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ABSTRACT

The lobus parolfactorius (LPO) is an avian basal forebrain nucleus. The 

morphology of synapses within the LPO has been shown to be altered 24 hours 

following training of chicks {Gallus domesticus), using an aversive taste 

(methyl anthraniiate) as the training stimulus (Stewart et al Brain Res. 

(1987) 426:69-81). It is not known when synaptogenesis takes place in this 

nucleus during normal development, and what other factors may influence it. 

Lesion of the LPO has been shown to cause amnesia for the passively learnt task, 

only if made post-training (Gilbert et al in press). This suggests that the LPO is 

involved in storage of memory for the task, and not in its acquisition. The present 

study aimed to investigate the time course over which changes in synaptic 

morphology take place in the day-old chick LPO, and to clarify the onset of 

synaptogenesis during normal development.

Chicks were reared to the ages of either 16 days in ovo, 1-, 9-, or 22-days 

post-hatch, when they received anaesthesia intra-peritonealiy (Sagatai, 

6mg/chick). They were then killed by cardiac perfusion, with a solution 

containing 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate 

buffer. Each brain was extracted from its cranium, and the LPO was subsequently 

processed for electron microscopy. Unbiased stereoiogicai methods were used to 

make estimates of synaptic density (Nvgyp), on micrographs taken of a 

systematic random sample of electron microscopic fields. An estimation was also 

made of the mean projected synaptic height (Hgy^) within the EM section. 

Results indicated that the 1-day old chick has a lower complement of synapses 

compared with the 9-day old chick. There is a substantial increase in synaptic 

density between these ages, although there is a hemispheric asymmetry in this
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increase, with the ieft hemisphere exceeding the right by 62%. Synaptic height 

does not change significantly between 16 days in ovo and 1 day post-hatch, but 

increases slightly on or before 9 days post-hatch, after which it remains stable.

The time-course study involved the training of day-old chicks, using the 

aversive taste of a bead coated with methyi anthraniiate (M-trained), as the 

training stimulus. Control chicks were trained using water-coated beads. M- 

trained chicks avoided pecking a similar, but dry bead, 30 minutes later, 

whereas control chicks re-pecked. At 1, 6 12, 24 or 48 hours after training, 

chicks were killed by cardiac perfusion and the LPOs obtained as described above. 

Using unbiased stereoiogicai methods, estimates of NVgy^, Hgy^, synaptic contact 

surface area (Sagy^), mean dendritic shaft volume (Vvg^g^^), mean dendritic 

spine volume (Vvgpjpg) and mean synaptic bouton volume were

made. A significantly larger mean Nvgyp (approx. 30%) was seen in the ieft 

hemisphere of M-trained chicks 24 hours after training, compared with control 

chicks. A difference of approximately 10% was seen in this hemisphere 48 hours 

post-training. M-trained chicks also had a greater mean NVgyp (approx. 18%) 

in the right hemisphere at 48 hours. The estimators of synaptic size showed an 

increase predominantly in the left hemisphere of M-trained chicks. The analysis 

of ^ b o u to n  was inconclusive, although no significant differences were found 

between control and M-trained chicks. Vvgpjpg was significantly increased in the 

left hemisphere 48 hours following training, but no differences were found in 

the estimates of Vvg^g^^ between the two groups. These results show that memory 

formation results in a number of lasting synaptic and dendritic morphological 

changes in the LPO, and that some of these changes are iateralized to the ieft 

hemisphere. The results are consistent with the hypothesis that synaptic 

plasticity occurs following long-term memory formation.
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CHAPTER 1 : INTRODUCTION

1.1 : THE IMPORTANCE OF MEMORY

a) Types of memory: Some definitions

One of our most valued possessions is memory. We treasure experiences, and 

store a hoard of detail, some trivial, some profound. Memory can be broadly 

defined as the retention of knowledge, or experience. The acquisition of such 

memories is the process of 'learning', if the memory is to be of benefit to the 

individual, there has to be ready access to the memory store'. That is, there has 

to be 'recall' of the memory, which may or may not lead to a change in the 

behaviour of the individual. It is via the modulation of behaviour that 

researchers are able to deduce that memory has occurred. A lack of behavioural 

change however, cannot be concluded to be from a deficit of memory.

The simplest form of learning is when an organism's responsiveness to a 

stimulation either increases (sensitization) or decreases (habituation). A more 

complex form of learning is that of association, or conditioned reflexes. This type 

of learning (classical conditioning) involves the association of a conditioned and 

an unconditioned stimulus. Establishing a conditioned reflex increases the 

probability that an initiaiiy ineffective, or neutral, stimulus will elicit a 

response that is normally given as a reflex to some other stimulus.

A second type of associative learning, is that of operant learning (Thorndike 

1911). Operant learning involves the association of a reward or punishment 

with a particular behaviour. For example, if food is presented to a rat whenever 

a lever is pressed, the frequency of lever pressing will subsequently increase as 

a result of operant learning. This is a form of 'active reinforcement learning',



where reward is given for a particular behaviour. Many different paradigms of 

learning have arisen from this basic conditioning task. One may equally reward 

the lack of lever pressing, in which case one would describe the condition as 

'passive reinforcement learning'. Another such paradigm is active avoidance 

learning, where the animal must elicit a given behaviour to avoid punishment. 

Similarly, passive avoidance learning, is where the animal can choose simply not 

to do something, that it might otherwise be tempted to do. Such a type of learning 

is the one chosen for investigation in this thesis.

The taste-aversion paradigm employed here to investigate the processes of 

memory formation in the chick, has been used in modified form in a much wider 

role. In the treatment of chronic alcoholism, the taste of beer or spirits has been 

paired with nausea, by giving the subject a powerful emetic. Aversion to alcohol 

results from this after repeated trials. The same principle is used to treat those 

suffering from obesity, by association of illness with the intake of certain foods.

There may be more than one type of memory. Recent clinical findings have 

shown that patients with an inability to recall recently learned events, can 

display recall for learned motor skills (Squire and Zoia-Morgan 1988). These 

two forms of memory have been termed 'declarative', where information can be 

brought into conscious recall, and 'procedural', where learned skills can be 

demonstrated sub consciously (Squire and Zola-Morgan 1988). This latter type 

of memory may also be used to describe simple classical conditioning.

b) Amnesia

The fear of forgetting is common to most of us. Memory is so fundamental to 

human existence, that a person without the ability to remember, seems almost



non-human, and is likely to have great difficulty in coping with normal society. 

Unfortunately, this is the case for numerous patients suffering from Alzheimer's 

disease. This disease primarily affecting the aged population, results in a 

progressive loss of memory. There are currently over half a million sufferers in 

the UK. Loss of memory has also been seen in individuals involved in accidents 

with resultant serious head injury, or in cases of more calculated loss of brain 

tissue through surgery. At the opposite pole, there are some people who have an 

apparently limitless memory, a so-called 'iconic memory'. Such people can 

memorize pages from a book within minutes, and recite them back faultlessly. 

They appear to have what some may describe as a 'photographic memory', as 

though a visual image was simply being 'read' from their mind. Cases such as 

these provide a stimulus to the researcher, it is of great significance that one 

should try to understand the mechanisms involved in memory loss, by first 

gaining an insight into the process of memory acquisition and storage.

1.2 : A SHORT HISTORY OF MEMORY RESEARCH

In 1894 it was suggested by Ramon y Cajai that learning might be the result 

of prolonged changes in the effectiveness of connections between nerve cells, and 

that these changes may sen/e as the basis of memory (Ramon y Cajai 1894). This 

idea is still prevalent today and forms the main thrust of this thesis. This idea 

was developed further by the Polish psychologist Konorski in 1948, when he 

presented a paper describing changes within nerve ceils as a consequence of 

sensory stimuli. These changes were two fold; firstly, an invariant and transient 

excitability change, and secondly an enduring plastic change (Konorski 1948).

In a book entitled The Organisation of Behaviour" published in 1949, Donald 

O. Hebb put forward the idea that 'ceil assemblies' may be organized within



nervous tissue, to form a reverberating closed system. It was postulated that this 

may act to cause structural changes associated with learning, after the initial 

stimulation has ceased (Hebb 1949). Hebb also described a mechanism whereby 

a growth of the PSD accompanied synaptic activity, it was suggested that this may 

reduce synaptic resistance and therefore increase synaptic efficacy (Hebb 

1949). Hebb's theories have played an important role in subsequent studies of 

changes in brain morphology, as a consequence of learning and memory.

A popular hypothesis in the 1960's was that memory was coded by molecules 

synthesized by neurones. The molecular properties, shape or composite atomic 

sequence, could somehow code for a memory. It had been shown that long-term 

memory formation could be blocked by inhibition of protein synthesis (for 

review, see Deutsch 1969). This led to the idea that proteins might be 

responsible for information storage (Davis and Squire 1984). An equally 

plausible suggestion was that RNA may form the code, since RNA synthesis 

precedes protein synthesis (Hyden and Egyhazi 1962, Zemp et al 1966). This 

led to the 'transfer of learning' idea; that if memory was so encoded, it should be 

possible to train a given animal in a novel task, isolate the coded molecule that 

represents the acquired information, and transfer it to a naive animal. The 

latter, having been un trained in the particular task, should respond in a 

manner akin to the trained animal (McConnell 1962). Many such studies were 

conducted in the 1960's and early 1970's (for review, see Fjerdingstad 1971), 

but a report by Dyai (1971) showed that of 133 published papers on this 

subject, 130 were negative or inconclusive. By the late 1970's, the publishing 

of papers attempting to demonstrate the direct transfer of information molecules, 

had ceased. The theory is now rightly viewed with some scepticism (Squire 

1987).



Today, research on the cellular basis of learning and memory focuses more 

upon specific events in particular loci within the brain. Rather than memory 

being dictated by a diffuse molecule, memory is thought to be a consequence of 

cellular changes of the neuronal elements of the brain, and changes of circuitry 

within given brain regions. Thus, localization of memory has become an 

important issue, and this is discussed in detail in Chapter 2. Among the many 

cellular changes, the modulation of synaptic parameters is of particular interest 

here, and these are dealt with in Chapter 4, Section 3.

1.3 : MODELS USED TO STUDY MEMORY PROCESSES

Models are required to reduce the intrinsic difficulties in studying elaborate 

neural systems. Their purpose is to reduce the variables involved in the 

analysis, which are primarily environmental factors ('experience'). Memory is 

the result of an interaction between an individual and the environment, although 

it is sometimes guided by specific preferences (Horn 1985b). The drawback of 

many learning models is that the data obtained from them may not apply to the 

more complex learning paradigms. However, at a cellular level, models as 

diverse as habituation in Aplysia, avoidance learning in chicks and hippocampal 

long-term potentiation (LTP), provide data that show many similarities. Such 

data will be discussed later in this thesis.

a) Invertebrate models

Neuroscientists are confronted with enormous difficulties when attempting to 

decipher the complexities of the mammalian brain. Changes in behaviour that 

result from learning and memory, arise through a complex weave of interacting 

neuronal processes. In an attempt to simplify the experimental approach to 

studying the underlying trends of memory formation, many neuroscientists have



opted to study the foundation of such behavioural changes in invertebrates.

Intensively studied invertebrate models are Hermissenda (Aikon 1987) and 

Aplysia californica (for a review see Kandel and Schwartz 1982). Studies by 

Kandel and his co-workers in Aplysia provided the first cellular theories of 

habituation and sensitization. In Aplysia, the gill syphon withdrawal reflex is 

paired with a weak tactile stimulus. Repeated touch produces a weaker 

withdrawal reflex (habituation), however, paired with a strong electric shock to 

the tail, a subsequent touch unpaired with shock can elicit an increased 

withdrawal response (sensitization) (Carew ef a / 1981). Since the neural 

circuitry of the siphon withdrawal reflex is well known (24 sensory neurons 

and 13 motor neurons), the neurophysioiogical responses of the neurons have 

been characterised. Sensory neurons undergo an increased excitatory post- 

synaptic potential following conditioning (Hawkins et al 1983).

Another invertebrate model is that of food suppression in Umax maximus, 

the giant garden slug (Gelperin 1975, Sahley et al 1986). The procedure 

involves the pairing of food with carbon dioxide poisoning (Gelperin 1975) or 

with quinidine, a bitter tasting substance (Sahley ef a/ 1986). This type of 

operant learning has many similarities to the chick passive avoidance learning in 

the present investigation, where a long-lasting memory is achieved usually after 

a single trial. A detailed analysis of the cellular changes as a result of this 

learning however, has not as yet been elicited.

b) Vertebrate models

Invertebrate models of learning and memory may be representative only of 

simple learning tasks, and not the type of learning encountered by more evolved



animais in complex environments. As a result, many neuroscientists have 

attempted to gain insight into learning, by using animals capable of responding to 

either Pavlovian or instrumental conditioning. This type of learning is in direct 

contrast to that exhibited by the invertebrate models.

0 ) Electrophysiological models

Much research in this field has focussed on LTP, which has been considered as 

a possible mechanism of memory formation. LTP can be identified however, in 

only a few selected regions of the mammalian brain, particularly the 

hippocampus (Teyier and Aiger 1978). Studies of the electrical activity in the 

hippocampus, show a stable and enduring increase in the responsiveness 

(magnitude of the excitatory post-synaptic potential or population spikes) of 

post-synaptic cells after a brief tetanic afferent stimulation (Anderson and Lomo 

1966). This phenomenon has subsequently been reported for a number of brain 

regions, and in a number of different species (for review, see Swanson et al 

1982). Since the cellular mechanisms persist for a relatively long-time (hours 

to weeks), it is thought that LTP may be involved in information storage in the 

brain (Swanson et al 1982). Recently, it has been shown that long-term 

potentiation causes morphological changes in addition to the detectable 

physiological changes (Desmond and Levy 1986, Desmond and Levy 1988, 

Desmond and Levy 1990, Schuster et al 1985, Morris and Baker 1984, Wenzel 

et al 1985). These studies are considered in detail in Chapter 4, Section 3. A 

decrease in efficacy has been reported to occur after sustained synaptic use 

(Stevens 1989). This phenomenon is known as long-term depression (LTD). 

Such a mechanism has been shown to be involved in memory processes in the 

cerebellum (ito 1987).



Studies of LTP or LTD have primariiy been concerned with the mechanisms of 

pharmaco kinetics of the synaptic junction, and whether the process involves 

pre-synaptic (Bliss 1990), or post-synaptic (Baranyi and Szente 1987) 

alterations. These aspects of synaptic involvement in memory processes are 

outside the scope of this thesis.

d) Avian models

Imprinting : The young chick must recognize its mother to whom it will go for 

warmth and protection. The chick instinctively attaches itself to the first moving 

object after hatching, and is said to be 'imprinted' upon that object. Normally 

this is the mother, but the natural mother may be replaced by a wholly un

natural object. In the absence of 'mother', the chick will approach a wide range of 

objects, particularly if they are moving. The visual characteristics of the chosen 

object are quickly learned, and if the 'imprinted' object moves, the chick will 

follow. The chick will preferentially move towards an imprinted object, and may 

actively avoid an unfamiliar object. There is a critical time period, usually 

lasting no more than a few hours, when the chick will approach any novel object. 

Although imprinting on a visual stimulus is the most easily recognized form of 

early learning in the chick, preferences for both auditory and olfactory stimuli 

can also be demonstrated (Horn 1985a).

Passive avoidance learning : Passive avoidance learning (PAL) in the chick 

was first described by Gherkin and Lee-Teng in 1965. It is passive because it 

involves a negative or inhibited response in reply to a given choice. It is quickly 

learned (often after a single trial), and the memory is stable for a substantial 

time after training (Gold 1986). Such trials often involve some form of 

punishment as part of the training programme. Because of this, there has been
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some controversy over the usefulness of such studies, since the effects of stress, 

arousal and shock are likely to confound the results (Sahgal 1984). It is hence 

important to isolate the effects of memory from other concomitants of the 

learning experience. In an analysis of ^H-fucose incorporation into chick 

forebrain following PAL, Rose and Harding (1984) showed that increases were 

found in chicks trained to avoid the aversive substance, methyi anthraniiate 

(MeA), but not in control chicks (water trained). Another group of chicks 

trained with MeA (M-trained), but immediately made amnestic by application of 

a sub-convulsive trans-craniai shock, showed no elevated ^ H- fu co se  

incorporation. A further group of M-trained chicks received delayed shock (after 

10 minutes). These chicks were not amnestic, and showed elevated levels of ^H- 

fucose incorporation. Hence it was shown that its increased incorporation into 

chick forebrain was due entirely to the memory, and not due to some other facet 

of the experimental procedure. In addition, shock alone was shown to have no 

effect on the measures of ^H-fucose (Rose and Harding 1984). it is clear 

however, that memory is likely to be enhanced in conditions of stress and 

arousal. This is undoubtedly under hormonal control (Gold 1984). Since stress 

is directly involved in memory enhancement, it is not altogether advisable to 

have a model of memory which eliminates stress. However, this is only so, if the 

component of stress alone, without subsequent memory formation, is not involved 

in alteration of the relevant brain structures.

The present studies have used a one-trial passive avoidance learning 

paradigm, with the day-oid chick (Gallus domesticus) as the experimental 

animal. The young chick shows preferences for learning. When newly hatched, it 

has to learn many new things, and experiences a variety of novel situations. Some 

of these experiences are important to its survival, it also has to feed itself (since



the domestic chick is born precociousiy). There is an instinctive pecking 

behaviour which is elicited toward any object resembling food. Of course, not ail 

small round objects are food, and it must learn which of those are to its benefit, 

and which are possible dangers (poisons). The learning paradigm used in this 

study takes advantage of this drive for learning, since in this situation, there 

might be a more positive anatomical change than in non-specific learning. The 

chick is allowed to peck at a bright chrome bead which has been coated with a 

bitter tasting substance, such as methyl anthraniiate. Chicks that have pecked the 

bead show a characteristic 'disgust' response. This is displayed by the onset of 

distress calls, head shaking, rapid swallowing and by the chick wiping its beak on 

the floor of the pen. 80% of chicks will avoid a second encounter with a similar 

but dry bead, even if tested several hours after the initial experience (Rose

1986). Such a dramatic alteration of the chick's behaviour, and the permanency 

for the recall, makes such a trial a useful one in which to test the biology of 

memory processes.
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CHAPTER 2 : LOCALIZATION OF MEMORY IN THE CHICK

There are two possibilities for the location of memory. Firstly it may be 

represented diffusely throughout the brain, or secondly in discrete localized 

regions of the brain. The historical perspective of the debate on the localization of 

memory, is discussed in detail by Larry Squire in his recent book (Squire

1987), and will not be entered into here. There follows however, a discussion of 

some of the evidence of regionalized localization of memory processes, with 

particular relevance to the chick brain.

2.1 : LESION STUDIES

Lesion of selected regions of the brain may allow the experimenter to gain an 

insight into the functions of that region. However, the technique is fraught with 

difficulties in interpretation, because an altered behaviour following a lesion 

may be due to factors other than the loss of function of the region itself (Olton 

1986). Firstly, there is the possibility that the lesion may damage ail or part of 

a neural pathway which runs through the lesioned region. Secondly, the region 

may only be part of a complex chain of centres involved in a given function, and 

the lesioned part of this chain need not play an important role (e.g. an integration 

centre) in the behavioural deficit. Any break in the link however, will bring 

about a complete loss of function. Thirdly, there may be technical difficulties 

associated with achieving complete destruction of the target area, without 

affecting surrounding regions.

Various studies using mammalian species, and some human clinical findings, 

have shown that the medial temporal lobe (in particular, the hippocampus) 

(Milner 1970), and parts of the diencephaion (particularly the thalamus)
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(Winocur 1984), are concerned with the iocaiization of memory. The avian 

brain however, has some fundamental differences to the mammalian brain in 

terms of its organization and function, and therefore direct comparisons with 

mammalian counterparts are not entirely valid. This Chapter will therefore be 

restricted to a discussion of memory localization in avian species, particularly 

in the chick. The reader should refer to Winocur's review article for details of 

localization of memory in the mammalian brain (Winocur 1984).

The earliest accounts of lesions of the chick brain coupled with analysis of 

consequent learning and memory deficits, was performed by Evelyn Lee-Teng of 

the Californian institute of Technology, in 1969, using one-trial passive 

avoidance learning. The lesions were crude, involving aspiration of the brain 

surface, either totally, dorso-laterally or dorso-medially. The conclusions 

drawn from this study could be only as specific as the limitations of the 

experimental design permitted:- "... the dorsal forebrain was critically involved 

in both acquisition and retention of the one-triai learning.". It was conceded that 

the results may allow the interpretation that the lateral portion of the forebrain 

was more important than the medial portion (Lee-Teng and Sherman 1969).

The importance of the lateral forebrain area was again suggested following 

lesions to this region, after passive avoidance learning (Benowitz 1972). 

Benowitz found that in addition to a complete loss of retention for the task, there 

was also a complete loss of ability to re-iearn the task. Other workers have 

provided evidence for an involvement of the lateral cerebral area in avoidance 

learning tasks in the chick (Saizen and Parker 1975), and in imprinting (Saizen 

et al 1975a, Saizen et al 1975b, Saizen et al 1978).
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Less severe deficits were seen in groups of chicks receiving extensive 

hyperstriatal lesions and frontai forebrain lésions (Benowitz 1972), although 

these groups were impaired significantly from Controls. In this same study, 

lesions of the dorso-mediai hyperstriatum impaired acquisition of memory only. 

This compares favourably with recent data of hyperstriatal lesions and memory 

acquisition (Patterson et al 1990a).

There are some areas of the avian brain which have been shown to be 

intimately involved with 'specialized' memories, such as Area X and its 

involvement with song-learning (Sohrabji et al 1990), and the hippocampus 

with food-storing (Sherry et al 1989, Krebs et al 1989). Neither of these 

types of memories play a role in the behaviour of the chick, and so are not 

discussed further.

Many of the early experimenters made lesions of the dorsal telencephalon, 

which included all or part of the hyperstriatum (Lee-Teng and Sherman 1969, 

Benowitz 1972, Benowitz and Lee-Teng 1973, Saizen et al 1978). It was 

subsequently shown that a bilateral lesion of a restricted part of the medial 

hyperstriatum ventrale (intermediate part (IMHV)) causes an impairment in 

both the acquisition (McCabe et al 1981) and the retention (McCabe et al 

1982) of an imprinting preference. It was thought that the IMHV was 

specifically involved in the imprinting behaviour, since lesioned birds did not 

seem to be impaired on an operant learning task (Johnson and Horn 1985). 

However, lesion of the hyperstriatum has been shown to disrupt classical 

conditioning in the pigeon (Reiiiy 1987, MacPhaii and Reilly 1987, Reilly

1988). Memory impairment also followed a passive avoidance learning paradigm 

in chicks receiving bilateral lesions to the IMHV (Davies et al 1988). it has
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been suggested that the effects of lesions on the IMHV may be due to a reduced 

ability of the bird to learn or recognize the visual characteristics of the 

imprinting stimulus (Bolhuis et al 1989) or of the training stimulus, such as 

the colour of the bead, in passive avoidance learning trials (Davies et al 1988). 

However, visual recognition is unlikely to be the sole function of the IMHV, since 

a recent study has shown that memory for the avoidance task is only disrupted if 

the lesion of the IMHV is made pre-training. Lesions made 1- or 6-hours after 

training, did not significantly affect the chick's ability to avoid the training 

stimulus (Patterson et al 1990a). It has further been shown using uni lateral 

lesions of the IMHV, that only the left IMHV is necessary for the acquisition of the 

avoidance learning behaviour (Patterson et al 1990a). It should be noted that 

one study (Saizen et al in preparation), has failed to find any deficit in memory 

for the avoidance task following IMHV lesions, using a similar learning paradigm 

to previous studies cited above.

in an early study, frontal lesions of the chick forebrain were found to impair 

retrieval of pre-surgically acquired information, while not affecting storage of 

information acquired post-surgicaiiy (Benowitz 1972). This region of the 

forebrain included most, if not ail, of the LPO. This indicates that frontal brain 

region is necessary for memory storage, but not its acquisition. A more recent 

series of experiments, which involved more specific lesions to the LPO, showed 

that pre-training lesions of the LPO do not affect subsequent avoidance learning, 

whereas post-training lesions do (Gilbert et al in press). These authors have 

further shown that uni lateral lesions to the LPO are without effect, suggesting 

that either left or right LPO on its own is sufficient to maintain the memory 

trace. The timing of the effects of lesions suggests that the LPO is involved in the 

storage of memory, and not its acquisition (Gilbert et al in press).

14



To date there have only been two other studies involving lesions to the LPO 

whilst testing memory performance. Wesp and Goodman (1978) used pigeons to 

investigate the effect of lesions on an operant conditioning task. They reported 

that although there was no significant impairment to general feeding and drinking 

activity following lesions, there was a suppression of performance. In a study on 

heart rate conditioning in the pigeon, Cohen and Goff (1978) could not find any 

significant reduction in the response levels of lesioned birds, compared with 

controls.

2.2 : STIMULATION STUDIES

Electrical stimulation of cortical and sub-cortical structures, is used to 

disrupt the neural activity in localized regions of the brain. If current levels are 

kept low enough, the disruption of neural activity which may be consequent upon 

learning prior to memory formation, may be reversible. This has obvious 

advantages over lesion studies to investigate localization of memory. This 

technique has principally been used to study memory formation in mammalian 

species, including stimulation of the amygdala, caudate nucleus, and hippocampus 

(For review, see Berman 1986). Electrical stimulation may also be used to 

enhance memory formation in particular nuclei eg. dorsal hippocampus and 

lateral hypothalamus (Berman 1986). The results of experiments on the effects 

of electrical stimulation are difficult to interpret however, since the alterations 

in observed performance may be due to factors other than memory formation, 

such as increased or decreased attentiveness, motivational states, and sensory and 

motor disturbances (Cannon and Salzen 1971). There have only been two studies 

of the effects of localized electrical stimulation in the avian species. McCollum 

and Goodman (1974) reported that electrical stimulation of the lateral cerebral 

area of the pigeon brain, resulted in amnesia of a passive avoidance learning task.
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McCabe et al (1979) showed that electrical stimulation of the IMHV at 1.5 or

4.5 trains per second, could influence the chicks preference when it was given a 

choice of two flashing stimuli, operating at either 1.5 or 4.5 flashes per second.

2.3 : 14c -2-DEOXYGLUCOSE METHODS

The search for regional changes in brain activity following learning can be 

achieved by examining the utilization of glucose. The assumption underlying such 

studies, is that the formation of memories must inevitably be associated with the 

use of energy. A common method for studying such consumption of energy, is 

labelling with 2-deoxyglucose, an analogue of glucose (Sokoloff et a! 1977). The 

uptake of 2-deoxyglucose is similar to that of glucose, but once phosphorylated is 

unable to be further metabolized. Accumulation of phosphorylated 2- 

deoxyglucose in the cells, can be detected by using a radioactive label such as 

1 ̂ C. The technique has previously been used to map neural pathways involved in 

memory storage in the rat (Destrade et a! 1985), and following auditory 

imprinting in the chick (Wallhâusser and Scheich 1987).

Autoradiographic analysis of accumulated '•4C-2-deoxyglucose-6-phosphate 

showed that three regions of the chick brain were particularly active for at least 

30 minutes after a passive avoidance learning task (Kossut and Rose 1984). 

These were the hyperstriatum ventrale-posterior, LPO, and paleostria tum  

augmentatum. Rapid assay for the radioactivity confirmed the involvement of 

two of these sites {hyperstriatum  ventra le -posterio r and LPO), and 

demonstrated that most of the activity was confined to the left hemisphere (Rose 

and Csillag 1985). The medial hyperstriatum ventrale had also been been shown 

to have an elevated level of 1^C-2-deoxyglucose-6-phosphate after imprinting 

(Kohsaka et ai 1979).
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CHAPTER 3 : AVIAN NEUROANATOMY

3.1 : THE PALEOSTRIATAL COMPLEX

The lobus paroifactorius is one of the nuclei of an important group of basal 

forebrain structures, collectively kriown as the paleostriatal complex. This 

complex has three major subdivisions; the paleostriatum augmentatum, 

paleostriatum primitivum, and nucleus intrapeduncularis. Medial to the 

paleostriatum augmentatum, lies the LPO. For descriptive purposes early 

workers considered the LPO as part of the paleostriatum augmentatum, but it 

has since been shown to be entirely separable from the pa le os tria tum  

augmentatum, both in terms of its function and by its cellular mass (Karten and 

Dubbeldam 1973).

For many years the avian paleostriatal complex has been considered 

homologous to the mammalian basal ganglia (Karten and Dubbeldam 1973). The 

paleostriatum primitivum was suggested to be comparable to the mammalian 

globus pallidus, whereas the paleostriatum augmentatum was thought to be 

similar to the mammalian caudate nucleus-putamen (Ariens-Kappers et al 

1936). More recently, evidence has accumulated to show that the avian 

paleostriatum primitivum  is comparable to the mammalian globus pallidus 

(Karten and Dubbeldam 1973, Brauth et al 1978). In contrast, it has been 

suggested that the entire avian pa leostria tum  augm enta tum -lobus  

parolfactorius-nucleus accumbens region is comparable to the mammalian 

striatal complex (caudate nucleus, putamen, and nucleus accumbens) but not on a 

one-to-one basis (Kitt and Brauth 1981, Reiner et al 1983). The paleostriatal 

complex is important in that it may control motor function, and also control 

spatial orientation and attention (Brauth et al 1978).
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3.2 : THE LOBUS PAROLFACTORIUS

Stereotaxic atlases describe the chick brain such that a line between the ear 

bars and the beak bar is at an angle of 25.5® with the horizontal axis of the frame 

(Salzen and Williamson, unpublished, Youngren and Phillips 1978). Using an 

anterior posterior zero in the centre of the ear bars, with the lateral zero in the 

median plane, the co-ordinates of the LPO in the 3-day old chick are calculated as 

Anterior 4.5 mm. Lateral 1.0 mm and a depth of 4.75 mm. It is hence a basal 

forebrain nucleus (Fig.3.1a,b). It is adjacent to the ventricular surface on its 

medio-basal surface, and has the neostriatum dorsally. The nucleus basalis lies 

antero-laterally, whilst the lateral relation is the lateral forebrain bundle. Also 

lateral, though slightly more caudally, lies the paleostriatum augmentatum, and 

paleostriatum primitivum. The LPO extends caudally as far as the appearance of 

the nucleus accumbens, and the medial divergence of the paleostria tum  

augmentatum.

a) Afferent projections

Using retrograde transport of horseradish peroxidase to label the afferent 

input into the chick LPO, Boxer and Csillag (1986) report that labelled cells 

were found in the following regions; nucleus superficialis parvocellularis, 

area ventralis tegmentalis of Tsai, nucleus tegmenti pedunculo-pontinus, and 

the archistriatum  (Fig.3.1c,d). Injections of agglutinin-conjugated horseradish 

peroxidase into the dorsal thalamus of the pigeon (mainly n u c le u s  

subhabenularis lateralis), produced heavy labelling throughout the ipsilateral 

LPO, and sparse labelling throughout the contra lateral LPO (Wild 1987).

There may be a functional sub-division of the LPO, since its lateral portion
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has been reported to receive inputs from the neostria tum , namely the 

neostriatum frontale, pars intermedia-dorsalis, and neostriatum frontale, 

pars medians (Dubbeldam and Visser 1987). Note however, that these results 

were obtained from investigations of the brain of the mallard {A n a s  

Platyrhynctios L.). The lateral portion also receives a small input from the 

hyperstriatum ventrale (Dubbeldam and Visser 1987), although the precise 

origin of the afferents is unknown, since retrograde tract tracing was not 

performed. These latter results are of particular interest, since both the lateral 

neostriatum  and hyperstriatum ventrale of chicks and pigeons have known 

involvement in memory processes (see Chapter 2).

There is a projection to the LPO from the locus coeruleus and subcoeruleus 

dorsalis m the midbrain of the pigeon (Kitt and Brauth 1986a). It is interesting 

to note that a similar projection exists to the hyperstriatum ventrale and 

paleostriatum augmentatum (Kitt and Brauth 1986a), the latter nuclei of which 

has also been implicated in the formation of memory in the chick (see Chapter 

2). The connections of the LPO are almost entirely ipsilateral (Kitt and Brauth 

1981, Kitt and Brauth 1986b, Boxer and Csillag 1986). There is however a 

contribution to the LPO on one side, from various structures on the other side of 

the brain, via the anterior commissure (Zeier and Karten 1973). In the pigeon, 

the fibres to the LPO cross in the anterior branch of the commissure, the pars 

bulbaris (Zeier and Karten 1973).

b) Efferent projections

The output of the LPO is two fold. Firstly, a tract of rostrally directed axons, 

which course through the substance of the LPO, and secondly, a caudally-directed 

tract which passes ventral to the inferior margin of the LPO, and forms the
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largest part of the medial forebrain bundle (Karten and Dubbeldam 1973). 

Terminations include the nucleus superficialis parvoceiiularis, area ventralis 

tegrhentaiis of Tsai (Kitt and Brauth 1981, Kitt and Brauth 1986b), and the 

nucleus tegmenti pedunculo-pontinus (Kitt and Brauth 1981, Kitt and Brauth 

1986b).

Other efferents terminate in the ventral paleostriatum  (Kitt and Brauth 

1981, Kitt and Brauth 1986b), although there is some suggestion that these 

efferents may only arise from the lateral part of the LPO (Dubbeldam and Visser

1987). There are also reports of efferents to the hypothalamus (Benowitz

1980), particularly its rostro-lateral portion (Kitt and Brauth 1981), 

arriving via the medial forebrain bundle.
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F ig .3 .la  : Left hemisphere coronal section (A9.25). E-ectostriatum, 
FA-tractus fronto-archistriatalis, HA-hyperstriatum accessorium, HD- 
hyperstriatum dorsale, HV-hyperstriatum ventrale, IMHV-intermediate 
and medial hyperstriatum ventrale, LPO lobus paroifactorius, N 
neostriatum, PA-paieostriatum augmentatum, PP-paleostriatum 
prim itivum
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Fig.3.1b : Right hemisphere coronal section ( A l l .50). Bas-nucleus 
basalis, FA-tractus fron to -a rch is tria ta lis , HA-hyperstria tum  
accessorium, HD-hyperstriatum dorsale, HVvv-hyperstriatum ventrale 
ventro-ventrale, HVdv-hyperstriatum ventrale dorso-ventrale, LPO- 
lobus paroifactorius, N-neostriatum, PA-paleostriatum augmentatum, 
Q-tractus quintofrontalis
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:TPP :/A V T  :

Fia.S.lc : Summary of LPO connections: AVT - Area ventralis of Tsai, DA 
- dorsal archistriatum, DT - dorsal thalamus, HT - hypothalamus, LoC - 
locus coeruleus, Nf - Neostriatum frontale, PSv - ventral paleostriatum, 
SCO - subcoeruleus dorsalis, SPC - superficialis parvocellularis, TPP - 
nucleus tegmenti pedunculo-pontinus.
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F ia .3 .1  d : Parasagittal section of chick brain (L2.00). DLA- 
N.dorsolateralis ant.thalami, HA-hyperstriatum accessorium, HD- 
hyperstriatum dorsalis, HIS-hyperstriatum intercalatus superior, HV- 
hyperstriatum ventrale, LoC-locus coeruleus, LPO-lobus paroifactorius, 
PA-paleostriatum  augmentatum, SC-N.sub-coeruleus, SPC- 
N.superficialis parvocellularis, TPc-N.tegmenti pedunculo-pontinus.

c) Cell types and possible functions

The neuronal population of the chick LPO is generated between day 6 and 9 of

embryonic life (Tsai et al 1981a). The LPO is thus one of the last regions to 

undergo cellular proliferation in the avian telencephalon (Tsai e ta ! 1981a). 

The mature neurons are mostly small (12-20 jim) bipolar cells (Karten and 

Dubbeldam 1973, Kitt and Brauth 1981). Tômbôl (1988) has described in 

detail, four types of projection neurons from the LPO, two of which are aspinous, 

and three local circuit neurons.

There is a wide variety of neurotransmitters contained within the cells of the 

LPO, but there is a predominance of cholinergic (both muscarinic and nicotinic) 

fibres (Horn 1985b, Karten and Dubbeldam 1973, Richfield at al 1987, Dietl 

at al 1988a). It is also rich in dopamine (both D1 and D2 receptors have been 

identified) (Dietl and Palacios 1988). On the basis of the small size of the cells, 

and the predominance of cholinergic and dopaminergic neurotransmitters, a
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comparison to the mammalian caudate-putamen has been made (Karten and 

Dubbeldam 1973, Reiner et al 1984), since these descriptions would fit the 

known features of these basal ganglia.

There are moderate amounts of y-amino butyric acid (GABA) (Dietl et al 

1988b) and serotonergic fibres (Sake et al 1986). Enkephalin-like 

immunoreactive substance was also found in the LPO (Reiner et al 1984), and 

large amounts of substance P (Reiner et al 1983). The substance P containing 

neurons travel via the medial forebrain bundle to project upon catecholaminergic 

colls in the midbrain.

The functions of the LPO are unknown, although the idea that it may be a 

homologue of the mammalian basal ganglia suggests that it may be involved in 

regulation of motor output. The chick LPO was shown to be immunoreactive to 

corticoliberin, a neuropeptide that causes the release of adreno-corticotrophic 

hormone from the anterior pituitary (Kuenzel and Blaehser 1989). It has 

therefore been suggested that the LPO has a neuroendocrine function, involved in 

the integration of emotional behaviours (Kuenzel and Blaehser 1989). This was 

also suggested by Wesp and Goodman (1978), in their discussion of the effects of 

lesions to the LPO in the pigeon. These studies could have important consequences 

for the interpretation of data in the present thesis, since stress of the 

experimental procedure may well cause an excitation of the LPO.

