sta tem en t, we will only 

describe enough of m ain syntax forms we can currently  deal w ith to 

m ake the technique clear. The o ther syntax  form s th a t  we can  

currently deal with are dealt with in a very similar fashion to those we 

do describe. In w hat follows we will use, as part of the m eta language 

for describ ing  Pascal,angle brackets (< and  >)to denote sy n tax  

elem ents, and  curly  brackets ({ and }) do denote zero or m ore 

repetitions of whatever they enclose, and we use  a  vertical b ar (I) to 

denote a  choice of forms. We will also use the brackets ([ and ]) to 

indicate an  optional p a rt of the syntax, and will u se  double quotes (“ 

a n d ”) to indicate ac tual term inal item s th a t are  expected in the 

program  a t th a t point.

6 .2 .1 .1  D ec la ra tio n s

Obviously, declarations add no nodes to the graph of the curren t 

segment. W hat they do is add new entries to the CDFE (symbol table). 

Variable declarations simply add a new entry for the variable being 

declared, w ith all the usua l information a  compiler would have, and 

w ith  th e  defin ition inform ation p a rt of the  en try  being se t to 

“undefined”. The cu rren t translator does not handle m any of the
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possible Pascal type declarations, other than  the various num ber types, 

and records and arrays. If a  variable is declared as being an  array, then 

an  entry is added to the symbol table for this variable. It is flagged as 

“defined". This is because, except for the case where an  array is used 

before any assignm ents to any of its fields, it is in general very difficult 

to tell w ithout doing a  lot of sophisticated reasoning w hether or not a  

particu lar entry in the array is undefined or not. This sort of ta sk  is 

best left to the plan recognition/theorem  proving p arts  of IDS rather 

th an  burdening the translator with this task. The declaration of a  new 

record type leads to new symbols being added to the symbol table - one 

for each of the record fields. So a  declaration like th a t discussed in 

earlier chapters:

type  listelement = reco rd
num b : integer; 
next : '^listelement; 

end;

plist = '^listelement;

leads to entries being made in the symbol table for num b and next. 

These are flagged as being “defined”. Note th a t declaring a  variable as 

being a  record type also leads to a  “defined” variable, b u t th a t 

declaration of a  variable as being a  pointer type leads to an  “undefined” 

variable. This is because, in the case of the variable being a  record, we 

are thinking of it as an immutable record cell (as discussed in Chapter

3) and hence the declaration actually defines it. However, a  pointer 

variable does not become defined until it is given a  value.

6.2.1.2 Translating Expressions and Assignment Statements

We W Ü 1  discuss this by considering the following fragm ent of 

Pascal syntax:
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<assignm ent-statem ent> ::== <variable access> <expression>;

<variable access> ::== <entire v a riab lo  I <component v a ria b lo
I <identified v a riab lo

<expression> ::== [<sign>] <term> {<adding-operator> <term>}

<sign> ::== “+” I

<adding-operator> ::== “+” I “or” 1“-”

<tenn> ::== <factor> {<multiplying operator> <factor> } 

<multiplying-operator> ::== “*” I “/ ” I “div” I “m od” I “and”

<factor> ::== -cvariable access> I <unsigned-constant>

I “(” <expression> “)”

The <com ponent-variable> and <identifled-variable> form s will be 

covered by the discussion of records and arrays la ter in th is chapter. 

So let us consider a statem ent of the form:

y:= x+(y+z)*3

As in a  norm al recursive descent compiler, there is a  procedure for 

dealing with each of the syntax forms of the language. However, the 

procedures for <expression>, <term>, and <factor> all re tu rn  a  result, 

which is the tie-point in the graph being generated which represents 

the  resu lt of the <expression>, <term>, or <factor>. So, the translator 

calls the procedure for <assignment statem ent>, and m akes a  note of 

which variable (y) occurs on the left of the assignm ent. It then calls the 

procedure for dealing with an  <expressions>. Since th is m ust be of 

the form:

[<sign>] <term> {<adding-operator> <term>}

it first m akes a note of any <sign> if there is one, and proceeds to call 

th e  <term> procedure, which generates th e  g raph  for w hatever 

<term> is actually present in the <expression> being analysed, and 

re tu rn s  the o u tp u t tie-point representing  the re su lt of the s u b 
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expression corresponding to the <term>. Let u s  call th is  tie-point 

tsofcir. If there was a  <sign> then an ©Pfunction node is generated, 

tak ing  as its .op inpu t the tie-point representing the u n ary  m inus 

operation (obtained from the known constants table), and taking as its 

.in p u t in p u t the tie-point t s o fa r -  A new tie poin t is generated  to 

represent the ou tpu t of this © Pfunction, and tsofeir is now set to th is 

tie-point.

Now, if there is an  <adding-operator> present, then  the <term> 

procedure is called again to return  its result (whieh will be referred to 

as tn ex t) . the result of the next sub expression. Now an  ©Pbinfunction  

node is generated in the graph with its .op inpu t being the tie point 

corresponding to whatever the actual <adding-operator> was, and its 

two o ther inpu ts  being t s o f a r  and t n e x t -  A new tie-point is again 

generated to represent the output of this node, and tso fa r  is set to this. 

In th is  fashion we eventually arrive a t a  situation  w here we have 

generated the graph for the <expression>, and have a  tie-point t s o fa r  

representing  the resu lt of executing the graph corresponding to the 

<expression>. This is then returned back to the calling procedure (in 

th is case for recognising an <assignment statement>) as the resu lt of 

the <expression>. The <assignment statem ent> procedure then  stores 

th is tie-point in the symbol table against whatever the variable on the 

left was, in place of its , old value. So in this case the entiy  for y in the 

symbol table is changed to tsofar-

The <term> procedure works in a  very sim ilar fashion to the 

<expression> procedure, except th a t it generates @Pbinfimction nodes 

w ith “m ultiplication” operators rather than  “addition”.

C onstan ts and variables in expressions are dealt w ith by the 

<factor> procedure. If the <factor> procedure finds a  variable when it 

is called, it looks up the symbol table and returns as a  result whatever
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tie-point currently  represents the value of th a t variable, un less the 

definition inform ation for th a t variable is “undefined” or “possibly 

undefined”. In this case it generates a  warning message, and re tu rn s a  

tie -po in t corresponding to an  undefined value (from the  know n 

co n s tan ts  table). It now flags the variable as  “defined” to avoid 

generating m ultiple warnings. If the <factor> procedure h a s  been 

called by the procedure for translating  conditional s ta tem en ts  (or 

inside part of the the procedure for translating loops which deals with 

the body of the loop) then the warning is “possible use of undefined 

variable”, since th is code may or may not be executed depending on 

the resu lt of the test a t the time the program is executed. If it is not 

inside a conditional, then the warning is “use of undefined variable”.

If the <factor> procedure finds a  constant, it then  looks up the 

known constan ts table to see if this constant already h as a  tie-point 

associated with it. If so it return  this one, otherwise it generates a  new 

tie-point, stores it in the known constants table against the constant, 

and re tu rns this new tie-point as its result.

If the <factor> procedure finds an embedded sub-expression (in 

brackets) th en  it re tu rn s  the resu lt of calling the  <expression> 

procedure recursively.

Also note th a t a  statem ent like this cannot alter the controlling 

conditions in any  way. So all the generated nodes (NAPEs) get the 

cu rren t controlling condition as their controlling condition.

So suppose that, when the translator s ta rt dealing with the above 

statem ent, the symbol table contains the following entries:

y .... tie-point t l

X .... tie-point t2

z .... tie-point t3
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and th a t the current controlling condition is P. Then the NAPEs added 

to th e  g raph  for the  cu rren t segm ent by th is  expression  are 

represented by:

[@Pbinfunction [tpius t2 t5] [t6] P]
I@Pbinfunction [ttimes t4 tthree) [t5] P]
[©Pbinfunction [tpius t l  t3][t4] P]

where t4, t5, and t6  are new tie-points, t t im e s  and tpius are the tie- 

poin ts representing the “+” and operators, and  t th r e e  rep resen ts  

the value “3” and may or may not be a  new tie-point depending on 

w hether or not the constant 3 has appeared in the  program  prior to 

th is statem ent. The graph corresponding to this is shown as Figure 6.2.,

After this graph has been generated the symbol table contains 

the following entries:

y .... tie-point t6 

X  .... tie-point t2 

z .... tie- point t3

6.2.1.3 Translating Conditional Statements

Conditional statem ents are more interesting. In the m ost general 

case they have the following form:

If <condition> th e n  <statem entl>  e lse  <statem ent2>

where <condition> is an  <expression> which evaluates to a  boolean 

value, and  < sta tem entl>  and <statem ent2> are any valid Pascal 

sta tem en ts . This is translated  as follows. F irst the  <condition> is 

translated, ju s t  by calling the procedure for expressions. A test node is 

then  generated which takes as input the (boolean) ou tpu t from the part 

of the surface plan corresponding to <condition>. Cm for the test is the 

cu rren t controlling condition C c u r r e n t -  A new symbol representing the
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te st is generated (X say) and new controlling conditions CcurrentAX and 

CcurrentA-iX are created and assigned to C su cceed  and C faii for the test. A 

copy of the current data  flow environment (CDFE) is then  saved (i.e. 

the symbol table is saved) in C D F E s a v e d . as is the curren t controlling 

cond ition  (C C F E s a v e d ) -  C s u c c e e d  is then  assigned to C C F E , and 

< statem entl>  is then  processed. At the end of th is  process CDFE is 

saved again (C D F E su c c e e d )-  C D F E  is then restored from the old saved 

copy (i.e. C D F E  is se t to C D F E s a v e d ) .  and C C F E  is set to C fa ii. Now 

<statem ent2> is processed. At the end of th is process, jo in -ou tpu t 

nodes are created, with J o u t  set to C m , J s u c c e e d  set to C su c c e e d . and J fa ii  

se t to Cfaii. To determine the succeed data flows and the fall data flows 

connecting to the join-outputs, the CDFE (which is now actually the fail 

d a ta  flow environment) and the saved succeed d ata  flow environm ent 

C D F E s u c c e e d  are com pared w ith the original saved d a ta  flow 

en v iro n m en t C D F E s a v e d -  Any entry  which is different in  either 

CDFE(fail) or C D F E su c c e e d  from the entry in C D F E S a v ed  has a  join-output 

NAPE created for it. The succeed-input of the jo in  is the value in 

CDFEsucceed, and the fail-input is the corresponding value in CDFE. A 

new tie-point is then created for the output from the join-output, and 

th is  is used to update appropriate entry in the C D F E s a v e d -  I f  one of 

either the succeed input or the fail input to the join is undefined then  

the  new tie-point is flagged as “possibly undefined” (by storing th is 

inform ation in the symbol table against the appropriate variable. After 

th is  h a s  been done for all entries in the symbol table w hich have 

changed on one or other or both branches of the conditional, the CDFE 

is set equal to C D F E s a v e d -  The curren t controlling condition is then  

reset to w hat it was on entry to this procedure i.e. Cm

So, consider the following piece of code:



212

if  a<3 and b<2 then 
begin

y:=a+b;
z:=false;
c:=a

end
else

begin
y=a-b;
z:=true;
d:=b

end;

and suppose th a t the symbol table contains the following entries when 

the statem ent is analysed:

a ... t l  

b ... t2 

c ... t3 

d ... t4 

y ... t5 

z  ... tfrue

W hen the <condition> is processed we get the following:

[ [©Pbinfiinction (tand t7 t8][t9] P]

[©Pbinrel [tiess t2  ttwolItS] P]

[©Pbinrel [tiess t l  t th r e e l[ t7 ]  P]

1

where as usual P is the current controlling condition, t7, t8, and t9  are 

new tie-points, and ttw o  and tthree represent the obvious constants.

Now the te s t node is generated, w ith two new controlling 

conditions:

[Ptest [t91[P PaX PA-.X]
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The symbol table is now saved, the current controlling condition set to 

PaX, and the statem ents in the then part of the conditional translated. 

This gives rise to:

[@ Pbinfunction [tplus [ t l t2 ][tl0 ] PaX]

and the sym bol table (CDFE^succeed) is  now:

a ... t l

b ...  t2 

c ... t l  

d ... t4  

y ... tlO  

z  tfa lse

C D F E  is th en  resto red  from C D F E s a v e d .  th e  c u rre n t controlling 

condition is set to Pa- iX, and the else branch is then  processed. This 

gives us:

[©Pbinfunction [tminus t l  t2 ][tl 1] Pa-iX]

and the symbol table (CDFE) is now:

a ... t l  

b ... t2 

c ... t3 

d ... t2 

y ... t i l

Z ... ttrue

C D F E s u c c e e d  and C D F E  are now compared with C D F E s a v e d -  I t  can be 

seen th a t on the then side variables c, y, and z have altered, while on 

the  else side variables y,z, and d have altered. A jo in  is therefore 

created for each variable in the union of these two sets of variables, 

giving us:
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[ [join-output [tl t3][tl2] PaX  P a-iX  P]

(join-output [tlO t l l ] [ t l3 ]  PaX  P a-iX  P]

(join-output [tfalse ttruel[tl4] PaX  P a - X  P]

(join-output [t4 t2][tl5] PaX  P a-iX  P]

The graph for the whole conditional s ta tem en t is show n in 

Figure 6.3. Note th a t we have shown all the joins as a  single jo in  with 

several succeed and fail inputs rather than  as several joins with a  single 

succeed and a  single fail inpu t each. In the segm ent containing the 

conditional a  NAPE is added representing th is conditional, with inputs 

corresponding to the variables whose values were used inside the 

conditional statem ent before they were updated (if they were updated 

a t all), and outputs corresponding to the outputs from the join, and any 

variab les th a t  were altered  inside the  <condition> p a r t of the 

statem ent. How can we tell which variables are used  in  a  segment? 

W hen transla ting  anything, it is the <factor> procedure m entioned 

earlier w hich is actually  responsible for dealing w ith variable (or 

constant) usage. If it is dealing with either a  constant, or a  variable, 

th en  it follows th a t th is variable or constan t m u st be u se d  by the 

cu rren t segment. However, it does not follow th a t because a  variable is 

used  inside a  segment th a t its value m ust be an inpu t to the current 

segm ent, since the segment might update a variable before using its 

value. So the translator m aintains two lists for the cu rren t segment. 

One is the list Vupdated. of all variables which are updated  in the 

cu rren t segment. This list is kept up to date by the <assignm ent 

sta tem ent>  transla to r (and the procedure responsible for adding a 

node represen ting  ano ther segm ent to the cu rren t segm ent). The 

other list Vused is the list of all variables which are used before being 

updated  So when the <factor> procedure is dealing with a  variable it 

checks to see if tha t variable has been updated in this segment. If not.
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then  th is use of the variable m ust represent a  value flowing into the 

curren t segment from outside. In this case, provided the variable is not 

already present in Vused h  is added to it. If constants are used  they are 

sim ply added to Vused- It is th is list Vused w hich is u sed  by the 

tran sla to r for conditionals and loops to work ou t the in p u ts  to the 

segment. In the case of the conditional ju s t  discussed, Vused contains:

la b less false plus m inus true]

so in its enclosing segment the conditional is represented by:

[conditional 1 (tl t2  tiess tfalse tplus tminus ttrueî(tl2  t l 3  t l 4  t l 5 |  P]

Of course when th is NAPE is added to the graph  of its  enclosing 

segm ent, the CDFE of th a t segm ent m ust be updated  so th a t the 

variab les in V used now have the ou tpu t tie-poin ts of the loop or 

conditional associated with them.

6.2.1.4 Translating Loops

Loops are by far the hardest case to deal with. They are dealt 

with in a  similar fashion to conditionals, although the actual processing 

is more involved. We will illustrate it with reference to a  while loop of 

the form:

while <condition> do <statement>;

O ther loops (for loops, and repeat ... u n til ... loops) are dealt with 

similarly. First of all note tha t a  loop can be thought of as a  conditional, 

w ith an  empty e lse  part, and with a recursive role representing the 

whole loop again in the then  part. This recursive role comes after the 

graph for the body of the loop. Note too tha t, in a  while loop, the 

<condition> is part of the loop since it is re-evaluated each time round 

the loop. So, before translating <condition> a copy of CDFE is saved
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(the pre-condition d a ta  flow environm ent C D F E p r e c o n d it io n ) -  The 

<condition> is then translated as before, and its ou tput is connected to 

a  te s t node, ju s t as in the case of conditional statem ents. As before two 

new controlling conditions PaX  (C su cceed ) and Pa- X  (Cfaii) are created. 

The curren t data  flow environment is again saved by copying (the post

condition d a ta  flow environm ent C D F E p o s t c o n d i t io n ) -  The cu rren t 

controlling condition is then  set to C s u c c e e d  and the <statem ent> is 

then  translated. At this point a  recursive role m ust be generated. To do 

th is we need to know which variables pass their values into the loop so 

th a t we can pass the tie-points representing the values of these same 

variables after the body of the loop has been executed through to the 

recursive role. This is done by looking a t which variables have either 

been simply used, or have been used before being updated, inside the 

loop. These constitute the external inputs to the loop. Assuming for the 

m om ent th a t  we can  identify these, th en  the  tie-po in ts of the  

corresponding variables in the current data  flow environment are made 

the inpu ts  to the recursive role. Now, to compute the ou tpu ts of the 

recursive role, we have to look a t which variables are altered in the 

loop. These correspond to those entries in the cu rren t d a ta  flow 

environm ent which are different from entries in the precondition 

environm ent^. Since these variables are altered in the loop they m ust 

be ou tpu ts from the loop. Of course the recursive role m ust alter these 

sam e variables, and hence for each of these variables, a  new tie-point is 

created as the corresponding output from the recursive role. For each 

of these variables the current d a ta  flow environm ent is updated with 

the  corresponding new tie-point, giving u s  the correct d a ta  flow

^Note that we have to look at the precondition environment, since it is possible that 

evaluating the condition might alter the values of some variables (if say it involved a 

function call).
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environm ent following the recursive role. We now have to generate 

jo in -ou tpu t nodes, to reconnect diverging d a ta  values after the  te s t 

node. J u s t  as in the case of a  conditional, we generate a  jo in-output 

node for each variable th a t has changed in either the then  p art or the 

e ls e  part of tlie conditional. However, in th is  case the  e ls e  p art is 

em pty, so the succeed data  flow environm ent is sim ply th a t ju s t  

com puted (C D F E ) , and the fail data  flow environm ent is simply the 

saved post condition environment C D F E p o s tc o n d it io n -  So we only need 

to compare C D F E  with C D F E p o stco n d itio n , and for each variable th a t now 

h as  a  different tie-point associated with it we create a  jo in -ou tpu t 

node, with succeed input coming from CDFE, and fall input coming 
from C D F E p o s tc o n d it io n -  For each of these a  new tie-point is created to 

represent the output after the join, and the entries for the appropriate 

variables in C D F E  are now Updated with these new tie-points.

