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ABSTRACT

Spontaneous bursting (5 or more spikes of 200-450mV amplitude at 400Hz) occurs in 

many areas of chick forebrain. Day-old chicks trained on a one-trial passive avoidance 

task show a bilateral increase of up to 350% in bursting following training in one of 

these areas: the intermediate medial hyperstriatum ventrale, or IMHV (Mason & Rose, 

1987; 1988).

An investigation was carried out into the time course and lateralization of this change 

in bursting activity following the training of day-old chicks on a passive avoidance 

task. Chicks were trained to either avoid a bead coated with the bitter-tasting substance 

methylanthranilate (M-birds) or were trained to peck a water coated bead (W-birds). 

Bursting was recorded sequentially from the IMHV of both hemispheres at 8 time 

points over the period 1 to 9 hours post-test. The results indicate that there are 

significant differences in bursting activity recorded from M-birds only during the 

period 3-7hr posttest, when compared to W-birds. Between 6-7hr posttest there are 

significant differences in the burst firing patterns of the right IMHV of M-birds 

compared to the left. At other time points tested there are no significant differences 

between hemispheres. No between hemisphere differences are evident in W-birds.

Multi-unit recordings were made from the lobus parolfactorius (LPO), another 

forebrain structure to show changes in biochemistry and morphology following 

passive avoidance training. M-birds showed a higher incidence of bursting when 

compared to W-birds over the period 1-lOhr posttest. No lateralization of bursting was 

seen in either group at any time posttest

In a further experiment, chicks trained to avoid the methylanthranilate coated bead 

were subjected to subconvulsive electroshock 5min posttraining. This procedure was 

used to test whether the training-induced increase in bursting in the LPO was a direct
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correlate of memory formation for the task. This electroshock treatment produced two 

groups of birds: one group that avoided the bead (remembered the task) and another 

that pecked the bead (forgot the task). Multi-unit recordings from the LPO of these 

two groups revealed that the group that avoided the bead had a significantly higher 

mean burst-ffequency when compared to the group that pecked the bead, indicating 

that increased bursting in the LPO following training is directly associated with recall 

for the task. These results are similar to those of Mason and Rose (1988) who showed 

that amnesia abolished a training-induced enhancement of bursting in the IMHV.

The effects of pretraining bilateral LPO lesions on IMHV bursting activity were 

examined. The IMHV of four groups of birds was recorded ftom following training: 

two groups of M-birds, one with LPO lesions the other with sham LPO lesions and 

two similarly treated groups of W-birds. A significant increase in overall IMHV 

bursting activity was observed in sham-lesioned M-birds when compared to sham- 

lesioned W-birds. However, no significant difference in bursting activity was seen 

between lesioned M-birds and lesioned W-birds. There was a trend towards a higher 

overall level of bursting in lesioned W-birds, when compared to sham-lesioned W- 

birds.

These results are discussed with reference to previous electrophysiological studies 

concerning the role of burst-firing patterns in models of learning and memory.
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CHAPTER 1. General Introduction.

The reception, storage and retrieval of information are general properties of neuronal 

systems that serve to adapt the behaviour of an organism to its environment Without 

the ability to learn items and retain them in memory for subsequent retrieval, it would 

be impossible to either repeat successes according to experience or to avoid failure. 

But what underlies the storage of such items of information? Peitaps the most popular 

proposal has been that learning and memory mechanisms affect the encoding of 

information via some change in the 'wiring' of the brain, typically with the production 

of new synaptic connections. Evidence for this type of neuronal plasticity has come 

ftom studies of embryonic development, regeneration of peripheral tissue, injury and 

environmental pressures (Cotman & Nieto-Sampedro, 1984; Kwak & Matus, 1988). 

The fundamental unit that appears to be of importance in this growth is the synapse. 

One of the major problems in neurobiology is to explain the biophysical and 

biochemical processes occurring in the nervous system that are responsible for the 

synaptic changes in the neural pathways and circuits that underlie learning.

The importance of the electrical activity of neurons in shaping patterns of connections 

is becoming increasingly clear (Brewer & Cotman, 1989; Changeux & Danchin, 1976; 

Fields et al,, 1991; Jones, 1990; Wiesel & Hubei, 1965). From theoretical 

considerations alone, some aspect of neuronal activity must influence the synaptic 

patterns that exist amongst nerve cells, since it is hard to imagine how an individual 

could learn or remember otherwise. There is a tremendous amount of literature 

indicating that electrical activity in the developing nervous system plays a crucial role 

in the patterning of neuronal geometry and synaptic connections. With regard to 

studies of learning and memory, there is widespread agreement that the processing of 

information in the cortex is associated with complex spatio-temporal patterns of 

activity. Yet the vast majority of experimental work is either based upon single neuron 

recordings (e.g.. Rolls, 1987) or upon recordings made with gross electrodes to
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which tens of thousands of neurons contribute iii an unknown fashion (e.g., Landfield 

et al., 1972). Although these experiments have provided some information concerning 

the organization and function of the cortex, they have not enabled any detailed 

examination of the q)atio-temporal organization of neuronal activity.

It appears, therefore, that some form of compromise is required between two of the 

'camps' of neurophysiology, on the one hand single cell recording and on the other 

recording of focal electroencephalogram potentials. One such 'compromise' is the use 

of electrodes with relatively low impedance, when compared to those used to record 

intracellularly, to allow the recording of what is termed 'multi-unit activity'. This 

multi-unit technique allows the simultaneous recording of small groups of cells. This 

has an obvious adv£uitage over both single cell and focal EEG recordings when 

searching for any neurophysiological changes produced by learning: whilst the level of 

analysis is quite specific (the firing of individual cells), the ability to sample a 

population of cells allows the analysis to operate at a 'network' level. Looking for 

such learning-induced changes can be referred to as looking for the proverbial needle 

in a haystack. Whilst this is also true for studies concentrating upon either biochemical 

or morphological changes, the time course over which the respective changes will 

occur is vastly different: the electrophysiologist speaks in terms of periods lasting 

fractions of one second, the time domain of the biochemist or the mo^hologist is of 

the order of minutes to tens of minutes to hours. This is, perhaps, the reason why the 

proponents of the majority of learning paradigms have looked for electrophysiological 

changes at either the time of training or the time of testing. However, as is becoming 

increasingly clear, changes underlying memory formation do not occur exclusively 

around the time of training. Not only is this true for animal models of learning but also 

for the 'reduced' neurophysiological learning models (Doyle et al., 1990; Gibbs & 

Ng, 1977; Mason & Rose, 1987; Matthies, 1989; Zamani & Rose, 1990).
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For the reasons described above the experimental work described in this thesis was 

undertaken using a mutli-unit recording approach to study the neurophysiological 

consequences of a single-trial passive avoidance task on relatively small groups of 

neurons. This recording was extended over several hours posttraining in order to 

examine any long-term effects of training upon neuronal firing. In writing a General 

Introduction for the use of prolonged posttraining recording of spontaneous multi-unit 

activity, one is handicapped by the lack of its historical use as an electrophysiological 

approach to the study of learning and memory. It is not simply the case of "X and Y 

procedures were carried out in species Z so I did the same thing in species A". The 

popular approach used to study the electrophysiology of learning and memory has 

become rather 'bottom up' in recent years. Initial experiments examined 

electrophysiological changes occurring during learning at the level of the 

electroencephalogram (EEG), in particular at the theta EEG band (e.g., Landfield et 

al., 1972; see pages 29-32 of this Thesis for the section on theta rhythm). The 

experimental emphasis then shifted towards first identifying a lasting change in the 

enhancement of synaptic n^smission and then attempting to 'back associate' it with 

the phenomena of learning and memory. It appears that many researchers have made 

the a priori decision that spontaneous, memory-specific neurophysiological changes 

occurring at the cellular level during learning and also memory consolidation would be 

impossible to (a) localize and (b) interpret. Whilst these conclusions are 

understandable they do not provide excuses for 'not looking in the first place'.

The General Introduction presented below is designed around the points introduced 

above. The initial section is a short review of firing patterns, a logical first step in a 

thesis which examines changes in neuronal firing following training. This is followed 

by a brief overview of previous and current neurophysiological models of memory 

formation. The final part of the General Introduction examines the applicability of 

neuronal firing patterns and neurophysiological models to animal models of learning
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and memory.

Brief overview of neuronal tiring patterns.
This brief outline of neuronal firing patterns is by no means meant to be exhaustive 

and will concentrate upon neurons that express bursting activity, a firing pattern 

proposed to underlie a form of long-term synaptic plasticity: long-term potentiation 

(Buzsaki, 1989) and also to be involved in the acquisition of a passive avoidance task 

in chicks (Mason & Rose, 1987; 1988).

Neocortical neurons have in the past been classified according to various criteria such 

as morphology, location, synaptic relationships (both locally and distally) and 

biochemical properties, in particular neurotransmitters and their associated enzymes 

(Peters & Jones, 1984; White, 1989). However, to understand a neuron’s functional 

role within any circuit it is necessary to know not only the characteristics outlined 

above but also its electrical 'fingerprint', as determined by its intrinsic membrane 

properties.

It has been known for some time that neuronal membranes do not all behave similarly 

(Hodgkin, 1948). Neurons differ in terms of the types and distribution of specific ion 

channels on their soma and dendrites. These intrinsic differences are evident in the 

shapes of individual action potentials. They also produce distinctive temporal patterns 

of repetitive firing, thus determining to a large extent the way individual neurons 

transform synaptic input into spike (axonal) output. As these 'fingerprints' can be 

extremely uniform between cells within a particular neuronal class (e.g., amongst 

cerebellar Purkinje cells, thalamic relay cells) these intrinsic physiological membrane 

properties constitute a reasonable basis for neuronal classification (Connors & 

Gutnick, 1990; Llinas, 1988).

Neurons of the neocortex do not appear to be physiologically homogenous in terms of
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their firing repertoires. Three basic types of intrinsic physiology have been recognized: 

regular spiking, fast spiking and intrinsically bursting neurons (Connors & Gurnick, 

1990; Llinas, 1988). For each type, classification is based upon three general 

variables: (1) the characteristics of individual action potential afterhyperpolarizing 

potentials; (2) the response to a just threshold intracellular current pulse; and (3) the 

repetitive response to prolonged intracellularly applied stimuli. Intracellular staining 

experiments suggest that these neuron classes also exhibit distinct morphological 

correlates (Peters & Jones, 1984; White, 1989). These classes are not meant to be 

exclusive. Sub-categories are likely to exist and there may be some as yet unidentified 

cell types.

(1) Regular spiking neurons.

This cell type is the most commonly encountered class in electrophysiological studies, 

described initially by Mountcastle and colleagues (Mountcastle et al., 1969) as firing 

'regular* action potentials. Most published in vivo recordings from neocortex are 

ftom this cell class (e.g. Calvin & Sypert, 1976). Individual regularly spiking action 

potentials are relatively long-lasting, possibly due to a slow rate of repolarization. 

Each spike is usually followed by a complex series of intrinsically generated 

afterhyperpolarizations (AHPs) and afterdepolarizations (ADPs). Threshold 

stimulation of a regularly spiking neuron generates only a single spike and, in contrast 

to intrinsically bursting cells, as the stimulus amplitude increases, the first interspike 

interval decreases as a function of current intensity. Regularly spiking neurons also 

display marked adaptation of spike firequency with prolonged, constant amplitude 

stimuli. (Figure 1.1a).

(2) Fast-spiking neurons.

Fast spiking neurons have only been rarely described (Mountcastle et al., 1969) and 

seem to be elusive when using extracellular recording. Fast spiking cells have a 'fast*
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Figure 1.1; Differences in firing patterns between regular-spiking, 

fast-spiking and intrinsically bursting neurons.

A

j

B

J--------

50 mV 
3 nA

50 ms

50 mV 
3 nA

25 ms

C

J
50 m s

40 mV 
1 nA

25 m s

Figure 1.1; (A) Regular-spiking neuron stimulated with suprathreshold 

intracellular current. Initial response is high frequency spike output that rapidly 

declines to a lower, sustained frequency. (B) Fast-spiking neuron recorded 

under similar conditions to A. High-frequency spikes are generated and 

sustained for the duration of the stimulus. (C) Intrinsically bursting neuron 

under similar conditions, firing repeated bursts of spikes to a prolonged 

stimulus (taken from Connors & Gutnick, 1990).

Page 19



action potential of less than 0.5ms duration. Repolarization is very quick, each spike 

being curtailed by a deep, relatively brief AHP (Figure 1.1b). Fast spiking cells have 

no pronounced hyperpolarizing or depolarizing potentials (unlike intrinsically bursting 

and regularly spiking cells) and undergo little or no adaptation. When strongly 

stimulated fast spiking cells can sustain spike frequencies of at least 500-600Hz for 

hundreds of milliseconds. Fast spiking cells are, therefore, able to 'follow' stimulation 

very closely, producing a faithful conversion of synaptic input to output over a wide 

dynamic range (in strong contrast to intrinsically bursting and regularly spiking cells).

(3) Intrinsically bursting neurons.

Intrinsically bursting neurons are distinguished by the tendency for their spikes to 

appear in a stereotyped, clustered pattern, called a burst (Agmon & Connors, 1989; 

Connors et al., 1982). Bursts are often the minimal response to a just threshold 

intracellular stimulus. Individual spikes of intrinsically bursting cells are quite similar 

to those of regularly spiking cells, although they are often followed by more 

prominent ADPs which may summate to form a slow, low-amplitude depolarizing 

wave during the burst. Within a burst, each successive spike usually declines in 

amplitude. This is presumed to occur because of inactivation of sodium conductances 

through sustained depolarization (Figure 1.1c).

A prolonged intracellular stimulus to an intrinsically bursting cell can produce a 

complex, often periodic pattern of bursts and single spikes. Fast spiking or regularly 

spiking cells will respond with monotonie frequency patterns to the same stimulation.

The term 'burst' is commonly used in the neurophysiological literature to describe a 

neuron's firing behaviour. However, the designation 'bursting cell* is ambiguous 

unless modified to indicate whether the firing pattern represents an inherent property 

of the cell, or a direct response to its afferent drive. The term 'intrinsically bursting' 

refers to a cell's tendency to generate clusters of high-frequency spikes solely as a
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manifestation of its intrinsic membrane properties - independent of its synaptic input 

Almost any neuron could produce clusters of spikes in response to phasic synaptic 

input. However, this response pattern does not itself justify classification of an 

intrinsically bursting neuron (Connors & Gutnick, 1990). Extracellular recording 

cannot distinguish between dendritic and axonal/somatic bursting and, therefore, 

intracellular recordings are the only means of classification, providing the cell is 

isolated from its extrinsic connections.

Much of the research into receptor-activated neuronal bursting has been performed in 

the mammalian hippocampus (for a schematic diagram of the rat hippocampus see 

Figure 1.2). Because of this, the following brief review of the physiology of bursting 

neurons will concentrate upon hippocampal studies. Bursts recorded from 

hippocampal pyramidal neurons typically consist of trains of two to six action 

potentials 'riding' upon a depolarizing envelope (Wong & Prince, 1978), the event 

lasting about 30msec. Intracellular recordings show intrinsic rhythmicity of bursting 

responses at frequencies of 0.2 to 5Hz, tiie inter-burst interval being determined by the 

development and subsequent delay of a post-burst membrane hyperpolarization.

Bursting in the hippocampus can reliably be produced with the application of an 

agonist to one of the glutamate receptors: N-methyl-D-aspartate (NMDA). Both 

NMDA and magnesium free artificial cerebrospinal fluid can induce population and 

endogenous bursts in CA3 neurons of the hippocampal slice preparation. Single CA3 

pyramidal cell stimulation in the presence of NMDA or magnesium free artificial 

cerebrospinal fluid can partially synchronize a population of neurons (Neuman et al., 

1989). This synchronization is similar to that produced in the disinhibited slice (Miles 

& Wong, 1983). Bursting in CAl pyramidal cells is also sensitive to NMDA. 

Microiontophoretic application of NMDA to CAl in the hippocampal slice produced 

bursting that was sensitive to 2-amino-5-phosphonovalerate (AP5) and cobalt (Peet et
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Figure 1.2; Diagram showing the major divisions of the Hippocampus

CAI region
lateral 
entcrhinal 
cortex I

A A  
A A  ,

to X  X /  
s e p tu m /  CA3 
via region 
fornix i

medial \ 
entcrhinal 
cortexhippocampal

fissure

1. Schaffer collateral 4. Perforant path 7. Mossy fibres

2. CAl pyramidal cell 5. Dentate gyrus 8. CA3 Pyramidal cell

3. Basket cell 6. Granule cells 9. Fimbria

The major input to the hippocampus is via the entorhinal cortex, the entorhinal 
cortex projects via the perforant path to the dentate gyrus. The dentate gyrus 
projects via mossy fibres to CA3 pyramidal area. CA3 projects to CAl via 
Schaffer collaterals. The major outputs of the hippocampus are through the 
fimbria and entorhinal cortex.
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al., 1986). Application of quisqualate evoked tetrodotoxin-sensitive spikes (TTX), 

those produced by NMDA consisted of bursts of TTX-sensitive action potentials 

superimposed upon an underlying depolarizing shift of membrane potential (the DAP). 

The action of AP5 and cobalt on CAl pyramids was to selectively (and reversibly) 

antagonize the NMDA-induced depolarization and DAP (Peet et al., 1986). The ionic 

conductances underlying burst generation appear to be as follows (Wong et aL, 1986): 

membrane depolarization above threshold activates a fast sodium current causing the 

cell to fire an action potential; this depolarization causes an increase in calcium 

conductance, which is a long lasting increase, decaying only slowly to sustain a long 

secondary depolarization following the initial sodium spike (the DAP). The amplitude 

of the DAP reaches threshold in such a way that it generates a sequence of action 

potentials, seen as a burst. As the intracellular concentration of calcium increases 

during the burst, it 'turns on' an accumulative, repolarizing potassium conductance. 

This potassium conductance gradually increases and eventually becomes sufficient to 

terminate the burst, sustaining the slowly decaying afteriiyperpolarization.

Burst firing, at least in hippocampal pyramidal neurons, appears to be an apical 

dendritic phenomenon. The usual model of the neuron depicts the dendrites as passive 

'cables' (Rail, 1977). Their integrative function merely consists of conveying the 

synaptic signal from the synapse to the soma/initial segment region of the cell. 

However, a number of supraspinal neurons do not appear to conform to this 

generalization: their dendrites are excitable. Direct intradendritic recordings from 

neurons in mammalian neocortex (Purpura et al., 1965), cerebellar Purkinje cells 

(Llinas, 1988; Llinas & Hess, 1976; Llinas & Nicholson, 1971) and hippocampal 

pyramidal cells (Wong et al., 1979) have revealed that action potentials can be 

generated locally. The pattern of these action potentials is predominantly burst firing. 

Some spike components of the burst are TTX-resistant, that is, they do not reflect 

sodium spikes. Evidence to suggest that these dendritic spikes are not simply 

electronically propagated soma activities comes from pyramidal cell recordings (Wong
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et aL, 1979). Firstly, the sizes of the recorded dendritic action potentials were much 

larger than would be predicted purely by passive electrotonic spread. Secondly, 

simultaneous intracellular recordings ftom electrotonically coupled soma and dendritic 

elements revealed that action potentials in the two regions were not correlated in a 1:1 

fashion. Figure 1.3a shows two traces, one from distal dendrite, the other from soma, 

that probably come from the same cell, as hyperpolarizing pulses applied to the 

dendrite produced electrotonic hyperpolarization of the soma. As can be seen tiom this 

Figure, depolarization of the dendrite produces burst firing, causing only solitary cell 

body spikes at the soma. Depolarization of the soma elicited only single spikes and did 

not produce bursting in the dendrite. This suggests that dendritic bursting may 

facilitate communication between those dendrites and the cell body. In the CAl region 

of the hippocampus powerful excitatory input impinges upon the dendritic fields of 

pyramidal cells. If this input produces dendritic bursting, then a significant 

amplification of the input will occur in the post-synaptic cell. Bursting can, therefore, 

be envisaged as a process for securing the transmission of signals between cells in a 

synaptically connected network. Such bursting properties provide the basic step in the 

generation of synchronized discharge in the hippocampus — a simple epileptiform 

event

Since burst firing in the soma or dendrites of pyramidal cells can be elicited by short 

duration depolarizations, it is easy to imagine that phasic excitatory synaptic potentials 

should also trigger postsynaptic bursts. However, orthodromic activation of pyramidal 

cells does not lead to burst generation (Wong, 1982). The reason for this is that 

suprathreshold orthodromic stimulation elicits an excitation-inhibition sequence in the 

postsynaptic neuron. Inhibition in the hippocampus is, at least in part, generated by 

an intrinsic group of GABAergic neurons (Andersen ct al., 1963; Ribak et al., 1978).

Synchronization of the neuronal population can be elicited when substances such as
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Figure 1.3; Intracellular recordings from (a) two synaptically 

coupled neurons and (b) electrotonically coupled 

dendrite and cell body of the same neuron.

A

40mMC

B

Figure 1.3; (A) Recurrent excitatory connection between pyramidal cells. Each 

action potential in the presynaptic cell triggered an EPSP in the follower cell, 

eventually leading to a burst of action potentials. (B) Differential firing 

patterns recorded intracellularly from the dendrite (top trace) and cell body 

(lower truce) of hippocampal CAl pyranidal cell. Note that depolarizing current 

injected into the dendritic recording site elicits a burst of dendritic action 

potentials, but only solitary cell body spikes (taken from Wong et al., 1986).
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penicillin are added to the hippocampus (Miles et al., 1984). This synchronization is 

produced by a reduction in inhibition. Bursting can also be initiated via application of 

morphine, presumably acting to inhibit inhibitory GABAergic interneurons 

(Zieglgansberger et al., 1979). In models of hippocampal neuronal networks, the 

strength of inhibition can determine the number and pattern of bursting excitatory cells 

that will fire in synchrony (Traub et al., 1987). A similar mechanism may apply in 

neocortex, with the added feature that synchronous activation of the intrinsically 

bursting cell minority leads to either net inhibition or excitation of the non-bursting cell 

majority, depending upon the efficacy of GABA-mediated IPSPs (Chagnac-Amitai & 

Connors, 1990).

Burst firing in a CA3 neuron can trigger a burst in the post-synaptic cell via a 

monosynaptic connection (Hgure 1.3b). This may allow a single neuron to initiate and 

reset the rhythm of synchronized discharge of an extremely large cell population. Such 

discharges can be envisaged as cascading excitation: a few pyramidal cells near to 

threshold fire bursts of action potentials which allow recruitment of additional 

pyramidal cells through sequential activation of excitatory connections. Eventually, a 

critical proportion of pyramidal cells become simultaneous active, recruiting virtually 

the whole population. This is thought to occur upon blockage of normal inhibition, via 

actions described above. Tetanic stimulation of hippocampal slices also causes 

cascading excitation (Miles & Wong, 1987), presumably via physiological GAB A 

inhibition. As will be discussed in the next section of the General Introduction, tetanic 

stimulation causes increases in the strengths of excitatory connections, and the tetanic 

stimulation noted above may be similar to that of LTP. It can be inferred from this 

evidence that the phenomenon of bursting relies upon a reduction of inhibitory 'tone' 

in the neural network. However, this need not necessarily be the case. Stelzer et al. 

(1987) showed that repetitive stimulation of the hippocampal slice reduces the G ABA 

response via the activation of NMDA receptors. Application of a selective NMDA 

antagonist, for example ÀP5, maintains GAB A activity following stimulation.
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Increasing the activity of NMDA receptors causes seizure-like discharges, and 

blocking of NMDA receptors (for example by AP5 or any divalent cation, obviously 

with the exception of calcium) prevents the onset of such discharges (Anderson et al., 

1986; Peet et al., 1986). Such antagonism has also been shown to impair spatial 

learning (Morris et al., 1986) and also to reversibly prevent LTP induction of the 

population spike recorded from both the Schaffer/commissural pathway and the 

synaptic region of CAl. From this it seems that a reduction of inhibition is not 

necessarily required for seizure-like events to occur, provided that excitatory 

connections are sufficiently strong and each neuron is sufficiently close to threshold.

The relevance of neuronal firing patterns, in particular that of burst-firing, to 

neurophysiological models of learning and memory will now be discussed.

Neurophysiological Models of Learning and Memory.

Although several aspects of synaptic structure appear to change through experience 

(Purves et al., 1986), the most consistent potential correspondent of memory storage 

during learning is an alteration in the number and/or pattern of synaptic connections. 

This change in connectivity could be accomplished through changes in the 'strengths' 

of previously existent synapses, allowing the incorporation of new patterns into the 

organization of the brain (Hebb, 1949). Hebb's neurophysiological postulate for 

learning proposes that the strength of plastic synapses can be enhanced if the use of 

those synapses is associated with the nearly simultaneous occurrence of postsynaptic 

electrical activity. The Hebb model has, therefore, been referred to as a 'successful 

use' model (Kupfermann & Pinsker, 1969) because the modification depends upon 

the use or activity of the presynaptic cell and activity in the postsynaptic cell. Another 

form of plasticity, complementary to that of Hebb, has been proposed by Stent 

(1973). A Stent synapse between two neurons, A and B, will be formed under the 

following conditions: the presynaptic cell A must repeatedly and persistently fail to
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excite the postsynaptic cell B, whilst B is firing under the influence of other inputs; 

this will produce changes in one or both cells such that A's efficiency, as one of the 

cells firing B, will be decreased.

An alternative cellular model to that of either Hebb or Stent is that proposed by Eccles 

in which the use of a synapse itself, independent of any postsynaptic effects, produces 

an alteration in synaptic efficacy (Eccles, 1953). The model is derived from early 

observations that changes in spike activity in presynaptic neurons leads to changes in 

the magnitude of postsynaptic potentials.

A simple conception concerning the neuronal basis of learning is that an item of 

information could be first stored as a 'dynamic engram' in the form of reverberating 

excitation in a spatio-temporally arranged pattern. Such reverberatory activity has been 

seen in the red nucleus of the cat (Tsukahara, 1981) and the rodent hippocampus 

(Buszaki, 1989). This circulating activity could bring about structural changes at the 

synapses involved and thus produce consolidation into a 'structural engram'. 

Conceivably, the memory could then be retrieved by an activation of such synapses. 

This concept of reverberatory circuits, although lacking in much experimental 

evidence, is consistent with the subjective experience that we must practice material in 

order for it to be learned (i.e., let it pass repeatedly through our consciousness).

Changes in synaptic efficacy during and after stimulation have come under increasing 

investigation recently as they may represent the mechanisms which underlie learning 

and memory. Mechanisms of synaptic modulation are often referred to as either short­

term or long-term, according to their time course of development and decay. Four 

major types of short-term, use-dependent modulation have been defined; facilitation, 

augmentation, posttetanic potentiation and synaptic depression (Zucker, 1989). These 

types of modulation appear to be consistent with the Eccles postulate, that is, they
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involve presynaptic changes only.

Synaptic facilitation is an enhancement of transmitter release that results in enlargement 

of the postsynaptic potential. It develops gradually over one second during repetitive 

stimulation and then decays over a similar timespan. If it lasts for several seconds, it is 

termed augmentation. Both phenomena are apparentiy caused by a buildup of calcium 

in the presynaptic terminal, causing increased transmitter release (Katz & Miledi,

1968). Most synapses display facilitation or augmentation, but the magnitude appears 

to vary, perhaps due to differences in the calcium clearing mechanisms amongst 

synapses.

Posttetanic potentiation refers to an enhancement of transmitter release that follows a 

brief, high frequency stimulation train and lasts 2-5 minutes (Magleby & Zengel, 

1975). It is thought that this form of modulation also relies, at least in part, upon 

residual calcium on the presynaptic terminal, the slow decay possibly reflecting a slow 

phase of calcium removal.

Short-term depression is a gradual decrease in synaptic strength following repetitive 

stimulation. It is often caused by progressive depletion of releasable neurotransmitter 

stores. Its time course is variable, but seldom lasts longer than a minute (Zucker, 

1989).