3.3 : THE GUSTATORY SYSTEM

The chick has approximately 300 taste buds, located in the tongue, upper 

beak epithelium, floor of the anterior lower beak, and the mandibular portion 

posterior to the tongue (Ganchrow and Ganchrow 1985). Afferent fibres proceed 

caudally via the facial and glossopharyngeal nerves to the solitary nucleus.
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Another brain structure that has been associated with the sense of taste is the 

stratum cellulare externum. Lesions of this region result in hyposensitivity to 

chemical solutions applied to the buccal cavity (Gentle 1975). It has been shown 

that the parabrachial nucleus of the dorsolateral pons projects to the stratum  

cellulare externum, as well as to the paraventricular nucleus (Wild et al

1987). The paraventricular nucleus in turn, projects to the nucleus tractus 

solitarius, hence the stratum cellulare externum is indirectly connected to the 

main gustatory system. The lobus paroifactorius has no known direct or indirect 

involvement in the sensation of taste.

Chicks are indifferent to solutions containing common sugars, but can detect 

the presence of sodium chloride (Pick and Kare 1962). They will actively avoid 

drinking a toxic salt solution. Most chicks will readily drink an acid solution at 

pH2 without hesitation, and it is therefore thought that their ability to detect 

'sour' solutions is markedly impaired (Sturkie 1965). The chick's sensation of a 

'bitter' taste are the most markedly different to our own. There are some 

compounds (eg. sucrose octa-acetate) that are offensive to humans, which the 

chick will accept readily (Sturkie 1965), whilst others such as d im e thy l 

anthranilate, a substance used in the human food industry, is offensive to many 

species of birds (Kare and Pick I960). A derivative of this compound (methyl 

anthranilate) is used as the aversive stimulus in the experimental work of this 

thesis.

3.4 : THE OLFACTORY SYSTEM

The olfactory projection occurs along the entire rostrocaudal extent of the 

dorsolateral telencephalon. The neural structure identified in this region is the 

pyriform cortex (Reiner and Karten 1985). A second projection was found to
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terminate in the olfactory tubercle, and a third was shown to enter the nucleus 

tæniæ  (Reiner and Karten 1985). The nucleus tæniæ is considered to be a 

component of the avian archistriatum, which is thought to be homologous to the 

amygdala of mammals (Zeier and Karten 1973).

One study of the olfactory connections of the pigeon brain, has conciuded that 

the LPO is the terminal field of the projection from the olfactory bulb (Reike and 

Wenzel 1978). This claim is substantiated by use of both electrophysiological 

and neuroanatomical methods. Electrical stimulation of the olfactory bulb 

resulted in Type I recordings (direct monosynaptic connection) from 

hyperstriatum ventrale, lobus paroifactorius, and cortex prepiriform is. 

Neuroanatomical degeneration studies have confirmed these three locations as 

terminal sites of the olfactory bulb projection. The projection to the LPO was 

found to be primarily ipsilateral, although some fibres were found contralateral 

in the caudal portion of the LPO (Reike and Wenzel 1978). A subsequent study 

using anterograde radioisotope labelling of projections from the pigeon olfactory 

bulb fails to confirm these claims, but concedes that '..a certain amount of 

radioactive amino acids did spread from the injection site to rostral portions of 

the lobus paroifactorius...' (Reiner and Karten 1985). The authors suggest 

however, that this may be the consequence of technical inadequacies of the 

experiment, rather than a true neuroanatomical connection.

It has been suggested that chicks show very little use of the sense of smell 

under normal circumstances; " Domesticated birds reveal no concern for the 

odors of their environment. However, the presence of neuroanatomical 

structures suggests that olfactory information can be transmitted even if it is not 

behaviourally meaningful." (Sturkie 1965).
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CHAPTER 4: PLASTICITY FOLLOWING LEARNING AND MEMORY

This thesis has proposed that memory may be the result of lasting changes in 

neural networks. Such changes are likely to include a variety of biochemical, 

morphological and physiological mechanisms. All of these alterations are likely to 

be intricately interwoven. A change in one of these mechanisms is likely to bring 

about changes in the others. In particular, a change in the chemistry of the 

system is likely to be the basis for structural and functional change.

4.1 : BIOCHEMICAL CHANGES

Imprinting studies in the chick have demonstrated an increase in tritiated 

lysine incorporation into proteins of the forebrain (Bateson et al 1969), and 

also of uracil into RNA (Bateson et al 1973, Bateson et al 1975, Rose et al 

1970). Both of these experiments suggest that protein synthesis is involved in 

the memory process. Inhibition of protein synthesis using drugs such as 

anisomycin (Mizumori et al 1987a), cyclohexamide or emetine (Patterson et 

al 1986), results in amnesia for a given learning task, provided that testing is 

delayed for several hours after training. This amnesia occurs even if the drug is 

administered 5 minutes after the initial training period (Gibbs and Lecaneut

1981). It has therefore been concluded that long-term memory is dependent 

upon protein synthesis, whilst short-term memory is unaffected (Matthies 

1982, Gibbs and Ng 1977, Rosenzweig and Bennett 1984a).

There is however, some opposition to this suggestion. There is evidence that 

various 'treatments', such as vasopressin and oxytocin (Kovacs et al 1985, 

DeWied 1984), can reverse memory impairments or indeed, complete amnesias 

(Dunn 1980). It is therefore considered that memory may be 'state-dependent';
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that is, dependence upon the hormonal state of the individual, during and after a 

learning task (izquerdo 1984, Gold 1984). A number of hormones, such as 

peripheral catecholamines, may have a direct influence on the transmitter 

complexes in the brain at the time of learning (McGaugh and Liang 1985, Gold

1984). Others, such as opioids, may act in a more indirect way by altering the 

arousal state of the animal, and therefore influencing adrenergic modulation 

(Introini-Collison and Baratti 1986).

Recent experiments have demonstrated 'state-dependency' in the chick during 

a passive avoidance learning task (Bradley and Galal 1987, Bradley and Galal

1988). Anisomycin, injected intra-peritoneally 30 minutes prior to training, 

was shown to inhibit memory formation after 6 and up to 12 hours. Avoidance 

was established if the drug was injected 30 mins prior to the testing period, as 

well as 30 minutes prior to training. The authors suggest that memory is formed 

independent of the inhibition of protein synthesis, but that 'recall' for the 

memory is dependent upon a 'humoral state' similar to that in which the memory 

was formed. A subsequent study has shown however, that the mode of injection 

(i.e. intra-peritoneally) may have been a major factor in producing the observed 

results. This is supported by data which shows that intra-peritoneal injection of 

anisomysin at the concentrations used by Bradley and Galal (0.8mg/chick), 

causes a deficit of only 8% in incorporation of amino acids into proteins 

(Patterson et al 1989).

In addition to the studies on protein synthesis, attention has been directed to 

the glycoproteins that form a major component of the post-synaptic densities. A 

transient elevation of ^H-fucose incorporation into glycoproteins was seen up to 

24 hours after passive avoidance training. This activity had returned to control
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values after 48 hours (Sukumar et al 1980). It was subsequently shown that 

this elevation takes place primarily within the synaptic membranes (Burgoyne 

and Rose 1980).

4.2 : PHYSIOLOGICAL CHANGES

It has been shown that in the IMHV of day-old chicks, neurones discharge 

action potentials spontaneously. In an investigation of neuronal activity in 

relation to imprinting, chicks were imprinted on a rotating, flashing red box. 

The rate of firing of these neurones, 1-hour after training, was less in chicks 

making more frequent approaches to the imprinting stimulus during a 3-hour 

training period. That is, there was a negative correlation between the neuronal 

activity and the number of approaches made to the imprinting stimulus (Payne 

and Horn 1984). Since no such correlation was seen in the hyperstriatUm  

accessorium, this finding was not due to some generalized effect, such as motor 

activity.

With recording electrodes placed in the IMHV of anaesthetised chicks. Mason 

and Rose (1987) were able to demonstrate an increase, compared with controls, 

in spontaneous multi-unit 'bursting' activity in chicks trained with methyl 

anthranilate 1-13 hours previously. 'Bursting' is described as high frequency 

(400 Hz), large amplitude (200-450 pV) spikes of short duration (15-20 

ms). These 'bursts' increased by as much as 320% in the left hemisphere, and 

350% in the right hemisphere. The mean number of spikes per burst also 

increased in M-trained chicks, by 66%. 'Bursting' may represent an efficient 

method of consolidation of connections between neurons within brain networks, 

associated with memory formation (Gigg 1991).
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Subsequent studies have revealed that the increase in bursting activity in the 

IMHV is restricted to the time period between 3 and 7 hours post-test (Gigg 

1991). With the exception of the time period between 6 and 7 hours post-test, 

there was no significant difference between the hemispheres with respect to the 

pattern of bursting activity.

Multi-unit recordings have also been taken from the LPO at times ranging 

from 1-10 hours post-methyl anthranilate training and test (Gigg 1991). The 

time-course for an increase in bursting activity in LPO neurons, is much the 

same as that for the IMHV, with a peak of activity between 4 and 7 hours post

test. By the administration of a sub-convulsive electroshock 5 minutes post

training, Gigg (1991) rendered M-trained chicks amnestic for the aversive 

taste. These chicks failed to show any significant increase in bursting activity in 

comparison to water-trained controls. Thus, bursting changes are due to the 

formation of a memory for the taste, and not some other facet of the experimental 

procedure, such as the taste or smell of the bead. This lack of change in bursting 

activity of amnestic chicks had also previously been demonstrated for the chick 

IMHV (Mason and Rose 1988). These authors had demonstrated that after a delay 

of 10 minutes, application of a sub-convulsive shock (12 mA, 110 V, 220 ms 

duration at 50 Hz through hand-held trans-dermal electrodes) results in 40% of 

chicks becoming amnestic, whilst immediate shock causes 63% of chicks to 

become amnestic.

4.3 : ANATOMICAL CHANGES

a) Synaptic changes

The idea that the synapse might be the key structure involved in the process 

of memory formation, is not a new one. Hebb proposed in the 1940's, that the
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synapse may be modifiable in such a way that specific nerve connections may be 

enhanced in response to a given learning situation (Hebb 1949). It is clear that 

any alteration of neural functioning, will inevitably result in some modification 

in the responses of the synapses, and probably to an alteration in their structure. 

Indeed, it is thought that it is precisely this form of altered structure, that may 

form the basis of a stored 'memory'.

In principle, there are three types of morphological change that might occur 

in synapses as a consequence of learning. Firstly, it is possible that through a 

growth in size of the synapses, there would be an increase in the number of 

receptor sites along the post-synaptic thickenings, and hence an increase in the 

efficacy of the synapses. Conductance may also change, via growth of the synapse 

(Herrera et al 1985). A second type of change could arise as a consequence of an 

increase in the number of axons, or axon collaterals. The end result would be an 

increase in the number of synaptic sites by synaptogenesis. The third type of 

morphological change which will be considered here, is that of a modification of 

receptor sensitivity. Some of the evidence for such mechanisms as a consequence 

of learning and memory, will be reviewed in the following pages.

It is possible that structural changes, particularly those occurring at the 

synapse, may be a consequence of repetitive activation (Hebb 1949). The changes 

made in this way, may in themselves result in a facilitation of synaptic 

transmission. This may be one of the mechanisms that form a basis for the 

formation of memory. It is important for our model, that the proposed synaptic 

modifications exist for the adult as well as for the developing animal. There may 

of course be some differences, since adult forms may exhibit different learning 

strategies and abilities. Most studies regarding synaptic plasticity have been 

performed on developing systems, since this is when the greatest changes can be
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observed. But are adult neuronal populations capable of plastic adaptability? 

Vrensen and Nunes-Cardozo (1981) showed that such changes were observable 

in adult rabbits that had undergone visual discrimination training. There is also 

evidence that the adult brain has a number of 'potential' or inactive synapses 

(Wall 1977). If activated, these offer a method of responding to given 

environmental situations and experiences. In addition, there is the possibility of 

axonal sprouting, or the formation of polysynaptic connections. Both of these 

have previously been reported to occur in response to manipulation (lesion) of 

the adult brain (for review, see Petit 1988).

There is considerable evidence, that a variety of structural changes (e.g. size 

and shape of processes, vesicle density, cleft width and curvature and 

paramembranous densities) in existing synapses may occur as a result of 

different environmental experience (for review, see Greenough and Chang

1985). Since memories are dependent upon experience, it is reasonable to 

suggest that synaptic change may be involved in the formation or facilitation of 

memory. Environmental enrichment does not cause any significant increase in 

synaptic numerical density in rat visual cortex (Bhide 1983), indicating that 

synaptic changes may be restricted to specific regions of the brain. Indeed, there 

is good evidence that measurable morphological changes occur in distinct 

localized regions of the brain, in response to learning experiences (Greenough 

and Chang 1985).

Synaptic number changes

The number of synapses in the cerebral cortex is highly influenced by 

experiential factors. For example, animals exposed to enriched environments 

have a greater number of synapses per neuron than controls (Turner and
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Greenough 1985), whilst sensory deprivation causes a decrease in this 

parameter (Gragg 1975).

Increases in synaptic number occur following the induction of LTP in the 

dentate gyrus of the rat hippocampus (Wenzel et al 1985, Desmond and Levy 

1983, 1986), and following repetitive activation of rat hippocampal neurons 

(Petit et al 1989). This was also seen in rat hippocampus after a brightness 

discrimination task (Matthies 1989a, Wenzel et al 1980). The latter study 

showed that trained animals had an increase in synaptic number of 40% in 

comparison with controls. Synaptogenesis was also seen following the acquisition 

of a new behaviour of female canaries, after administration of testosterone 

(DeVoogd et al 1985). In Aplysia, there is an increase in synaptic number 

following sensitization (Bailey and Chen 1983, Bailey and Chen 1989a, Bailey 

and Chen 1989b, Bailey and Chen 1990). These studies suggest that an increase 

in synaptic number follows a wide variety of situations involving environmental 

stimulation, and learning.

A decrease in the number of synapses is seen in the dentate gyrus of the 

hippocampus in aged rats, and is associated with a memory deficit (Geinisman et 

a l 1986). In A p lys ia , there is also a synaptic loss following long-term 

habituation (Bailey and Chen 1983). These studies support the idea that 

morphological change is closely linked with synaptic use.

A report by Stewart et al (1983) did not find any significant increase in 

synaptic density in the LPO, following passive avoidance learning in the day-old 

chick. This was also the case for other brain regions of the chick, such as the 

IMHV (Horn et al 1985, Bradley et al 1985b, Bradley and Galal 1987),
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hyperstriatum accessorium  (Bradley and Horn 1979), and pa leostria tum  

augmentatum (Stewart efa/1983). These studies were conducted using either 

imprinting, or passive avoidance learning trials. A study of visual training in the 

rabbit (Vrensen and Nunes-Cardoso 1981), also found no alteration in synaptic 

number as a consequence of learning. A subsequent study by Stewart et al 

(1987), has however reported a significant increase in the density of synapses 

in the LPO, in both hemispheres. A comparison of the estimates between the two 

studies (1983 and 1987) by Stewart et al, shows that the baseline estimates 

for controls differs by a considerable degree (data published in Stewart and King 

1984). In the first report the mean estimate was approximately 0.85 pm ^ for 

the left hemisphere, and 0.74 pm'3 for the right hemisphere. Subsequent values 

reported were 0.33 pm '3, and 0.27 pm"3 respectively. These studies 

represent the only published morphological data from this region of the chick 

brain. All estimates were produced using 'biased' counting techniques (for 

details, see Chapter 7).

Synaptic size changes

One of the proposed mechanisms of morphological change associated with 

learning and memory, is that of a change in size of the synapse. As stated 

previously, an increase in synaptic size would undoubtedly result in an increase 

in synaptic efficacy (Herrera et al 1985). Alterations in synaptic size could 

affect both the amount of transmitter released (via an alteration in the number of 

vesicles released), and the extent of post-synaptic receptor activation.

It has been shown that synapses in the visual cortex of rats, show a decrease 

in cleft width and an increase in PSD thickness, in response to a visual learning 

task (Vrensen and Nunes-Cardoso 1981). These authors did not find any change
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in the length of the PSD. However, an increase in PSD length is seen in the rat 

hippocampus following the acquisition of a brightness discrimination task 

(Wenzel et al 1980, Matthies 1989b). In Aplysia, the PSD size is larger in 

sensitized' animals and decreased in 'habituated' animals (Bailey and Chen

1983). Subsequent studies by Bailey and Chen (1989a, 1989b, 1990) have 

shown that for the sensitized animals at least, this increase in synaptic size is 

transient in nature. The mean size of the PSD doubles compared to that of the 

control animals in the first 48 hours following sensitization, but has reduced in 

size to equal that of the controls by one-week. This time course does not follow 

that of the observed behavioural response of 'sensitized' animals (Bailey and 

Chen 1989b). The authors conclude that an increase in absolute number of active 

sites (which had been reported previously (Bailey and Chen 1983)), is the main 

factor controlling the maintenance of the sensitization.

6.5 hours after the onset of imprinting, chicks have been shown to exhibit an 

increase in the length of synapses on dendritic spines in the left IMHV (Bradley 

et al 1981, Bradley et al 1985b). No corresponding increase was found in the 

right hemisphere of these chicks, suggesting that there may be an asymmetry in 

function in this region of the chick brain. The IMHV of chicks trained on a passive 

avoidance task, also show an alteration in post-synaptic density length in the left 

hemisphere 12 hours following training, but is restricted to the PSDs of 

symmetric synapses (Bradley and Galal 1987). This increase in PSD size was 

blocked by injecting 0.8 mg anisomysin (a protein synthesis inhibitor) (Bradley 

and Galal 1987, 1988).

Another study of synaptic changes in the chick IMHV 24 hours following a 

passive avoidance task, showed that a hemispheric asymmetry which existed in
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control chicks was abolished by training, via a decrease in synaptic length in the 

right hemisphere (Stewart ef a/ 1984). This, and the study by Bradley et al 

(1981), using imprinting as the learning paradigm, appear to be in 

contradiction. There is however, a considerable time difference between the two 

studies (chicks were studied 6.5 hours and 24 hours after training 

respectively). It is interesting to note that the values obtained for synaptic 

length in the left hemisphere of control chicks, are in close agreement (though 

direct comparison is impossible due to the classification strategy of Bradley et 

al ). The conflicting results may therefore be due, at least in part, to different 

procedural errors. Of course, it is quite probable that there are different 

strategies used by the chick for the two different types of learning. These 

different strategies may account for the involvement of the two hemispheres, 

reacting in seemingly opposing ways.

Changes in the length of the post-synaptic thickening in the LPO have been 

reported after a passive avoidance learning task, that are broadly similar to 

those reported for the IMHV (Stewart ef a/1984). However, a subsequent study 

of synaptic structural changes in the LPO following passive avoidance learning, 

reported no significant differences in synaptic length, among asymmetric 

synapses of the left and right hemisphere. There was however, a lateralization of 

length of symmetric synapses, which is greater in the left hemisphere of Control 

chicks, by 13%. This asymmetry is reversed following training, such that the 

right hemisphere exceeds the left by 10% (Stewart et al 1989). This data 

however, was based upon few animals, and must therefore remain inconclusive.

Synaptic shape changes

It has been shown previously that memory can be Inhibited by the 

administration of a protein synthesis inhibitor (Gibbs and Ng 1977, Bradley and
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Galal 1987). Production of new synaptic proteins may be associated with the re

organization of the internal cytoskeleton (Fifkova 1987). One might argue that 

such changes may be associated with an alteration in synaptic shape.

Results of particular relevance to the present study, are those of Stewart et 

al (1987), who showed that there was no alteration in the shape of the post- 

synaptic thickening in the LPO, following a taste-avoidance training procedure. 

They categorized synapses as either convex, concave, or flat, relating to the shape 

of the pre-synaptic component of the membrane. Curvature (K) was assessed by 

the formula; K=1/r, where r is the radius of equivalent circle. The value of K 

remained constant following training. Other workers have classified these 

synaptic shapes as; smile, frown or flat synapses respectively (Petit and Markus

1987). Petit et al (1989) studied the morphological effects of repetitive 

activation of synapses in the rat hippocampus. Their results, although 

inconclusive, could support the idea that there was a change in synaptic 

appearance, from frown to smile-shape. The conclusions reached by the authors 

of this study however, are inconclusive, since their results may be explained by 

a selective gain or loss of synaptic sub-types. Another report of structural 

correlates of long-term potentiation in the rat hippocampus, showed a significant 

increase in 'concave spine' synapses (Desmond and Levy 1983, Desmond and Levy

1986). These presumably correspond to the 'convex' or 'smile' synapses 

described previously. A loss of concavity of the pre-synaptic membrane in 

hippocampal synapses, was found following acquisition of a brightness 

discrimination task in rats (Wenzel et al 1977).

One final feature of the plastic synapse is that of 'perforation'; synapses that 

have or develop 'holes' (Dyson and Jones 1984). There is a recent and
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comprehensive review of the role of this remarkable feature of synapses, both 

during development and as a function of plasticity in the brain, by Calverley and 

Jones (1990a). Perforated synapses are generally large, and are present in 

increasing numbers throughout development into adulthood (Dyson and Jones

1984). They are therefore considered to be active and mature synapses (Petit

1988). There have been few studies of the role of perforations or 'complex' 

synapses in memory formation. One such study has shown an increase in 

perforations in synapses in the visual cortex of rabbits following visual training. 

However, one cannot say whether this was due to memory formation or 

consolidation, or some other aspect of visual function. A loss of perforated 

synapses in the hippocampus, has been correlated with a loss of spatial memory 

in aged rats (Geinisman et al 1986). This loss was not observed in non

perforated synapses from the same region. This leads one to conclude that 

perforation of synapses may have an important function in the modification of 

neural function, particularly in relation to learning and memory.

b) Pre-synaptic changes 

Synaptic bouton size

In their investigation of morphological changes in the rat hippocampus 

following a brightness discrimination task, Wenzel et al (1980) found that the 

mean area of the pre-synaptic bouton decreased significantly in trained animals. 

The significance of these results is unclear, since it has been shown that a 

similar reduction occurs in the ectostriatum  of monocularly deprived birds 

(Nixdorf 1990a).

Studies of imprinting in young chicks have failed to find any effect of the 

learning experience upon the size of the pre-synaptic bouton in the IMHV
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(Bradley et al 1981, Bradley and Galal 1987). Using a taste-avoidance training 

procedure however, Stewart et al (1984) report a significant increase of 23% 

in the volume of the pre-synaptic bouton in this same region, 24 hours after 

training, and a 19% increase in the left hemisphere p a l e o s t r i a t u m  

augmentatum. These differences however, were not seen in the chick LPO 24 

hours after the training procedure (Stewart et al 1987).

Synaptic vesicle number

In studies of habituation and sensitization in Aplysia, Bailey and Chen 

(1983, 1989a, 1989b, 1990) report an alteration in synaptic vesicle number 

which is correlated with the degree of synaptic activation; ie. increased in 

sensitized animals, and decreased in habituated animals. This change is time- 

dependant, being present only transiently (up to 48 hours) (Bailey and Chen 

1989a). Learning has also been shown to cause a decrease in the number of 

vesicles associated with the synaptic terminals of rat hippocampal neurons 

(Wenzel et al 1977). This study involved the acquisition of brightness 

discrimination. It was demonstrated that synapses in the stratum radiatum of 

CA3 neurons had a decreased number, and a decreased size, of vesicles following 

learning. There was no significant change in vesicle density, either following 8 

hours of induction of long-term potentiation in the rat hippocampus (Schuster 

et al 1985), or following passive avoidance learning in the chick IMHV 

(Bradley and Galal 1987). This latter study is in contradiction to that of Stewart 

et al (1984), who showed that there was an increase in the number of synaptic 

vesicles (61%) in the left hemisphere IMHV, of chicks trained on a passive 

avoidance task, although the study of Bradley and Galal was carried out 12 hours 

post-training, whilst that of Stewart et al was 24 hours post-training. Some 

scepticism has been expressed as to whether synaptic vesicle number can be
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reliably obtained using current methods of counting (Gündersen 1986, Fox

1988). However, if the differences are as large as that reported, then one does 

not require very precise counting methods.

It can be seen from the various reports in the scientific literature 

summarized above, that there is no consistent pattern with regard to the size of 

the pre-synaptic elements, or with the number and size of the pre-synaptic 

vesicles. Although one might assume a probable correlation between the number 

of vesicles and the degree of activation of a particular terminal. It would appear 

that this is not always the case (Herrera et al 1985).

c) Post-synaptic changes

Given that structural changes have been shown to occur in synapses following 

memory formation, it is not unreasonable to suppose that there may also be a 

change in the number or size of the post-synaptic targets for those synapses. It 

has been shown that exposing weanling rats to enriched environments, causes an 

increase in dendritic branching (Greenough 1985, Greenough et al 1985). A 

number of research approaches have shown that early experience is associated 

with an increase in the size of the spine heads, and a shortening of the spine 

stems (see Coss and Perkel 1985 for review). Conversely, animals deprived of 

stimulation may display a decrease in dendritic parameters (Petit and Markus 

1987, Gray et al 1982). Chicks reared In the dark have a significantly reduced 

spine density in the hyperstriatum accessorium (Galal et al 1990).

In a recent study, Patel and Stewart (1988) have shown that passive 

avoidance learning in the day-old chick, causes a significant increase in the 

density of dendritic spines, in multipolar projecting neurons of the IMHV. These
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authors also showed that there was a significant increase in mean spine head 

diameter, and a significant decrease in mean spine stem length. Chicks receiving 

a sub-convulsive trans-cranial shock, 5 minutes following training, were 

rendered amnestic for the avoidance task. They did not show any significant 

increase in spine density. This provides clear evidence that the dendritic 

structural changes seen in the trained chicks who subsequently showed a 

behavioural avoidance to the training stimulus, are due entirely to the learning 

experience, and not to some concomitant experience, such as the taste of the bead 

(Patel et al 1988).

Recent data suggests that an increase in dendritic spine density following 

memory formation, is not restricted to the IMHV. Lowndes and Stewart 

(unpublished) have preliminary evidence of an increase in spine density in the 

left hemisphere LPO of trained chicks.

Increases in spine number and dendritic branching would increase the amount 

of transmission between inter-connected cells. Enlargement of the spine head and 

a reduction of the stem length would alter its cable properties, thus increasing 

the probability of an electrical potential passing into the dendritic shaft or soma 

(Shepherd ef a/ 1985).

4.4 : NEUROTRANSMITTER MODULATION

The hypothesis stands that learning, and subsequent memory formation, is the 

result of adaptive changes in synaptic function. A possible candidate for such 

alteration of function, is the molecule Involved In the transfer of signal from one 

nerve cell to another; the neurotransmitter. An alteration in the receptive 

function, mode of action, or sensitivity in the post-synaptic receptor for the 

transmitter may also be involved. An alteration in transmitter release is known
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TABLE 4.1 : Summary of changes in synaptic structure in three regions of the 
chick forebrain, 24 hours following passive avoidance learning.

Forebrain region Synaptic parameter Nature of change

Hyperstriatum ventrale Synaptic density 
(intermediate and medial)

No change in either hem. 
following training.

Post-synaptic thickening Length in right hem. of
length

Mean pre-synaptic 
bouton volume

Mean synaptic vesicle 
number (per synapse)

control chicks > left by 
12%. Difference 
abolished on training.

Increases in left hem. by 
20% on training.

Increases by 60% in left 
hem. of M-trained chicks.

Hyperstriatum ventrale 
(posterior)

Lobus parolfactorius

no synaptic changes

Synaptic density

Mean post-synaptic 
thickening length

Mean synaptic vesicle 
number (per synapse)

Increases by 20% in both 
hems, following training.

Length in right hem. is 
10% > left; difference is 
reversed on training.

Increases by 60% in the 
left hem. of trained 
chicks.

Paleostriatum
augmentatum

Mean synaptic vesicle 
number (per synapse)

Mean pre-synaptic 
bouton volume

Greater by 15% in right 
hem. of control chicks. 
Asymmetry disappears on 
training.

Greater by 19% in left 
hem. following training.

All changes referred to are statistically significant at p<0.05 or less, unless 
otherwise stated. (Adapted by the author, from Stewart 1990)
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to be involved in habituation (Horn 1985b), and it can be argued, may also be 

involved in more complex learning situations. It may be that a reduction in the 

rate of release of an excitatory neurotransmitter in a given fibre, is brought 

about by an increase in inhibitory transmitter release onto the cell. Indeed there 

are many plausible theories regarding complex regulation of neural circuitry via 

single or multiple control of transmitter release, and it is therefore important to 

know something of the local circuitry of the LPO, and other anatomical structures 

reputed to be involved in memory and learning, and of its neurotransmitter 

content.

There is much evidence for the involvement of a wide range of 

neurotransmitters in memory formation. A decrease in the number of nicotinic 

receptors (Aleksidze et al 1981), and a transient increase in muscarinic 

receptors (Rose et al 1980) has been found to occur 30 minutes after passive 

avoidance learning in the chick. This suggests an involvement of cholinergic 

synapses early in memory formation, perhaps comprising some component of 

'short-term memory'. Enhancement of dopaminergic function in four-day old 

chicks, using the dopamine agonist, apomorphine, caused an increase in key-peck 

response to an aversive stimulus (McDougall et al 1987). Recent studies have 

shown that the receptors for y-aminobutyric acid (GABA) in the chick left 

hemisphere, posterior forebrain roof, increase significantly after a passive 

avoidance learning task (Bourne and Stewart 1985). In addition, injection of 

GABA into the chick brain during the first week of life causes a retardation of 

learning (Hambley and Rogers 1979). Chicks injected with L-proline and L- 

glutamine, two amino acids which inhibit endogenous glutamate release, 

demonstrated a retrograde amnesia for a one-trial passive avoidance learning 

task (Gherkin et al 1976). These studies cited above give further evidence of
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the involvement of synapses in the process of memory formation and/or storage.

Research into transmitter involvement in memory has largely concentrated 

on transmitter systems and localized circuits. It should not be forgotten however, 

that such modifications require profound changes in individual synapses, and 

neurons. There is considerable evidence that a given neuron is capable of 

immense plastic change throughout its life-span (Petit 1988). It is even capable 

of partially, or completely changing its neurotransmitter chemical in response 

to a given environmental stimulus (Black 1984). Adaptive change must 

therefore be viewed with regard to both network systems, and to the Individual 

neurons which serve that network.
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CHAPTER 5 : SYNAPSES

5.1 : MORPHOLOGICAL ASPECTS

Synapses are of two types; chemical or electrical. Electrical synapses are 

difficult to identify on electron microscopic micrographs, since they may consist 

of no more than two closely opposed membranes (approximately 2 nm), one from 

the pre-synaptic cell, and the other from the post-synaptic cell. There need be 

no visible membrane specialization. This type of synapse is uncommon in 

vertebrates, and hence will not be considered further.

A chemical synapse is classically described as the junction between the 

terminal region of an axon (pre-synaptic), and a neuronal dendrite (post- 

synaptic). In both the pre- and post-synaptic sides of the junction, there are 

membrane specializations. The nature of these specializations is described below. 

Synapses are not exclusive to axons and dendrites. Other types also exist; such as 

those between two dendrites (dendro-dendritic), between axon and soma (axo- 

somatic) or between two axons (axo axonic). The synaptic specialization 

consists of a thickening of the membrane at the region of the junction.

Two populations of synapses were identified on the basis of differences in 

these thickenings (Gray 1959). Gray type I synapses were described as having a 

comparatively thick post-synaptic density relative to the pre-synaptic density, 

and were of a greater length than the Gray type U synapses. Gray type I were also 

shown to have a wider separation of the paramembranous densities, with a 

greater clarity of material lying in the gap between them. On this basis. Gray 

type I synapses are known as 'asymmetric', and Gray type II as 'symmetric'. Gray 

(1959) states that type I synapses do not make contact with neuronal cell bodies.
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and that type n are restricted to dendritic trunks and neuronal soma. These are 

generalizations which do not hold true for all brain regions. Other authors have 

used a much expanded classification of synaptic types, often based upon vesicle 

shape (Hassler ef a/ 1978).

The pre-synaptic terminal is the synaptic 'bouton'. It contains varying 

numbers of synaptic vesicles, some of which are closely associated with the pre- 

synaptic membrane thickening. The thickening can be seen to be composed of 

several triangular-shaped dense projections, spaced regularly at intervals of 

40-45 nm. It is thought that these dense projections serve as sites of attachment 

for the synaptic vesicles (Jones 1981). The vesicles thertiselves contain a 

neurotransmitter, which is released into the synaptic cleft via exocytosis of the 

contents of the vesicles following their attachment between the pre-synaptic 

dense projections.

Uchizono (1965) observed that in the cat cerebellum, the majority of 

synapses targeted onto the soma of Purkinje cells, contained flattened vesicles in 

the pre-synaptic bouton, whilst those on dendrites in the molecular layer of the 

cerebellum contained round vesicles. Since it was known from physiological 

studies that the Purkinje cells were influenced by the presence of inhibitory 

synapses, and the dendrites of the molecular layer by excitatory synapses, it was 

concluded that excitatory synapses displayed round vesicles and inhibitory 

synapses flattened vesicles (Uchizono 1965). However, in the young avian brain 

no such distinction is possible, since synapses with flattened vesicles are either 

rarely seen (Nixdorf 1989) or not at all (Curtis et al 1989). The shape of 

synaptic vesicles has been shown to be correlated with age (Nixdorf 1989). In 

the ectostriatum, 5-day old Zebra-finches exhibit round vesicles in symmetric
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synapses, whilst in adult Zebra-finches symmetric synapses are commonly 

associated with flattened vesicles (Nixdorf 1989). Occasionally, synapses are 

seen to contain vesicles of pleomorphic shapes (Curtis et al 1989). The pre- 

synaptic terminal also contains dense-cored vesicles and coated-vesicles. Dense- 

cored vesicles are thought to contain secretory peptides in granular form, which 

may act as 'local hormones', being released under conditions of intense axonal 

stimulation (Golding 1988). Coated vesicles on the other hand are formed by 

endocytosis of the pre-synaptic bouton membrane. By shedding its coat, the 

coated-vesicle may form a synaptic vesicle or become incorporated into the 

smooth endoplasmic reticulum. Synaptic vesicles are closely associated with 

microtubules, although microtubules cannot usually be seen in the synaptic 

bouton. Microtubules are characterized by the presence of tubulin, which has 

been shown to account for up to 25% of the soluble protein fraction of 

synaptosomes (Jones 1981). The bouton is also densely packed with a 

microfilamentous network, which has been shown to have actin, myosin and 

acto-myosin like properties (Jones 1981).

The neuron and its axon transmit action potentials tonically. It is therefore 

highly active, since the action potential requires the active transport of ions. In 

addition, the turnover of synaptic structural elements, neurotransmitters and 

neurochemicals, takes place at a remarkably high rate (Jones 1975). This is 

reflected by the presence within the synaptic bouton, of large numbers of 

mitochondria.

Many of the previous methods for quantifying the number of synapses in a 

given brain region, relied upon assumptions that the synapse was disc-shaped. A 

serial section study of synapses in the rat hippocampus, showed that this
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assumption was invalid, since a large proportion of synapses were of complex 

shape (DeGroot and Bierman 1986). Previous studies of serially sectioned 

synapses, had revealed that a substantial number had deficiencies in the synaptic 

density, i.e had 'perforations' or holes (Cohen and Siekevitz 1978). These 

perforations tend to occur in the centre of large post-synaptic densities (Cohen 

and Siekevitz 1978). These perforations can occur in a wide range of synaptic 

types, and hence can be seen in synapses which are targeted onto both dendritic 

shafts and dendritic spines (Geinisman et al 1987a, 1987b).

The present study was primarily concerned with changes in number and size 

of synapses in the chick LPO, determined using the 'disector' technique (see 

Chapter 7, Section 2e). The disector technique relies upon detecting the edge (top 

or bottom) of the synapse. Since perforations tend to be present in the centre of 

synapses, it was not possible to quantify 'perforated synapses' without redefining 

the counting unit. Therefore, although perforated synapses may well be involved 

in the mechanisms of synaptic plasticity (Calverley and Jones 1990a), and hence 

of relevance to the process of memory formation, their role and function will not 

be discussed here. An example of the methodological difficulties encountered in 

quantifying perforated synapses is given by Calverley and Jones (1990b).

Synapses differ in their morphology with age. I have already reviewed the 

features common to synaptic plasticity, that is, the effect of environmental 

factors on the synaptic structure. Many of the developmental changes that 

accompany synaptic maturation are similar to those described for 

experimentally induced synaptic plasticity, since during maturation, the 

individual is subject to much environmental stimulation. One of the commonest 

findings in the developing brain, is the increase in synaptic number during early
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life (Aghajanian and Bloom 1967, Nixdorf 1989). The exact timing and size of 

this increase varies considerably, depending upon the region of brain involved, 

and the type and quality of environmental stimulation (Jones 1975). There is 

also some synaptic elimination evident in much of the developing nervous system, 

both centrally and peripherally (Purves and Lichtman 1980). This process may 

provide a mechanism for the refinement of appropriate neural connections, and a 

loss of inappropriate ones.

In addition to changes in number, there are alterations in the morphology of 

each synapse. It has been proposed that there are three principal stages in the 

development of synapses (Jones 1975). Firstly, synaptic contact area is small 

and is associated with very few vesicles. The pre- and post-synaptic thickenings 

are of moderate but equal size, and in the absence of vesicles in the pre-synaptic 

site, are indistinguishable from desmosomes or puncta-adherens. The presence 

of vesicles is thus crucial in order to identify a given membrane specialization as 

a synapse. The most immature synapse has at least 3 synaptic vesicles associated 

with it, and hence this is a common number to be quoted as the minimum that 

must be present, in order to classify a particular density as a synapse (Stewart 

et al 1987, Curtis e fa / 1989). Vesicle number increases rapidly during the 

second stage of synaptic development, such that by the third stage, the pre- 

synaptic bouton may become completely packed with vesicles. The second stage is 

also characterized by the appearance of dendritic spines, and the development of 

asymmetry between many of the pre- and post synaptic densities. The size of the 

apposition grows throughout the second and third stages. The third stage, at least 

for mammalian synapses, is the formation of a spine apparatus (see Chapter 6). 