So consider the following piece of code:

sum:=0 ; 
sum squares :=0 ; 
i:= l;
while i< 1 0  do 

begin
sum:=sum+i;
sum squares :=sumsquares+i*i;
i:=i+l;

end;

Suppose th a t the curren t controlling condition is P. Then on entry to 

the loop the symbol table contains the following entries:

i ................................................ lone

sum......................... iaero

sumsquares........... tzero
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This is saved as C D F E p reco n d itio n - Then the condition is processed. This 

adds the following N A P E  to the graph for the loop:

[©Pbinrel [tiess tone ttenlltU P]

C D F E p o s t c o n d i t i o n  is then  saved (it happens to be the sam e as 

C D F E p r e c o n d it io n ) -  A  te s t N A P E  is then  generated (with appropriate 

succeed and fail controlling conditions):

[Ptest [tl] P PaX Pa^ ]

The body of the loop is then processed, adding the following NAPEs:

[©Pbinfunction [tpius tzero tonel[t2] PaX]

[©Pbinfunction [ttimes tone tonelltS] PaX]

[@Pbinfunction [tpius tzero t3][t4] PaX]

[©Pbinfunction [tpius tone tone][t5] PaX]

where t2, t3, t4, and t5 are all new tie-points. The symbol table (CDFE) 

is now in the state:

i ..............................t5

sum........................ t2

sumsquares...........t4

The Vused list for the loop segment is now:

V u s e d =  [less plus sum  i sum squares times 1 1 0 ]

The recursive role is now generated. Its inpu ts are the tie points 

representing the objects in Vused- Its outputs are new tie-points for all 

the variables which have changed since entering the loop. These are i.
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sum , and su m sq u ares since these all have d ifferent values in 

CDFEprecondition and CDFE. So we generate a  recursive role:

[recursive [tiess tpius t2 t5  t4  ttimes tone ttenllt6 t7  t8] PaX]

a iid  th e  sym b ol tab le is  updated  w ith  th e  n ew  tie -p o in ts  g iv ing  u s  

CDFE:

i .............................. t6

sum........................ t7

sumsquares.... t8

A join outputs-node is now generated for each of these variables, with 

succeed inpu t coming from this environment, and  fail in p u t coming 

from CDFEpostcondition. and a new tie-point for each join’s output. This 

adds the following NAPE)s:

(join-output [t6 t o n e l [ t 9 ]  PaX Pa- iX P]

(join-output [t7 t z e r o K t l O ]  PaX Pa-X  P]

(join-output [t8 t z e r o K t l l ]  PaX Pa-X  P]

This is shown in Figure 6.4. In the segment containing the loop it is 

represented as a  single NAPE with inputs given by the variables in 

Vused. and outputs given by the outputs of the join(s). i.e.

[whileloop 1 [ tiess tplus tzero tone tzero ttimes tone tten](t9 tlO  t i l ]  P]

Again, when this is added to the graph of the segment containing the 

loop, its CDFE must be updated appropriately.

6 .2.1.5 Translating Procedures and Procedure Calls

Subject to the limitations discussed below, procedure definitions 

are handled as if they were a complete program. At the s ta rt of the
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procedure definition new control and d a ta  flow environm ents are 

created. These have all the variables etc. th a t are currently  in  scope, 

b u t have new “undefined non-local” tie-points associated w ith them . 

This is to avoid generating error m essages when the procedure is 

being analysed, since of course we can only tell a t the place where a  

p rocedure  is called w hether or no t its  non-local variab les are 

undefined. Formal param eters are treated exactly as a  norm al recursive 

d escen t com piler would, b u t have “unassigned  form al” tie-po in ts 

associa ted  w ith them . Analysis of the procedure body etc th en  

proceeds exactly as for a main program, producing a  surface plan for 

the procedure. This is stored in a  frame-like structure , w ith slots for 

the procedure nam e, its surface plan, its formal param eter inputs, its 

non-local in p u ts  and  ou tpu ts (non-local variables altered  by the 

procedure are treated as outputs). Call-by-reference is treated as if it 

were call-by-value-result, which is equivalent provided th a t in a  call of 

th e  procedure there  is no aliasing of a  call-by-reference ac tu a l 

param eter with a  non-local variable used by the procedure. So call by 

reference param eters are also treated as output variables.

When a  procedure call is encountered a  node representing a  call 

of the procedure is inserted into the surface p lan  being generated. 

This node has inpu ts corresponding to all the inpu ts of the surface 

plan  for the procedure, and these inputs are connected to the curren t 

surface plan in such a  way th a t non-local inputs are the tie-points in 

the  curren t dataflow environment corresponding to the variables used 

in  the procedure. It is here th a t any errors to do w ith undefined 

variables are detected. A new tie-point is created for each ou tpu t from 

the procedure, and the current data flow environment is then  updated 

to reflect the fact tha t these variables have had their values updated.
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6.2.2 Mutable Functions and Side Effects

As promised above, we will now discuss the way in which arrays 

and records are dealt with. This is closely related to the phenom ena of 

m u tab le fu n ction s and sid e effects discussed earlier in  Chapter 3. Now 

program s w hich operate by side-effect p resen t g reat difficulties for 

d a ta  flow analysis, upon which the translation process described above 

depends. The only way in which side effects can occur is if we update 

s tru c tu re s  of some sort. This corresponds to changing the  roles of 

some d ata  object. As stated earlier though, ra th e r th a n  viewing the 

structures themselves as having changed, we will view this as a change 
to the (now mutable) accessing functions for the d ata  type involved. So, 

for instance, a  statem ent like:

z:=x.numb (where x  is a  listelement, and z is an  integer) 

will be treated as if it were something rather like:

z: =apply_function(numb ,x)

and

x.numb:=z (where x  is a  listelement, and z is an  integer) 

will be treated as if it were:

num b :=newarg(numb ,x, z)

This approach h as  the effect th a t all inform ation abou t side 

effects etc. is carried by the mutable access functions. This m eans th a t 

the  only information th a t is relevant when we need to determ ine the 

behaviour of some object in a  situation are the cu rren t values of the 

m u tab le  access functions in th a t  s itu a tio n  For in s tan ce , the
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lis te lem en tce ll'> list behaviour function, which formerly w as defined 

by:

a=listelem entcell->list(p,s) =
[ [instanceflist, a)

A head(a)=numb(listelementcell->listelement(p,s))
A tail(a)=^lis telem en tcell>>list (next (

li8telem entcell->listelem ent(p,s)),s)]]

can now be rewritten as:

a=listelementcell->li8t(p,s) s
I [instance(list, a)

A head (a)=apply (function (NUMB, s) ,p)
A tail(a)='^li8telementcell->li8t(apply(function(NEXr,s),p),s)]]

and the dependence of the behaviour function Ii8telem entcell->li8t on 

the  m utable functions NUMB and NEXT is now m ade explicit. This 

m eans th a t the Ii8telementcell->li8t behaviour of an  object X a t time s, 

depends on the (function) behaviour of NUMB and NEXT a t time s, and 

the Ii8telexnentcell->li8t behaviour of X a t time t  will only necessarily 

be the same if the (function) behaviour of NUMB and NEXT h as  not 

changed betw een s and t. Of course, additional reasoning will be 

required if NUMB and NEXT are changed between s and t  in such  a 

way as not to effect the Ii8telem entcell-> li8t behaviour of X (e.g. by 

altering an  sdtogether separate list im plem ented using  listelem ent 

cells as the building blocks) in order to recognise th a t the behaviour of 

X is still the same. However, th is is Ju st a  reflection of the fact th a t 

reasoning about side effects is difficult in general, and the underlying 

philosophy of the plan calculus, and of the graph parsing recognition 

process we will present later, is to try and capture as m any possible 

common uses of side effects as plans, in order to try  to alleviate the 

necessity for general reasoning. However, in order to make it easier for 

the  p lan  recognising system , described in the nex t chap ter, to
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recognise these standard (side-effecting) plans, it is im portant th a t the 

surface plan reflect as closely as possible the tru e  d a ta  flows th a t 

actually happen in the program. This means th a t the m utable functions 

NUMB and NEXT in the above example m ust be treated as values which 

are passed around by the program, and the correct curren t values of 

these  should be used  in  all the appropriate places. This can  be 

achieved simply by treating num b and next as ordinary variables, with 

values NUMB and NEIXT respectively.

6.2.2.1 Dealing with Records and Pointers

As described above, a record declaration is interpreted as 
defining a  class of objects whose type is the record type. However, 

ra th e r  th an  regarding these objects as m utable objects w hich are 

accessed or updated by the field selector functions for the records of 

th a t  type we choose to regard the objects as  fixed, and  the  field 

selector functions as mutable. So a  statem ent of the form:

z:=7 .field

w here y is a  record and field is one of the fields of the record, is 

treated  simply as if it were the application of function field  to object y, 

and  th is  is represented in the surface plan by an  © fu n ctio n  node, 

w hose .op in p u t is the tie-point in the CDFE represen ting  fie ld . 

Similarly,

xÆeld:=y

is treated as changing the definition of the function field  so th a t on all 

objects other than  x it has the same value as before, b u t on x it now has 

the value y. This is represented by an #newarg operation in the surface 

plan with .op being the tie-point for field, .arg being the tie-point for x, 

and .value being the tie-point for y. The CDFE is then  updated with the



‘ 226

A  X next numb 3

©function

©function

I ©function

new
numb
function

Figure 6.5 
Graph For x^.next^.numb:=3



227

value of fie ld  now being represented by the (newly created) tie-point 

representing the output from the #newarg operation.

Pointers are treated similarly as being a  type of object w ith 

b e in g  treated  a s  a  fu n ction  w h ich  m a p s p o in ters  to  o b jec ts . T h is  

approach enables the system to (say) recognise a  list implemented as a  

chain  of linked records as constitu ting  a  th r ea d , w ith (fieldo^)^

constitu ting  the successor function (via the  overlay c o m p o s e d -  

fun ction s-> fu nctio ii). and the pointers them selves constitu ting  the 

nodes of the thread. This approach means th a t a  statem ent like:

x^.next^.numb := 3; 

will be represented by a  graph like th a t shown in Figure 6.5.

6.2.2.2 Dealing with Arrays

Although the approach we have ju s t outlined works quite well for 

records (and cons-cells in Lisp), it does give u s a  problem with arrays. 

The problem essentially tu rns out to be one of naming. For instance, 

we can model one dimensional arrays as m utable sequences i.e. as a 

subtype of functions. Such an array A (say) is similar to a  record in the 

sense th a t it can be viewed as a compound data  object with fields, and 

so ought in principle be capable of being dealt with in a  similar fashion. 

However, the reason why we can take the approach outlined above with 

records is th a t the access functions are nam ed. This m eans th a t we can 

tell whenever one of them  is used or altered - it is clear from the 

syn tax  of the  program m ing language - and  th is  meeins th a t  the 

translation process from a program to a  surface plan can always ensure 

th a t the tie-point representing the current value of one of these named

3
° is used to denote function composition. So (f®g)(x)=f[g(x)).
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access functions is passed  th rough  to ac tions w hen necessary . 

However, in the case of an array A we do not have these nam ed access 

procedures. E)ven if we were to name them  som ething like Ai, A2 , A3 , 

etc., where

Ai(ifg=A(l] and A2 (A)=AI21 and A3 (A)=AI31 etc.

we still would not be able to tell in general which one was being used 

(or updated) since programs often contain statem ents like:

A[2*i-J]:=3

and we would not know which of the access functions was actually 

being updated. In the case ju s t mentioned, where we have a  n am ed  

array, the approach of treating the aixay as a  m utable function works 

quite well, since we now have a name for the function being updated, 

and  a  s ta tem en t like the above can be modelled as an  # n e  w a r  g 

operation on the mutable array A. This am ounts to treating the whole 

array  itself as analogous to a  m utable field accessing function on 

records, where the domain of the m utable array function is now the set 

of im m utable in tegers (or a t least an  appropriate  su b se t of the 

integers). However, consider the following case:

var a  : array!l..n] of ^array[l..m] of integer;

and consider a  statem ent sequence like:

a[il^(j]:=3; (1)

x:=a[i]^(j] (2 )

From one point of view statem ent (1) leaves the array  a  unchanged, 

since a  is  a n  array of pointers and none of these have changed. This 

m eans th a t a[i]^ represents the same value in statem ents 1 and 2  (i.e.
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the identity  of the array involved is the same in both situations) since 

^ is an  immutable function. However, using this object in  statem ent 2 

involves using the sequence^ behaviour of the array a[i]^ and th is h a s  

changed. The problem can be made clearer if by considering Figure 

6 .6 , showing the relevant parts of the surface plan for the above code. 

This diagram essentially reflects the difficulty th a t a  transla to r has in 

determ ining the  true  d ata  flows. Following the approach discussed  

earlier of treating arrays as sequences (i.e. functions) would lead to the 

plan diagram shown. This is highly misleading, since in the light of the 

earlier discussion of collapsing, we would naturally w ant to collapse the 

two © fu n ction  operations labelled X and Y in the figure, and then  

collapse the two ©function operations labelled W and Z. However th is 

would lead to identifying tie-points t l  and t2 , whereas really tie-points 

t l  and t3  should be identified. In fact the problem is worse th an  this. 

As can be seen from the diagram, t3 does not connect up  in any way to 

the  re s t of the graph, and would th u s  appear to be a  completely 

red u n d an t com putation, whereas it actually does have an  effect. It 

should be noticed th a t the axiomatic formulation of the plan calculus 

does not have this problem. This is because the syntactic form of the 

axioms distinguishes between object identities and object behav iours, 

whereas the graph form only passes behaviours eiround. In the absence 

of side effects this is fine, since the objects are all then  immutable, and 

we do no t need to distinguish the behaviour of an  object from its 

identity since the behaviour of the object is the same in all situations. If 

we were to trea t tie-points as representing identities of objects ra ther 

th an  behaviours we would again get into trouble, since th is would now 

lead u s to identify tie-points t3 and t2 (and tl) , giving rise to cycles in 

the graph, as well as forcing u s to continually reason about the

 ̂sequence is a subtype of function.
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situa tions in  which we were considering the tie-points. This would 

m ake a  graph recognition approach to program  understand ing  very 

difficult.

The solution to this is to adopt an  approach sim ilar to th at of the  

case of records. We can treat arrays as im m utable objects (perhaps 

thought of as array ‘cells’), with a  m utable binary access function array

access defined on it i.e. an  array access A[i] can be treated as if it were:

binapply(array-access,i,A)

and array  updates can be modelled by an #newbinarg^ operation. This 

resu lts  in Figure 6.7, which is better, b u t now we are no longer (from 

the graph alone) able to collapse anything. The best solution, and the 

one we will adopt, is a  mixed strategy. Named arrays (i.e. those 

identified by a  variable name in the program) will be treated as m utable 

functions as before. Unnamed arrays i.e. those which are com ponents 

of d a ta  struc tu res, will be treated as im m utable, w ith the m utable 

function array  access defined on them. This gives rise to Figure 6 .8 , 

which collapses into Figure 6.9, which is probably the m ost intuitively 

correct representation of what is going on. It should be noted th a t if 

the plan recognition demands it we can always move from the point of

 ̂newbinarg is not an operation defined In Rlch[1981], We have Introduced It In order to 

model array updates. Its ‘compact’ definition Is:

lOSpec newbinarg .old(blnfunctlon) .eng 1 (object) .ai^(object) .Input(object)
=> .new(blnfunctlon)

Preconditions lnstance(argtype-one(.old),cirgl) a  lnstance(argtype-two(.old),arg2)
A instance(range-type(.old)..input)

Postconditions blnapply(.new,.argl,.arg2)=.Input
AV3Q^[blnapply(.old.x,y)=z A»t.aigl a  ŷ ?Jaig2 3  blnapply(.new.x,y)=y]

A aigtype-one(.new)=argtype-one(.old)
A aigtype-two(.new)=aigtype-two(.oId)
A blrirange-^rpe(.riew)=blrirarige-type(.old)

#newbinarg Is defined as a specialization of newbinarg In which .old=.new
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view we have when using array access to access arrays, to one in which 

we have a  mutable array via overlays like @binfimction+two->@fimction 

and binfimction+two->functioii. This am ounts to currying array access 

on its  second argum ent (the array) to get a  m utable function which 

behaves exactly like the array (treated as a  mutable function).

6.3 lim itations of the Recursive Descent ̂ p roach

The recursive descent approach to translating  Pascal program s 

into a  surface plan cannot deal with all program s. In particu lar, it 

cannot deal with programs involving forwardly defined procedures, or 

recursive procedures. This is because, when we process a  procedure 

call, in  order to correctly join it to the surface plan being generated we 

need the following information about a  procedure:

a) w hat non-local vgiriables it accesses or updates

b) which of its formal param eters are call-by-reference ra ther 

than  call-by-value.

This requires the procedure (or function) to have been previously 

analysed. It would not be hard to modify our transla to r to cope with 

these types of procedure. All tha t would be required is a  pre-pass over 

th e  program  collecting the above inform ation according  to the 

techniques outlined in Hecht [1977]. The current translator could then 

use th is  information when required.

6.4  General lim itations

There is however a more serious lim itation of any d a ta  flow 

analysis technique. This is concerned with program s which have data  

s tru c tu re s  which share parts  or all of their su b stru c tu re . We have 

already touched on this when discussing arrays and records above. The
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solution we described there a t least has the property th a t it does not 

produce positively misleading data  flows. However, w ithout genersd 

reasoning, it is not possible for the data flow diagram  representing the 

program to always reflect the true data flows, and hence th is is another 

reason why a  general puipose program understanding  and  debugging 

system  m u st include a  powerful reasoning system  w hich is well- 

integrated w ith any plan recognition process. Consider the program  

fragment below:

a[6 ]:=z;

y:=a[3*i-jj;

This would give rise to the graph shown in Figure 6.10. However, 

suppose th a t 3*i-j actually evaluates to 6 . In th is case the graph ought 

to be th a t shown in Figure 6.11. This am ounts to being able to identify 

t l  and the tie-point representing 6 , as well as t2  and  the tie-point for 

z, in Figure 6.10.

This problem  is really inheren t in  the  whole surface p lan  

approach  to representing programs. Indeed it is quite likely to be 

in h e ren t in any program  analysis System th a t  aim s to cope w ith 

anything other th an  purely functional languages. At the m om ent the 

b es t we can hope for is to capture the m ost common usages of side 

effect in p lans, and leave more general cases for w hen the  p lan  

recogniser has been supplemented by a plan calculus theorem  prover.

Related to this problem is th a t of variable aliasing. If a  procedure 

uses a  non-local variable x, and a  call of the procedure has x  passed as 

th e  ac tua l param eter corresponding to a  call-by-reference formal 

argum ent, then  the resulting true d ata  flow diagram  m ay be quite 

different to th a t obtained under the assum ption th a t x  and the formal 

param eter were different. In this case the procedure ought to be
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retranslated  under th is assum ption to get a  true description of th is 

particu lar call. This has not been done, so our approach currently  

suffers from the limitation th a t it cannot cope with th is particu lar type 

of call. In general th is can be quite hard to recognise, and  more work 

will need to be done on this. Note tha t this can happen even if there is 

no structure sharing of data structures going on.

Finally it shou ld  be noted th a t  we have excluded from 

consideration in all of this the goto  statem ent. This is because th is 

introduces cycles into the surface plan, and everything we have done 

assum es the surface plan is not cyclic. In particular, if there are cycles 

it is m uch harder to assign an  interpretation to tie-points as being 

behaviours of specific objects a t specific tim es. To deal w ith g o to  

sta tem ents, it would probably be better to restru c tu re  the program  

first using  any of the available techniques for doing th is, and then  

analyse the result.
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Chapter 7.

Thft Plan Recognition System  And Thm Plan Tjbrarv

The ch a rt parse r described in C hapter 5 clearly h as  m any 

features making it suitable for program understanding w ithin the plan 

ca lcu lus/p lan  diagram formalism. In particular we will trea t the plan 

library  as defining a set of rules for a  restricted  s truc tu re -sharing  

flowgraph gram m ar, where the se t R of collapsible operations is 

precisely the se t of deterministic operations as defined in C hapter 4. 