In terms of function, synaptic potentiation amounts to making a central nervous 

system process occur more readily as a result of repeated use (practice). It can be 

argued that this constitutes a learning process. Perhaps the most significant form of 

potentiation is that of long-term potentiation (LTP, also known as long-term 

enhancement or long-lasting potentiation). It was originally described in the rabbit 

hippocampus (Bliss & Lomo, 1973). In addition to LTP there is a form of synaptic 

potentiation known as long-term depression, the 'inverse' of LTP thought to be a
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model of 'neuronal' forgetfulness. Long-term depression is a relatively rare 

phenomenon and its mechanisms are still largely unknown. It has been observed in 

only three areas of the vertebrate brain: the cerebellum (Ito, 1989), the hippocampus 

(Levy & Steward, 1983); and the the visual cortex (Artola et al., 1990). -

The next three sections of this chapter deal with brief reviews of LTP, LTD and theta 

rhythm, One feature of aU of these models is the involvement, to a lesser or greater 

extent of burst-firing patterns, suggesting that this ubiquitous type of neuronal 

response may have a special involvement in mechanisms of learning and memory.

(1) Long-Term Potentiation.

Long-term potentiation (LTP) can be defined as a stable, relatively long lasting 

increase in the magnitude of the post-synaptic response to a constant afferent volley 

following brief tetanic stimulation of the same afferents (see Figure 1.4). This 

potentiation is generally described as an enduring increase of the population excitatory 

postsynaptic potential (EPSP) and/or population spike. However, whilst the 

population spike may reflect changes in the EPSP, it is to a large extent controlled by a 

parallel disynaptic feed-forward inhibitory postsynaptic potential that follows 

activation of the same afferents that cause the monosynaptic EPSP (Abraham et al., 

1987; Wigstrom & Gustaffson, 1985), as well as by general cellular excitability. One 

consequence of LTP induction is that when the slope of the potentiated field EPSP is 

returned to its pre-tetanization level by lowering the stimulus strength, the EPSP is 

then associated with a larger population spike than before. This enhanced EPSP-spike 

relationship has been termed E-S potentiation (Bliss & Lomo, 1973; Andersen et al., 

1980). Wilson et al. (1981) suggested that E-S potentiation could be accounted for by 

a greater effect of tetanization on LTP at monosynaptic excitatory patliways when 

compared to disynaptic inhibitory pathways. This suggestion was supported by 

experiments conducted by Abraham et al. (1987). The population spike may.
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Figurel.4; Induction of LTP in dentate gyrus following tetanic 

stimulation of the perforant path.
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Figure 1.4; (A) Dentate population response to single test stimulation of the 

perforant path before and after a series of high-frequency trains of stimulation 

to the same input (tetani shown in B)

(B) Test responses following tetanic stimuli (arrows) of the pérorant path. 

The slope of the EPSP is measured during the early rising phase of the 

response (arrow in A). Taken from Bliss, Goddard and Riives (1983).
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therefore, be a less reliable measure of potentiation of excitatory synaptic transmission 

when compared to the EPSP. Because of this, Gustaffson and Wigstrom (1988) 

suggest that the term 'LTP' should refer exclusively to changes in the EPSP.

LTP was first demonstrated by Bliss and Lomo (1973) in an anaesthetized 

preparation, and by Bliss and Gardner-Medwin (1973) in an unanaesthetized 

preparation (rabbit hippocampus in both cases). In these experiments tetanic stimuli 

were applied to the perforant path and responses recorded in the dentate gyrus. This 

maiked the first demonstration of an alteration in the neurophysiological activity of the 

mammalian brain that was capable of possessing a considerable time course: LTP 

could be seen as an increase of up to 50% in the amplitude of the post-synaptic 

response which lasted for at least ten hours in the anaesthetized and up to sixteen 

weeks in the unanaesthetized preparation, respectively. But do these neuronal changes 

really underlie some form of memory storage? This critical question, which is still not 

completely answered, was recognized by Bliss and Lomo at the time:

''Whether or not the intact animal makes use in real life o f a property which has 

been revealed by synchronous, repetitive volleys to a population o f fibres, the normal 

pattern o f activity along which are unknown, is another matter."

Bliss and Lomo, 1973

Two stages of LTP can be differentiated: its induction and its maintenance. The vast 

majority of published woik has dealt almost exclusively with the former.

The induction of LTP begins with the delivery of tetanic stimulation to afferent fibres. 

Depending upon the intensity, frequency and pattern of afferent activation, LTP can be 

induced in a gradual or an all or none fashion. Potentiation does not develop 

immediately following a tetanus (McNaughton, 1983). In the CAl hippocampal region 

it is delayed by about 3 seconds with an additional delay of 15-20s before the
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maximum potentiation is observed. At higher stimulus intensities and higher tetanic 

frequencies, LTP reaches an asymptotic level after only one, or perhaps a few 

tétanisations. Tetanus frequencies used to elicit LTP range from 0.2 to 400 Hz 

(Douglas 1977; Skelton et al., 1983), the number of pulses delivered usually being 

between one to two hundred. At stimulation rates lower than about 50 Hz, a 

heterosynaptic depression can be seen, probably due to the activation of inhibitory 

intemeurons projecting onto their target cells (Alger et al., 1978). At slightly higher 

frequencies, between 1(X) and 400 Hz, such depression is rarely observed. Initial 

studies in the dentate gyrus (Bliss & Gardner-Medwin, 1983; McNaughton et al., 

1978) and later in CAl (Lee, 1983) showed that the induction of LTP requires the 

magnitude of stimulation to be great enough to activate a sufficient number of 

synapses. This codperativity can be seen as an associative interaction between separate 

excitatory inputs in which a weak input (that does not itself induce LTP) becomes 

potentiated only after tetanization in combination with a strong one. This occurs in 

synapses from the perforant path onto dentate granule cells in the hippocampus (Levy 

& Steward, 1979) and also from the Schaffer collaterals onto CAl cells (Barrionuevo 

& Brown, 1983; Levy & Steward, 1979). This suggests that stimulation of a set of 

synapses increases the probability that other synapses on the same neuron will be 

strengthened if they are activated at the same time or a few milliseconds later. This 

type of potentiation has been termed 'associative LTP' and provides a possible neural 

mechanism for encoding associations between different afferent inputs that occur 

concurrently.

The importance of postsynaptic activation in LTP induction was first demonstrated via 

the facilitation of LTP induction through blockade of postsynaptic inhibition 

(Wigstrom & Gustaffson, 1985). It has also been shown that EPSPs evoked by low 

frequency single volleys can induce LTP when paired with depolarizing current pulses 

(Gustaffson et al., 1987; Sastry et al., 1986; Wigstrom et al., 1986b). Neither the
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presynaptic volley, nor the postsynaptic depolarization is sufficient, by itself, to 

induce LTP. These studies indicate that LTP obeys Hebb's rule, at least in the CAl 

and CA3 regions of the hippocampus, in that synaptic modification only occurs when 

the synapse is active in close temporal contiguity with postsynaptic activity (Jaffe & 

Johnston, 1990; Kelso et al., 1986). There is some evidence that postsynaptic firing, 

when present, also plays a role in LTP induction. When spikes evoked by brief 

depolarizing current pulses are paired with a weak afferent stimulus, not producing 

LTP by itself, substantial LTP can be produced (Wigstrom et al., 1988). However, 

the induction of LTP does not require the firing of the postsynaptic cell, only the 

depolarization of the postsynaptic membrane, since LTP can still be induced after 

blockade of action potentials by intracellularly injected local anaesthetics (Gustaffson 

et al., 1987; Kelso et al., 1986).

Although NMDA receptors do not appear to be important for normal low-frequency 

synaptic transmission, they have been intimately associated with LTP induction. The 

NMDA receptor is one subtype of the glutamate class of receptors. Glutamate, the 

transmitter released from excitatory afferents in the CAl region of the hippocampus, 

was originally shown to activate three receptor subtypes (Watkins & Evans, 1981). 

These subtypes were classified by the then selective exogenous analogues of 

glutamate; N-methyl-D-aspartate (NMDA), kainate (K) and quisqualate (Q). 

Subsequent research has shown that the Q receptor has two subtypes; Qi, an 

ionotropic receptor subtype and Qp, a metabotropic receptor subtype (for review see 

Sladeczek et al., 1988). The Qp subtype has been shown to activate (and be regulated 

by) protein kinase C (Manzoni et al., 1990). If the membrane potentials of CAl 

pyramidal cells are more negative than -70mV, the application of AP5 has little effect 

upon the EPSP evoked by single stimuli (CoUingridge et al., 1983). This suggests that 

with low frequency stimulation, synaptically released glutamate appears to act 

preferentially upon non-NMDA glutamate receptors. However, blockade of NMDA
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receptors with AP5 entirely blocks the induction of LTP (CoUingridge et aL, 1983). If 

NMDA receptors are not involved with normal synaptic transmission, how are they 

involved in LTP induction?

In the CAl field of the hippocampus synaptically released glutamate normaUy acts 

upon both NMDA and non-NMDA glutamate receptors. However, NMDA receptors 

are normaUy blocked by extraceUular magnesium at resting membrane potentials 

(Wigstrom et al., 1986a; Coan & CoUingridge, 1987). To observe the NMDA- 

mediated response it is necessary either to sufficiently depolarize the membrane to 

reUeve the magnesium block, or simply remove magnesium from the bathing medium. 

Although this explains why NMDA responses are seen during strong depolarization 

produced by tetanic stimulation, it does not explain why the NMDA receptor is 

essential for the induction of LTP.

The NMDA receptor may be essential because its activation allows the influx of 

calcium, that is, NMDA receptors are coupled to calcium channels. The postsynaptic 

role played by calcium in LTP induction was indicated by Lynch et al. (1983) by 

loading the postsynaptic ceU with EGTA, a calcium chelator. This blocked the 

induction of LTP, providing clear evidence that both the postsynaptic ceU and a 

postsynaptic rise in calcium are necessary for LTP induction. However, the 

postsynaptic entry of calcium through voltage sensitive calcium channels is, by itself, 

incapable of inducing LTP (Malenka et al., 1989). The rise in postsynaptic calcium 

presumably comes from another source. It has been found that the ion channel 

associated with the NMDA receptor, unlike those associated with Q and K receptors, 

is highly permeable to calcium ions (Jahr & Stevens, 1987). Calcium influx through 

NMDA receptor-associated ion channels has also been shown to be enhanced during 

LTP induction in the CAl region of the rat hippocampus (Stanton et al., 1989). 

Although this suggests that calcium entry through NMDA receptor ion channels is 

essential for the induction of LTP, it does not rule out a role for calcium release from
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postsynaptic stores. These results suggest that the postsynaptic requirements for LTP 

induction are the activation of NMDA receptors coupled with sufficient depolarization 

to cause a brief increase in the postsynaptic calcium concentration. If these are indeed 

the necessary conditions for LTP induction, what are the necessary conditions for LTP 

maintenance?

Before a postsynaptic locus for the induction of LTP had been identified, evidence had 

been presented suggesting that LTP in the dentate gyrus was associated with an 

enduring increase in the release of glutamate (Dolphin et al., 1982; Bliss et al., 1986; 

Errington et al., 1987). However, Anîksztejn et al. (1989) used a similar method to 

that of Bliss et al. (1986) and found that LTP induction was not followed by a 

sustained increase in glutamate release. Since the induction of LTP had been shown 

clearly to be postsynaptic, it was hypothesized that LTP induction caused the release 

of some 'plasticity factor" postsynaptically which then diffused back to the presynaptic 

terminal (Williams & Bliss, 1988) and that this caused the enhanced presynaptic 

release of glutaniate. This sustained release was suggested to be the mechanism 

responsible for the maintenance of LTP. Although there is no known mechanism for 

such retrograde synaptic communication, a potential class of 'retrograde messengers' 

has been suggested: the eicosanoids, metabolites of arachidonic acid (Williams et al., 

1989). Activation of NMDA receptors can stimulate the calcium-dependent enzyme 

phospholipase A2, causing release of free arachidonic acid into the surrounding 

medium (Dumius et al., 1988). If this occurs at hippocampal synapses, arachidonic 

acid, or its metabolites, which can pass easily across cell membranes, could pass fix>m 

a postsynaptic site into the presyn^tic terminal to initiate the potentiation of transmitter 

release (Linden et al., 1987; Williams & Bliss, 1988).

Another possible mechanism for LTP maintenance is an increase in the sensitivity of 

postsynaptic receptors. If LTP maintenance were due to a sustained increase in the

Page 36



presynaptic release of glutamate, then one would expect to observe a parallel increase 

in the receptor potentials of both the Q and NMDA components of the monosynaptic 

EPSP after LTP induction. Kauer et aL (1988) performed an experiment in which they 

examined the NMDA component of the monosynaptic EPSP in isolation from the Q 

component. This was accomplished by: (1) adding CNQX to the bathing medium; and 

(2) partially relieving the magnesium block of the NMDA receptor-coupled ion channel 

by holding the postsynaptic membrane at -55mV. A tetanus that would normally have 

produced LTP was then delivered to the Schaffer collateral inputs. This tetanus 

produced an increase in the NMDA component of the EPSP that persisted for only 1- 

3min. Although there was no persistent increase in the NMDA component in the 

presence of CNQX after tetanic stimulation, the Q component was considerably 

potentiated over control values upon removal of the CNQX block. This indicated that 

LTP induction occurred in the presence of CNQX and that LTP induction was 

independent of of the activation of CNQX-sensitive Q receptors. The results of this 

experiment have been supported by Muller et al. (1988) using the Q receptor 

antagonist DNQX. Malenka et al. (1989) have suggested on die basis of these finthngs 

that the long-term change underlying LTP is most easily explained by an increase in 

the sensitivity of the postsynaptic membrane to glutamate acting upon Q, rather than 

NMDA, receptors. Although the biochemical events thought to occur following an 

LTP-producing tetanus are beyond the scope of this introduction the mechanism 

underlying 'increased sensitivity' LTP maintenance may be outlined as follows. 

During tétanisation of Schaffer collaterals Q/K receptors on CAl pyramidal cells will 

be activated sufficiently to produce a large depolarization. This results in a relief of the 

magnesium block of the NMDA channel. As a consequence of this calcium enters the 

postsynaptic spine (although there is no direct experimental proof for the existence of 

NMDA receptors that are co-localized with Q/K receptors on the same dendritic spine, 

this situation accounts for all the properties of LTP induction, as first proposed by 

Wigstrom & Gustaffson, 1985a). The consequence of this may be two-fold. For
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calcium to exert its effect it must bind to calcium/calmodulin dependent protein kinase 

(CaM), presumably within the spine (CaM is a major constituent of postsynaptic 

densities, specializations of the cytoskeleton that lie directly beneath postsynaptic 

membranes, Kennedy et al., 1984).

The activation of postsynaptic glutamate receptors may also cause the activation of 

phospholipase C, via the action of a G protein, which in turn may break down 

phosphoinositol biphosphate to form two intracellular messengers: diacylglycerol and 

inositol trisphosphate. Diacylglycerol causes the translocation of PKC to the 

membrane from the cytosol. Although there is no evidence that NMDA receptors are 

coupled to this second messenger pathway, the activation of protein kinase C could 

occur via the stimulation of postsynaptic Qp receptors (Manzoni et al., 1990). Inositol 

trisphosphate causes calcium to be released from intracellular stores. CaM kinase 

causes PKC to become attached to the membrane, presumably via a calmodulin- 

dependent phosphorylation of either PKC or its membrane anchoring proteins (Wolf 

& Sayhoun, 1986). This is assumed to protect PKC from processes that normally 

detach it from the membrane such as proteolysis (Melloni et al., 1985). The long-term 

association of PKC with the membrane can phosphorylate ion channels or their 

constituents, particularly in response to transient calcium concentration elevation, to 

increase cellular excitability by decreasing potassium conductances or modulating 

synaptic conductances (Bank et al., 1989). The persistent change responsible for LTP 

maintenance in this model is postsynaptic, the increased sensitivity of the Q/K 

receptor. Malenka et al (1989) have proposed that a phosphorylation step, possibly of 

the Q/K receptor, underlies this change, resulting in a larger synaptic response. Recent 

evidence has, however, suggested that NMDA receptor-mediated transmission may 

also undergo long-term potentiation, at least in the CAl region of the hippocampus 

(Bashir et al., 1991). In terms of LTP, this means that a tetanus, in addition to 

increasing the efficiency of synaptic transmission, could directly alter the plasticity in 

the pathway for long periods. Subsequent tetani could then result in correspondingly

Page 38



greater enhancements of synaptic transmission as LTP of the NMDA component will 

provide increased entry of calcium, producing further LTP. This has implications both 

for the genesis of epileptiform activity and also the generation of kindling, an animal 

model of epilepsy. The limited scope of this General Introduction does not allow a 

more detailed discussion of these topics.

These observations suggest that (at least) two interacting mechanisms, increased 

presynaptic neurotransmitter release together with enhanced postsynaptic sensitivity of 

Q/K receptors, may in some way converge to potentiate synaptic transmission during 

LTP establishment

Bliss and Lomo (1973) originally made it quite clear that the stimulation parameters 

they were using to induce LTP were decidedly 'unphysiological'. This outlines one of 

the major conceptual difficulties in relating LTP to an endogenous mechanism for 

memory formation: the parameters commonly used for LTP induction are well beyond 

the normal physiological firing rate of hippocampal neurons. To produce LTP usually 

50-400 stimuli are delivered at frequencies of 100-4(X)Hz (Teyler & DiScenna, 1984). 

Although hippocampal pyramidal cells are known to f i i r e  in bursts or 'complex spikes' 

at frequencies well above lOOHz, groups of only 3 or 4 action potentials seem to be 

the usual output of these cells (see previous section and Suzuki & Smith, 1985). 

Continuous high frequency discharge is only seen under experimentally-induced or 

pathological conditions. Because of this disparity between normal patterns of cell 

firing and those stimuli patterns commonly used to induce LTP, experimenters have 

designed their patterns of stimulation to mimic the natural firing properties of 

pyramidal burst-firing neurons. In one of the earliest studies to use such patterned 

stimulation, Douglas (1977) delivered the tetanus as a package of short bursts (6 to 10 

stimuli) of 400 Hz stimulation every few seconds or minutes. This technique reliably 

produced LTP, avoided the problem of after-discharges seen with continuous high
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frequency stimulation, and provided a more 'physiological' stimulation. Douglas 

compared this type of patterned LTP stimulation to the normal tetanic (see Figure 1.5) 

and found that the response to a burst (stimulation in perforant path, recording in 

dentate gyrus) was very similar to that evoked by a single test pulse. After-discharge 

was never observed. Figure 1.5 shows both the typical potential evoked by a series of 

10 test pulses and also the response to a burst after 9 previous bursts. The LTP 

induction from patterned stimulation was as large and as reliable as that reported in 

previous studies, although no post-tetanic depression was observed.

Changes in the inter-burst interval had no effect upon LTP induction in the Douglas 

(1977) study - bursts could be repeated at rates from only one per second to one per 

minute without any gross effect upon the potentiation observed. However, the 

number of bursts seemed to be critical, with less than 8 bursts producing a small, 

often unreliable potentiation. This lack of stimulus specificity of LTP in this study is in 

stark contrast to later studies using 'theta patterned' stimulation.

The possible influence of theta rhythm upon LTP induction has recently been 

investigated. Theta riiythm is a sinusoidal EEG potential of 5-9Hz found in the dentate 

gyrus and CAl fields of the hippocampus (see section 3). Staubli and Lynch (1987) 

showed that maximal LTP to short bursts of stimuli (10 bursts of stimuli, 4 pulses per 

burst at lOOHz) was obtained in the CAl field of a hippocampal slice when the bursts 

were delivered at theta rhythm periodicity, in this case at 5Hz. The amount of 

potentiation was significantly less when shorter or longer inter-burst intervals were 

chosen. This strong relationship between LTP induction and theta rhythm differs firom 

that found in the study by Douglas (1977), in which no such relationship was found: 

the induction of LTP was independent of changes in the interburst interval. Reasons 

for the difference between the Staubli and Lynch result and that of Douglas may be 

due to : (a) the use of different hippocampal areas, i.e., CAl vs. dentate and (b)
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Figure 1.5; LTP as induced by "physiological" stimulation

5 mV

5 msec.

2 mVL_
2msec

A. Field potential evoked by a single pulse (arrow) applied to the perforant 
path. The positive wave is due to EPSPs in the granule cells, the 
postsynaptic elements. Superimposed upon this is a negative going 
population spike, produced by the almost synchronous firing of the granule 
cells.

B. Response to a burst of 7 pulses, same animal as above. The potential is 
larger than A because of the growth in response over the series of 20 bursts.

C. Potentiation induced by B. The width of the line pairs are the 95% 
confidence limits for two averages. The pre-tetanus average is shown filled. 
The average 48hrs later is shown unfilled. Note that both the EPSP and 
population spike components are larger. The onset to population spike is 
also shorter.

Taken from Douglas (1977)
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chronic (Staubli & Lynch) vs. acute (Douglas) stimulation. Pavlides et al. (1988) used 

a similar preparation to that of Staubli and Lynch (1987) and were able to demonstrate 

that LTP induction in the dentate gyrus of rats is preferentially induced on the positive 

phase of theta rhythm. Theta was induced via stimulation of the midbrain and bursting 

stimulation was applied either at the peak or at the trough of the evoked theta rhythm 

(10 bursts of stimuli, 5 pulses per burst at 4(X)Hz). The presence of theta in the dentate 

gyrus, and in particular its phase, appears to affect the ability of perforant path 

neurons to induce LTP, via repetitive firing, in the dentate granule cells. Perforant path 

stimuli appear to enhance granule cell synaptic efficacy when presented at the peak of 

theta rhythm, while there is either no synaptic enhancement, or even a depression of 

synaptic efficacy, when stimulation is coincident with the theta rhythm trough. This 

seems to be in agreement with the finding that bursting cells fire upon the positive 

phase of theta rhythm during rat locomotion (Fox et al., 1986) and that inhibitory 

intemeurons fire (and inhibit bursting pyramidal cells) during the negative phase of 

theta (Buzsaki & Eidelberg, 1983).

A slightly different stimulus patterning to induce LTP has been employed by Diamond 

et al. (1988), a pattern they call 'primed burst potentiation'. This pattern consists of a 

single priming pulse followed 170ms later (i.e. at a theta fiequency of 6Hz) by a high- 

frequency burst of pulses. This pattern can reliably produce LTP in the in vitro CAl 

field with the application of only 5 patterned pulses (Rose & Dunwiddie, 1986). This 

form of LTP also appears to have dendritic activation, rather than somal spiking, as a 

necessity for induction. Further experiments have shown that the threshold for primed 

burst potentiation is extremely low, with LTP being produced after only one priming 

pulse followed by a burst of 3 spikes. The involvement of NMDA receptors was also 

found to be necessary for this potentiation, with AP5 reliably inhibiting its expression 

(Diamond et al., 1988). It appears from these results that primed burst potentiation has 

a greater per pulse efficacy, when compared to 'nonpattemed' continuous trains of
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pulses, in producing LTP.

It can be suggested from these lines of evidence that two naturally occurring 

phenomena (theta rhythm and neuronal burst firing) could be associated with what is 

an unnatural, candidate mnemonic device, namely LTP and that LTP, as induced by 

bursting stimulation, may occur as a normal process in the hippocampus. Further 

evidence to support this contention comes from experiments that have investigated 

'behavioural LTP', that is, experiments that have attempted to discover whether LTP 

is in fact the mechanism that underlies learning and memory. The proposal that LTP is 

a 'mnemonic device' (Teyler & Discenna, 1984) has received support from diverse 

experimental paradigms. Laroche et al. (1987) discovered an increase in the release of 

glutamate in the dentate gyrus following classical conditioning in the rat, similar to that 

found previously following LTP induction. In a further experiment, Laroche et al. 

(1989) showed that the acquisition of a classical conditioning task in rats was 

associated with the level of LTP induction. In this experiment high frequency 

stimulation of the perforant path (the conditioned stimulus) was paired with footshock 

(the unconditioned stimulus). The conditioned suppression of a previously learnt, 

food-motivated lever-pressing task served as the behavioural measure of conditioning. 

Animals learned to associate the perforant path stimulus (which produced LTP in the 

dentate gyms) with footshock. A linear relationship was found between the magnitude 

of LTP induced in the dentate gyms and the level of associative learning. Chronic 

administration of the NMDA antagonist AP5 blocked both the induction of LTP and 

acquisition of the association.

In another conditioning task, the rabbit nictitating membrane response, the induction 

of LTP in the hippocampus is greatly facilitated die acquisition of conditioned 

responses (Berger, 1984). The activation of protein kinase C, which has been 

implicated in the development of LTP (Akcrs ct al., 1986; Routtenberg et al., 1985),
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has also been shown to be important for the expression of the nictitating membrane 

response (Bank et al., 1989).

LTP like effects are also thought to underlie at least the initial stages of the storage of 

spatial information. When rats are placed in and explore a novel environment, a robust 

increase in the initial slope of the population EPSP and a corresponding decrease in 

both the area and latency of the population spike can be seen in the dentate gyrus 

(Green et aL, 1990; Sharp et al., 1989). One inhibitor of the behavioural acquisition of 

a spatial task has proved to be 2APV; Morris et al. (1986) showed that infusion of this 

NMDA receptor antagonist prevents place-leaming in rats.

These observations of behaviourally correlated LTP-like effects suggests that LTP 

may underlie memory storage. However, as indicated by Teyler and DiScenna (1984), 

these observations raise questions regarding the underlying phenomenon of LTP. For 

example, it is unclear why participation in a variety of behavioural tasks should be 

reflected in alterations of hippocampal efficiency at electrode positions that are 

apparently chosen at random. However, the evidence presented has led Teyler and 

DiScenna (1984; 1987) to the conclusion that LTP is a candidate mnemonic device 

underlying memory storage in the brain.

(2) Long-term depression.

Long-term depression (LTD) has been most intensely studied in the cerebellum. LTD 

occurs when impulses arrive at a Purkinje ceU almost simultaneously through two 

distinct afferent pathways; one from cerebellar mossy afferents through granule cells 

and their axons (the parallel fibres), the other from olivocerebellar afferents through 

their climbing fibre terminals. LTD, in contrast to LTP, is manifest as a long-lasting 

reduction of synaptic efficacy (Ito et al., 1982).

An essential feature of LTD is that it is associative, i.e., it requires a combination of
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parallel-fibre and climbing fibre stimulation (l-4Hz stimulation for 0.5-8 mins). 

Stimulation of either pathway alone does not result in LTD. Repetitive stimulation of 

parallel fibres alone will actually elicit a slight potentiation of synaptic efficacy in 

parallel fibre-Purkinje ceU transmission that lasts 20-50 mins. Stimulation of climbing 

fibres alone neither increases, nor decreases parallel fibre to Purkinje cell efficacy (Ito 

et al., 1982; Sakurai, 1987). The timecourse of LTD appears to be as follows: an 

initial phase of 10 mins followed by a later phase lasting 1-3 hours (Ito, 1989).

The role of glutamate in LTD was indicated by experiments in which glutamate was 

iontophoretically applied to Purkinje cells whilst simultaneously stimulating climbing 

fibres (Ito et al., 1982). This produces a depression of the glutamate sensitivity of 

ihirkinje cells that closely followed the timecourse of evoked LTD. The subclass of 

glutamate receptor involved in LTD was identified as quisqualate, as application of 

quisqualate, but not aspartate or kainate, produced LTD when in conjunction with 

climbing fibre stimulation (Dupont et al., 1987; Kano et al., 1988). The pairing of 

glutamate application with stimulation to produce LTD can be prevented by the 

blockade of glutamate receptors with kynurenic acid (Kano & Kato, 1988). These 

observations suggest that LTD is produced by a desensitization of quisqualate 

receptors, the exact opposite of what is thought to be one of the mechanisms 

underlying the induction/maintenance of LTP.