It is also thought that axodendritic synapses appear earlier than axo-somatic 

synapses (Jones 1975).
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5.2 : FUNCTIONAL ASPECTS

It is now generally accepted that the action potential of a nerve axon, causes 

the release of neurotransmitter from the vesicles contained within the synaptic 

bouton (Jones 1981). The present thesis is concerned with the dynamic and 

modifiable aspects of synaptic functioning. There are two possibilities for such 

synaptic adaptation, or 'plasticity' as it is known. Firstly, the number of 

functioning synapses can increase or decrease. This can be achieved by either 

altering the absolute numbers of synapses present, or by changing the number of 

synapses which are active. It has been shown that in some brain regions there are 

ineffective synapses, which can be recruited into action following the loss of 

other active afferents (Wall 1977). The second possibility for synaptic change is 

via a modification of the effectiveness of communication between pre- and post- 

synaptic cells. This change in 'synaptic efficacy' may be brought about by either a 

change in the size of the synapse (the mean diameter of the post-synaptic 

thickening), the size of the synaptic cleft, the number of dense projections, or 

the number of synaptic vesicles.

In addition, the position of the synapse (i.e. whether it is targeted onto a 

neuronal cell body, dendritic shaft or dendritic spine) may influence the 

effectiveness of the synapse. A change in this position may be another mechanism 

whereby synaptic plasticity can take effect. There are likely to be a host of 

micro molecular changes in the synapse during plastic change, such as the 

balance of chemical constituents, and membrane conductance levels, which will 

regulate synaptic function. These changes are however, outside the scope of the 

present investigation.
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F ig .5 .1a : Diagram of a typical axo-spinous synapse
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Fig.5.1 b : Electron micrograph of chick LPO showing asymmetric (a) 
and symmetric (s) synapses targetted onto dendritic shafts (D). Scale bar 
represents liim .
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Fig.5.1c : Electron micrograph of chick LPO showing a dendritic shaft 
(D) which is the target for 3 asymmetric (a), and 2 symmetric synapses (s). 
Asymmetric spine synapses are also shown (arrows). Scale bar represents 1pm.
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Fig.5.Id  : Electron micrograph of chick LPO showing an axo-spinous 
synapse (a) targetted onto the head of a dendritic spine (sp). Mitochondria and 
smooth ER are visible within the dendrite. Scale bar represents 1pm.



CHAPTER 6 : DENDRITES

6.1 : MORPHOLOGICAL ASPECTS

The post-synaptic target is invariably the neuronal dendrite. A dendrite is a 

cytoplasmic extension of a neuronal cell body, of which a neuron has many. The 

dendrites are classified as being of two kinds; spiny or non-spiny, depending 

upon the presence of numerous outgrowths (spines) from the shaft of the 

dendrites. Aspinous dendrites lack this structure, and appear relatively smooth 

in Golgi-stained sections. The spines consist of a neck and a head (Fig. 5.1) of 

varying proportions (Landis 1985), and hence have a wide variety of shapes. The 

total length of the spines is usually no more than 2 pm. Occasionally, some spines 

lack a neck, and these are known a 'sessile' spines. A small proportion of spines, 

at least in the rat dentate gyrus, display a double head (Geinisman et al 1989). 

This double-head is usually in contact with two perforated asymmetric synapses. 

The cytoskeleton of the dendritic spine, which is responsible for the maintenance 

of spine shape, is composed of filaments that display actin-like qualities (Landis

1985).

It has been suggested that spines develop in response to the contact of a type I 

synapse oh a dendritic shaft (Mates and Lund 1983a). Qualitative studies of the 

developing stellate neurons in the monkey visual cortex, showed that the 

presence of a type i  synapse, appeared to initiate a swelling of the dendritic shaft 

at the point of contact. However, it has since been shown that in the developing 

mouse cerebellum there are many spines which lack an associated synapse 

(Landis 1985). The spines of dendrites in neonatal mouse cerebellum were 

similar in size, shape and cytoplasmic content, to those of mature mice, despite 

the fact that many of the developing spines lacked a synaptic contact (Landis
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1985)

In mammalian dendritic spines, there is characteristically a cisternal 

membranous structure known as the spine apparatus, which is located at the base 

of the spine neck. The spine apparatus is not present in immature mammalian 

brain, nor in 'stubby' spines of mature brains (Calverley and Jones 1990a). It 

has not, as yet, been detected in the dendritic spines of any avian species (Nixdorf 

1989), although most studies of dendritic ultrastructure have been performed 

on young birds (Curtis et al 1989, PateL 1988). This feature may therefore 

reflect the immature state of the tissue.

Another feature of mammalian spines is the presence of polyribosomes at the 

base of the spine (Steward and Falk 1985). These are involved in the synthesis of 

proteins associated with the synaptic density, and hence may be involved in the 

process of modulation of synaptic and spine ultrastructure (Calverley and Jones 

1990a). Again however, there is no evidence from the literature that 

polyribosomes exist at the base of avian spines (Nixdorf 1989).

In addition to the dendritic spine, which forms the target for the majority of 

synapses, some synapses contact the dendritic shaft directly. It has been 

suggested from observations of synapses in the monkey visual cortex, that the 

spines receive type I (asymmetric) synapses , whilst the shafts and soma receive 

type II (symmetric) synapses (Anderson 1986, Mates and Lund 1983a). It is 

clear that while this is true as a generalization, it does not hold as a rule for all 

synapses, since there are examples of symmetric spine synapses, and 

asymmetric shaft synapses (Curtis et al 1989).
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6.2 : FUNCTIONAL ASPECTS

The dendritic tree is the receptive field of the many incoming axons from 

other neurons, and provides the main structural feature for the formation of 

synapses. The dendritic surface area has been estimated to be as much as a 100 

times the surface area of the soma (Rail and Segev 1987). The dendritic spine 

outgrowths contribute greatly to this areal expanse. It is thought however, that 

the dendritic spines have a more important role in the propagation of electrical 

impulses, than simply a structural one (Wickens 1988). The dendritic shafts 

are larger in diameter nearer the soma (Patel and Stewart 1988). The position 

of a synapse within the dendritic tree will determine its effectiveness, since 

there are resistances to the passage of electrical impulses along the dendritic 

shafts towards the soma (Holmes 1989). Clearly, the nearer the synapse is to 

the soma, the greater the probability that the impulse will be propagated to the 

axon hillock (Anderson 1986). The size (i.e. diameter) of the dendritic shaft 

will also have an effect on the resistances offered. For any given value of 

membrane conductance, there is an optimal diameter required to ensure 

propagatien with least resistance (Holmes 1989). The spine may be a site where 

the action potential can be modulated before passing onto the dendritic shaft 

(Peters and Kaiserman-Abramof 1970). This is achieved by altering electrical 

resistances in the spine neck. This is in contrast to the dendritic shaft, which 

seems to serve merely to transmit a signal, rather than to modify it (Nixdorf 

1989). It has been shown that the excitatory post-synaptic potential can be 

modified by changes in the structure of the spine (Pongracz 1985). This 

mechanism may be important in controlling the efficacy of the synaptic input, 

and hence may be involved in the regulation of the memory trace (Patel and 

Stewart 1988, Calverley and Jones 1990a, Goss and Perkel 1985).
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Fig.6.1 : Electron m icrograph of chick LPO showing an asymmetric 
synapse with a perforation (open arrow). The synaptic bouton is packed with 
vesicles (ves). This synapse is in contact with the head of a dendritic spine (h), 
which contains smooth endoplasmic reticulum (se), a coated-vesicle (cv) and 
two dense-cored vesicles lying within the neck (arrow). The dendritic shaft (D) 
is seen on the left. Scale bar represents 1pm.



CHAPTER 7 : STEREOLOGY

7.1 : THE HISTORY OF NEUROMORPHOMETRY

In the early 1960's, a group of scientists were invited to establish a society 

with the aim of increasing the communication of ideas, regarding quantitation in 

the biological and material sciences. The first 'International Society of 

Stereology' meeting was held in Vienna in 1963. The term 'stereology' was coined 

to mean results correct in a true 3-dimensional sense. It is hence, the 

quantitative interpretation of 3-dimensional structures from 2-dimensional 

images. The first measurement regarding a stereological estimation of the volume 

density (V^) however, is nearly 144 years old (Delesse 1847). This method 

involved weighing paper which had been cut to the size of the observed images. 

More efficient methods followed at the turn of the century, and were modified 

well into the 1930's. These methods were based in linear sampling and point 

counting methods, which still form the basis of many of the current particle size 

estimators (for review, see Weibel 1979). It is only recently however, that 

true unbiased methods of estimating number using planar sample probes, have 

been applied (Sterio 1984).

7.2 : ESTIMATION OF NUMBER

One of the most important parameters to measure in studies of synaptic 

plasticity, is number. The most obvious method by which neural circuitry could 

alter its activity and efficiency, is to alter their absolute number. However, it is 

also one of the most difficult parameters to measure, because in order to count 

something on a two-dimensional plane, such as that encountered on the electron 

micrograph, we need to know something of the object's three-dimensional shape. 

Although stereological techniques have been developed that allow quantitation
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without assumptions regarding shape, these methods still rely on being able to 

unambiguously identify on two consecutive sections, a single profile. This often 

relies upon a prior knowledge of shape.

a) Unfolding techniques

Many previous quantitative studies of changes in synaptic number have been 

disadvantaged, due to the fact that they have used biased estimation procedures 

(Nixdorf 1989, Curtis et al 1989). Such studies have made unnecessary 

assumptions about synaptic shape. They have often assumed that synapses are 

characteristically disc-shaped. These assumptions cannot be relied upon, since 

synapses are often found to be non-uniform and of complex shape (DeGroot and 

Vrensen 1978). A single complex-shaped object may give rise to several 

profiles when cut transversely, and viewed in 2-dimensions. This problem is 

overcome if the shape is non-complex such as a sphere, or a cylinder, etc., since 

the section will only give rise to a single profile, although the size of the profile 

will be dependent upon the plane of sectioning (Flg.7.1a). A group of spheres 

transected in a random plane will yield a series of circular profiles of various 

sizes, depending upon whether or not a given sphere is cut near the equator. The 

mean profile diameter is therefore an under estimation of the true mean profile 

diameter. A correction procedure known as the Schwartz-Saltykov procedure is 

used to provide an estimate of the true mean profile diameter. This states that;

N vj = 1 /D [ a jj (N a)j - a jj+ i (N a)j+ i - âjj+2 (N a)j+2 -  - aj,k (Na)^]

where; D = D^ax / k
Ng = Number per unit area
k = number of size classes
3j k -  coefficient in row j, column i of table (see Underwood 1970)

A discussion of this procedure is given by Williams (1977), and its theoretical 

basis by Underwood (1970).
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It was reported recently that synapses, which were thought to be flat, disc

shaped objects (West and Greenough 1972), can have a complex shape with 

perforations in the membrane specialisation (DeGroot and Bierman 1983). The 

synapse is reported to adopt a more complex shape in response to training 

(Vrensen and Nunes-Cardoso 1981), or environmental stimulation (Greenough 

1984). Verwer and DeGroot (1982) showed that conventional calculations of the 

numerical density of synapses (Nvgyn) using an 'unfolding' technique (see 

Underwood 1970), are inadequate when complex-shaped, perforated synapses 

are present.

In addition, counts of large objects, such as neuronal nuclei, will be over

estimated, and conversely small objects (e.g. synapses) will be under estimated, 

since the probability of being transected by a 2-dimensional plane (a 

microscopic section), is proportional to the size of the object. Under estimation 

can also occur as a result of the inability to view 'lost caps', which are sections 

through the edges of profiles too small to be seen. Another problem in 

quantitative microscopy is the over-projection of profiles below the section 

surface, onto the measuring plane. This is known as the 'Holmes effect' (Holmes 

1927), and occurs due to the section having a positive thickness. All of these 

factors lead to bias of estimation of numerical density or number from 2- 

dimensional sections.

There are several formulae used to estimate numerical density, which are all 

basically variations on a theme. Some of these are given below;

Nv = N a / D  + t (Abercrombie 1946)

Nv = Ng.t / (4d/7i) + t-2h (DeHoff & Rhines 1961)
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Nv = N g / d  (Colonnier & Beaulieu 1985)

where; Ng = number per unit area, t = section thickness, 2h = twice the 

minimum height of particles, d = mean profile diameter

F ig .7 .la  Spheres of equal size, with a radius of R, intersected by 
planar transects at differing levels. The profile radius (r) depends on the 
level at which the sphere is sectioned. Adapted by the author from Weibel 
(1 979)

Recently, unbiased techniques have been described in the literature (for 

review, see Gündersen et al 1988a). These are the 'fractionator' (Gundersen

1986), the 'selector' (Cruz-Orive 1987), the 'serial section technique' (Cruz- 

Orive 1980), and the 'disector' (Sterio 1984).

b) The 'serial section' method

The serial section method, devised by Cruz-Orive (1980) is essentially a 

development from the formula of DeHoff and Rhines (1961), which stated that;

Nv = Ng/D

where; Ng is the number of particles per unit area, D is the mean particle 

diameter. Ng is relatively easy to estimate from sections, but in order to estimate 

particle size from a random section, one needs to know something of the particle 

shape. Cruz-Orive devised a method whereby one need not know anything about 

shape, size or orientation of the particles under investigation (Cruz-Orive 

1980). The method involves the determination of mean projected particle height, 

which is estimated via the use of serial sections. The method, as described in the 

original paper, is only valid for infinitely thin sections. The formula is as
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follows;

Nv = Ng. (1/H)

where; H is the estimated mean projected height of the particles. By taking 

account of section thickness (t), the method can be applied, without bias, to 

estimations of numerical density. The formula is then;

Nv = Ng.(1/H + 1)

That is; the probability of finding a synapse profile in a given section, is 

estimated from the harmonic mean of the sum of synapse heights and section 

thickness. Estimation of mean synaptic height from serial sections is time- 

consuming and laborious, although short-cuts have been suggested (DeGroot 

1988), It is hence not the method of choice.

c) The 'fractionator'

The fractionator allows absolute number to be estimated directly. Particles 

existing within a reference space (e.g. brain nuclei) are sampled with equal and 

known probability. The reference space is divided into pieces of arbitrary size 

and shape. A number of these pieces are then sampled. Sampling may be 

performed at several levels, such that the first sampling fraction may itself be 

sampled by cutting a smaller fraction. This process may be repeated many times 

depending upon the manageable size of the sampled pieces. An estimate of the 

number of particles (Q ) within the final sample is then made, by use of serial 

sections. The total number of particles within the reference space can then be 

estimated as;

N = Q '. fraction 1 . fraction2 . fraction^......

The efficiency of the technique is improved if each sample 'piece' contains 

roughly equal numbers of particles being measured.
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It is a condition of the fractionator that all of the reference space is available 

for sampling, and particle estimation (Gündersen 1986). This is problematic at 

the periphery of the reference space, or the sample reference space, since there 

will be artificial boundaries created. Some particles may be sectioned such that 

they are contained partially within two separate reference volumes. They are 

therefore impossible to count unambiguously. Correction must be made for the 

corresponding un sampled areas, within which these sectioned particles are 

contained. The LPO was the reference space of this particular exercise. The 

boundary of the LPO is indistinct, and contains within its upper portion, an area 

of separate function (homologous to area X of songbirds). This makes the use of 

the fractionator impossible in the present study, since the boundary cannot be 

ascertained with any degree of certainty. In addition, in order to quantify small 

particles such as synapses, one must make extensive fractionations, so that the 

final fractions can be sectioned exhaustively. This is considered impractical for 

studies where synaptic quantitation is involved (Calverley et al 1988).

d) The 'se lector'

Both the 'serial section' method, and the 'disector' (described in next 

section), require a precise estimation of section thickness, which is notoriously 

difficult. Cruz-Orive devised a method for the determination of number which 

does not require the estimation of volume of reference space, within which the 

number estimation is made (Cruz-Orive 1987). Particles are sampled 

unbiasedly, using the 'disector' principle (see below), which selects particles 

irrespective of their size. This is important, since a random sample, say by a 

planar section, will sample particles proportional to their size. A large particle 

has a greater chance of being hit by the probe. The volume of each of the sampled 

particles is then estimated using point-sampled intercepts (Gündersen and
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Jensen 1985). From the average of these values, an estimate of the population 

mean particle volume is obtained. If one then estimates the particle volume 

fraction (Vy), one can determine numerical density (Ny) using the following 

formula;

Ny= V^/V|^

This method is problematic for use in the estimation of synaptic density. It is 

difficult to measure the volume fraction of synapses, since the synapse has a very 

small dimension in one direction; i.e across the synaptic cleft. In order to 

measure this dimension, and hence volume, one would need to magnify the 

synapse greatly. This is impractical, since the numbers of synapses, within a 

given brain region are many, and one would need to take numerous micrographs 

to obtain a reasonable sample. One other solution, would be to alter the counting 

unit, to include say, the pre-synaptic bouton. However, it has been shown that 

the PSD is the most reliable counting unit for such quantitative estimations 

(Mayhew 1979).

e) The 'disector'

The 'disector' was devised to counteract the drawbacks of the 'unfolding' 

method (Sterio 1984). It draws on no assumptions about the shape, size or 

orientation of particles, and hence is unbiased. It is defined as two parallel 

sections of known thickness (t) and separation (s), such that the distance 

between the upper plane of the two sections (h) is equal to t+s. This first sectioh 

is the 'selected' sectioh, ahd the other 'referehce' section. Identified particles 

which lie within a sampling frame and which do not cross 'forbidden lines' 

(Gündersen 1977), are noted on the 'selected' section (see below for details). If 

that particle is absent on the subsequent 'reference' section, it is counted. The 

number of particles per unit volume (Ny) is then given by the following
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formula;

Ny= ZQ-/h.A

where; ZQ" = total number of counted profiles, h = separation height between the 

two planes, A = area of reference space. The only assumptions of the disector are 

that a given profile must be unambiguously identifiable in the 'selected' section, 

and that h is small enough, so that no particle goes undetected between the 

disected planes. The latter assumption means that for synapses, h must be 

extremely small. In practical terms, this means taking planes which are 

separated by the width of a single section, ie. adjacent sections. It is therefore 

important that section thickness is accurately determined. It has been shown that 

the efficiency of estimation of numerical density of synapses using the 'disector' 

technique, is greater than the 'unfolding' techniques (Calverley et al 1988).

7.3 : EDGE EFFECTS: UNBIASED COUNTING RULE FOR 2D-SECTI0NS.

Many of the counting methods rely on measurements taken from a restricted 

series of images obtained In two dimensions. These are usually In the form of 

micrographs, which present artificial boundaries within the tissue. The 

particles which one wishes to count, may or may not be contained entirely within 

a given micrograph. Some particles may only appear partially within the 

micrograph frame. The number of particles being counted is dependent upon the 

area (and subsequently volume) of tissue sampled. If one were to count all the 

profiles which lay wholly or partially within the frame, this would clearly lead 

to an overestimation of particles, since some profiles lying on the edge of the 

frame, are also in an area outwith the boundary used for the count. One therefore 

needs to devise a 'counting rule', such that say particles which lie partially 

within the micrograph on one side (e.g. top and right) are counted, and those on 

the other side (bottom and left) are not. The latter edges can be deemed 'forbidden
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edges', since particles crossing these edges are not counted. However, some 

particles at the corner of the counting frame may appear as part of a profile, say 

at the right hand side of the micrograph, where it is counted, and reappear at the 

bottom of the frame, where it is excluded. There also exists the possibility of 

counting particles more than once, where they appear at both top and right hand 

edges, leading to an overestimation. The frame then, needs to be smaller than the 

visible part of the field, in order that one can ascertain the associations of the 

particle profiles. The distance between the edge and the frame must be at least the 

size of the largest particle encountered (Gündersen 1977). In addition, the 

'forbidden lines' (since they are no longer edges) must be parallel, and extended 

to infinity (Gündersen 1977). Such a frame is shown in Fig.7.1b. This rule for 

counting irregular profiles using a two dimensional sample probe, is the only one 

known to be unbiased.

7.4 : THE ESTIMATION OF SIZE

A common requirement for quantitative biological studies, is to estimate 

changes in the size of cellular elements. An increase in size results in a 

corresponding increase in volurne, therefore there is a requirement for an 

unbiased estimator of volume. Such an estimator has recently been described by 

Gündersen and Jensen (1985). The emphasis here is on unbiased, since almost 

all estimators prior to 1985 rely upon assumptions regarding particle shape 

(see Section 7.2a above). To estimate the volumes of particles from profiles 

which appear on random sections, is biased, since larger profiles have a greater 

probability of being sectioned. Hence one needs to weight the estimations 

according to particle size. Gundersen and Jensen (1985) describe a method 

whereby one measures the volume-weighted mean volume (Vy) of particles, and 

hence fits the requirement outlined above, by being unbiased. This is obtained by 

direct moment estimation from point-sampled intercepts, such that;
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Fiq.7.1b : The forbidden line. A diagram illustrating the application of the 
'forbidden line' rule on a micrograph field containing a number of particles. 
Only particles contained entirely within the frame, and those intersected by 
the stippled line, but not by the bold line ('forbidden line'), which extends to 
infinity, are counted (i.e. hatched profiles).

height

FIq.7.1c : The Disector. A disector of distance h, generating planar transects 
by cutting through particles in a containing reference space. The upper plane 
represents the 'selected' section, the lower plane the 'reference' section. If 
particles transect both planes, or cross the frame's forbidden line (dense 
line), they are not counted. Particles are only counted when they intersect 
the selected plane alone, and do not intersect the forbidden line. Adapted by the 
author from Gündersen (1986).
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where; Iq is the length of the linear intercept across the profile and through a 

random point which intercepts that profile. The volume-weighted mean volume is 

only unbiased if the direction of the line through the point-sampled intercept is 

isotropic with respect to the particles. This can be achieved if either the 

particles, or the sections, are isotropic. This is unusual however, and it is more 

likely than not, that they will be anisotropic. A solution to this problem was 

described by Baddeley et al (1986). They used Vertical sections', all parallel to 

one arbitrary axis (the vertical). This is the case in the present studies using 

electron microscopic fields, since they are all parallel to one another. On such 

sections, one must use anisotropic directions. Practical details of this method are 

given in Chapter 10.

If a randomly orientated particle increases in volume, then the mean linear 

dimension of those particles will also increase. The most commonly used 

estimator of this kind. Is that of mean projected particle height (H) (Calverley 

et al 1988, Sterio 1984, Cruz-Orive 1980). That is, the average linear size of 

particles in a direction perpendicular to the plane of sections. This can be 

estimated from the ratio of profiles that appear in one section but not in a 

subsequent section (Q*), to the total number of profiles present in the section 

plane (Q). Then it follows that;

Ï Ï= IQ .h / IQ -

where; h is the distance between section planes. Changes in size may be restricted 

to two dimensions, such as increases in surface area (Sa). This can be estimated 

using line sampled intercepts (Weibel 1979), such that;

Sa = 2 . IL

where; I = intersections between test lines and particles, L = total test line
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length within the counting frame.

F ig .7 .Id  : Line sampled intercepts. An overlay test-grid is used to 
determine surface area (Sa). This is achieved by noting the number of 
intersections (I) which the particles make with test lines (single black 
lines) of length, L (corrected for magnification of micrograph). The 
forbidden lines (heavy arrowed lines) are not part of this test system, 
but may be used in the estimation of particle number (see Fig.7.1b). 
Formula for the calculation of Sa is given in the text.
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CHAPTER 8 : PILOT STUDY - SAMPLING EFFICIENCY

8.1 : INTRODUCTION

In order to obtain an estimate of the number of synapses in the chick LPO, it 

is necessary to make measurements on tissue samples. Indeed, there is a 

hierarchy of sampling needed: i.e a sample of chicks, from which a sample of 

tissue blocks from the LPOs of those chicks, from which a sample of sections is 

taken, etc. This sampling scheme is carried down to the lowest level, which is the 

sample of micrograph fields from a given section. At each level, an assumption is 

made that the sample is representative of the stage above. There is however, a 

degree of error introduced with each assumption. A summation over all levels 

gives the error associated with the experimental design (systematic error). In 

addition, there is also an error involved when one assumes that the results truly 

reflect the population, since there is an inherent biological variation between 

individuals. All of these errors contribute to the overall observed variation in a 

given group. At all levels of the experimental design, some error is introduced 

due to the imprecise nature of measurements. The size of the error will reflect 

the precision of the measuring device or method employed. Thus, the sampling 

technique employed is of utmost importance with respect to reducing the 

magnitude of systematic error. In this thesis, systematic random sampling has 

been employed throughout. The benefits of systematic random sampling are 

considered fully elsewhere (Gundersen and Jensen 1987).

By using analysis of variance principles, it is possible to isolate the 

variations due to each of the sampling levels, and to differentiate this from the 

biological variation (Shay 1975). A knowledge of differences in the magnitude of 

error attributable to the sampling levels, will allow the experimenter to devise
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the optimum sampling strategy. By applying the appropriate experimental 

design, one may therefore gain the maximal amount of biological information 

from the study. In all of the above types of error, the overall variance can be 

reduced by increasing the sample size, or by increasing the precision with which 

measurements at a particular level are made. However, these improvements are 

time consuming and costly. A compromise between an acceptable degree of error 

in estimation, and the cost of obtaining that accuracy must be balanced.

The purpose of this pilot study was to analyse the efficiency of the counting 

technique, and to ensure that there was an adequate representation of the tissue in 

the main study. One of the aims of the main study, was to describe the synaptic 

development of the LPO. Hence for the pilot study, an analysis of the efficiency of 

the counting method had to be performed over a wide range of developmental ages. 

To do this, both pre- and post-hatch material was needed.

8.2 : MATERIALS AND METHODS

Animals : Six embryos aged 16 days in ovo (El 6) were excised from their 

shells, and given an intra-peritoneal injection of 0.05 ml sodium pentobarbitone 

(60 mg/ml). They were then perfused through the left ventricle of the heart 

with approximately 100 ml of a solution containing 2% glutaraldehyde and 2% 

paraformaldehyde in 0.1 M cacodylate buffer (final osmolarity was 

approximately 1130 milliosmoles), using a peristaltic pump. Groups of six 

chicks, each of 1 day (day after hatching) (PI), and 9 days (P9), were used for 

the post-hatch period of the experiment. These chicks were given an intra- 

peritoneal injection of 0.1 ml of sodium pentobarbitone. They were then perfused 

in a similar manner to that described above for the pre-hatch chick embryos, 

however 20 ml of 0.9% NaCI (saline) preceded the fixative fluid. This served to
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flush the vascular system of cells, and so prevent blood from clotting, which may 

have hindered the perfusion.

Tissue preparation : The brains were carefully dissected from the cranium, 

and were then immersed in fresh primary fixative overnight at 4^0. A coronal 

slab of fixed brain tissue containing the LPO, was obtained using a resin mould 

which had been constructed using stereotaxic co-ordinates, designed specifically 

for the purpose (Rose and Csillag 1985). Two pieces of LPO tissue were obtained 

(one rostral, one caudal), which were approximately 1 mm^ in size. These 

tissue pieces were then processed for electron microscopy, using Spurr's resin 

as the embedding medium.

M icrotom y : Once polymerized, the resin moulds yielded two 'blocks' of tissue 

for each brain hemisphere. These blocks were trimmed non-symmetrically, in 

order for unambiguous orientation in the microscope. This was achieved by 

cutting a square-shaped block face, and cutting the top left hand corner at 45°. 

Trimmed blocks were sectioned using a Reichert-Jung Ultramicrotome and 

diamond knife. Sections of a silver interference colour were thereby obtained 

(approximately 50-60 nm thickness). They were stretched with chloroform, 

and then picked up on single-hole copper grids coated with either formvar or 

pioloform. Sections were stained with uranyl acetate and lead citrate, and viewed 

in a Jeol 10OS electron microscope at an accelerating voltage of 80 kV.

M icroscopy ; Ribbons of parallel serial sections were used in order that proper 

alignment of the fields of view could be obtained. If any section or its adjacent 

neighbour contained a large number of folds, it was eliminated from further 

investigation. Suitable candidates were initially screened using a stereo-
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microscope, and then subsequently using the electron microscope at low power 

(x2000). Two suitable adjacent sections were thus selected for further study at 

this magnification. Once selected, analysis was performed to completion, in order 

that selection of sections could not be influenced by experimenter bias.

Because the sections had been cut in such a way that their orientation could be 

established, the first section of the two was found. This section was nominated the 

'reference' section, and its neighbour was nominated the 'selected' section. 

However, by applying the 'disector' in reverse, these labels could be reversed. 

The top left hand corner of the 'selected' section was located at the nominal 

magnification of X2000. At this magnification, synapses are invisible on the 

microscope screen, and therefore no experimenter bias with regard to area 

selection could be introduced. The magnification was then increased to X6000. On 

the fluorescent screen of the microscope, there is a field delineator, which marks 

the boundary of the micrograph area. The top left hand corner of this frame was 

placed on the nearest small object (e.g. a mitochondrion), and a micrograph 

taken. This procedure enabled alignment of the micrographs taken on adjacent 

sections. The same field of view was found in the next adjacent (serial) section, 

and a micrograph of this area was also taken at X6000. These two micrographs 

represented a single disector, though by using one micrograph firstly as the 

'selected' section, and then subsequently as the 'reference' section, sampling 

efficiency was doubled. Each micrograph was Individually labelled with a 

sequential number, in order that unambiguous identification of the first section 

of a pair could be made. The magnification was again reduced to X2000, and the 

initial area on the first section located. From this point, the section was moved 

exactly 3 field widths to the right. Another disector was obtained as described 

above. If a field of view contained a section edge, the frame was moved down 3
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frames, and the disector procedure repeated moving from left to right. This zig

zag pattern across the section was repeated until a minimum of 20 micrographs 

were obtained. No micrographs were taken of any area obscured by section folds, 

or staining precipitates. In this way, an unbiased systematic sample of almost the 

whole block face was obtained. 20 micrograph pairs were taken of each tissue 

block. Prints were made at final magnifications of approximately X20,000.

Section thickness : An estimation of section thickness was determined by the 

'small fold method' (Small 1968). Folds on the sections are Unavoidable when 

using a supporting film, such as formvar, or pioloform. In this instance 

however, they turn out to be of great benefit. The smallest folds possible on a 

section are known as 'minimal folds’. They are characteristic since they have 

parallel edges running for some distance, and at high power display a thin cleft in 

the centre of the fold. These sections are exactly twice the section thickness, 

since they are made by two opposing vertical pleats' viewed edge-on. One of the 

benefits of the 'small fold' method, is that it is a measurement made from 

electron microscopic images, and is therefore made under the influence of the 

electron beam. The measurement of synaptic density, and estimations of size are 

also made on sections placed under the electron beam. It is therefore desirable to 

measure section thickness under these same conditions.

An alternative rriethod for calculating section thickness involves re

embedding and re-cutting the section (Yang and Shea 1975, Bedi 1987). This 

method was rejected because the section is liable to be subject to compression 

distortion due to the microtomy. The small fold method does not suffer from this 

drawback. Above all, the chosen method is simple, and gives a permanent record 

of thickness for each section.
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Measurements of section thickness of six separate sections, were made firstly 

by interferometric methods (kindly performed by Dr.A.Warren, Sheffield 

University), and secondly by the 'small fold' technique. The microinterferometer 

used was the Vickers M86 (Goldstein & Hartman-Goldstein 1974). This 

instrument passes a laser beam of wavelength 632.8 nm through the section, and 

through a reference of empty background. The optical path difference (OPD) 

between these two can be related to the thickness of the section;

OPD = t (Ns-Nb)

where't' is the section thickness, 'Ns' is the refractive index of the section, and 

'Mb' is the refractive index of the background. The estimates produced by the two 

methods were within 5 nm of one another for any given section, showing the 

reproducibility and accuracy of the 'small fold' method.

Synaptic Identification : Synapses were recognised by the presence of both 

pre- and post-synaptic dense projections, with at least 3 associated vesicles. An 

exception to this rule was made for synapses sectioned 'en face', where either 

post-synaptic dense projections or pre-synaptic dense projections were seen as 

a lattice-like array. These profiles were also included in the analysis. The post- 

synaptic thickening has been shown to be the most reliable counting unit for 

synapses (Mayhew 1979).

Calculation of synaptic numerical density : The numerical density of 

synapses in the LPO (NVgy^) was calculated using the formula;

NVgyn = SQ syn /

where 'ZQ ' represents the sum of the synapses present in the counting frame of 

the 'selected' section but absent in the 'reference' section, 'h' is the distance 

between disector planes, and A' is the sample area. The sample area was defined
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by the boundaries of the sampling frame, appropriately corrected for 

magnification. The bottom and left-hand boundaries of the frame were deemed 

'forbidden lines' (Gündersen 1977). Any synapse crossing this line was 

automatically excluded from the count. These forbidden lines were placed at least 

3 cm inside the boundaries of the micrograph.

Calculation of nested sample variance : The nested sampling regime 

employed in this study was;

ANIMALS ► BLOCKS -------- ► DISECTORS ---------► FIELDS

Each age group contained six chicks. Only the left hemisphere LPO from these 

chicks was analysed, since it was assumed that the efficiency of the sampling 

scheme would not differ between the hemispheres. From each hemisphere there 

were two blocks; one from the rostral LPO, and one from the caudal LPO. Each 

block gave rise to 2 disectors, which were effectively two adjacent (serial) 

sections. The first disector was obtained in one direction (i.e. from the first 

section to the second), and the second disector taken in the reverse direction 

(through the same spatial reference volume) (i.e. from the second section to the 

first). From each disector (section), there were 10 micrograph pairs taken, 

therefore each disector was represented by 10 fields of view.

The individual results of a given sampling level (e.g. number of synapses per 

field) provide a mean of the sampling level above (e.g. disectors). By comparing 

each estimate with the mean for all estimates obtained in this way, one can 

analyse the variance at that sampling level, through a calculation of the sums of 

squares (SS), and mean sums of squares (MS) (see Shay 1975, for details). The 

sample variances can be calculated as;
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Sample variance of fields (Sf^) = MS(f)

2
Sample variance of disectors (Sd ) = MS(d) - MS(f)

nf

2
Sample variance of blocks: (Sb ) = MS(b) - MS(d)

nfxnd

2
Sample variance of animals (Sa ) = MS(a) - MS(b)

nf X nd X nb

where; MS(a) is the mean sums of squares between animals, MS(b) is the mean 

sums of squares between blocks, MS(d) is the mean sums of squares between 

disectors, MS(f) is the mean sums of squares between fields, na is the number of 

animals, nb is the number of blocks, nd is the number of disectors, nf is the 

number of fields. All calculations were made on the basis of number of synaptic 

profiles fulfilling the disector principle (Q~) per unit volume. Each field 

estimate was therefore adjusted to take account of the different magnifications, 

and different sample volumes. The variances are then expressed as a percentage 

of the total, using the following formulae;

(Sb^/Nb)
Variance ratio of block estimates (R^) =   X 100

Os2

(Sf2/Nb.Nd)
Variance ratio of disector estimates (Rfj) = __________  X 100

Os2

(Sf2/Nb.Nd.Nf)
Variance ratio of field estimates (Rf) =   X 100

Os2

75



8.3 : RESULTS

16 days in ovo (El 6) : The total observed variance (Os^) between chicks 

was 2.67 X 10 The block variance was 3.54 X 10'^. The variance between 

disectors (Sd^) was 8.45 X 10'^, and the variance between fields (Sf2) was 

7.05 X 10’ 2. (Table 8.3a). These variances between blocks and disectors 

contributed little to the overall variance (7% and 8% respectively). The field 

variance accounted for 14% of the total. However, the vast majority of the 

observed variance (71%) was due to the biological variation between chicks 

(Sa2 = 1.85 X 10-3), The results for this group can be seen in Table 8.3a.

1 day post-hatch (P i) : The observed variance (Os^) = 2.16 X 10 3, of 

which 1.35 X 10"3 (62%) was attributable to the variance between animals. 

The variation between blocks was 5.21 X 10"^, accounting for 12% of the total. 

The variance between disectors (Sd^) was 5.76 X 10"^, and the variance 

between fields (Sf^) was 3.30 X 10 3. These latter two factors could explain 

only a quarter of the total observed variance (7% and 19% respectively). The 

results for the 1-day old group are shown in full in Table 8.3b.

9 days post-hatch (P I) : The observed variance was 5.64 X 10"^. The 

variance between blocks was 2.24 X 10 3. The variance between disectors was 

9.24 X 10 3, and the variance between fields was 5.01 X 10 1. It could 

therefore be deduced that the variance due to chicks was 3.65 X 10"^. Again, the 

inherent biological variation far outweighed the variance of the other factors. It 

accounted for 65% of the total observed. The variance between blocks was 

approximately 20% of the total, whilst that due to disectors was only 4%, and 

that due to fields, 11%. The results for the 9-day post-hatch group are displayed 

in Table 8.3c.
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Table 8.3a : E16 Sampling variances

A n im a is  B locks B isec to rs  F ie lds  T o ta l
(S a 2 )  (S b 2 )  (S d 2 ) ( S f2 )  (O s ? )

1.85 X 10-3 3.54 x  1Q-4 8.45 X 10 4 3.05 X 10 2 2.67 X 10 3

1.77 X 10-4 2.11 X 10-4 3.81 X 10'4
(Sb2/Nb) (Sd^/Nb.Nd) (Sf^/Nb.Nd.Nf)

71 7 8 14 100 P e rcen t

Table 8.3b : PI Sampling variances

A n im a is  B locks B isec to rs  F ie lds  T o ta l
( S a 2 )  (S b 2 )  (S d 2 )  ( S f 2 )  (O s ^ )

1.35 X 10-3 5.21 X 10-4 5.76 X 10-4 3.30 X 10-2 2.16 X 10-3

2.60 X 10-4 1.44 X 10'4 4.12 X 10-4
(Sb2/Nb) (Sd^/Nb.Nd) (Sf^/Nb.Nd.Nf)

62 12 7 19 100 P ercen t

Table 8.3c : P9 Sampling variances

A n im a is  B locks B isec to rs  F ie lds  T o ta l
( S a * )  ( S b 2 )  ( S d * )  ( S f * )  ( O s * )

3.65 X 10"2 2.24 X 10‘ 2 9.24 X 10 *  5.01 X 10" 1 5.64 X 10"2

1.12 X 10-2 2.31 X 10-3 6.25 X 10-3
(Sb2/Nb) (Sd*/Nb.Nd) (Sf*/Nb.Nd.Nf)

65 20 4 11 100 P ercen t
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Optimal sampling design : In order to determine the optimal sampling design, 

it was necessary to estimate the cost (in time) of each item in the study. The 

values are given below, and should only be considered a rough approximate.