However, there are m any features of th is form alism  which do not 

exactly fit the flowgraph formalism as described so far. This chapter 

will describe the various features of plan diagram s and  the  plan  

calculus which an  unmodified flowgraph parser cannot cope with, and 

describe the changes necessary. As this project is currently only using 

the p arser in a  bottom -up mode, the changes described below have 

only actually  been implemented for bottom -up parsing. However, it 

would not be difficult to do them  for top-down parsing as well, and 

indeed if th is system were to be incorporated into a  tu toring system  

along the lines of PROUST [Johnson, 1986] this would be necessary.

7.1 Dealing with Overlays and Data Abstraction.

As discussed in Chapter 3, the plan library no t only contains 

tem poral p lan s  - it also contains tem poral and  d a ta  overlays. 

Additionally, it cdso contains data  plans. Each programming cliché is 

encoded as a  temporal plan. A typical example is bump+update, shown 

in Figure 7.1. This can be encoded very nicely in the  flowgraph 

formalism, and recognised quite easily (ignoring constraints on the tie- 

points), using the flowgraph parser as described already. However it 

should be noted th a t the constraints actually imply two views of the 

inputs t l  and t2. These are:
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(a) They are simply two data  values providing in p u ts  to the

plan.

(b) They are the components of a  compound d ata  struc tu re  (a 

data  plan in Rich’s terminology) known as an  upper-segment.

Similarly, there are two views of the outputs from the plan. Of course 

the  co n stra in ts  them selves can be checked ju s t  like any  o ther 

constrain ts a t the time the plan is recognised (has a  complete patch  

corresponding to it added to the cheirt). However, the  problem s 

in troduced by such  d ata  p lans are m ade clear once we consider 

tem poral overlays. Consider the overlay bump+update>>push, which 

captures the idea th a t an  upper-segm ent can be used to implement a  

sta ck , and th a t adding a  new element to the bottom  of the upper- 

seg m en t can be viewed as pushing an  element onto a  sta ck  (here a 

stack  is thought of as a  list, with new elements pushed onto the front). 

Figure 7.2 shows this overlay. Here we immediately ru n  into a  problem 

using tlie flowgraph formalism described earlier. Rules in  a  context- 

free flowgraph gram m ar have to have the same arities for their left and 

right and sides. This is clearly true for bum p+update itself and this 

poses no problem s. However, if we try  and cap tu re  th e  overlay 

bump+update->pusb as a  rule we find th a t we have a  problem. The left 

hand side of the rule has arity (2 ,1 ), while the right hand side has arity 

(3,2). Furtherm ore, although the tie-point t3 occurs as inpu t on both 

sides of the overlay, th is Is not true of t 6  and any tie-point of the 

b um p+ up date plan. It does not even correspond to the com pound 

object (the upper-segm ent) represented by t l  and t2. It corresponds 

to the u p p er -seg m en t viewed as a  l is t  (via a  d a ta  overlay u p p er-  

segm ent->list). To cope with these features the basic bottom -up chart 

parser presented in Chapter 5 is modified as follows:



242

(1) Rules(plans) and tem poral overlays are  rep resen ted  

separately. The rules are used to drive the parsing  as described in 

Chapter 6 .

(2) When a  complete patch is added to the chart its constraints 

are checked. If any of these constraints correspond to the fact th a t 

some of the tie-points occurring in the patch are the com ponents of a  

com pound d ata  object (a data  plan) then, provided these tie-points 

have not been recognised as forming an  instance of the com pound 

d a ta  type previously in the recognition process, a  new  tie-point is 

created and an assertion stored in a  da ta-p lan  d a tab ase  stating the 

relationship between the new tie-point and the ones occurring in the 

patch. This handles all data  plans since we now have explicit single tie- 

poin ts representing  com pound d a ta  objects m ade up  of a  su itab ly  

ordered collection of other tie-points.

(3) Once the data-p lans have been dealt w ith as described 

above, the set of temporal overlays is con su lted  to see if there are any 

overlays applicable to the patch ju s t  added. A new complete p a tch  

corresponding to the left hand side of the overlay is created and added 

to the chgirt. Tie-points in the new patch corresponding exactly to tie- 

points in the old patch are used directly. If the overlay specifies th a t a  

tie-point in the new patch corresponds to a data-plan type view of tie- 

points in the old patch then  again, if this data-plan h as  not been used 

on th ese  tie -po in ts previously a  new tie -po in t is crea ted  and  

inform ation about it stored in the data-plan database. If the overlay 

specifies th a t a  tie-point in the new patch corresponds to a  data- 

overlay of tie -p o in ts  in  the old p a tch  (or to som e d a ta -p lan  

corresponding to tie-points in the patch) then , if th is data-overlay has 

not been used on these tie-points previously a  new tie-point is created 

and information about it stored in a data-overlav database. Figure 7.3
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shows this process a t work. It is this ability of the modified parser to 

deal w ith com pound d ata  objects th a t leads to its  ability to analyse 

program s to a  high degree of abstraction, and th a t m akes it the fullest 

im plem entation of Rich’s ideas on program understanding. It is worth 

noting th a t the parser could also easily be modified to cope with data  

plans and overlays when running in top-down mode, although th is has 

not yet been done in this project.

It should be noted tha t the fact tha t we can do the above is both a  

consequence of, and enforces, the following:

1 ) As stated  already in Chapter 3 all tie-points represent a  specific 

behaviour of some specific object a t a  specific time.

2) Different behaviours of the same object a t the same time will be 

represented by different tie-points. Since the  only behaviours 

directly applicable to the values m anipulated by a  program  are 

the primitive behaviour functions the only ways in which an  

object can have more than  behaviour is by m eans of data  overlays 

m apping the  primitive values to o ther (more abstract) d a ta  

values, or by being considered to be p arts  of some com pound 

data  object. So, these tie-points representing other behaviours of 

the object will all be new tie-points with assertions in the data- 

overlay database. Since, for all primitive behaviours B we have the 

following:

VCpst [C(B(p,s).t)=C(B(p.s),s)l 

and for all non-primitive behaviours B->C we have:

Vpst lB->C(B(p.s).t)=B->C(B(p.s).s)]
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th ese  tie -po in ts will also all behave properly  w hen used  

elsewhere

3) If a  behaviour B (say) of some m utable object p is different in 

s itu a t io n s  s  and  t (i.e. B (p ,s )^ B (p ,t)  ) th en  B (p .s )  will be 

represented by a  different tie-point to B(p,t).

7.2 Problems with Control Flow

The next problem is th a t plan diagrams actually have two types of 

connections between nodes, whereas the flowgraph formalism only has 

one. These two types are data flow arcs, and control flow arcs. Now if 

control flow arcs were of the same fixed natu re  as the d ata  flow arcs 

then  we could have dealt with them  simply by using  the la s t (for 

example) of the  en tries in the inpu ts of a  pa tch  to rep resen t the 

incoming control flow, and the last of the ou tpu ts  to rep resen t the 

outgoing control flow. However, because of the way parts of a  plan can 

be widely separated  in the program  source code, the control flow 

between two parts  of a  plan can be separated by a  large num ber of 

other operations. Furtherm ore, often the order in which two plans will 

be executed is often irrelevant, even though the control flow between 

them  will be determined by the original program.

The key to performing control flow checking is to use the notion 

of control flow environm ents, and  more particu larly  the  notion of 

controlling conditions, as described in Chapter 4. In order to deal with

 ̂ It should be noted that this is a consequence of the fact that all structures such as lists 

will be recognised via a sequence of overlays such as iterator->thread, and thread->li8t., 

and iterators will be recognised as instances of compound data objects (consisting of a 

seed and a m u t a b l e  function), thus implicitly (via the mutable function) carrying the 

relevant pant of their situation around with them.
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control flow constrain ts every complete patch in the ch a rt is given a 

controlling condition as follows:

1) Primitive patches (i.e. those corresponding in a  one-to-one 

fash ion  w ith  nodes in the  surface p lan  of th e  program  being 

recognised) are given the controlling condition of th e ir  originating 

node. These nodes get th e ir  controlling conditions d u rin g  the  

transla tion  process from source code to surface p lan  (described in 

Chapter 6).

2) A part from the patches for primitive operations, patches 

will in  general contain sub-patches. The controlling condition for a 

patch  is com puted from the controlling conditions of its com ponents, 

using the notion of plan conditions as described in C hapter 4. This 

serves both to compute the controlling condition for the patch, and to 

check  th a t  the  com ponent p a tches have th e  rig h t contro lling  

conditions to satisfy the control flow constraints.

7.3 Tests and Joins

Most of the  im portant control flow (in the sense th a t the  program  

would com pute a  different function were it to be changed) information 

in  surface plans is carried by te st  and jo in  nodes in the surface plan, 

and  these can  pose severe problems for the m atching process. The 

m ain reason  for th is is th a t the parsing process is data-flow driven - 

partia l patches are only ever extended by complete patches which 

m a tch  im m ed ia te lv  n e e d e d  en tries in the  p a rtia l pa tch . An 

imm ediately needed entry is a  needed entry some of whose inpu t or 

ou tpu t tie-points have been instantiated (i.e. there is d a ta  flow from 

one or more of the (already found) components of the patch). However, 

te st  nodes have no output data flows so they do not necessarily connect 

in any direct way to the rest of the graph other than  via their control
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flow arcs, so it can be difficult for pure data  flow parsing to recognise 

some plans involving tests. Similarly some plans only specify th a t they 

need a  Join (i.e. no data flows are specified in  the plan a t all for them) 

which again makes it impossible for pure data  flow parsing to find such 

jo ins. However, all the examples of th is phenom enon th a t  we have 

encountered happen in one of the following situations:

1) plans like itérative-term ination. shown in Figure 7.4. which 

are so general as to be of little use in themselves. Their m ain function 

in the  p lan  calculus is to provide basic building blocks upon which 

other p lans can be defined. Despite this we m ay wish to find them  in 

order to provide a  theorem prover with inform ation to ass is t it in  its 

reasoning. It should be noted th a t there are cflow arcs (i.e. ncflow and  

scflow arcs) between the test and the join in such  plans.

2) Plans like iterative-accum ulation. shown in Figure 7.5. Such 

plans have the property tha t the joins a t least have data  flow arcs which 

connect to the rest of the plan. Again there are cflow arcs between the 

te s t and the corresponding join.

3) The general case of trying to m atch a  te s t  to its corresponding 

jo in  (in e.g. a cond). This is not possible by pure d a ta  flow parsing, 

since there is no direct connection between them .

However, the common property th a t all of these have is th a t 

there are cflow links between the te st and its join. For the very general 

p lans (e.g. a  plain cond with no data flows involved anywhere, or a  pure 

iterative-term ination plan) we have decided to insist th a t the m atching 

be s tr ic t i.e. the corresponding control flow environm ents m u st be 

stric tly  equal. So provided t e s t s  and jo in s  are stored in the chart 

indexed by all their controlling conditions, as well as by their input
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Figure 7.5 
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a n d /o r  ou tpu t tie-points, then they can easily be found. Note th a t for 

other plans (e.g. iterative-accumulation) we have decided to adopt the 

following strategy:

Leave finding the test (un less it has been identified by d ata  flows 

to one or more of its inputs) until both sides of the jo in  have been 

instantiated by data  flow parsing (note tha t because of the possibility of 

n-join-output nodes one side of the Join will not necessarily tell u s  the 

other). This will happen automatically since none of the inpu ts to the 

needed te s t  node will get instantiated in the case of a  p lan  where the 

inpu ts to the te s t  do not feed to anywhere else in the plan. Now look 

for a  t e s t  such  th a t the three control flow environm ents of the t e s t  

enclose the corresponding control flow environments of the join . This 

condition is imposed by the cflow constraint between the te s t  and the 

jo in . This is a  very severe constraint on the control flow environments 

and, given the indexing of te s ts  by their control flow environm ents, 

and  the form of the controlling conditions we are dealing with, in 

w hich  the  encloses relation  can be recognised syn tactically  (as 

m entioned in Chapter 4), enables reasonably rapid identification of the 

correct tçst.

Another problem which the parser has to deal with occurs when, 

as  a  resu lt of d a ta  overlays or data plans, new tie-points are created 

inside a  conditional, and these have to be com m unicated to whatever 

follows the jo in  in the conditional. An example is shown in Figure 

7.6(a). In th is case we really need to add a  new jo in  with th is new tie- 

point as an  input to the join (as well as a tie-point corresponding to the 

sam e overlay of the corresponding tie-points on the other side of the 

jo in ) , and  to create an  ex tra ou tpu t tie-poin t rep resen ting  the 

co rrespond ing  overlay of the corresponding o u tp u ts  from  the  

conditional, as shown in Figure 7.6(b).
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Another case in which joins can cause problems is the case when 

an  appropriate jo in  does not even exist. This happens w hen we have 

partially recognised a  plan in which the actions which define the jo in  

we are looking for (i.e. whose outputs should connect to it) are either 

in  generalised control flow environm ents i.e. we have conditional 

plans, or are inside a  conditional, b u t feed the ir o u tp u ts  to other 

actions in the conditional, rather than  to a  join Figure 7.7(a) illustrates 

th is situation. As noted in Chapter 4 however, adding a  jo in  with the 

ap p ro p ria te  controlling conditions changes no th in g  ab o u t the  

sem antics of the graph, so in th is case we simply create a  jo in  on  

demand, as shown in Figure 7.7(b).

There is one final problem caused by jo in s . This occurs in 

situations like th a t shown in Figure 7.8 where in  order to recognise a  

plan (albeit conditionally) we need to m atch th rough  a  foin. Note th a t 

th is  m atching through a  jo in  m ight be required in  either direction 

through the join. This is in some ways a  rather nasty  problem as it can 

potentially happen every time we need to extend a  partia l patch. The 

solution we have adopted is to flag each tie-point th a t is an  input to a 

jo in  as  a  “jo in -inpu t” tie-point, and to flag every tie-point th a t is an  

o u tp u t from a join as a  “jo in-output” tie-point. Then two tables are 

m aintained (actually hash  tables) - one table for inputs to jo in s giving 

the  corresponding ou tpu t tie-point, and one table for ou tpu ts  from 

jo ins, giving all the corresponding inputs. This enables the parser to 

rapidly find the appropriate m atching tie-points on the other side of 

jo in s . Note th a t when m atching through a jo in , whichever patch  is 

feeding in to  the jo in  m ust be treated as if its controlling condition 

were th a t of the branch of the jo in  it is feeding into (even if it is not), 

otherwise the parser can be misled into thinking it has found a  plan 

with a  weaker controlling condition than it actually has. Figure 7.9
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if test then X else Y endif;
=> if test then A.B else C.B endif; 
=> if test then A else C endif; B;

jointest

jointest

To recognise the
shaded area as an  instance of
X we need to m atch through
the join.

Figure 7.8 
Matching Through Joins
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illu s tra te s  the problem . This is achieved by sim ply adding the 

requirem ent:

(controlling condition of exit of join)

<r̂  (controlling condition of appropriate branch of join)

to the plan condition of the patch being extended, which ensures th a t 

we get the right controlling condition for the whole patch.

One final point needs to be re-em phasised here. Despite the fact 

th a t all jo in s  actually only have a  single succeed and fail input, and 

hence a  single output, we will continue to show jo in s  w ith m ultiple 

in p u ts  and ou tpu ts in diagram s ra ther than  showing m ultiple jo in s  

This is purely to keep the num ber of NAPEs in diagrams to a  minimum.

7.4  Recursive Roles in Loops

Loops, represented recursively as described earlier, also pose 

problems of arity matching. This is because the recursive role in a  loop 

essentially represents the whole loop, and a  loop may have m ultiple 

p lans w ithin it. Each of these plans, as specified in the plan library, 

expects a  recursive role of the same arity as the plan itself. So again 

th is m atching m ust be handled separately, and is essentially dealt with 

by allowing the recursive role in a loop to m atch recursive roles in 

p lans p rov ided  th a t it is appropriately connected. This is done by 

leaving the m atching of the recursive role until all the connections to it 

are known, in which case we ju s t have to check th a t the inpu ts to the 

required recursive role are inpu ts in the actual recursive role which 

correspond to the inpu ts to the plan in the loop as a  whole, or if the 

plan does not specify any inputs to the recursive role, b u t simply th a t it 

is recursive, then  the m atch is simply taken to succeed.
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7.5  Breaking Programs up into Smaller Segments

The surface plan corresponding to a  program can be very large. 

R ather th an  dealing with it as a  single undifferentiated graph it is 

broken up, by the translator from source code to surface plan, into a 

hierarchical arrangem ent of smaller pieces (henceforth referred to as 

segments). Each segment corresponds to some meaningful piece of the 

source program, and m ay themselves refer to o ther segm ents. For 

in stance each loop in the program corresponds to a  loop segm ent 

(which is recursive), a  conditional corresponds to a  conditional 

segm ent, and so on. Each procedure definition also gives rise to a  

segment, and other parts of the surface plan can use th is segm ent as if 

it were a  primitive. Similarly, a  segment containing a  loop will u se  it as 

if it were a  primitive. This results in the m ain program ’s surface plan 

mostly consisting of segments.

The parsing algorithm’s initialisation phase is then  modified as 

follows:

1) F irst of all complete patches are added to the ch a rt for 

each primitive operation occurring in the segment.

2) For each non-primitive segm ent X in the segm ent being 

considered the ch a rt parser calls itself recursively w ith X as the 

segm ent being analysed. This creates a  new separate chart for X. For 

loops and conditionals the patches in this chart are simply added into 

th e  ‘calling c h a r t’. For procedure calls copies of th e  p a tch es  

(appropriately modified to m aintain the connectivity of the  surface 

plan) for the  procedure are added to the  m ain (calling) chart. 

Controlling conditions are handled as follows:
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For loops and conditionals the outerm ost controlling condition 

environm ent is th a t of the "calling" segment. Controlling conditions 

are simply included along with the patches when they are added back 

to the calling chart. When procedures are analysed they are given a 

token initial controlling condition. When a  procedure call is analysed 

its patches are copied into the calling chart as described above and the 

initial controlling condition is substitu ted  for by th e  calling ch a rt’s 

environm ent. Any sub-environm ents of the procedure are substitu ted  

for by appropriate new sub-environments of the calling chart.

Note th a t partial patches are added before com plete ones, and 

th a t if a  patch is an  extension of another, then  the extended patch  is 

added first, ensuring  th a t a  m inim um  of work a lready  done is 

duplicated.

This m echanism  has several advantages. Firstly, w hen analysing 

loops, the  single recursive role in the loop segm ent m u s t be the 

recursive role for any iterative plans being reeognised in  the loop. 

Secondly, although it involves copying patches (appropriately modified) 

from the chart representing the analysis of a  procedure into the chart 

for a  segm ent w hich calls the procedure, i t  does n o t involve 

rean a ly sin g  the  procedure as in-line code expansion  p rio r to 

translation , or ‘in-graph’ graph expansion prior to analysis would. It 

m ay even m ake it possible to only copy som e of th e  p a tch es 

(representing the system ’s best guess at the function of the procedure 

or loop or whatever) although for safety a t the m om ent all the patches 

are copied. Thirdly, this mechanism makes it m uch easier to deal with 

some of the program transformation issues discussed below.
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7.6 Program Transformations

Another problem th a t occurs when m atching real program s is 

th a t often the surface plan contains some subgraph corresponding to 

some standard p lan  in  the libraiy, bu t it is not in the standard form. An 

example of th is will be seen in Chapter 8, and this m akes it necessary 

to perform various transform ations on the graph in order to convert it 

into a  form in which standard plans can be recognised. For example 

th is m ay involve transform ing the graph from one obtained from a  

program  involving a  w h ile  loop to the graph th a t would have been 

obtained had the program been coded using a  repeat ... until loop.