The postsynaptic influx of calcium has been associated with the development of LTD, 

as the injection of EGTA into the dendrites of Purkinje cells abolishes LTD (Ito, 

1986). The working hypothesis for calcium's postsynaptic action is that calcium influx 

causes the accumulation of cyclic GMP postsynaptically and that cyclic GMP, by 

process(es), as yet unknown, causes desensitization of quisqualate receptors (Ito, 

1986).

Page 45



When LTD is compared to other types of synaptic plasticity, such as LTP in the 

hippocampus and sensitization in Aptysia, calcium ions commonly seem to play a key 

role, although the mechanisms by which it plays its role are different: via NMDA 

receptor-associated calcium channels in the CAl region in the hippocampus; via 

voltage-sensitive channels in Aptysia neurons and cerebellar Purkinje cells.

Whilst enhancement of transmitter release from presynaptic terminals accounts for 

both sensitization in Aptysia and, at least partly, for LTP in the hippocampus, there is 

no evidence to suggest such a scheme for LTD. Parallel fibre-Purkinje cell synapses 

have a fairly complex pharmacology. Purkinje cells express GABAg leceptore (Wilkin 

et al., 1981) and adenosine receptors (Goodman et al., 1983) and the sensitivity of 

glutamate receptors on Purkinje cells is reduced by serotonin (Lee et al., 1986). The 

relationship of LTD with these chemical regulatory mechanisms could prove very 

complex.

The behavioural significance of LTD is unclear. Studies of the flocculus have 

implicated LTD in the learning of the vestibular-ocular reflex (Ito et al., 1974). The 

flocculus is a phylogenetically old part of the cerebellum. Purkinje cells of the 

flocculus receive mossy fibre input from the semicircular canals and visual information 

from climbing fibre input (Lisbefger, 1988). Climbing fibres appear to convey 'retinal 

error signals' as to the effectiveness of vestibular-ocular reflex eye movements 

compensating for head movements. During head turns, the vestibular-ocular reflex 

normally generates smooth eye movements that are equal to and opposite rotatory head 

movement. If a monkey, for example, undergoes passive head rotation in darkness, 

the 'gain' of the vestibular-ocular reflex, defined as compensatory eye velocity divided 

by head velocity, is 0.95 to 1.0. The vestibular-ocular reflex undergoes motor learning 

whenever errors in the in the vestibular-ocular reflex are signalled by the temporal 

coincidence of retinal slip and head turns (Lisberger, 1988). The gain of the
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vestibular-ocular reflex will decrease if retinal slip and head turns are in the same 

direction and will increase whenever these two inputs are in opposite directions. LTD 

has been put forward as a mechanism underlying vestibular-ocular reflex that will 

'disconnect wrong wiring' in the flocculus and so eliminate any such errors in 

performance (Ito, 1984).

LTD has also been studied in the hippocampus. From their studies using a 

hippocampal slice preparation, Stanton and Sejnowski (1989) have proposed that LTD 

can be seen as a model of 'forgetting'. LTP has become widely accepted as a neuronal 

'substrate' for learning and memory. Because forgetting is such a conspicuous 

complement to learning, it is possible that the cellular analogue of forgetting is the 

inverse of LTP; such 'neuronal' forgetfulness might be an enduring decrease in 

synaptic strength following the heavy use of a synapse. This hypothesis came from an 

experiment in which Stanton and Sejnowski induced LTD in the CAl region of the 

hippocampus. Stimuli were applied to two different inputs to this region. Burst 

patterned stimuli at theta periodicity (a similar pattern of stimulation to that used to 

induce LTP) were presented to the Schaffer and commissural collateral inputs to CAl 

(the 'conditioning input'). The other stimulus consisted of single pulses applied to the 

subicular input to CAl (the 'test input'). When these separate inputs to CAl were 

stimulated 'in phase' (i.e. synaptic activity was positively correlated) LTP was 

induced. This increase in synaptic strength could be reversed when activation of the 

two inputs was applied 'out of phase' (i.e. synaptic activity was negatively 

correlated), producing LTD. The induction of LTD was shown to AP5-insensitive 

indicating that the activation of NMDA receptors was not required for LTD 

expression. If test pulses were applied that contained an equal number of 'in phase' 

and 'out of phase', randomly mixed stimuli no net change in synaptic strength 

occurred. This zero net change is in accord with the covariance model (Sejnowski, 

1977a; 1977b) which predicts that stimuli with no covariance should produce no 

synaptic change. The presence of LTD was also reflected in the size of EPSPs
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recorded intracellularly from CAl pyramidal cells. The EPSP was markedly larger 

when 'in phase' stimulation was presented, whereas 'out of phase' stimulation 

produced the reverse i.e. a marked reduction in the EPSP and reduced ability of the 

test pulse to elicit the firing of action potentials.

Further experiments indicated that hyperpolarization of CAl pyramidal neurons, if 

coupled with simultaneous presynaptic activity, was sufficient to induce LTD - an 

'inverse-hebbian' mechanism. The authors suggested that this form of plasticity may 

be involved in learning processes that lead to the weakening of stimulus-response 

relationships such as habituation and reversal learning.

The important factor underlying LTD in the Stanton and Sejnowski (1989) study was 

the voltage of the neuron: LTD was only found when the neuron was prevented from 

depolarizing during stimulation of its excitatory afferents. A much more specific 

theory for the necessary conditions for LTD expression has been suggested from 

studies using a slice preparation of the visual cortex (Artola et al., 1990). In this 

preparation LTD also appeared to be the inverse of LTP. LTD in the visual cortex 

appeared to occur when a neuron was depolarized, providing that this depolarization 

was insufficient to reach the threshold for calcium entry through NMDA receptor 

channels. It appeared that neurons in visual cortex have a narrow 'window' of 

voltages at which LTD will be produced when the synapse is used. If their potential is 

near or below resting levels then the strength of synapses will not alter with their use. 

Above a depolarization of around 20mV LTP developed but between resting potential 

and the threshold for LTP induction LTD developed. The membrane potential was not 

regulated by intracellular current injection in this experiment This was accomplished 

by altering the dose of the GABAa antagonist bicuculline to permit the neuron to be 

more or less depolarized (according to the dose) by antagonizing the inhibitory activity 

that accompanied the tetanizing stimulus. With no bicuculline, neither LTP nor LTD
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was observed. With small doses LTD was found after tetanization. With doses that 

blocked most of the inhibitory synaptic activity LTP followed tetanization.

(3) Theta Rhythm.

Theta rhythm was first described by Jung and Kommuller in 1938. It is an 

approximately sinusoidal, extracellularly recordable EEC potential of 5-9 Hz found in 

dentate gyrus and CAl fields of the hippocampus. It can be seen in a number of sub- 

primate species during species specific behaviours (Winson 1972). In the rat, it occurs 

during voluntary movements, e.g., exploration, as well as during REM sleep (rapid 

eye movement, or paradoxical sleep), observable as a synchronization in the EEC 

record assumed to reflect periods of dreaming in man. The source of this rhythmicity 

is the 'pacemaker* cells of the medial septum and the diagonal band of Broca (Petsche 

et al., 1962). Neurons in and near the medial nucleus of the septum emit rhythmic 

signals along a pathway to the hippocampus (Apostol & Greutzfeldt, 1974; Bragin & 

Vinogradora, 1983; Green & Ardini, 1954). The output of these septal cells is thought 

to be controlled by ascending inputs from the brainstem, which are themselves non­

rhythmic but are translated into rhythmic activity by neurons in the septal region 

(Petsche et al., 1965; Vertes, 1981). There appear to be two spatially separated theta 

rhythm dipoles in both pyramidal and granule cells, one on the cell body and the other 

on apical dendrites (Buzsaki et al., 1983). These appear to be septally driven, the 

former via a cholinergically driven inhibitory intemeuron, the latter via direct 

cholinergic innervation.

As outlined above, recent reports have indicated that LTP can be induced maximally 

by applying burst-patterned stimuli at a theta frequency. However, the association of 

theta rhythm with memory formation has a much longer history.

Early literature emphasized the correlation between theta rhythm and learning. It was
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observed in a number of learning tasks that theta activity is weak at the start of learning 

but becomes more pronounced (or higher in frequency) when the level of performance 

is improving most rapidly. Such a correlation has been found in tasks which involve 

classical conditioning (Buzsaki et al., 1979; 1981), appetitive conditioning (Adey et 

al., 1960; Bennett, 1970; Grastyan et al., 1959; 1966), active avoidance learning 

(Graliewicz, 1981; Lissak & Grastyan, 1960) and in discrimination tasks (Pickenhain 

& Klingberg, 1967). Morrell (1961) postulated that theta activity might be correlated 

with "the inscribing of an experience into neural structure" as EEG in the theta range 

(4-9Hz) had been associated in many experiments with the early stages of 

conditioning,

Landfield et al. (1972) examined theta rhythm in cortical EEG 30 min after one-trial 

footshock conditioning in rats. They found that the amount of theta seen posttraining 

was positively correlated with the amount of subsequent retention for the task. In a 

further experiment, one group of rats received electroconvulsive shock (ECS) lOsec 

after training. These rats showed a range of retention. The amount of retention was 

directly related to the amount of theta, as measured two days post-training: animals 

receiving ECS and exhibiting good recovery of theta exhibited good retention two 

days post-trial, whereas animals that had no ECS following footshock, but showed 

low theta two days post-trial, exhibited low retention scores. Such changes were also 

evident during a 30min post-training recording. In a later study rats with implanted 

electrodes were subjected to two avoidance tasks, one active and one passive, three 

weeks apart (Landfield, 1977), Following training, experimental animals received 20 

min of either low frequency (LF) or high frequency (HF) septal stimulation, which 

'drove' or 'blocked', respectively, the endogenous hippocampal theta rhythm (Gray, 

1972; Gray & Ball, 1970; Yokota & Fujimori, 1964). Animals receiving theta-driving 

LF stimulation exhibited improved retention for the active avoidance task in 

comparison to HF or implanted controls. In the passive avoidance task, LF animals 

performed significantly better than HF animals, although not significantly better than
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implanted controls (there was, however, a trend towards improvement). Perhaps the 

most essential result from this experiment was the improvement in performance, in 

both tasks, after post-trial theta stimulation (when compared to post-trial theta 

blocking). This post-trial stimulation neatly circumvents the criticisms of stimulation 

effects upon arousal, perception or motivation since the animals were stimulated after 

being removed from relevant environmental cues. Thus, it can be inferred that 

stimulation had some effect upon the processing of already acquired information, 

through an enhancement of storage and/or retrieval mechanisms. These studies are 

further supported by results showing that drugs that facilitate memory in a time- 

dependent manner, when given post-trial, increase slow wave theta (McGaugh & 

Dawson, 1971).

More recent experiments have shifted the emphasis of theta research toward 

correlations between theta and aspects of behaviour unrelated to learning. Important 

between-species differences in the behavioural correlates of theta activity have come to 

light In rats and other small-brained mammals, theta activity appears to be particularly 

associated with certain types of body movements (Kramis et al., 1975; Vanderwolf,

1969). The frequency of theta rhythm is lower for small movements from a fixed base 

than for whole-body movements such as locomotion. Immobile rats do not show theta 

activity except when paralyzed with curare (Macader et al., 1970), during REM sleep 

(Vanderwolf et al., 1978) or in the immobile moments before jumping (Vanderwolf, 

1975). Theta rhythm exhibited by rabbits is similar to that seen in rats, although 

rabbits will exhibit theta whilst immobile in response to sudden stimuli (Kramis et al., 

1975). Cats also show theta rhythm whilst immobile, in association with orienting 

responses and during locomotion (Brown, 1968; Coleman & Lindsley, 1975; 

Whishaw & Vanderwolf, 1973),

However, the correlations between theta and behaviour may not be as strong as recent
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publications have suggested. In some experiments, locomotor activity has been shown 

to occur in the absence of theta rhythm. Routtenberg (1968) was able to show this 

after placing rats in a novel environment. Once the rats had habituated to the 

environment very little theta activity could be recorded from them. Pickenhain and 

Klingberg (1967) observed that rats which received random electric shocks initially 

made chaotic escape attempts, unaccompanied by hippocampal theta rhythm. But 

when rats made a successful avoidance, theta rhythm could be seen in the EEG record. 

If a flashing light was presented to rats shortly before shock they quickly learned the 

association. The signal presented on each trial evoked theta rhythm before any 

avoidance response and in the absence of any other motor behaviour, suggesting that 

theta can occur during learning in the absence of locomotor or other whole-body 

movements. Although the correlations between various types of behaviour not directly 

related to learning and theta activity are well established. Miller (1989) has suggested 

that they should only be regarded as correlations and not explanations of theta activity. 

Because of this, examples of learning-related changes in theta rhythm can coexist with 

apparently contradictory examples of movement-related theta activity.

Animal Models of Learning and Memory

This section is aimed toward briefly describing some of the basic training procedures 

used in behavioural and cellular studies of learning and memory. Much of the research 

into the cellular analysis of learning has utilized both nonassociative and also 

associative learning paradigms. Nonassociative learning is a form of learning that is 

independent of paired events. Examples of this form of learning are habituation and 

sensitization. Associative learning, however, involves the temporal pairing of two 

events and underlies a wide range of behavioural modifications. Two of the most 

extensively studied of these modifications are classical and operant conditioning. 

Nonassociative learning is of some importance as its underlying cellular mechanisms 

may also form a pan of associative learning.
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The animal models outlined below utilize habituation/sensitization {Aplysia) and
0

classical conditioning (red nucleus of the cat and the rabbit nictitating membrane 

response). Habituation is possibly the simplest and most ubiquitous form of 

nonassociative learning. During habituation an animal learns that the consequences of 

a weak stimulus are neither noxious nor rewarding through a series of exposures to 

that stimulus. With repeated stimulation the animal learns to 'ignore' (at least 

behaviourally) the stimulus and exhibit progressively smaller reflex responses. It can 

be distinguished from fatigue as responsiveness can be rapidly restored by the 

presentation of a novel stimulus to the animal (dishabituation). Sensitization is also a 

form of nonassociative learning and refers to the enhancement of a behavioural 

response as a result of applying a novel stimulus to the animal. The stimulus may be 

of the same modality and applied at the same site as a test stimulus used to elicit the 

response, or it may be of a different modality, applied to a different locus. 

Dishabituation and sensitization are similar and may utilize identical underlying cellular 

mechanisms (Carew et al., 1979).

Classical conditioning is an example of associative learning in which the presentation 

of a reinforcing stimulus or unconditioned stimulus is made contingent upon that of a 

preceding, conditioned stimulus. An example of classical conditioning is that used by 

Pavlov (1927) to condition salivation in dogs. Before training began it was noticed 

that the presentation of meat powder, the unconditioned stimulus, reliably elicited 

salivation, the unconditioned response. During training meat powder was made 

contingent upon the conditioned stimulus, in this case a bell, via repeatedly pairing the 

sound of the bell with meat presentation. After training, presentation of the 

conditioned stimulus alone (ringing the bell) could elicit salivation (the conditioned 

response).
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(1) Aplysia Defensive Behaviour (Gill/Siphon withdrawal).

Aplysia californica is a marine opisthobranch mollusc that can grow to IKg in 

weight and up to Im in length. Its nervous system contains some 20,000 neurons, 

grouped into ten clusters or ganglia of roughly equal size. Not only are. the neurons 

few in number, they are also extremely large. Because of their large size (up to 1mm 

diameter) and their invariance from animal to animal, neurons can be given specific 

names e.g. R2 and L7. These characteristics make them ideal for electrophysiological, 

biochemical and morphological studies.

Aplysiùy like other molluscs, has a gill that is enclosed in a respiratory chamber called 

the mantle cavity. This cavity is covered by a protective sheet, the mantle shelf, that 

terminates in a fleshy spout, the siphon. When the mantle shelf or siphon is 

stimulated, the gill, mantle shelf and siphon all contract vigorously and withdraw into 

the mantle cavity. This is a defensive withdrawal behaviour which is sensitive to 

modification through experience. In Aplysia, the defensive reflex can be modified by 

three different forms of learning: habituation, sensitization and classical conditioning. 

Each of these three types of. learning exhibits both a short and a long-term phase of 

memory.

In habituation, a weak tactile stimulation of the Aplysia siphon will initially cause 

brisk withdrawal of the gill and siphon. However, during a session of 10 stimuli, the 

response gradually diminishes. The habituation from such training will last up to a 

few hours (Pinsker et al., 1970).

To define the specific locus of memory and the nature of the mechanism(s) of storage, 

the complete "wiring diagram" of the giU-withdrawal reflex was investigated. The 

circuit proved to be relatively simple. The gill is controlled by six motor ceUs, which 

receive information from the siphon via 24 sensory and numerous intemeurons. The
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constituent cells and connections appear to be invariant (Kandel, 1976). Skin 

stimulation will activate sensory neurons which connect to intemeurons. Intemeurons 

then synapse with the motor cells which connect directly to the muscle, causing 

contraction.

The locus for short-term habituation is the presynaptic connection of sensory neurons 

to the motor neurons and intemeurons (Castellucci et al., 1970). This identification 

allowed direct measurements to be made to investigate the electrophysiological 

correlates of short term habituation in these cells. The EPSPs of motor cells were 

recorded intraccllularly in response to intracellular stimulation of sensory cells. 

During a training session of 10 stimuli, repeated firing of the sensory neuron (at a rate 

that produces habituation in the intact animal) depressed the synaptic connection i.e. a 

reduction EPSP amplitude and rise-time (Castellucci & Kandel, 1974). This reduced 

EPSP was caused by a reduction in transmitter release. The amount of transntitter 

release largely depends upon the concentration of free calcium in the presynaptic 

terminal. Calcium flows across the presynaptic membrane upon depolarization from 

action potentials. This allows the fusion of synaptic vesicles with the presynaptic 

membrane and exocytosis of the neiurotransmitter. Klein and Kandel (1980) found 

that during habituation the calcium influx was depressed. The retention of short-term 

memory for habituation, therefore, appears to reside (at least in part) in the duration of 

inactivation of the presynaptic calcium current

Further research has indicated that both the locus and the mechanism underlying long­

term habituation are identical to those observed during short-term habituation i.e. a 

decrease in postsynaptic EPSP of motor neurons (Castellucci et al., 1978). However, 

there is a striking difference in the degree of reduction in synaptic depression. 

Whereas a transient depression in synaptic efficacy underlies short-term habituation, 

long-term habituation is accompanied by a more dramatic and prolonged alteration; a
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functional inactivation of the previously existing connection between sensory and 

motor neurons.

It is important to note at this point that alterations in neuronal- efficacy have been found 

at multiple sites within the nervous system of Aplysia following conditioning of the 

gill withdrawal reflex. Lukowiak (1986) discovered that changes in synaptic efficacy 

that occur at the sensory to motor neuron synapse are only present during the initial 

stages of conditioning. In further studies, Colebrook and Lukowiak (1988) discovered 

that changes in the synaptic efficacy between siphon sensory and gül motor neurons 

were neither necessary nor sufficient for changes in gill behaviour following 

conditioning of the gill-withdrawal response. This suggested that neural changes were 

also occurring at other sites within the Aplysia nervous system during conditioning. 

Colebrook and Lukowiak (1988) were able to show such a change in the ability of the 

motor neuron to induce gill withdrawal after unpaired (i.e., control) presentations of 

conditioned and unconditioned stimuli. Lukowiak and Colebrook (1987) further 

analyzed this change in gill withdrawal and were able to show that following 

conditioning, the ability of the gill motor neuron to elicit gill withdrawal was 

potentiated. These results indicate that important changes in the nervous system of 

Aplysia that underlie learning occur distal to the sensory-motor neuron synapse.

The changes in electrophysiology induced by long-term habituation appear to be 

accompanied by morphological changes. In animals exhibiting long-term habituation, 

sensory neurons have fewer and smaller active zones (active zones are thought to be 

specialized areas of presynaptic membrane responsible for the positioning and 

subsequent exocytosis of synaptic vesicles). The number of synaptic vesicles at each 

release site also appeared to be lower in long-term habituated animals when compared 

to control animals (Bailey & Chen, 1983).

The second form of non-associative learning displayed by Aplysia is sensitization. A
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single strong stimulus applied to the tail (or head) of the animal enhances the gill and 

siphon withdrawal reflexes produced by tactile stimulation of the siphon. This 

enhancement lasts for several hours. Repeated stimulation of the tail or head enhances 

the reflex from several days to weeks (Pinsker et al., 1973). Whereas habituation 

requires a reduction in response to a repeated stimulus, sensitization requires the 

enhancement of a behavioural response to a stimulus because the stimulus is 

potentially accompanied by (in this case) painful or dangerous consequences.

At the cellular level, sensitization involves an enhancement of synaptic transmission at 

the same site as habimation (the sensory neuron to motor neuron synapse). Thus, the 

same synaptic locus can be regulated in two opposing ways: it can be depressed by 

habituation and it can be facilitated by sensitization.

Several lines of evidence suggest that short-term facilitation of sensory neuron 

synapses is mediated by the activation of heterosynaptic pathways and the release of 

the facilitatory neurotransmitter 5HT onto the presynaptic terminals of the sensory 

neuron to enhance transmitter release. 5HT may also have an important role in the 

long-term enhancement of the response. Repeated applications of 5HT evoke a long 

lasting enhancement of sensorimotor synapses in a cell culture preparation through a 

long-term enhancement of the EPSP (Dale et al., 1988; Montarolo et al., 1986). This 

culture preparation also exhibits the structural changes in sensory neurons seen in the 

in vivo preparation of long-term sensitized animals (Bailey & Chen, 1983; Glanzman 

et al.; in press in Schacher et al., 1990). These structural changes were the opposite of 

those found after long-term habituation, the size and number of active zones was 

increased as were the number of synaptic vesicles. The number of synapses at the 

sensory neuron to L7 motor neuron connection is also increased following long term 

sensitization (Bailey & Chen, 1988). The morphological changes seen in vitro 

(Glanzman et al., 1990), in particular the increase in the number of synapses, depends
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upon the presence of the post synaptic motor cell, suggesting that the post synaptic 

motor cell has a role in these structural changes.

The use of the Aplysia cell culture preparation can be criticized as being too 

reductionist: do two neurons grown in culture really reflect the mechanisms of learning 

and memory seen in the intact animal? Colebrook and Lukowiak (1988) have shown 

that conditioning of the gill withdrawal reflex results in changes in synaptic efficacy at 

loci other than the sensory/motor neuron synapse. The isolated preparation is being 

promoted as a molecular model for behavioural learning. This may be premature as the 

preparation does not appear to include every modifiable synapse that underlies the 

response. Rather than describing the nervous system of Aplysia as 'simpler* than that 

of a vertebrate perhaps a more valid adjective is 'smaller'. It is this small size that 

ought to make the loci of change easier to locate in an invertebrate such as Aplysia 

when compared to the nervous system of a vertebrate. When and if this search is 

completed the major problem then becomes the relevance (if any) of the learning and 

memory mechanisms of Aplysia to those of vertebrates.

(2) Classical conditioning mediated by the red nucleus of the cat.

Conditioning mediated by the cat red nucleus (RN) is an example of a conditioning 

procedure that has been applied to reduced experimental preparations. As seen above 

in the case of Aplysia, these preparations can be criticized for being neural analogues 

and not behavioural models. However, the advantage of these 'reduced' preparations 

is that it has been possible to mimic the natural input to produce a preparation that is 

more amenable to electrophysiological analyses.

Conditioning of the forelimb flexion response was originally demonstrated by Smith 

(1970) who showed that pairing a tone (conditioned stimulus) with electric shock to 

the forelimb (unconditioned stimulus) caused the tone to produce limb flexion.
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Tsukahara et al. (1979; 1981) simplified this procedure by substituting the tone with 

direct stimulation of the fibres in the cerebral peduncle which project from the cortex to 

the RN (Figure 1.6). The unconditioned stimulus remained as electric shock to the 

forelimb. To produce conditioning, paired shocks (with an interval of 100ms) were 

delivered once every 30s for a total of 120 trials per day over a 10 day period. The 

effects of the conditioned stimulus were restricted to the corticorubrospinal pathway 

by sectioning the cerebral peduncle caudal to the RN. With paired conditioned- 

unconditioned stimulus presentations, initially ineffective conditioned stimuli gave rise 

to forelimb flexion that reached a plateau after about 7 days. The minimum current 

needed for 100 correct performances (100% performance current) decreased in parallel 

with the increase in performance (Tsukahara et al., 1981). Random conditioned 

stimulus or unconditioned stimulus presentations, backward pairing or presentation of 

conditioned stimulus or unconditioned stimulus alone failed to produce the same 

degree of conditioning. Therefore, the result of conditioned stimulus-unconditioned 

stimulus pairings was to enhance the efficacy of transmission from neurons of the 

corticofugal pathway to forearm flexor neurons. Supporting evidence for this 

facilitation of transmission has come from recording the activity of RN cells in the 

awake cat. Induction of conditioning increases the probability of firing of some RN 

cells to the conditioned stimulus.

The RN receives another excitatory input from the nucleus interpositus (IP) of the 

cerebellum. To test the possibility that the primary site of neuronal change following 

conditioning is below RN, the IP was stimulated. If the site of change was below 

RN, then the stimulation of the IP should produce a similar increase in performance 

with a concomitant decrease in the current required for 100% performance. However, 

no appreciable decrease of current intensity was observed with IP stimulation, even 

though the conditioned response had already been established by cerebral peduncle 

stimulation. The most likely sites of neuronal change, therefore, are the corticorubral 

synapses.
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Figure 1.6; Diagram to show the experimental design of the cat red

nucleus conditioning paradigm.
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Figure 1.6; Classical conditioning mediated by the red nucleus in the cat. (A) 

Experimental design. Conditioning stimuli (a train of five stimuli with 2 msec 

intervals, CS) are applied to the cerebral peduncle (CP), followed 100 msec 

later by an unconditioned stimulus (electric shock, US) to the skin of the 

forelimb. (B) Change in performance. Delivery of the CS alone initially produces 

no forelimb flexion (day 1). After 7 days of training (pairing CS-US 120 times 

each day) presentation of CS alone produces forelimb flexion (aquisiton phase). 

After establishing the conditioned response by CS-US pairing, backward 

pairing was used to extinguish the conditioned response (extinction phase). 

Modified from Tsukahara et al., 1981.
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To discover whether changes consequent upon conditioning were indeed occurring in 

RN cells, intracellular recording from RN cells were made. It was found that after 

establishment of the conditioned reflex, a new fast-rising component appeared in the 

corticorubral dendritic EPSPs in response to the conditioned stimulus.

In previous studies, Tsukahara and his colleagues had observed the development of 

similar fast-rising EPSPs following IP lesions and also after cross-innervation of the 

peripheral flexor and extensor nerves (Fuyito et al., 1982; Murakami et al., 1977; 

Tsukahara et al., 1975). The new fast EPSP was attributed to neuronal sprouting at 

corticorubral synapses. Tsukahara and Oda (1981) therefore proposed that the fast 

EPSP observed after classical conditioning is due to the formation of new synaptic 

connections (although the possibility of other mechanisms, e.g., increased 

neurotransmitter release, have yet to be investigated). These results may, therefore, 

represent the first description of a morphological change produced by a classical 

conditioning procedure.

(3) Rabbit nictitating membrane response.

The nictitating membrane response (NMR) has been extensively examined at both 

behavioural and cellular levels, providing an excellent experimental preparation for the 

investigation of the cellular mechanisms of associative learning.

The nictitating membrane of the rabbit consists of a curved piece of tissue that can be 

drawn across the cornea. Weak air puffs delivered to the cornea reliably elicit an 

extension of the rtictitating membrane, presumably in an effort to protect the sensitive 

cornea from a potentially harmful stimulus.

Gormezano et al. (1962) discovered that the NMR could be classically conditioned. 

The unconditioned stimulus was a 100ms air puff to the cornea, the unconditioned
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response being extension of the nictitating membrane. The conditioning stimulus was 

an 800Hz tone presented for 600 ms. The interval between presentations of 

conditioned and unconditioned stimuli was 500 ms. Seventy conditioned- 

unconditioned stimulus pairings were presented each day for 8 days. With repeated 

pairings the conditioned stimulus produced extension of the nictitating membrane.