Animals Blocks Disectors Fields

Cost (mins) 385 160 100 10

The cost is the time taken in total, to include an extra animal, block, disector, 

or field in the study. It is an entirely subjective amount, and includes penalties 

for procedures which are difficult, costly (In financial terms), or for which 

there are restrictions on equipment use (e.g. microtomes, microscope, etc.). 

Time penalties were also added where occasional preparatory work was needed 

(e.g. coating of pioloform grids). These penalties seem reasonable, since the 

desire is to find the most efficient experimental design, and efficiency must be 

equated with ease of use. With this information, the following formulae were 

applied (after Gündersen and Osterby 1981);

2

Onf =
Sf Cd

Ond =

Sd

Sd

Of

Cb

0.5

Onb =

Sb

Sb

Cd

Ca

0.5

Sa Cb

0.5

where; Onf is the optimal number of fields per disector, Ond is the optimal
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number of disectors per block, Onb is the optimal number of blocks, Sa^ is the 
variance due to animals, Sb^ is the variance due to blocks, Sd^ is the variance 
due to disectors, Sf2 is the variance due to fields, Ca is the cost per animal (in 
minutes), Cb is the cost per block (in minutes), Cd is the cost per disector (in 
minutes), Cf is the cost per field (in minutes).

The corresponding values for chicks of varying ages are given below; 

16-days in ovo

'  -2

Onf =

Ond =

Onb =

3.54 X 10
-4

3.05 X 10 ^  100

8.45 X 10' 10

0.5

-4
8.45X10 ^  160

100

0.5

3.54 X 10'"^ ^  385

1.85 X 10 1 60

0.5

= 19

=  2

=  1

1-day post hatch

Onf =

Ond =

Onb =

3.30 X 10

5.76 X 10-4

-4
5.76 X 10

5.21 X 10
-4

1.35 X 10-3

100

10

160

0.5

100

0.5

= 24

=  1

5.21 X 10 ^  385

160

0.5

= 1
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9-days post hatch

Onf =

Ond =

Onb =

5.01 X,10~^ ^  100

9.24 X 10

9.24 X 10
-3

2.24 X 10
-2

2.24 X 10

3.65 X 10-2

10

160

0.5

100

385

0.5

160

0.5

= 23

=  1

=  1

Progressive Means Test ; In order to check whether the low sample sizes 

indicated were realistic, an analysis of the progressive means estimation, was 

undertaken (Williams 1977). This consisted of making an estimate of Nvgyn 

from a single field ('selected' field), using the 'disector' method. A second field is 

further analysed from the same disector plane, and the mean estimate of Nvgynÿ 

between the two fields is calculated. This 'progressive mean' calculation is 

continued for approximately twenty fields. Each additional field gives an 

increased sample volume, and therefore a more reliable estimate of the 'true' 

value. There is a limiting factor, namely the inherent variation in the 

experimental design (which includes the variation between individuals). The 

'true' population mean value can only be estimated within the bounds of biological 

variation. Increasing the sample size does not help to reduce this error of 

estimation. We must deduce the size of sample, which is a minimum to estimate 

the 'true' value within these confines, since this is the sample size which will 

give the most efficient estimate in terms of cost (time).

Results for each field were plotted as a percentage of the final estimate of
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Nvgyn> aRer 20 fields were analysed. Mean estimates for each fieid were obtained 

from anaiysis of ail blocks within a given age group of chicks. Confidence limits 

of ± 10% were set, within which, aii progressive mean estimates and their 

standard errors had to fail. The minimum number of micrographs needed was 

taken as the lowest number of fields after which ali subsequent estimates and 

their errors, fell within the set confidence iimits. The resuits are shown in Figs. 

8 .1a,b,c.

F ig .8.1 a
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F ig .8 .1 c

Progressive mean Nv-syn
Left hemisphere, 9 day post-hatch150] 
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Fias.S.la.b.c : These graphs show the progressive estimates of Nvgyp 

± SEM expressed as a percentage of the final estimate after 20 pairs of 
micrographs, which represent two disectors. The estimates are based 
upon counts of synapses in the left hemisphere LPO of chicks aged 16- 
days in ovo (a), 1 day post-hatch (b), and 9 days post-hatch (c). The 
minimum number of disectors required to bring the estimate and its SEM 
permanently within 10% of the final value is 14 in all 3 cases.

8.4 : DISCUSSION

It is clear that the majority of the observed variation, in all 3 age groups, is 

due to the inherent variation between animals. In this pilot study, the inter

animal variation accounted for between 62 and 71%. That is, the variation 

between individuals, is by far the greatest source of error in the experimental 

design. This is in accordance with previous findings for other experimental 

designs (Gupta et àl 1983, Gündersen and Osterby 1981). Clearly, the 

magnitude of inter-animal variation will depend upon the measurements made, 

since variation is not uniform. In the present case, the variance is based upon 

synaptic density in the left hemisphere LPO, which varies substantially between 

individuals. If one had measured for example, body temperature, then the 

variance between individuals would be very low.
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There is very little variation between blocks, which ranges from 7% of the 

total observed variance in the E16 group, to 20% in the P9 group. There may be 

a significant increase in the variance with developmental age. Embryonic chicks 

have few synapses, and as they develop new synapses are acquired. The rate at 

which they do this differs between individuals, since synaptic development is 

influenced by environmental conditions, which may not be experienced similarly 

by all chicks. It is possible that during this developmental phase, the LPO 

undergoes differentiation which may result in differences in synaptic density in 

different localities. Since the variance increase is small, this is not of major 

concern to the experimental design. Only 2 disectors were used in the present 

study, the variance between them was negligible (4-8% of total observed 

variance). This perhaps reflects the fact that the second disector is taken through 

the same volume as the first, only reverse in direction. Field variation 

contributed to the second largest source of experimental error, although in 

relative terms was still small (11-19% of the total observed variance). This 

suggests that increasing the number of fields, would be of relatively small 

benefit to the efficiency of the experimental design. This was confirmed in the 

progressive means test, which showed that by as few as 14 fields, the estimates 

of synaptic density were within ± 10% of the final estimate taken after analysis 

of 20 fieids. The synaptic counts per field increased with age, but were 

approximately 10 per field in the P9 group. Therefore, the sample size does not 

have be very large in order to make a reasonable estimate (i.e. with low error) 

of the population mean.

The optimum sampling design for the study was assessed for groups of chicks 

of varying ages. However, analysis has shown that the efficiency of the sampling
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design does not alter significantly between tfie groups. Tfie optimum number of 

blocks in all 3 cases was 1, although there was some rounding down performed in 

the calculation. It was decided therefore, that 2 blocks would be adequate for 

further studies. This result was welcome, since the analysis of blocks is labour- 

intensive. It implies that at least for the regions sampled (rostral and caudal), 

there is little variation in synaptic density, within a given LPO. That is, it is 

relatively homogeneous with respect to the density of synapses, which aids any 

quantitative study of this region. The optimal number of disectors per block was 

1-2. Again, this is in line with the outlined sampling strategy undertaken in this 

pilot study, and will hence be continued in further work, The optimum number of 

fields ranged from 19 in the El 6 group, to 24 in the PI group, which is in close 

approximation with the numbers used in the present study (20). However, the 

progressive means test suggested that as few as 14 fields were sufficient to 

provide a reasonable estimate of the synaptic density in a given LPO. There is a 

constraint upon the number of micrographs that one can obtain for a given block, 

as the microscope camera system holds a maximum of 50 plates. Since disector 

pairs are required, this puts a limit of 25 fields as a maximum. With each batch 

of micrographs, a micrograph of a calibration standard, and a micrograph of a 

small fold, with accompanying calibration standard are also needed. This 

effectively limits the maximum field number to 23. Of course, it would be 

possible to insert a second plate cannister into the microscope, but this would not 

be cost effective, since the time required to perform such a procedure would be 

prohibitive.
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CHAPTER 9 : DEVELOPMENTAL STUDY OF LPO SYNAPSES

9.1 : INTRODUCTION

It has been suggested previously in this thesis, and elsewhere (see Chapter 4 

for review), that learning, and subsequent memory formation may result in an 

alteration of synaptic structure. It has been shown that the synapse is an 

extremely plastic structure, and is modifiable by a variety of experiential 

factors (for review, see Greenough 1985). Structural changes may occur 

through synaptic use or disuse (Rutledge 1976). One method of investigating 

these structural changes, is by examining the synapses during normal 

development, when they are used increasingly (cumulatively) with time. Early 

development is a period of intense information acquisition, and hence structural 

changes seen during this time, may in part, reflect plasticity due to memory.

There is a general agreement on the developmental course of certain synaptic 

characteristics of mammalian brain during early development. Synaptogenesis is 

one constant feature of early development, and is usually rapid and of large 

magnitude (Nixdorf 1989, Aghajanian and Bloom 1967, Mates and Lund 1983b, 

Jones and Cullen 1979). In addition to the increase in synapse number, there are 

changes in the size and shape of synapses. There appears to be a thickening of the 

post-synaptic derisity (DeGroot and Vrensen 1978, Markus et al 1987), and an 

increase in the number of vesicles per synapse (Devon and Jones 1981, Dyson 

and Jones 1980). However, there is widespread disagreement on other 

parameters, e.g. synaptic length (DeGroot and Vrensen 1978, Dyson and Jones 

1980, Jones and Cullen 1979, Petit 1988, Markus et ai 1987), cleft width 

(DeGroot and Vrensen 1978, Markus eta ! 1987), and changes in the number of 

pre-synaptic dense projections (DeGroot and Vrensen 1978, Nixdorf 1990b).
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Comparatively little data has been obtained on the synaptic development of the 

avian brain, and in particular, that of the domestic chick. In common with 

mammalian synapses, the avian synapses also undergo a rapid increase in 

number during early development (Curtis et al 1989, Nixdorf 1990b, Bradley 

and Galal 1984, Bradley 1985). Synaptic size on the other hand, appears to be 

more stable, increasing little with age in the first few weeks post-hatch (Curtis 

et al 1989, Nixdorf 1990b, Rostas et al 1984). There is little data on synaptic 

size in pre-hatch chicks, but synaptic size has been shown to increase rapidly in 

the IMHV between 1 and 2-days post-hatch. Synaptosomal preparations from 

chick forebrain have also shown that PSD's increase in length between 16-days 

In ovo, and 2-days post-hatch.

Recent studies have suggested a role for the LPO in memory formation (for 

review, see Stewart 1990). It is therefore necessary to have some baseiine data 

with which to compare the plastic changes that are brought about by a learning 

task, with those already established by normal development. The naive state of 

the nucleus may then be compared with post-hatch development, when 

experience and memory formation are prevalent.

9.2 : MATERIALS AND METHODS

A n im a ls  : Approximately 50 chick eggs (Ross i) were incubated in the 

department animal house. Hatched chicks were subsequently reared as a single 

group, and kept in communal brooders. Temperature was kept at a constant (38- 

40^0) throughout the experiment. Eggs were rotated in the incubator. Hatched 

chicks were exposed to a constant 12 hour light/ 12 hour dark cycle. Chick 

embryos aged 16 days In ovo (El 6) were excised from their shells. It has been
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shown that by E16, neurons in the chick telencephalon have migrated to their 

final 'adult' positions (Tsai et al 1981a). This is also the minimum age at which 

the major post-synaptic density protein could be detected in sub-cellular 

fractions from chick brain (Rostas et al 1984). This protein is thought to be 

the main factor influencing synaptic thickness (Rostas et al 1984). It was 

therefore decided to select this age as a starting point for the developmental 

study. The El 6 chicks were given an intra-peritoneal injection of 0.05 ml 

sodium pentobarbitone (60 mg/ml), and then perfused through the left ventricle 

of the heart with approximately 100 ml of a solution containing 2% 

glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate buffer (final 

osmolarity was approximately 1130 mOsm), using a peristaltic pump. Groups of 

chicks of 1 day (day after hatching) (PI), 9 days (P9), and 22 days (P22), 

were used for the post-hatch period of the experiment. These chicks were given 

an intra-peritoneal injection of 0.1 ml of sodium pentobarbitone (60 mg/ml). 

They were then perfused in a similar manner to that described above for the 

pre-hatch chick embryos, however 20 ml of 0.9% NaCI (saline) preceded the 

fixative fluid.

Tissue Analysis : The El 6 and P9 groups both contained 5 chicks. One brain 

from each of the PI and P22 groups was not adequately fixed, and hence this 

group contained 4 chicks. Since it was decided to restrict analysis to a single 

batch of chicks (from common parentage), it was not possible to increase these 

numbers. Each brain was dissected from it's cranium, and the hindbrain 

removed. The posterior surface of the forebrain was then attached to a metallic 

chuck with glue, which was then transferred to a Reichert-Jung vibratome. 

From the tip of the frontal lobe, a section of a random thickness (between 10 and 

100 pm) was discarded. This section did not contain any part of the LPO, since
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the LPO lies caudal to this plane. This procedure achieved a random starting 

position for subsequent sections. A section of approximately 100 pm thickness, 

was then taken and mounted onto a glass slide. A light micrograph of this 'thick' 

unstained section was made at a magnification of X35. This micrograph was used 

to estimate the volume of the LPO, and the procedure for this is described below. 

From this position, a section approximately 200 pm thick was cut, and was 

subsequently processed for electron microscopy. A further section of 100 pm 

thickness was cut and subsequently discarded. The next successive section was cut 

(100 pm thick), mounted on a slide and then photographed for volume analysis. 

Hence, a repetitive systematic cycle of sections were cut, some being used for 

volume estimation of the LPO, and others being processed for electron 

microscopy. This process was continued until thé blade cut through through the 

optic lobes, or the section displayed lateral divergence of the ventricles, which 

occurs near the point of appearance of the optic lobes. This ensured that at least 

12 micrographs were obtained from each brain for use in the volume analysis. 

From the samples of tissue processed for electron microscopy, two were selected 

at random for subsequent analysis. Quantitative analysis of synaptic numerical 

density within these blocks was made using the 'disector' principle, as described 

previously (Chapter 8, Section 2).

Volume estimation of chick LPO : The volume of the LPO of each hemisphere 

of individual brains, was estimated using Cavalieri's principle (Gündersen and 

Jensen 1987). The area of brain occupied by the LPO on each micrograph 

(obtained as described above) was estimated with the aid of a stereotaxic atlas 

(Salzen and Williamson, unpublished). The atlas was designed for use with chicks 

aged 0-2 weeks of age, with appropriate scales for each age. The approximate 

boundary of the LPO was drawn onto each of the micrographs. Since there is no
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clear boundary, this was largely performed as a rough approximation, and an 

atlas was used as guidance (Saltzen and Williamson, unpublished). A test grid 

lattice, with intercept sample points separated by a distance of 1 cm, was 

overlayed in random orientation, onto the micrographs. The nurhber of points 

which lay within the delineated LPO in each hemisphere was noted. The volume 

could be then calculated from the formula;

V = t. (A-|+A2+....+App)

where; 'm' is the random number of systematic sections, of areas 'A-|,A2.....A ^ '.

T is the distance between section planes. Planar areas may be unbiasedly and 

efficiently estimated from point-sampled intercepts, such that;

A|po = (a/p).P|po

where; 'a/p' is the unit area between test points (corrected for magnification), 

and 'P' is the number of test points hitting the LPO. Combining the above two 

equations;

V|po = t.(a/p).P|pQ

Synaptic identification : Synapses were identified by the criterion described 

previously (Chapter 8, Section 2). They were further classified on the basis of 

the appearance of the post-synaptic thickening, and the nature of the post- 

synaptic target. Four groups of synapse were identified; asymmetric spine 

(ASp), asymmetric shaft (ASh), symmetric spine (SSp) and symmetric shaft 

(SSh). The 'spine' and 'shaft' relate to the appropriate region of the dendrite. The 

few axo-somatic synapses were classified along with the 'shaft' groups. 

Occasionally, it was impossible to assign a given synapse into one of the 

categories above, either because of the ambiguous nature of the target, or of the 

post-synaptic density. When this happened, they were simply allotted to a 

blanket group (ie. 'shaft', 'spine', 'symmetric' or 'asymmetric'), and were 

included in the analysis where possible. Very rarely, although identified as
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'synaptic', no particular label could be applied. These 'unknowns' were counted 

for the purpose of measuring overall synaptic density, but were omitted from 

individual grouping analysis. The numbers of axo axonic, dendro-dendritic, and 

axo-glial synapses were negligible. Where these occurred they were excluded 

from the analysis. The numbers of perforated synapses were also small, and 

impossible to count using the 'disector' method as used in this study. The disector 

can be a useful way of providing an unbiased sample, from which to estimate the 

proportion of perforated synapses. However, this would entail complete serial 

section of the chosen synapses, and would be extremely time-consuming and 

laborious. The disector principle as used in this study, relies upon sectioning 

through the periphery of the synapse, and therefore cannot be used to count 

perforations, which tend to be located in the centre of the synapse (Geinisman et 

al 1987a, 1987b, DeGroot and Vrensen 1978).

Calculation of synaptic numerical density : The numerical density of 

synapses in a given hemisphere of the LPO (Nvgyn) was calculated using the 

formula;

Nvgyn = ZQ syn /

where; 'ZQ ' represents the sum of the synapses present in the counting frame of 

the 'selected' section but absent in the 'reference' section, 'h' is the distance 

between disector planes, and 'A' is the sample area. The sample area was defined 

by the boundaries of the sampling frame, appropriately corrected for 

magnification. The bottom and left-hand boundaries of the frame were deemed 

'forbidden lines' (Gündersen 1977). Any synapse crossing this line was 

automatically excluded from the count. These forbidden lines were placed at least 

3 cm inside the boundaries of the micrograph. In addition, the numerical 

densities of the synaptic groups were calculated using the same formula. Hence;
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'^''Asymm = ^°A sym m  '  ^''Symm =^° 'sym m  '

'^''Spine = ^°'sp ine  "^ShaH Asymm' *

^''ASp °  ^°A Sp '  ’̂ ''ASh “^°A Sh '

'̂ ''sSp “ ^°'sSp '  *’■* '̂ ''sSh “ ^°'sSh '   ̂*
The values of numerical density for these eight groups were converted into

percentage values of the total synaptic numerical density, for ease of comparison.

By representing the data in this way, it was possible to readily identify whether

any increase or decrease in synaptic density could be attributable to specific

synaptic groups, and whether there was a re-distribution of synaptic types. This

may occur in the absence of any overall change in synaptic number.

C alcu lation  of synaptic number (Ngy^)  : Estimates of Nvgyp were 

converted into absolute number measurements (Ngy^) using the formula;

Ngyn == ^^syn- ^LPO

where; V|_pQ is the estimate volume of LPO for a given hemisphere. Such 

estimations of number were made for all classes of synapse.

Estimation of synaptic height : An unbiased assessment of mean 'projected 

height' of the post-synaptic density (PSD) (an indicator of relative size), was 

made using a formula derived from the 'disector' principle (Sterio 1984);

Hsyn = ^Qsyn-*^  ̂ syn 

where 'ZOgyn' 'S the number of synaptic profiles present in the counting frame 

of the 'selected' sections, 'ZQ'gyn' 's the sum of the number of synaptic profiles 

present in the counting frame of the 'selected' sections but absent in the 

'reference' sections, and 'h' is the distance between disector planes. The 

estimations of synaptic height were based entirely upon asymmetric synapse 

profiles, since symmetric synapse profiles were too few in number to make any
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statistically valid measurements.

Statistical analysis : Students' T-tests were used to compare mean estimates

of NVgy ,̂ NvAsymm, Nvsymm. Nvspine- Nvshaff % s p ’ % S h '  ^''sSp

NVssh» based on results calculated from six animals per group. Paired Students' 

t-tests were used to compare mean Nvgyn. Ngyp, and Hgyp estimates of LPOs 

taken from the right and left hemispheres of the same individuals. A one-way 

analysis of variance (ANOVA) was used to test the effect of age on the estimated 

values of Nvgyp. Ngy^ and Hgyn- A two-way ANOVA was also used, to test the 

significance of the effects of age on the observed mean NvgypS, Ngy^s and Hgy^s, 

and to test whether age influenced the hemispheres differently. Where 

appropriate, paired sample ANOVAs were made using a repeated measures 

multivariate analysis of variance (MANOVA) program of Statistical Package for 

Social Sciences (SPSS) on the Open University mainframe computer. 

Significance of the statistical tests was assumed when the probability of 

significance was greater than 0.95 (95% level).

9.3 : RESULTS

a) QUALITATIVE ANALYSIS

Pre-hatch (E l 6) : The tissue is characterised by large axonal and dendritic 

processes, separated by large interstitial spaces. Both asymmetric and 

symmetric synapses are present, though the proportion of the latter is less than 

5% of the total. Astrocytes are abundant, and contain numerous polyribosomes. 

There were many post-synaptic thickenings devoid of any pre-synaptic 

component. These profiles have been likened to 'free-postsynaptic thickenings' 

described by Wolff (1978), and Spacek (1982). There were also profiles of 

pre- and post-synaptic thickenings in the absence of vesicles. 'Complete'
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synapses appeared 'immature' in form, since they contained only a few synaptic 

vesicles. This made identification more difficult, though in the majority of cases 

classification was possible. No perforated synapses were seen in the tissue.

Early post-hatch (P I) : The interstitial space had become negligible by this 

age. The frequency of profiles resembling 'free post-synaptic thickenings' had 

reduced significantly, such that their presence in the post-hatch material was 

rare. Many more smaller axons were present. The dendrites had also reduced in 

size, and appeared more circular in profile. Synaptic densities appeared larger, 

and the synaptic boutons had more aggregates of synaptic vesicles. Occasionally, a 

perforation was seen, though these were rare.

Late post-hatch (P9, P22) : There was no qualitative difference between 

the P9 group, and the P22 group. The most obvious difference between this 

material and that from the early post-hatch, and pre-hatch groups, is the 

apparent increase in the number of synaptic profiles. There appeared to be an 

increase in the synaptic length, and an increase in its curvature.

b) QUANTITATIVE ANALYSIS : SYNAPTIC DENSITY 

A ll synapses : The estimated mean values of Nvgy^ for each hemisphere of 

chick LPO at various ages, are shown in Table 9:1. There is a 7-fold increase in 

the density of synapses in the left hemisphere LPO, between 16 days pre-hatch 

and 9 days post-hatch, and a corresponding 10-fold increase in the right 

hemisphere. There is a subsequent 36% reduction in synaptic density over the 

following 13 days in the left hemisphere, but no corresponding fall in density in 

the right hemisphere. The mean value of Nvgy^ at 9-days post-hatch in the left 

hemisphere LPO, is significantly higher than that in the right hemisphere
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Fig.9a : 16 days in ovo: Synapses are associated with few synaptic vesicles. 
There are numerous membrane thickenings (arrowheads) devoid of any 
presynaptic component. Fig.9b : 1 day post-hatch: Spines (arrow) receive 
mainly asymmetric synapses. Fig.9c : 9 days post-hatch: A dendritic spine 
(arrow), and synaptic-like dense projections, (open arrowheads) are shown. 
Fig.9d : 22 days post-hatch: There is no qualitative difference between the 
tissue of this age group and that of 9-days post-hatch. Key: "-asym m etric 
synapse, s-symmetric synapse, a-axons, A-Astrocyte process, Sh-Dendritic 
shaft, Scale bar = 1pm.
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(Paired t-test: t=5.67 (df=4) p<0.05). A one-way ANOVA (Table 9:3) also 

shows the significant effect that age has on the density of synapses in both left and 

right hemisphere LPO (Left hemisphere: F3 14=39.00, p<0.05. Right 

hemisphere: F3 14=26.79, p<0.05). A two-way ANOVA (Table 9:4) confirmed 

the significant increase in synaptic density with age (F3 28=62.46, p<0.05), 

and that this increase is significantly different between hemispheres 

(Ff 28=6 68, p<0.05). An interaction effect of age and hemisphere was shown 

(F3,28=5.59, p<0.05). This reflects the divergent rates of growth in synaptic 

density during the post-hatch period, between the two hemispheres (Fig.9:1).

Asymmetric synapses : The vast majority of synapses in the chick LPO are of 

the asymmetric type. It is not surprising therefore to see that the results of the 

statistical tests mimic those for 'All synapses' (above). The comparison of 

estimated mean values of Nvy^gy^^ (see Appendix 3) between hemispheres is 

significant for the 9-day old group only (Paired t-test: t=6.63 (df=4) p<0.05) 

(Table 9:2a). A one-way ANOVA (Table 9:3) demonstrates a significant increase 

in N v ^ g y ^ ^  in both right (F3 1 4 =8 .7 1 , p<0.05) and left hemisphere LPO 

(F3 14=10.38, p<0.05). A two-way ANOVA (Table 9:4) shows significant 

effects of age (F3 28=^6.74, p<0.05), and hemisphere (Fi 28=6:54, p<0.05). 

There is also a significant interaction of these two effects (F3 28=6-26. 

p<0.05). The results are displayed graphically in Fig.9:2a.

Symmetric synapses : A small, but significant increase in N Vgy^^ was seen 

in both hemispheres with increasing age (One way ANOVA: Left hemisphere: 

F3 ,14=10.38, p<0.05. Right hemisphere: F3 14=10.76, p<0.05) (Table 9:3). 

The mean estimated N vgy^^  values however, were not significantly different 

between hemispheres at any given age (Paired t-test. Table 9:2a). A two-way
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ANOVA showed significant effects of age (F3 28=20.94, p<0.05), but no 

significant hemisphere or interaction effects (Table 9:4). The mean values are 

shown graphically in Fig.9:2b, and also given in Appendix 3.

Asymmetric and Symmetric synaptic ratios : When one views the results 

in terms of the proportion of asymmetric and symmetric synapses as a 

percentage of the total (Fig.9:2c,d), one can see that the proportion of 

asymmetric synapses increases steadily over the time period of study, whilst the 

proportion of symmetric synapses undergo a corresponding decrease. Although 

statistical analysis was not applied to these results'*, it can be seen that there 

is no apparent difference in this trend between the hemispheres.

Spine synapses : The large majority of synapses were targeted onto dendritic 

spines, as can be seen by comparing the estimated mean values of Nvgpi^g (given 

in appendix) with the mean estimated values of Nvgy^ (Table 9:1). As a 

consequence, the pattern of significance of the statistical tests, mimics that seen 

for NVgy^. The 9-day old chicks show a hemispheric difference in estimated rnean 

Nvspine' with the left hemisphere having a greater density of synapses than the 

right (Paired t-test: t=5.51 (df=4), p<0.05) (Table 9:2a). Both hemispheres 

have a significant increase in synaptic density over the time period of study 

(One-way ANOVA: Left hemisphere; F3 14=49.65, p<0.05. Right hemisphere; 

F3 1 4 =22 .17, p<0.05) (Table 9:3). A two-way ANOVA (Table 9:4) shows that 

as well as a significant increase in Nvgpjpg with age (F3 28=66.56, p<0.05), 

there is also a difference in this respect between the hemispheres 

(Ff 28=12.62, p<0.05) with a significant interaction effect of hemisphere with 

age (F3 28=6-36, p<0.05). A graph of these results is shown in Fig.9:3a, and

I Analysis requires arcsine transformation of raw data (Bishop 1971).
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the mean values ± SEM are given in Appendix 3.

Shaft synapses : There were no significant differences between mean estimated 

values of Nvg^g^^ of right and left hemispheres at either of the ages studied 

(Table 9:2a). There was however, a significant increase in these means with age 

(see Appendix 3), up to 9-days post-hatch, in both left (F3 44=5.12, p<0.05), 

and right hemisphere (F3 14=6.21, p<0.05) using a one-way ANOVA as the 

statistical test (Table 9:3). A two-way ANOVA, comparing the effects of age with 

hemisphere also showed a significant contribution of the effects of age 

(F3,28=10.41, p<0.05) (Table 9:4). As suggested by the paired t-tests (Table 

9:2a), the two-way ANOVA showed no significant effect of hemisphere 

(F i 28=0-15, p>0.5) or any interaction of hemisphere with age (F3 28=0.86, 

p^0.05). The results are displayed in graphically in Fig.9:3b.

Spine and Shaft synaptic ratios : By plotting the results of Nvgpi^g and 

Nvshaft as percentages of the total synaptic density (Fig.9:3c,d), one can see an 

apparent hemispheric asymmetry in the distribution of these ratios. The left 

hemisphere has a larger ratio of spine synapses than the right, and consequently, 

the right hemisphere has a larger ratio of shaft synapses than the left. These 

differences are only seen in the post-hatch period. There is no detectable 

asymmetry in the pre-hatch chicks. The actual differences in ratio in the post

hatch chicks are very small (approximately 5%), though of course these cannot 

be proven using the chosen statistical tests, since the values are not absolute. 

This can be done however, by using an arcsine transformation on the data (Bishop 

1971), but this was considered unnecessary in the present case, since more 

extensive statistics has been performed on the absolute values. Another 

interesting point to note, is that the proportion of a given synaptic type (spine or
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shaft) remains remarkably constant throughout the post-hatch period, but is 

subject to modification in the late pre-hatch period. This occurs in spite of the 

hemispheric asymmetry that exists in the ratio of spine and shaft synapses post

hatch.

Asymmetric Spine synapses : Approximately 75% of synapses in the right 

hemisphere LPO and approximately 85% in the left hemisphere LPO, are of the 

asymmetric spine type (see Appendix 3 for mean values). Since this is the vast 

majority of synapses, the pattern of significance of the statistical tests again 

mimics that of the results of Nvgy^. There is a hemispheric asymmetry of Nv/^gp 

at 9-days post-hatch (Paired t-test: t=7.10 (df=4) p<0.05) (Table 9:2b). This 

is the result of a greater increase in Nv^gp in the left hemisphere compared to 

the right with age, between 1- and 9-days post-hatch (Fig.9:4a). This 

asymmetry disappears by 22-days post-hatch due entirely to a decrease in 

synaptic density, mainly from the asymmetric spine type. This divergence of 

densities between the two hemispheres is reflected in the statistical significance 

of the interaction effect of a two-way ANOVA, comparing hemisphere with age 

(F3,28=7-91, p<0.05) (Table 9:4). The hemispheric asymmetry is present at 9 

days post-hatch only. This however, is sufficiently large as to cause a significant 

hemisphere effect in the two-way ANOVA, despite the fact that the test reflects 

the variance of the sample from chicks of all ages (F^ 28=1^-64. p<0.05) 

(Table 9:4). There is also a significant increase in Nvy^gp over the period of 

study in both left (One-way ANOVA: f g j  4 =54.00, p<0.05) and right 

hemisphere (One-way ANOVA: Fg 14=22.12, p<0.05) LPO (Table 9:3).

Asym m etric Shaft synapses : The density of asymmetric shaft synapses 

increased from 16 days in ovo until 9 days post-hatch, in both hemispheres 

(Fig.9:4b) (see Appendix 3). Statistical analysis of the change in density of these
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synapses over the period of study, revealed significant changes in both left (One

way ANOVA: F3 14=4.68, p<0.05) and right hemispheres (One-way ANOVÀ: 

F3,14=15.08, p<0.05) (Table 9:3). A comparison of means at the various ages 

of study (Paired t-test. Table 9:2b) showed no statistically significant 

differences. A two-way ANOVA (Table 9:4) was also unable to find any significant 

effect of hemisphere (Fi 23=0 50, p^0.05), nor a significant interaction of 

hemisphere with age (F3 28=1-^^- p^0.05).

Asym m etric Spine and Asymmetric Shaft synaptic ratios : There is a 

hemispheric asymmetry in the ratio of asymmetric spine, and asymmetric shaft 

synapses in the LPO (Fig.9:4c,d). There is a greater preponderance of 

asymmetric spine synapses in the left hemisphere, and a corresponding greater 

ratio of asymmetric shaft synapses in the right hemisphere. Again, the ratio of 

both of these synaptic types is remarkably constant during the post-hatch 

period, but differs somewhat from the ratio of synaptic types present in the late 

embryonic phase. The percentage of asymmetric spine synapses is lower in both 

hemispheres during the late embryonic phase. This is balanced by a 

correspondingly greater proportion of asymmetric shaft synapses during this 

phase. There is no hemispheric asymmetry in these ratios before hatching.

Sym m etric Spine synapses : A one-way ANOVA (Table 9:3) shows a 

significant increase in the density of symmetric spine synapses from 16 days in 

ovo until 9 days post-hatch (see also Appendix 3 for mean values). The test is 

significant for both left hemisphere (F3 14 =7 .2 6 , p<0.05) and right 

hemisphere LPO (F3 14=6.58, p<0.05). There were no significant differences 

between the hemispheres with regard to the mean estimated values (Paired t- 

tests. Table 9:2b). A two-way ANOVA also showed no significant effect of
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hemisphere on the observed values of Nvggp (F i 28=6.02, p>0.05), nor a 

significant interaction of hemisphere with age (F3 28=6-1^- P^O.05) (Table 

9:4). The mean values and standard error of the means are given in Appendix 3, 

and shown graphically in Fig.9:5a.

Symmetric Shaft synapses : There were no significant differences between 

the hemispheres with respect to the estimations of mean Nvgg^, using paired t- 

tests to compare means (Table 9:2b). The density of symmetric shaft synapses 

remained constantly low throughout the period of study (One-way ANOVA, Table 

9:3). A two-way ANOVA revealed no significant effects of age, hemisphere or 

interaction of these effects (Table 9:4). The results are shown in Fig.9:5b, and 

the means ± SEM are given in Appendix 3.

S ym m etric  Spine and Sym m etric Shaft synap tic  rat ios : The

proportions of symmetric spine and symmetric shaft synapses, expressed as 

percentages of the total synaptic population, are both less than 10%. The ratio 

decreases steadily during the developmental period under study, such that by 22 

days post-hatch, there is approximately a 5% reduction in the ratio 

(Figs.9:5c,d). This decrease occurs in both right and left hemisphere LPO.

Table 9:1 : Mean ± SEM NVgy^

Age Left Hemisphere Right Hemisphere Paired t-value

El 6 0.23 ± 0.12 0.11 ± 0.07 0.83 (4) ns
PI 0.57 ± 0.09 0.64 ± 0.06 0.50 (3) ns
P9 1.72 ± 0.11 1.06 ± 0.11 5.67 (4) *
P22 1.10 ± 0.10 1.06 ± 0.10 0.20 (3) ns

ns - not significant, * - significant at p ^ .05 , df in parenthesis
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F ig .9:1 Mean numerical density of synapses ± SEM of right and left 
hemisphere LPO during late pre-hatch and early post-hatch development. 
Each estimate is based on at least 4 chicks (see text for details).
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Table 9:2a : Paired t-test of left versus right hemisphere LPO 
synaptic density during development.

Asymm Symm Spine Shaft
E16
df=4

PI
df=3

0.87 (ns) 

0.58 (ns)

0.92 (ns) 

0.12 (ns)

0.69 (ns) 

0.21 (ns)

0.47 (ns) 

1.06 (ns)

P9
df=4 6.63 (*) 1.14 (ns) 5.51 n 0.34 (ns)

P22
df=3 0.17 (ns) 0.85 (ns) 0.79 (ns) 0.96 (ns)

Results are given as paired t-values,

* - significant at p<0.05, ns - not significant 
see Appendix 3 for means ± SEM

Table 9:2b : Paired t-test of left versus right hemisphere LPO 
synaptic density during development.

ASp ASh SSp SSh
E16
df=4

0.78 (ns) 1.19 (ns) 0.59 (ns) 0.78 (ns)

P I
df=3 0.15 (ns) 0.79 (ns) 0.20 (ns) 0.32 (ns)

P9
df=4 7.10 (*) 0.84 (ns) 0.26 (ns) 0.65 (ns)

P22
df=3 0.76 (ns) 1.16 (ns) 1.00 (ns) 1.41 (ns)

Results are given as paired t-values,

* - significant at p<0.05, ns - not significant 
see Appendix 3 for means ± SEM
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Table 9:3 : One-way ANOVA of the Effects of Age on the Numerical 
Density of Various Synaptic Types

Type Left Hemisphere Right Hemisphere

A ll 39.00 n 26.79 (*)

Asymm 10.38 n 8.71 (*)

Symm 10.38 n 10.76 (*)

Spine 49.65 (*) 22.17 (*)

Shaft 5.12 n 6.21 (*)

ASp 54.00 (*) 22.12 (*)

ASh 4:68 (*) 15.08 (*)

SSp 7.26 n 6.58 (*)

SSh 0.83 (ns) 2.20 (ns)

Results are given as F-values, df=3,14 

* - significant at p<0.05, ns - not significant

rs
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Table 9:4 : Two-way ANOVA of the Effects of Age and Hemisphere 
on the Numerical Density of Various Synaptic Types

Type
Age 1 

df=3,28 1
Hemisphere

df=1,28
Interaction  

L  df=3,28

A ll 62.46 (*) 8.98 n 5.59 (*)

Asymm 73.74 (*) 9.54 (*) 6.28 (*)

Symm 20.94 (*) 2.29 (ns) 0.17 (ns)

Spine 66.56 n 12.62 (*) 6.36 (*)

Shaft 10.41 (*) 0.15 (ns) 0.86 (ns)

ASp 69.28 n 15.64 (*) 7.91 n

ASh 17.47 n  1 0.50 (ns) 1.77 (ns)

SSp 13.50 n 0.02 (ns) 0.17 (ns)

SSh 2.07 (ns) 0.37 (ns) 0.52 (ns)

Results are given as F-values,
* - significant at p<0.05, ns - not significant
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F ig .9 :2a .b  Mean numerical density of asymmetric and symmetric 
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and early post-hatch development. Each estimate is based on at least 4 
chicks (see text tor details).
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percentage of the total ± SEM, of right and left hemisphere LPO during 
late pre-hatch and early post-hatch development. Each estimate is based 
on at least 4 chicks (see text for details).