There are several types of program transform ation performed by 

the parser. Some of these are simply handled by rules, and to some 

ex ten t sim ply rep resen t m athem atical p roperties of the various 

operators involved. They are there simply to avoid the need for a  

theorem  prover to deduce the relevant properties. It should be noted 

th a t the need for these ru les is one of the m ain eritieism s th a t  

Murray! 1986] m akes of the plan diagram formalism. However, adding a  

rule expressing the relevant relationship, does no t seem any worse 

than  adding an  axiom as he would have in h is system. The other type of 

transform ations are m ueh more like the various loop transform ation 

operations th a t Murray] 1986] applies to program s to get them  into a 

standard  form.

The first class of transform ations (i.e. those handled by rules) 

includes rules for doing such things as:

1) h o t rem oval. This is done by ru les like th a t shown in 

7.10(a). This simply adds a  patch with the same inputs as the n o t/te s t 

com bination , and  w ith  the su cceed /fa il contro lling  cond itions 

reversed.
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Figure 7.10 
Simple Program Transformation Rules
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2) expressing  com m utativity  and o ther re la tio n sh ip s  of

opera to rs . For example the rule shown in Figure 7.10(b) expresses the 

fact th a t addition is commutative. Similarly their are a  whole collection 

of ru les for expressing relationships between and abou t the various 

com parison operators. For instance Figure 7.10(c) shows some of these 

for and so on.

The second class of transformations are m uch more like w hat are 

normally thought of as program transformations. Although more will no 

doubt need to be added, there is only one of these a t the moment:

3) ite ra tive  flag te s t  rem o v a l. This is u sed  w hen the  

program m er has used a  “flag” to control the iteration, ra th e r th an  the 

te s t th a t “really” controls the iteration. This is seen in the following 

type of code:

flag:=false; 
while not flag do 
begin

if  condition then  
begin

flag:=true
end

end;

where the true controlling condition is actually the condition indicated 

in the code tem plate above. In surface plan term s th is corresponds to 

Figure 7.11. As can be seen, the crucial factors for determ ining 

w hether or not an  iterative flag test is being used are the following:

a) The initial te s t is guaranteed to succeed (in the sense th a t 

the loop will be entered, rather than  being exited immediately).
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Figure 7.11
Surface Plan Containing An Iterative Flag Test
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Figure 7.12 
After Removal of Iterative Flag Test
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b) There is a  jo in  before the recursive role in the loop such  

th a t one branch  of the jo in  sets the flag to a  value (i.e. value2 in the 

diagram) which will cause the loop to exit next time round. In th is 

case, provided there is no computation in the loop before the initial 

test, the loop can be transformed by simply removing the initial t e s t  

and its corresponding join, and moving the recursive role to before the 

join. Figure 7.12 shows the transformed version. Note th a t th is can be 

done by simply changing the controlling conditions on the recursive 

role to th a t of the branch of the loop which passes the initial value of 

the flag out, and removing all reference to the controlling condition of 

the initial te s t  in the controlling conditions of aU the other actions in 

the loop.

7.7  Related Program understanding Work

The work which has the m ost similarity to th a t reported in th is 

and the previous chapter is th a t done by Brotsky [1984], and  Wills

[1986,1990]. Brotsky developed a  parser which generalises Earley’s 

[1970] algorithm for context-free string gram m ars to flowgraphs of the 

sam e type as those considered here, a lthough h is no ta tion  and  

formalisms were different. In particular he had no explicit m ention or 

representation  of tie-points. Brotsky’s algorithm also could no t cope 

w ith fan-out, or fan-in from or to nodes, m aking it no t directly 

applicable to parsing of surface plans. Furthermore, his algorithm runs 

in  a  s tr ic tly  top-dow n le ft-to -righ t fash ion . Wills[ 1986,1.990] 

generalised Brotsky’s algorithm to cope with fan-in and fan-out, and 

has used  th is generalised parser to produce a  program  understander 

(known as the Recogniser) which does a similar job to th a t described 

in  this chapter, b u t which is more limited in a variety of ways. She also 

ran  into m any of the same problems we encountered, although her
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solutions are often different. This section will describe their work, and 

the ways in which it differs from th a t described in this thesis.

As already stated, Brotsky’s parser is a  generalisation of Earley’s 

[1970] algorithm for parsing context free string languages. It can be 

though t of as using  the gram m ar to construct a  non-determ inistic 

finite-state push-down autom ata for recognising flowgraphs generated 

by the grammar. If this autom aton then operates in a  strictly top-down 

left-to-right fashion we obtain Brotsky’s algorithm. His algorithm works 

by m aintaining a t any time a list of all the possible sta tes in which the 

autom aton could be. Since the autom aton is non-determ inistic there 

will in  general be several such states. Any such  sta te  consists of the 

sta tes of each recogniser and the sub-recognisers it has called. A state 

is described by several pieces of information:

(i) Where in the graph it was started  (called)

(ii) Where in the graph it has got to.

(iii) W hat sub-recognisers it has invoked a t the place it has 

reached.

(iv) W hat recogniser invoked th is  one i.e. w hich  o th e r 

recogniser it should re tu rn  control to if it completes its recognition 

task.

The first three of these items are very similar to information the 

ch a rt p arse r keeps in its patches, (i) corresponds to the in p u t tie- 

points of a  patch, (ii) corresponds to the active tie-points of a  partial 

patch, and (iii) corresponds essentially to the needed entry in a  patch. 

There is no analogue to (iv) in the chart parser, unless one regards the 

whole ch a rt as  in some sense recording th is  inform ation. This 

sim ilarity reflects the fact that Earley’s algorithm can be viewed as an  

early form of ch a rt parser running in strictly top-down, left-to-right 

fashion, and indeed Brotsky’s algorithm can be viewed as a special case
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of the  p arser presented here. However, there are various im portant 

differences between the chart parser presen ted  in th is  thesis  and  

Brotsky’s algorithm.

The first, and perhaps most im portant, of these, is the fact th a t 

Brotsky’s algorithm  only ru n s top-down. This gives h is algorithm  a 

slight efficiency advantage compared to the top-down chart parser, in 

th a t ra th er th an  having to search the chart (albeit efficiently) to find 

o u t w hich patches can  be extended by a  new  com plete one, he 

explicitly keeps track of this with each patch  (item (iv) above). This is 

possible because of the top-down nature of the parsing, and indeed, in 

top-dow n mode, our p arse r could easily be modified to do th is . 

However h is  algorithm  can n o t ru n  bo tto m -u p , an d  so Will’s 

generalisation of Brotsky’s algorithm essentially s ta rts  the parser off in 

top-down mode a t every point in the graph, looking for every possible 

non-termingd, th u s simulating a  sort of bottom-up parsing.

There is ano ther m ajor difference betw een the  ch a rt p arse r 

presented here and in Lutz[1986, 1989] and Brotsky’s algorithm. The 

chart parser actually constructs extra patches, no t corresponding to 

any th a t his algorithm constructs. This is because, although Brotsky’s 

p a rse r  co rresp o n d s to the  sim u la tion  of a  n o n -d e te rm in is tic  

autom aton, there is one source of non-determ inism , inheren t in the 

parsing  problem, th a t is ignored by h is algorithm . The scanning  

operation of his algorithm always chooses a  node in the graph to read 

next, and  the item s constructed follow from th is  choice. A different 

choice of node to read next will in general lead to a  different set of 

item s being constructed. For an  example of th is see Figure 7.13. The 

ch a rt parser adopts a different strategy - where there is a  choice of 

nodes th a t could be read next (i.e. where there is more than  one patch 

th a t could a t a  particular time extend a given partial patch) the chart
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item

If Brotsky's algorithm has found the item(patch) 
shown, then it has a  choice of whether to 
extend it with B or C. If C chosen we get:

and there is now a  choice about whether this is 
extended by B or D. His algorithm cannot go back 
and form the item consisting of A and B.

The chart parser described in this thesis will form 
patches A, AB, AC, ABC, ACB, ACD, etc.

Figure 7.13
Deterministic Node Choice in Brotsky's Algorithm
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p a rs e r  c o n s tru c ts  p a tc h es  (item s in  B ro tsk y ’s term inology) 

corresponding to extending the patch with each separately. This can 

m ean the chart parser does redundant work. However th is w as a  quite 

deliberate decision, as ultimately the chart parser h as  been designed 

for program debugging, and this can enable it to find more near-m isses 

than  Brotsky’s algorithm would.

Related to th is last point is another difference between the chart 

parser and Brotsky’s algorithm. This is to do with the fact th a t the 

ch a rt parser can “tu rn  com ers’’̂  i.e. the chart parser can bypass a 

node in the graph, and then, because it has active inpu t as well as 

o u tp u t edges can still find the node it has bypassed . B rotsky’s 

algorithm cannot do this because it insists th a t a  node is only eligible 

to be read, if all its input tie-points connect to the item (patch) so far. 

Again this is useful if as many near-m isses as possible are to be found. 

Figure 7.14 illustrates this point.

As already stated, Wills(1986, 1990] has used Brotsky’s algorithm 

as the basis for her work on plan recognition within the plan calculus. 

Apart from the fact th a t it is not so adept a t finding near-m isses as the 

system  described here, there are various other im portant differences. 

The m ain one is th a t as yet her recogniser cannot cope a t all with data 

plans and data  overlays, which greatly restricts the kinds of p lans th a t 

can  be recognised. As a  result of this it also cannot really cope a t all 

w ith program s involving side-effects.

Her system  also uses the notion of control-flow environm ents 

(indeed the terminology is hers - I originally used the phrase “m utually

 ̂This phrase was used by Linda Wills when we were discussing our different approaches 

to the plan recognition problem.
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Chart parser can recognise this partial patch 
even if B is missing, since it can bypsiss B, and 
"turn a  comer" back from E to find D.

Brotsky’s algorithm can only find the item below:

since it cannot "read" E until both C and D have 
been "read", and it can't get to D unless B is 
present.

Figure 7.14 
"Comer Turning" To Find More Near-Misses
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occurring actions” to capture the same idea). However, the notion of 

generalised control-flow environments and their relation to controlling 

conditions, used by the chart parser is new and enables it to recognise 

meiny plans th a t her system would fail to recognise, especially those 

like the ones described in Chapter 4.

There are m any other relatively minor ways in which the system 

described here and Wills’ differ. For instance she h as done away with 

Joins altogether, representing them  by w hat would be fan-in  a t tie- 

points in our system. This is quite nice in many ways, as  it avoids the 

need to m atch through joins as described above, b u t does cause a  

problem with “straight-through arcs” (see Figure 7.15 for an  example). 

This leads to her having to annotate the data flow arcs themselves with 

control-flow environment information, in order to deal w ith this. Her 

solution also avoids a  problem with the transitivity of joins, discussed 

in  Wills [1990]. In IDS this is avoided by the in troduction  of n-join- 

ou tpu t nodes as described in Chapter 4. Her solution also avoids the 

problem  of dealing with joins in programs involving lots of succeed, 

and fail inputs and of trying to match them against say a  join-2-outputs 

node in  a plan. In our case we have made all jo ins essentially  join- 

output, thus avoiding the problem.

Finally, it should be noted that, as already remarked. Wills’ about- 

to-be forthcoming thesis (personal communication) is now substantially  

based upon the chart parser presented here and in Lutz[1989J.

7.8  The Plan Library

Although m ost of the plan library is taken  directly from Rich 

[1981], and interested readers are referred there for a  complete list of 

all the plans and overlays we have “borrowed”, it has been necessary to 

add a  few of our own. Some of the plans we have added have ju s t  been
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represented 
by Wills as:

i.e. fan-in 
indicates a  
join

However, plans with "straight-through" arcs 
cause problems, since this approach would 
cause one to identify üe-points tha t should 
not be identified.

The two tie-points
indicated should 
not be identified.

Figure 7.15
Straight-through Arcs, and Fan-in to Represent Joins
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©Pbinrel t l  t2 t3

Ptest ©binrel
n  1 y y  1 n

t l  t2

©Ppredicate t l  t2

Ptest ©Dredicate
n  1 y y  1 "

Figure 7.16
Rules for Pascal Tests
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ones mapping Pascal operations onto plan calculus ones. We have not 

used the plan calculus ones directly in the translation process because 

they do not always have exactly the same semantics, and  a t some point 

these should be a  given a  proper semantics within the plan calculus. At 

the m om ent these plans are simply given to the system  directly as 

gram m ar ru les, ra th e r th an  as p lans and overlays etc. in  R ich’s 

compact notation. An example of such a  rule (for Pascal tests) is shown 

in Figure 7.16.

7.8.1 Translating Plans into Flowgraph Rules

So far we have seen how plans expressed in  the com pact fram e- 

like notation can be viewed as graphs by interpreting the constraints as 

arcs of the graph. However, th is has been done informally. Wills

[1986,1990] has used a  subset of Rich’s plan library in  her program  

recognition system, b u t has converted the pleins to graphs by hand. Not 

only is th is tedious, b u t is also error-prone, particularly when the final 

p lan  lib rary  m ight contain  thousands of p lans. This project h a s  

autom ated the conversion of Rich’s plans to graphs, so one of the 

achievem ents of the work reported here is to essentially m ake Rich’s 

notation  m achine readable, so th a t the recognition process can use 

p lans expressed as graphs which are guaranteed to correspond to the 

p lans as  expressed in  the com pact notation , and  hence to the  

inference ru les  as described above. The conversion p rocess is 

surprisingly tricky to get right, so will be described in some detail. 

However, before describing th is translation process it is necessary to 

describe the format in which the graphs will be represented.

A rule will be expressed as a list of nodes (which as seen in 

Chapter 5 are referred to as NAPEs). There will be one NAPE for each 

box(action) in the graph. Each operation NAPE will be represented as a
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tless t l tzero

tneg

@binre

@fimction

join-output

Figure 7.17 
A typical rule right hand side
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4-elem ent structure . The first element will simply be the type of the 

corresponding action (e.g. ©binfunction). H ie second elem ent will be 

an  ordered list of the inputs to the NAPE, and the th ird  elem ent will 

be an  ordered list of the outputs from the NAPE. Where the i^h ou tpu t 

of one NAPE connects to the jth  input of another, the i^h entry in the 

ou tpu t list of the first NAPE will be equal to the j th  entry  in the input 

lis t of the second. The last entry will be a  variable denoting the 

controlling condition of the NAPE.

Test NAPEs are represented by a  5 elem ent s tructu re . The first 

elem ent is the type of te st (e.g. @binrel or © predicate), the second is 

an  in p u t lis t as described above, and the la s t th ree are variables 

denoting the controlling conditions for the te s t itself and its succeed 

and fail environments.

N -jo in-outpu t NAPEs are rep resen ted  by an  n+4 elem ent 

structure. The first element is the word “join-output”, the second is an  

in p u t list (with n  inputs) as described above, the th ird  is a  single 

elem ent ou tpu t list, and the last n+1 elem ents consist of variables 

denoting the controlling conditions for each of the n  inputs, followed 

by a  variable for the controlling condition of the jo in  itself.

Where an  input value flows into more than  one inpu t port of the 

NAPEs in the graph, all the appropriate entries in the relevant input 

lists will all have the same value. So the plan in  Figure 7.17, will be 

represented as follows:

[ [@binrel [tless t l  tzero] P Q R]
[©function [tneg tl][t2] 8]
(join-output [tl t2][t3] T U V jj

T his is very like the notation used in C hapter 6 for representing  

surface plans, except th a t in rules the “tie-points” will be variables
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ra th er than  actual tie-points. The one exception to this is when a rule 

references a  known constant, in which case it will have the sam e 

(instantiated i.e. non-variable) tie-point in the appropriate places in the 

inpu t or outpu t lists of the rule, as would the surface plan if a  program 

referenced the constant.

7.8.1.1 Translating Temporal Plans into Rule Form.

The tran sla tio n  process from p lans expressed in  the  p lan  

n o ta tio n  to graph-like ru les for use in the  recognition process 

proceeds as follows:

1) The plans are read in, and stored in simple KRL-like frames 

[Bobrow and Winograd, 1977a, 1977b], with the obvious slots such as 

preconditions, postconditions, and constraints etc.

2) lOSpecs are used to define the set of possible nodes which 

can occur in rules. Essentially the information in an  lOspec is used to 

decide how m any inputs the operation has, and how m any outputs. The 

order in  which these occur in the plan definition is used to determine 

the order in which the inputs will appear in the inputs list to a  NAPE 

representing an operation of th is type. The nam es of the inpu ts are 

used as  suffixes to determine the nam es of the inputs to any NAPEs of 

th is type occurring as roles in a  rule. So, if a  rule has a  role op l (say) of 

type ©binfunction, then initially it will be represented by a  NAPE of the 

form:

[©binfunction
[opl.op op l.inpu t 1 opl.input2]
[opl.output]

]

2) D ata plan definitions are processed to determ ine w hat roles 

an  instance of the data  plan will have.



277

3) Temporal Plans are processed. For each tem poral plan, a  list 

of its  roles is first constructed. These are then  separated  into d ata  

roles, and operation roles. Each role has a  nam e and a  type. The right 

hand  side of the rule is constructed as follows:

a) Each operation role is converted into a  NAPE as described 

above. This gives us a  completely unconnected graph structu re G since 

no two NAPE)S have any inputs or outputs in common.

b) The co n stra in ts  for the p lan  are collected together. As 

described eeirlier th is may involve recursively following sp ecia liza tion  

and ex ten sio n  links in the frame structure to collect together all the 

relevant constraints. When we follow these links, if a  plan reached in 

th is way h as not been processed yet, then  it is processed. As will be 

seen th is processing essentially involves making substitu tions for some 

of the tie-points in the input or output lists of the NAPES representing 

the plan (to represent the data flows). These substitu tions, cdong with 

the constrain ts are passed back up  the recursive call (to process the 

node) to the plan which caused the call to be made. So a  plan when 

being processed has a  set of constraints, and a  se t of substitu tions 

which have been made in plans of which this one is a  specialisation or 

extension. The full set of constraints for the plan are those which it has 

inherited  (passed up  from the recursion) together w ith its  own 

constraints. These are then separated into various categories. The first 

of these consists of all the control flow constrain ts. These are dealt 

w ith separately, as described below. The second category is th a t of 

extra type restrictions on the roles. These are all of the form:

instance(<object or action>, <type>)

and  are dealt w ith simply by choosing for each <object or action> 

m entioned the m ost restrictive of the type constra in ts available. The
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rem aining constraints all represent data  flows of one kind or another.

The main steps of the processing of these data  flow constraints are:

Step 1 Create “tem plate” NAPEs for each non-recursive operation 

ro le  in the plan. This effectively gives u s  a  com pletely 

unconnected graph for the right hand  side of the rule.

Step 2  Process any non-recursive constraints i.e. those not flowing

to or from recursive roles of the plan. This “connects u p ” 

the graph created in step 1 so th a t it is consistent with the 

non-recursive constraints.

Step 3 If the plan has a  recursive role, then:

(a) Work oiit the input and outputs of the graph created so far.

Create a  “tem plate” for the recursive role, consistent w ith 

these inputs and outputs.

(b) Now process the rem aining (i.e. recursive) constra in ts, if 

any. This connects the recursive role (if any) to the rest of 

the graph.

(c) Work out the inputs and ou tpu ts of the resulting  graph. 

Remove the recursive role from the graph, and replace by a  

new one, compatible with these new inpu ts  and ou tpu ts , 

and any substitu tions th a t have been made. This graph 

forms the right hand side of the rule.

Step 4  Create the left hand side of the rule.