Initial attempts to define the neural systems involved in NMR conditioning 

investigated the activity of the motor system controlling the response. Recordings of 

neural activity from one of the critical motor nuclei for the response (the Adbucens) 

simultaneously with measurement of NM extension, or eyelid closure, showed that the 

pattern of increased neural unit response preceded and closely paralleled the 

amplitude-time course of behavioural NM response (Cegarske et al., 1976)

The search then turned to the neuronal system(s) responsible for generation of the 

NMR (Figure 1.7). A series of lesioning experiments was undertaken to test the 

effects of removal of certain brain areas upon the acquisition of the response. In the 

standard conditioning paradigm animals with total lesions of the cerebral neocortex or 

hippocampus were still able to leam (Oakley & Russell, 1972; Solomon & Moore, 

1975), as were animals following removal of all brain tissue above the level of the 

thalamus (Norman et al., 1977). That a decerebrate animal could leam the eyelid 

response does not necessarily mean that the tissue above the thalamus is not involved 

in the learning of or memory for the response, only that the remaining tissue is capable 

of supporting learning. It seems vçty likely that memory trace systems develop in 

higher brain regions during classical conditioning. The hippocampus has been 

strongly implicated in the memory trace system for NMR conditioning (Berger & 

Thompson, 1978). However, the hippocampus is not required for learning or memory 

of the conditioned response.

As a first step in the identification of the neural system(s) involved in learning and
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Fig 1.7; Diagram to show the hypothetical memory trace circuit for
the rabbit nictitating membrane conditioning paradigm.
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Figure 1.7; Classical conditioning mediated by rabbit nictitating membrane. The 

unconditioned stimulus (comeal airpuff, US) consists of somatosensory 

projections to the dorsal accessory portion of the inferior olive (DAO) and its 

climbing fibre projections to the cerebellum. The tone conditioned stimulus (CS) 

pathway consists of an auditory projection to the pontine nuclei (Pontine N.) and 

their mossy fibre projections to the cerebellum. The efferent (eyelid closure) 

conditioned response (CR) pathway from the interpositus nuclei (Int) of the 

cerebellum to the red nucleus (Red N.) and via the descending rubral pathway is 

thought to ultimately act on motor neurons. The Red N. may also exert inhibitory 

control over the transmission of somatic sensory information about the US to the 

inferior olive (10) to 'dampen' US activation of climbing fibres. Other 

abbreviations: NV(sp), spinal 5th cranial nucleus; NVI & NVn, 6th & 7th cranial 

nuclei; V Coch N, ventral cochlear nucleus. Taken from Thompson, 1986.
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memory for the NMR, the nuclei involved with transmission of auditory information 

concerning the conditioned stimulus were examined. Using multiple and single-cell 

recording from the cochlear nucleus, central nucleus of the inferior colliculus and the 

ventral division of the medial geniculate body, no evidence was found to suggest that 

training induced changes in neuronal activity occurred in the conditioned stimulus 

sensory channel (Kittner & Thompson, 1982).

However, changes induced by NMR training were found to occur in the 

hippocampus. Multiple unit recordings from the hippocampus during NM 

conditioning revealed a profound training-induced alteration in neural activity (Berger 

& Thompson, 1978). During paired conditioned-unconditioned stimulus conditioning 

trials the neuronal activity in the CAl pyramidal layer rapidly developed an excitatory 

response which increased in amplitude over conditioning and which formed a 

’temporal model’ of the amplitude and time-course of the behavioural NM response. 

The initial response from the CAl region was to the unconditioned stimulus, but the 

response gradually shifted over successive trials to the conditioned stimulus at the time 

when conditioned NM responses occurred to the; conditioned stimulus. The neuronal 

response preceded the NM response by about 40ms and did not develop in control 

animals receiving unpaired conditioned-unconditioned stimulus presentations. The 

neuronal response could also predict the occurrence of the conditioned response over a 

variety of conditions. For example, changes in procedure which produced no 

behavioural conditioned responses (e.g., a decrease in the conditioned-unconditioned 

stimulus interval) produced no associative hippocampal neuronal response (Thompson 

et al., 1980). Intraperitoneal morphine injections, which abolished the occurrence of 

behavioural conditioned responses in trained animals, also abolished the conditioned 

neuronal response, whilst leaving the unconditioned behavioural and neuronal 

responses unaffected (Mauk et al., 1982).
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As mentioned previously, the hippocampus is unnecessary for the learning of retention 

of the conditioned response. However, the hippocampus does appear to be important 

if the conditioned-unconditioned stimulus association is made ’more difficult' for the 

animal, i.e., if the conditioned-uneonditioncd stimulus interval is increased to 0.5s. 

Animals with hippocampal lesions appeared severely deficient in this form of 

association when compared to control animals (Solomon et al., 1983). This procedure 

required the animal to retain the memory of the conditioned stimulus during the 

interval between conditioned stimulus offset and unconditioned stimulus onset and 

also required more conditioning trials for normal, non-lesioned animals than in the 

standard task where there was no interval between offset and onset. It appears, 

therefore, that whilst the hippocampus is unnecessary for acquisition of a simple deky 

Pavlovian procedure, it becomes necessary for optimal acquisition as the training 

situation places increasing demands upon the animal.

Recent evidence has suggested that long-lasting neuronal plasticity is established in the 

hippocampus with NMR conditioning (Mamounas et al., 1984; Weisz et al., 1984). 

Although the cerebellum appears to be the essential site of memory storage for NMR 

conditioning, a second 'memory trace', temporally associated with the changes in 

cerebellum, appears in the CAl region of the hippocampus. This hippocampal 

neuronal response appears to develop within the hippocampus itself (Berger et al., 

1980), as recordings made from the entorhinal cortex and medial septum, the two 

regions from which the hippocampus receives most of its afferent innervation, show 

no long-lasting changes over the course of conditioning. The response also shows a 

decrease of firing frequency in correlation with behavioural extinction during the 

unconditioned stimulus period, but in advance of behavioural extinction during the 

conditioned stimulus period (Berger & Thompson, 1978).

During the course of training, the dentate population spike shows a marked and 

persistent increase in amplitude in response to test pulses delivered to the perforant
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path during inter-trial intervals. There is also a translocation of PKC from cytosol to 

membrane of CAl cells after conditioning (Bank et al., 1988). This translocation 

appears to be largely in the dendritic regions of the cells. Once PKC has been 

translocated to the plasma membrane it becomes activated in the presence of 

diacylglycerol and low calcium concentration (Berridge, 1984). The activation of PKC 

is thought to alter the excitability of CAl pyramidal cells by reducing the 

afterhyperpolarizing potential and enhancing the summation of postsynaptic potentials, 

possibly via the reduction of a calcium-dependent potassium current (Bank et al., 

1989). This is consistent with the possibility that a long-term potentiation-like 

mechanism may underlie the training-induced within-trial increase in pyramidal 

neuronal conditioned response as a similar translocation of PKC occurs after the 

induction of LTP in the same area (Berger, 1983; Bank et al., 1988). It can be inferred 

from this that 'higher-order memory traces' are formed in the hippocampus during 

learning, but that these traces are neither necessary nor sufficient for the acquisition of 

the basic association between tone conditioned stimulus and the precisely timed, 

adaptive behavioural response. The role of the hippocampus may be to modulate the 

acquisition and expression of conditioned responses (Bank et al., 1989).

Total deficits in NMR conditioning were found after lesions of the cerebellum 

(McCormick et al., 1982). Ablation of the lateral cerebellum ipsilateral to the trained 

NM completely and permanently abolished the conditioned response in a previously 

trained animal, whilst producing no effect in the unconditioned response. Subsequent 

training using the untrained NM contralateral to the lesion showed a conditioned 

response that developed rapidly. Similar effects can be produced if the lesions are 

localized to the dentate and interpositus nuclei (and surrounding fibres) or the superior 

cerebellar peduncle, the major efferent cerebellar pathway (Clark et al., 1982).

The effects of lesions of the cerebellum are consistent with recorded multiple unit
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activity from the interpositus and cerebellar dentate nuclei following training.. Both the 

conditioned stimulus and the unconditioned stimulus produce evoked responses, but a 

temporal model of the unconditioned response, as seen from hippocampal recordings, 

was not evident in cerebellar recordings. What was found in cerebellum was an 

emergence of a temporal neuronal model of the conditioned response, which preceded 

the conditioned response by about 50ms. Hence, in contrast to the hippocampus, the 

cerebellar unit activity from discrete nuclei was restricted to a model of the conditioned 

response and preceded both the behavioural response and the hippocampal neuronal 

response, suggesting that the hippocampal response may be dependent upon the 

development of the cerebellar response. Evidence to suggest this hippocampal 

dependence upon the cerebellum has come from demonstrations that unilateral lesions 

of the dentate and lateral interpositus nuclei abolish not only the ipsilateral conditioned 

NM response to the conditioned stimulus, but also the ipsilateral hippocampal 

neuronal response to the conditioned stimulus (Clark et al., 1982).

Thompson and Donegan (1986) produced a hypothetical model to show how the 

association for NMR conditioning might be acquired. An implicit assumption of their 

model is that the site of the memory trace resides in the cerebellum at the principle 

neurons (Purkinje cells) and/or their associated intemeurons and/or in the interpositus 

nucleus. A conditioned stimulus is assumed to activate a subset of cerebellar granule 

cells which then weakly activate all principle cells via their parallel fibres. The 

unconditioned stimulus pathway is assumed to be the climbing fibres from the dorsal 

accessory olive, projecting via the inferior cerebellar peduncle. Any unconditioned 

stimulus is assumed to only activate a limited number of principle cells coding the 

motor program for the defensive response that is specific for the unconditioned 

stimulus (e.g., eyelid closure, leg flexion). When parallel fik% activation occurs just 

before climbing fibre activation, the connections of the parallel fibres to the principle 

cells activated by the particular unconditioned stimulus are strengthened. This may
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involve processes similar to those of LTD and/or LTP, both of which have been 

shown in the cerebellum. LTD-like processes may serve to 'disconnect wrong wiring' 

in order to eliminate erroneous performance, as has been proposed for learning of the 

vestibular ocular reflex (Ito, 1984). The strengthening of synapses may be produced 

by LTP-like processes.

Each aspect and assumption of this hypothesis is testable. With regard to the 

unconditioned stimulus pathway, lesions of the appropriate region of the dorsal 

accessory olive prevent acquisition and produce normal extinction of the behavioural 

conditioned response with continued paired training in previously trained animals 

(McCormick et al., 1985). Electrical microstimulation of this same region will elicit 

the appropriate behavioural response and serves as an effective unconditioned stimulus 

for the normal learning of conditioned stimuli; the exact behavioural response elicited 

by dorsal accessory olive stimulation is learned as a normal conditioned response to a 

conditioned stimulus (Mauk et al., 1986). Lesion and microstimulation data suggest 

that the essential conditioned stimulus pathway includes the above mossy fibre 

projections to thé cerebellum via the pontine nuclei. Sufficiently large lesions of the 

medial cerebellar peduncle prevent acquisition and immediately abolish retention of the 

eyelid conditioned response to all modalités of conditioned stimulus (Soloman et al., 

1986), whereas lesions in the pontine nuclear region can selectively abolish the eyelid 

conditioned response to an acoustic conditioned stimulus (Steinmetz et al., 1985). 

Electrical stimulation of the mossy fibre system serves as a very effective conditioned 

stimulus producing rapid learning (Steinmetz et al., 1985).

Finally, appropriate forward pairing of mossy fibre stimulation (conditioned stimulus) 

with climbing fibre stimulation (unconditioned stimulus) yields normal behavioural 

learning of the response elicited by climbing fibre stimulation (Thompson, 1986). 

Lesion of the interpositus abolished both the conditioned response and the 

unconditioned response in this preparation. The results from all of these experiments
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promote a strong case for localization of the essential memory traces to the cerebellum, 

especially in the ’reduced’ preparation, with mossy fibre conditioned stimulus and 

climbing fibre unconditioned stimulus.

Concluding remarks.

In conclusion, the electrophysiological contribution to the study of learning and 

memoty can be broken down into two areas: the electrophysiological changes that 

underlie models of memory formation, such as LTP ('how the world should be') and 

those electrophysiological changes that underlie animal models of memory formation 

('how the world is'). The extent to which electrophysiological models can adequately 

explain the observed neurophysiological changes seen with learning is still far firom 

satisfactory. However, the evidence available to support models such as LTP as the 

fundamental mechanism(s) of learning and memory is increasing in weight

The following Chapter describes the background and methods used to record 

spontaneous multi-unit activity from the forebrain of the day-old chick following 

passive avoidance training. The results of the associated Experiments will be 

discussed with reference to both previous experimental work using the same paradigm 

and also to putative electrophysiological models of memory formation.
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CHAPTER 2. Background and Methods for the Recording of 
Multi-Unit Activity from the Forebrain of the day-old Chick 

Following Training on a Passive Avoidance Task.

Introduction.

Day-old chicks {Gallus domesticus) are excellent subjects for behavioural 

experiments, mainly because they are a precocial species, i.e. they are capable of a 

wide variety of behaviours almost immediately posthatch. For some days after 

hatching chicks show a predisposition for pecking small, visually conspicuous objects 

such as chrome beads or faecal pellets. This behaviour allows the animal to test its 

environment, especially for the presence of food and drink, as the difference between 

food and non food items is obviously of prime importance to the animal at this early 

post-hatch stage. This behaviour has been introduced into learning and memory 

research in the form of a one-trial passive avoidance task (Lee-Teng & Sherman, 

1966; Gherkin, 1969). If a chrome bead covered with a bitter tasting substance, such 

as methyl anthranüate, is offered to chicks, they will peck and show a characteristic 

disgust response. The chick will consequently avoid similar dry beads. Birds that have 

pecked an identical but water coated bead do not show disgust responses and 

consequently continue to peck upon re-presentation of the bead.

The major attraction of the passive avoidance task is that it provides a paradigm free 

from the confounding affects of rehearsal and reinforcement, which are intrinsic 

characteristics of multiple-trial and long-term exposure tasks. The appropriate learned 

response is an adaptive behaviour and does not require the acquisition of any unnatural 

movements. Also, since the time of training is discrete, requiring just one trial, the 

paradigm has proved most useful for studying the biological changes following 

learning. In particular, time courses for specific changes can be accurately constructed
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relative to the time of training. This is obviously not the case for the majority of 

learning tasks in which multiple trials are used. The chick has also proved an excellent 

model system for biochemical and pharmacological studies of learning and memory: 

the chick has only a poorly functioning blood-brain barrier, allowing peripherally 

injected precursors or pharmacological agents to rapidly diffuse into the brain. Another 

advantage to using the chick as a model is that the skull of the young chick is very 

thin. This means that surgical procedures prior to either electrophysiological recording 

or the placement of lesions are very simple and it also allows the easy placement of 

localized intracerebral injections. However, as with many model systems, the passive 

avoidance task does have disadvantages. Although the task is advantageous because it 

involves discrete learning, this can be a problem. By definition, chicks trained to avoid 

the methylanthranilate coated bead effectively 'do nothing' at test, that is, if they 

remember pecking the methylanthranilate coated bead, they should avoid pecking it 

subsequently at test. Therefore, it is difficult to distinguish between those chicks that 

remember and those that, for whatever reason, don't 'feel like pecking'. Also, chicks 

tend to perform with a high level of retention (about 80%), that is, they have 

effectively reached a ceiling of performance. This precludes the use of agents which 

have been shown to enhance memory in more 'traditional' learning and memory tasks.

The training of day-old chicks on a passive avoidance task has become well 

established as an animal model of learning and memory. Many experiments have been 

designed to reveal both the loci and the nature of changes within the chick brain that 

are crucial to the learning and memory of the task. Initial biochemical investigations 

using this model focussed upon the forebrain of the chick, dissecting it rather crudely 

into two fractions: forebrain roof and forebrain base. Müeusnic et al. (1980) trained 

chicks on a passive avoidance task to produce two groups of chicks: 

methylanthranilate-trained chicks (M chicks) and water-trained chicks (W chicks). 

Mileusnic et al. (1980) were then able to demonstrate a persistent increase in the 

incorporation of radioactively labelled leucine into soluble protein of the forebrain roof
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of M, compared to W, chicks for up to 24hr posttraining. Such an increase was also 

seen in tissue slices cut from the forebrain roof of M chicks incubated with labelled 

leucine, when compared to similarly treated slices from W chicks (Schliebs et al., 

1985).

Increased binding of receptor ligands in chick forebrain following passive avoidance 

training has also been reported. Muscarinic cholinergic receptor binding, using the 

ligand QNB (quinuclinidinyl benzilate), is significantly increased following passive 

avoidance training by 22% in the forebrain roof of day-old M-birds (Rose et al., 

1980). This increase was present at 30min posttraining but was not evident at either 

lOmin or 3hr after training. Untrained birds that merely tasted methylanthranilate 

showed no such increased QNB binding, suggesting that increased binding was not 

simply a concomitant of the aversive taste of methylanthranilate. Bilateral intracerebral 

injection of either ouabain or cycloheximide, substances that render chicks amnesic, is 

also correlated with an absence of QNB binding, suggesting that increased binding is a 

correlate of memory formation.

Changes in the phosphorylation of specific proteins have also been observed in the 

forebrain of day-old chicks following passive avoidance training (Ali et al., 1988a). In 

this experiment chicks were trained as normal, producing M and W groups. They 

were then tested at either 10,30 or 360min posttraining. Following testing their brains 

were removed and synaptic plasma membrane filetions were prepared from whole 

forebrain samples. The phosphorylation patterns of synaptic plasma membrane 

proteins showed a significant decrease in phosphorylation of a 52KDa band in M 

trained chicks, as compared to W controls. This decrease was only significant at the 

30min posttest time point, suggesting that there were changes in protein 

phosphorylation at the synapse soon after training. In a further experiinent protein 

kinases were also implicated in memory for passive avoidance training (Ali et al..
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1988a). In this study day-old chicks received bilateral intracranial injections of the 

protein kinase inhibitors polymixin B or mellitin into the forebrain 5min before 

training. Both of these treatments were amnestic. Injections of mellitin 5min 

posttraining were also amnestic, suggesting that the injection of mellitin was not 

simply interfering with the acquisition of the task. However, injection of mellitin Ihr 

posttraining was without effect. The authors suggested that this indicated that the 

effect of mellitin was to directly interfere with processes underlying long-term memory 

formation, rather than with those of recall or recognition (Ali et al., 1988b). This 

implicated protein kinases in the formation of long term as opposed to short term 

memory.

Another biochemical change has been seen in the forebrain of M chicks following 

passive avoidance training: an increase in the synthesis of glycoproteins. Rose and 

’ Harding (1984) trained day-old chicks on a passive avoidance task and then measured 

the incorporation of radioactively labelled fucose into homogenates of whole forebrain 

base or anterior forebrain roof. This analysis showed that there was an increased 

uptake of fucose following passive avoidance training in day-old M chicks compared 

to water controls. This increased uptake was abolished when M chicks were rendered 

amnesic through the use of immediate posttraining subconvulsive electroshock. If the 

shock was delayed until lOmin posttraining no amnesia developed. M chicks that 

received this delayed shock treatment exhibited increased fucose incorporation. This 

suggested that increased fucose incorporation was associated with memory for the 

task.

Chicks can also be rendered amnesic if injected with 2-Deoxy-galactose (2-D-gal), a 

substance that interferes with the fucosylation of glycoproteins. Bilateral injections of 

2-D-gal into the forebrain of day-old chicks at any time between 3.5hr before and 

3.5hr after training on a passive avoidance task renders M chicks amnesic at a 24hr
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test (Rose & Jerk, 1987). In a later experiment the amnestic action of 2-D-gal was 

investigated at times later than 3.5hr posttraining (Zamani & Rose, 1990). In this, 

experiment it was shown that M chicks show significant amnesia at a 24hr test if 

injections of 2-D-gal are given 6hr posttraining. This suggests that there are (at least) 

two distinct periods during which the fiicosylation of glycoprotein is necessary for the 

retention of passive avoidance training. From these three experiments it can be 

proposed that: (1) memory for the task is associated with an incorporation of fucose 

into glycoprotein (Rose & Harding, 1984) and (2) that this increased fucosylation is 

required for memory formation, as its inhibition produces amnesia (Rose & Jork, 

1987; Zamani & Rose, 1990).

Because the experiments outlined above have examined very large samples of 

forebrain, each containing many different brain regions, recent experiments have 

attempted to define more precisely the forebrain regions involved in learning and long­

term retention of passive avoidance training. Kossut and Rose (1984) were able to 

show that anatomically distinct structures within the brain of the day-old chick exhibit 

increased metabolic activity following passive avoidance training. In this 

autoradiographic study, 2-deoxyglucose (2-DG) was injected immediately before 

training. The relative amount of 2-DG uptake into various regions of the brain was 

taken as an index of both metabolism and blood fiow/02 usage. The basis for the use 

of the 2-DG technique is as follows. It can be assumed that the immediate 

consequence of an experiential event is an increased neuronal firing rate within the 

populadon(s) of cells involved with the perception and central processing of the 

incoming information concerned with that event. This increased neuronal activity 

raises the metabolic rate of the cells involved. As glucose is the only source of 

metabolic energy utilized by neurons, increases in neuronal firing should, therefore, 

increase glucose uptake. Sokoloff et al. (1977) showed that neurons take up 2-DG in 

an identical manner to that of normal glucose, However, once present intracellularly, 

2-DG is converted to 2-deoxyglucose-6-phosphate, which cannot be further
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metabolized. The level of neuronal activity can be 'assayed' by measuring the 

accumulation of labelled ^^C-2-DG-6-phosphate, using serial autoradiography of thin 

brain sections following the injection of labelled 2-DG.

As mentioned earlier, the chicken has only a weakly established blood-brain barrier 

which allows substances injected peripherally to have central effects. Kossut and Rose 

(1984) gave chicks pericardial injections of labelled 2-DG immediately after 

pretraining. Half the chicks were then trained on a water coated bead (W chicks), the 

other half on a bead coated with methylanthranilate (M chicks). The birds were then 

killed 30 min posttraining, their brains removed and prepared for autoradiograms. 

Densitometric analyses of these autoradiograms revealed that only 3 of 13 identified 

structures exhibited significantly enhanced labelling when M birds were compared to 

W birds (see Figure 2.1). These three regions were: the intermediate medial 

hyperstriatum ventrale (IMHV); the lobus parolfactoiius (LPO); and the paleostriatum 

augmentatum (PA). This result suggested that these three regions were involved in the 

acquisition of passive avoidance training. However, because the design of the 

experiment used a pretraining injection of 2-DG, the observed differences in 2-DG 

accumulation reflected not only the metabolic sequelae of the 30min posttraining 

consolidation period but also those of the training experience itself, including the 

tasting of methylanthranilate and the motor behaviour of the associated disgust 

response.

In an attempt to 'dissect' the effects of training from those of consolidation a second 

experiment was undertaken (Rose & Csillag, 1985). In this experiment day-old chicks 

were injected with 2-DG at one of three times: either 5min before training or 10 or 

30min after training. Birds were then killed 30 min postinjection. In contrast to the 

earlier experiment of Kossut and Rose (1984), the three areas previously shown to 

exhibit enhanced labelling were on this occasion dissected out individually using a
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micropunch. The uptake of label was then measured as specific radioactivity of either 

left or right IMHV or LPO and standardized to the mean PA specific radioactivity, as 

no differences were found in the PA either between groups (M vs W) or hemispheres. 

Analysis of samples of the LPO indicated that only the LPO of the left hemisphere 

exhibited an increased uptake of label and then only when injections of 2-DG were 

given either 5min pre-training or lOmin post-training. No significant increase was 

seen after a 30min post-training injection. Significant increases in 2-DG uptake into 

IMHV were also seen in the left hemisphere, in this instance at all injection times, with 

a significantly increased uptake into the right hemisphere only after the lOmin injection 

- increased uptake into the right IMHV was not evident following the 30min injection.

The localized biochemical changes observed in chicks following passive avoidance 

training formed the basis for subsequent ultrastructural investigations. These 

investigations were carried out at both the light and electron microscope (EM) level.

Stewart et al. (1984) examined under EM the postsynaptic thickening of IMHV 

neurons from day-old chicks following passive avoidance training. A hemispheric

asymmetry in the length of the postsynaptic thickening was found in W birds (12%
/

greater in the left IMHV). This asymmetry was absent in M birds. The left IMHV has 

also been shown to exhibit other morphological changes in day-old M-chicks 

examined 25hr after training. These changes include: (a) a 23% increase in the number 

of synapses per unit volume of neuropil, compared to right IMHV; (b) a 61% increase 

in the number of vesicles per synapse in left IMHV compared to right IMHV; and (c) a 

72% higher vesicle count in left IMHV. No changes in PA morphological 

characteristics have been reported following passive avoidance training.

In a second EM study the LPO of chicks was studied 24hr following passive 

avoidance training (Stewart et al., 1987). A significant increase of up to 59% in the
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Fig 2.1; Diagram to show the relative positions of IMHV and 
LPO in the chick forebrain.
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Schematic drawings of coronal slices of day-old chick brains prepared using a 
brain mould to show the locations of IMHV and LPO. The position and angle 
of cuts is shown in the sagittal scheme (stereotaxic coordinates after 
Youngren and Phillips 1978). The first slice represented by face A (taken at 
level a) was used by Rose and Csillag (1985) for dissecting LPO, and the 
second one, represented by face B (taken at level b) was used by them for 
dissecting PA and IMHV. The dissected regions are indicated by stippling. 
The nomenclature of frontal sections was based on the atlas by Karten and 
Hodos (1967): A=archistriatum, BO=bulbus olfactorius, CA=commissura 
anterior, CP=commissura posterior, CO=chiasma opticum, E=ectostriatum, 
FPL=fasciculus
Taken from Rose and Csillag (1985).
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numerical density of synapses was observed in the LPO of both hemispheres in M- 

chicks compared to W-chicks. The density of both synaptic vesicles and synaptic 

vesicles per presynaptic bouton were 50% greater in the left LPO of M chicks 

compared to those of W chicks.

These changes observed at the EM level have been accompanied by changes seen at 

the light microscope level. Day-old M chicks examined 25hr posttraining had 

significantly increased spine densities in the IMHV of both hemispheres, with an 

asymmetry favouring the left hemisphere (Patel & Stewart, 1988). Other changes seen 

in this study were an increase in spine head diameter and a decrease in spine shaft 

length. In a follow-up study (Patel et al., 1988) day-old M chicks that received 

subconvulsive electroshock 5min posttraining and exhibited retention had a greater 

spine density at 25hr posttest than those that were amnesic from the shock. This 

second experiment directly implicated the spine increase in memory formation for the 

task. The other two spine parameters found to change in the previous study, spine 

head diameter and spine neck length, were no longer significantly different, 

suggesting that they may be associated with parts of the training experience that were 

non-specific to memory formation, e.g., the taste of methylanthramlate.

Recent studies involving the use of restricted electrolytic lesions of the IMHV and 

LPO have also implicated these regions in the acquisition and consolidation of passive 

avoidance training. Day-old chicks given bilateral lesions of the IMHV at 15 to 20hr 

pretraining on a passive avoidance task were amnesic for the task when tested 3hr 

posttraining (Davies et al, 1988; Patterson et al, 1990a). This indicates that the IMHV 

has an important role in the learning and/or retention of memory for passive avoidance 

training. In further studies to examine any lateralization of the effect, the left or right 

IMHV of day-old chicks was lesioned 24hr pretraining (Patterson et al., 1990a).When 

tested 3hr posttraining, chicks that had received a pretraining lesion to the left IMHV
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were amnesic. Chicks with lesions to the right IMHV showed good recall. This 

suggests that the left IMHV (and not the right) is a necessary structure for the 

acquisition and/or retention of the task. Posttraining lesions of the IMHV were then 

undertaken to discover whether the IMHV does indeed have a role in memory storage. 