106



Fig.9.3a Nv-Spine
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Fia.9:3a,b Mean numerical density of spine and shaft synapses ± SEM of 
right and left hemisphere LPO during late pre-hatch and early post-hatch 
dcvolopmont. Each estimate is based on at least 4 chicks (see text for 
details).
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Fia.9:3c.d Mean number of spine and shaft synapses as a percentage of 
the total ± SEM, of right and left hemisphere LPO during late pre-hatch 
and early post-hatch development. Each estimate is based on at least 4 
chicks (see text for details).
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Fig.9.4a Nv-Asymm Spine
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F ia .9 :4 a .b  Mean numerical density of asymmetric spine and 
asymmetric shaft synapses ± SEM of right and left hemisphere LPO 
during late pre-hatch and early post-hatch development. Each estimate is 
based on at least 4 chicks (see text for details).
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F ig.9:4c.d Mean number of asymmetric spine and asymmetric shaft 
synapses as a percentage of the total ± SEM, of right and left hemisphere 
LPO during late pre-hatch and early post-hatch development. Each 
estimate is based on at least 4 chicks (see text for details).
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Fiq.9:5a.b Mean numerical density of symmetric spine and symmetric 
shaft synapses ± SEM of right and left hemisphere LPO during late pre
hatch and early post-hatch development. Each estimate is based on at least 
4 chicks (see text for details).
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F ig .9 :5c .d  Mean number of symmetric spine and symmetric shaft 
synapses as a percentage of the total ± SEM, of right and left hemisphere 
LPO during late pre-hatch and early post-hatch development. Each 
estimate is based on at least 4 chicks (see text for details).
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c) QUANTITATIVE ANALYSIS : LPO VOLUME ESTIMATION

The volume of LPO tissue did not increase significantly over the period of 

development between 16-days in ovo, and 22 days post-hatch (Fig.9:6a). Mean 

values of V lp q  are shown in Table 9:5a. Using a paired t-test to compare mean 

volume of left and right hemisphere LPO of chicks of a given age, no statistically 

significant differences could be found (Table 9:5a). There was no significant 

increase in LPO volume of either right (One-way ANOVA: Fg 05)

or left hemisphere (One-way ANOVA: F3 2q=2-87, p^0.05) (Table 9:5b). A 

two-way ANOVA (Table 9:5c) showed that LPO volume remained constant during 

the developmental period under investigation (F3 4q=2.78, p^0.05). There was 

also no significant effects on the estimation of LPO volume, due to differences 

betvyeen the hemispheres (F-| 40=0.18, p>0.05). There was a good correlation 

between the volumes of right and left hemispheres of each brain (R=0.86, 

p<0.05), and that a straight line of least squares passes close to the origin 

(Fig.9:6b).

Table 9:5a : Mean ± SEM LPO Volume (mm^)

Age Left Hemisphere Right Hemisphere Paired t-value

El 6 0.56 ± 0.11 0.44 ± 0.11 1.28 (5) ns
PI 0.77 ± 0.12 0.60 ± 0.10 1.10 (5) ns
P9 0.75 ± 0.11 0.95 ± 0 .1 4  1.13 (5) ns
P22 0.76 ± 0.14 0.70 ± 0.14 0.29 (5) ns

ns - not significant, df in parenthesis
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Table 9:5b : One-way ANOVA of the Effects of Age on 
LPO Volume

Left Hemisphere Right Hemisphere

F-value 0.72 (3 ,2 0 )

df in parenthesis

2 87 (3 ,20)

Table 9:5c : Two-way ANOVA of the Effects of Age and 
Hemisphere on LPO Volume

Age Hemisphere Interaction

F-value 2 78 (3 ,40 ) 0-16 (1 ,40)

df in parenthesis

0-81 (3 ,40 )

Fig.9.6a

1.2n

Volume of LPO

0  Left LPO 
B  Right LPO

i
I
3
s

a

1 9
AGE (days from hatch)

Fia.9:6a Mean volume ± SEM of right and left hemisphere LPO during 
late pre-hatch and early post-hatch development. Each estimate is based 
on 6 chicks.
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Flg.9,6b Hemisphere Volume Correlation
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FlQ.9 :6b Volume correlation plot of volume from left (x-axis) and right 
hemisphere (y-axis) LPO of individual chicks. A line of least squares 
which represents the best straight line fit is drawn. As the gradient of 
this line is approximately 1, one can conclude that the hemispheres are 
approximately equal in size. A regression co efficient (R) of 0.86 
confirms that there is a good correlation of volume between hemispheres.

d) QUANTITATIVE ANALYSIS : SYNAPTIC NUMBER 

Aii synapses : The mean values of Ngyp are given in Appendix 4. Since the 

volume of LPO did not significantly alter during the early developmental period, 

the results for the total number of synapses, reflect the pattern seen for synaptic 

density. Hence a statistically significant difference in Ngy^ exists at 9-days 

post-hatch between left and right LPO (Paired t-test: t=2.85 (df=4) p<0.05) 

(Table 9:6a). There is no significant difference in this respect at any of the other 

ages studied. A one-way ANOVA (Table 9:8) revealed significant increases in 

N gyn  in both left (Fg^ ^ = 4 8 .7 5 , p<0.05) and right hemispheres

(F3 14=36.99, p<0.05) with age. The difference between hemispheres at 9 days 

post-hatch (Table 9:6a, Fig.9:7), is sufficient to cause a statistically significant 

effect of hemisphere on the observed mean values of Ngy^, using a two-way 

ANOVA (Fi 28=G.82, p<0.05) (Table 9:9), but not a significant interaction of
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hem isphere with age (F3  28=1-13» p^O.05) as was seen in the results of Nvgy^ 

(Table 9:4, Fig.9:1).

A sym m etric s y n a p s e s  : The mean values of N ^ g y ^ ^  are given in Appendix 4, 

and are displayed graphically in Fig.9:8a. There is an increase in this param eter 

with age (One-way ANOVA: Table 9:8) in both left (F3  14=57.15, p<0.05) and 

right hem isphere (F3  14=41.11, p<0.05). A hemispheric asymmetry exists at 

9-days post-hatch, with the left containing 1.3 tim es as  many asymm etric 

synapses as  the right (Paired t-test: t=3.16 (df=4) p<0.05) (Table 9:7a). A 

two-way ANOVA revealed significant effects of both age (F3  28=58.05, p<0.05) 

and hem isphere (Fi 28=7-00» P<0.05), but no interaction of these  effects 

(F 3 ,2 8 =1 -24, p^0.05) (Table 9:9).

S y m m e tric  s y n a p s e s  : There were no statistically significant differences 

between the hem ispheres with respect to the estim ated mean N g y ^ ^  values 

(Table 9:7a). A two-way ANOVA also failed to reveal any hemispheric differences 

(Table 9:9). However, the number of symmetric synapses of both hem ispheres 

increased with age over the period of study (One-way ANOVA: Left hemisphere, 

(F 3  14=13.67, p<0.05. Right hem isphere, (F3  14=13.24, p<0.05)) (Table 

9:8), at least until the age of 9-days post-hatch. As can be seen  in Fig.9 :8 b, 

there was a  substantial decrease in N g y ^^  between 9- and 22-days post-hatch, 

in both hemispheres. Mean values of N g y ^ ^  ± $EM are displayed graphically in 

Fig.9:8b, and values are given in Appendix 4.

S p ine  s y n a p se s  : The mean estimated values of Ngpj^g are shown in Fig.9:9a, 

and are also given in Appendix 4. The estimated means derived from left and right 

hem ispheres of individual brains were compared using a Paired t-test (Table
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9:7a). A statistically significant difference was seen at 9-days post-hatch 

(t=2.87 (df=4) p<0.05). There was an increase in Ngpjpg up to 9-days post

hatch, beyond which there was a subsequent decline (Fig.9:9a). The overall 

changes in Ngpj^g were analysed using a one-way ANOVA for both left 

(Fg 14=58.76, p<0.05) and right hemisphere (F g j 4=26.21, p<0.05), where 

a significant change was seen in both cases (Table 9:8). Although there was a 

significant alteration in Ngpj^g in both hemispheres (Two-way ANOVA: 

F3 ,28=78.74, p<0.05), the pattern was different between the hemispheres 

(Two-way ANOVA: Fi 28=9-38, p<0.05) (Table 9:9). There was however no 

interaction of both age and hemisphere on the estimates of Ngpj^g (Two-way 

ANOVA: F3 28=1-51. p^.05 ) (Table 9:9).

Shaft synapses : Although the number of Shaft synapses increased with age 

(taking into account an overall reduction between 9- and 22-days post-hatch) 

(One-way ANOVA: Left hemisphere, F3 14=11.21, p<0.05. Right hemisphere, 

F3 14=26.21, p<0.05) (Table 9:8), there was no significant difference in the 

estimated values of Ng^gft between the hemispheres (Paired t-test. Table 9:7a, 

Two-way ANOVA: F3 28=36.27, p<0.05. Table 9:9). The developmental profile 

of this particular synaptic group can be seen in Fig.9:9b, and mean values ± SEM 

are given in Appendix 4.

A sym m etric  Spine synapses : The majority of synapses are of the 

asymmetric spine type. The mean values of N^gp are given in Appendix 4. A 

comparison of left and right hemisphere N^gp mean values using a Paired t-test 

(Table 9:7b), revealed that the left hemisphere has a significantly greater 

number of asymmetric spine synapses than the right hemisphere, at 9-days 

post-hatch (t=3.97 (df=4) p<0.05). This hemispheric difference is also shown
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in a two-way ANOVA (Table 9:9) comparing the effects of hemisphere and age on 

the observed values of N^gp (F^ p<0.05). The number of

asymmetric spine synapses increases steadily until 9-days post-hatch, when 

there is a subsequent decrease. This change in the estimated values of N^gp with 

age is detected with both a two-way ANOVA (Fg 28=80-87, p<0.05) (Table 9:9), 

and a one-way ANOVA of the effects of age on both left (Fg 14=62.34, p<0.05) 

and right hemisphere (Fg 14=25.67, p<0.05) (Table 9:8). There was no 

interaction of hemisphere with age (Table 9:9). The results are shown

graphically in Fig.9:10a.

Asym m etric Shaft synapses : Although the estimated mean number of 

asymmetric shaft synapses of right and left LPO did not differ significantly at 

either of the ages studied (Table 9:7b), there was an overall hemispheric 

difference detected using a two-way ANOVA, comparing the effects of age and 

hemisphere on the estimated values of N^gh (Fi 28=5-28, p<0.05) (Table 9:9).

There was no interaction of hemisphere with age (Fg 28=2.90, p^0,05), An

‘ overall increase in N ^gh over the period of study, was seen in both left 

hemisphere (One-way ANOVA: Fg 14=11.31, p<0.05) and right hemisphere 

(One-way ANOVA: Fg 14=26.53, p<0.05) (Table 9:8). The results are displayed 

graphically in Fig.9:10b, and are also given in Appendix 4.

Symmetric Spine synapses : The mean estimated number of symmetric spine 

synapses are similar in both left and right hemisphere LPO (Paired t-test: Table 

9:7b). The estimates are however influenced by the age group involved (Two- 

way ANOVA: Fg 28=21-51, p<0-05 ) (Table 9:9). There is an increase In Nggp 

up to 9 days post-hatch, and a subsequent fall in Nggp after 9-days (Fig.9:11a). 

Table 9:8 shows the effect of age on Nggp using a one-way ANOVA for left 

(Fg 14=8.86, p<0.05) and right hemisphere (Fg j  4 = 12.78, p<0.05)
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separately. The mean values of Nggp ± SEM are given in Appendix 4.

Sym m etric Shaft synapses : The number of symmetric shaft synapses 

remains fairly stable throughout the period of study (Table 9:7b, Table 9:8). 

There is however a small increase between 1- and 9-days post-hatch in both 

hemispheres (Fig.9:11b). This increase is large enough to cause a significant 

effect of age (Fg 28=5-34, p<0.05) when analysis is made using a two-way 

ANOVA (Table 9:9). There is no effect due to hemisphere (F-; 28=^ 58' p ^ .05 ) 

or interaction of hemisphere with age (Fg 28=5-40, p>0.05). Paired t-tests of 

the estimated values of Ngg^ in right and left hemispheres of chicks of the same 

age, reveal no significant differences (Table 9:7b). The results are shown 

graphically in Fig.9:11b, and mean values ± SEM are given in Appendix 4.

Table 9:6 : Mean ± SEM N . 'Syn

figs Left Hemisphere Right Hemisphere Paired t-value

E16 1.31E8 ± 6.50E7 4.92E7 ± 3.04E7 1.06 (4) ns
PI 4.41 E8 ± 7.12E7 3.82E8 ± 3.65E7 0.63 (3) ns
P9 1.29E9 ± 8.49E7 1.00E9 ± 1.08E8 2.85 (4) *
P22 8.34E8 ± 7.42E7 7.46E8 ± 6.67E7 0.74 (3) ns

ns - not significant, * - significant at p<0.05, df in parenthesis
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Table 9:8 : One-way ANOVA of the Effects of Age on the Number 
of Various Synaptic Types

Type Left Hemisphere Right Hemisphere

A ll 48.75 (*) 36.99 (*)

Asymm 57.15 (*) 41.11 (*)

Symm 13.67 (*) 13.24 (*)

Spine 58.76 (*) 26.21 (*)

Shaft 11.21 n 26.21 (*)

ASp 62.34 (*) 25.67 (*)

ASh 11.31 n 26.53 (*)

SSp 8.86 (*) 12.78 (*)

SSh 3.85 (ns) 3.47 (ns)

Results are given as F-values, df=3,14 
* - significant at p<0.05, ns - not significant
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Fla.9.7 Total Synaptic Number
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Fig.9:7 Mean number of synapses ± SEM of right and left hemisphere 
LPO during late pre-hatch and early post-hatch development. Each 
estimate is based on at least 4 chicks (see text for details).
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Table 9:7a : Paired t-test of left versus right hemisphere LPO 
synaptic number during development.

Asymm Symm Spine Shaft
E16
df=4

p T "
df=3

_

df=4

df=3

1.11 (ns) I 1.09 (ns) 0.94 (ns) 1.27 (ns)

0.58 (ns) I 1.09 (ns)

3.16 (*) 0.71 (ns)

0.71 (ns) 1.54 (ns)

0.94 (ns) 1.64 (ns)

2.87 (*) 1.63 (ns)

1.40 (ns) I 1.22 (ns)

Results are given as paired t-values,

* - significant at p<0.05, ns - not significant 
see Appendix 4 for means ± SEM

Table 9:7b : Paired t-test of left versus right hemisphere LPO 
synaptic number during development.

ASp ASh SSp SSh

E16
df=4

1.01 (ns) 1.31 (ns) 0.83 (ns) 1.02 (ns)

PI
df=3 1.01 (ns) 2.53 (ns) 0.58 (ns) 0.86 (ns)

P9
df=4 3.97 (*) 2.17 (ns) 0.69 (ns) 1 1.29 (ns)

P22
df=3 1.34 (ns) 1.09 (ns) 1 0.58 (ns) 0.73 (ns)

Results are given as paired t-values,
* - significant at p<0.05, ns - not significant 
see Appendix 4 for means ± SEM
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Table 9:9 : Two-way ANOVA of the Effects of Age and Hemisphere 
on the Number of Various Synaptic Types

Type
Age

df=3,28
Hemisphere

df=1,28
Interaction

df=3,28

A ll 85.19 n 6.82 (*) 1.13 (ns)

Asymm 58.05 n 7.00 (*) 1.24 (ns)

Symm 26.88 (*) , 3.13 (ns) 0.03 (ns)

Spine 78.74 (*) 9.38 (*) 1.51 (ns)

Shaft 36.27 (*) 2.07 (ns) 2.13 (ns)

ASp 80.87 n 12.08 (*) 2.43 (ns)

ASh 35.85 (*) 5.28 n 2.90 (ns)

SSp 21.51 n 0.00 (ns) 0.59 (ns)

SSh 6.94 (*) 1.08 (ns) 0.40 (ns)

Results are given as F-values,
* - significant at p<0.05, ns - not significant
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Number of Asymm Synapses
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Fig.9:8a.b Mean number of asymmetric and symmetric synapses ± SEM 
of right and left hemisphere LPO during late pre-hatch and early post
hatch development. Each estimate is based on at least 4 chicks (see text 
for details).

124



Number of Spine Synapses
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Fig.9:9a.b Mean number of spine and shaft synapses ± SEM of right and 
left hemisphere LPO during late pre-hatch and early post-hatch 
development. Each estimate is based on at least 4 chicks (see text for 
details).
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Flq- îtOfl Number of Asymm Spine Synapses
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Fio.9:10a.b Mean number of asymmetric spine and asymmetric shaft 
synapses ± SEM of right and ieft hemisphere LPO during late pre-hatch 
and early post-hatch development. Each estimate is based on at least 4 
chicks (see text for details).
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Fifl-gu ia Number of Symm Spine Synapses
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F lo.9:11a.b Mean number of symmetric spine and symmetric shaft 
synapses ± SEM of right and left hemisphere LPO during late pre-hatch 
and early post-hatch development. Each estimate is based on at least 4 
chicks (see text for details).
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e) QUANTITATIVE ANALYSIS : SIZE ESTIMATIONS

The mean projected synaptic height (Hsyn) was used as an estimator of 

synaptic size. The mean values of synaptic height ± SEM, for both right and left 

hemisphere of chicks of varying ages, are given in Table 9:1 oa, and in Appendix 

5. A t-test for paired replicates was used to determine the significance of the 

differences obtained between the hemispheres (Table 9:10a). No statistically 

significant differences were found. However, a one-way ANOVA showed a 

significant increase in Hgy^ with increasing age, in both hemispheres (Left 

hemisphere: ^^=9.58, p<0.05. Right hemisphere: F^ ^^=18.20, p<0.05)

(Table 9:10b). A two-way ANOVA showed that the Increase In size with age was 

similar in both hemispheres, since there was no significant effect of hemisphere 

on the observed values of Hgyn (F^ ^^=0.29, p>0.05) (Table 9:10c). There 

was also no interaction of hemisphere with age (Fg ^^=0.44, p>0.05). The 

significant values obtained in these tests are largely due to a large increase in 

size between 1- and 9-days post-hatch (Fig.9:12). Hgyn does not change 

significantly either between 16-days In ovo and 1-day post-hatch, or between 

9- and 22-days post-hatch, in either hemisphere (Fig.9:12).

Table 9:10a : Mean ± SEM (nm)

Age Left Hemisphere Right Hemisphere Paired t-value

E16 198 ± 17 212 ± 12 0.83 (4) ns
PI 217 ± 30 203 ± 20 0.45 (3) ns
P9 317 ± 30 349 ± 22 0.72 (4) ns
P22 359 ± 17 353 ± 23 0.28 (3) ns

ns - not significant, df in parenthesis
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Table 9:10b : One-way ANOVA of the Effects of Age on

Left Hemisphere Right Hemisphere

F-value 9.58 (3 ,14) 18.20 (3 ,14)

* - significant at p<0.05, df in parenthesis

Table 9:10c : Two-way ANOVA of the Effects of Age and 
Hemisphere on Hg^^

Age Hemisphere Interaction

F-value 25 .66*(3  28) 0-29 (1,28) 0-44 (3,28)

* - significant at p<0.05 
df in parenthesis

FlQ'9'12 PSD Mean Projected Height
400 ~i S  Left LPO 

H  Right LPO

200 -

1 9 22
AGE (days from hatch)

F ig .9:12 Mean projected synaptic height ± SEM of right and left 
hemisphere LPO during late pre-hatch and early pdst-hatch development. 
Each estimate is based on at least 4 chicks (see text for details).
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9.4 : DISCUSSION 

Qualitative Results

The pre-hatch material was characterized by the presence of large amounts 

of interstitial space. One possibility is that this space may be an artefact caused 

by tissue processing, which causes disruption of the delicate embryonic tissue. 

However, since it is a consistent finding in many studies of early brain 

development (Curtis et al 1989, Parnavelas et al 1978), despite varying 

fixation protocols, this is unlikely. It is more likely that it is indicative of the 

mobility of the cellular components during early synaptogenesis. Rostas et al

(1984) have shown that 16 days of age, in ovo, is the earliest that synaptic 

proteins can be isolated from gel preparations. It is hence likely to be a time of 

intense activation, and to coincide with the period of formation of new synapses.

There is some controversy over the timing of synaptic events during 

synaptogenesis (for review, see Jacobson 1978). In the present study, at El 6 

there were many 'free' post-synaptic profiles. There were fewer pre- and post- 

synaptic thickenings without attached synaptic vesicles, as well as a few 

'immature' synapses (pre- and post-synaptic membrane specialisations, with 

only a few vesicles in the pre-synaptic bouton). There were no synapses that 

resembled the 'mature' form (containing many synaptic vesicles), such as those 

seen in the post-hatch chicks, despite the fact that the majority of synapses in 

the E16 tissue had a prominent post-synaptic thickening. These results are 

consistent with the suggestion that it is the post-synaptic density that is formed 

first, followed by the pre-synaptic specialisation, although one cannot make any 

firm conclusions from such observations. The local conditions at the axon 

terminal, and in particular the nature of the post-synaptic neuron, must play an 

important part in dictating the formation and differentiation of the synapse. It
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may be hypothesized, that only when a 'correct' pre-synaptic and post-synaptic 

specialization have established contact, does vesicle formation occur, and 

development of synaptic function progress.

The synapses of the LPO in the pre-hatch period appear to be very 

'immature'. It was suggested previously, that the LPO may co-ordinate learned 

motor responses (see Chapter 3, section 2c). Since the in-ovo chick is not able 

to explore its environment from within the egg, it may not require a well 

developed LPO. It has been suggested that before proper maturation of the 

'immature' synapse, the synapse has to be active (Burry et al 1984, Rutledge

1976), and hence the synapses of the pre-hatch LPO may not yet be 'activated'. 

Tissue from the PI group showed a number of free-postsynaptic densities, and 

some 'immature' synapses. These had completely disappeared by P9, adding 

weight to the hypothesis described above.

Synaptic Density And Number

The results have been given for both synaptic density and synaptic number, 

since some of the results from the former have been published previously 

(Hunter and Stewart 1989). The data given here is much more extensive, and 

provides a useful comparison of techniques. Many papers have been published 

purely on the basis of density measurements (Nixdorf 1989, Curtis et al 1989, 

Dyson and Jones 1980, Geinisman et al 1986, Jones and Cullen 1979, Blue and 

Parnavelas 1983b, Bradley 1985) and it is worthwhile considering the validity 

of some of the results so produced. The present data show that Nv values are valid 

for the analysis of chick LPO, mainly because the LPO does not appear to grow in 

size during the period of development studied. This may not be the case in other 

brain regions, or in regions of brains of other species. One should always aspire
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to provide data on total number rather than density. I will proceed therefore, to 

discuss the data obtained from number estimations rather than density 

estimations, unless there are differences in the statistical analysis or factors 

worthy of consideration.

The large increase in synaptic number during early development has been 

reported for a number of brain regions, in a number of different species 

(Nixdorf 1989, Aghajanian and Bloom 1967, Mates and Lund 1983b, Jones and 

Cullen 1979). It has also been reported for developing synapses in culture 

(Burry and Lasher 1978). It is perhaps remarkable that so few synapses are 

formed at El 6, since the chick is precocious at birth (hatch), only 5 days away.

The number of synapses increased steadily in both hemispheres, until the 

estimated means reached a peak at P9. There may or may not have been a 

subsequent increase between P9 and P22, since no data were obtained between 

these two ages. However, at P22, there was a net reduction of synapses compared 

with P9. It is interesting to note that a quantitative study of the chick IMHV, also 

showed a steady increase in synaptic density between El 6 and P9 (Curtis et al 

1989). In a second study, Bradley (1985) reports an increase in synaptic 

density in the chick IMHV between 0 (hatch), and 7 days. In the chick 

ectostriatum also, there appears to be a period of synaptogenesis which lasts up 

to 20-days post-hatch (Nixdorf 1989), but not into adulthood (100 days). The 

density of synapses has been shown to decrease between 7- and 30-days post

hatch in the chick hyperstriatum accessorium, and IMHV (Bradley 1985). 

Curtis et al (1989) did not investigate the development of the IMHV beyond 9- 

days post-hatch, so their data are entirely consistent with that of Bradley

(1985). Nixdorf (1989) however, failed to find any evidence of synaptic
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elimination in the chick ectostriatum. Synaptic elimination has been reported 

previously for other developing systems (Purves and Lichtman 1980). There 

may be a correlation between the degree of synaptic loss, and the extent of 

neuronal death which has been characterised for developing neural systems 

(Curtis et ai 1989). These features appear to be related to an ability of the 

developing nervous system to modify and refine its connections (Burry et al 

T984). Such features are commonly connected with responses to environmental 

events, leading to adaptive plasticity within a given fibre network for a learned 

behaviour (Petit 1988).

Studies of the pigeon visual system (retina and optic tectum) have shown that 

the adult pattern of GABAergic neurons (i.e. adult pattern of GABA 

immunoreactivity) is reached around day 9 (Bagnoli et al 1991). Hence, the 

time course for neuronal and synaptic maturation may be similar in a number of 

brain regions in avian species.

There was an asymmetry of synaptic number at 9-days post-hatch, but not at 

the other ages studied (Fig.9:7). It is uncertain what this asymmetry represents, 

although it has been shown that the chick brain displays many functional and 

morphological asymmetries (Fersen and Günturkün 1990, Gaston 1980, Howard 

et al 1980, Horn et al 1983, Mench and Andrew 1986, Rogers 1986, 1989, 

Stewart et al 1984). It is worth noting that the size of the difference is much 

less in the Ngy^ estimate, in comparison to the Nvgyp estimate. This illustrates 

the importance of volume measurement in such quantitative studies. It is 

interesting to note that the density of dendritic spines in the 1 -day old chick LPO 

is approximately 0.8 - 1.0 per p.m in both left and right hemispheres (Lowndes 

et al unpublished data), i.e. there is no hemispheric asymmetry of dendritic
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spine density at 1-day post-hatch, a finding which is consistent with the present 

results.

The numbers of synapses in each class increased significantly with age, with 

the exception of symmetric shaft synapses (Table 9:8). Between 75% and 85% 

of synapses in the chick LPO are of the asymmetric spine type. Therefore it is 

clear that the results of estimated mean values of the number of asymmetric, 

spine, and asymmetric spine synapses, will closely resemble those observed for 

the total synaptic population. The difference in synaptic number between the 

hemispheres, is mainly due to differences in the estimated numbers of 

asymmetric synapses. There are no significant effects of hemisphere on the 

observed means due to symmetric synapses (Table 9:9). If one were to rely 

entirely on the estimates obtained using density measurements, then one may 

have concluded that the asymmetry was restricted to asymmetric spine synapses, 

since a two-way ANOVA showed no significant effects of hemisphere on the 

estimated values, for either 'shaft', or 'asymmetric shaft' synapses (Table 9:4). 

However, the results obtained using absolute numbers, show a significant 

hemisphere effect for asymmetric shaft synapses (Table 9:9).

The present data are consistent with studies of synaptic quantitation in the 

zebra-finch ectostriatum, where 90% of synapses were of the asymmetric type 

(Nixdorf 1989). However, there appears to be a radical difference in this 

respect when one examines the proportion of those synapses targeted onto 

dendritic spines. The young zebra-finch (20-days old) has 40% of axo-spinous 

synapses and 60% of axo dendritic synapses. The proportion of axo-spinous 

synapses is further reduced by 50%, between 20- and 100-days post-hatch. 

Since the synaptic density remains constant throughout this developmental 

period, the author concludes that axo-spinous synapses are converted into axo
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dendritic synapses (Nixdorf 1989). This would not appear to be the case for the 

chick LPO, where the present study shows that the large majority (between 80- 

and 90%) are axo-spinous, and the proportion of these is maintained at a fairly 

constant level, throughout post-hatch development. A study of synapses in the 

IMHV also shows that the majority of synapses were of the axo-spinous type 

(Bradley 1985). The present data has indicated that there may be some 

modification of the ratio of axo-spinous and axo dendritic synapses, between 

pre- and post-hatch.

Examination of the data for each class of synapse as a percentage of the total 

shows that between the late pre-hatch and early post-hatch period, there is a 

shift in the proportion of asymmetric spine and asymmetric shaft synapses. The 

direction of this shift is such that the proportion of asymmetric spine synapses 

increases, whilst the proportion of asymmetric shaft synapses decreases. This 

pattern is not seen amongst the symmetric synapses. These observations are 

consistent with the hypothesis that asymmetric shaft synapses are capable of 

transformation into asymmetric spine synapses. The data can in no way however, 

prove this hypothesis. This method of synaptic development, where the presence 

of a synapse on a dendritic shaft causes the development of a dendritic spine at 

that same location, has been suggested as the pattern of synaptic development for 

the visual cortex of both rat (Miller and Peters 1981) and primate (Mates and 

Lund 1983a).

The numbers of symmetric synapses were consistently low at all ages studied. 

This is consistent with a number of studies on synaptic structure in the avian 

brain (Curtis et al 1989, Nixdorf 1989). It is possible that there was an 

under estimation of number in the present study, since identification was not
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easy. In mammals, synaptic vesicle shape is often used to help in the 

identification of synaptic type. Asymmetric synapses have characteristic round 

vesicles, whilst symmetric synapses have flattened or ellipsoidal vesicles (Gray 

1959). Nixdorf (1989) has shown that the classification of synapses on the 

basis of vesicle morphology is not possible for avian species, since vesicle shape 

for a given class of synapse changes with age. In juvenile zebra-finches (5-10 

days of age), vesicles of symmetric synapses were round. In 5-day old zebra- 

finches only 0.02% of symmetric synapses were associated with flattened 

vesicles. However, in the adult (100-days of age) this proportion rose to 80%. 

At no time, was vesicle shape an absolute indicator of synaptic type. In the 

domestic chick IMHV no flattened vesicles were found in tissue sampled from 

birds aged between 16-days in ovo to 9-days post-hatch (Curtis et ai 1989). 

This was also the case for the present study, where all synaptic vesicles were 

either round or pleomorphic. The identification of symmetric synapses was 

therefore based entirely on the nature of membrane specialization. Since this 

type of synapse is characterized by a modest thickening of the post-synaptic 

density, identification can be difficult.

The percentage of synapses that were symmetric was approximately 10-15% 

of the total synapse number in the pre-hatch material. This value dropped to 

approximately 4-8% in the P22 group, and there was a steady decline in both 

hemispheres between these two ages. This is in close agreement with a study of 

synaptic parameters in the developing IMHV (Curtis 1989). Curtis et al found 

that the percentage of symmetric synapses fell from 15-20% to 7-10%, over 

the same period as the present study. It is important to stress that this is a 

relative measure, since the actual numbers of symmetric synapses continue to 

increase up to 9-days post-hatch. As a consequence of a decreasing ratio of
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symmetric synapses, the proportion of asymmetric synapses increases over the 

same period. The possibility arises that some symmetric synapses may have the 

capacity to become asymmetric, perhaps as more proteins are laid down at the 

post-synaptic site as development progresses. This is quite feasible, since it has 

been shown that the concentration of a major post-synaptic density protein 

increases 3-5 fold during early development of the chick forebrain (Rostas et al 

1984).

It is possible that some symmetric synapses were mis-categorized, and 

should have been included in the asymmetric group. This could occur in a small 

minority of cases where the section plane traverses the edge of an asymmetric 

synapse. It can be seen from the profile of most asymmetric synapses, that the 

post-synaptic thickening tapers at the periphery. If a section should cut a 

synapse at this point, its profile would resemble that of a symmetric synapse. 

Due to the randomness of sectioning, the probability of sectioning through a 

synaptic edge is proportional to the size of the synapse. However, its probability 

of being counted using the 'disector' is independent of size, but is never the less 

50-50, since the subsequent section will either be away from the synapse 

(where the synapse will be counted), or towards the synapse (where it is likely 

to be sectioned again (since section thickness is less than the size of the smallest 

synapse)). In either event, the probability of such encounters are small, and are 

unlikely to distort the results.

Synaptic Size

Previous estimates of synaptic size have been made using biased techniques 

that rely on 'unfolding methods', and assume that synapses are disc-shaped 

(Nixdorf 1989, Stewart et al 1984, Curtis et al 1989). It has been shown that
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synapses have varying shapes, and such assumptions are invalid (DeGroot and 

Bierman 1986). Indeed, it has been shown that only 25-30% of synapses in the 

LPO are indeed 'flat' (Stewart et al 1987). No previous study of synaptic size in 

the chick brain has been made using unbiased techniques such as the 'disector'. 

The data obtained in the present study, has therefore no direct comparison. Values 

of mean synaptic size obtained for the LPO are consistently lower than those 

obtained using 'unfolding' methods for the 1-day old chick IMHV (Stewart et al 

1984, Curtis et al 1989), and for the 1-day old chick LPO (Stewart et al 

1987). No data exists, at present, for comparison of other ages. The 'disector' 

method of synaptic size determination, makes only an estimate of mean projected 

synaptic profile height, and does not correct for orientation of the synapse within 

the disector planes. If a synapse lies obliquely within the section, or at a plane 

perpendicular to the section planes (i.e. horizontally), then its estimated size 

will decrease in proportion to its angle of orientation. Hence estimations of 

synaptic height are not estimators of synaptic length, and direct comparison of 

techniques is not possible. Synaptic height estimations will always be less than 

estimations of synaptic length, assuming that they are drawn from the same 

population of synapses.

There was a significant increase in the mean estimated height of the synapses 

between 1- and 9-days post-hatch. A similar finding for synaptic length has 

been reported for synapses in the IMHV (Bradley 1985), where an increase in 

synaptic length was seen between 1- and 2-days post-hatch. These mean lengths 

subsequently decreased gradually to 30-days post-hatch. Bradley (1985) 

separated synapses into spine and shaft synapses, without taking into account 

their PSD symmetry or hemisphere of origin. He reported that shaft synapses 

were consistently longer than spine synapses by 50-80 nm. The present study
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did not take into account possible differences between synaptic types. The number 

of symmetric synapses was extremely low, hence estimation of mean symmetric 

synapse size would not have been statistically viable. The analysis was therefore 

only carried out for the asymmetric typo. There remains the possibility that 

observed synaptic size changes during early development, may be restricted to 

one or more class of synapse. Curtis et al (1989) have suggested that at least 

for the chick IMHV, it is the symmetric synapse which increases in size during 

the the early post-hatch period. Other workers have shown that symmetric 

synapses are subject to substantial size fluctuations during development, and that 

no such fluctuations are seen for asymmetric synapses (Blue and Parnavelas 

1983b).

Chick forebrain synaptosomal preparations of chicks aged 16-days in ovo, 

were shown to have a PSD junctional length of 170 ± 110 nm (Rostas et al 

1984). This value increased to 298 ± 86 nm in synaptosomal fraction 

preparations from the forebrains of 2-day old chicks. This value was not 

significantly different to the 'adult' value of 304 ± 39 nm (Rostas et al 1984).

One theory of synaptic development is that synapses undergo a process of 

'splitting', whereby a large synapse divides, hence generating two small synapses 

(Dyson and Jones 1984). This may account for the presence of 'perforations' in 

synapses in developing and adult brain tissue (Calverley and Jones 1990b). 

Where such a mechanism of synaptic plasticity exists, estimates of mean 

synaptic size may not not reveal such modifications. Hence mean size estimates 

are of limited value in assessing the nature of synaptic change during 

development.
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CHAPTER 10 : TIME-COURSE OF SYNAPTIC PLASTICITY 

FOLLOWING MEMORY FORMATION

10.1 : INTRODUCTION

it has been suggested that the formation of memory in the 2-day oid chick 

invoives three stages; short-term (STM), intermediate-term (iTM), and iong- 

term (LTM) (Gibbs and Ng 1977). These phases are sequentiaiiy iinked and 

depend upon particuiar neurochemicai events. STM iasts between 5 and 10 

minutes foiiowing iearning. iTM is fuiiy deveioped by 15 minutes, and decays 

after 30 minutes. LTM is present after 30 minutes, and is persistent at ieast 24 

hours after iearning (Gibbs and Ng 1977). in reaiity, these phases show 

considerabie overiap, and it may be that memory formation is a continuum in 

which the 'stages' are simpiy identifiabie parts of a sequence of iinked events.

The formation of each of these three memory stages can be inhibited by 

pharmacoiogicai intervention, using different drugs. STM can be disrupted by 

injections of LiCi, KOi or giutamate, which cause depoiarization of neuronai 

membranes (Gibbs and Ng 1979). it may be that STM stage is characterized by 

hyperpoiarization due to increased membrane conductance of K+. iTM is 

disrupted by the administration of Na' '̂/K'*' ATPase inhibitors, such as ouabain 

and ethacrynic acid (Gibbs and Ng 1977). LTM is characterized by protein 

synthesis, since inhibitors of protein synthesis, such as anisomysin or 

cycioheximide, inhibit the formation of LTM. The injection of a protein synthesis 

inhibitor, emetine, into the hyperstriatum, has been shown to inhibit memory 

formation in the 2-day old chick, 90 minutes following training (Patterson et 

al 1986). Gibbs and Ng (1977) have also suggested that the intermediate phases 

between memory stages, may be seen as 'dips' (lower percentage) in avoidance
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task responses at 12 and 55 minutes post-training. These 'dips' were also 

reported following studies of avoidance behaviour to strong and weak aversive 

stimuli (Rosenzweig et al 1989). These occurred at 1, 15 and 60 minutes 

following training. If there are indeed separate phases, it may be possible to 

correlate morphological changes in the brain within the proposed time-scale.