This will now be illu stra ted  by a  sequence of exam ples, each

illustrating some new subtlety, since this is the easiest way to explain

the process in detail. To sta rt with we will consider quite a  simple plan

- iterative-application. Its compact definition is given below:
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Temporal Plan iterative-application 
extension single-recursion
roles .action(©function) .tail(iterative-application)
constraints .action.op=.tail.action.op

A cflow(.action.out, .tail.action.in)

First the constraints are collected together. Iterative-application  

is an  extension of single-recursion, which has no constraints, so the 

full se t of con stra in t consists simply of those com ing from the 

definition of itera tive-ap p lica tion  itself. These are divided into the 

categories mentioned above, and the data flow constrain ts are:

.action.op=.tail.action.op

Step 1 . Since action is defined to be an © function, and the definition 

of © function  tells the system th a t an  © function takes two inpu ts .op 

and .input, and produces a  single output .output, a  NAPE is created for 

th is role:

[©function [ action op action input][ action.output] action.cf]

The recursive role is left for the moment.

Step 2 . Now, the constraints not involving .tail are processed. In th is 

case there  a ren ’t any, so the non-recursive p a r t of the  p lan  is 

considered finished.

Step 3 fal. Now the NAPEs so far are an alysed  to find the inputs and 

ou tpu ts to the graph. In this case these are:

INPUTS action.op .action.input 

OUTPUTS .action.output

A recursive role is now created, with the same inputs ând outputs, bu t 

with nam es prefixed by .tail. This gives us:
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[[©function [.action.op .action.input][.action.output] .action.cf]

[recursive [.tail.action.op .tail.action.input][.tail.action.output] .tail.cf]]

for the complete graph so far.

Step 3 fbl. Now the remaining data flow constraints are processed. We 

have one only:

. action. op=. tail, action. op

This is used to substitu te  .action.op for .tail.action.op throughout the 

graph, and the set of remaining constraints. In this case th is results in:

[[©function [.action.op .action.input][.action.output] .action.cf]

[recursive [.action.op .tail.action.input][.tail.action.output] .tail.cf]]

for the graph. The substitu tion  made is stored  in th e  fram e for 

iterative-application, for use during the processing of other plans and 

overlays.

Step 3 fc). This alm ost gives u s the right hand side of the rule, except 

th a t  we need to create a  new recursive role for it (with inpu ts  £ind 

ou tpu ts th a t correspond to the inputs and ou tpu ts of the graph as a  

whole. The graph so far created is analysed to see w hat its inpu ts and 

ou tpu ts are. This is done by collecting all the inpu ts to all the NAPEs 

(apart from the recursive role) as a  set of potential inputs to the graph. 

Similarly, a  set of potential outputs is created. Note th a t the recursive 

role is not considered as contributing to these, since it is considered 

“in te rna l” to the plan. The set of potential inpu ts is analysed to see 

which of them are not produced as outputs from any action (including 

the recursive role). These form the true inputs to the graph. Similarly 

the set of potential outputs is analysed to see which do not feed in as
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inpu ts to any action (including the recursive role). These form the set 

of true outputs. In th is case this gives us:

INPUTS .action.op .action.input 

OUTPUTS .action.output

Now the recursive role is removed, and replaced by a  new one with 

inpu ts and ou tpu ts created as follows (note in  th is case th is will not 

change anything, b u t it will in later examples!):

For each inpu t to the graph as a  whole create an  inpu t to the 

recursive role, b u t prefixed with .tail. Then look up  the  table of 

substitu tions ( essentially in reverse) to find out w hat nam e is actually 

being used for this. If there is an  entry in the table use th a t nam e, 

otherwise use the nam e as it is. The outputs are treated similarly.

Step  4 . Finally the left hand  side of the ru le  can  be created. It 

essentially consists of a  single NAPE with nam e equal to the nam e of 

the plan, and inputs and outputs those ju s t com puted (the true inputs 

and outputs). This gives us:

(iterative-application
[.action.op .action.input][.action.output] cf] =>
[[©function [.action.op .action.input][.action.output] .action.cf] 
[recursive [.action.op .tail.action.input][.tail.action.output] .tail.cf]]

in  a  similar notation to th a t used in Chapter 5. If another plan P is an  

extension or specialisation of iterative application , then  its full set of 

constraints, together with the substitutions used, will be passed up  to 

P when required.

As a  second example, consider the plan iter a tiv e -sea rc h . Its 

definition is:
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Temporal Plan iterative-search
specialization iterative-termination-predicate 

iterative-termination-output 
roles .exit(cond) . tail(iterative-search+nil)
constraints . exit .if.input=. exit. end, succeed-input

As can be seen it is a  specialisation of iterative-term ination-predicate  

and iterative-termination-output. These two plans are processed in the 

sam e way as ite r a tiv e -a p p lica tio n , so when ite r a t iv e -s e a r c h  is 

processed it receives the following constraints and substitu tions from 

itera tiv e -term in a tio n -p red ica te  (we will m iss ou t the control flow 

constraints in this discussion):

CONSTRAINTS instance(©predicate, .exit.if)
. exit. if.criterion=. ta il. exit. if. criterion

SUBSTITUTIONS exit.if. criterion FOR . tail, exit .if. criterion

and  the  following constra in ts and su b stitu tio n s from i t e r a t iv e -  

termination-output:

CONSTRAINTS instance(join-output,.exit.end)
exit .end. fail-input=.tail, exit. end. ou tput

SUBSTITUTIONS exit.end.fail-input FOR .tail.exit.end.output

These substitu tions are completely compatible w ith each o ther (i.e. 

nothing in one set of substitutions over-rides som ething in the other), 

so the union of them  is simply formed. The constra in ts coming from 

the  ite r a t iv e -s e a r c h  itself are now added to these (they too are 

compatible), giving a  final set of substitutions:

exit.if.criterion FOR .tail.exit.if.criterion 

exit.end.fail-input FOR .tail.exit.end.output 

.exit.if.input FOR .exit.end.succeed-input
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and now the iterative-search plan can be processed. It has two roles - 

.exit, a  cond, and the recursive role. However, cond is a  plan in  its own 

right, so its roles and constraints are fetched. Its roles are .if(test) and 

.end(join), and the constraints are all control flow constraints, whose 

processing will be briefly described later. So the true roles of iterative- 

search are .exit.if, .exit.end, and the recursive role. W hen we collect all 

the constraints together, we find th a t the .exit.end role is constrained 

to be a  join-output, and the .exit.if role is an  ©predicate. So,

Step 1. The following two NAPEs are created:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.succeed .exit.if.fail]

[join-output [.exit. end. succeed-input .exit.end.fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail.exit.end.out]

Step 2. The substitutions above are now separated into those involving 

the recursive role, and those th a t do not. The la tte r are substitu ted  

into the graph so far, giving:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in iexit.if.succeed .exit.if.fail]

[join-output [.exit.if.input . exit. end .fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail.exit.end.out]

Step 3 (al. This graph is then processed to find its inputs and outputs. 

These are:

INPUTS .exit.if.criterion .exit.if.input .exit.end.fail-input 

OUTPUTS ex it end output
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A recursive role is now created for the graph, giving us:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.succeed .exit.if.fail] 

[join-output [.exit.if.input .exit.end.fail-input]
[.exit.end.output] .exit.end.succeed .exit.end.fail .exit.end.out] 

[recursive [tail.exit.if.criterion
.tail.exit.if.input .tail.exit.end.fail-input] 

[.tail.exit.end.output] .tail.cf]

Step 3 flpl. The remaining substitutions are now made into this:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in : exit.if.succeed .exit.if.fail] 

[join-output [.exit.if.input .exit.end.fail-input]
[.exit.end.output] .exit.end.succeed exit.end.fail .exit.end.out] 

[recursive [exit.if.criterion .tail.exit.if.input .tail.exit.end.fail-input] 
[exit.end.fail-input] .tail.cf]

Step 3 (cl. The true inputs and outputs to this are:

INPUTS .exit.if.criterion .exit.if.input 

OUTPUTS .exit.end.output

A new recursive role is now created:

[recursive [.tail.exit.if.criterion .tail.exit.if.input] 

[.tail.exit.end.output] .tail.cf]

and, by looking up the table of substitutions, we see th a t for instance 

.tail.exit.if.criterion has been replaced by ..exit.if.criterion. So we make 

th is  replacem ent in the new recursive role, and similarly for its other 

inputs and outputs. This finally gives us (after Step 4):
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[iterative-search [.exit.if.criterion .exit.if.input][.exit.end.output] cf] => 
[©predicate [.exit.if.criterion .exit.if.input]

.exit.if.in .exit.if.succeed .exit.if.fail] 
(join-output [.exit.if.input .exit.end.fail-input]

[.exit.end.output] .exit.end.succeed .exit.end.fail .exit.end.out] 
[recursive [exit.if.criterion .tail.exit.if.input]

[exit.end.fail-input] .tail.cf]

for the entire rule.

As a  third example, consider the plan trailing-search:

Temporal Plan trailing-search
extension iterative-search trailing 
roles .current(object) .previous(object) .exit(cond) 

.tail(trailing-search)
constraints instance(join-two-outputs, .exit.end)

A .current=.exit.if.input 
A . previous=. exit. end. succeed -input-two 

______________ A .tail.exit.end.output-two=.exit.end.fail-input-two

It inherits constraints from both iterative-search (just discussed) and 

tra ilin g . From ite r a tiv e -sea rc h  it inherits the su b stitu tio n s ju s t  

discussed, and from trailing it inherits (Figures 7.18 and 7.19 show the 

way constraints and substitutions are passed up  the hierarchy):

.current FOR .tail.previous

These are compatible with each other, b u t care m u st be taken when 

these are combined with the substitutions implied by the definition of 

trailing-search itself:

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

since there is a  conflict with those from iterative-search:
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single-recursion 
No Constraints

iterative-termination
cflow(exit.if.fail.tall.exit.lf.ln) 

low(tall.exit.end.out, exlt.end.fail)

iterative-termination- 
predicate

instance(@predlcate,exlt.lf)
exlt.lf.crlterlon=tall.exlt.lf.crlterlon ----term ination-output

instance(joln-outputodt.end) 
exlt.end.fall-lnput=tall.exlt.end.output

iterative-search
exlt.lf.lnput=exlt.end.succeed-lnput

trailing
.current=.tall.prevlous

iterative application 
.actlon.op=.tall.action.op 

cflowi.actlon.out, .tall.actlon.ln)\
trailinf» s e a r e h

Instance^ oln-two-outputs, exit.end) 
.current=.exlt.lf.lnput 

.prevlous=.exlt.end.succeed-lnput-two 
.tall.exlt.end.output-two=0 dt.end.fall-lnput-two

iterative-generation
.actlon.output=.tall.actlon.lnput

trailin g-generation+search
.current=.actlon.output 
.prevlous=. action. Input

Figure 7.18 
Constraint Heirarchv for 

Traiiing-Generation+Search
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single-recursion 
No Substitutions

iterative-termination

iterative-teimination- 
predicate

.If.crlterlon FOR tall.exlt.lf.criterlon iterative- 
term ination-output 

t.end.fail-input FOR tad.exit.end.outpul

trailing  
.current FOR .tail.preidousiterative-search 

.exit.if.input FOR .exit.end.succeed-input 
.exltif.criterlon FOR .tail.exit.if.criterion 

.exit.end.fail-input FOR .tail.exit.end.output

iterative-application 
.action.op FOR .tail.action.op trailing search

.current FOR .exit.end.succeed-input 
.exit.if.criterion FOR .tail.exit.if.criterion 

.exit.end.fail-input FOR .tail.exitend.output 
.current FOR .tail.prevlous 
.current FOR .exit.if.input 

.previous FOR .exit.end.succeed-input-two 
.tail.exit.end.output-two FOR .exit.end.fail-input-two

iterative-generation
.action.output FOR .tail.action.input 

.action.op FOR .tail.action.op

trailing-generation+search 
.cunent FOR .tail.prevlous 

.action.op FOR .tail.action.op 
.current FOR .exit.end.succeed-input 

.exit.if.criterion FOR .tail.exit.if.criterion 
.exit.end.fail-input FOR .tail.exit.end.output 

.current FOR .tail.prevlous 
.current FOR .exit.if.input 

.previous FOR .exit.end.succeed-input-two 
.tail.exitend.output-two FOR .exit.end.fail-input-two 

.current FOR action.output 
.previous FOR .actlon.input

Figure 7.19
Substitution Heirarchv
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exit. if. criterion FOR . ta il. exit. if. criterion 

exit.end.fail-input FOR .tail.exit.end.output 

.exit.if.input FOR .exit.end.succeed-input

since they could over-ride the use of exit.if.input. These substitu tions 

m ust be reco n c iled , which involves choosing one of the conflicting 

substitutions, and replacing it by the other. In th is case th is gives u s as 

the full set of substitutions:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

exit.if.criterion FOR .tail.exit.if.criterion

exit.end.fail-input FOR .tail.exit.end.output

.current FOR exit, end. succeed -input

Now the graph for the right hand side of the rule can be created. From 

the full set of constraints passed up, and the roles of the plan itself, we 

see th a t the NAPE)s in the plan are .exit.if[@predicate), .exit.end(join- 

two-outputs), and a  recursive role.

Step 1 . As before, the non-recursive NAPEs are processed first, giving:

[©predicate [.exit.if.criterion .exit.if.input]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[. exit, end . succeed-input .exit, end. fail-input

. exit. end. succeed -input-two . exit. end.fail-input-two]
[.exit, end. output . exit.end.output-two]
. exit. end. succeed . exit, end. fail. exit, end. out]
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Step 2 . As before, the substitutions not involving .tail are made first, 

giving:

[©predicate [.exit.if.criterion .current]
exit.if.in exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .exit.end.fail-input-two]
[. exit, end. output . exit. end. output-two]
.exit.end.succeed .exit.end.fail.exit.end.out]

Step 3  fal. This is now processed, to yield a  recursive role. This results 

in:

[recursive
[tail. exit .if. criterion .tail, current .tail.exit.end.fail-input 

.tail.previous .tail.exit.end.fail-input-two]
[.tail.exit.end.output .tail.exit.end.output-two] .tail.cf]

Step 3 fbl. The rem aining substitu tions are m ade into the  resulting 

graph, giving:

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .tail.exit.end.output-two]
[. exit, end. output .exit.end. output-two]
. exit. end. succeed . exit. end. fail. exit, end. out]

[recursive
[exit.if.criterion .tail.current .tail.exit.end.fail-input 

.current .tail.exit.end.fail-input-two]
[exit.end.fail-input.tail.exit.end.output-two] .tail.cf]

Step 3 fcl. Tlie true inputs and outputs for tills are com puted as;

INPUTS .exit.if.criterion .current .previous 

OUTPUTS .exit.end.output .exit.end.output-two
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Use these to create the new recursive role. .

Step 4 . Finally we get:

[trailing-search [.exit.if.criterion .current .previous]
[ exit.end.output .exit.end.output-two] cf] =>

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.fail .exit.if.succeed]]

[join-two-outputs
[.current .exit.end.fail-input

.previous .tail.exit.end.output-two]
[.exit.end.output .exit.end.output-two]
,exit.end,succeed ,exit,end,fail ,exit,end,outl

[recursive
[exit.if.criterion .tail.current .current]
[exit.end.fail-input.tail.exit.end.output-two] .tail.cf]

for the entire rule.

Now consider the trailing-generation+search plan (discussed in

C hapter 3):

Temporal Plan trailing-generation+search
extension iterative-generation trailing-search
roles .current(object) .previous(object) .exit(cond)

. acüon(©fimction) . tail(trailing-generation+search)
constraints .current=.action.output a  .previous=.action.input

It inherits the following substitutions from trailing-search:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

exit.if.criterion FOR .tail.exit.if.criterion

exit.end.fail-input FOR .tail.exit.end.output

.current FOR . exit. end. succeed -input
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and the following from iterative-generation  (processed as described 

above):

.action.output FOR .tail.action.input 

.action.op FOR .tail.action.op

These are completely compatible, so are simply added into the full set 

of substitutions for the plan. The substitutions implied by the definition 

of trailing-generation+search itself are:

.current FOR .action.output 

.previous FOR .actlon.input

These are then reconciled with the above substitutions, yielding:

.current FOR .tail.previous

.current FOR .exit.if.input

.previous FOR .exit.end.succeed-input-two

.tail.exit.end.output-two FOR .exit.end.fail-input-two

. exit .if. criterion FOR .tail.exit.if.criterion

.exit.end.fail-input FOR .tail.exit.end.output

.current FOR .exit.end.succeed-input

.current FOR .tail.action.input ............................................... (*)

.action.op FOR .tail.action.op 

.current FOR .action.output 

.previous FOR .action.input

However, this is not quite right. The substitution indicated (*) needs to 

be altered. This is because of the way in which we process substitutions 

n o t involving .tail first, which m eans th a t w hen we m ake the 

substitution .previous FOR .action.input in the graph, we get as Input to 

the ©function NAPE .previous (instead of .action.input). This m eans 

th a t when we create the recursive role we end up giving it an  inpu t of
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.tail.previous, instead of .ta il.action.input which is referred to in the 

other substitutions. So, when we make the first substitu tions (the ones 

no t involving .tail), we m ust also adjust the rem aining substitu tions so 

th a t if we make a  substitution of the form A FOR B we m ust replace any 

occurrence of .tail.B in the remaining substitu tions by .tailJ^. In this 

case th is will give u s .current FOR .tail.previous, which happens to be 

one of the substitutions we already have for this plan, b u t in  m any cases 

it won’t  be.

So, processing the rule as before, bu t taking note of the above subtlety, 

yields the rule:

[trailing-generation+search [.exit.if.criterion .action.op .previous]

[.exit.end.output.exit.end.output-two] cf] =>

[©predicate [.exit.if.criterion .current]
.exit.if.in .exit.if.succeed .exit.if.fail]

[©function [.action.op .previous][.current] .action.cf]
[j oin-two-outputs

[.current .e^dt.end.fail-input
.previous .tail.exit.end.output-two]

[. exit, end. o u tp u t . exit. end. output-two]
.exit.end.succeed .exit.end.fail .exit.end.out]]

[recursive [exit.if.criterion .action.op .current ]
[.exit.end.fail-input .tail.exit.end.output-two] .tail.cf]

which a  little thought will show corresponds to Figure 3.4.

It should of course be stressed th a t the process for plans w ithout 

recursive roles is exactly the same as this, w ithout all the “m essing 

about” with the recursive roles.

Control flow constraints are used to create the plan condition, as 

described in Chapter 4. The variables for each control environm ent are 

those indicated on the right hand side of the above rules. The control 

flow constra in ts passed up the inheritance hierarchy (in exactly the
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sam e fashion as the data  flow constraints), together with any coming 

from roles which are plans (e.g. cond ), are grouped together and  

processed as indicated in Chapter 4 to form the plan condition, which 

is then  substitu ted for the variable cf on the left hand side of the rule.

Before going on to describe the processing of tem poral overlays, 

we will briefly describe how plans containing roles w hich are d a ta  

plans (rather th an  simple objects) are processed. Consider the plan:

TemporalPlan intemal-labelled-thread-add
Roles .old(labelled-thread) .add(intemal-thread-add) .update(newarg) 

.new(labelled-thread)
Constraints .old.spine=.add.old a  .old.label=.update.old

A .add.input=.update.arg a  .add.new=.new.spine 
A . update. new=. new. label

This is the plan shown in Figure 7.20, which essentially adds a  new 

node into a  thread, and updates the labelling function on the new node. 