The results of this study demonstrated that the IMHV, although necessary for 

acquisition, is unnecessary for long term memory storage of memory for passive 

avoidance training. This was shown by placing bilateral IMHV lesions either 1 or 6hr 

posttraining with a test 24hr after lesioning (Patterson et al., 1990a). Lesions placed at 

either posttraining interval were not amnestic. It appears, therefore, that although 

neither hemisphere of the IMHV is necessary for long-term memory storage of the 

avoidance response the left IMHV is necessary for its acquisition. This suggests that 

areas other than the IMHV may maintain the memory trace following training.

In an attempt to define areas involved in long term storage of the task, lesion studies 

were extended to the LPO, the other area that 'lit up' in the 2-DG study. Day-old 

chicks given bilateral LPO lesions 24hr pretraining were not amnesic (Gilbert et al., in 

press). However, bilateral LPO lesions placed Ihr posttraining produced significant 

amnesia when chicks were tested 24hr after training. These experiments indicate that 

the LPO is not necessary for the acquisition of memory for the task, but is required for 

longer-term stages of memory formation/storage.

Gibbs and Ng (1977) have proposed a three stage model of memory formation for 

passive avoidance training in day-old chicks. This model was based upon the temporal 

characteristics of amnesia produced by the intracerebral injection of different classes of 

drugs. Formation of short-term memory (STM) was disrupted by depolarizing agents 

such as lithium or potassium chloride or glutamate. The second stage, intermediate 

term memory (TTM) was disrupted by sodium/potassium ATPase inhibitors such as 

ouabain and ethacrynic acid. Long-term memory (LTM) was inhibited by the injection
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of protein synthesis inhibitors such as anisomyçin and cycloheximide. These stages of 

memory formation were sequentially dependent. Patterson et al. (1986; 1988) 

performed similar experiments to those of Gibbs and Ng (1977) and found similar 

results, supporting a three-phase model of memory formation. In addition, amnestic 

drugs were found to have lateralized effects. The left IMHV was susceptible to 

amnesia, if injections were placed in the right IMHV no amnesia developed. Chicks 

were amnesic if localized injections were placed in the right lateral neostriatum 

(Patterson et al., 1986; 1988). Injections placed in the left neostriatum were without 

effect. The amnesia that developed from injections to right neostriatum followed a 

similar time course to that produced in the left IMHV. From this it appears that the 

right neostriatum is also involved in memory storage for passive avoidance training 

and that this memory follows in a three-stage fashion.

Both the neurophysiological and animal models of learning presented in Chapter 1 

demonstrate that behavioural learning requires changes in neuronal connectivity. In 

most cases these changes in connectivity were first observed at the 

electrophysiological level. Training a day-old chick on a passive avoidance task has 

been shown to produce memory-specific biochemical and morphological changes in 

identified regions of forebrain. If these alterations underlie the neural representation of 

memory for passive avoidance training, then they should be associated with and 

possibly produced by changes in the electrical activity of neurons in the identified loci 

of change. Until quite recently there were no investigations of the neurophysiological 

conrelates of training day-old chicks on a passive avoidance task. The initial 

investigation, therefore, sought to record electrophysiological activity from as many 

different forebrain regions of the day-old chick as possible after training on the passive 

avoidance task (Mason & Rose, 1987, The sampled forebrain regions were as 

follows: the hyperstriatum accessorium; the hyperstriatum dorsale/intercalatum 

supremum; the IMHV; the neostriatum; and the medial PA. Two of the regions, the 

IMHV and PA, had been shown previously (using the 2-DG technique) to exhibit
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increased neuronal activity following training on the task (Kossut & Rose, 1984). 

Multi-unit activity was recorded from both M and W birds at all of the above sites over 

1-13hr posttest. The sites were sampled from each hemisphere during a vertical 

electrode penetration from the surface of the brain, 1mm lateral to the midline. Each 

recording site was 200|im apart and 2min of recording was taken at each point. The 

multi-unit activity that was recorded could be broken down into four major 

components (Mason & Rose, 1987): tonic, small amplitude spikes (100-175|iV peak- 

to-peak); occasional large amplitude spikes (200-450p,V peak-to-peak); 'bursting' 

episodes, 15-20ms in duration, consisting of high amplitude, high frequency spikes 

(200-450p,V peak-to-peak, 400-450Hz); and noise (36p,V peak-to-peak). When the 

first three of these components were expressed as mean firing rate per region sampled, 

significant differences could be seen between treatment groups. M birds exhibited a 

significantly higher mean firing rate, when compared to W birds, in three structures of 

the right hemisphere: the hyperstriatum accessorium; the IMHV; and the medial PA. 

No significant differences in mean firing rgte were observed between groups for left 

hemisphCTC structures. However, the most remarkable between-group difference was 

a massive increase in the occurrence of the second of the four multi-unit components 

listed above: burst-firing episodes. The IMHV of both hemispheres of M birds 

showed a significant increase in burst-firing episodes when compared to W birds. 

Although bursting was observed in all of the forebrain structures examined, this was 

the only structure to exhibit a significant difference in bursting.

Previous experiments to examine training-induced biological changes in the day-old 

chick have attempted to directly associate these changes with memory formation by the 

use of amnestic treatments, e.g., subconvulsive electroshock. Such an experimental 

design was used in the follow-up experiment to Mason and Rose (1987) in order to 

distinguish which neuronal firing pattern (if any) was directly associated with memory 

for the task. In this follow-up experiment Mason and Rose (1988) recorded multi-unit
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activity from the IMHV of M-trained day-old chicks in an identical manner to that 

reported in their previous paper. However, in this instance chicks were given 

subconvulsive electroshock that was delivered either immediately after training 

(approximately lOsec posttraining) or delayed until lOmin posttraining. This 

procedure produced two groups of M-trained chicks: a group that received immediate 

electroshock and was amnesic and a second group that received delayed electroshock 

and showed recall. In a second experiment, W-trained birds were also included in the 

analysis. Immediately after training these W birds were either shocked or held 

identically and "sham-shocked" (i.e., had electrodes pressed against the cranium with 

the current turned off). Two other groups of birds were also included. The first of 

these consisted of M-trained chicks that had been given immediate electroshock and 

yet still remembered the task, the other group was made up from M-trained chicks that 

had received delayed electroshock but were amnesic.

The results of this experiment showed that when levels of bursting in M-trained chicks 

that remembered the task were compared to W-trained chicks that also remembered, 

there was a significant bilateral increase in burst-firing in the IMHV, similar in 

magnitude to that seen previously (Mason & Rose, 1987). M birds that were amnesic 

displayed a similar level of bursting to W-trained chicks. These results strongly 

suggest that the enhancement of phasic bursting activity in the IMHV of day-old M 

chicks is a direct concomitant of the mnemonic processes underlying memory 

formation/consolidation. The increase in mean firing rate of the right of M

trained chicks reported by Mason & Rose (1987) was not seen in the later, 

electroshock study (Mason & Rose, 1988). This result implies that the increase in the 

mean firing rate of the right IMHV of M trained chicks is produced by aspects of the 

training experience not specific to memory formation: M chicks that receive 

electroshock, but display recall at test, show no increase in the mean firing rate of left 

or right IMHV above those of either W chicks or amnesic M chicks.
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These two studies (Mason & Rose, 1987; 1988) form the basis for the work presented 

in the following chapters of this thesis. Mason and Rose (1987) demonstrated an 

electrophysiological effect produced by training day-old chicks on a one-trial passive 

avoidance task; a bilateral increase in bursting in the IMHV of M-trained chicks during 

l-13hr posttest. This effect was then directly related to memory formation (Mason & 

Rose, 1988). That there is an effect is an exciting result in itself. However, as 

mentioned in the General Introduction, researchers in the field of Learning and 

Memory are becoming increasingly concerned with neuronal events whose expression 

is both (a) associated with memory and (b) time-locked to phases at some interval 

from the point of test, e.g., phases of protein synthesis that may occur many hours 

following training. With this in mind the Experiment described in Chapter 3 describes 

an extended timecourse of bursting in both M and W-trained chicks. Chapters 4 and 5 

are concerned with recording multi-unit activity from the LPO, a region that displays 

increased neuronal activity following training, as measured by 2-DG uptake. This 

region was not recorded from by Mason and Rose in either of their neurophysiological 

experiments (Mason & Rose, 1987; 1988). Chapter 6, the final experimental chapter, 

examines the effects of lesions of the LPO on burst-firing activity in the IMHV.

The final part of this chapter will review the general housing, training, anaesthetic, 

surgical and recording procedures used in the following experiments. Any deviations 

from these procedures will be outlined at the appropriate time.

Methods for Recording Multi-Unit Activity after Passive 

Avoidance Training.

The behavioural training, surgical and anaesthetic procedures are similar for all of the 

experiments in this thesis. They wül be dealt with in detail here and referred back to in 

other chapters with details of any changes as appropriate.
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(1) Subjects.

Ross-1 eggs from a commercial hatchery were incubated and hatched in communal 

brooders on a 12hr light/dark cycle and chicks of both sexes were then maintained at 

38.5-40.5°C until approximately 24hr old. On the day of training, pairs of chicks 

were placed in small pens (20x25x20cm) illuminated from above by 25W red lights. 

Once housed, a small amount of commercial chick-crumb was scattered onto the floor 

of each pen. Chicks had no access to water in these pens.

(2) Training and testing procedures.

Chicks were allowed to equilibrate for Ihr. They were then pre-trained (to initiate 

pecking) by three presentations of a white bead (2.5mm diam.) over a five minute 

period. After a further lOmin, the chicks were then trained using a chrome bead 

(4.0mm diam.) coated with either methylanthranilate (M-chicks) or water (W-chicks). 

The chicks' pecking behaviour was recorded. The chicks were tested Ihr after training 

by a 30sec presentation of a dry chrome bead and peck or avoid responses were 

recorded. Criteria for selection of experimental animals were: (1) that all chicks should 

peck upon training; and (2) that W-chicks pecked at test whilst M-birds avoided the 

test bead. Animals were trained and coded by either Prof. S.P.R. Rose or Dr. TA. 

Patterson. All subsequent procedures were carried out blind by J. Gigg. Animals were 

selected on a random basis, the first bird being made ready for recording immediately 

after testing, the others being taken at successive intervals. Usually a total of four 

birds per session were used. No animals were taken for recording after lOhr posttest. 

Data were decoded only when all experimental and analytical procedure had been 

carried out

(3) Anaesthetic and surgical procedures prior to recording.

Chicks were anaesthetized with an intraperitoneal injection of a 40% w/vol solution of
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Urethane (Sigma) at a dose of 0.65ml/100g body weight. After injection chicks were 

placed in an insulated box that contained a mirror to help reduce isolation stress. When 

the chick was under deep surgical anaesthesia (judged by lack of 'withdrawal reflex' 

upon pinching interdigital skin) it was transferred to a Baltimore Universal Stereotaxic 

Frame (Model L) where its core temperature was maintained at 40-41°C by a Palmer 

Homeothermic Underblanket thermostatically controlled via a cloacal thermistor probe. 

Additional thermal insulation was provided by a thick covering of cotton wool.

The cranium of the chick was then secured in a modified small animal holder. The 

cranium was placed at the desired angle by locking the beak bar 5mm below and 

11.5mm anterior to the central axis of the ear bars - an orientation similar to that of the 

resin brain mould of Rose and Csillag (1985) and to that of Youngren and Phillips' 

(1978) atlas of the 3-day old chick. Care was taken to ensure that the minimum 

amount of pressure was used during insertion of the ear bars, as the chick skull is 

easily distorted. Prior smearing of the ear bars with electrode gel aided their 

subsequent insertion (Neptic electrode gel, Sandev Ltd.). This gel had the added 

advantage of ensuring an efficient electrical contact between the tissues of the external 

ear and the metal of the ear bars. This was important as it ensured a good connection 

to ground via the low-resistance electrode placed on the ear bars. The beak was then 

securely taped to the beak bar to provide an extra degree of stability. Surgical 

procedures were carried out under overhead and side illumination.

A stereo binocular microscope, mounted on a tripod, was used during the more 

delicate surgery. The chick's scalp and underlying muscle were incised. The 

coordinates used for recording from the IMHV were 1.15mm anterior to the ear-bars 

and 1mm lateral to the skull midline. For LPO recordings the coordinates were 4.8mm 

anterior to the ear-bars and 1.2mm lateral to the midline. An electrode was mounted in 

a vertical, stereotaxic-mounted electrode holder and lowered carefully to mark the skull
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microelectrode would pass to record from either the IMHV or the LPO, At these 

coordinates square craniotomies roughly 1mm in length were performed using a 

scalpel blade. The underlying dura was then carefully incised. Warm silicon fluid 

(~40^C) was placed into these incisions to prevent excessive cooling of the brain and 

to reduce the seepage of cerebrospinal fluid.

(4) Lesioning procedures.

Chicks were taken when they were 18hr old and were given intraperitoneal injections 

of Equithesin at a dose of 0.28 ml/lOOg body weight. When narcosis became 

apparent, the chick was transferred to a stereotaxic instrument. The chick's 

temperature was maintained by an electric underblanket. When the bird was fully 

anaesthetized, the cranium of the chick was secured in a modified small animal 

headholder, with the beak bar locked at an identical angle to that described above. The 

scalp and underlying muscle insertions were deflected and small craniotomies were 

made in the skull directly over the electrode placement sites. After incision of the dura, 

the temperature-sensitive electrode was lowered under stereotaxic control. The 

coordinates used for the LPO were 4.0mm anterior to the ear bars, 1.1mm lateral to 

the midline and 4.5mm ventral to the surface of the brain. The lesions were induced by 

radiofrequency using an RGF 4 Lesion Maker (Radionics Inc., Burlington, Mass. 

USA). The temperature at the electrode tip was maintained at 60°C for 90 sec. The 

electrode was removed when the temperature of the electrode probe returned to body 

temperature, the skull flap was closed and secured with warm bone wax. The scalp 

was sutured and the chick was left to recover in a warm recovery box for several 

hours. The chicks were then given water and allowed to recover in these boxes until 

several hours before training or testing. Sham control chicks underwent identical 

procedures to those of the lesioned animals; however, no current was passed through 

the electrode tip.
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(5) Manufacture of microelectrodes.

Microelectrodes used to record from the IMHV were manufactured from borosilicate 

glass capillary tubing ("Kwik-Fill", Clark Electromedical Ltd., 1.2mm outside 

diameter and 0.65mm inner diameter). Electrodes were pulled on a vertical electrode 

puller (Scientific Research Instruments Ltd. Model No. 2001) and filled under vacuum 

with 0.5M sodium acetate solution containing 2% Pontamine Sky Blue for the 

marking of electrode positions. The electrode tips were broken back using a small pair 

of scissors. Electrodes were monitored for diameter and resistance (10|im o.d., 3- 

5pm i.d., 0.5 MO, respectively).

Glass-insulated tungsten microelectrodes were chosen for LPO recording because of 

their consistent, thin longitudinal profile when compared to the glass microelectrodes 

used for IMHV recording. It was felt that such a small profile would minimize the 

tissue damage caused to higher structures when recording from the LPO, which is a 

structure situated in the forebrain base. These microelectrodes were fabricated using a 

method similar to that of Merrill and Ainsworth (1972). Pieces of pre-straightened 

tungsten wire (127pm diameter, 15cm length. Glade Electromedical) were submitted 

to a 2-stage etching procedure. The first stage involved immersing one end of the wire 

into a solution of KNO2 per 100ml distilled water) whilst passing A C. current 

(12V, 1.7 5A) across the tip of the wire from a large carbon rod also immersed in the 

solution. This first etch consisted of three immersion stages: (1) the first 2cm of the 

wire was immersed for 20s; (2) the very tip of the wire was then allowed to form a 

meniscus with the solution very briefly a total of five times; (3) finally, the first 2mm 

of the wire was immersed very briefly a total of seventy times. The wire was then 

inserted non-etched end first into a borosilicate glass capillary (0.38mm outer 

diameter, 15cm length, Plowden and Thompson Ltd) until the etched end passed 2cm 

in from the end of the capillary. The wire was then superglued in place at the non­

etched end.
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The electrode was then inserted into the vertical electrode puller, the top chuck holding 

the wire and the bottom chuck holding the bare glass end of the capillary. The 

electrode was then pulled (ensuring a good coating of glass insulation to the tip of the 

electrode) and mounted in a horizontal micromanipulator. The tip was then advanced 

under low-power magnification into a small (2mm) molten bead of glazing flux 

(Pyrotenax Ltd.) until any protruding glass and the very tip of the electrode passed 

into the bead. The current used to melt the bead was then switched off and the bead 

allowed to harden. The electrode was then firmly pulled away from the bead, leaving 

the very tip of the wire exposed from the insulating glass. More than one insertion into 

the bead was occasionally found to be necessary. The tip was then subjected to a 

second etch in KNO2 (12V, 1.2A current A.C.), this time under low-power 

magnification, until the tip assumed a ’bullet' shape. The impedance of the electrode 

was then measured, with impedances of IMO being being favoured.

(6) Multi-unit recording procedures.

(a) Recording from the IMHV.

Multi-unit signals were monitored using a digital storage oscilloscope (Gould 

GS4000) and the audio output of a spike processor (Digitimer 130). All recordings 

were made relative to a distant reference electrode at the skull base. This reference 

electrode consisted of a hook of chlorided silver wire. The chloride helped to reduce 

the effect of junction potentials. The preparation was grounded via a low-resistance 

junction at the ear-bars (crocodile clip). The active electrode consisted of a 3cm piece 

of chlorided silver wire, carefully soldered to a short length of input lead. This wire 

was inserted into the glass electrode prior to recording. To shield the preparation from 

extraneous electrical noise a small aluminium shield was placed over the active 

electrode during recording and grounded to the stereomxic frame. All electrodes were 

connected to the input sockets of a headstage (NLIOO, Digitimer Ltd.) which was 

connected via a shielded cable to an AC preamplifier. Signals were amplified 1000 

times in two stages (Neurolog AC preamp NL 104, Neurolog AC DC amp NL 106,
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both Digitimer Ltd) and band-pass filtered (300Hz-5KHz, Neurolog filter NL125) to 

remove both low frequency "slow-wave" and very high frequency components. This 

amplified signal was then fed to a spike processor (Digitimer D130) to ascertain the 

average spike firing rate (above a pre-determined discrimination voltage, set for 

removal of electrical noise). Slow-wave signals were high frequency filtered (l(X)Hz, 

50Hz notch filtered. Neurolog NL 115) and fed directly, together with multi-unit 

signals, to a digitizing unit (Neurocorder DR484, Neurodata Instruments Corp.) and 

from here to a video tape recorder (Panasonic AG 6010) for subsequent storage. After 

recording from each hemisphere, the electrode was withdrawn and Pontamine Sky 

Blue was iontophoresed to mark each recording site (3min at -lOnA, Neurophore 

BH2/IP2, Medical Systems Corp.). Following this the brain was removed, 

immediately frozen in isopentane and stored at -70°C. Sections were cut (20pm thick) 

on a cryostat at a later date to determine the electrode track.

Vertical measurements of electrode tip position were taken from the brain surface. 

Penetrations were made from this zero' point as follows. For recording from the 

IMHV the electrode was initially stepped down 1000pm (TrentWells Microstepper 

Mk. 3) in two steps of 500pm; the electrode was then lowered in 200pm steps until 

the upper border of the IMHV was reached. This was determined by a large increase 

in the amplitude of damage potentials as the recording electrode approached the 

IMHV. A series of eight sequential steps of 200pm were then made, 2min of 

recording being made at each step. A 30sec pause for the termination of damage 

potentials was allowed at each penetration point before recording. This process 

normally produced six 2min recordings from the IMHV of each hemisphere. The 

order in which hemispheres were recorded fix>m was randomized.

(b) Recording from the LPO.

The methods used to record multi-unit activity from the LPO were very similar to
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those reported above. Spontaneous multi-unit activity signals were amplified 1000 

times in two stages and high band-pass filtered (300Hz-5KHz) for subsequent storage 

on video tape. The preparation of tungsten-in-glass electrodes was as described above. 

Once the electrode was mounted in the electrode holder the free end was trimmed back 

to reduce the pickup of extraneous noise. The connection of electrodes to the 

headstage was via a short length of shielded cable. This cable was attached to the 

trimmed, free end of the electrode with a mini crocodile clip. The electrode was 

surrounded by a grounded, aluminium shield during recording.

Vertical measurements of electrode tip position were again taken from the surface of 

the brain. The electrode was initially stepped down 3500pm in four steps of 750pm 

and one step of 500pm. A series of eight sequential steps of 200pm were then made 

with 2min of recording at each step. A 30sec pause for the termination of damage 

potentials was allowed before recording. This process normally produced five 2min 

recordings from the LPO of each hemisphere. The order in which hemispheres was 

recorded from was randomized. At the termination of recording the free metal end of 

the electrode was heated with a soldering iron for 90sec, producing a small lesion at 

the electrode tip to mark the site of recording. The brain was then removed, 

immediately firozen in isopentane and stored at -70°C. Sections were then cut 20pm 

thick on a cryostat to determine the position of the electrode.

(7) Data analysis.

Data analysis was similar for all experiments and was performed off-line. Recorded 

multi-unit activity was replayed from video tape, through the digitizing unit to a 

monitoring oscilloscope (Gould OS4000) and from here to a spike-processor 

(Digitimer D130). Spikes were discriminated as follows: the lower (in this case 

negative) discriminator was adjusted until only spikes of sufficient amplitude to be 

included within bursts were registered, i.e., spikes greater than or equal to lOOpV 

negative. The resulting discriminated spikes were output as 75ps T.T.L. pulses on the
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"Lower" terminals of the D130. These pulses were then fed to the digital "in’ port of a 

CED 1401 (Cambridge Electronic Design) computer interface unit and sampled at 

5(X)Hz for storage to hard disk (Zenith Z200 PC).

The computer program used for analysis was modified from one of the CED "Spike!" 

software programs (see Appendix i). The modifications allowed the user to input 

directly the parameters which would be used by the program to perform burst analysis 

and also allowed the analysis of burst start times via the use of interburst interval 

histograms and autocoreUelograms. The input parameters used to perform burst 

^alysis were: (1) the number of spikes per burst; (2) the maximum interval between 

spikes to constitute a burst, i.e. the intraburst inter spike interval (intfaburst I.S.I.); 

and (3) the minimum interval between spikes to constitute the end of a burst i.e., the 

interburst I.S.I. To produce bursts with the required spike number and frequency (5 

or more spikes with a mean frequency, of 400Hz or above), the optimum values for 

these parameters were derived from a series of pilot runs of the program, using real 

data. The final parameters chosen were an intraburst LS.I. of 4.9ms and an interburst 

I.S.L of 5.0ms. These values were used in all data analysis. However, it is important 

to realize that these values represent a compromise. Although during a burst some 

intervals between spikes may be longer than 2.5ms (a frequency less than 400Hz), the 

mean LS.I. of the burst may actually be 2.5ms (or less). Therefore, if the cut-off level 

for the intraburst LS.I. were set to 2.5ms, then bursts meeting criterion with a mean 

LS.I. of 400Hz would be (incorrectly) rejected. Although the upper LS.I. limit of 

4.9ms seems high, it was chosen because higher or lower values than this allowed 

into the analysis either a smaller number of faster bursts or a higher number of slower 

(<400Hz) bursts, respectively. In fact, the 4.9ms value produces a majority of bursts 

with I.S.I.s of >5(X)Hz.

The statistics returned by the program included: (a) mean number of spikes per burst;
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(b) mean intraburst I.S.L; (c) the percentage of discriminated spikes to fall within 

bursts; and (d) the number of bursts per 2min. These data arc presented in the results 

section.

The modifications to the program also allowed computer-discriminated burst start 

times to be saved to disk for later analyses designed to obtain quantitative data 

concerning burst firing patterns. Burst start times were used to plot both interburst 

interval histograms and also autocorrclelograms of bursting activity

The frequency data for burst firing patterns were norrnalized using the square root 

transform (Sokal & Rohlf, 1981) and subsequently analyzed using two-tailed unpaired 

Student's t-tests and analysis of variance tests to assess any differences between 

groups. For clarity, all data arc presented graphically in their original form, i.e., non­

transformed.
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CHAPTER 3. Recording Multi-Unit Activity from the IMHV of 
the Day-Old Chick Following Passive Avoidance Training.

Introduction.

Electrophysiological recordings have shown that training on a passive avoidance task 

increases the level of neuronal burst-firing in the IMHV over the period 1-13hr 

posttraining (Mason & Rose, 1987): a change that has been directly associated with 

recall for the task, as amnesia abolishes the increased bursting (Mason & Rose, 1988). 

The experiments described here were undertaken in an attempt to extend these 

electrophysiological observations to include more detailed analyses of the timecourse, 

lateralization and patterning of the bursting phenomenon in the IMHV of the day-old 

chick. Because of the number of graphs to be presented, this experiment has been 

divided into three sections. The first of these sections serves as a replication of the 

original effect described by Mason and Rose (1987). The second describes the 

timecourse and lateralization of bursting in the IMHV. The third and final section 

describes in more detail the pattern of bursting.

Methods.

The behavioural, anaesthetic, surgical and recording procedures were carried out as 

described in Chapter 2 for IMHV recordings. This method can be summarized as 

follows: pairs of day-old chicks were housed in pens and then trained by Prof. S.P.R. 

Rose. This training produced two treatment groups, M chicks and W chicks. M chicks 

were presented at training with a methylanthranilate coated bead: only birds that 

pecked the bead and showed a disgust response were included in later parts of the 

experiment, birds that either did hot peck the bead or did not show a disgust response 

were rejected. W chicks were presented with a water coated bead at training: only 

those chicks that peeked the bead were included in the experiment. Chicks that trained 

successfully were tested one hour posttraining with a dry bead. M chicks that pecked
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the dry bead and W chicks that avoided the dry bead were rejected on the grounds that 

this behaviour indicated that they had, for whatever reason, failed to remember their 

training. Chicks were then assigned codes and these codes were passed to J. Gigg. 

Chicks were then taken at regular intervals for IMHV multi-unit recording. The 

intervals at which chicks were recorded from were; 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8 

and 8-9hr posttraining. At least four chicks from each treatment group were recorded 

from at each of these intervals. Hemispheres were recorded from in a random order. 

Figure 3.1 shows a typical histological reconstruction of recording sites.

3.1 Effects of passive avoidance training on bursting recorded 

over l-9hr posttest.

Results.

A typical burst recorded from the IMHV is shown in Figure 3.2. The lower trace 

represents the associated focal EEG. Mean burst frequencies (ie., the mean of left and 

right hemispheres) for both methyl (M) and water (W) trained animals are presented in 

Figure 3,3, There is a significant difference between groups (p<0.01; Anova F- 

ratio= 12.23). The mean bursting frequency for each hemisphere is presented in Figure 

3.4. This shows that both hemispheres of M birds exhibit significantly higher burst 

frequencies than the respective hemispheres from W birds (p<0.02 for both 

comparisons).

Discussion

The overall burst frequencies recorded from the IMHV of M birds are significantly 

higher when compared to those for W birds in data pooled over the l-9hr posttest 

period. Both the riÿit and left hemispheres of M birds show increased bursting over 

the same period when compared to the respective hemispheres of W birds. These 

results are similar to the electrophysiological effects found by Mason and Rose (1987) 

after training day-old chicks on the same passive avoidance task. Therefore, the

Page 94



Figure 3.1; Schematic representation of recording sites in IMHV.

HA

IMHV

PA

ARC

Figure 3.1. Schematic representation of IMHV recording sites. Filled circles 

indicate recording sites. The section corresponds to the anterior 3.5 reference in 

the Youngren and Phillips (1988) atlas of the 3 day-old chick. This section 

indicates that recordings were made from an anterior portion of the IMHV. 