Patterson et al (1988) induced amnesia in chicks by injecting 

pharmacological agents (10 pi), 5 minutes pre-training, into either left IMHV 

or right lateral neostriatum. They found that the time-course of amnesia was 

different between the two regions. Hence, there may not be a single time-course 

of memory formation, rather it may depend upon the area of brain processing or 

storing the information. In the IMHV, injections of glutamate (50 mM) caused 

amnesia 5 minutes post-training. Ouabain (0.027 mM) produced amnesia 

between 15 and 30 minutes post-training, and emetine hydrochloride (2.25 

mM) resulted in amnesia between 75 and 90 minutes post-training. 

Corresponding times for these injections into the right lateral neostria tum  

were; 5 minutes (glutamate), 30-45 minutes (ouabain), and 60-90 minutes 

(emetine). Hence the differences between the two brain regions were only seen in 

the ITM stage, which was 15 minutes later in the right lateral neostriatum.

Patterson et al (1988) showed that chicks were able to show memory for 

the avoidance task one minute post-training, despite having been injected with an 

inhibitor of STM (glutamate) 5 minutes pre-training. This would suggest that 

there is a stage of memory which precedes STM. Patterson et al termed this 

phase a 'sensory buffer'. This however, is an unnecessary phrase, since a 

'sensory buffer' means a storage of information acquired by experience; in other 

words a 'memory'.
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The present thesis is concerned with the role of the LPO in memory 

formation. The LPO however, is not thought to play a part in all three stages of 

memory (Serrano et al 1988), but may rather only be involved in the 

intermediate stage (Serrano et al 1988) or long-term stage of memory 

formation (Stewart et al 1990). Given the proposed hypothesis regarding the 

time-course of memory formation in the young chick, it was decided to 

investigate the nature of morphological changes in the lobus parolfactorius, using 

the passive avoidance task used in the experiments described above. 

Morphological changes are thought to be the basis for the formation of long-term 

memory (Rosenzweig and Bennett 1984a, 1984b). Indeed, a review article on 

the subject recently stated; "... The timekeeping steps for a long-term memory 

trace may be specified by morphological changes at the level of the synapse." 

(Bailey and Chen 1990).

Passive avoidance learning in the young chick has previously been shown to 

cause morphological, biochemical and physiological alterations in several 

forebrain nuclei (for review, see Rose 1985b, 1986), including the LPO 

(Stewart et al 1987). The most marked plastic change of synapses in the LPO 

following passive avoidance learning, is that of an increase in synaptic density, 

24 hours after training. It has been postulated that the increase in the density of 

synapses is one of the factors contributing to the establishment of long-term 

memory in the chick (Stewart 1990). Studies of lesions of the LPO suggest that 

this nucleus is indeed involved in the long term storage of memory (Gilbert et al 

in press), since lesions of the LPO cause amnesia for the avoidance task, only if 

given post-training and not pre-training. It is presumed that by 24 hours, the 

memory trace has entered the 'long-term' phase (Gibbs and Ng 1977). It has
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further been shown that the IMHV is involved in the acquisition of memory 

(Patterson et al 1989). Recall of the passive avoidance task is not affected by 

post-training lesions, but is affected by pre-training lesions. It is of note that 

the density of synapses in the IMHV, either 12 hours (Bradley and Galal 1987) 

or 24 hours following passive avoidance learning, is not significantly different 

to that of controls (Stewart efa/1984). Together with the data from the LPO 

studies, this suggests that an increase in synaptic density may represent a 

morphological change necessary for the formation of the long-term store of the 

memory trace (Stewart 1990). It has also been shown that synaptic length in the 

right hemisphere of the LPO, is greater than that in the left (by a factor of 

approximately 10%) (Stewart et al 1987). This difference in size is reversed 

after training, such that the left hemisphere is 10% greater than the right.

An analysis of the time-course of structural changes of neurons in Aplysia 

californica, following long-term sensitization has been reported (Bailey and 

Chen 1989b). It was shown that certain morphological changes were transient 

(1-2 days) (increase in PSD length, increase in number of synaptic vesicles), 

and others were longer-lasting (3 weeks) (number of neuronal varicosities, and 

an alteration in synaptic number).

The available data in the literature do not present information on synaptic 

events in chick brain after, or before, the 24 hour period following passive 

avoidance learning, with the exception of a study by Bradley and Galal (1987) 

who described changes in synaptic density in the IMHV, 12 hours following 

training. The present study was therefore designed to map the time-course of 

changes in synaptic density, and size, in the chick LPO following this training 

procedure. In addition, as a secondary aim to the synaptic investigations, it was
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thought appropriate to quantify changes in the mean volume of both pre-synaptic 

(bouton), and post-synaptic (dendritic shaft and dendritic spine) components.

10:2 : MATERIALS AND METHODS

Animals : Approximately 40 chicks (Ross I) of both sexes, were hatched in 

communal brooders kept at a constant temperature of 38-40°C. A 12 hour 

light/12 hour dark cycle was in operation. On the first day after hatching (PI), 

five pairs of chicks were placed in separate 20 X 25 X 20 cm aluminium pens, 

each illuminated with a 25W red light. One chick in each pen was marked with 

ink, and was designated to either Control group or experimental group at random. 

Chicks were given 30 minutes in order to adapt to their new surroundings.

Training protocol : All training procedures were performed at approximately 

9:30 am-10:30 am on a given day. The experiment was conducted over several 

weeks. Codes were given for each chick, allowing the subsequent experimental 

procedures to be performed 'blind'. There were three successive pre-training 

trials, each separated by 10 minutes. This involved presenting a small white 

bead (3 mm dia.) about 2-3 cm from the chicks beak. Only chicks which pecked 

at this bead on all three occasions were included in the study. After a further 10 

minutes, one chick from each pen was presented with a small chrome bead (4 mm 

dia.) coated with methyl anthranilate. After pecking this bead, the chicks showed 

a characteristic disgust response (head shaking, bill wiping, rapid swallowing 

and emitting distress calls). About 10% of the chicks failed to show this 

response, and were not included further in the study. The second chick from each 

pen was presented with an identical bead, except that it was coated with water. 

These chicks showed no observable behavioural response to the pecking 

experience. Chicks failing to peck the water-coated bead during the training 

procedure were omitted from further study. Food and water was then available
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ad libitum. After 30 minutes, chicks were presented with a water coated bead 

for 10 seconds. It was observed whether or not, this bead was avoided. 

Approximately 80% of the chicks who had previously pecked at the methyl 

anthranilate-coated bead (M-trained), avoided the bead. All of the chicks who had 

previously pecked at a similar water-coated bead (Controls), re-pecked. M- 

trained chicks who re-pecked were excluded from further investigation. The pair 

of chicks from each pen were removed 0.5, 5.5, 11.5, 23.5, and 47.5 hours 

after training respectively, and transferred to a separate room, to which they 

were allowed to adapt for 30 minutes. Hence groups of chicks were obtained that 

had been trained either 1, 6, 12, 24, or 48 hours previously. Temperature was 

maintained at approximately 38-40°C throughout. This procedure was 

undertaken in order to minimize the stress that the chicks might undergo, and so 

helped to reduce non-specific effects of the experimental design. Chicks were 

then anaesthetized with sodium pentobarbitone (0.1 ml, 60mg/ml), and perfused 

intra-cardially with a solution containing 2% glutaraldehyde and 2% 

paraformaldehyde in 0.1 M cacodylate buffer, using a dual peristaltic pump.

Tissue analysis : Tissue was obtained and processed for electron microscopy 

as detailed previously (Chapter 8, Section 2). Two differences in method are 

noteworthy. Firstly, sections were cut at approximately silver-gold interference 

colour (approximately 70 nm). This was done to increase the effective sample 

size of synapses, since more synapses would be absent in the reference section in 

comparison to the previous study, assuming synaptic size was comparable. In 

order to further enhance the sampling efficiency, micrograph prints were made 

at final magnifications of approximately XI 2,000, rather than X20,000 as were 

made previously (Chapter 8, Section 2). These modifications were made purely 

on the basis of practical experience gained on completion of the 'developmental
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study' (Chapter 9).

Section thickness : An accurate estimation of section thickness was determined 

by the 'small fold method' (Small 1968). Mean section thickness was 68nm ± 

3nm (SEM) (n=60).

Synaptic identification : Synapses were identified, and categorized as stated 

previously (Chapter 8, Section 2 and Chapter 9, Section 2).

Estimation of Nvgyp : Synaptic density was calculated using the formula;

Nvgyn = ZQ’ /h.A

where; Q" = synapses present in 'nominated' section, but absent in the 

'reference' section,, h = distance between disector planes, A = sample area. Since 

adjacent sections were used for the disectors, h was equal to the section 

thickness. A counting frame was overlayed onto each micrograph in turn. This 

frame was approximately three-quarters of the size of the micrograph. The left- 

hand and bottom margins of the frame were deemed 'forbidden lines' (Gündersen

1977). Any particle touching or crossing this line was automatically excluded 

from the analysis. The forbidden lines extended to infinity, such that any particle 

being measured had to be unambiguously identified, and its course defined. This 

presented no significant problem, since most of the particles being counted or 

measured were small. The dendritic shafts were the exception to this, and this 

point is raised in the discussion. The use of forbidden lines ensured that there 

were no 'edge effects' (Gündersen 1977). The frame was used to set the sample 

area for each 'disector'. Magnification was obtained from a cross-grating replica 

with 2160 lines/mm, a micrograph of which was taken with every set of 

'disectors'. Corresponding estimates of Nv^gp (asymmetric spine synapses).
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NvASh (asymmetric shaft synapses), Nvssp (symmetric spine synapses) and 

Nvgsh (symmetric shaft synapses) were calculated for each hemisphere.

Estimation of LPO volume (V|_pQ) : The volume of both right and left 

hemisphere LPO of M-trained and Control chicks, was made using the Cavalieri 

principle, described in Chapter 9, Section 2. Since the brains of chicks used in 

the time-course study were also to be used by another investigator, who would 

subsequently analyse morphological changes in the IMHV, it was not possible to 

make volume estimations of the LPO from these brains. To do so, would involve 

sectioning of the IMHV, and would render subsequent IMHV analysis invalid. A 

pilot study was therefore performed on chicks not used in the final morphometric 

analysis. These were six in number (3 Control, 3 M-trained). They were treated 

in an identical manner to the chicks which were used for quantitative studies. The 

chicks were killed by cardiac perfusion fixation, 24 hours after training, using a 

solution containing 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M 

cacodylate buffer (approximately 100 ml). The brains were then dissected from 

the cranium, prior to being immersed fixed with fresh fixative at 4°C, in which 

they were left overnight. Procedures for volume estimation were performed as 

described before (Chapter 9, Section 2).

Estimation of mean synaptic height (Hgyn) : In addition to counts of 

synapses present in the counting frame of the 'nominated' section but absent in 

the 'reference' section (Q ), the total number of synaptic profiles (Qtot) present 

within the counting frame of each of the micrographs was also noted. This 

information could be used to estimate the mean projected synaptic height (Hgyp), 

the linear size estimator of the average vertical length of the projected synapses, 

irrespective of their orientation. This is calculated as follows;
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Hgyn - / Q
where; 'h' is the section thickness. The results of mean estimated synaptic height 

are recorded in nanometres (nm).

Estimation of synaptic contact surface area (Sagyn) : The area of the 

PSD determines in part, the probability that a given action potential will be 

transferred between one neuron and another. Any change in this parameter 

therefore may be an indication of a change in efficacy of the synapse. The surface 

area of the PSD is a more accurate indicator of changes in size, compared to 

synaptic height, which is a linear measurement. The changes in size that are 

hypothesized to occur in synapses following learning (Bailey and Chen 1990, 

Stewart et al 1984, Bradley et al 1985b, Bradley and Galal 1987), may only 

be of small magnitude, and may be missed by either one measurement alone. By 

estimating both projected height and surface area, it was thought that a more 

accurate portrayal of any plastic size changes could be detected. To measure 

synaptic surface area, an overlay test grid was placed within the counting frame. 

This grid contained a series of parallel lines horizontally and vertically. The 

spacing between lines was 2 cm, and the counting frame was 80 X 140 cm. This 

gave 28 intersections between the test grid lines (excluding the 'forbidden lines' 

at left and bottom margins) (see Fig.7.1d). These intersections served as test 

points. The test line length (I) per test point was therefore 4 cm (horizontal + 

vertical). This was adjusted for magnification, accurately assessed for each set of 

micrographs. The synaptic contact surface area (Sagyn) was calculated using the 

following formula;

SSgyn = 2 . IL

where; I = intersections between test lines and synaptic contacts (PSDs), L = 

total test line length within the counting frame. All values given in the results
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are a summation over the total number of micrographs for a given hemisphere of 

an individual brain.

Estimation of Volume Weighted Mean Volumes : If a random point on a 

random section hits a particle profile, one may measure the length (I) of the 

liner intercept across the profile, and through the point. If the direction of the 

intercept is isotropic in 3-dimensional space then;

V = (jt/3).|3

where; 'V  is the particle volume. Since the probability of hitting a particle with 

a random point is strictly proportional to the volume of the particle, one must 

make estimates using appropriately weighted values. The weighting is based on 

the particle volume itself, such that one measures the volume weighted mean 

volume (Vv);

Vv = 7c/3.I^
where the mean cubic length is used as the estimator. The volume weighted mean 

volumes of the synaptic bouton (Vv^outon)» dendritic spine (Vvgpjne) and 

dendritic shaft (Vvghaft) were estimated in the present study.

To measure the intercept lengths (I), a frame was overlayed onto each 

micrograph in turn. This overlay contained a series of angle indicators with 

reference to the origin at the bottom left of the frame. These angle indicators 

were numbered from 0 to 97 (97 being the largest 2-digit prime number). The 

spacing between the numbers is related to the sine of the angle. A random number 

between 0 and 97 defined the first direction. A second overlay with a series of 

parallel lines spaced 2 cm apart was aligned along the axis of the given direction, 

from the origin to the chosen number. A series of point intercepts marked on the 

parallel lines at a spacing of 4 cm served as sample intercepts from which the
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lengths would be measured. The starting position of the points on the parallel 

lines was entirely random. The radius of particles hit by points within the 

reference frame, was measured along the axis of the direction indicator described 

above. Moasuromonts wore made in both directions from the sample point to the 

boundary of the particle. Both 'nominated and 'reference' sections were used for 

the measurements, although the direction axis was changed between the two. This 

was done by adding a constant (37) to the direction axis. If this value exceeded 

97, 97 was subtracted from the number obtained so that the values were cycled 

between 1 and 97. This was repeated for each subsequent micrograph in the set, 

for each hemisphere of a given brain. This allowed complete randomness despite 

using samples from adjacent serial sections. The mean length of line raised to the 

third power was obtained using a digitizer linked to a microcomputer. Analysis 

was made from the LPOs of Control and M-trained chicks 1, 24 and 48 hours 

after training only.

Statistical analysis ; Students' T-tests were used to compare mean estimates 

of Nvgyn. NvASpi Nv^Sh' Nv$sp, Nvssh* ^syn« ^^syn- ^v^outon» V^spine» 

Vvshaft> based on results calculated from six animals per group. Paired Students' 

T-tests were used to compare mean Nvgyn- Vvpouton, Vvgpine, Vvghaft» ^^syn 

Sasyn estimates of LPOs taken from the right and left hemispheres of the same 

individuals. A two-way analysis of variance (ANOVA) was used to test the 

significance of the effects of training on the observed means, and to test whether 

this training influenced the hemispheres differently. Two-way ANOVAs were also 

used on data at each of the times studied (i.e. 1 ,6 ,12 , 24, and 48hrs), to assess 

whether there were any effects or interaction of effects at a given time after 

training. Where appropriate, paired sample ANOVAs were made using a repeated 

measures multivariate analysis of variance (MANOVA) program of Statistical 

Package for Social Sciences (SPSS) on the Open University mainframe computer.
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A one-way ANOVA was used to compare the estimates obtained for a given 

hemisphere with increasing time. These tests were performed separately for 

both Control and M-trained chicks. Significance of the statistical tests was 

assumed when the probability of significance was greater than 0.95 (95% 

confidence limits).

10.3 : RESULTS

a) LPO VOLUME ESTIMATION (V|_po)

the  volume of LPO from the brains of chicks used in the pilot study to this 

experiment (i.e. not from the same brains used to estimate morphological 

parameters), was estimated for each hemisphere of Control (n=3) and M- 

trained chicks (n=3). The mean values obtained for V|_pQ ± SEM are given in 

Table 10:1a. The estimated means for left and right hemisphere of Control 

chicks, were not significantly different to the previously estimated means for the 

1-day old group from the developmental study, using a Student's t-test (Table 

9:1a) (left hemisphere: t=0.59 (df=7) p>0.05, right hemisphere: t=0.54 

(df=7) p>0.05). There was no significant difference between the hemispheres of 

either Control (Paired t-test : t=1.22 (df=2) p>0.05) or M-trained chicks 

(Paired t-test : t=1.31 (df=2) p>0.05) (Table 10:1a). Training caused no 

significant alteration in the volume of the LPO in either left (T-test: t=0.36 

(df=4) p>0.05) or right hemisphere (T-test: t=0.21 (df=4) p>0.05). A two- 

way ANOVA (Table 10:1b) provided no evidence of an effect of training on the 

estimated mean LPO volume (F^^ g^=0.02, p>0.05). There was also no 

interaction of effects between hemisphere and training (F^^ g^=0.17, p>0.05). 

On the basis of these results, it was considered that in the circumstances it was 

justifiable to restrict subsequent quantitative analysis to density measurements 

alone.
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Table 10:1a : Mean V^pQ ± SEM (mm^)

Hemisphere Control M-trained t-value

Left 0.66 ± 0.14 0.72 ± 0.11 0.36 (4) ns

Right 0.69 ± 0.11 0.66 ± 0.11 0.21 (4) ns

Paired t-value 1.22 (2) ns 1.31 (2) ns

ns - not significant, df in parenthesis

Table 10:1b : Two-way ANOVA of Effects of Hemisphere
and Training on V|_po

Hemisphere Training Interaction

0 .0 2 (1 8 ) 0 0 2 (1 8 ) 0.1 7 (1 8 )

Results displayed as F-values, df in parenthesis

b) SYNAPTIC DENSITIES

Total synaptic density (Nvgy^) : The estimated mean synaptic densities of 

both Control and M-trained chick LPO are shown in Fig.10:1, and also in 

Appendix 6. Analysis of the corresponding values for Nvgyn for right and left 

hemisphere LPO using a Paired t-test, showed that there was no detectable 

difference between the hemispheres with respect to synaptic density (Table 

10:1a). A two-way ANOVA was used to compare the effects of training and 

hemisphere on the observed values of Nvgyn at each of the given times after 

training (Table 10:2b). Statistically significant effects of hemisphere were seen 

after 24 hours (F^ 20=^’^®' p<0.05). Training had a significant effect on 

Nvgyn, 24 hours (F-| 20=10-^^' P<0 05), and 48 hours after the avoidance task
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(F i 20=15.69, p<0.05). There was no observable interaction of these effects. 

There was a steady increase in mean Nvgy^ with time after training, in both 

Control and M-trained chicks, of approximately 60-70%. This observation was 

tested statistically using a one-way ANOVA (Table 10:7). It showed a significant 

effect of time on NVgy^ in the left hemisphere of Control chicks (F4 25=8.14, 

p<0.05), right hemisphere of Control chicks (F4 25=8.29, p<0.05), left 

hemisphere of M-trained chicks (F4 25=17.91, p<0.05), and right hemisphere 

of M-trained chicks (F4 25=24.21, p<0.05). A two-way ANOVA on the pooled 

data (Table 10:8a) also showed significant effects of time after training on the 

observed Nvgyp values (left hemisphere: F4 50=23.26, p<0.05, right 

hemisphere F4 5q=28.34, p<0.05). There was a significant difference in the 

extent of this increase between M-trained and Control chicks, in both 

hemispheres (left hemisphere : F-| 50=6.78, p<0.05, right hemisphere : 

F i ,50=8.96, p<0.05 (Table 10:8a)). There was a significant interaction of the 

effects of time and training in the left (F4^5o=2.72, p<0.05), but not the right 

hemisphere. A two-way ANOVA of the effects of time after training and 

hemisphere (Table 10:8b) again showed significance of time in both Control 

(F 4 ,50 = 14.80, p<0.05) and M-trained chicks (F4 50=41.05, p<0.05),

showing that synaptic density increases as a consequence of normal development. 

In Control chicks however, the increase is similar in both hemispheres (Table 

10:8b), whereas M-trained chicks show a greater increase in the left 

hemisphere, such that a significant hemisphere effect on NVgyp is seen in the 

two-way ANOVA (F^ 5o=4.50, p<0.05) (Table 10:8b).

Asymmetric spine synapses (NvASp) : The mean densities ± SEM of 

asymmetric spine synapses at the various times after training, are shown in 

Fig.10:2, and also in Appendix 6. Paired t-tests did not reveal any differences in
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Nvasp between the hemispheres of Control or M-trained chicks (Table 10:3b). 

An unpaired t-test was used to compare the mean Nv^Sp values of the left and 

right hemisphere of Control and M-trained chicks between 1 and 48 hours after 

training (Table 10:3a). No significant differences were found. A two-way ANOVA 

of these parameters at the different times following training (Table 10:3b), 

revealed a significant effect of training at 12 hours (F^ ,20=^-^1' P<0.05) and 

24 hours (F^ 20=®-^®' P<0 05). The effect of training at 48 hours fell just 

short of the significance level (F-j 20=5-00, 0.05>p<0.10). There was no 

significant difference due to hemisphere, or interaction of hemisphere and 

training. Since the majority of synapses are of the asymmetric spine type, there 

is a close comparison of results of Nvy^gp with those of NVgyp. Hence, a one-way 

ANOVA of the effects of time after training on the observed mean Nvy^gp values, 

shows significant effects in all four groups (left hemisphere Control: 

F4 ,25=5.65, p<0.05, right hemisphere Control: F4 25=6.00, p<0.05, left 

hemisphere M-trained: F4 25=9-02, p<0.05, right hemisphere M-trained: 

F4 ,25=9.87, p<0.05) (Table 10:7). These significances are due to an increase 

in Nv^gp in these groups with time. This is also reflected in significant effects of 

time after training in a two-way ANOVA on the observed Nv^gp values (Table 

10:8a,b). In addition, these tests show significant effects of training on the 

estimates obtained for the right hemisphere LPO, but not the left. Hemisphere, 

per se, did not influence the observed values of Nvy^gp (Table 10:8b).

Asymmetric shaft synapses (Nv^Sh) ■ Estimates of mean Nv^Sh are shown 

in Fig.10:3. It can be seen that the mean estimates obtained from the right 

hemisphere were always greater than those from the left (Appendix 6, 

Fig.10:3). However, this difference was only statistically significant at 24 hours 

after training in the Control chicks (Paired t-test: t=4.61 (df=5) p<0.05), and
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48 hours after training in the M-trained chicks (t=3.27 (df=5) p<0.05) (Table 

10:4a). It was just outside the level of significance (0.05>p<0.10) at both 6 and 

48 hours after training in the Control chicks. There was no significant difference 

between M-trained or Control chicks in either the left or right hemisphere, at 

any of the times examined after training (Table 10:4a). However, a two-way 

ANOVA (Table 10:4b) showed a significant effect of hemisphere on Nv^g^ at 48 

hours after training (Fi 20=11-55, p<0.05). Both a one-way ANOVA (Table 

10:7) and a two-way ANOVA (Table 8a,b) showed that the estimated mean values 

of Nvy^g^ did not alter significantly with time after training. Hence training did 

not have a significant influence on N v^g^ in either left (two-way ANOVA: 

F i ,50=0.01, p>0.05), or right hemisphere (two-way ANOVA: F4 ,50=0 00, 

p>0.05). The observed hemispheric asymmetry, which is apparent in the graph 

of Nvy^g^ with time (Fig.10:3), was confirmed statistically using a two-way 

ANOVA of the effects and time and hemisphere on the observed mean Nvy^g^ (Table 

10:8b). There was a significant hemisphere effect in both Control (F-| 5q=9.70, 

p<0.05) and M-trained chicks (F-j 5q=7.33, p<0.05). Mean values of Nv/^g^ ± 

SEM are given in Appendix 6.

Symmetric spine synapses (Nvggp) : Fig.10:4 shows the mean values ± 

SEM of Nvggp, and these are also given in Appendix 8. It can be seen that the 

estimated means are relatively constant between both Control and M-trained, and 

between left and right hemisphere. This was confirmed using a one-way ANOVA on 

the observed values, which showed no statistical significance of time after 

training. Using a t-test to compare the mean NvggpS , no significant differences 

were seen either between the hemispheres, or between M-trained and Control 

chicks (Tables 10:5a). À series of two-way ANOVAs showed no significant effects 

due to hemisphere or training and no significant interaction of these effects 

(Table 10:5b) at any given time after training. When the data from each time
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period was pooled and analysed using a two-way ANOVA (Table 10:8a,b), no 

significant effects of either time and training (Table 10:8a) or time and 

hemisphere (Table 10:8b) were seen. There was also no significant interaction 

of these effects on the mean values of Nvggp observed.

Symmetric shaft synapses (Nvssh) • The results of mean ± SEM density of 

symmetric shaft synapses are shown in Fig.10:5, and are also given in Appendix 

6. The graph shows no clear pattern of change in Nvgg^ following training. 

Indeed, a one-way ANOVA shows no significant overall change in Nvgg^ with time 

after training, in either left or right hemisphere of Control or M-trained chicks 

(Table 10:7). A t-test was used to compare the estimated means between both 

Control and M-trained, and between left and right hemisphere (Table 10:6a). No 

statistically significant differences were found. A series of two-way ANOVA was 

used to test the effects of both training and hemisphere on the observed mean 

N vggh values at various times after training (Table 10:6b), but this did not 

reveal any significant effects. When this data was pooled, and an ANOVA 

performed on the resultant groups, there were still no significant effects of time 

and hemisphere on the observed values (Table 10:8b), but training did have an 

effect on Nvgg^ in both left (F-| 5q=5.08, p<0.05) and right hemisphere 

(F i,50=4.25, p<0.05) (Table 10:8a).
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Table 10:2a : T-tests of Mean Synaptic Density of Control vs 
M-trained and Left versus Right hemisphere LPO 
at Various Times following Training.

Paired t-test : df=5

Left Hem versus Right Hem

Unpaired t-test : df=10 

Control versus M-trained
Left Hem Right Hem

0.87 (ns) 0.42 (ns)

0.10 (ns) 0.42 (ns)

1.41 (ns) 1.28 (ns)

3.02 (*) 1 66 (ns)

2.33 (*) 2.88 (*)

Control M-trained

0.73 (ns) 0.57 (ns)

0.82 (ns) 1.10 (ns)

1.64 (ns) 0.96 (ns)

1.84 (ns) 1.11 (ns)

0.43 (ns) 0.67 (ns)

Results are given as t-values, see Appendix 6 for means ± SEM 

* - significant at p<0.05, ns - not significant

Table 10:2b : Two-way ANOVA of the Effects of Training
and Hemisphere on Nv,syn

Hours
After

Training
Hemisphere Training Interaction

1 0.03 (ns) 0.14 (ns) 0.87 (ns)

6 2.38 (ns) 0.03 (ns) 0.11 (ns)

12 2.26 (ns) 3.63 (ns) 0.02 (ns)

2 4 4.98 (*) 10.72 (*) 0.73 (ns)

4 8 0.01 (ns) 13.69 (*) 0.75 (ns)

Results are given as F-values, df=1,20 
* - significant at p<0.05, ns - not significant
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Total synaptic density
1 .0 -

0.8 -

■  Left Control
H  Left Trained
M  Right Control
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6 12 24
Time after training (hrs)

48

Fig.10:1 : Mean numerical density of synapses ± SEM of left and right 
hemisphere LPO, from both M-trained and control chicks at selected 
intervals following a passive avoidance learning procedure. Each estimate 
is based on results from 6 chicks.

Table 10:3a : T-tests of Mean ASp Synaptic Density of Control vs 
M-trained and Left versus Right hemisphere LPO 
at Various Times following Training.

Unpaired t-test : df=10 

Control versus M-trained
Left Hem

Paired t-test : df=5 

Left Hem versus Right Hem
M-trainedRight Hem Control

0.39 (ns) 0.89 (ns) 0.66 (ns) 

0.70 (ns)

0.28 (ns)

0.12 ns0.23 (ns) 0.41 (ns)

2.04 (ns) 2.10 (ns) 

0.22 (ns) 

0.82 (ns)

0.84 (ns)

1.86 (ns) 0.79 (ns)1.63 (ns)

1.74 (ns) 0.92 (ns)1.14 (ns)

Results are given as t-values, see Appendix 6 for means ± SEM

* - significant at p<0.05, ns - not significant
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Table 10:3b : Two-way ANOVA of the Effects of Training
and Hemisphere on N v y ^

Hours
After

Training
Hemisphere Training Interaction

1 1.47 (ns) 0.23 (ns) 0.02 (ns)

6 0.07 (ns) 0.01 (ns) 0.20 (ns)

12 0.59 (ns) 4.41 (*) 1.02 (ns)

2 4 0.63 (ns) ' 5.46 (*) 0.26 (ns)

48 1.66 (ns) 3.90 (ns) 0.03 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant

1 .0 - 1

Asymmetric Spine Density

■

0 .8 “ m
?

EdL
0)

0.6 -

Gl
0).Q
E

0.4 “

3
z

Left Control 
Left Trained 
Right Control

6 12 24

Time after training (hrs)

48

Fig 10:2 : Mean numerical density of asymmetric spine synapses ± SEM 
of left and right hemisphere LPO, from both M-trained and control chicks 
at selected intervals following a passive avoidance learning procedure. 
Each estimate is based on results from 6 chicks.
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Table 10:4a : T-tests of Mean ASM Synaptic Density of Controi vs
M-trained and Left versus Right hemisphere LPO
at Various Times foiiowing Training.

Unpaired t

Control vers 
Left Hem

-test : df=10

us M-trained 
! Right Hem

Paired t-1 

Left Hem ver 
Control

test : df=5 

sus Right Hem 
M-trained

1

6

12

24

48

0.19 (ns) 

0.41 (ns) 

0.15 (ns)

0.16 (ns) 

0.31 (ns) 

0.48 (ns)

1.61 (ns) 

2.10 (ns)

1.61 (ns)

0.58 (ns) 

1.42 (ns) 

0.80 (ns) 

1.07 (ns) 

2.01 (ns)

0.02 (ns) 

0.40 (ns)

0.18 (ns) 

0.76 (ns)

1.22 (ns) 

1.83 (ns)

Results are given as t-vaiues, see Appendix 6 for means ± SEM 

* - significant at p<0.05, ns - not significant

Table 10:4b : Two-way ANOVA of the Effects of Training
and Hemisphere on N v ^

Hours
After

Training
Hemisphere | Training Interaction

1 0.83 (ns) 0.01 (ns) 0.06 (ns)

6 3.78 (ns) 0.26 (ns) 0.00 (ns)

12 2.95 (ns) 0.02 (ns) 0.14 (ns)

24 2.80 (ns) 0.01 (ns) 0.02 (ns)

48 11.55 (*) I 0.71 (ns) 0.11 (ns)

Results are given as F-values, df-1,20

* - significant at p<0.05, ns - not significant

160



Asymmetric Shaft Density

CO

0 .16 -

0 .1 2 -
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6 12 24
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48

Fig.10:3 : Mean numericai density of asymmetric shaft synapses ± SEM 
of left and right hemisphere LPO, from both M-trained and controi chicks 
at selected intervals following a passive avoidance iearning procedure. 
Each estimate is based on results from 6 chicks.

Table 10:5a : T-tests of Mean SSp Synaptic Density of Controi vs 
M-trained and Left versus Right hemisphere LPO 
at Various Times following Training.

Unpaired t-test : df=10 

Control versus M-trained
Left Hem Right Hem

Paired t-test : df=5 

Left Hem versus Right Hem
Control

1 0.76 (ns) 0.58 (ns) 1 0.30 (ns) 0.76 (ns)

6
jvwMWWWVWWvywwVb

0.19 (ns) 1 0.99 (ns) 0.05
Fywyvyvywyvwwwvwv

(ns)
vwvwwuwvywyw

1.06 (ns)

1 2 0.45 (ns) 0.56 (ns) 0.18 (ns) 0.57 (ns)

2 4
vtfvVbPy%Ayvyvyvb*MVyv

1.31 (ns) 0.44 (ns) 0.26 (ns) 0.94 (ns)

4 8 0.05 (ns) 0.67 (ns) 0.17 (ns) 0.83 (ns)

M-trained

Results are given as t-values, see Appendix 6 for means ± SEM

* - significant at p<0.05, ns - not significant
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Table 10:5b : Two-way ANOVA of the Effects of Training
and Hemisphere on Nvggp

Hours
After

Training
Hemisphere Training Interaction

1 0.24 (ns) 0.03 (ns) 0.91 (ns)

6 0.49 (ns) 0.25 (ns) 0.62 (ns)

12 0.22 (ns) 0.01 (ns) 0.51 (ns)

24 0.13 (ns) 1.70 (ns) 0.59 (ns)

48 0.60 (ns) 0.16 (ns) 0.23 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant

Symmetric Spine Density
0.15 n ■  Left Control 

B  Left Trained 
B Right Control 
0  Right Trained _

E 0.05

0.00
6 12 24

Time after training (hrs)
48

Fig.10:4 : Mean numerical density of symmetric spine synapses ± SEM 
of left and right hemisphere LPC, from both M-trained and control chicks 
at selected intervals following a passive avoidance learning procedure. 
Each estimate is based on results from 6 chicks.
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Table 10:6a : T-tests of Mean SSh Synaptic Density of Control vs
M-tralned and Left versus Right hemisphere LPO
at Various Times following Training.

Unpaired t 

Control vers 
Left Hem

test : df=10

us M-tralned 
Right Hem

Paired t- 

Left Hem ver 
Control

test : df=5 

sus Right Hem 
M-tralned

1 

6 

1 2

1.15 (ns)

1.16 (ns) 

0.71 (ns)

1.15 (ns)

1.88 (ns) 

1.29 (ns)

0.51 (ns) 

0.89 (ns) 

1.46 (ns)

0.51 (ns)
ybWbVWWW.VW.VWNrtVW.VW.VWbW.

1.81 (ns) 

0.86 (ns)

24

48

0.86 (ns) 

1.27 (ns)

0.84 (ns) 

0.45 (ns)

0.24 (ns) 

1.17 (ns)

0.30 (ns) 

0.68 (ns)

Results are given as t-values, see Appendix 6 for means ± SEM 
* - significant at p<0.05, ns - not significant

Table 10:6b : Two-way ANOVA of the Effects of Training
and Hemisphere on Nvgg^

Mours
After

Training
Hemisphere Training Interaction

1 0.78 (ns) 2.64 (ns) 0.01 (ns)

6 2.72 (ns) 2.04 (ns) 0.02 (ns)

12 2.18 (ns) 1.93 (ns) 0.12 (ns)

24 0.10 (ns) 1.45 (ns) 0.01 (ns)

48 2.21 (ns) 1.52 (ns) 0.37 (ns)

Results are given as F values, df-1,20

* - significant at p<0.05, ns - not significant
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Symmetric Shaft Density
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Fig.10:5 : Mean numerical density of symmetric shaft synapses ± SEM 
of left and right hemisphere LPO, from both M-trained and control chicks 
at selected intervals following a passive avoidance learning procedure. 
Each estimate Is based on results from 6 chicks.

Table 10:7 : One-way ANOVA of the Effects of Time after Training
on the Numerical Density of Various Synaptic Types

Control M-tralned
Type Left Hem Right Hem Left Hem Right Hem

A ll 8.14 (*) 8.29 (*) I  17.91 (*) 24.21 (*)

ASp 3.65 (*) 6.00 (*) 9.02 (*) ! 9.87 (*)

ASh 0.21 (ns) 0.28 (ns) 0.09 (ns) 0.35 (ns)

SSp 0.43 (ns) 0.30 (ns) 0.94 (ns) 0.29 (ns)

SSh 0.60 (ns) 0.78 (ns) 0.49 (ns) 0.47 (ns)

Results are given as F-values, df=4,25

* - significant at p<0.05, ns - not significant
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Table 10:8a : Two-way ANOVA of the Effects of Time and Training
on the Numerical Density of Various Synaptic Types

Type
Time Training Interaction

df=4,50 df=1,50 df=4,50

A ll
Right

23.26 n 6.78 (*) 2.72 (*)
28.34 (*) 8.96 (*) 0.94 (ns)

Left

ASPpigh,
™ i1 .6 F T * ~ 1.86 (ns) 0.85 (ns)

15.27 n 6.40 (*) 1.08 (ns)
Left

ASh , 0.21 (ns) 0.01 (ns) 0.07 (ns)
Right 0.41 (ns) 0.00 (ns) 0.23 (ns)
Left

Right
0.89 [ns) 0.19 (ns) 0.53 (ns)
0.03 (ns) 0.00 (ns) 0.56 (ns)

Left

Right
1.07 (ns) 5.08 (*) 0.03 (ns)
1.17 (ns) 4.25 (*) 0.10 (ns)

Results are given as F-values,

* - significant at p<0.05, ns - not significant

Table 10:8b : Two-way ANOVA of the Effects of Time and Hemisphere 
on the Numerical Density of Various Synaptic Types

Type
Time

df=4,50
Hemisphere

df=1,50
Interaction

df=4,50
. , ,  Control
A11

M-trained

14.80 (*) 
41.05 (*)

2.65 (ns) 
4.50 n

1.64 (ns) 
0.18 (ns)

Control
ASp . .M-tramed

8.37 n  
18.07 (*) 

0.38 (ns) 
0.03 (ns)

0.54 (ns) 
0.01 (ns)

7.33 (*)

0.67 (ns) 
0.72 (ns)

_ T T T 7 n s r ^
0.33 (ns)

Control
A S h .,. ,M-trained

Control

M-trained

Control

M-trained

0.67 (ns) 
0.31 (ns) 
0.21 (ns) 
0.32 (ns)

0 03 (ns) 
0.08 (ns) 
0.27 (ns) 
0.75 (ns)

0 06 (ns) 
1.08 (ns) 
1.16 (ns) 
0.64 (ns)

Results are given as F-values,
* - significant at p<0.05, ns - not significant
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c) SYNAPTIC HEIGHT (Hgyn)

The data for Hgyp estimations are summarized in Fig.10:6, and results of the 

statistical analysis of the data are presented in Tables 10:9a,b, 11, 12a,b. The 

mean values of Hgy^ ± SEM are given in Appendix 7. A comparison of the mean 

values of Hgy^ for Control and M-trained chicks (T-test) showed that there was 

a significant difference in the left hemisphere LPO at 48 hours after training 

(t=2.32 (df=10) p<0.05) (Table 10:9a). There was no statistically significant 

difference in the right hemisphere, at this or any earlier time. Fig.10:6 shows 

that this difference is due to an increase in Hgyp in the left hemisphere of M- 

trained chicks. The mean synaptic height in the LPO of Control chicks is similar 

in both hemispheres (Table 10:9a). However, there is an asymmetry in the LPO 

of M-trained chicks in which the left hemisphere synapses are larger than the 

right (paired t-test: t=3.36 (df=5) p<0.05) (Table 10:9a). A two-way ANOVA 

did not find any significant effect of either hemisphere or training at any given 

time after training (Table 10:9b). When the data was pooled, and analyzed using 

a two-way ANOVA (Table 10:12a,b), significant effects of both time after 

training in left and right hemisphere LPO, and in Control and M-trained chicks. 