It is the abstraction of adding a new element into a  list implemented 

by linked objects of some type or other. When the rule is processed the 

definitions of the data plans are accessed, and used to create nam es for 

the  roles of the d a ta  plans themselves. In th is case th is  gives u s 

.old.spine and .old.label for the .old role, and .new.spine and .new.label 

for the .new role. Assertions are stored with the rule stating:

. old=labelled-thread(.old.spine, .old.label)

.new=labelled-thread (.new. spine, new.label)

F u rth e r more, th is  is done recursively. So, since .new .spine and 

.old.spine are both  th reads (this inform ation is obtained from the 

definition of a  labelled thread) we also add assertions:

. old. spine=thread(. old. spine .nodes, .old. sp ine. edge)

.new. spine=thread(.new. spine.nodes, .new. sp ine. edge)
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spine ,old(labelled-thread)

.update.add

iew(labelled-thread)

newarg
internal
thread

add

Figure 7.20 
Internal Labelled Ttiread Add
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since we cannot know how deeply into th is s tru c tu re  the ru le (or 

overlays of the plan) may need to go. It also helps in connecting the 

p lan  up  to o ther p lans as the parsing proceeds. Now the  ru le  is 

processed exactly as  before, b u t with the additional step th a t  any 

substitu tions th a t are made in the NAPEs of the rule are also m ade into 

these assertions. This results in the rule:

[intem al-labelled-thread-add [.old.spine .update.arg
.old.label .update.input]

[.add.new .update.new] cf] => 
(intem al-thread -add (.old.spine .update. arg] [. add .new] .add.cf] 
[newarg [.old.label .update.arg .update.input]

[.update.new] .update.cf]

with data  plan assertions:

.old=labelled-thread(.old.spine, .old.label) 

.new=labelled-thread(.add.new, .update.new)

. old. spine=thread (. old. spine .nodes, .old. spine, edge)

. add . new=thread(. new. spine .nodes, . new. spine. edge)

These assertions (or a t least copies of them) are included in  each 

p a rtia l p a tch  for th is  p lan. As the tie-poin ts in  the  p a tch  get 

in s tan tia ted  (when the patch  is extended) the in s tan tia tio n s  are 

propagated into the assertions, enabling the proper creation of, or 

m atching against, assertions in the data  plan database as the parsing 

proceeds (as described in 7.1). So these assertions m u st be considered 

part of the rule.
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7.8.1.2 Translating Temporal Overlays into Rule Form

Now we are ready to discuss the conversion of tem poral overlays. 

Consider the overlay:

Temporal Overlay trailing-generation+search->Gnd :
trailing-generation+search > intemal-thread-find

correspondences
generator->digraph(temporal-iterator(trailing-generation+search))=

intemal-thread-find.universe 
A trailing-generation+search . exit.if. criterion=

in temal-thread-flnd. criterion 
A trailing-generation+search. exit end. output=

intemal-thread-find.output
A trailing-generation+search.exit.end two=

intemal-thread-find.previous 
A trailing-generation+search.action.in=dntemal-thread-find.in 
A trailing-generation+search.exit.out=intemal-thread-flnd.out

The rule corresponding to a  temporal overlay A >B is expressed in the 

form:

NAPE for A => NAPE for B

So the left hand side of this rule is created essentially by copying the 

left hand side of the rule for the plan trailing-generation+search, giving 

us:
1

[trailing-generation+search [.exit.if.criterion .action.op .previous]
[.exit.end.output.exit.end .output-two] cf]

The right hand  side is created initially by instantiating a  NAPE for the 

appropriate action, based on the lOSpec definition for the action. This 

gives us:

[intem al-thread-find [.universe .criterion][.ou tpu t previous] cf]
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Now the correspondences are processed, and used  to define a  se t of 

su b stitu tio n s. Most of these are straightforw ard and  give u s  the 

following substitu tions (we can ignore those to do w ith in p u t and 

ou tpu t situations as these are handled by the plan conditions etc., as 

described in Chapter 4):

exit.if.criterion FOR .criterion 
.exit.end.output FOR .output 
.exit.end.two FOR .previous

However, the first needs more processing. It states:

generator->digraph(temporal-iterator(trailing-generatioii+search))=
intemal-thread-find.universe

Such nested overlays are processed recursively. The innerm ost one is:

temporal-iterator(trailing-generation+search)

where the temporal-iterator overlay is defined by:

TempoToi Overlay temporal-iterator : iterative-generation -> iterator
correspondences iterative-generation.action.input=iterator.seed 

A fimction->hinrel(iterative-generation.action.op)=iterator.op

This is used to create assertions about the d a ta  objects involved. It 

s ta rts  by making an assertion:

tnew=iterator(tnew. seed, tnew.op)

where tnew  is a  new name. Now the substitu tions stored w ith each 

plan come into effect. From the definition of tem poral iterator it needs 

to know which name in the trailing-generation+search plan (viewed as 

an  itera tiv e-g en era tio n  of which it is an extension] corresponds to 

action.input. Looking up the table of substitutions it finds th a t .previous 

was used for this purpose. So it can substitute .previous into the above 

assertion, giving:
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tnew=iterator(.previous, tnew.op)

Now it tries to find a  substitution for tnew.op. This resu lts  in  another 

assertion:

tnew. op=function->binrel(. action, op)

and again it looks in the table of substitutions to find th a t .action.op is 

the  nam e used. It has now finished with the innerm ost overlay, so 

these assertions are passed back out, and it now m akes an  assertion:

. universe=generator->digraph(tnew)

So the overlay is finally represented by the rule:

[trailing-generation+search [.exit.if.criterion .action.op .previous]
[.exit.end.output.exit.end.output-two] cf] => 

[intem al-thread-find [.universe .exit.if.criterion]
[.exit.end.output .exit.end.two] cf]

together with the assertions:

tnew=iterator(.previous, tnew.op) 

tnew. op=function ->binrel(. action. op) 

.universe=generator->digraph(tnew)

These are used during the parsing process as described in  7.1 to add 

assertions to the data plan and data overlay databases.

One more point needs to be made. The variables (names of tie- 

points) in a  plan are made into a table which is included in the patch 

information when an empty patch corresponding to a  plan is created. 

This table is used to store information about which ac tual tie-point 

each nam e gets instantiated to during the parsing process. Then, when 

an  overlay is made of a  plan instance, this table can be consulted “by 

the overlay”, in order to work out how to instantiate its own tie-points.
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W ithout the mapping from nam es to instantiated tie-points, the overlay 

m echanism  could not work.

7 .8 .2  Additional Plans Needed to Cope with User Defined Data

Types

It has been mentioned several times th a t u ser defined d a ta  types 

will be dealt w ith by m eans of overlays such  as th r ea d -> lis t  etc. 

However there is a  problem th a t arises as a  result of the way we have 

treated data  overlays of tie-points. Consider the case of an  array, where 

the entries in the entries in the array are lists implemented by m eans 

of linked records. The situation  is shown in Figure 7.21. Now the 

proper analysis of th is may be th a t we have a  sequence (the array) of 

se ts  (implemented as lists). H ash tables are an  example where th is 

kind of anedysis is necessary in order to recognise th a t h ash  table 

lookup is sometimes used simply as a  membership test. So suppose we 

have the following declarations:

type listelement = record
num b : integer; 
next : ^listelement; 

end;
plist = ^listelement; 

var a: array] 1.30] of plist; 
n  : integer; 
p, q : plist;

and  suppose th a t somewhere in the program we have the following 

piece of code:
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new(q);
q^.numb:=n;
p:=a(jl;
q-  ̂.next: . next;
p^.next:=q;

which splices a  new element into the list afj). The surface plan^ for this 

is shown in Figure 7,22. Before going on to describe the recognition 

process it is im portant to note th a t from now on, w hen we are 

describing the  recognition process we will usually  ta lk  abou t it as 

resulting in a  graph of some sort. This is not strictly accurate since, of 

course, w hat h as  really happened is th a t some patches have been 

added to the chart. However, it is not feasible to show all the patches, 

so we simply show the ones th a t are relevant in  understand ing  the 

m ain  steps whereby som ething is recognised. It should  always be 

understood th a t in fact there will be lots of other patches in the chart 

ap a rt from the ones we show, and lots added between the steps we 

show.

Now suppose the parser goes to work on this, and it recognises 

th is  as involving an # se t-a d d  operation. To do th is  it h as  to first 

recognise the shaded part of the surface plan as a  # sp licea fter  plan, 

shown in Figure 7.23, then  use the overlay sp liceafter> > iiitern al-  

thread-add, also shown in Figure 7.23. This results in Figure 7.24, It 

then  has to recognise the shaded portion of th is as forming an

 ̂Note that we have already grouped the function and NUMB together as a composed 

function object for cleirity. This would have been done via the composed-functions- 

>function overlay in the library.
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intem al-labelled-thread-add, resulting in Figure 7.25, and then  uses 

another overlay internal-labelled-thread-add->set-add to give Figure 

7.26. This is all fine, b u t we now have a  problem. The s e t  h as been 

recognised via a  sequence of overlays, first of all grouping the tie-point 

representing p with the tie-point representing NEXT together as an  

iterator and this is represented by a  new tie-point a s  described above. 

A nother new tie-point is then  created represen ting  th is  it e r a to r  

viewed as a  th r e a d , and th is new tie-point is the  in p u t to the 

sp liceafter operation. This thread was then  grouped with the tie-point 

for NUMB, to form an  instance of the d a ta  p lan  la b e lled -th rea d , 

represented by yet another new tie-point, which is the in p u t to the 

in tem al-labelled -thread-add  operation. Finally, using the labelled- 

thread->set overlay applied to the labelled-thread tie-point gives u s yet 

an o th er new  tie-poin t representing the s e t ,  and the s e t  (and its 

updated  version) have become ra th e r detached from the  function 

which was supposed to have produced it in the first place. This would 

m ake it ra th er hard  for a  data-flow based parser to recognise plans 

involving fu n c tio n s w ith  se ts  as values (where th e  se ts  are  

implemented via some other data structure), unless the parser were to 

spend a  lot of its time computing something a  b it like the “transitive 

closure” of the assertions in the data plan and data  overlay databases. 

However, it tu rn s  out th a t to deal with th is we do need to change the 

recogniser as such. We do, however, need to add a  variety of extra 

p lans and overlays not discussed in Rich[1981] to the plan library. 

Some of these are given below:

DataPlan composite-functions 
Roles .op 1 (function) .op2(function)
Constraints dom ain-type(. op2)=range-type(. op 1 ) 

______A range-type(.op2)=domain-type(.op2)
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EkjtaOverlay composite-fimctioiis->fimction 
Definition F=composite-fimctionS'>fimction(p.s) =
[ins tance (function, F)

A [[apply(function(F,s) ,x)=y]
<-> [lterator(y,s) undefined
A iterator(y,s).seed=apply(composlte-fimctlons(p,s).opl ,x)
A iterator(y. s) .op=fimction->binrel(composite-functioiis(p, s) .op2, s)J

TemporalPlan ©function-composite
Roles .action(©function) .comp(composite-functions) .gen(iterator)
Constraints .action.op=.comp.opl

A .gen.seed=.action.output 
_________ A .gen.op=function->binrel(.comp.op2)_________________

TemporolOverlay ©function-composite->©function-to-iterator 
Correspondences 

©function-to-iterator.op=
composite-functions->function(©function-compo8ite.comp) 

A ©function-to-iterator.input=©function-composite.action.input 
A @function-to-iterator.output=@function-composite.gen______________

These first four plans and overlays are w hat are required to recognise 

functions which give iterators as their result (where the functions are 

implemented as a  function which returns the seed of the iterator). The 

co m p o site -fu n ctio n  object involved essentially groups the iterating 

function of the iterator together with the function).

DataPlan composite-functions+label
Roles .comp(composite-functions) .label(function)
Constraints dom ain-type(.label)=range-type(. com p.op 1)
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TemporalPlan ©fimction-composite+label 
Extension ©function-composite
Roles

.action(©function-composite) .comp+lab(composite-function+label) 
iabt(labeUed-thread)

Constraints .labt.spine=iterator->thread(.action.gen)
A . labt. label=. comp+lab. label 

_________ A . action. comp=. comp+lab. comp___________

DataOverlay composite-functions+label->function 
Definition F=composite-functions+label->function(p,s) =
[ins tance(function, F)

A [[apply(function(F,s),x)=yl
labelled-threadly.s)  ̂urvdefined 

A labelled-thread(y.s).spine=
iterator->thread(apply (function (p. com p. op 1. s) ,x), s) 

Alabelled-thread(y,s).label=composite-functions+label.label

TemporolOverlay ©function-composite+label->
©function-to-labelled-thread

Correspondences
©fimction-to-labelled-thread.op=
composite-functions+label->function(

©function-composite+labei.comp+lab) 
A ©function-to-labelled-thread.input=

©function-composite+label.action.action.input 
A ©function-to-Iabelled-thread.output=©function-composite+label.labt

These plans are w hat is needed in order to deal w ith functions which 

produce labelled  threads (an abstraction of lists bu ilt ou t of linked 

records).

In addition for each data-type B we need operations of the 

general form:
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lOSpec @fimction-to-B
Specialisation ©function 
Constraints range-type(.op)=B

The operations ©function-to-iterator and ©function-to-labelled-thread,

used above, are specific examples of this general form. Finally, for each 

data-overlay of the form B->C we need an overlay of the general form:

TemporalOverlay ©function-to-B->©functioh-to-C 
Correspondences ©function-to-C.op=©function->B.op

A ©function-to-C.input=©function->B.input 
 A ©function-to-C.output=B->C(©function->B.output)

Combining these with plans and overlays of the general form:

TemporalPlan ©function+#action 
Roles .action(©function) .impure(#action)
Constraints .action.output=.im pure.input

and

TemporalOverlay ©function+#action->#newarg 
Correspondences #newarg,op=©function+#action.action.op 
#newarg.arg=©fùnction+#action.action.outpiit 
#newarg.value=©function+#action.impure.output__________

gives u s all the machinery we need in order to make sure that:

a) p lan s connect up properly even after recognising d a ta  

abstractions, and

b) we realise th a t some views of functions change when we side 

effect the structures they compute.

This process is illustrated for the above example in Figures 7.27-7.29. 

It should again be noted tha t the reason we need all of th is is because 

we are dealing with graphs which do not distinguish properly between 

the behaviours and identities of objects.
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Chapter 8.

Program Understanding in Practice

Before showing how a  com bination of p lan  recognition and 

general reasoning on plan diagrams can enable IDS to find type 1 (and 

type 3) errors in programs it is instructive to see plan recognition in 

practice. This h as  previously been described in a  variety of papers 

[Rich 1981, Wills 1986 and 1990, W aters 1978, Schrobe, W aters, and 

Sussm an 1979], b u t the process is not as entirely straightforward as 

their descriptions would suggest. Many of the dlfiûculties arise from the 

fact th a t the program s considered here have no t been w ritten using 

KBEMacs [Waters 1982] so th a t the particularly close m atch between 

the progreuns and the plan library th a t Rich and  W aters have in the 

first place does not exist in our case. Furtherm ore, no o ther system  

can  cope w ith the d a ta  overlays etc involved in  com pound d a ta  

s tru c tu re s  such  as the ones we are considering. In addition, as 

m entioned earlier, it is not possible to have a  completely canonical 

rep resen ta tio n  of program s, and a  certa in  am o u n t of w hat are 

essentially program transform ation techniques have to be used to get 

round  some of the differences between the actual surface plans th a t 

arise in practice and the plans in the plan library. Furtherm ore (and 

perhaps obviously) the language being used h as  an  affect on the way 

people not only do, b u t even can, write their code, and  th is leads yet 

again to the actual sinface plans differing in significant ways from the 

plans in  the library. So the process of understanding a  correct program 

will be shown first, and in the next chapter it will be shown how this 

differs in the case where the program has a  bug in it. In w hat follows 

reference will be made not only to the plans and overlays already 

discussed, b u t also to meiny from Rich's library, using  his original 

terminology (to avoid introducing yet more jargon into the program
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understanding  literature). Hopefully it will be clear w hat these pleins 

and overlays are. and readers requiring more information are referred 

to (Rich 1981].

8.1 Understanding Programs using Plan Diagrams

To begin with we will consider a  fairly simple program, whose 

analysis is quite straightforward:

program fllemaxmin(input.output): 
var n. biggest, smallest : Integer; 
begin

biggest: = -maxint: 
smallest:= maxint: 
while not eof do 
begin

readln(n): 
if n>biggest then

biggest-=n: ^
if n<smallest then 

smallest:=n
end;
writeln(biggest): 
writeln(smallest) :

end.

This program  com putes the largest, and sm allest of a  se t of 

num bers in a  file. In th is program the plans for com puting the largest 

and sm allest of a  set of num bers share the code for actually sequentially 

generating the set of numbers. The surface plan for its loop is shown in. 

Figure 8.1.

The ana lysis of th is  loop proceeds in  several stages (not 

necessarily in the order given):

Step 1. Using the overlays discussed in Chapter 7, first of all

the not is removed, essentially by interchanging the succeed and fail 

controlling conditions of the test.

Step 2 . The rules for rewriting conditions such  as “a<b” in

term s of "b>=" described in Chapter 7 come into effect. This gives us 

the plan diagram shown in Figure 8.2.
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Step 3. The shaded areas of Figure 8.2 are now recognised as 

being instances of @binrel+join plans. Using the overlay shown in 

Figure 8.3, these are recognised as implementing choice operations i.e. 

operations which choose between their inputs depending on the resu lt 

of the  test. In p articu la r they  are recognised a s  im plem enting 

choosing the greater of two num bers (greater), and choosing the lesser 

of two numbersClesser), plans. This results in Figure 8.4.

Step 4 . Now the shaded portion of Figure 8.5 is recognised as 

being an  instance of an  ite r a t iv e -a c c u m u la t io n  plan. I te r a t iv e  

accumulation is the plan common to such things as iteratively adding a 
set of num bers, iteratively multiplying a  set of num bers, and  computing 

the maximum or minimum of a  set of num bers. For instance for adding 

a  se t of num bers the initial value input into the plan is zero and the 

operation is “+". For computing the maximum of a  se t of num bers, the 

initial value can be anything which is less than  th w  all the num bers in 

the set ( maxint in this case), and the operation is greater. In a  similar 

fashion an iterative accum ulation plan is found involving the le sser  

operation. Note th a t a t the moment only the plans have been found - 

the step to recognising m ax and m in has not been m ade yet, since 

these involve sets, and as yet no sets have been found.

Step 5 . In a  similar fashion, a  standard (Pascal specific) plan, 

iterative-readln, is found. This is shown in Figure 8.6. Notice how all of 

these plans share common structure.

Step 6 . Now overlays and tem poral ab strac tio n  come into 

their own. Figure 8.7 shows two overlays iterative-readln->readall, and
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iteraiive-accum ulatioii->aggregate(m ax) i . Suppose iterative-readln>  

>readall is done first. As described in Chapter 7, th is adds a  readall 

patch  to the chart, and creates two new tie-points, one corresponding 

to  the  tem poral abstraction  of the value o u tp u t from the  readln  

opera tio n  (so th is  tie -po in t rep resen ts  a  lis t) , and  th e  o ther 

representing th is list viewed as a  set. Assertions about these are made 

in  the  data-overlay database. Now the i t e r a t iv e  a c c u m u la tio n -  

>aggregate(maz) overlay is used. This adds a  m ax patch to the chart. 

Now it tries to create a tie-point corresponding to the  tem poral 

abstraction of the input to the greater operation. This is the sam e tie- 

point as is output from the readln, so when it consults the data  overlay 

database, it finds the temporal abstraction of th is tie-point has already 

been created. So it uses the one th a t is already there. Then it tries to 

create a  tie-point corresponding to the list-> set view of th is tie-point, 

and  again it finds it is there already. H ius the m ax operation acquires 

as  its input set the same set as is output from the readall operation. In 

a  similar fashion the m in operation is recognised, and it too connects 

to the sam e tie-point. So the final analysis of the loop is as shown in 

Figure 8.8.