Abbreviations: HA, Hyperstriatum accessorium; IMHV, intermediate medial 

hyperstriatum ventrale; N, neostriatum; PA, paleostriatum augmentatum; ARC, 

archistriatum. Scale bar = 1mm.
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Figure 3.2(A); Multi-unit Activity Recorded from the IMHV

ZOOmj

o Sw'V

Figure 3.2 (A); IMHV multi-unit activity. Top trace includes a bursting epoch, 

lower trace represents simultaneously recorded local field potential. Note that the 

negative shift in field potential is coincident with the; occurrence of bursting.
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Figure 3.2(B); IMHV Multi-unit Activity to Show; (1) Occurrence 

of "Theta” Rhythm in IMHV; and (2) a more 

Detailed Picture of a Burst, Using a Faster 

Oscilloscope Sweep Time to That Used in 3.2(A).
1.

rn  r iti r r m  i-rTiTrrr rTTn ~n~ri r it it [ i r rrri i n T ir r rm  iTi n T ^
. 6  .M . a  .■  .N  .17

Figure 3.2 (B); IMHV multi-unit activity. (1) The occurrence of "theta" rhythm 

in the IMHV: following the burst the field potential (lower trace) has a 

sinusoidal frequency of approximately 5hz (arrow). This frequency is within the 

theta range. Calibration as per Figure 3.2A. (2) Burst at higher resolution, 

0.12 sec trace, to show individual spikes. Calibration: mV (vertical scale); 

seconds (horizontal scale).
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Figure 33 ; Mean IMHV Burst Frequencies for Methyl and Water 

Trained Day-old Chicks over l-9hr Posttest.
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Figure 3.3; Mean bursting per 2min for the IMHV of methyl and water-trained, 

day-old chicks over l-9hr posttest. The level of bursting represents the mean 

value for left and right hemispheres. The numbers in bars represent sample 

size. Chicks trained on a methylanthranilate coated bead exhibit a signific^tly 

higher level of bursting when compared to chicks trained on a water coated 

bead (p<0.01). Error bars are standard error of the mean.
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Figure 3.4; Hemispheric Differences in Mean IMHV Burst Firing 
for Methyl and Water-trained Day-old Chicks over the 
period l-9hr Posttest.
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Figure 3.4; Hemispheric differences in bursting per 2min between methyl- and 

water-trained day-old chicks over l-9hr posttest. The sample sizes for each 

group are as per Figure 4,3, that is, 49 methyl-trained chicks and 46 water- 

trained chicks. Chicks trained on a methylanthranilate-coated bead exhibit a 

significantly higher level of bursting in both left and right hemispheres when 

compared to the respective hemispheres of water-trained animals (*p<0.02). 

There is no significant difference in burst-firing rates between hemispheres 

within either group.
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" present results replicate the effect they originally described. The general level of 

bursting for both M and W chicks reported here is somewhat lower than that described 

by Mason and Rose (1987; 1988). The mean burst rates quoted in this Experiment for 

both groups of chicks are approximately an order of magnitude lower. There may be 

several reasons for this. Firstly, as will be seen in later sections of this Chapter, the 

level of burst-firing in the IMHV of M chicks follows a distinct timecourse following 

training. The exact posttest time at which recordings are made from the IMHV may, 

therefore, introduce a sampling-bias into overall levels of bursting, especially if large 

numbers of M chicks are recorded from during any time-locked peak of bursting. This 

raises the possibility, therefore, that a significant number of M birds in the studies of 

Mason and Rose (1987; 1988) were recorded from during periods of highly elevated 

bursting, producing a much higher overall burst-firing frequency than that reported in 

this Experiment. Secondly, the analysis method in this Experiment uses a computer 

program to discriminate burst-firing, a more quantitative method to that used by 

Mason and Rose (1987; 1988) who employed a rather qualitative 'by eye* method of 

analysis. Mason and Rose may have overestimated levels of burst-firing, that is, they 

may have discriminated bursts that would have been rejected by the program used 

here. Evidence to support this contention comes from pilot studies in which the 

intraburst interval was raised to 8msec during conq)uter-aided analysis. This produced 

a level of bursting similar to that reported by Mason and Rose (1987). However, the 

bursts generated had interspike intervals higher than 2.5ms and as such were too 

'slow* to be included as bursts, that is, their interspike frequency was lower than the 

a priori burst definition of 400Hz. This raises the possibility that not all of the bursts 

discriminated by Mason and Rose met their own a priori conditions. A third 

suggested reason for the disparity in bursting levels is the difference in the choice of 

anaesthesia: instead of Urethane, as used here. Mason and Rose (1987; 1988) chose 

the barbiturate-based Equithesin as an anaesthetic. This was a poor choice for three 

reasons: (1) barbiturates depress the very type of neuronal activity under study, that
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is, burst-firing; (2) the safety margin between levels of barbiturate required for 

surgical anaesthesia and those that produce medullary paralysis is very small in bird 

species when compared to other laboratory animals (Wright, J.G. 'Veterinary 

Anaesthesia', Williams & Wilkins Co., Baltimore, 1957); and (3) Equithesin is a 

short-acting, recovery anaesthetic that produces narcosis very quickly after injection 

and allows a fairly rapid return to consciousness. Urethane, however, has a relatively 

non-depressant action on neuronal firing, a higher safety margin for paralysis and 

maintains a stable level of anaesthesia for some hours. Chicks anaesthetized with 

Equithesin may have been less deeply anaesthetized when compared to Urethane 

anaesthetized birds in order to minimize the risk of respiratory failure. The initial dose 

of Equithesin may have been barely sufficient to induce anaesthesia and, once 

anaesthetized, the chick would be quickly recovering consciousness. This may explain 

why levels of bursting firom chicks injected with Urethane are different to those from 

chicks injected with Equithesin.

Although the replication of Mason and Rose (1987) reported here adds further 

credence to the training effect upon bursting activity, it provides little information 

regarding the dynamics of the effect. These temporal characteristics can be seen when 

the data presented in Figure 3.3 are plotted against time as well as treatment group. 

This is presented in the next section.

3.2. The Timecourse and Lateralization of Bursting 
following Training.
Results.

The burst frequency for each group is plotted against time in Figure 3.5. This shows 

the timecourse of bursting over 1-9 hours posttest for both W and M-ttained day-old 

chicks. Subjecting these data to an analysis of variance test demonstrated that there 

was a significant effect of time posttest upon bursting (F-ratio 3.29, p^O.004).
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Figure 3.5; The Timecourse of IMHV Bursting Measured Over

l-9hr Posttest for Methyl and W ater-trained Chicks.
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Figure 3.5; The timecourse of bursting for methyl and water-trained chicks 

over the l-9hr posttest period. The sample sizes for each group are indicated 

in bars. Methyl-trained chicks exhibit significantly higher burst-frequencies 

between 3-4, 5-6 and 6-7hr posttest when compared to water-trained chicks 

(p<0,05). Error bars are standard error of the mean.

Page 102



Figure 3.6; The Lateralization of IMHV Bursting M easured Over

l-9hr Posttest for Methyl-trained Chicks.
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Figure 3.6; The lateralization of bursting in the IMHV for methyl-trained 

chicks over the l-9hr posttest period. The sample sizes for each methyl- 

trained group are as per Figure 3.5. Bursting in the right IMHV is 

significantly higher than that measured from the left hemisphere of the IMHV 

between 6-7hr posttest (p<0.05). There are no significant differences 

between hemispheres at any other time. Error bars are standard error of the 

mean.
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Figure 3.7; The Lateralization of IMHV Bursting M easured Over

l-9hr Posttest for W ater-trained Chicks.
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Figure 3.7; The lateralization of bursting in the IMHV for water-trained chicks 

over the l-9hr posttest period. The sample sizes for each water-trained group 

are as per Figure 3.5. There are no significant differences between bursting 

measures at any time. Error bars are standard error of the mean.
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Figure 3.8; The Percentage of Discriminated Spikes to Fall Within 

Bursts for both Methyl and Water-trained Chicks as a 

Function of Time Posttest.
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Figure 3.8; The percentage of discriminated spikes included within bursts for 

both methyl and water-trained chicks over the l-9hr posttest period. The 

sample sizes for each group are as per Figure 3.5.
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Figure 3.9; The Mean Number of Spikes per Burst for both Methyl 

and Water-trained Chicks as a Function of Time 

Posttest.
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Figure 3.9; The mean number of spikes per burst for both methyl- and water- 

trained chicks over the l-9hr posttest period. The sample sizes for each group 

are as per Figure 3.5. No significant difference was seen between groups at 

any time. Error bars are standard error of the mean.
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Subsequent post hoc Student's t-tests revealed that there is a significant increase in 

bursting in M trained animals compared to W animals at the 3-4, 5-6 and 6-7hr 

timepoints (p<0.05 in all comparisons). The maximum level of bursting in M birds is 

evident between 6-7 hours posttest.

Figure 3.6 shows the same data described in Figure 3.5, broken down into bursting in 

each hemisphere for M birds across different timepoints. Figure 3.7 is the counterpart 

for W trained animals. M birds display a hemispheric asymmetry in burst frequency at 

the 6-7 timepoint, with the right hemisphere displaying a significantly higher level of 

bursting compared to the left (p<0.05). No asymmetry of burst firing was found in W 

birds (Figure 3.7).

The data presented in Figure 3.8 represents the mean percentage of discriminated 

spikes that fall within bursts for both M and W birds, displayed once again as a 

timecourse. As can be seen M birds display a greater percentage of spikes within 

bursts at almost all time points, with the ^eatest difference between groups 6-7 hours 

posttesL

The data in Figure 3.9 shows the mean number of spikes per burst for M and W birds, 

again as a timecourse. There is no significant difference between groups at any 

timepoint The mean number of spikes/burst for M birds shows a 35% increase over 

that for W birds between 6-7 hours posttest

Discussion.

As can be seen, the increased bursting seen in M chicks does not exhibit a generalized 

increase with time, but rather shows a distinct timecourse with definite peaks. 

Bursting in M birds is significantly higher between 3-4, 5-6 and 6-7 hours posttest. 

Bursting is similar between groups during the period 4-5hr posttest. The maximum
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level of bursting appears in the last of these periods, 6-7 hours posttest. The 

percentage of spikes that occur in bursts and the number of spikes per burst are also 

maximal at this posttest time. This suggests that the firing-pattem of large amplitude 

neuronal activity becomes predominantly burst-firing during this posttest period

An asymmetry of bursting can also be seen in M birds during 6-7hr posttest: the right 

hemisphere of M birds has a significantly higher frequency of bursting when 

compared to the left. No such asymmetry is found for bursting in W birds. This 

asymmetry of bursting in M chicks that favours the right hemisphere is surprising in 

light of the weight of evidence to indicate the importance of the left hemisphere in 

passive avoidance training. Morphological studies and the 2-DG studies have shown 

training-induced, memory-related changes that occur predominantly in the left IMHV 

of day-old chicks (Rose & Csillag, 1985; Stewart et al., 1984; Patel et al., 1988).

The next section describes an investigation into the patterning of burst firing in the 

IMHV after training.

3.3. The Characteristics of Bursting Patterns.
Introduction

During playback of recorded multi-unit activity, a definite pattern of bursting in the 

IMHV of M-trained chicks could be discerned: bursts tended to occur in small 

clusters, especially when the burst frequency was highest. To investigate this 

patterning the program used for burst analysis was modified to allow the registration 

of burst start times as single 'events' in a separate event channel. This allowed the 

processing of burst start times as both inter-burst interval histograms and also burst 

autocorrelelograms.

Results.

The pattern of bursting can be seen in the inter-burst interval histograms and burst

Page 108



Figure 3.10; Bursting from the IMHV displayed in the form of inter-burst

interval histograms and burst autocorrelelograms.
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Figure 3.10; A, B. Bursting recorded from the right IMHV of two M chicks

recorded between 6-7hr posttest. Each graph represents 6min of data.
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Figure 3.10; Bursting from the IMHV displayed in the form of inter-burst

interval histograms and burst autocorrelelograms.
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Figure 3,10; C, D. Bursting recorded from the right (C) and left (D) IMHV of 

water-trained chick recorded 4-5hr posttest. Each graph represents 12min of 

data.
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Figure 3.10; Bursting from the IMHV displayed in the form of inter-burst

interval histograms and burst autocorrelelograms.
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Figure 3.10; E, F. Bursting recorded from right (E) and left (F) IMHV of 

methyl-trained chick recorded 10-11 hr posttest. Each graph represents 12min 

of data.
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autocorrelelograms presented in Figure 3.10. These histograms represent the 

distribution of burst start times. The autocorellelograms are generated from the burst 

start times used in the histogram. Each graph represents the results from individual 

birds, recorded at the times indicated.

To test whether bursts were indeed occurring in groups ('bursts of bursts’) burst start 

times were passed through the burst analysis program. For this analysis the maximum 

intra-burst (in reality an inter-burst value) was set to 0.4sec. The 'bursts' produced by 

this analysis are actually composed of the start times of individual, 'real' bursts. This 

produces a simple type of cluster analysis, results of which are presented in Table 

3.11.

Table 3.11. Analysis of bursting recorded from the right hemisphere of 

four methyl-trained chicks between 6-7hr posttest.

1

2.

3.

4.

Average

Average 

bursts/group 

2.28 

. 2.32 

2.68 

2.45 

2.43

Average 

interburst time (sec) 

0.132 

0.120 

0.080 

0.127 

0 .115

D iscussion

As can be seen from both the histograms and autocorrelations of Figure 3.10, the 

pattern of burst-firing in the IMHV is distinctly non-random. Between 6-7hr posttest, 

bursts tend to fire in small groups of 2-3 bursts (Table 3.11), with the interval 

between groups being roughly 2 seconds Cbiirsts of bursts'). This patterning can be
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seen from the interburst interval histograms. The short latency peaks in these 

histograms represent the 'within group' inter-burst intervals whilst the longer latency 

interval represents the intervals between groups of bursts. This biphasic pattern is 

most evident when the burst frequency is maximal, that is, in the right hemisphere of 

M birds between 6-7 hours posttest.

General conclusions

In section 3.1 the mean burst frequency of the IMHV of M chicks was shown to be 

significantly higher than that of W chicks. What is the possible significance of this 

training-induced, memory-specific increase in bursting? In mammals, activation of the 

septohippocampal pathway has been implicated in processes of memory consolidation 

(See Chapter 1 and Jaffard et al., 1977; 1979). Electrical stimulation of the cholinergic 

septohippocampal pathway enhances retention by inducing theta rhythm, which 

produces an increase in the synchronization and frequency of burst-firing (Galey et 

al., 1983; Landfield, 1977; Wetzel et al., 1977). EEG activity within the theta 

frequency range has been recorded from the hyperstriatum of freely behaving chicks 

(Spooner, 1964). These chronic recordings indicated that chicks displayed brief bouts 

of 6-12Hz EEG that were particularly associated with orienting responses, in 

particular with shifts in visual attention. EEG within this fi^uency band can also be 

seen in the anaesthetized chick. The spike-trains presented in Figure 3.2 show focal 

EEG in the theta range recorded from the IMHV of the anaesthetised chick. The means 

of production of this 6-12Hz rhythm may be similar to that for mammalian, 

septohippocampally driven theta: the IMHV of the chick receives putative cholinergic 

input from the medial septal nuclei (Davies & Horn, 1983). Also, the IMHV appears 

to be rich in cholinergic receptors and enzymes (Coulter, 1982; McCabe et al., 1982). 

Bursting in IMHV may increase following training as a result of a theta 'priming' 

effect. In rats, theta activity occurs during exploratory behaviour (Vanderwolf, 1969). 

At the cessation of such exploratory behaviour, groups of pyramidal cells in CAl,
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CA3 and subiculum fire in synchronous bursts (Buzsaki, 1989). This sequence of 

events may also occur in the day-old chick. As theta activity in the chick appears to be 

particularly associated with orienting responses (Spooner, 1964), theta rhythm should 

be evident in the hyperstriatum as the chick visually orients to the bead during passive 

avoidance training. In most instances, if the chick pecks at a methylanthranilate bead it 

subsequently displays an associated disgust response. During this effectively non­

orienting behaviour theta riiythm may diminish, allowing the emergence of neuronal 

bursting in groups of cells in the IMHV. Bursting activity has been described as the 

most favourable neuronal activity for the enhancement of synaptic plasticity (Buzsaki, 

1989). If there is an increase in theta activity during training, then this may weakly 

potentiate certain synapses between groups of cells in the IMHV to form a transient 

’structural engram'. The potentiated synapses between these groups of cells would 

then be subject to long-term modification, brought about by an increase in the 

occurrence of bursting between the constituent cells. A similar sequence of events has 

been put forward by Buzsaki (1989) as a possible means of memory formation in the 

rat. It has been suggested that bursting activity is associated with integrative or 

mnemonic processes by producing: (1) an amplification of incoming afferent signals 

when bursts are generated at multiple sites on the soma and dendrites (Wong et al., 

1986; Abeles 1982; 1988); and/or (2) an enhanced synthesis of neuronal structural 

proteins, via the stimulation of calciunVcalmodulin-dependent protein kinases, through 

an associated increase in calcium influx (for review see Kmjevic, 1986). It is possible, 

therefore, that the observed increase in bursting in the IMHV represents some 

encoding of memory for the task via (structural?) synaptic changes between 

interconnected bursting cells. This encoding may exist as some potentiated 

connectivity between a distinct group of cells. An alternative to this encoding process 

is that the increased level of bursting represents some 'readout' of previously formed 

associations to different areas of the brain to perhaps provide more complicated 

associations or even to facilitate some 'transfer' of memory to other neuronal regions. 

These important issues will be fully discussed in the General Discussion Chapter.
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Day-old chicks require a normally functional cholinergic system for the acquisition of 

behavioural tasks. Administration of the cholinergic antagonist scopolamine disrupts 

key-peck avoidance learning and also one-trial passive avoidance training in the day- 

old chick (Zolman et al., 1978; Patterson et al., 1990b). In the latter of these studies, 

pretraining scopolamine administration produced amnesia that became evident between 

15 and 30min after training. This susceptibility to amnesia falls within the posttraining 

period ascribed to the formation of intermediate-term memory (Patterson et al., 

1990b). This proposed involvement of cholinergic mechanisms in the formation of 

intermediate-term memory is supported by data showing that QNB binding is 

increased in day-old chicks 30min after passive avoidance training (Rose et al., 1980). 

Whether the cholinergic system shows increased activity during any later stages of 

consolidation remains to be seen. However, the data presented indicate that the 

increased frequency of bursting in the IMHV may be mediated/modulated by 

cholinergic input from the septal nuclei. This septal input to the IMHV is also of 

importance in the development of an in vitro LTP-like effect in the IMHV (Bradley, 

pers. comm.): slices that exhibit LTP most reliably are those that contain an intact 

septal projection to the IMHV, suggesting that the cholinergic system may also be 

important in the production of 'LTP' in this structure.

Figure 3.2 shows a recording of burst-firing from the IMHV. IMHV bursts are very 

similar to bursts recorded by Buzsaki (1986) from the dendritic region of the CAl area 

of the hippocampus. Bursting in the two structures is accompanied by large negative 

deflections in field potential. These deflections in the hippocampus have been termed 

shaip-waves and possibly represent the synchronous activity of large numbers of 

bursting pyramidal neurons in the CAl, CA3, subicular and dentate fields of the 

hippocampus (Buzsaki, 1986). Buzsaki (1988) has proposed that sharp wave- 

associated bursting is the best candidate for a physiological basis for LTP, again
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suggesting that an LTP-like mechanism may operate in the IMHV as part of the 

process that underlies memory formation for passive avoidance training.

The area(s) of neuronal membrane responsible for the generation of burst-firing in 

IMHV is impossible to say from extracellular, multi-unit recordings. Bursting may be 

produced by: (a) areas of active dendritic membrane; (b) individual axons/cell bodies; 

or (c) the near synchronous firing of axons from different cells. The available evidence 

seems to indicate the former, that is, that bursting in IMHV is of dendritic origin. As 

can be seen in Figure 3.4, the heights of the individual spikes that con^)ose each burst 

are variable: if bursting were of axonal origin then the resulting spikes would all be of 

similar height as the axon would be acting as a point source. Bursting very similar to 

that recorded intracellularly from bursting mammalian pyramidal cells has also been 

recorded firom single cells of the IMHV in a chick brain slice preparation (A. Webb, 

pers. comm.), implicating single cells as the source of bursting in the IMHV.

In section 3.2, bursting in the IMHV of M. chicks was shown to exhibit a definite 

timecourse: bursting was significantly higher during the periods 3-4, 5-6 and 6-7hr 

posttesL A lateralization of bursting to the right IMHV was also seen during the period 

6-7hr posttesL Some evidence to suggest that the right hemisphere is important for 

learning the passive avoidance task has come from a study that sought to examine the 

lateralization of glycoprotein fucosylation following training. As outlined in Chapter 2, 

memory for the task is associated with an increase in the incorporation of fucose into 

glycoproteins (Rose & Harding, 1984). Chicks can be rendered amnesic if this 

incorporation is inhibited by bilateral intracranial injection of 2-Deoxy-galactose (Rose 

& Jork, 1987). In a follow-up study, unilateral injections of 2-D-gal were given 

45min pretraining into the area of either the right or the left IMHV (Barber, 1990). 

This treatment revealed a lateralization of effect for 2-D-gal: chicks were amnesic when 

tested at 1, 2 or 4hr posttraining after 2-D-gal injection into the right hemisphere.
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similar injections into the left hemisphere were only amnestic when chicks were tested 

4hr posttraining. This suggested that the increased fucosylation of glycoprotein 

required for memory of the task occurs predominantly in the right hemisphere. It may 

be of some significance that the first peak in bursting appears 3-4hr posttest, the 

approximate time at which amnesia appears after pretraining injection of 2-D-gal into 

either hemisphere.

The highest level of bursting occurs 6-7hr posttest In a follow-up study to Barber 

(1990), chicks were given bilateral intracranial injections of 2-D-gal around this 6hr 

posttraining timepoint: these chicks exhibited significant amnesia at a 24hr test 

(Zamani & Rose, 1990). This suggests that there is a 'double wave' of glycoprotein 

synthesis in day-old chicks following training upon a passive avoidance task. The 

second wave of this synthesis is coincident with the maximum level of bursting in the 

IMHV. The requirement of both of these phenomena for memory formation suggests 

that they may be causally related. However, there is, as yet, no data concerning any 

lateralization of effect for these 6hr posttraining 2-D-gal injections. It would of course 

be of some interest if a lateralization to the right hemisphere were found, coincident 

with the lateralization of bursting to the right IMHV at this timepoint

Similar time-dependent processes have been seen in other preparations. A second 

wave of glycoprotein synthesis is also exhibited following the induction of LTP 

(Mathhies, 1989). This 'late LTP' occurs 6-8hrs posttetanization ^ d  requires both the 

induction of protein synthesis, via the activation of PKC, plus the posttranslational 

fucosylation of newly synthesized proteins. Induction of these macromolecular 

processes involves the activation of immediate early genes, suggesting that these 

processes are involved with the longer-term maintenance of LTP. Activation of 

immediate early genes is also seen 30min after passive avoidance training in day-old M 

chicks (Anokhin et al., 1991). One of the -triggers’ for the activation of immediate 

early genes in mammalian dentate granule cells is an increase in burst-firing (Douglas
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et al., 1988).

Neural cell adhesion molecules (NCAMs) have also been shown to be of importance 

during these extended posttraining periods. NCAMs have been implicated in the 

synaptic remodelling underlying memory formation (Doyle et al., 1990). Rats given 

intraventricular administration of an antiserum to NCAM 6-8hrs following acquisition 

of a passive avoidance response were amnesic for the task. Injections at any other time 

tested were without effect

It appears from these various lines of evidence that the 6-8hr posttraining period is 

crucial for both the maintenance of LTP and the consolidation of memory for a variety 

of behavioural training tasks, including passive avoidance training. One of the 

correlated neuronal activities during this period, at least for passive avoidance training 

in the chick, is an increase in the frequency of burst-firing.

The results from the bursting timecourse data suggest an important role for the IMHV, 

especially the right IMHV, in the consolidation of memory for passive avoidance 

training. Although no lateralization of bursting was seen to the IMHV of the left 

hemisphere, increased levels of bursting may be evident in this structure during 

periods that were not examined in this experiment Lesion studies have indicated that 

the left IMHV is a necessary structure for the acquisition and/or early processing of 

memory for passive avoidance training (Patterson et al., 1990a). It is possible that 

these processes occurring around the time of training involve increases in the levels of 

bursting, perhaps in the left IMHV. That bursting might have a role in acquisition of 

passive avoidance training is impossible to say from this data. Changes in the firing of 

cells following an experiential event have traditionally been time-locked to periods 

either during or very soon after the event itself. Such early electrophysiological 

changes have been associated with the initial stages of memory formation, the 

proposal being that this early activity in some way 'triggers' subsequent
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morphological and biochemical changes. Although this initial electrical activity is 

almost certainly essential for the initiation of the above changes, it has not been 

possible to investigate in this instance because of the very nature of the preparation. 

The earliest that recordings can be initiated following testing is governed by the time 

taken for anaesthesia, surgery and location of the area to be recorded from (these 

issues will be dealt with more fully in the General Discussion, Chapter 7). However, 

as outlined in Chapter 1, burst-firing has been shown to be the most efficient of 

initiating stimuli for the induction of LTP (Diamond et al., 1988). Therefore, if an 

LTP mechanism proves to be the process underlying acquisition of passive avoidance 

training, then burst-firing neurons may well be involved. Evidence in support of this 

proposal comes from experiments in which day-old chicks were rendered amnesic by 

bilateral, intracranial injections of AP5 before training on a passive avoidance task, 

suggesting that AP5 was interfering with the acquisition of the task (Patterson et al., in 

preparation). As stated in Chapter 1, AP5 is a potent inhibitor of burst generation, 

LTP and some forms of behavioural learning. This is accomplished through its 

antagonism of NMDA receptors, although it does not prevent normal synaptic 

transmission. This raises the possibility, therefore, that the amnestic action of AP5 

around the time of training may be through an antagonism of burst-firing in the (left?) 

IMHV, possibly in association with an antagonism of LTP-like processes.

In section 3.3 bursting in the IMHV was shown to have a distinct pattern. Bursts tend 

to occur in small groups, especially when the overall frequency of bursting is maximal 

between 6-7hr posttest These groups of bursts appear to be separated by quite long 

intervals of around 2.5sec. This long latency is, to say the least, somewhat suiprisirig. 

This rhythmic burst generation may be controlled by either extrinsic or intrinsic 

oscillators. It is difficult to envisage an extrinsic oscillator with a period of around 

2.5sec. However, there is a putative intrinsic oscillator: in vitro intracellular 

recordings from the IMHV have shown that neurons in this structure exhibit an
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extremely long afterhyperpolarizing potentid, lasting some hundreds of milliseconds 

(A. Webb, pers. comm.). If these cells are of the same class as those seen to burst in 

this Experiment, then this intrinsic membrane property may help to explain the long 

interval between groups of bursts. Another possibility is that this rhythmic generation 

of bursting is simply correlated with the rhythmic breathing movements of the chick 

whilst under anaesthesia. However, the breathing cycle (inhalation and exhalation) of 

the Urethane anaesthetized chick is much faster than 2.5sec (personal observation). 

Also, although this rhythmicity of burst-firing appears to some extent in every 

histogram in Figure 3.10, it is hard to imagine why the pattern should be so 

pronounced between 6-7hr posttest if it a correlate of breathing movements. A salient 

point to remember here is that these results have come from multi-unit recordings. The 

number of cells that are contributing to this recording is impossible to gauge, a rough 

estimate would be a total of about 10. In other words, the neuronal activity seen in the 

multi-unit trace is a form of network, or population activity. These groups of bursts 

may, therefore, reflect the near synchronous firing of groups of cells. The possible 

relevance of this synchronized activity to 'group selection' and other models of 

memory formation will be discussed more fully in the General Discussion chapter.

The results of this Experiment suggest that bursting in M-trained chicks reaches a 

maximal value and becomes highly synchronized during the period 6-7hr posttest. 