This suggests that the synaptic height does increase slightly during the period of 

study in the Control chicks, although no significant differences could be detected 

using a one-way ANOVA to investigate changes in Hgyp with time after training 

(Table 10:11). The two-way ANOVA also showed that training influenced synaptic 

size in the left hemisphere LPO (F^ 5q=9.18, p<0.05) (Table 10:12a), but not 

in the right hemisphere (Table 10:12a). This was confirmed in another two-way 

ANOVA, which tested the influence of time after training and hemisphere on the 

observed values of Hgy^ (Table 10:12b). A significant hemisphere effect was 

seen in the M-trained chicks only (F^ 5 q=7.29, p<0.05). There was no 

interaction of any of the effects stated above.
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Table 10:9a : T-tests of Mean Synaptic Height of Control vs
M-trained and Left versus Right hemisphere LPO
at Various Times following Training.

Unpaired t-test : df=10 

Control versus M-trained
Left Hem

Paired t-test : df=5 

Left Hem versus Right Hem
M-trainedControlRight Hem

0.37 (ns) 0.54 (ns) 0.16 (ns)0.41 (ns)

0.25 (ns) 1.11 (ns)0.44 (ns) 0.36 (ns)

0.16 (ns)0.76 (ns) 1.18 (ns)2.02 ns

0.48 (ns) 0.34 (ns) 1.39 (ns)2.11 (ns)

0.33 (ns) 0.18 (ns)2.32 (*)

Results are given as t-values, see Appendix 7 for means ± SEM 

* - significant at p<0.05, ns - not significant

Table 10:9b : Two-way ANOVA of the Effects of Training and
Hemisphere on Hgy^

Mours
After

Training
Hemisphere Training Interaction

1 0.06 (ns) 0.00 (ns) 0.30 (ns)

6 1.01 (ns) 0.00 (ns) 0.32 (ns)

12 0.45 (ns) 3.87 (ns) 0.79 (ns)

24 2.30 (ns) 3.29 (ns) 1.28 (ns)

48 2.36 (ns) 3.20 (ns) 1.67 (ns)

Results are given as F-values, d f-1 ,20

* - significant at p<0.05, ns - not significant
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Synaptic Height
600 -

500 -

400 -
?
B
Z 300 -
o)
Q)X 200 -

100 -

Left Control 
Left Trained 
Right Control 
Right Trained

6 12 24

Time after training (hrs)
48

F ig .10:6 : Mean projected synaptic height ± SEM of left and right 
hemisphere LPO, from both M-trained and control chicks at selected 
intervals following a passive avoidance learning procedure. Each estimate 
is based on results from 6 chicks.

d) SYNAPTiC SURFACE AREA (Sagyn)

The mean values of synaptic contact surface area are shown in Fig.10:7, and 

are given, together with their SEMs in Appendix 7. Statistical analyses are 

summarized in Tables 10:10a,b, 11, 12a,b. A comparison of the estimated mean 

Sasyn of Control and M-trained chicks, at various times following training, was 

made using a t-test. No significant differences were seen in either left or right 

hemisphere (Table 10:10a). Although the estimates of Sa^yp were similar 

between the hemispheres in the Control chicks, the M-trained chicks displayed a 

hemispheric asymmetry in Sagyp at 48 hours after training (t=5.79 (df=5) 

p<0.05) (Table 10:10a). This was due to an increase in the mean value of Sagy^ 

in the left hemisphere of M-trained chicks (Fig.10:7). These results clearly 

mimic the pattern observed for changes in the mean Hgyp in M-trained chicks. 

This is what one would expect, since both Hgy^ and Sagy^ are measures of
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synaptic size. A two-way ANOVA was performed using the values obtained for each 

time after training, in order to test whether hemisphere or training had any 

influence on the observed values, but there were no significant effects found 

(Table 10:10b). The Interaction of the effects was also not significant. The 

increase in Sasyn observed in the left hemisphere of M-trained chicks at 48 

hours after training, was only slight, since no detectable overall increase was 

seen using a one-way ANOVA to examine the effect of time on the observed values 

(Table 10:11). This lack of change with time was also observed using a two-way 

ANOVA to examine the effects of time and training (Table 10:12a) and time and 

hemisphere (Table 10:12b). These tests showed however, that there was a 

detectable effect of training in the left hemisphere LPO (F.| gQ=8.01, p<0.05) 

(Table 10:12a), and that a resultant hemispheric asymmetry was present in M- 

trained chicks (^150=4.74, p<0.05) (Table 10:12b).

Table 10:10a : T-tests of Mean Synaptic Surface Area of Control 
vs M-trained and Left versus Right hemispihere 
LPO at Various Times following Training,

Unpaired t-test : df=10

Control versus M-trained 
Left Hem | Right Hem

Paired t-l

Left Hem ver 
Control

test : df=5 

sus Right Hem 
M-trained

1 0.43 (ns) 0.93 (ns) 0.63 (ns) 0.20 (ns)

6 0.68 (ns) 0.63 (ns) 0.33 (ns) 1.17 (ns)

1 2 1.39 (ns) 1.08 (ns) 0.68 (ns) 1.27 (ns)

24 1.72 (ns) 0.60 (ns) 0.72 (ns) 1.51 (ns)

48 2.10 (ns) 0.55 (ns) 0.59 (ns) 5.79 (*)

Results are given as t-values, see Appendix 7 for means ± SEM

* - significant at p<0.05, ns - not significant
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Table 10:10b : Two-way ANOVA of the Effects of Training
and Hemisphere on Sagy^

Hours
After

Training
Hemisphere Training Interaction

1 0.31 (ns) 0.92 (ns) 0.11 (ns)

6 0.01 (ns) 0.37 (ns) 0.87 (ns)

12 3.06 (ns) 2.39 (ns) 0.09 (ns)

24 0.63 (ns) 0.16 (ns) 2.68 (ns)

48 3.49 (ns) 0.02 (ns) 1.15 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant

Synaptic Surface Area
■  Left Control 
B  Left Trained 
B  Right Control 
S  Right Trained

g> 20

6 12 24

Time after training (hrs)

F ig .10:7 : Mean synaptic contact surface area ± SEM of left and right 
hemisphere LPC, from both M-trained and control chicks at selected 
intervals following a passive avoidance learning procedure. Each estimate 
is based on results from 6 chicks.
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Table 10:11 : One-way ANOVA of the Effects of Time after Training
on Synaptic Size

Control M -trained
Type Left Hem \ Right Hem Left Hem | Right Hem

syn

Sa syn

Results are given as F-values, df=4,25 

* - significant at p<0.05, ns - not significant

Table 10:12a Two-way ANOVA of the Effects of Time and Training 
on Synaptic Size

Group
Time Training I Interaction

df=4,50 df=1,50 df=4,50

H LeH 10.09 (*) 9.18 (*) 1.56 (ns)
Right 5.36 n 0.53 (ns) 1 0.17 (ns)

Sa Leh 1.24 (ns) 8.01 (*j 0.51 (ns)
Right 1.66 (ns) 0.32 (ns) 1 0.65 (ns)

Results are given as F-values,
* - significant at p<0.05, ns - not significant

Table 10:12b Two-way ANOVA of the Effects of Time and Hemisphere 
on Synaptic Size

Group
Time ' 

df=4,50
Hemisphere

df=1,50
Interaction

df=4,50
pj Control 

M-trained 
Control

syn
M-trained

4.19 (*) 
11.72 n  

1.34 (ns) 
1.89 (ns)

0.25 (ns) 
7.29 n  

0.02 (ns) 
4.74 n

0.06 (ns) 
0.86 (ns)
0.57 (ns) 
0.24 (ns)

Results are given as F-values,

* - significant at p<0.05, ns - not significant
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e) SYNAPTIC BOUTON VOLUME (Vv^outon)

The data of mean volume-weighted mean volume of synaptic boutons is 

summarized in Fig.10:8, and is detailed in Appendix 8. Statistical analysis of the 

data is presented in Tables 10:13,16,17,18a,b. A comparison of the estimated 

mean values of Vv^^^g^ between the hemispheres was made using a paired t- 

test. No significant differences were found between the hemispheres of either 

Control chicks or M-trained chicks (Table 10:16). There was no significant 

alteration in Vv^jq^^q^ in either hemisphere, at any time after training, when 

M-trained chicks were compared with Controls (t-test) (Table 10:16). A two- 

way ANOVA was used to test the effect of hemisphere and training on the observed 

values of Vvj^Q^^Qp, but did not detect any significant effects (Table 10:13). 

However, a one-way ANOVA did show a significant change in Vvj^^^^^ with time, 

in both left (F4 25=4-61, p<0.05) and right hemisphere (F4 25 = 6 .0 2 , 

p<0.05) of M-trained chicks, but not of Controls (Table 10:17), suggesting that 

some effect of training on Vv^^^^g^ was evident. A two-way ANOVA was used to 

analyse the effects of time and training on the observed mean values of Vv^g^^Q^, 

but was unable to detect any direct effect of training (Table 10:18a). There was 

however, a significant effect of time after training in the left hemisphere LPO 

(F2,3o=6.65, p<0.05), but not the right (Table 10:18a). Time had an effect on 

M-trained chicks (F2 30=10-38, p<0.05) rather than Controls (Table 

10:18b). There was no evidence to support the hypothesis that there was a 

difference in mean Vv^gy^g^ between the hemispheres, or that Yv^gg^g^ was 

affected differently in the hemispheres following training (two-way ANOVA: 

Table 10:18b).
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Table 10:13 : Two-way ANOVA of the Effects of Training and
Hemisphere on

nours
After

Training
Hemisphere Training Interaction

1 0.00 (ns) 0.10 (ns) 1.11 (ns)

24 1.51 (ns) 4.16 (ns) 0.05 (ns)

48 0.92 (ns) 3.56 (ns) 0.07 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant

Synaptic Bouton Volume

0.2 -

I
0.1 -

$

0.0

■  Left Control
■  Left Trained
H  Right Control
0  Right Trained

24  48
Time after tra in ing (hrs)

F ig .10:8 : Mean volume-weighted mean volume of synaptic boutons ± 
SEM of left and right hemisphere LPO, from both M-trained and control 
chicks at selected intervals following a passive avoidance learning 
procedure. Each estimate is based on results from 6 chicks.
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f) DENDRITIC SPINE VOLUME (Vv^pine)

A graph of the mean ± SEM VVgpjpQ for both M-trained and Control chick LPO 

is shown in Fig.10:9. The data can also be found in Appendix 8. The mean estimate 

of Vvgpjpg was consistently greater in the M-trained chicks than in the Controls, 

although in the right hemisphere LPO, the difference was negligible. When the 

difference in means between the two groups was tested using a t-test, a 

significance was observed at 48 hours after training in the left hemisphere only 

(t=2.46 (df=10) p<0.05) (Table 10:16). A two-way ANOVA of the data from 

LPOs obtained 48 hours after training, did not provide evidence for a significant 

effect of training on the observed values of Vvgpine at this, or any other time 

(Table 10:14). Nor could this test detect any difference in the hemispheres in 

this respect (Table 10:14). Similarly, a one-way ANOVA failed to show any 

significant change in the estimates of Vvgpjpg with time following training, in 

either of the hemispheres of Control or M-trained chicks (Table 10:17). 

However, a two-way ANOVA which tested the effects of both time and training on 

the observed values, showed significance in both cases, but in the left hemisphere 

only (Time: F2 30=3.66, p<0.05. Training: F.| 3q=12.97, p<0.05) (Table 

10:18a).
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Table 10:14 : Two-way ANOVA of the Effects of Training and
Hemisphere on Vvgpj^g

Hours
After

Training
Hemisphere Training Interaction

1

24

48

0.22 (ns) 

0.69 (ns) 

0.44 (ns)

3.39 (ns) 

2.17 (ns) 

3.64 (ns)

0.81 (ns) 

0.08 (ns) 

1.94 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant

Dendritic Spine Voiume
0.3 -1

w  0 .2 -

Left Control 
Left Trained 
Right Control 
Right Trained

1 24  48

Time after training (hrs)

F ig .10:9 : Mean volume-weighted mean volume of dendritic spines ± 
SEM of left and right hemisphere LPC, from both M-trained and control 
chicks at selected intervals following a passive avoidance learning 
procedure. Each estimate is based on results from 6 chicks.
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g) DENDRITIC SHAFT VOLUME (Vvshaft)

The data for 'S summarized In Fig.10:10, and the means ± SEM are

given in Appendix 8. T-tests were used to compare mean values from left and 

right hemispheres of both Control and M-trained chicks, the results of which are 

presented in Table 10:16. A series of one-way and two-way ANOVAs were 

performed, and the results are presented in Tables 10:15, 10:17,10:18a, and 

10:18b. It is clear from Fig.10:10 that Vvg^g^^ is not significantly affected by 

training, and does not appear to change much during the 48 hour period. This is 

confirmed using a variety of statistical tests (Tables 10:15, 10:16, 10:17, 

10:18a, 10:18b), in which no significant differences or effects could be found. 

Hence one may conclude that Vvg^g^ is relatively stable in magnitude both during 

early post-hatch development and following a passive avoidance learning task.

Table 10:15 : Two-way ANOVA of the Effects of Training and
Hemisphere on Vvg^g^

Hours
After

Training
Hemisphere Training Interaction

1 2.19 (ns) 0.84 (ns) 0.00 (ns)

24 0.93 (ns) 0.93 (ns) 0.20 (ns)

48 0.45 (ns) 0.33 (ns) 1.46 (ns)

Results are given as F-values, df=1,20 

* - significant at p<0.05, ns - not significant
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3
I

2 -

Dendritic Shaft Voiume

Left Control 
Left Trained 
Right Control 
Right Trained

1 24  48

Time after tra in ing (hrs)

F ig .10:10 : Mean volume-weighted mean volume of dendritic shafts ± 
SEM of left and right hemisphere LPO, from both M-trained and control 
chicks at selected intervals following a passive avoidance learning 
procedure. Each estimate is based on results from 6 chicks.
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Table 10:16 : T-tests of Mean Volume-Weighted Mean Volume of 
Various Neuronal Elements of Control vs M-trained 
and Left versus Right hemisphere LPO at Various 
Times following Training.

Unpaired t -test : df=10 Paired t-test : df=5

Control versus M-trained Left Hem versus Right Hem
Left Hem Right Hem Control M-trained

1 0.51 (ns) 0.81 (ns) 1.02 (ns) 0.78 (ns)

24 1.90 (ns) 1.13 (ns) 0.82 (ns) 1.06 (ns)

48 1.19 (ns) 1.47 (ns) 1.18 (ns) 0.50 (ns)

1 2.10 (ns) 0.62 (ns) 0.28 (ns) 0.98 (ns)

24 1.58 (ns) 0.72 (ns) 0.37 (ns) 1.03 (ns)

48 2.46 (*) 0.35 (ns) 0.59 (ns) 1.15 (ns)

1 0.62 (ns) 0.67 (ns) i 0.75 (ns) 1.32 (ns)

24 1.02 (ns) ; 0.36 (ns) 0.32 (ns) 1.30 (ns)

48 0.46 (ns) 1.24 (ns) i 2.07 (ns) ; 0.53 (ns)

c
o  -♦—* 3 
O 
CÛ

0c
o.
CO

03
x;
CO

* - significant at p<0.05, ns - not significant
Results are given as t-values, see Appendix 8 for means ± SEM
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Table 10:17 : One-way ANOVA of the Effects of Time after Training 
on Volume-Weighted Mean Volumes

Control M-trained
Type Left Hem Right Hem Left Hem J Right Hem

6.02 nBouton 2.41 (ns)

Spine

Shaft

Results are given as F-values, df=4,25 

* - significant at p<0.05, ns - not significant

Table 10:18a Two-way ANOVA of the Effects of Time and Training on 
Volume-Weighted Mean Volumes

Group
Time Training Interaction

df=2,30 df=1,30 d f-2 ,3 0
Left

Bouton
Right

6.65 (*) 4.12 (ns) 0.39 (ns)
2.72 (ns) 1.17 (ns) 1 1.67 (ns)

Left
Spine

Right
3.66 (*) 
1.84 (ns)

12.97 (*) 
0.92 (ns)

0.71 (ns) 
0.03 (ns)

Shaft 0.10 (ns) 0.38 (ns) 1 0.56 (ns)
Right 0.08 (ns) 1.80 (ns) 0.25 (ns)

Results are given as F-values,

* - significant at p<0.05, ns - not significant
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Table 10:18b : Two-way ANOVA of the Effects of Time and Hemisphere on 
Volume-Weighted Mean Volumes

Group
Time

df=2.30
Hemisphere

df=1,30
Interaction

df=2,30
Control

Bouton
M-trained

1.55 (ns) 
10.38 (*)

0.24 (ns) 
2.11 (ns)

0.65 (ns) 
0.11 (ns)

Control
Spine

M-trained

M-trainec

2.91 (ns) 
2.42 (ns) 
0.01 (ns) 
0.04 (ns)

0.10 (ns) 
3.33 (ns)

0.77 (ns)

0.25 (ns) 
0.22 (ns) 
0.31 (ns) 
0.63 (ns)

Results are given as F-values,

* - significant at p<0.05, ns - not significant

10.4 : DISCUSSION

This study has shown specific evidence of changes in the numerical density 

and size of synapses, and the volume-weighted mean volume of dendritic spines in 

the chick LPO following memory formation. In addition, it describes the time- 

course over which such changes take place. Previous studies by other workers, 

using a variety of animal models, have also shown that the synapse is 

particularly liable to such changes following sensory experience or 

environmental stimulation (for review, see Greenough and Chang 1985). The 

data presented here also show similarities to synaptic plasticity that occur as a 

consequence of training in both vertebrates (Vrensen and Nunes-Cardoso 1981) 

and invertebrates (Bailey and Chen 1990). The significance of such plastic 

change is uncertain, although it clearly must have a profound effect on the 

functioning of neuronal connectivity.

The validity of much of the previous work in this field comes into question, 

since the quantitative methods used by the majority of other workers, are highly 

biased. This is because previous numerical estimates often relied upon
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assumptions regarding synaptic shape and/or size (see Chapter 7 for details). If 

training results in an alteration in the size or complexity of synapses, and/or 

changes in their shape, then this may lead to over-estimation of synaptic counts, 

using traditional counting procedures. In future, unbiased stereological methods 

will become the only acceptable ones for the estimation of number, size and 

volume. However, a wealth of data obtained using biased methods has already 

bombarded the scientific literature, and one must take many of the conclusions 

reached, at face value.

A second criticism of previous studies in this field, is that synapses have in 

general, been regarded as a single entity, and hence are assumed to have a single 

and unified function (Bailey and Chen 1989a, Aghajanian and Bloom 1967, 

DeGroot and Vrensen 1978). This is clearly not so, since the synapses may vary 

in both neurotransmitter content and have substantially differing targets. Thus 

the locality and transmitter may influence the effect on a particular post- 

synaptic neuron. Synapses can be classified into multiple types (Gray 1959, 

Hassler et al 1978), and these different types may constitute different 

functional forms. One advantage of quantifying changes in different synaptic 

types, as in the present study, is that one can assess changes in existing 

synapses, e.g. changes in the post-synaptic target from shaft to spine or vice- 

versa. This would not be possible using standard methodologies.

A criticism of the present study, is that no account has been taken of the 

changes in the neuronal population following training. The number of synapses 

per neuron may be a more important parameter than synaptic number alone. It is 

known that in the chick IMHV, the numbers of neurons decrease over the first 

few days of post-hatch life (Curtis et a! 1989). If this is also true for the LPO,
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then the synapse to neuron ratio would show even greater differences than 

synapse number alone. Quantification of neuronal changes following PAL in the 

chick LPO must however, remain a priority for future studies.

In the present study, estimations of numerical density estimations were made 

rather than absolute number. It was necessary therefore, to determine whether 

the volume in which these density estimates were made, remained stable after the 

memory task has been performed. This was confirmed by examining the LPO 

volume in both Control and M-trained chicks, at various intervals after training. 

The results clearly showed that there was no significant alteration in volume as a 

consequence of learning (Table 10:1a). The most accurate method of determining 

number changes in a given region, is by estimating absolute number for that 

brain region, either by direct counts or more usually, by sampling. This can only 

be achieved by including a measurement of the volume of that region, for the 

brain in which numerical density measurements are obtained. However, this was 

not possible in the present experiment, due to the desire to keep the IMHV intact. 

As second best therefore, volume estimations were made on brains of chicks 

reared and trained in identical conditions to those used for quantitative 

morphological analysis. Since there were no significant alterations in LPO 

volume of M-trained chicks compared to Controls, comparisons of numerical 

density are considered justified.

Total synaptic density (Nvgyp)

The estimated mean synaptic densities of the Control group are comparable to 

the estimates obtained previously for the 1-day old group in the developmental 

study (Chapter 9, Fig.9:1). Hence, the technique is shown to yield consistent 

results. The first few days of post-hatch life are a period of intense synaptic
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modification in the LPO. New synapses are being formed at a very high rate of 

synthesis, since the Control chicks display significant increases in Nvgyp in both 

left and right hemispheres (Table 10:7). Training with methyl anthranilate 

however, causes an even greater synthesis. It is not possible to say whether these 

changes are due to the process of memory formation, or due to some concomitant 

of the training experience, such as the taste of the bead. However, previous 

studies have shown that other morphological alterations in the chick IMHV are 

due to the memory of the taste alone (Patel et al 1988). Also biochemical 

changes in the chick brain following memory formation have been shown to be a 

direct consequence of memory, and not of some non-specific stimulus (Rose and 

Harding 1984). It has been shown for other species (e.g. rat), that non-specific 

environmental stimulation may cause an increase in synaptic number (Turner 

and Greenough 1985). Studies such as these are crucial to the present 

discussion, since without knowledge of non-specific effects, one cannot relate the 

observed changes to any given behaviour. The present results therefore, and 

their implied relevance to memory formation, are only valid on the assumption 

that the changes only occur in response to the formation of a memory. In the light 

of studies by Patel et al (1988) and Mason and Rose (1988), this assumption is 

reasonable. It is further given substance, by the lack of evidence of involvement 

of the LPO, in response to either gustatory or olfactory stimuli (see Chapter 3 

(3.3 and 3.4)).

The observed increase in synaptic numerical density 24 hours following PAL 

has been reported previously for other models of memory processes. Synaptic 

number has been shown to be increased following LTP in the dentate gyrus of the 

rat hippocampus (Wenzel et al 1985, Desmond and Levy 1983, Desmond and 

Levy 1986), and in the hippocampus in vitro (Chang and Greenough 1984).
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Similar findings have been shown to occur after a brightness discrimination task 

in rat hippocampus (Wenzel et al 1980). in this latter study, an increase in 

synaptic number of approximately 40% was seen in trained animals, in 

comparison with controls. Another large increase in synaptic number has been 

shown to occur in the robustus archlstriatalls of the adult female canary 

following song-learning. These studies compare favourably with the large 

increases witnessed following PAL in the present study. The significance of the 

magnitude of the increase is uncertain. Clearly, each 'memory' cannot be 

associated with a large increase in synaptic number, otherwise total synaptic 

number would be of enormous magnitude foliowing a second or future memory 

acquisition. Rather, the increases may be associated with generalized learning 

processes, which would subserve many different memories.

It is also clear from the present results, that an increase in synaptic 

numerical density persists until at least 48 hours after training. It is not known 

whether there is a subsequent reduction in number after this time. An increase 

in synaptic number in the invertebrate, Aplysia following sensitization to a 

tactile stimulus (Bailey and Chen 1983, Bailey and Chen 1990) was shown to be 

more permanent than a change in synaptic size. Indeed, synaptic number 

increases lasted as long as the behavioural retention of the memory, which was 

several weeks (Bailey and Chen 1989b).

The results from the present study and from those of other workers (Bradley 

et al 1985, Horn et al 1985, Stewart et al 1987), suggest that synaptic 

number increases following memory do not appear before 24 hours have elapsed 

since the training experience. This leads one to ask whether the synapse is 

capable of genesis before this time. A study by Lee et al (1980) showed that 

synapses in the rat hippocampus could be formed by 15 minutes following the
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induction of LTP. Dendritic shaft and 'sessile' spine synapses were also formed 

within the rat hippocampus by a little as 10-15 minutes after a multi-stimulus 

treatment (lasting 6 minutes) prior to LTP formation (Chang and Greenough

1984). For synaptic modification to occur in such a rapid manner, initiation 

must take place locally along the axon, and not be directed by protein synthesis 

centrally.

In contrast, the IMHV of the chick brain, which has also been shown to be 

concerned with the process of memory formation, does not show any increase in 

synaptic number 24 hours following training (Stewart et al 1984). It is a 

feature therefore, that is not common to all areas of the brain concerned with 

memory formation. The possibility arises, that an increase in synaptic number 

is associated only with the long-term storage of memory. This hypothesis is 

supported by lesion studies which showed that the IMHV is only essential for the 

acquisition of memory for the avoidance task in chicks (Patterson et al 1989), 

whilst the LPO is necessary for its long-term storage (Gilbert et al in press). 

In Aplysia it has been shown that short-term sensitization is associated with an 

increase in active zone size, and synaptic vesicle complement (Bailey and Chen 

1983), and long-term sensitization with an increase in synaptic number and 

pre-synaptic varicosities (Bailey and Chen 1989b). Thus, long-term memory 

as a generalized process, may be partially a consequence of lasting changes in 

synaptic number.

The present data show that there is no hemispheric difference in the 

estimated mean NVgyp either between Control or M-trained chicks. Thus, the 

Observed increases in Nvgyn are approximately equal in both hemispheres. This 

finding is in close agreement with the results of a previous investigation of
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synaptic changes in the LPO following memory formation (Stewart et al 1987). 

This result is of particular interest, since it has been shown that unilateral 

lesions of the LPO do not result in amnesia for the taste avoidance paradigm 

(Gilbert et al in press). Only lesions placed bilaterally cause amnesia (Gilbert 

et al in press). This is in marked contrast to the chick IMHV, which displays 

many synaptic asymmetries (Stewart et al 1984). It has further been shown 

that lesion of the left IMHV, and not the right, causes amnesia for the taste of the 

bead (Patterson et al 1989).

The time required for significant changes in the density of synapses in the 

chick LPO, was shown to be 24 hours in the left hemisphere, and 48 hours in the 

right hemisphere (Table 10:2a). Whether the delay in the right hemisphere is of 

biological significance is uncertain. A previous study has shown a statistically 

significant increase in NVgyp in the LPO in both hemispheres, 24 hours after 

passive avoidance training (Stewart et al 1987). However, the methods used in 

the study by Stewart et al were biased, since they relied on assumptions 

regarding synaptic shape. Despite this, their results are broadly in line with the 

present findings.

An early report by Stewart et al (1983) published data which contradicts 

their later findings (Stewart et al 1987), and hence also differs from the 

present findings. As stated previously (Section 4.3), these two studies make 

entirely opposite conclusions; namely that the former states that there is no 

statistically significant difference between trained and control chicks, with 

respect to synaptic density, whilst the latter states that there is. The former 

study provided estimations obtained directly on the electron microscope 

fluorescent screen, whilst the latter, using LPOs from a different group of birds.
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employed the standard technique, in which estimations are made from electron- 

micrographs. Both studies used biased quantitative methods to make final 

estimates. There are substantial differences in the estimates between the two 

studies. The latter study reported a mean estimate of Nvsyn for the left 

hemisphere of Control chicks, which was 61% greater than that reported in the 

former study. Similarly, there was a difference of 64% in estimates of NVgyp in 

the right hemisphere. This suggests that there was a procedural error in the 

first study (1983), possibly arising from inaccuracies of synaptic identification 

on the microscope screen. The latter study by Stewart et al (1987) employed a 

more accurate method of location of the LPO (Rose and Csillag 1986), and 

peVhaps as a consequence, is more in line with the estimations of synaptic density 

made here.

Spine versus Shaft synapses

Changes in the pattern of connectivity of synapses upon the target neuron are 

important, in that changes in the locality of the synapse may play an important 

factor in achieving an alteration in synaptic efficacy (Landis 1985, Pongracz

1985). Many studies of synaptic number following learning and memory have 

failed to detect any changes (Vrensen and Nunes-Cardoso 1981, Stewart et al 

1984, Horn et al 1985). However, since the numbers of synapses of different 

types were not counted, these studies were unable to comment upon the 

possibility of a shift in synaptic locality. Such alteration in synaptic target has 

been shown to occur in the primate visual cortex (Mates and Lund 1983a), and 

in the Zebra-Finch ec to s trla tu m  (Nixdorf 1989). In this latter study, 

axospinous synapses reduced in number from 40% of the total to 22%, whilst 

the numerical density of synapses remained constant. Changes in synaptic 

proportions may underlie important functional changes in the properties of the
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action potential propagation, which may have significance for the efficacy of 

synaptic transmission.

There were no significant differences in the mean numerical density of 

asymmetric spine synapses in either the left or right hemisphere (Table 10:3a) 

between the LPOs of Control and M-trained chicks. The mean values correlate 

well with estimates made previously in the developmental study (Chapter 9, 

Fig.9:4a). A recent study has demonstrated an increase in spine density in the 

LPO of M-trained chicks in comparison to Controls (water-trained), using 3- 

dimensional reconstruction of Golgi impregnated tissue (Lowndes and Stewart

1990). These authors found a 13% increase in the left hemisphere and an 8% 

increase in the right hemisphere. Although the present results show estimated 

mean Nvy^gpS for the LPOs of M-trained chicks which are 26% greater in the 

left, and 15% greater in the right hemisphere, these values are not statistically 

significant. Had this difference been significant, it would mimics the pattern 

observed for spine increases as shown in the study by Lowndes and Stewart, 

although the increased ratio of Nvy^gp in each hemisphere is exactly double the 

increase reported for dendritic spines. However, since the present estimates are 

not statistically significant, one cannot say with any degree of certainty whether 

the numerical density of synapses increases in direct correlation with that of 

dendritic spines. A two-way ANOVA showed the significant effects of training on 

the density of ASp synapses as early as 12 hours after training (Table 10:3b). 

This shows the capacity for rapid synaptic plasticity in response to the learning 

experience.

The present study could detect no significant differences between the 

hemispheres with respect to the estimated mean asymmetric shaft synaptic
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densities. This is in keeping with the previous estimate for Nvy^g^ in the 

developmental study (Fig.9:4b, Fig.9:1 Ob). The estimates obtained for the 

Control chicks of this study, and for the 1-day old chicks in the developmental 

study (Chapter 9, Fig.9:1), are within the same order of magnitude.

The estimated mean Nvy^g^ obtained for the left hemisphere LPO are 

consistently (though not significantly) lower than those obtained for the right 

hemisphere (Fig.10:3). This may be a real difference which i am unable to 

detect, given the degree of error with which the estimates are made. A similar 

finding was shown in the developmental study (Chapter 9), where both 

numerical density and absolute number estimates of ASh synapses were made. 

Neither of the estimates of chicks aged 1-day post-hatch, which is the nearest 

approximate age of chicks used in the present study, were significantly different.

One study of the rat hippocampus showed that there was an increase in the 

number of spine, but not shaft synapses, following LTP (Desmond and Levy 

1983). A second study found exactly the opposite; ie. an increase in shaft 

synapses, but no overall synaptic number increase (Wenzel et al 1985). The 

results of asymmetric shaft synapses, which constitute the majority of shaft 

synapses in the chick LPO, provide evidence that suggests that this is not the case 

in the present study, since training did not have any effect on the density of 

asymmetric shaft synapses (Table 10:4b). However, the possibility exists that 

some synapses may have been transformed from shaft to spine synapses, whilst 

the numerical density of asymmetric shaft synapses was maintained by the 

synthesis of new asymmetric shaft synapses. This method of synaptic shift has 

been suggested (Stewart 1990) as a possible mechanism in the chick IMHV, to 

explain two conflicting reports of an increase in the density of dendritic spines 

(Patel and Stewart 1988), and a lack of change in the numerical density of
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synapses (Stewart et al 1984). A decrease in the number of shaft synapses 

would result in an increase in the number of spine synapses. In a developmental 

study of the chick IMHV, it was shown that there was a significant increase in the 

density of spine synapses, but no corresponding increase or decrease in shaft 

synapses (Bradley 1985). Since this region is involved in memory processes 

(Rose and Csillag 1984), one might expect that these developmental changes 

would mimic the changes due to memory formation in the experimental model, 

using passive avoidance learning.

It is worth noting that the estimates obtained in the present study for 

asymmetric spine synapses, are over six times those obtained for asymmetric 

shaft synapses. This is in marked contrast to other regions of the chick brain, 

such as the IMHV, where the numerical densities of each type were 

approximately equal (Bradley 1985). The hyperstriatum accessorium  was 

shown to have approximately twice as many spine synapses as shaft synapses 

(Bradley 1985). There is thus considerable differences in the ratio of shaft to 

spine synapses in different regions of the chick brain. In addition, the 

developmental study of the LPO (Chapter 9) revealed hemispheric differences in 

this ratio. It is not known to what function, if any, these differences relate.

Asymmetric versus Symmetric synapses

As was shown previously (Fig.9:5c), the number of symmetric spine 

synapses is small in comparison to the total number of synapses (<10%). Since 

symmetric synapses in the young avian brain lack any distinguishing features to 

differentiate them from asymmetric synapses, other than the appearance of the 

PSD (see Chapter 5 and Nixdorf 1989), an under estimation of the true 

numerical density may have been made, as some symmetric synapses may have
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been overlooked. However, similarly low estimates of the ratio of symmetric 

synapses to the total population is seen in the chick IMHV (Curtis et al 1989), 

and in the Zebra-Finch ectostriatum  (Nixdorf 1989). Given the low number, 

and hence the extremely small numbers sampled using the methods described, it 

is perhaps difficult to detect small changes in the densities of these synapses 

following memory formation, should these exist. No such changes were detected in 

the present study. However, the above argument loses credibility when one 

examines the symmetric shaft density estimates. These synapses are equally low 

in number (Fig.9:5d), and yet a statistically significant effect of training is seen 

in both hemispheres, using a two-way ANOVA. (Table 10:8a). These differences 

are not detectable however, at individual time-points using the less powerful t- 

test, as the statistical tool (Table 10:6a).

Mean projected synaptic height (Hgyp)

One mechanism whereby a pre-synaptic element may increase the 

probability of causing a post-synaptic cell to fire, is by increasing the efficacy 

of synaptic transmission between the two. This may be achieved in part, by 

increasing the size of the synaptic contact zone. This may increase the amount of 

neurotransmitter released at the site, since a greater number of vesicles can be 

accommodated at the pre-synaptic grid. Secondly, an increase in the post- 

synaptic density, would probably allow a greater density of receptors for that 

neurotransmitter to be located at the synaptic site. Such mechanisms may be 

involved in modifications of functioning of the synapse, and may underlie changes 

in synaptic efficacy that are thought to play a role in the formation of memory 

(Herrera et al 1985).

Synaptic height is an estimator of synaptic size, which makes no assumptions

191



about synaptic shape. Many previous estimates of synaptic size were based on 

biased methods which assumed that the synapse was disc-shaped (Curtis et al 

1989, Devon and Jones 1981). Comparison of the estimations made using these 

two different methods is not possible, since different parameters are being 

measured in each case. In the present study, synaptic height refers to the mean 

projected height of the synapse perpendicularly between the two section planes. 

Its validity is dependent upon either a randomness of the synapses within the 

sample volume, or a randomness of the disector planes with which the sample is 

made. In previous studies, estimations were made of the length of the synaptic 

profile in the section plane, with correction for true diameter assuming a 

circular shape, using the unfolding method of Schwartz-Saltykov (for details, 

see Chapter 7, Section 2a).