The second program we will consider is the following:

 ̂ S trictly speaking there Eire two overlays involved here - one taking iterative- 

accumulation to aggregate eind one taking aggregate, with greater as its input operation 

to max.
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program sort(input.output); 
type listelement = reconl

numb : integer; 
next : '^listelement; 
eat

plist = '̂ listelement; 
var head, p : plist; 

n:

procedure addtolist(n : integer; t : plist);
var p : plist;
begin

new(p); 
p' .̂numb:=n; 
if t = nil then 

begin
p' .̂next ;= head; 
head:=p;

end
else

begin
p' .̂next:=t' .̂next;
t' .̂next:=p;

end;
end;

procedure hndplace(n: integer; var p: plist); 
var t : ' l̂istelement; 

found : boolean;
begin

if head' .̂numb > n then 
p:=nil;

else
begin

p;=head; 
t:=p' .̂next; 
found:=false; 
while not found do

if t o  nil then
if t' .̂numb <= n then 

begin
p:=b
t:=t' .̂next;

end
else found:=true 

else found:=true;

end;
end;

begin
head:=nil; 
while not eof do 

be^n
readln(n);
if headonil then flndplace(n,p)
else p:=head;
addtolist(n,p);

end;
p:=head; 
while ponil do 

begin
writeln(p'^.numb);
p:=p' .̂next;

end;
end.
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This is a  m uch more com plicated program  w hich reads in 

num bers from a  file or terminal (one per line) until the end of the file, 

and  ou tpu ts the num bers in ascending order. It does th is by use of a  

linked list which holds the num bers, each new num ber being stored in 

the appropriate place in the list. The program contains a  couple of user 

procedures - findplace, which finds the correct place in the sorted list 

where a  new num ber is to go, and addtolist, which actually adds in  a  

new num ber to the list. We will begin by considering the procedure 

findplace. Its surface plan is shown as Figure 8.9. In w hat follows we 

will no t describe the understanding process in  full detail in  term s of 

patches added to the chart since there are far too m any of these for 

the description to be helpful. Instead we will describe the process in 

term s of the m ain steps th a t the patches represent, and  illustrate it by 

diagram s in which each NAPE represents a  patch  in the chart, b u t in 

which only some of the patches have been shown. The understanding 

(via p lan  recognition) process th u s  proceeds in  several steps (not 

necessarily in the order given):

To sta rt with the loop is analysed, £is follows:

Stép I n e ts  are removed, simply by changing the order of 

the yes/no  labels on the appropriate tests and joins. There is only one 

case of this, and the resulting surface plan is shown as Figure 8.10. 

This is actually done by the rule, discussed earlier in C hapter 7.

Step 2 The staggered jo in s  are tu rned  into n -jo in -o u tp u t  

joins, as  discussed in Chapter 4. This results in Figure 8.11.

Step 3 IDS now finds an iterative flag te s t  as discussed in 

C hapter 7. It can therefore remove the =true te s t (and corresponding 

joins), and move the recursive role to within the other two tests, by 

changing its controlling condition, and reconnecting appropriately.
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Note th a t all the other NAPEs (strictly speaking, patches) also have 

their controlling conditions altered by this. The resulting plan diagram  

is shown in Figure 8.12.2

It is worth commenting here tha t the fact th a t th is last step has 

been necessary is really an  artifact of Pascal. Pascal does no t use the 

McCarthy form (] of the Boolean operators and and or, and evaluates 

both conditions C l and C2 in Boolean expressions such as:

C l or C2

The piece of code involved in the graph m anipu lations ju s t  

described is actually trying to iterate down a list until either the end of 

the list is encountered, or some condition is met. The n a tu ra l way to 

code th is would have been something like (the while form of the loop 

will continue to be used here):

w hile not( at-end-of-list or condition-met) do ...

Unfortunately th is could not be done in Pascal because the condition to 

be met involves dereferencing a pointer which may be nil. Even though 

the first part of the test would have detected this, Pascal would go on 

to try and evaluate the second part of the or, giving rise to a  run-tim e 

error. In a  language with the McCarthy form of the Boolean operators, 

as soon as the first p a rt of the or evaluated to true, the expression 

would be considered to be true, and the second condition would not be 

evaluated. In a  language like this (including LISP) the loop could have

2 In an earlier version of this work (Lutz, 1989) this was achieved by a series of four 

separate program transformations. However, our use of n-join-output nodes, rather 

than staggered single join-output nodes, and the use of controlling conditions has 

greatly simplified the process.
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been w ritten as above, and the corresponding surface plan would have 

been  more or less w hat we have now arrived a t after a  g raph  

transform ation operation.

Step 4. (i) Put term ination tests in standard  form. Plans in

the library are stored with the term ination tests on loops being ju s t  

th a t i.e. the tests succeed when the loop is to term inate. This step is 

actually  ra ther sim ilar to the n o t  removals of step 1, and  is actually 

handled by the rules discussed in Chapter 7, which have automatically 

given u s  patches for all the equivalent variant ways of expressing tests 

involving comparison operators.

(ii) Recognise complex predicates (actually th is p art of this 

step could have been done a t any time bu t its description has been left 

till now). By this is m eant the process of recognising th a t a  condition 

like

f(x) < n

can  be regarded as a  complex predicate of x  by first of all regarding the 

com bination of a  binary relation (in this case < ) and a  fixed value (in 

th is case n) as a predicate g defined by

g(y) = true if y < n, and g(y)=false otherwise

and  then  regarding the combination of a  function (in th is case f) and a  

predicate (in th is case g defined above) as a 'com pound' predicate h, 

defined by:

h(y)=g(f(y))

In th is way both test boxes are replaced by © p re d ic a te  boxes 

w hich take as in p u t a  predicate and an  object. If such  complex 

predicates have an obvious or easily understood name (such as =nil)
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then  th is has been used, otherwise the grouping is shown by shaded 

ovals round the appropriately grouped objects. Such shaded objects are 

then  treated as as single objects which can be inpu ts  to (or indeed 

o u tp u ts  from) com putations in plan diagram s, since in  fact they 

represen t the new tie-points introduced by d a ta  overlays. This is all 

done using overlays such as @ function-fpredicate->predicate from 

Rich's library. The plan diagram resulting after th is h as  been done is 

shown in Figure 8.13.

Step 5. The s ta n d a rd  p lan , t e r m i n a t e d - i t e r a t i v e -

generation+search, shown shaded in Figure 8.14, is now recognised, 

resulting  in  the plan diagram Figure 8.15. This p lan  represen ts the 

p lan  common to code which searches for some object, re tu rn ing  the 

object if found, b u t stopping the search  w hen there are no more 

objects. In this case it returns the final object.

Now the analysis of the loop is finished, so its patches are copied 

back  in to  the ch a rt for tlie m ain-procedure. The ana lysis  th en  

continues as follows:

Step 6. The p lan  @ su e  c e s  s o r + t e r m in â t  e d i t  e r a  t iv e -  

generation+search, shown shaded in Figure 8.16 is recognised. After 

applying an  overlay @ su ccessor+ term in ated 'itera tive-gen eration  

+search->term inated-trailing-generation+search Figure 8.17 is then 

obtained.

Step 7. Up till now all tha t has really been recognised is a  standard  

p a tte rn  of code. At th is point however the notion of overlays really 

comes into its own, and enables IDS to s ta rt reasoning about the more 

ab s trac t operations on more abstract d a ta  types th a t th is p a tte rn  of 

code is actually implementing. In particular IDS recognises th a t the
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above plan can be viewed as implementing the in ternal-thread-find  

operation discussed earlier, with a nil-terminated thread as input. This 

nil-term inated thread essentially is th a t obtained by iterating down the 

d a ta  structu re  starting from head, and using ^.next as the successor 

function. In this way we arrive a t Figure 8.18.

Step 10. Finally IDS is able to recognise th a t th is p a tte rn  of 

code actually implements an intem al-lahelled-thread-find operation, 

resulting in Figure 8.19, and this is essentially as high-level as  we go 

for th is procedure.

In a  sim ilar fashion addtolist, whose surface plan is shown as 

Figure 8.20, is first of all seen to implement the plan shown in Figure 

8.21, in  a  sim ilar fashion to th a t described in C hapter 7. Then the 

com bination of the topm ost newarg (following the new  operation) and 

the spliceafter is recognised as an  intem al-labelled-thread-add-after, 

and the two new args are seen as implementing a  new -labelled -root 

operation resu lting  in Figure 8.22. Notice how e a ch  o f  th e se  tw o  

operations was split w ith part occurring before the test, and p art after, 

and notice also how the topmost newarg is shared between them, thus 

dem onstrating the power of structu re sharing, and of the controlling 

condition m anipulations. It is partly th is ability of the plan diagram  

formalism (and of the chart parsing recogniser th is project is using) 

which m akes it so powerful.

Having analysed both procedures to the best of its ability IDS now tu rns 

its attention to the m ain program. Its surface plan (or a t least m ost of 

it) is show n in  Figure 8.23. To analyse th is  it su b s titu te s  its 

understanding of the user procedures findplace and addtolist in place 

of the boxes representing the calls to these procedures. Note th a t this 

is done with its high-level accounts of w hat the procedures do, so it is
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a  considerable improvement on ju s t replacing procedure calls hy the 

body of the  procedure (with appropriate substitu tions) as  is done in  

Wills 19861. W hen th is  replacem ent is done clearly  p a r t of the  

resulting  diagram  consists of the final diagram s for fin d p la ce  and 

addtolist (appropriately joined). The resulting diagram  (for this part of 

the m ain program 's surface plan), after “replacing” cascaded jo ins by 

n-join-outputs, is shown in Figure 8.24.

Now. IDS has a  plan in its library called ordered-labelled-thread-insert.

This is the plan for inserting a  new item in the appropriate place in an  

ordered list, and is shown in Figure 8.25. As implied by our discussion 

of s tru c tu re  sharing  flowgraph gram m ars, ru les w hich contain  two 

nodes with the same label and the same inpu ts are collapsed, before 

being used for parsing. So the form of the rule applicable is th a t shown 

in  Figure 8.26. Using th is rule IDS can recognise th a t there is an  

ordered-labelled-thread-insert present in the program, since all the 

d a ta  flow requirem ents are met. Note tha t it has to m atch th rough the 

jo in  to realise this. Unfortunately, IDS thinks the resulting plan is in a 

conditional control flow environment, since m any of the operations in 

the plan (in particular, the intemal-thread-add-after, and the newroot 

operations) are n o t in  the  control flow env ironm ents expected. 

Furtherm ore, the resulting controlling condition for the plan, is not 

reducible to true using simple prepositional logic. This is because the 

variables in the controlling conditions represen ting  the two “=nil” 

tests  are different, and furthermore they do not have the sam e inputs, 

so can ’t  be collapsed. Figure 8.27 shows the relevant p arts  of Figure 

8,24. In order to realise th a t the resulting plan condition was in fact 

ju s t  true, IDS would have to deduce from the pre- and post conditions 

associated w ith the in tern al-th read-find  th a t the o u tp u t from the 

internal-thread-find could not be nil, and th a t the output from the
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other two branches of the conditional were always nil. Under these 

conditions it could assign appropriate controlling conditions to the 

new root and internal- thread-add-after plans, which would resu lt in 

the plan condition for the ordered-labelled-thread-insert being true. 

So th is plan is recognised conditionally, and until a  theorem  prover is 

available th is is the b es t it can do. The re s t of the d iscussion  will 

assum e this has been done so the plan is in fact unconditional. Notice, 

though, how this plan actually comes from two procedure calls - parts 

of the  cliche come from one procedure and o ther p a rts  from the 

second. The resulting surface plan for the m ain program  is shown as 

Figure 8.28. IDS now recognises two standard  plans. The first of these 

is term inated-iterative-read (described above), and again th is plan is 

recognised as implementing a readall operation which takes a  file as 

in p u t and produces a  finite sequence as output. The other standard  

plan recognised is iterative-ordered-labelled-thread-insert, which IDS 

then  uses an  overlay to recognise as an  im plem entation of a  so r t  

operation, temporally abstracting the item s in p u t to the ordered- 

labelled-thread-insert operation (which are the sam e items produced 

by the iterative-read) as the set input to the sort, and viewing the 

labelled thread output from the iterative ordered-labelled thread plan 

as the ordered sequence output by the sort. Similarly the final loop is 

seen to be implementing a  writeall operation, which takes a  sequence 

and writes it to a  file. Thus the whole program is finally represented by 

Figure 8.29.

As a  final stage, IDS should check (and will once the theorem  

prover has been implemented) th a t all the preconditions for all the 

various plans and overlays involved in this analysis of the program are 

satisfied. If they are all satisfied then the program has been understood 

by IDS to the extent tha t its plan library allows. Of course adding more
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plans may enable it to give an even higher level description, and  it is 

simply this ability to add plans which could enable IDS to be used  in a  

tutoring environment since plans could always be added which encode 

knowledge about particular problems the studen t could be working on. 

In the case where a  plan has been recognised, b u t its preconditions are 

violated in some way, then a  bug (Type 1 or 3) has been located, and a  

debugging strategy m ust be invoked.
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Chapter 9.

Tow ards a D ebugg in g  S y s te m  

9.1 Debugging Programs Using Plan diagrams

As already mentioned in Chapter 6, the strategy IDS will use to 

debug programs is the following:

(a) Translate the program into its surface plan.

(b) Try to u n d e rs ta n d  th e  p rogram  by recogn ising  all 

occurrences of libraiy plans, as described in C hapter 8. Make a  note of 

any "near" matches.

(c) Symbolically evaluate any rem aining (i.e. unrecognised) 

p arts  of the surface plan i.e. deduce properties of these p arts  of the 

program using the theorem prover.

(d) Check for broken preconditions of any of the  recognised

plans.

(e) Use n ea r m atch  inform ation and  broken precondition  

information to try and repair the program.

(f) T ranslate the debugged surface plan back into the source 

language.

This chapter will try to show how this process can be supported 

by use of the plan calculus and IDS’s chart parser. It will also discuss 

the role to be played by the (as yet) unim plem ented p arts  of the 

system. Note th a t the only bug types th a t can be found by this approach 

alone are type 1 (and type 3), and then only if the normal use heuristic 

is a  valid assumption.
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So suppose tha t, instead of being correct, the program  ju s t  

analysed had  contained a  bug, and in particu lar suppose th a t the 

procedure a d d to lis t  had been the following instead  of the  earlier 

correct version:
procedure addtohstfn : integer, t : plist);
var p : plist;
begin

new(p); 
p'̂ .numb:=n; 
if t = nil then 

begin
p'̂ .next := head; 
head:=p;

end
else

end;

begin
t^.next:=p;
p^.next:=t^.next;

end;

The bug in th is procedure is th a t the two lines responsible for 

splicing in' the new element into the list have been given in the wrong 

order, resulting in the kind of behaviour shown as Figure 9.1. How can 

IDS detect and correct this bug?

It s ta rts  by trying to understand the program as before, and of 

course its analysis of Hndplace is identical to th a t described earlier. 

However w hen it tries to analyse a d d to lis t  it recognises the n ew -  

labelled-root plan as before, bu t is unable to recognise the in ternal- 

labelled-thread-add-after plan. However, as IDS uses the generalisation 

of c h a rt p arsing  to do plan recognition etc., it also bu ild s up  

in form ation  ab ou t partial p lans th at it recogn ises. In particu lar it  finds  

the partial sp liceafter plan shown in Figure 9.2. The figure shows the 

partial m atch to spliceafter found by IDS, and w hat would be needed to 

make it a  complete instance of spliceafter. This partial m atch is close 

enough for IDS to recognise it as a  near miss. However a t th is point 

IDS will not categorise this as a bug - it will merely make a  note of the 

near m iss for future reference. So a t this point the analysis of addtolist 

is Figure 9.3 rather than  Figure 8.22 as earlier.
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Now IDS begins analysis of the m ain program as before. When it 

s ta rts  analysing the concatenation of findplace and ad dto list it finds 

th a t it cannot really go any further. So the situation it is in  is th a t 

shown in Figure 9.4. So it will assum e th a t it has finished its analysis, 

and s ta rt trying to verify all the preconditions for the various plans and 

overlays. As p a r t  of th is  process it needs to verify th a t  the  

preconditions for interaal'labelled-thread-find are satisfied. Now there 

are actually two places it has to check these preconditions - on entry 

to the loop, and on entry to its tail recursive component. This double 

checking  corresponds to doing inductive reasoning. One of the  

preconditions th a t has to be satisfied is th a t the object inpu t to the 

intem al'labelled-thread -ind be a  thread. In the outer part of the loop 

th is  is of course (triviallyI) satisfied by the null thread. However the 

inpu t to the internal-labelled-thread-find in the recursive part of the 

loop comes from addtolist in the outer part. So IDS has to check th a t 

^.num b, ^.next, and head coming from addtolist form a  thread. Now 

these values come from a  join-outputs box, so it has to check th a t the 

values input on the success side, and on the failure side of the jo in -  

ou tp u ts form a thread. This is clearly true on the success side (they 

come from a  new -labelled-root plan. However on the other side they 

come from the p art of a d d to lis t  th a t IDS is unable to recognise. 

Therefore IDS symbolically evaluates the unrecognised part of the plan 

(the part tha t should be the spliceafter in this case) and deduces th a t

'^.next(objectl) = object 1

where object 1 is the input labelled p in the diagram (note th a t we are 

trea ting  ^ .next as the nam e of a  composite function). This clearly 

contradicts the definition of a  thread (part of which sta tes th a t there 

are no cycles in a  th rea d ) and so IDS h as located an  in te rn a l 

inconsistency in its analysis of the program, and hence has located the
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bug. Even in the case where IDS cannot now go on to suggest a  "fix", 

po in ting  o u t where the  bug lies could be of g rea t u se  to the 

program m er. However in th is case IDS should be able to actually  

suggest how to fix the bug. It can do this by noticing th a t the piece of 

the surface plan it can 't recognise has (partly) been recognised as a 

partial spliceafter plan. In addition it notices th a t the best way to tu rn  

the unanalysed part of the plan into a  complete sp liceafter is to delete 

(refer to Figure 9.2 for the notation)

[newarg [2 3 1] [4]]

from the plan and replace it by a  new newarg operation

[newarg [6 3 1] [7]]

where 7 is a  new tie point. This would give rise to a  spliceafter plan

[spliceafter [1 4  3] [7]].

The question then arises as to how this should be connected up to the 

surrounding  graph in place of the original unrecognised p arts  of the 

plan. Although the question of how to do this in general is still one of 

the ongoing topics of research for this project, in th is case it can do it 

by noticing th a t the new node 7 (the ou tpu t of the plan) is replacing 

node 6. So it connects node 7 to everything node 6 was previously 

connected to. Similarly it notices th a t the only new inpu t is node 4, 

replacing node 2. So it connects everything th a t w as connected to 

node 2 to node 4. IDS then notices that, if it did this, the analysis can 

continue (in fact exactly as described earlier for the original correct 

program) and IDS would cirrive a t the same analysis of the program, 

with no broken preconditions. So it can ask  the user if the program is 

indeed trying to sort the input num bers, and if so, can correct the plan 

accordingly. Note th a t by keeping track  of the variable nam es
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associated with all the dataflows involved IDS should even be able to 

generate the correct code, with the right use of variable nam es. Note 

th a t a t th is  stage in the development of the project no a ttem pt will 

even be m ade to point out (or even recognise) the fact th a t the error 

was really ju s t  having two Unes in the wrong order. But IDS should be 

able to point out the incorrect lines, and the correct versions of them. 