From Table 3.11, the average interburst interval of M chicks during this posttest 

period is approximately 0.12sec, a burst frequency of 8.33Hz, which falls within the 

theta frequency range. Bursting stimulation at a theta frequency has been shown to be 

the most efficient means of inducing LTP (Diamond et al., 1988), which raises the 

possibility that a process such as LTP may be occurring between bursting cells in the 

right IMHV of M-trained chicks 6-7hr posttest. Such an increase in the frequency and 

synchrony of bursting also appears to underlie both the generation and maintenance of 

LTP in the mammalian hippocampus (Buzsaki, 1989).
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In conclusion, the results reported in this Chapter indicate that there is a large increase 

in burst-firing within the IMHV of M chicks following passive avoidance training. 

This increase is time-dependent and exhibits a lateralization to the right hemisphere. 

The IMHV is one of two structures shown to exhibit increased neuronal activity 

following passive avoidance training (Rose and Csillag, 1985). The second structure 

highlighted in this investigation was the LPO. The Experiment in the following 

Chapter describes an investigation into burst-firing activity of the LPO following 

passive avoidance training.
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CHAPTER 4. Recording Multi-Unit Activity from the LPO of the 

Day-Old Chick Following Passive Avoidance Training.

Introduction.

The establishment of a training effect upon spontaneous bursting in the IMHV of the 

day-old chick (Chapter 3) suggested that a similar enhancement of neural activity 

might also occur in the LPO after training, as these were the two regions to show 

enhanced neuronal activity in the 2-DG study of Rose and Csillag (1985). The 

Experiments in this Chapter describe an investigation to test this hypothesis. In short, 

spontaneous multi-unit activity from the LPO of day-old chicks was recorded after 

training using a similar method to that for IMHV recordings. The results for these 

Experiments are presented in three sections, a similar format to that used in Chapter 3: 

the first section describes an investigation of burst-firing episodes in the LPO; the 

second section provides an examination of the timecourse and lateralization of bursting 

in the LPO; and the third section examines the patterning of bursting episodes in the 

LPO.

Methods.

The behavioural, anaesthetic, surgical and recording procedures were carried out as 

described in Chapter 2 for LPO recordings. This method can be summarized as 

follows: pairs of day-old chicks were housed in pens and then trained to produce two 

treatment groups. One group was trained using a methylanthranilate-coated bead (M 

chicks) and the other using a water-coated bead (W chicks). Only birds that pecked the 

training bead were included in later parts of the experiment. Chicks that trained 

successfully were tested one hour posttraining with a dry bead. M chicks that pecked 

the dry bead were rejected, as were W chicks that avoided the dry bead. Each group 

was then assigned a code. Birds were then taken one at a time for recording. The order
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Figure 4.1; Schematic representation of recording sites in LPO.

HA

HV

LPO

Figure 4.1; Representation of recording sites in LPO. Only the right hemisphere is 

shown. Filled circles represent recording sites. The section corresponds to the 

anterior 5.2 reference in the Youngren and Phillips (1988) atlas of the 3 day-old 

chick. The section indicates that recordings were made from a posterior part of the 

LPO. Abbreviations: HA, hyperstriatum accessorium; HV, hyperstriatum ventrale; 

N, neostriatum; E, ectostriatum; LPO, lobus parolfactorius. Scale bar = 1mm.
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Figure 4.2(A); Multi-unit Activity Recorded from the LPO.
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Figure 4.2(A); LPO multi-unit activity. Top trace includes a bursting epoch. Lower 

trace represents simultaneously recorded local field potential Note the coincidence 

of bursting with a negative shift in field potential. Calibrations are 0.5mv (top 

trace) and l.Omv (lower trace).
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Figure 4.2(B); LPO Multi-unit Activity Using a Slower Oscilloscope 

Sweep Time to That Used in 4.2(A).
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Figure 4.2(B); LPO multi-unit activity using a slow sweep time. Due to the 

compression of data, individual spikes cannot be discerned. The negative and 

positive peaks of each spike have been 'fused' together to form the two 'edges' of 

the spike train. A large amplitude single spike can be discerned, followed by two 

bursts. Calibrations are mV (vertical) and seconds (horizontal).
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Figure 4.3; Mean LPO Burst Frequencies for Methyl and Water 

Trained Day-old Chicks over 1-lOhr Posttest
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Figure 4.3; Mean bursting per 2min for the LPO of methyl and water-trained, 

day-old chicks over 1-lOhr posttest. The level of bursting represents the mean 

value for left and right hemispheres. The numbers in bars represent sample 

size. Chicks trained on a methylanthranilate coated bead exhibit a significantly 

higher level of bursting when compared to chicks trained on a water coated 

bead (p<0.02). Error bars are standard error of the mean.
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Figure 4.4; Hemispheric Differences in Mean LPO Burst Firing 

for Methyl- and Water-trained Day-old Chicks over the 

period 1-lOhr Posttest.
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Figure 4.4; Hemispheric differences in bursting per 2min between methyl- and 

water-trained day-old chicks over 1-lOhr posttest. The sample sizes for each 

group are as per Figure 4.3, that is, 21 methyl-trained chicks and 17 water- 

trained chicks. Although there is a trend for the left and right hemishpheres of 

methylanthranilate-trained chicks to exhibit higher mean LPO burst rates 

when compared to water-trained chicks, these differnces do not reach 

significance (*p=0.07). There is no significant difference in burst-firing rates 

between hemispheres within either group.
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in which birds were taken was random, as was the order in which hemispheres were 

recorded from. Figure 4.1 shows a typical histological reconstruction of recording 

sites.

4.1 Ejects of passive avoidance training on bursting recorded in 

the LPO over 1-lOhr posttest.
Results.

A typical burst recorded from the LPO is shown in Figure 4.2. The lower trace 

represents the associated focal EEG. Mean burst frequencies (i.e., the mean of left and 

right hemispheres) for both methyl (M) and water (W) trained animals are presented in 

Figure 4.3. There is a significant difference between groups (p<0.02; Anova F- 

ratio=8.20). The mean bursting frequency for each hemisphere of both groups is 

presented in Figure 4.4. There is: (1) no significant within-group hemispheric 

asymmetry in LPO bursting; and (2) a non-significant trend for a between-group ' 

hemispheric difference in LPO bursting (p=0.07 in both cases)

Discussion

Bursting in the LPO appears quite similar to that from the IMHV (Figure 4.2). The 

overall burst frequencies recorded from the LPO of M birds are significantly higher 

when compared to those for W birds in data pooled over the 1-lOhr posttest period. 

The overall levels of LPO bursting for both groups of chicks appears to be quite 

similar to those seen in the IMHV (see Chapter 3, Figure 3.3 for IMHV bursting 

levels). There are no hemispheric differences in LPO bursting, although there is a 

trend for bursting in the left and right LPOs of M birds to be higher than the respective 

LPOs of W birds.

In Chapter 3, a training-induced, lateralized and time-dependent increase in IMHV 

bursting was reported. It appears, therefore, that training day-old chicks on a one-trial
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passive avoidance task induces an increase in one particular type of neuronal firing, 

high-finequency bursting, in (at least) two areas of the chick forebrain. To examine any 

timecourse of bursting in the LPO, the data presented in Figure 4.3 were plotted 

against time as well as treatment group. This analysis is presented in the next section.

4.2. The Timecourse and Lateralization of Bursting in the LPO 

following Training.
Introduction

The timecourse of bursting in the LPO was investigated by pooling the data into three 

equally-sized posttest periods: l-4hr posttest; 4-7hr posttest; and 7-lOhr posttest. The 

lateralization of LPO bursting was investigated by splitting the data set in a similar 

fashion.

Results.

The LPO burst frequency for each group is plotted against time in Figure 4.5. This 

shows the timecourse of bursting over 1-lOhr posttest for both W and M-trained day- 

old chicks. Subjecting these data to an analysis of variance revealed that there was a 

significant effect of time posttest on levels of LPO bursting (Anova F-ratio=4.01, 

p=0.007). Subsequent post hoc Student's t-tests demonstrated that M-trained animals 

show a significant increase in bursting over W animals between 4-7hr posttest 

(p<0.02). There is no significant difference between groups during the periods l-4hr 

and 7-lOhr posttest.

Figure 4.6 shows the same data described in Figure 4.5, in this instance as bursting 

by hemisphere for M birds with time. Figure 4.7 is the counterpart for W trained 

animals. No asymmetry is evident during any time period for either M or W birds.

The data presented in Figure 4.8 represents the mean percentage of discriminated 

spikes that fall within bursts for both M and W birds, displayed once again as a

Page 129



Figure 4.5; The Timecourse of LPO Bursting Measured Over

1-lOhr Posttest for Methyl- and W ater-trained Chicks.
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Figure 4.5; The timecourse of bursting for methyl- and water-trained chicks over 

the 1-lOhr posttest period. The sample sizes for each group are indicated in bars. 

Methy-trained chicks exhibit significantly higher burst-frequencies between 4-7hr 

posttest when compared to water-trained chicks (*p<0.02). Error bars are standard 

error of the mean.
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Figure 4.6; Mean Bursting in Left and Right LPO Measured Over

1-lOhr Posttest for M ethyl-trained Chicks.
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Figure 4.6; Mean bursting in the left and right LPO for methyl-trained chicks over 

the 1-lOhr posttest period. The sample sizes for each Methyl-trained group are as 

per Figure 4.5. There are no significant differences between hemispheres at any 

time. Error bars are standard error of the mean.
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Figure 4.7; Mean Bursting in Left and Right LPO Measured Over

1-lOhr Posttest for W ater-trained Chicks.

20 i

15-
CM
5A
jS 10-

5-

1-4 hours

Left Hem 

^  Right Hem

4-7 hours 
Time Posttest

7-10 hours

Figure 4.7; Mean bursting in the left and right LPO for water-trained chicks over 

the 1-lOhr posttest period. The sample sizes for each water-trained group are as per 

Figure 4.5. There are no significant differences between hemispheres at any time. 

Error bars are standard error of the mean.
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Figure 4.8; The Percentage of Discriminated Spikes to Fall Within 

Bursts for both Methyl- and Water-trained Chicks as a 

Function of Time Posttest.
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Figure 4.8; The percentage of discriminated spikes to be included within bursts for 

both methyl- and water-trained chicks over the 1-lOhr posttest period. The sample 

sizes for each group are as per Figure 4.5.
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Figure 4,9; The Mean Number of Spikes per Burst for both 

Methyl- and Water-trained Chicks as a Function of 

Time Posttest.
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Figure 4.9; The mean number of spikes per burst for both methyl- and water- 

trained chicks over the 1-lOhr posttest period. The sample sizes for each group are 

as per Figure 4.5. Bursts recorded from methyl-trained chicks 4-7hr posttest 

display significantly more spikes per burst than bursts recorded from water-trained 

chicks (*p<0.05). Error bars are standard error of the mean.
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timecourse. Methyl-trained chicks show a much greater percentage of spikes in bursts 

during the period 4-7hr posttest.

The data in Figure 4.9 shows the mean number of spikes per burst for M and W birds, 

again as a timecourse. The number of spikes per burst is significantly higher in M 

birds during the period 4-7hr posttest (p<0.05). No such difference exists between 

groups either l-4hr or 7-lOhr posttest

Discussion.

As can be seen, the increased LPO bursting seen in M chicks when compared to W 

chicks does not exhibit a generalized increase with time, but rather shows a distinct 

timecourse. The mean level of bursting in M birds is significantly higher between 4- 

7hr posttest, as is the mean number of spikes per burst. Although there was no 

significant

difference in the number of spikes per burst in data from the IMHV in Chapter 3, a 

significant increase in the number of spikes per burst was reported in the IMHV of M 

birds by Mason and Rose (1987). As Mason and Rose (1987) suggested, an increase 

in the number of spikes per burst could indicate that bursts were becoming longer in 

duration, or it might be that bursts were tending to occur with greater synchrony, that 

is, two bursts occuiring almost simultaneously in a multi-unit recording may appear as 

one long burst. The percentage of spikes to occur in bursts is maximal during the 4- 

7hr posttest period, which suggests that the firing-pattem of large amplitude neuronal 

activity becomes predominantly burst-firing during this posttest period, that is, the 

increase in bursting during this period is not accompanied by an equal increase in the 

the amount of non-bursting, high amplitude activity.

In contrast to the IMHV data presented in Chapter 3, which indicated that there was an 

asymmetry of bursting that favoured the right hemisphere 6-7hr posttest, no
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hemispheric asymmetry of bursting in the LPO appears in either M or W birds during 

the posttest period, ^though there is a trend for bursting in the LPO of the right 

hemisphere to be elevated in both groups.

From these results it appears that the increase in the rate and size of bursts in the LPO 

is confined to the period 4-7hr posttest This time-dependency of LPO bursting is 

similar to that for bursting in IMHV, suggesting that bursting in/between these two 

structures may be subject to some form of mutual control It has been demonstrated on 

the basis of lesion studies that the LPO is a necessary structure for longer-term storage 

of memory for passive avoidance training (Gilbert et al., in press), which raises the 

possibility that this time-dependent increase in LPO and IMHV bursting may form an 

integral part of the process that underlies this long-term storage. This will be discussed 

in the General Discussion chapter.

In Chapter 3, bursts recorded from the IMHV were shown to occur in definite 

patterns, especially when the level of bursting was maximal. The next section 

describes a similar investigation of the patterning of burstmg in the LPO.

4.3. The Characteristics of Bursting Patterns.
Introduction

The method for the generation of burst start times was identical to that used in Chapter

3. During burst analysis, burst start times were saved in an event channel. Analysis of 

this channel provided inter-burst interval histograms burst autocorrelelograms. Burst 

analysis was then performed on burst start times to provide data which would indicate 

the patterning of bursts.

Results.

The pattern of bursting can be seen in the interval histograms presented in Figure
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Figure 4.10; Bursting from the LPO displayed in the form of inter-burst

interval histograms and burst autocorrelelograms.
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Figure 4.10; Each histogram and autocorrelelogram represents 5min of data.

A, B. Bursting recorded form the left (A) and right (B) LPO of a methyl-trained 

chick between 4-5hr posttest.
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Figure 4.10; C and D
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c, D. Bursting recorded from the left (C) and right (D) LPO of niethyl-trained
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Figure 4.10; E and F.
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E, F. Bursting recorded from right (E) and left (F) LPO of methyl-trained chick 

6-7hr posttest.
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4.10. These histograms represent the distribution of burst start times. The inset graphs 

are autocorellelograms of the burst start times used in the accompanying histogram. 

Each graph represents the results from an individual chick, recorded at the posttest 

time indicated. Table 4.11 shows the results of passing the start times of LPO bursts 

through the simple cluster analysis described in Chapter 3 for Table 3.11.

Table 4.11. Analysis of bursting recorded from  the LPO of four 

m ethyl-trained chicks between 4-7hr posttest.

Average Average

bursts/group interburst time (sec)

1. 2.14 0.129

2. 2.16 0.140

3. 2.26 0.126

4. 2.25 0.096

Average 2.21 0 .123

D iscussion

As can be seen from both the histograms and autocorrelations of Figure 4.10, the 

pattern of burst-firing in the LPO is distinctly non-random. As can be seen in Figure

4.10, bursts appear to be occurring in small groups.The histograms of Figure 4.10 

exhibit short latency peaks (the 'within group' interburst intervals) and secondary, 

longer latency intervals (the intervals between groups of bursts). This biphasic pattern 

is most evident when the burst frequency is maximal, that is, between 4-7hr posttest 

Table 4.11 indicates that these groups are between 2-3 bursts long. This patterning of 

LPO bursts between 4-7hr posttest appears similar to the pattern of IMHV bursting 

during the same posttest period (compte Figure 4.10 A, B and C to Figure 3.10 A 

and B, especially the autocorellelograms), although the pattern in the IMHV seems 

more pronounced. It appears, therefore, that day-old chicks trained on a one-trial
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passive avoidance task show a significant elevation of burst-firing during the 4-7hr 

posttest period in two regions of forebrain (the IMHV and LPO) and that this 

increased bursting follows a similar pattern (groups of bursts) in both of these 

structures.

General Conclusions

In Section 4.1, a significant overall increase in LPO bursting was shown in M chicks 

over W chicks. This increase in LPO bursting exhibited no lateralization and could 

only be seen as an overall increase, although there was a trend for individual 

hemispheres of M chicks to exhibit higher mean bursting rates when compared to the 

respective hemispheres of W chicks. This absence of lateralization in either group was 

also seen when the data were described as a timecourse in Section 4.2, although there 

was a trend for the right hemisphere to show a higher mean burst rate in both groups. 

However, when mean overall burst rates were plotted as a timecourse, there was a 

definite peak in bursting in M chicks between 4-7hr posttest. Bursting in the LPO of 

M chicks during this posttest period also exhibited: (1) a significantly higher number 

of spikes per burst; and (2) a greater percentage of discriminated spikes to be included 

in bursts. Section 4.3 further analyzed this bursting and indicated that bursts in the 

LPO occurred in a similar fashion to those recorded from the IMHV, that is, in small 

groups of 2-3 bursts with large intervals between such groups.

When taken together, these results are similar to those reported in Chapter 3 for 

bursting in the IMHV. It appears that bursting is elevated in both the LPO and the 

IMHV of M chicks following passive avoidance training, and that these increases 

follow a similar timecourse. Bursting in both structures is organized into small groups 

of bursts and this organization is most evident 4-7hr posttest. As disçussed in (Chapter 

3, such an increase in both the occurrence and synchronization of biu'sting underlies 

the initiation and perhaps the maintenance of LTP, which suggests that an LTP-like 

mechanism may underlie the formation of long-term memory for passive avoidance
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training (Buzsaki, 1989). The LPO is necessary for long-term memory of passive 

avoidance training (Gilbert et aL, in press). The lack of lateralization in bursting found 

in the present experiments is consistent with the lack of lateralization of storage for 

memory in the LPO (either LPO is sufficient for recall).

The increased activity in the LPO appears tençorally correlated with a similar increase 

in the IMHV. This suggests two possibilities: either the activity of one structure is 

influencing the activity of the other, or there may be a third structure which, through 

its projections to both IMHV and LPO, is controlling their activity. If we consider the 

first possibility, although it is true to say that all structures of the brain are connected 

together, via routes some of which are more tortuous than others, no direct pathway 

between the IMHV and the LPO has been demonstrated in the chicken. Indeed, this is 

an area of current research. This leaves us with the second possibility. Certain 

pathways between the IMHV and LPO that involve intermediary brain structures have 

been identified (see Figure 7.1). By looking at the retrograde transport of horseradish 

peroxidase. Boxer and Csillag (1986, chick) were able to show that the LPO receives 

afferent projections from four brain regions: the archistriatum; the nucleus superficialis 

parvocellularis; the area ventralis tegmentalis of Tsai; and the nucleus tegmenti 

pedunculo-pontinus. Projections from the archistriatum to the LPO have recently been 

confirmed in the chick with the use of lectin tracing (Davies, pers. comm.). Bradley et 

al. (1985) have shown that the archistriatum is reciprocally connected to the IMHV. 

The archistriatum of the chick, therefore, sends afferent projections to both the IMHV 

and the LPO. Dubbeldam and Visser (1987) have shown that, in the mallard, the HV 

projects to distinct regions of the neostriatum: the dorsal, ventral, and lateral portions 

of the neostriatum frontale. The dorsal portion of the neostriatum frontale projects to 

both the archistriatum and the LPO. In the study by Bradley et al. (1985) they 

demonstrated a projection from the neostriatum to the IMHV. From this it appears that 

two regions of the avian brain (the neostriatum and the archistriatum) send afferent
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projections to both the IMHV and the LPO. These issues will be discussed more fully 

in the General Discussion.

The Experiment detailed in Chapter 5 was designed to test whether the increased levels 

of bursting seen in the LPO after training are direct and specific correspondent of 

memory formation for the passive avoidance task.
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CHAPTER 5. The Effects of Electroshock on Bursting 

Activity Recorded from the LPO of the Day-Old Chick 

FoIIovnng Passive Avoidance Training.

Introduction.

Although the amnesic actions of electroconvulsive shock (ECS) were first noted in 

humans (Zubin & Barrera, 1941), most of the experimental work on the effects of 

ECS on memory has been carried out with rodents as experimental subjects. The 

preference for rodents followed the introduction of a simple one-trial learning 

procedure by McGaugh (1966). The work on ECS and memory in animals has 

produced controversial interpretations regarding the effects of ECS (for review see 

Dawson & McGaugh, 1969; Gibbs and Mark, 1973). However, it is now well 

established that the learning of a variety of behavioural tasks is followed by a period of 

decreasing susceptibility to the disruptive effects of ECS, as measured by subsequent 

performance. Such a retention deficit, often referred to as retrograde amnesia, can also 

be induced by spreading cortical depression, hypoxia, hypothermia, localized brain 

stimulation and many other treatments (see Gibbs & Maik, 1973; Jarvik, 1972).

ECS has been shown to produce amnesia in day-old chicks. Chicks given ECS during 

a 45sec period after passive avoidance training are amnesic at test (Lee-Teng and 

Sherman, 1966). Rose and Harding (1984) studied the effects of subconvulsive ECS 

on the training-induced fucosylation of glycoproteins from the chick forebrain. In this 

experiment chicks were given ECS either immediately posttraining or lOmin 

posttraining. Chicks that received delayed electroshock showed recall at test and a 

training-induced increase in fucosylation of forebrain glycoproteins; chicks that had 

received immediate posttraining ECS were amnesic and showed no such increase in 

fucosylation. This experiment demonstrated that increased fucosylation of 

glycoprotein was directly associated with memory, rather than with some general 

aspect of the task such as the taste of methylanthranilate.
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A similar technique was used by Patel et al. (1988) to show that training-induced 

increases in dendritic spine density in the IMHV were related to memory formation. In 

this experiment, methyl-trained chicks were given subconvulsive ECS 5min after 

training. This treatment produced two groups of chicks: one group that showed recall 

(avoided the test bead) and another that was amnesic (pecked the test bead). Changes 

in spine density measured 24hr posttraining were restricted to the group that displayed 

recall, demonstrating that spine density changes were specifically related to memory 

formation.

Mason and Rose (1988) also exploited the use of subconvulsive ECS to demonstrate 

that increased bursting in the IMHV is also directly associated with memory 

formation. Only chicks that showed recall exhibited an increased IMHV burst 

frequency (see Chapter 2 for details of this experiment).

In Chapter 4 a training-induced increase in bursting in the LPO of the day-old chick 

was reported. The following Experiment describes an investigation using 

subconvulsive ECS to test whether training-induced increases in LPO bursting are 

direcdy associated with memory formation for the task. The rationale behind the use of 

ECS in this Experiment is as follows: to test whether bursting is related to memory 

formation, it is necessary to separate the components of the task that are specific to 

memory formation from those that are non-specific, e.g., the taste of 

methylanthranilate and the motor activity during pecking etc. One way to do this is to 

produce two groups of chicks that have been subjected to identical training procedures 

but one group remembers the task (avoids the bead) and one group that is amnesic 

(pecks the bead). These two groups can be recorded from and any differences in levels 

of bursting between the groups should reflect retention rather than, for instance, the 

sequelae of the taste of methylanthranilate.
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Normal training and testing produces two such groups, as not all chicks remember the 

task. However, chicks tend to perform with a high degree of success (one of the 

attractions of the task): the majority of chicks will remember the task, only the 

minority will forget. Such unequal group sizes are disadvantageous in a 'blind' 

experiment that compares chicks that remember against chicks that forget: the two 

groups should be of roughly equal size to ensure that no experimenter bias is 

introduced during data capture and analysis. Therefore, to provide equally matched 

groups, methylanthranilate-trained chicks were subjected to ECS 5min posttraining. It 

is important to note that all these chicks experienced the same task, including the taste 

of methylanthranilate, etc. Thus, the delayed ECS procedure produced two groups of 

identically trained and experienced chicks, approximately equal in size, that differed in 

only one respect: the presence or absence of memory for the task, as measured by 

subsequent test

The results of this Experiment will be presented two sections, a format similar to the 

preceding Chapters of this thesis.

Methods.

The behavioural, anaesthetic, surgical and recording procedures were carried out as 

described in Chapter 2 for LPO recordings, with the exception that chicks were 

subjected to subcorivulsive ECS 5min posttraining. This method can be summarized 

as follows: pairs of day-old chicks were housed in pens and then trained using a 

methylanthranilate-coated bead. Only birds that pecked the training bead were included 

in later parts of the experiment Chicks that trained successfully were given a brief, 

transcranial, subconvulsive electroshock 5min posttraining. The details of the ECS 

magnitude were: 12mA, llOV, 220ms duration at 50Hz. This shock was applied 

through hand-held, transdermal electrodes. Chicks were then tested one hour
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posttraining with a dry bead. This procedure generated two groups of chicks at test: a 

group that pecked the bead (were amnesic) and a group that avoided the bead 

(displayed recall). Each bird was then assigned a code. Birds were then taken one at a 

time for recording over the period 1-lOhr posttest. The order in which birds were 

taken was random, as was the order in which hemispheres were recorded from. Codes 

were broken at the end of all experimental procedures.

5;1. The Effect of Electroshock on Bursting Recorded from the 

LPO over the Period 1-lOhr Posttest.

Results.

Mean LPO burst frequencies (i.e., the mean of left and right hemispheres) for both 

methyl-trained chicks that remembered (Avoid) and forgot (Peck) the task are 

presented in Figure 5.1. There is a significant difference between these groups 

(p=0.05); chicks that remember the task show significantly more bursting than 

amnesic chicks. The mean bursting frequency for each hemisphere of both groups is 

presented in Figure 5.2. There is neither no significant within-group heniispheric 

asymmetry in LPO bursting. Also, there is no significant between-group hemispheric 

asymmetry in LPO bursting (one-tailed t-test: left hem. avoid vs left hem. peck 

p=0.21; light hem. avoid vs right hem. peck p=0.18).

Discussion

The overall burst frequencies recorded from the LPO of chicks that remember the task 

are significantly higher than those for chicks that forgot the task in data pooled over 

the 1-lOhr posttest period. There are no hemispheric differences in LPO bursting 

between Avoid and Peck groups. These results suggest that the training-induced 

increases in bursting in the LPO are direct correspondents of memory 

formation/consolidation for the passive avoidance task. This increase in bursting was 

shown in Chapter 4 to have a distinct time-dependent component: bursting in the LPO
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Figure 5.1; Mean LPO Burst Frequencies for Avoid and Peck 

Groups of Day-old Chicks over 1-lOhr Posttest.

8 i

oi
kUt

AVOID PECK

Figure 5.1; Mean LPO bursting recorded over the period 1-lOhr posttest for groups 

of day-old chicks that at test either avoid (remember) or peck (amnesic). The level 

of bursting represents the mean value for left and right hemispheres (bursts per 

2min). The numbers in bars represent sample size. Chicks that avoid the bead at test 

exhibit a significantly higher level of bursting when compared to chicks that peck at 

test (*p=0.05). Error bars are standard error of the mean.
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Figure 5.2; Mean Bursting for Left and Right LPO of Avoid

and Peck G roups of Day-old Chicks over the

period 1-lOhr Posttest.
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Figure 5.2; Hemispheric differences in bursting per 2min between Avoid and Peck 

day-old chicks over 1-lOhr posttest The sample sizes for each group are as per 

Figure 5.1, that is, 18 chicks that avoided and 14 chicks that pecked at test. There 

are no significant differences between left and right hemispheres of chicks that 

avoid compared to chicks that peck. Also, there are no significant differences 

between hemispheres in burst-firing rates within either avoid or peck groups.
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of M chicks was significantly higher during the period 4-7hr posttest. To examine the 

timecourse of bursting following electroshock, the data presented in Figure 5.1 were 

plotted against time. This analysis is presented in the next section.

5.2. The Timecourse and Lateralization of Bursting in the LPO 

following Electroshock Recorded 1-lOhr Posttest.