Comparisons can be made however, with the estimates made previously in the 

developmental study (Chapter 9, Fig.9:12). The present results for Control 

chicks, are consistent with the results obtained for the 1-day chicks of the 

developmental study (Fig.9:12). Also in agreement with these results, is the lack 

of asymmetry in Hgyp in Control chicks. A study by Stewart et al (1987) 

showed that synaptic length was approximately 10% greater in the right 

hemisphere of 2-day old Control chicks (water-trained). One possible 

explanation of this apparent discrepancy, is that perhaps the estimation of 

synaptic height, which although unbiased, is a much cruder measure of synaptic 

size, and is not sensitive enough to detect differences of this magnitude. An 

increase of Hgy^ in the order of approximately 22% by 48 hours after training 

in the left hemisphere of M-trained chicks, was significantly different to both 

the estimated mean Hgy^ of the right hemisphere of M-trained chicks, and left 

hemisphere of Control chicks (Table 10:9a).
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The results described here show that synapses in the left hemisphere of the 

LPO undergo a substantial increase in size following training. This was the 

conclusion of Stewart et al (1987) comparing synaptic length measurements, 

although the results of this increase in size achieved a different outcome of 

significance. Stewart et al reported that there was no significant difference in 

synaptic length of Controls (water-trained) compared to M-trained chicks 24 

hours later. This was due to an increase in synaptic length in the left 

hemisphere, since Control chicks had a hemispheric asymmetry of synaptic size, 

such that the right hemisphere was 10% larger than the left. Increases in 

synaptic size have also been reported following PAL (Bradley and Galal 1987) 

and following imprinting (Bradley et al 1981, Bradley et al 1985b) in 

synapses in the chick left IMHV. Other studies of the effects of imprinting on 

morphological characteristics of the synapse, have shown that the increase in 

length of the synapse in the left hemisphere of the chick IMHV, is restricted to 

those targeting onto dendritic spines (Horn et al 1985). The training paradigm 

which involved exposure to a flashing red light, showed that the effect of training 

on synaptic length, was dependent upon the time of exposure (20 minutes of 

training gave no significant differences, compared to dark-reared controls). The 

use of dark-reared chicks as a control group for this experiment gives some 

concern, since it has been shown that visual deprivation in young birds causes a 

decrease in synaptic length (Nixdorf 1990a), albeit in the ectostriatum. In 

addition, Nixdorf has shown that although both hemispheres are affected, they are 

so to different degrees. This may account for the significant hemispheric 

differences reported by Horn et al (1985). This is unlikely however, since 

other studies have reported similar findings for the chick IMHV, 2-3 days 

following visual imprinting (Petrova et al 1990).
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The present study did not take any account of the post-synaptic target in 

measurements of Hgyp, although measurements were restricted to asymmetric 

synapses. An analysis of Hgy^ of particular classes of synapse in the present 

study may have been useful. If a similar situation to that of the chick IMHV exists 

in the LPO, (i.e. size increases restricted to the axospinous synapse) then a more 

efficient evaluation of size may have been made. Of course, one is limited by the 

bounds of time and other constraints.

Previous studies have shown that following imprinting there is an increase in 

the mean length of synapses in the left hemisphere of the IMHV of the chick 

(Bradley et al 1981, Bradley et al 1985b). Following passive avoidance 

learning, Bradley and Galal (1987) were able to demonstrate a similar increase 

in the mean length of synapses in the left IMHV. This increase in size was not seen 

in chicks who had been previously injected with anisomycin, a protein synthesis 

inhibitor (Bradley and Galal 1987). Protein synthesis is known to be essential 

for the formation of a long-term memory trace (Matthies 1982, Rosenzweig and 

Bennett 1984b).

In addition to work on the effects of learning and memory on synaptic size in 

the chick, there is evidence that synapses in other species undergo similar 

changes following memory formation. In the rat hippocampus, the PSD length 

increases following a brightness discrimination task (Wenzel et al 1980, 

Matthies 1989b). Sensitization in Aplysla also causes a larger mean PSD size 

(Bailey and Chen 1983). Further studies by these latter authors, has shown that 

the increase in mean size is transient, since it returned to a control level after 

48 hours (Bailey and Chen 1989b). The increases in synaptic height found in the 

present study, persist until at least 48 hours after training, and do not show any
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signs of regression at this time. However, it is not known whether there is a 

subsequent decline in size after this time.

Synaptic surface area (Sa^yp)

Any increase in the size of the synapse would result in an increase in the area 

of membrane specialization associated with that synapse. Measurement of surface 

area can also be applied to investigations of changes in synaptic shape, since if a 

straight synapses becomes curved, its mean projected height (linear dimension) 

will be reduced. This can be detected by making an estimation of Hsyn- If on the 

other hand, the synapse maintains its linear dimension by growth whilst 

increasing in curvature, although measurements of Hgyp would fail to detect such 

changes, measurement of the synaptic surface area would reveal substantial 

increases. Hence Sagy^ is a measure of synaptic size and synaptic shape.

In this study, an unbiased quantitative method was used to estimate the 

surface area available for synaptic chemical transmission. No statistically 

significant difference was found between the mean estimated Sagyp in the LPOs of 

Control and M-trained chicks at any given time period following training, using a 

t-test as the statistical test (Table 10:10a). However, using the more powerful 

ANOVA, a significant effect of training was seen in the left hemisphere LPO (Table 

10:12a). Comparing estimated means from both Control and M-trained chicks 

(Fig.10:7), one can see that this is due to an increase in the size of the synapses 

in the left hemisphere. This is in line with the results discussed previously for 

synaptic height (Hgyn)- where it was shown that the mean estimated projected 

height of synapses in the left hemisphere was greater in M-trained chicks than 

in Controls, 48 hours after training.
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One possible outcome of the increase in synaptic surface area in left 

hemisphere LPO synapses is an increase in the efficacy of those synapses 

(Herrera et al 1985). An increase in the area of membrane specialization 

available for synaptic transmission, is likely to result in an increase in the 

probability that the post-synaptic target will be depolarized beyond threshold. 

This particular capacity for an increase in synaptic efficacy was speculated by 

Hebb (1949) as being a probable mechanism of synaptic plasticity associated 

with learning and memory.

Only one previous study in the field of learning and memory, has chosen to 

investigate changes in synaptic surface area (Desmond and Levy 1988), although 

their data relate to total membrane apposition, and hence not specifically to the 

PSD. This study made an investigation of ultrastructural changes as a consequence 

of LTP in the rat hippocampus. They found that although there was no significant 

change in Sagyn across the entire molecular layer of the dentate gyrus, there 

was an increase in Sagyp in the activated portion, and this could be correlated 

with a change in shape of the spine synapses in this region from convex to 

concave.

Since the changes in synaptic surface area reflect changes seen in synaptic 

height, one may conclude that synaptic shape remained relatively stable, 

following the learning experience. This is contrary to many studies in other 

species. In rat sensorimotor cortex during development (Petit and Markus 

1987), and in rat hippocampus following repetitive neuronal activation (Petit 

et al 1989), there was a progressive change in synaptic shape from convex, to 

straight, and then ultimately, concave. Following the onset of LTP in the 

hippocampus, Desmond and Levy (1983, 1986) found that there was a
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significant increase in concave spine synapses, which would support this idea. 

However, these findings are far from universal, and many studies have failed to 

show evidence for a change in synaptic shape following learning (Stewart et al 

1987), or indeed have shown the opposite to that stated above; i.e there has been 

a loss of synaptic concavity following learning (Wenzel et al 1977).

Synaptic bouton volume density (Vv^^g^^Qp)

The estimates obtained for Vvj^g^iQp in the present study are approximately 

twice the magnitude of those obtained previously (Stewart et al 1987). The 

methods used in the two studies differ considerably, since the present study used 

unbiased volume weighted mean volume estimations (Gündersen and Jensen

1985), whilst the study by Stewart et al used simple areal volume ratios, 

which produces highly biased estimations (see Chapter 7, Section 3 for details).

The study by Stewart et al (1987) concluded that there was no significant 

effect of training with methyl anthranilate on the size of the pre-synaptic 

bouton. The results of the present study are largely in agreement with this, since 

no statistically significant difference was found in the estimates of Vv^jq^j^q^, in 

either left or right hemisphere LPO, between Control and M-trained chicks 

(Tables 10:16). A two-way ANOVA also failed to show any significant effect of 

training on Vvj^Q^^Qp (Table 10:18a). However, there is an indication that a 

small increase in Vv^^^^gp may occur following training, since M-trained chicks 

show a significant increase in Vvj^Q^^Qp in both left and right hemisphere (Table 

10:17). This is in contrast to the Controls, who show no such trend (Table 

10:17). The difference may be small enough to be masked by the associated error 

of estimation. The effect is also seen in the two-way ANOVA of the effects of 'time' 

and 'hemisphere' on the estimated ^p o u to n  (T^ble 10:18b), where M-trained
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chicks show a significant effect of 'time', whilst the Control chicks do not.

Given that an increase in the surface area and mean projected height of the 

synapse has been demonstrated for the LPO In this study, one might empirically 

expect to see a small but corresponding increase in the volume of the pre- 

synaptic bouton, as a consequence. Stewart (1990) summarized the findings of 

several recent studies by him and his collaborators, by stating that an increase 

in the number of vesicles per synapse (NVy@g gyp) was found in the left 

hemisphere of the chick IMHV and LPO (of approximately 60%). One might 

therefore expect to see an increase in the pre-synaptic bouton volume to 

accommodate this increase. It is of course possible that the increase in vesicle 

number can be contained within the existing bouton volume, or that the increase 

in vesicle number precedes a subsequent expansion of the bouton. Indeed, Stewart 

et al (1984) report that the bouton volume increases by approximately 23% in 

the left hemisphere of the IMHV following training. A significant increase in 

Vvbouton approximately 19%, was also seen in the left hemisphere of the 

paleostriatum augmentatum (Stewart et al 1987). Both regions were analysed 

24 hours after the training procedure.

Previous studies of the morphological consequences of imprinting in the IMHV 

of young chicks, failed to detect any significant alteration in bouton volume 

(Bradley et al 1981, Bradley and Galal 1987). Synaptic bouton volume has 

been shown to decrease as a consequence of training in the rat hippocampus 

(Wenzel et al 1980). It is possible, that these différences in changes to bouton 

volume merely reflect different neuronal strategies for learning, and subsequent 

memory formation.
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Dendritic spine volume density (Vv^pj^^)

The results showed that the volume density of the dendritic spines only 

increased significantly 48 hours after training, and that the increase was 

restricted to the left hemisphere (Table 10:16). A previous study has shown that 

the numerical density of dendritic spines in the chick LPO, increases by 

approximately 13% in the left hemisphere, and 8% in the right (Lowndes and 

Stewart 1990). Additional data has shown that the increase in spine density in 

the left hemisphere is approximately twice that in the right (Lowndes, personal 

communication). The increase in spine density in the left hemisphere was 

universal across all branch orders of the dendrite (branches from the soma). 

However, in the right hemisphere, the only significant differences in this 

parameter were in the 5th branch order (Lowndes, personal communication).

An increase in spine volume density may be due to either an increase in the 

total number of spines, or an increase in the size of existing spines. Both 

mechanisms may occur together. Given that the present data show an increase in 

the numerical density of spine synapses, then it seems probable that the number 

of spines would also increase, since each spine is commonly associated with a 

single synapse. Such increases have been shown in the left hemisphere IMHV, but 

not the right (Patel and Stewart 1988). In addition, Patel and Stewart have 

demonstrated increases of 9% in the mean diameter of the spine head, and a 

decrease of 17% in the mean spine stem length following training in the IMHV. 

Both of these size changes of the dendritic spines were restricted to the left 

hemisphere. Whether a similar mechanism occurs in the chick LPO is not known.

The size of the dendritic spine has previously been shown to increase in 

mammals following environmental enrichment (Greenough 1985), and the spine

199



head to increase during early experience (for review, see Goss and Perkel

1985). It has been suggested previously in this thesis (see Chapter 4) that an 

increase in the size (and number) of the dendritic spines, may result in an 

increase in the degree of electrical transfer between neighbouring neurons, via 

their synaptic connections. This would in effect increase the probability of 

propagation of a given action potential between neurones (Shepherd et al 1985).

Dendritic shaft volume density (Vvgi^gf^)

Training had no significant effect on the volume of the dendritic shaft (Tables 

10:16, 17, 18a). A similar conclusion was drawn from studies of the chick IMHV 

after passive avoidance training, where no significant effect was seen in either 

dendritic diameter or dendritic length, the products of dendritic volume (Patel 

and Stewart 1988). Rats exposed to an enriched environment showed an increase 

in dendritic branching (Greenough 1985), showing that the shaft is capable of 

plastic change. It does not appear to do so, however, in response to a learnt task, 

such as that of the present study, and is therefore unlikely to be involved in the 

formation of memory.

Overview of the time-course of memory formation

Following a single trial passive avoidance learning task, day-old chick brains 

undergo a series of biochemical, physiological and morphological changes (Rose

1986). These changes are likely to be linked in a time-dependent manner, and 

may be a consequence of the formation of a permanent memory for the event. 

Behavioural tests have shown that the chick forms a long-term memory for the 

taste of the aversive bead 50-60 minutes after training (Gibbs and Ng 1977). 

The permanence of the memory has yet to be tested beyond 48 hours. This long

term memory, once formed, cannot be blocked by protein synthesis inhibitors.
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which are known to cause amnesia if administered before LTM is established 

(Patterson et al 1988). Prior to LTM formation, a period known as 

intermediate-term memory (ITM) occurs. This begins after 10 minutes, and 

decays 30 minutes following training (Rosenzweig and Bennett 1984b). ITM is 

dependent upon Na+/K+ pump activity (Gibbs and Ng 1977). Short-term 

memory therefore lasts no more than 10 minutes following the training 

experience (Gibbs and Ng 1977). It is thought that these 3 phases are 

sequentially linked (Rosenzweig and Bennett 1984b). Hence, a series of 

identifiable stages of memory formation can be correlated with known cellular 

changes at various times following training. It is clear however, that changes in 

the cellular or chemical environment associated with memory formation and 

storage in the chick brain, may not necessarily reflect the stages of memory 

indicated above. It is possible that certain events may be concerned with 

'priming' of the system, in order that a subsequent stage may be attained. It is 

perhaps more useful to view the steps taken in the process of memory formation, 

as a continuum. These events are summarized below.

The initial cellular events following training with the aversive substance are 

unlikely to occur in the LPO, since it has no known involvement with gustatory 

sensation, and little involvement with the olfactory sense (see Chapter 3). 

However, within 30 minutes of training, the LPO shows enhanced utilization of 

glucose (Kossut and Rose 1984, Csillag and Rose 1985), perhaps indicating an 

increase in synaptic activity, and neuronal firing. There have been no studies of 

biochemical, physiological or morphological changes in the LPO prior to this 

time, perhaps largely as a consequence of the focus of research on the IMHV. The 

STM phase of memory formation in the chick can be inhibited by administration 

of LiCI, KCI or glutamate (Gibbs and Ng 1977), which cause membrane
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depolarization. It has hence been suggested that STM is characterized by neuronal 

hyperpolarization, perhaps due to an increased membrane conductance to K+ 

(Gibbs and Ng 1977). This is contrary to the situation in the invertebrate model, 

Hermissenda, where K+ currents were shown to be reduced by approximately 

30% in type B photoreceptors, following phototaxic training (Alkon et al 

1982). This finding was thought to explain the increased excitability of the 

photoreceptors of conditioned animals (Alkon 1983). However, Alkon's group 

have also shown that there is a cellular influx of Ca2+ (Alkon et al 1982), 

which is known to cause an increase in K+ conductance (Grossman et al 1981). 

The connection between altered ion movements and the correlates of memory, is 

far from clear.

The LPO, together with the IMHV and paleostriatum augmentatum, show 

enhanced glucose utilization during short- and intermediate-term memory 

formation (Kossut and Rose 1984, Csillag and Rose 1985). In the LPO, chicks 

injected with  ̂^C-2-deoxyglucose 5 minutes prior to training, and 10 minutes 

(but not 30 minutes) after training, showed elevated intra cellu lar 

accumulation of its breakdown product, ‘•^0-2-deoxyglucose-6-phosphate, 

which is unable to be metabolized further (Csillag and Rose 1985). ITM is 

characterized by its dependence upon the activity of the Na+/K+ pump (Gibbs 

and Ng 1977, Rosenzweig and Bennett 1984b). This may partially explain the 

need for an increase in glucose utilization during this time. The left IMHV 

demonstrates enhanced metabolic activity in the time-period between 30 and 60 

minutes following training (Rose and Csillag 1985), and hence may exhibit a 

different time-course of memory formation, than that of the LPO.

During the period of ITM following PAL, there is a transient increase in
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muscarinic cholinergic receptors in the chick forebrain (Rose et al 1980). 

These increased by 21% at 30 minutes following training, and returned to 

control levels by 3 hours (Rose et al 1980). This elevation in cholinergic 

receptor density and/or availability, may be an initial stage in modification of 

the post-synaptic density, resulting in an increase in the efficacy of synaptic 

transmission. Changes in the biochemistry of pre-synaptic membrane fractions 

of trained chicks have also been demonstrated. These include protein kinase-C 

induced phosphorylation of a synaptic membrane protein, with a molecular 

weight of approximately 52kD (AN et al 1988a, All et al 1988b).

At the end of the ITM phase of memory formation for the taste avoidance task, 

there is a period of protein synthesis, since protein synthesis inhibitors 

administered at this time prevent long-term memory formation (Gibbs and Ng 

1977, Patterson et al 1989, Rosenzweig and Bennett 1984b). Indeed, 30 

minutes after imprinting, chicks display an increase in RNA synthesis (Haywood 

et al 1975, Rose et al 1970), and an increase in protein synthesis after 2 

hours (Bateson et al 1983). Protein synthesis inhibitors can be shown to take 

effect as early as 30 minutes following passive avoidance training (Gibbs and Ng 

1977). There is currently interest in an oncogene which expresses a protein 

known as c-fos. It is thought that this 'early gene' may be activated in response to 

some of the biochemical changes outlined above, such as conductivity changes in 

synaptic membranes and phosphorylation of presynaptic proteins (Rose 1991). 

There is an increase in c-fos in both the IMHV and the LPO, 30 minutes following 

PAL (Anokhin et al in press). This would indicate that it is a likely candidate in 

early activation of RNA synthesis.

One group of proteins which show marked changes following PAL, are the 

glycoproteins. There is an increase in the incorporation of ^H-fucose into
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synaptic glycoproteins (Burgoyne and Rose 1980, Sukumar et al 1980, Rose 

and Harding 1984). Fucose is used as a marker for newly synthesized 

glycoproteins, since it is not metabolized by any other biochemical pathway. The 

increase was detected by 30 minutes and lasted up to 24 hours post-training 

(Sukumar et al 1980). A similar time-course of the incorporation of 1 4 q . 

leucine into tubulin was also demonstrated (Mileusnic et al 1980). As tubulin 

is a protein involved in the cellular cytoskeleton, one may hypothesize that 

cellular reconstruction and re-organization is initiated at least as early as 30 

minutes post-training, and lasts up to 24 hours. These events may be precursors 

for the morphological changes seen in the IMHV (Stewart et al 1984), and in the 

LPO in the present studies.

3-7 hours after avoidance training in the chick, there is an episode of 

neuronal 'bursting' in both the IMHV (Mason and Rose 1987) and LPO (Gigg 

1991) of M-trained chicks but not in controls. 'Bursts' are high frequency, 

large amplitude, action potential spikes of short duration. The onset in the LPO is 

delayed by approximately 1 hour (i.e. activity is restricted between 4 to 7 hours 

post training). The significance of these 'bursting' patterns is not known, 

although it has been suggested that they are a result of increased excitability of 

the neuronal population in the presence of increased extracellular K+, and also 

as a result of a modification of synaptic inputs into individual neurons (Gigg

1991). This latter feature may involve a reduction in tonic inhibitory input 

from GABAergic synapses (Gigg 1991). STM is thought to involve an increase in 

K+ intra-cellularly, through a change in K+ membrane conductance, and ITM 

involves the Na+/K+ pump (Gibbs and Ng 1977). This may cause an increase in 

extracellular K+ at this time, but does not explain the delay in bursting several 

hours later.
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The early sequence of events subsequent to the experience of the bitter- 

tasting bead, may be a pre-requisite for the emergence of long-lasting synaptic 

morphological changes, in the IMHV and LPO. These changes are not observed 

before 24 hours in the LPO (Stewart et al 1987, and present study), and 12 

hours in the IMHV (Bradley and Galal 1987). Imprinting studies using chicks 

have demonstrated an increase in the length of the PSD, 6.5 hours post training 

(Bradley 1985). It is not known whether the time-course of synaptic plasticity 

differs between the IMHV and LPO. However, there is some indication that time- 

courses of the pharmacologically defined stages of memory (Gibbs and Ng 1977) 

differ in chicks who have received injections into the IMHV, and those who have 

received injections into the right lateral neostriatum (Patterson et al 1988). 

This would suggest that at least for these two regions of the chick brain, there are 

differences in the time-course of memory formation. There is also some evidence 

that the memory for the avoidance task is acquired by the IMHV, but is 

subsequently transferred out of the IMHV after approximately 1 hour, and is then 

stored elsewhere (Patterson et al 1989, Davies et al 1988). Since post

training lesions of the LPO cause amnesia, it has been argued that the LPO may be 

the permanent store for the memory (Gilbert et al in press). This model of 

'memory flow' between IMHV and LPO has a potential flaw, since no direct 

neuroanatomical link exists between these two nuclei. An intermediate route may 

exist however, through the dorsal archistriatum. It is therefore important to 

identify whether any trace of the memory can be found in this nucleus, and to 

establish whether lesions to it have any specific effects on memory retention.

It is clear that a time-delay of several hours is required for the 

establishment of morphological changes following PAL. It is not yet known
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whether these changes are indeed permanent, or at least as permanent as the 

memory itself. Other model systems have suggested that some morphological 

parameters may be longer-lasting than others. In studies of sensitization in 

Aplysia, it has been shown that increases in the size of the PSD are transient, 

whilst increases in the number of synapses are as permanent as the memory of 

the stimulus (Bailey and Chen 1990). The results of the present study have 

shown that there are alterations in both the size and numerical density of 

synapses in the LPO as a consequence of PAL, and that these changes last at least 

as long as the 48 hour period, which was the maximum time included in the 

study. Clearly, the present study opens the door for further experiments to map 

the longer-term effects on synaptic morphology, and to correlate these more 

closely with the duration of the memory.
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CONCLUSIONS AND FUTURE DIRECTIONS

The capacity of the brain to modify its cellular connections as a consequence 

of experience, suggests that this feature is a feature and possible mechanism of 

memory. The present study is not the first to show synaptic morphological 

changes as a consequence of memory formation. A wealth of evidence is 

accumulating that the synapse undergoes a variety of structural changes as a 

direct consequence of training (for review, see Stewart 1990, Greenough 1985, 

Bailey and Chen 1989a, Petit 1988, Bailey and Chen 1990). In addition, these 

changes are similar in a wide variety of animals, both vertebrate (Thompson 

1985, Greenough 1985, Stewart 1990) and invertebrate (Squire 1987, Kandel 

and Schwartz 1982, Matthies 1989b). Indeed, much knowledge has now been 

acquired on the role of particular nuclei in the chick brain for memory tasks 

(for review, see Stewart 1990). The present study is unique however, in that it 

maps the time-course of changes in the LPO, a region of the chick brain thought 

to be involved in long-term memory formation (Patterson et al 1989, Gilbert 

et al in press, Stewart 1990). The permanence of these changes has not been 

fully investigated, although some changes were still shown to be significantly 

different to Controls, 48 hours after the training experience. It is important to 

map these changes into adulthood, in order to correlate these with long-term 

memory retention.

Synaptogenesis is one feature of the brain's remarkable plasticity, in 

response to learning. This is a process which is specific. It does not occur in all 

brain regions following training (Greenough et al 1990), and is a consistent 

feature in a variety of species, in forms of learning that differ from one another 

substantially (Horn 1985b, Desmond and Levy 1983, Greenough 1985, DeVoogd 

et al 1985, Greenough and Bailey 1988). Size and volume changes of the
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synaptic environment represent a second feature of neuronal plasticity, and are 

likely to result in changes in synaptic efficacy (Herrera et al 1985) that may 

also underlie the formation of memory.

The data obtained in the present study partially relate to changes in synaptic 

number and/or synaptic density. It may have been more prudent to measure the 

ratio of synapses to neurones, since this is perhaps more meaningful in a 

functional sense. However, the time required to make counts of neurons, in 

addition to synapses, would be prohibitive for completion in the present study. 

This would be of great benefit in further work, for clarification of the extent of 

neuronal versus synaptic plasticity, in response to the learning task.

The results of the present study are of major interest in the light of another 

recent experiment on the chick LPO, which showed that this nucleus is essential 

for the formation of a long-term memory trace, but not for its acquisition 

(Gilbert et al in press). It is clearly important to establish the role played by 

the various nuclei in the chick brain. Similarities (and differences) in 

biochemistry, physiology and morphology of these regions following the training 

procedure, will help our understanding of the onset of the memory trace, and to 

map its possible alteration in locality with time. The studies presented here, only 

briefly describe the morphological changes of synapses, and of some pre- and 

post-synaptic features within the LPO. It is important to correlate these changes 

more fully with others in the chick brain, in order to have a clearer 

understanding of the plastic change. Future investigations should perhaps 

concentrate on particular neurotransmitter systems, since this may be an 

important factor in regulating which particular synapses are involved in the 

formation of memory.
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APPENDIX 1

TISSUE PROCESSING SCHEDULE

Buffer wash Two changes. 30 mins

Post-fixation in 2% osmium tetroxide 120 mins

Buffer wash 10 mins

Dehydration 30% ethanol 
50% ethanol 
70% ethanol 
80% ethanol 
95% ethanol 
100% ethanol 
100% ethanol (dry)

5 mins 
15 mins 
15 mins 
10 mins 
5 mins 

20 mins 
20 mins

Embedding Spurr's resin (see Appendix 2)

50% absolute ethanol 
50% Spurr's resin 120 mins

100% Spurr's resin 
100% Spurr's resin

overnight 
120 mins

Polymerization in embedding mould @ SO^C 24 hrs
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APPENDIX 2

BUFFER COMPOSITION

Solution A ; 5.98% Sodium Cacodylate

Solution B : 0.97 ml 1N HOI

Solution B was added to solution A to produce 0.1 M Cacodylate Buffer at pH 7.3, 

(approximately 385 mOsm)

SALINE COMPOSITION : 0.9% NaCI 20 ml

RESIN : Spurr's resin was chosen for its rapid infiltration of the tissues and its 

ease of use. The standard embedding medium was prepared as follows;

ERL 4208 10.6g
DER 736 6.0g
NSA 26.Og
S-1 0.4g

These components were thoroughly mixed for several hours before use, using a 

motorized rotating paddle. Resin was only used if prepared fresh.
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APPENDIX 3

TABLE OF MEAN ± SEM SYNAPTIC DENSITIES
DURING DEVELOPMENT

Age
T y p e ^ ^ ^

E16
n=5

PI
n=4

P9
n=5

P22
n=4

N'^syn R
0.23 ±0.12 

0.11 ± 0.07

0.57 ± 0.09 

0.64 ± 0.06
1.72 ± 0.11 
1.06 ± 0.11

1.10 ± 0.10 

1.06 ± 0.10

^^Asymm ^
0.19 ± 0.09 

0.09 ± 0.05

0.48 ± 0.08 

0.54 ± 0.06

1.54 ± 0.09 

0.94 ±0.10

1.01 ± 0.09 

0.98 ± 0.08

0.03 ± 0.02 
0.01 ± 0.01

0.07 ± 0.01 
0.07 ± 0.01

0.15 ± 0.02 

0.13 ± 0.02
0.08 ± 0.01 
0.06 ± 0.02

^''Spine ^
0.15 ± 0.08 
0.08 ± 0.06

0.50 ± 0.08 
0.52 ± 0.04

1.47 ± 0.09 
0.85 ±0.12

0.96 ± 0.08 
0.87 ± 0.06

NVshaft ^
0.06 ± 0.04 

0.04 ± 0.02

0.06 ± 0.02 

0.10 ± 0.02

0.19 ± 0.02 

0.17 ± 0.03

0.12 ± 0.02 

0.17 ± 0.03

Nvasp p
0.15 ± 0.07 

0.08 ± 0.05

0.47 ± 0.07 

0.49 ± 0.05

1.45 ± 0.09 

0.79 ± 0.11

0.95 ± 0.08 

0.85 ± 0.07

Nvash ^
0.05 ± 0.02 
0.02 ± 0.01

0.07 ± 0.01 
0.08 ± 0.01

0.14 ± 0.02 
0.16 ± 0.02

0.10 ± 0.02 

0.14 ± 0.03

Nvssp p
0.02 ± 0.01 
0.01 ± 0.01

0.04 ± 0.01 
0.05 ± 0.01

0.08 ± 0.01 
0.09 ± 0.02

0.04 ± 0.01 
0.03 ± 0.01

^ ''ssh  p
0.02 ± 0.01 

0.01 ± 0.01

0.02 ± 0.01 

0.02 ± 0.01

0.04 ± 0.01 

0.03 ± 0.01

0.02 ± 0.01 

0.03 ± 0.01

Results are displayed in pm ' ^

E16 - 16 days in ovo,
P9 - 9 days post-hatch,
L - left hemisphere LPO,

PI - 1 day post-hatch,
P22 - 22 days post-hatch, 

R - right hemisphere LPO

N.B. Values given above are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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APPENDIX 4

TABLE OF MEAN ± SEM SYNAPTIC NUMBER
DURING DEVELOPMENT

Age E16
n=5

PI
n=4

P9
n=5

P22
n=4

L
Nsyn p,

1.31 ± 0.85 

0.49 ± 0.30

4.41 ± 0.71 

3.82 ± 0.36

12.90 ± 0.85 

10.00 ± 1.08

8.34 ± 0.74 

7.46 ± 0.67

M•^Asymm ^
1.08 ± 0.53 
0.39 ± 0.24

3.73 ± 0.64 
3.28 ± 0.34

11.50 ± 0.66 
8.99 ± 0.93

7.69 ± 0.69 
6.91 ± 0.59

NSymm p
0.18 ± 0.10 
0.06 ± 0.04

0.56 ± 0.09 

0.42 ± 0.07

1.13 ± 0.14 

1.00 ± 0.18

0.57 ± 0.10 

0.39 ± 0.07

N ^Spine p
0.87 ± 0.44 

0.35 ± 0.24

3.88 ± 0.64 

3.14 ± 0.25

11.00 ± 0.68 

8.11 ± 1.13

7.43 ± 0.60 

6.06 ± 0.44

N shaf, ^
0.36 ± 0.20 

0.09 ± 0.04

0.38 ± 0.10 

0.59 ±0.11

1.40 ± 0.15 

1.75 ± 0.13

0.82 ± 0.10 

1.17 ± 0.24

N asp ^0.84 ± 0.40 
0.34 ± 0.22

3.65 ± 0.57 
2.92 ± 0.28

10.90 ± 0.68 
7.52 ± 1.05

7.22 ± 0.60 
5.96 ± 0.49

N ash „
0.27 ± 0.13 

0.08 ± 0.04

0.22 ± 0.06 

0.48 ± 0.08

1.03 ± 0.12 

1.48 ± 0.15

0.73 ± 0.12 

1.03 ± 0.19

: 0.11 ± 0.04 

0.06 ± 0.05

0.36 ± 0.05 

0.30 ± 0.06

0.60 ± 0.11 

0.72 ±0.12

0.27 ± 0.04 

0.26 ± 0.03

Nssh . p,
0.13 ± 0.08 

0.04 ± 0.02

0.18 ± 0.05 

0.12 ± 0.04

0.41 ± 0.08 

0.32 ± 0.11

0.13 ± 0.04 

0.18 ± 0.05

Results are expressed as number X 10

E16 - 16 days in ovo,
P9 - 9 days post-hatch,
L - left hemisphere LPO,

8

PI - 1 day post-hatch,
P22 - 22 days post-hatch, 

R - right hemisphere LPO

N.B. Values given above are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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APPENDIX 5

TABLE OF MEAN ± SEM SYNAPTIC HEIGHT
DURING DEVELOPMENT

Age E16 PI P9 P22
Type n=5 n=4 n=5 n=4
_  L 
Hsyn p

198 ± 17 217 ± 30 317 ± 30 359 ± 17

212 ± 12 203 ± 20 349 ± 22 353 ± 23

Results are displayed in nm

E16 - 16 days in ovo,
P9 - 9 days post-hatch, 
L - left hemisphere LPO,

PI - 1 day post-hatch,
P22 - 22 days post-hatch, 

R - right hemisphere LPO

N.B. Values given above are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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APPENDIX 6

TABLE OF MEAN ± SEM SYNAPTIC DENSITIES
AT VARIOUS TIMES FOLLOWING TRAINING

Group

T y p e ^ ^ .
hours

C O N

Left Hem 
n=6

TR O L

Right Hem 
n=6

M -TR y

Left Hem 
n=6

M N E D

Right Hem 
n=6

1

6

NVsyn 12 
24 

48

0.44 ± 0.02 

0.49 ± 0.03 

0.45 ± 0.04 

0.53 ± 0.05 

0.68 ± 0.02

0.42 ± 0.03 

0.53 ± 0.03 

0.52 ± 0.04 

0.65 ± 0.05 

0.66 ± 0.03

0.41 ± 0.04 

0.49 ± 0.04 

0.54 ± 0.05 

0.69 ± 0.03 

0.75 ± 0.02

0.43 ± 0.02 

0.54 ± 0.02 

0.60 ± 0.04 

0.75 ± 0.03 

0.78 ± 0.03

1

6

H^ASp 12 

24 

48

0.33 ± 0.05 

0.36 ± 0.04 

0.34 ± 0.04 

0.42 ± 0.05 

0.56 ± 0.06

0.27 ± 0.03 

0.35 ± 0.04 

0.33 ± 0.05 

0.47 ± 0.04 

0.48 ± 0.03

0.30 ± 0.05 

0.35 ± 0.05 

0.38 ± 0.03 

0.53 ± 0.05 

0.65 ± 0.06

0.26 ± 0.04 

0.38 ± 0.05 

0.46 ± 0.04 

0.54 ± 0.02 

0.60 ± 0.05

1

6

H^ASh 12

24

48

0.05 ± 0.03 

0.05 ± 0.02 

0.05 ± 0.02 

0.04 ± 0.02 

0.03 ±0 .01

0.07 ± 0.01 

0.10 ± 0.03 

0.09 ± 0.02 

0.08 ± 0.02 

0.08 ± 0.02

0.05 ± 0.03 

0.04 ± 0.02 

0.05 ± 0.03 

0.04 ± 0.03 

0.04 ± 0.02

0.07 ± 0.02 

0.09 ± 0.02 

0.08 ± 0.01 

0.08 ± 0.02 

0.10 ± 0.02

1

6

Nvssp 12

24

48

0.08 ± 0.02 

0.09 ± 0.02 

0.08 ± 0.01 

0.06 ± 0.02 

0.06 ± 0.02

0.07 ± 0.02 

0.09 ± 0.02 

0.08 ± 0.02 

0.07 ± 0.01 

0.07 ± 0.02

0.06 ± 0.02 

0.09 ± 0.02 

0.09 ± 0.02 

0.09 ± 0.02 

0.06 ± 0.02

0.08 ± 0.02 

0.07 ± 0.01 

0.07 ± 0.02 

0.08 ± 0.01 

0.08 ± 0.01

1

6
HVssh 12

24

48

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01

0.01 ± 0.01 

O.Ol ± O.Ol 

0.01 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01 

0.02 ± 0.01

Results are displayed in p.m‘ ^

N.B. Values given atx)ve are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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APPENDIX 7

TABLE OF MEAN ± SEM SYNAPTIC HEIGHT AND SURFACE
AREA AT VARIOUS TIMES FOLLOWING TRAINING

Group

T y p © ^ \ ^
hours

CON
Left Hem 
n=6

TROL
Right Hem 

n=6

M-TRy
Left Hem 

n=6

MNED
Right Hem 

n=6
1
6

^  syn  ̂^ 
24

48

256 ± 23 

286 ± 21 

304 ± 28 

336 ± 24 

332 ± 28

238 ± 22 

276 ± 25 

310 ± 2 2  

326 ± 23 

328 ± 29

244 ± 22 

299 ± 22 

375 ± 22 

408 ± 24 

415 ± 2 4

251 ± 24 

263 ± 24 

336 ± 27 

343 ± 26 

339 ± 28

1
6

^^syn 12 

24  

48

24.8 ± 4.1 

26.7 ± 4.1 

28.1 ± 3.7

29.5 ± 3.8

24.5 ± 3.8

21.5 ± 3.6

28.0 ± 4.0

23.5 ± 3.8

34.1 ± 3.8 

28.3 ± 4.0

27.0 ± 3.3 

30.7 ± 4.3 

35.6 ± 3.9

38.5 ± 3.6

36.6 ± 4.4

26.2 ± 3.6

24.6 ± 3.7 

28.8 ± 3.2 

31.0 ± 3.6

31.6 ± 4.4

Results of H are displayed in nm syn ^
Results of Sa are displayed in urn syn

N.B. Values given above are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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APPENDIX 8

TABLE OF MEAN ± SEM VOLUME-WEIGHTED MEAN 
VOLUMES AT VARIOUS TIMES FOLLOWING TRAINING

Group

Type
hours

CON
Left Hem 
n=6

TROL
Right Hem 

n=6

M-TRy
Left Hem 

n=6

MNED
Right Hem 

n=6
_  1 

bouton 2 4 

48

0.11 ± 0.01 

0.12 ± 0.01 

0.15 ± 0.01

0.12 ± 0.01 

0.11 ± 0.02 

0.13 ± 0.02

0.12 ± 0.02 

0.16 ± 0.01 

0.17 ± 0.01

0.01 ± 0.01 

0.14 ± 0.01 

0.16 ± 0.01

1

spine 24 

48

0.11 ± 0.01 

0.18 ± 0.01 

0.14 ± 0.02

0.12 ± 0.02 

0.15 ± 0.02 

0.16 ± 0.02

0.16 ± 0.02 

0.19 ± 0.02 

0.21 ± 0.02

0.13 ± 0.02 

0.17 ± 0.02 

0.17 ± 0.02

1

^ ^ s h a ft 24  

48

5.35 ± 0.37 

5.52 ± 0.33 

5.23 ± 0.39

5.93 ± 0.42 

5.69 ± 0.34 

5.98 ± 0.38

5.03 ± 0.36

5.04 ± 0.33 

5.48 ± 0.39

5.56 ± 0.35 

5.52 ± 0.36 

5.27 ± 0.42

Results are displayed in pm" ^

N.B. Values given above are rounded up or down, and are not those used in the 
statistical analysis. Statistical tests were performed using 'raw' data.
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