Note also th a t even if IDS had not had the plan for sorting in its library 

(cind it would be unreasonable to expect it to have every possible plan 

for every possible program) it should still in fact be able to correct this 

bug, by noticing th a t once it has recognised the spliceafter, and hence 

the lab elled -th read -ad d -after  plan, it would find that the broken 
precondition w as no longer broken. The difference would be th a t it 

would query the user about the program at a  lower level - instead  of 

asking if the program  was trying to sort, it would have to ask  if a  

p a rticu la r piece of code was trying to splice a  new item  in  a t a  

particu lar place in a  linked list s tructure . Notice th a t th is  process 

m akes it essential to have some kind of reason m aintenance system  

closely integrated with both the chart parser and the (unimplemented) 

theorem  prover/sym bolic evsduation module. This is because IDS will 

essentially hypothesise a  repair based on the near-m iss information. It 

th en

(i) removes some of the original patches th a t were present in the 

chart, and

(ii) adds a  complete plan (based on the near-m iss information) 

and continues with its analysis.

If th is leads to the precondition tha t was previously broken no longer 

being broken then  IDS asks the user for final confirmation th a t it has 

found and repaired the bug. If the precondition is still broken, or 

another is broken in its stead as a result of removing or adding patches
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then  IDS will need to retract the changes it h as  m ade to the chart 

(including removing any new patches added as a  resu lt of the chart 

parsing continuing after the near-m iss was repaired). Additionally, IDS 

should try to avoid having to completely redo all the theorem  proving it 

h a s  done previously. To do both  of tliese it really needs a  reason  

m aintenance system  to keep track  of which theorem s are currently  

believed. Now, as discussed in Chapter 3, patches in  the chart also 

represen t theorem s so the reason m aintenance system  can  gdso be 

used to keep track of which patches are currently considered to be in 

the  chart, and  which are not. It would be an  in teresting  research  

project in its own right to build such an integrated reason m aintenance 

system.

The question  of how to generate correct code in  term s of 

variables the user will recognise is enormously com plicated (but only 

slightly in the situation ju s t  described!) by the fact th a t the piece of 

am ended code may have been through a  long sequence of the program 

transform ation operations. It is still an area of ongoing research as to 

how this can best be dealt with in general.

9.2  Duplicating PROUST

Although, th is work is only now starting  to get to the point 

where debugging can be tackled in earnest, an  indication of how some 

of the capabilities of PROUST could be duplicated w ithin the surface 

plan formalism discussed in this thesis can be obtained by considering 

the program below:
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program averreilndnput,output); 
const

sentlnel=99999;
var

rainfall, averraln, hlghreiin, norain : real; 
totalrain, validrains, rednydays, count : real; 

begin
read(rainfall);
while rainfaU<0 do read(reiinfall);
wrlteCthe rainfall entered was rainfall. ' inches');
count;=0;
highrain:=0;
while rainfaillosentinel do 

begin
if r a in fa ll> h ig h ra in  then h ig h ra in := ra in fa ll;
totalrain:=totalrain+rainfall;
count:=count+1 ;
a v e iT £ d n := to ta lra in /co u n t;
validrains:=count-norain;
rainydays: =veilidrains;

end;
writelnCthe number of validrain days entered was 

validrains);
writelnCthe averrain was averrain); 
writelnCthe highrain is hlghrain); 
writelnCthe no. of rainydays in this period was 

rainydays); 
end.

Clearly there are several th ings wrong w ith th is  program . 

Perhaps the major fault is th a t instead of being w ritten as a  single loop 

which processes a number, then reads the next, this program has been 
split into two loops, the first of which reads num bers from the input 

file until it reaches the first non-negative number. This num ber is then 

passed  to the  second while loop in the program, which since it does 

no t itself read in anv num bers, goes into an  infinite loop (unless the 

first non-negative num ber happens to be the stop sentinel). However, 

there are other bugs in this program as well. For instance, two of the 

variab les (norain and  to ta lrain) used  by the  second loop are 

uninitialised. Finally, although not necessarily an  error, there is code 

placed w ithin the loop which for efficiency reasons would be better 

placed after it (e.g. com putation of averrain, validrains, and rainydays). 

All of these can be detected using the plan represen tation  already 

d iscussed . Figure 9.6 shows the surface plan corresponding to (a 

slightly simplified version of) the program above. It is quite clear from
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this th a t five of the inputs to the second while loop are undefined. In 

the case where the first positive num ber read by the program  is the 

stop sentinel, all of these are connected straight through to the output 

of the whileloop. Therefore the whileloop is ill-defined in  th is case. 

Even if th is  first num ber is not the stop sentinel, it can be seen th a t 

totalrain and norain are used within the loop and hence these are cases 

of uninitialised variables. This is actually detected during the process of 

source code to surface plan translation. In addition averrain, validrains, 

and rainydays are inputs to the loop bu t are not used within it, merely 

updated. This is easily checked for, and the suggestion m ade th a t th is 

code be moved outside the loop. The infinite loop is detected by 

noticing th a t the  variable tested to see if the  exit condition holds 

(rainfall) is passed unmodified through to the recursive call on the 

whileloop 2 segm ent. IDS can suggest correcting  th e  program  

inserting code sim ilar to th a t which produced the initial value passed 

to the loop. Certainly this works for this particular program, and part 

of the ongoing research on this project is into finding a  suitable se t of 

heuristic rules for this kind of bug. It may be th a t th is is where IDS will 

be able to make use of the Yale group’s bug categorisation.

PROUST also m anaged to recognise th a t  th is  program  w as 

attem pting to compute the num ber of positive num bers by subtracting 

the  num ber of zeros from the num ber of non-negative num bers. It 

m anaged to do th is by having a  lot of problem-specific knowledge. 

Clearly in a  general purpose system  th is kind of knowledge is no t 

available. However if it finds out fi*om the program m er (or elsewhere) 

th a t the program is trying to compute the num ber of positive num bers, 

and if we include in the plan library a plan representing the fact th a t in 

general one can compute the num ber of items in a  se t which satisfy 

some property by counting the items which do not satisfy the property
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and subtracting  from the total num ber of items in the set, then  the 

system would be able to suggest a  correction to th is part of the code in 

Program 2.
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Chapter 10.

Conclusions and Future Work.

10.1 What has been achieved?

This thesis has been motivated by a  wish to build an  intelligent 

general purpose, domain-free debugging system for Pascal programs, 

and  h a s  p resen ted  the case th a t, in order to do th is , program  

understanding  is necessary. Looking a t other system s for debugging 

program s, in  p a rticu la r Jo h n so n ’s [1986] system  PROUST, and  

M urray’s [1986] system  TALUS it is clear th a t the strengths of other 

system s come from an  ability to do plan recognition and  general 

purpose reasoning, and their weaknesses come from an inability to do 

one or other of these. The plan calculus offers the ability to combine 

bo th  of these as it provides a  framework for both general purpose 

reasoning using a  theorem prover, and graph-based plan recognition, 

in  a  way th a t is probably as syntax  independent and  language 

independent as possible. However, when it came to actually trying to 

u s e  the  p lan  calculus, in  particu lar to do the graph based  plan  

recognition, it became clear th a t this is an  enormously hard  problem 

(reflecting th e  fact th a t program s are extrem ely h a rd  objects to 

analyse).

As a  result, the work described in this thesis is only now getting 

to the point where serious research into its applicability to program  

debugging can  start. In particular, once an integrated theorem  prover, 

along the lines of Rich’s [1985] CAKE system, h as  been bu ilt then  its 

potential can seriously be investigated. However, along the way, several 

obstacles to using the plan calculus have been overcome. This chapter 

will therefore begin by summarising w hat has been achieved.
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The first achievement, and main one, is th a t we have developed a  

new polynomial time algorithm  for doing bottom -up, or top-down, 

analysis of surface plans. This algorithm has been presented in the 

framework of restricted structure sharing flowgraph gram m ars th a t we 

have developed for this purpose.

Secondly, we have developed some theory, in particu lar th a t of 

determ inistic  operations in the plan calculus, and  of generalised 

control flow environments, and their associated controlling conditions, 

th a t  enables u s  to justify  the use of restric ted  s tru c tu re  sharing  

flow graph g ram m ars a s  a  su itab le  fram ew ork for doing p lan  

recognition. As part of this it has also become clear th a t m any of Rich’s 

p lans are expressed in too restrictive a  form (in particu lar his u se  of 

cflow constra in ts everywhere), and we have developed a  distinction 

between various types of control flow constraint th a t enable one to be 

more expressive, and only impose the restric tions th a t are strictly  

necessary. If th is had not been done the parser would either no t have 

found plans th a t really were present, or would have found plans not 

justified by the plan calculus, thus breaking the tight coupling of w hat 

the parser finds and what a  theorem prover could have proved.

Thirdly, we have adapted the above algorithm  to cope w ith 

various p a rts  of the plan calculus th a t do no t exactly fit into the 

framework we have developed. In particular, techniques have been 

developed th a t enable it to cope with plans involving data  p lans and 

data overlays.

Fourthly, we have identified various new plans th a t are essential 

if these modifications are to work properly and enable plans th a t we 

recognise to connect up properly for reasoning about side-effects.
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Additionally, we have written a  program (structured in a  similar 

way to a  recursive-descent parser for Pascal) which can translate  Pascal 

program s into their surface plans, thus enabling them  to be analysed 

within the framework of the plan calculus.

Finally, we have w ritten a  program for tran sla tin g  p lans and 

overlays, expressed in Rich’s compact notation, into suitable ru les for 

the parser to use.

As we are ultimately interested in program debugging, it was also 

an  interesting question as to w hat kinds of bugs could reasonably be 

expected to be found by a  system  w ith no know ledge of the  

p rogram m er’s in ten tions, and no knowledge of th e  dom ain, b u t 

possessing  general program ming knowledge coded as p lans in  the 

library. Accordingly, we have outlined a  new bug classification in order 

to try sta te  precisely which bugs can be located and (sometimes) fixed 

by a  such  a  system  which knows nothing abou t the  purpose of a  

program . Additionally, we have presented some prelim inary work on 

exactly how such a  debugging system might go about locating and fixing 

such bugs.

10.2 Outstanding Problems

As stated, it has been a  major aim of this work to try  and ensure 

th a t there is a  tight coupling between w hat the parser does, and w hat 

can be deduced from the plan calculus, and in th is it has been partially 

successful. However, there are a  variety of places where th is goal, 

although intuitively satisfied, has not been theoretically dem onstrated. 

In particular, the way in which data  overlays and pleins have been dealt 

w ith , a lthough  seem ing to work, does no t fit th e  g ram m atical 

form alism s we have developed, and as is the way w ith gram m atical
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formalisms, it is always possible th a t some strange interaction might 

occur, although a t the moment this seems unlikely.

Furtherm ore, it seem s likely, even if we could more formally 

Justify w hat has been done, perhaps by developing some even more 

general gram m atical framework capable of expressing d a ta  p lans and 

overlays, and their relationship to temporal p lans and overlays more 

naturally, th a t we may have reached roughly the limits of w hat can be 

done by a  pure graph based parser. To some extent we have already 

deviated from pure graph parsing in our use of plan conditions etc, b u t 

a t  least we have kept the added m achinery to sim ple propositional 

logic (and even th is  in troduces N P-com pleteness in to  w hat w as 

previously a  polynomial algorithm). However it seem s likely th a t even 

to  do the pure d a ta  flow parsing required, in  the presence of d a ta  

overlays eind so on, may well require more general theorem  proving 

abilities. For example, more reasoning about the entries in the data- 

overlay database will probably be required, as there can be complex 

relationships between the entries, which if not realised, ean m ean th a t 

one fails to detect plans th a t are present. For example, if one has in the 

d ata  overlay d ata  base the fact tha t one predicate p is the complement 

of q, th en  one also knows th a t q is the com plem ent of p. At the 

m om ent th is is dealt with by adding such an  assertion a t the time the 

first assertion is added, but, realising the relationships between p and 

q, w here p = b in re l+ tw o -> p r e d ic a te (q , t ) ,  com plem ent(p), an d  

b in re l+ tw o -> p red ica te (co m p lem en t(q ),t))  to take quite a  sim ple 

example, is currently  beyond the system, and can som etim es lead it 

into trouble, in  the sense th a t it will not realise th a t new tie-point it is 

trying to create has already been created. This can mesin th a t p lans 

which do in fact connect up, appear not to. Now, it may tu rn  out th a t 

we can express these relations via a  grammar of some kind. If so this 

would be a  very nice result. Otherwise, w ithout a  general theorem
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prover capable of proving th a t two apparently d istinct tie-points are 

actually  the same, m any plans will not be recognised. In general it 

seem s th a t there are quite a  lot of places in the parsing process where 

a  theorem  prover might need to be invoked.

Another area where more work needs to be done is on the sort of 

problem  encountered in the sorting program in C hapter 8, where a  

plan was recognised, b u t with a  condition attached, which was in fact 

guaranteed to be true. Part of the problem may be soluble w ithout a  

general purpose theorem prover if we introduce some sort of notion of 

conditional collapsing. This would be some sort of collapsing operation 

done only when matching through joins resulted in the realisation that, 

u n d e r the  condition implied by the b ranch  of the  jo in  m atched 

through, two operations were collapsible, resulting in a  more complex 

condition on the resulting collapsed operation.

A second area where more work needs to be done is in the area 

of program  treinsformations, expressed as graph transform ations. At 

the m om ent these are hedged about with criteria th a t m ust be satisfied 

before they are applicable. For example, iterative-flag-test-rem oval, 

d iscussed  in  C hapter 7, requires th a t there be no actions preceding 

the flag te s t in a  loop to which we intend to apply the transform ation. 

This actually requires the recogniser to search the graph to make sure 

th is is true. Although not too hard  to do, this does not seem to fit in 

with the spirit of context free-graph parsing, since we now essentially 

have a  context-sensitive operation. Such operations may tu rn  out to be 

necessary, b u t it would be nice if they could be avoided. It may tu rn  out 

th a t in these situations the theorem prover would come into its own, 

by deducing  the  existence of actions in different contro l flow 

environm ents from the ones in which they actually turn up. If these 

deductions are added to the chart by the theorem  prover, then  the
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chart parser could recognise the plans. However, it is likely th a t th is 

will be too inefficient, so probably some graph parsing approach will be 

needed. An alternative solution to th is problem  would be to adopt 

som ething like the PROUST [Johnson 1986] approach which stores 

lots of vEiriants of each plan, bu t the likely com binatorial explosion, 

especially if there are thousands of plans, make this seem unlikely as a  

satisfactory approach.

10.3 Future Research

Of course m uch rem ains to be done to complete th is work. In 

particu lar it needs the addition of the (by now often mentionedi) 

powerful theorem  prover and reason m aintenance system, and m uch 

more work needs to be done on heuristics for how to reconnect 

rep lacem en t bug-fixes to the  su rro u n d in g  g raph . It would be 

interesting to attem pt to use multiple near-m iss information as a  guide 

in  this process. For instance, if we know there is a  bug a t some point in 

the program, and there is a  near-miss to some plan A a t th a t point, and 

p art of w hat is wrong with A is tha t it requires a  plan B, b u t cannot find 

one, and there is also a  near-m iss to a  plan B a t th a t point then  th is 

m utual information ought to help both confirm the hypothesis th a t a  B 

is required, b u t ought also to aid the system  in working out how to 

reconnect a  repair to B to the surrounding graph.

It w ould also be in te resting  to look a t  th e  various bug  

classifications, and repair strategies, developed by other researchers to 

see if these are meaningful in fiowgraph term s. If so m any of these 

could perhaps be adopted. In particular it would be interesting to try 

and build a  tutoring system (perhaps ra ther like a  com bination of a  

high-level PROUST and a  high-level TALUS) based on this work.
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In connection with th is suggestion, it should be noted th a t the 

system  is now alm ost a t a  point where it could be given (by a  tutor) a  

solution to a  problem studen ts are supposed to be working on. The 

system could then analyse this in term s of its plan library, and extract a  

high-level description of w hat the program does, in term s of high-level 

operations, and their inter-relationships. This could ju s t  be added to 

the system as a  rule, like any other in its plan library. W hen the system 

tries to understand studen t programs, it could then  use a  combination 

of top-down and bottom -up recognition to try and recognise the rule. 

Because of the system ’s (potential) ability to invoke a  theorem  prover 

when confronted with novel code, it should be able to gain some of the 

streng ths of TALUS in being able to deal w ith program s containing 

such  code. On the other hand, its ability to recognise p lans should 

enable it to deal with m uch larger and more complex problem s th an  

those TALUS can deal with. Furthermore, it should potentially be m uch 

m ore able to deal w ith program s th a t work by side-effect, and it 

doesn’t  take students long before they s ta rt using such  programming 

techniques, once they are introduced to alm ost any kind of d a ta  

structuring, unless they are severely restricted by the language.

However, tutoring novices is likely to necessitate som ething like 

PROUST’S approach. As discussed earlier in  th is thesis, the approach 

to debugging th a t we have adopted requires w hat we called the Normal 

Use Heuristic. This was:

If a  programmer uses a  standard plan in a  program then, as a 
first hypothesis, assum e they are using  it deliberately in 
o rder to achieve the  re su lts  of opera tions com m only 
im plem ented  by th a t  p lan , and  th a t  the re fo re  the  
preconditions for these operations should be met.

For more experienced programmers this is probably quite a  reasonable 

assum ption. However, for complete novices th is is alm ost certainly a
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really wild assum ption. Apart from the fact th a t novices produce such 

bizaire code [Johnson et al. 1983, Soloway et al. 19811 th a t sometimes, 

w ithout a  deep understanding of the m isconceptions underlying the 

production of such code, it is almost impossible to recognise the in tent 

behind it, they also often m isunderstand w hat a  common programming 

technique actually  does, so plans tu rn  up  in  totally  inappropriate 

places. In th is kind of situation, there is probably very little alternative 

to some sort of bug catalogue, with appropriate “canned” repairs, and 

advice to the studen ts. It is not yet clear how m any of the bugs in 

PROUST'S bug catalogue can easily be expressed in flowgraph term s. If 

it tu rn s  out th a t they can, then the chart parser can simply use these 

as yet another set of rules to parse with.

A nother in teresting direction to go from here would be to try  

and build a  system  capable of finding, and possibly repairing bugs of 

type 2 and 4. This could involve interacting with the programmer, and 

perhaps linking the system to an  existing (non-intelligent) interactive 

debugger to enable the system to set breakpoints, examine variables 

etc. This could perhaps sometimes replace theorem  proving in an  

attem pt to locate errors.

Yet another girea th a t would be interesting to apply th is work to 

is th a t of tu toring  digital circuit design. Here the s tru c tu re  sharing  

flowgraph formalisms fit very closely onto the domain. Furtherm ore, it 

m ay be possible to develop something like a  plan  calcu lus for th is 

domain, with overlays stating (say) tha t an  addition circuit corresponds 

to a  high-level operation like adding two num bers, w ith data-overlays 

s ta tin g  th a t  the  connection  betw een the  (say) 8 in p u t lines 

representing one of the num bers to be added is given by som ething 

like an  8-bits->integer overlay.
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10.4 Conclusions

Despite the above mentioned problems, the plan calculus seems 

to offer more power to analyse and reason about program s th a n  any 

o ther knowledge represen tation  technique curren tly  available. The 

ability not only to reason about side effects, b u t to reason  abou t 

program s a t different levels e.g. to switch from record cells to sets, or 

to  trees, and yet still be able to realise how changes to the structu res 

involved a t one level of description affect the other level of description, 

is unique, and yet fundam ental to the way in w hich experienced 

program m ers seem to th ink  about program s. It is hoped th a t  th is  

thesis takes u s  a  little closer to actually being to use the plan calculus 

a s  the basis for autom ated tools to aid program m ers in  the ta sk  of 

debugging, and ultimately in all aspects of the programming process.
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