Introduction

The timecourse of bursting in the LPO following subconvulsive ECS was investigated 

by pooling the data from Avoid and Peck groups into three posttest periods: l-4hr 

posttest; 4-7hr posttest; and 7-lOhr posttest. These periods were chosen on the basis 

of the increased bursting seen in the LPO of non-electroshocked chicks 4-7hr posttest, 

as reported in the Chapter 4. The lateralization of LPO bursting in Avoid and Peck 

groups was investigated by splitting the data set in a similar fashion to provide three 

posttest periods.

Results.

The LPO burst finequency after ECS for Avoid and Peck groups is plotted against time 

in Figure 5.3. As can be seen, chicks that Avoid show a significant increase in 

bursting over chicks that Peck between 4-7hr posttest (p<0.01). There is no 

significant difference between groups during the periods l-4hr or 7-lOhr posttesL

Figure 5.4 shows the same data described in Figure 5.3, in this instance as bursting 

by hemisphere for Avoid birds with time. Figure 5.5 is the counterpart for Peck 

chicks. No asymmetry is evident during any time period for either Avoid or Peck 

chicks.

The data presented in Figure 5,6 represents the mean percentage of discriminated 

spikes that fall within bursts for both Avoid and Peck chicks, displayed once again as
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a timecourse. Avoid chicks show a much greater percentage of spikes in bursts during 

the period 4-7hr posttest

The data in Figure 5.7 shows the mean number of spikes per burst for Avoid and Peck 

birds, again as a timecourse. No significant difference exists between groups during 

any posttest period.

Discussion.

As can be seen, the increased LPO bursting evident in chicks that avoid the test bead 

follows a distinct timecourse. The mean level of bursting in these chicks that display 

recall is significantly higher between 4-7hr posttest. The percentage of spikes to occur 

in bursts is maximal during the 4-7hr posttest period in chicks that remember the task, 

suggesting that the firing-pattem of large amplitude neuronal activity becomes 

predominantly burst-firing during this posttest period, that is, the increase in bursting 

during this period is not accompanied by an equal increase in the the amount of non­

bursting, high amplitude activity .The lack of asymmetry in LPO bursting in both 

groups is in agreement with the lack of asymmetry seen in Chapter 4.

General Conclusions

Subconvulsive ECS was used to investigate whether the increased bursting seen in the 

LPO after passive avoidance training was a direct correspondent of memory for the 

task, or was alternatively a consequence of some non-specific aspect of the training, 

such as the taste of methylanthranilate. The results in Section 5.1 demonstrate that the 

increase in the rate of bursting in the LPO after training is directly associated with 

memory formation for the task. Section 5.2 demonstrates that this increase in bursting 

is predominantly confined to the period 4-7hr posttesL This time-dependency of LPO 

bursting in chicks that remember the task is similar to that for training-induced 

bursting finom both the IMHV (Chapter 3) and the LPO of non-electroshocked chicks
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Figure 5.3; The Timecourse of LPO Bursting Measured Over

1-lOhr Posttest for Avoid and Peck Chicks.
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Figure 5.3; The timecourse of bursting for Avoid and Peck chicks over the 1-lOhr 

posttest period. The sample sizes for each group are indicated in bars. Avoid chicks 

exhibit significantly higher burst-frequencies between 4-7hr posttest when 

compared to Peck chicks (*p<0.01). Error bars are standard error of the mean.
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Figure 5.4; The Lateralization of LPO Bursting M easured Over

1-lOhr Posttest for Avoid Chicks.
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Figure 5.4; The lateralization of bursting in the LPO for Avoid chicks over the 1- 

lOhr posttest period. The sample sizes for each Avoid group are as per Figure 5.3. 

There are no significant differences between hemispheres at any time. Error bars are 

standard error of the mean.
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Figure 5.5; The Lateralization of LPO Bursting M easured Over

1-lOhr Posttest for Peck Chicks.
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Figure 5.5; The lateralization of bursting in the LPO for Peck chicks over the 1- 

lOhr posttest period. The sample sizes for each water-trained group are as per 

Figure 5.3. There are no significant differences between hemispheres at any time. 

Error bars are standard error of the mean.
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Figure 5.6; The Percentage of Discriminated Spikes to Fall Within 

Bursts for both Avoid and Peck Chicks as a 

Function of Time Posttest.
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Figure 5.6; The percentage of discriminated spikes to be included within bursts for 

both Avoid and Peck chicks over the 1-lOhr posttest period. The sample sizes for 

each group are as per Figure 5.3.
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Figure 5.7; The Mean Number of Spikes per Burst for both 

Avoid and Peck Chicks as a Function of 

Time Posttest.
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Figure 5.7; The mean number of spikes per burst for both Avoid and Peck chicks 

over the 1-lOhr posttest period. The sample sizes for each group are as per Figure 

5.3. There are no significant differences between groups. Error bars are standard 

error of the mean.
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(Chapter 4). Thus, the ECS data presented here provides more evidence to suggest 

that bursting during the period 4-7hr posttest in both the IMHV and the LPO is crucial 

to the learning of the task and that the neuronal activity in/between these two structures 

may be subject to some form of mutual control

There are some slight differences between the LPO bursting data from normally 

trained chicks (Chapter 4) and the data from trained-ECS chicks presented here. The 

overall level of bursting in chicks that avoid after ECS is slightly lower than the overall 

bursting level for methyl-trained chicks. However, the mean bursting levels of water- 

trained chicks and chicks that peck after ECS are quite similar. This may explain why, 

in contrast to normally trained chicks, there is no significant difference in the number 

of spikes per burst between chicks that avoid and chicks that peck after ECS; a lower 

mean burst rate reduces the chances of bursts in the avoid group occurring 

synchronously, one of the factors proposed in Chapter 4 as underlying an increase in 

spikes per burst Peihaps the most marked difference between normally trained chicks 

and chicks given posttraining ECS is seen in burst frequencies recorded during the 

period 4-7hr posttest Chicks that peck at test (are amnesic) exhibit a distinctly lower 

level of bursting during the 4-7hr posttest period when compared to the 1-4 and 4-7hr 

periods. This 4-7hr value is also lower than the level of bursting seen in non- 

electroshocked, water-trained animals during the same posttest period (see Chapter 4). 

This implies that there may be an increasing graduation of LPO bursting, running from 

amnesic chicks (with the lowest bursting levels) to water-trained chicks and then to 

methyl-trained chicks with the highest level of bursting. The proposal that water 

chicks should exhibit a higher LPO burst frequency than amnesic chicks suggests that 

W chicks leam about the task. This is supported by data showing that chicks that peck 

a dry (non-reinforcing) bead form a memory of that experience: a memory that is 

sensitive to protein synthesis inhibition (Barber et al., 1990). Memory formation for 

the passive avoidance task has been shown here to be accompanied by an increase in
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burst firing in the LPO, which suggests that the level of bursting in water trained 

chicks should be higher than that of amnesic/naive chicks. The inclusion of a water- 

trained, electroshocked group in the Experiment detailed above might have helped to 

clarify this situation. However, it must be emphasised that it is impossible to assess 

amnesia in water-trained animals: they peck both upon training and testing. Whether 

they remember or forget their initial training cannot be ascertained, as they would peck 

at test in both instances.

A similar pattern of bursting to that seen in the LPO after ECS is also seen for bursting 

in the IMHV after ECS (Mason, pers. comm.). Bursting in the IMHV of chicks that 

have been rendered amnesic by ECS is reduced to an extremely low level during the 

period 4-7hr posttest, after which bursting rises to a level similar to that of chicks that 

remember, precisely the same sequence of events reported here for bursting in the LPO 

after ECS. This provides more evidence to suggest that the activities of the IMHV and 

LPO are 'linked' in some way during memory formation for the task.

In conclusion, the enhancement of bursting in the LPO seen after training is a direct 

correspondent of memory formation for the task and is not due to non-specific aspects 

of the task such as the taste of methylanthranilate.

Lesion studies have indicated that day-old chicks show recall for passive avoidance 

training despite being subjected to bilateral, pretraining lesions of the LPO (Gilbert et 

al., in press). However, if similar LPO-lesioned chicks are methyl-trained and then 

subjected to right IMHV lesions, placed Ihr posttraining, they are subsequently 

amnesic at a 24hr test Chicks given pretraining LPO lesions followed by posttraining 

lesions of the left IMHV still show recall at test. Similarly treated water-trained chicks 

will peck at test It appears, therefore, that in the absence of the LPO the right IMHV 

becomes a necessary structure for long-term memory of the task. The next Chapter
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describes an experiment in which chicks were given bilateral LPO lesions and then 

trained as normal. The spontaneous activity of the IMHV of both hemispheres was 

subsequently recorded to examine any electrophysiological consequences of the 

capacity of the right IMHV to become a necessary stnieture for memwy in the absence 

of the LPO.
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CHAPTER 6. The Effects of Pretraining, Bilateral LPO Lesions 

on Bursting Activity Recorded from the IMHV of the Day-Old 

Chick After Passive Avoidance Training.

Introduction.

Day-old chicks show recall for passive, avoidance training despite being subjected to 

bilateral, pretraining lesions of the LPO (Gilbert et al., in press). However, if similar 

LPO-lesioned chicks are methyl-trained and then subjected to right IMHV lesions, 

placed Ihr posttraining, they are subsequently amnesic at a 24hr test. It appears, 

therefore, that under tliese conditions the right IMHV becomes a necessary structure 

for long-term memory of the task.

The following Experiments describe the effect of bilateral LPO lesions on the 

spontaneous activity of the IMHV. Multi-unit recordings were made after passive 

avoidance training from the IMHV of chicks that had previously been given 

pretraining, bilateral LPO lesions. As reported above, similar LPO lesions have been 

shown to be non-amnestic. Therefore, the activity recorded from the IMHV of chicks 

with pretraining, bilateral LPO lesions will still be from chicks that remember the task. 

Evidence to suggest that this IMHV activity may be different from that seen in the 

IMHV of chicks without LPO lesions comes from the experiment described above; the 

right IMHV becomes a necessary structure for memory of the task in chicks that lack 

an intact LPO (Gilbert et al., in press). This altered capacity of the IMHV may be seen 

in changes in multi-unit activity. Also, the experiments described in earlier Chapters of 

this Thesis have provided some physiological evidence to suggest that the activities of 

neurons in the IMHV and the LPO are closely correlated following training on a 

passive avoidance task, that is, there may be some functional connection between the 

two structures. From this, it might be expected that any influence that the activity of 

the IMHV may have frrom/over the activity of the LPO will be severely disrupted in
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chicks with LPO lesions.

Methods.

The behavioural, anaesthetic, surgical and recording procedures were carried out as 

described in Chapter 2 for IMHV recordings. All lesioning and training procedures 

were carried out by Dr. T.A. Patterson. Chicks were given either bilateral LPO lesions 

or bilateral sham lesions on the day before training. These chicks were allowed to 

recover overnight. On the day of training pairs of day-old, LPO-lesioned chicks and 

sham-lesioned chicks were housed in pens. They were then pretrained using a white 

bead and trained using either a methylanthranilate-coated or a water-coated bead. Only 

birds that pecked the training bead were included in later parts of the experiment. 

Chicks that trained successfully were tested one hour posttraining with a dry bead. 

This procedure generated four groups of chicks: LPO-lesioned M chicks, LPO- 

lesioned W chicks, sham-lesioned M chicks and sham-lesioned W chicks. Each of 

these groups was assigned a code. Birds were then taken one at a time for recording 

over the period 1-lOhr posttest These recordings were carried out by J. Gigg. The 

order in which birds were taken was random, as was the order in which hemispheres 

were recorded from. Codes were broken at the end of all experimental procedures.

6.1. The Effect of Pretraining, Bilateral LPO Lesions on Bursting 

Recorded from the IMHV over the Period 1-lOhr Posttest.

Results.

A representative histological reconstruction of an LPO lesion is presented in Figure

6.1. Histological procedures were carried out by J. Gigg. Mean IMHV burst 

frequencies (i.e., the mean of left and right hemispheres) for LPO-lesioned and sham- 

lesioned M and W chicks are presented in Figure 6.2. Sham-lesioned M chicks show
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Figure 6.1; A Schematic Representation of Typical Bilateral LPO Lesions.
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Figure 6.1; Schematic representation of typical LPO lesions. Sections 1, 2, 3, 4 

and 5 move anterior-posterior and correspond to the anterior 6.5, 6.0, 5.0, 4.5 and 

4.0 references in Youngren and Phillips' (1978) stereotaxic atlas of the 3 day-old 

chick. Filled areas represent extent of lesions. Black-filled areas indicate tissue 

destroyed in 90% of brains, stippled areas indicate tissue destroyed in more than 

25% of brains. No such damage was seen in sham-lesioned chicks. Abréviations: 

HA, hyperstriatum accessorium; HV, hyperstriatum ventrale; LPO, lobus 

parolfactorius.
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Figure 6.2; Mean IMHV Burst Frequencies for LPO-lesioned and 

Sham LPO-lesioned Groups of Day-old Chicks Over 

the Period 1-lOhr Posttest.
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Figure 6.2; Mean IMHV bursting recorded over the period 1-lOhr posttest for four 

groups of day-old chicks: pretraining LPO-lesioned M and W chicks; and 

pretraining sham LPO-lesioned M and W chicks. The level of bursting represents 

the mean value for left and right hemispheres (bursts per 2min). The numbers in 

bars represent sample size. Methyl-trained chicks that received sham lesions exhibit 

a significantly higher level of bursting when compared to water-trained sham- 

lesioned chicks (*p=0.05). Bursting levels between LPO-lesioned M and W groups 

are not significantly different, although the trend is in the same direction as that for 

shams. Error bars are standard error of the mean.
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Figure 6.3; Hemispheric Differences in Mean IMHV Burst Firing 

for LPO-lesioned and Sham LPO-lesioned Day-old 

Chicks over the period 1-lOhr Posttest.
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Figure 6.3; Hemispheric differences in bursting per 2min between LPO-lesioned M 

and W chicks and sham LPO-lesioned M and W chicks over 1-lOhr posttest. The 

sample sizes for each group are as per Figure 6.2, that is, 17 sham-lesioned W 

chicks, 10 sham-lesioned M chicks, 18 W lesioned chicks and 24 M lesioned 

chicks. There is a significant difference in mean bursting levels between the right 

IMHVs of M and W sham-lesioned chicks (*p<0.05) There is no significant 

difference between hemispheres in burst-firing rates within or between any other 

group(s).
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significantly more bursting than sham-lesioned W chicks (p<0.05); there is no 

significant difference in mean burst levels between LPO-lesioned M chicks and LPO- 

lesioned W chicks.

The mean bursting frequency for each hemisphere of all four groups is presented in 

Figure 6.3. The right IMHV of sham M chicks displays a higher mean burst rate when 

compared to the right hemisphere of sham W chicks (*p<0.05). There are no other 

significant within-group hemispheric differences in IMHV bursting.

Discussion

The overall burst frequency recorded from the IMHV of M chicks with sham LPO 

lesions is significantly higher than that from similarly treated W chicks. This replicates 

the effect seen in Chapter 3 and reported by Mason and Rose (1987) and suggests that 

these sham groups provide adequate controls for the effects of surgery and placement 

of lesion electrodes on the activity of the IMHV. The increased bursting in sham- 

lesioned M chicks is not bilateral, as seen in non-lesioned M chicks; only the right 

hemisphere of sham-lesioned M chicks displays a significantly elevated mean burst 

rate. This lack of effect between the left hemispheres of sham-lesioned M and W 

chicks may be a product of the sham-lesioning procedure, or might be due to sampling 

bias, as the number of sham M chicks recorded from is very small (n=10).

There is no significant difference in overall burst frequencies measured in lesioned M 

chicks compared to lesioned W chicks. Bursting between the right and left IMHVs of 

lesioned M chicks also appears to be quite similar, in contrast to sham-lesioned M 

chicks and non-operated M chicks (Chapter 3). These results suggest that the posttest 

bursting activity of the IMHV of M-trained chicks is severely disrupted in the absence 

of the LPO. However, the overall levels of bursting between lesioned and sham M 

chicks are quite similar. One possible reason for the lack of any significant difference 

between lesioned M and W groups may be that the overall level of bursting in lesioned
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w  chicks.is higher than that of sham W chicks. Although there is no significant 

difference between bursting in sham and lesioned W chicks, there is a trend for 

bursting in lesioned W chicks to be higher.

As indicated in the Introduction, the right IMHV becomes a necessary structure for the 

storage of memory for passive avoidance training in the absence of the LPO at training 

(Gilbert et al., in press). This presumed change of function of the right IMHV is not 

evident in posttest levels of bursting activity in lesioned M chicks; the levels of 

bursting between the right and left IMHV are very similar in lesioned M chicks, 

especially when compared to the hemispheric differences in bursting in sham-lesioned 

M chicks where the right IMHV displays a higher level of bursting. If changes in 

neuronal firing actually underlie this altered function of the right IMHV, then it may be 

that increased levels of bursting occur in the right IMHV during times closer to 

training, that is, at times not included in this analysis. The proposed importance of 

such early activity after training will be discussed further in the General Conclusions 

section.

6.2. The Timecourse and Lateralization of Bursting in the IMHV 

of Chicks with Pretraining, Bilateral LPO Lesions or Bilateral 
Sham LPO Lesions, Recorded over the Period 1-lOhr Posttest.

Introduction

The timecourse of bursting in the IMHV of the four groups of chicks described in 

section 6.1 was investigated by pooling the data into the three posttest periods used in 

Chapters 4 and 5: l-4hr posttest; 4-7hr posttest; and 7-lOhr posttest. The lateralization 

of IMHV bursting was investigated by splitting the data set in a similar fashion to 

provide three posttest periods.
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Figure 6.4; The Timecourse of IMHV Bursting Measured Over

1-IOhr Posttest for Sham-lesioned M and W Chicks.

Sham Water 
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1-4 hours 4-7 hours 
Time Posttest

7-10 hours

Figure 6.4; The timecourse of bursting for sham-lesioned M and W chicks over the 

1-lOhr posttest period. The sample sizes for each group are indicated in bars. 

Although the means appear quite different, there is no significant difference 

between groups during any posttest period. This is probably due to the small 

sample sizes. Error bars are standard error of the mean.
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Figure 6.5; The Timecourse of IMHV Bursting Measured Over

1-lOhr Posttest for LPO-lesioned M and W Chicks.
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Figure 6.5; The timecourse of bursting for LPO-lesioned M and W chicks over the 

1-lOhr posttest period. The sample sizes for each group are indicated in bars. There 

is no significant difference between groups during any posttest period. Error bars 

are standard error of the mean.
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Figure 6.6; The Lateralization of IMHV Bursting Measured Over

1-lOhr Posttest for Sham-lesioned M Chicks.
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Figure 6.6; The lateralization of bursting in the IMHV for sham-lesioned M chicks 

over the 1-lOhr posttest period. The sample sizes for each methyl-trained group are 

as per Figure 6.4. Although the means appear quite different, especially during the 

4-7hr posttcst period, there arc no significant differences between hemispheres at 

any time. This is probably due to the small sample sizes. Error bars are standard 

error of the mean.
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Figure 6.7; The Lateralization of IMHV Bursting M easured Over

1-lOhr Posttest for Sham-lesioned W Chicks.
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Figure 6.7; The lateralization of bursting in the IMHV for sham-lesioned W chicks 

over the 1-lOhr posttest period. The sample sizes for each water-trained group are 

as per Figure 6.4. There are no significant differences between hemispheres at any 

time. Error bars are standard error of the mean.
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Figure 6.8; The Lateralization of IMHV Bursting M easured Over

1-lOhr Posttest for LPO-lesioned M Chicks.
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Figure 6.8; The lateralization of bursting in the IMHV for LPO-lesioned M chicks 

over the 1-lOhr posttest period. The sample sizes for each methyl-trained group are 

as per Figure 6.5. There are no significant differences between hemispheres at any 

time. Error bars are standard error of the mean.
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Figure 6.9; The Lateralization of IMHV Bursting M easured Over

1-lOhr Posttest for LPO-lesioned W Chicks.
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Figure 6.9; The lateralization of bursting in the IMHV for LPO-lesioned W chicks 

over the 1-lOhr posttest period. The sample sizes for each water-trained group are 

as per Figure 6.5. There are no significant differences between hemispheres at any 

time. Error bars are standard error of the mean.
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Results.

The mean IMHV burst frequencies for sham-lesioned M and W groups is plotted 

against time in Figure 6.4. There is no significant difference between groups during 

any of the three posttest periods, probably because of the small sample sizes involved. 

Figure 6.5 is the counterpart for lesioned M and W chicks. There are no significant 

differences between groups.

Figure 6.6 shows the same data described in Figure 6.4, in this instance as bursting 

by hemisphere for sham-lesioned M birds with time. Figure 6.7 is the counterpart for 

sham-lesioned W chicks. No asymmetry is evident during any time period for either 

group of sham-lesioned chicks. This also applies for lesioned M chicks (Figure 6.8) 

and lesioned W chicks (Figure 6.9).

Discussion.

As can be seen, bursting in sham-lesioned M and W chicks follows a similar 

timecourse to that seen in non-operated chicks (Chapter 3), although there is no 

significant difference between sham groups during any posttest period. This lack of 

significance is probably due to the small sample sizes involved. The timecourse of 

bursting in lesioned M chicks appears different to that of sham-lesioned M chicks, 

especially during the 4-7hr period when LPO-lesioned M chicks exhibit a drop in 

bursting when compared to sham M chicks.

General Conclusions

Experiments were performed to examine the effects of pretraining, bilateral LPO 

lesions on subsequently recorded multi-unit activity of the IMHV. Section 6.1 

demonstrated that M chicks with sham LPO lesions exhibit a significantly higher 

overall mean burst frequency when compared to sham W chicks over the period 1- 

lOhr posttest. This indicated that, so far as was possible to tell, the surgical
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procedures used to produce sham treated chicks did not interfere with the normal 

pattern of bursting seen in the IMHV posttest. In contrast to the burst data for sham 

chicks, there is no difference in mean burst rates between LPO-lesioned M chicks and 

LPOlesioned W chicks, as measured over the same posttest period.

The initial interpretation of the data presented in this Experiment is that an increased 

level of bursting in the IMHV is not required for memory formation; a conclusion 

inconsistent with the data presented in Chapter 3. However, it must be remembered 

that the data presented in this Chapter represents the activity of the IMHV over the 

period 1-lOhr posttest. A more accurate interpretation of these results is, therefore, 

that chicks that lack an intact LPO do not exhibit increased IMHV bursting during the 

period 1-lOhr posttest, but still show retention for the task. This is, perhaps, a 

simplistic view. The results shown in Figure 6.2 indicate that the overall bursting 

levels between lesioned M chicks and sham M chicks are quite similar, suggesting that 

there may be little difference between these groups in terms of posttest bursting levels. 

However, there is a trend for bursting in lesioned W chicks to be higher than that for 

sham-lesioned W chicks. This suggests that the reason why there is no significant 

difference in mean bursting levels between lesioned M chicks and lesioned W chicks is 

not that that the mean level of bursting in lesioned M chicks is reduced (compared to 

sham-lesioned M chicks), but rather that bursting in lesioned W chicks is increased 

(above that of sham W chicks).

Why might lesioned W chicks display a higher level of bursting? One possibility is 

that lesioning the LPO causes some disinhibition of burst-firing in the IMHV, thereby 

increasing the spontaneous burst rate. If this were the case, then it might be expected 

that levels of bursting between lesioned M and W chicks would be: (1) very similar; 

and (2) higher than those levels seen in sham-lesioned and ndn-lesioned chicks. This 

is plainly not the case, as lesioned M chicks display a higher mean burst rate compared 

to lesioned W chicks and these bursting levels are similar to non-lesioned M and W
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chicks (Chapter 3). An alternative explanation for the enhanced level of bursting in 

lesioned W chicks is that, in the absence of an intact LPO, an increased 'demand' is 

placed upon structures such as the IMHV for memory formation; it must be 

remembered at this juncture that chicks do remember the act of pecking a dry bead 

(Barber et al., 1990). It is conceivable that such an increased demand is evidenced as 

an increase in IMHV bursting levels in lesioned W chicks when compared to sham- 

lesioned W chicks. There is, of course, the possibility that increased posttest bursting 

in lesioned W chicks is a combination of the reasons discussed above.

Figure 6.2 demonstrates the burst frequencies of all four groups as timecourses of 

activity after testing. This analysis provides some further insight into why lesioned M 

chicks do not display significantly higher mean burst rates compared to lesioned W 

chicks. This is presented below (it must be stressed at this point that the following 

discussion is based upon very small sample sizes). The level of bursting in lesioned M 

chicks appears reduced, when compared to sham M birds, during the period 4-7hr 

posttesL As reported earlier, bursting during this posttest period is maximal in both the 

IMHV and the LPO of unoperated M-trained chicks (Chapters 3 and 4). It is also 

during this 4-7hr posttest period that bursting in both the LPO (Chapter 5) and the 

IMHV (Mason, pers. comm) is reduced in chicks rendered amnesic by subconvulsivo 

ECS. These experiments provide evidence to suggest that the IMHV and LPO may be 

(at least) physiologically connected and that this connection is manifest during the 

period 4-7hr posttest as a near simultaneous increase in both the rate and synchrony of 

bursting in/between the two structures. Lesioning the LPO pretraining will severely 

disrupt these (putative) connections with the IMHV, thereby compromising any 

information flow between the two structures. This compromised flow is evidenced as 

a drop (or lack of increase) in IMHV bursting during the period 4-7hr posttest.

As discussed in earlier parts of this thesis, lesion studies have indicated that the left
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IMHV is a necessary structure for the acquisition and/or early processing of 

information for the passive avoidance task (Patterson et al., 1990a). The LPO is a 

necessary structure for the long-term retention of memory for the task (Gilbert et al., 

in press). In the General Conclusion of Chapter 3, a rather general scheme was put 

forward to describe the neuronal events that may occur at or around the time of passive 

avoidance training, based upon theories of mammalian learning. This scheme involved 

an initial, weak potentiation of connections between cells that would ultimately form 

the neural 'representation' of memory for the task (a 'priming' effect), followed by a 

later consolidation of this memory trace. The initial priming was proposed to occur 

during and shortly after a period of 'theta' rhythm, coincident with the actual 

performance of training, that is, during pecking. This initial priming may be controlled 

by the IMHV, perhaps in particular the left IMHV, and may involve neural circuits 

between the IMHV, the LPO and other as yet unidentified cortical areas. It is implicit 

in this scheme that these priming events take place very soon after training, that is, 

during periods in which recordings have not been made ftom anaesthetized chicks.

As discussed in Section 6.1 there is no increase/difference in bursting between the 

right and left hemispheres of lesioned M chicks after training. Lesion studies have 

indicated that the light IMHV becomes a stmcture necessary for storage of memory for 

the task in the absence of the LPO at training (Gilbert et al., in press). The results from 

this Chapter suggest that this capacity of the right IMHV to become a necessary 

structure/store for memory is not reflected in increased levels of bursting. However, 

such changes in activity may occur during the above priming period, that is, recording 

IMHV activity 1-lOhr posttest may be too late to see any changes in burst-firing 

patterns of the right IMHV.

Evidence to indicate that the LPO may be involved in early stages of information 

processing after passive avoidance training comes from two sources; studies which
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have examined the effects of inhibitors of memory formation when injected into the 

area of the LPO and studies to examine the accumulation of 2-DG within the brain 

after training. Serrano et al. (1988) showed that injections of ouabain into the region 

of the LPO 5min before training produced amnesia at a 24hr test. Patterson et al.

(1986) and Gibbs & Ng (1977) have shown that similar injections of ouabain disrupt 

the formation of ITM when placed in the region of the IMHV. Also, Serrano et al. 

(1990) demonstrated that injections of the muscarinic antagonist scopolamine into the 

LPO produced maximal amnesia by 30min after training; the IMHV displays a similar 

timecourse of susceptibility to the injection of scopolamine. It must be emphasised that 

Serrano et al. (1988; 1990) did not examine the extent to which their injected 

substances diffused from the site of injection. It is possible that their injections may 

not only have affected the LPO but also areas such as the IMHV. The increased 2-DG 

metabolism seen in the left LPO also suggests that increased activity occurs in this 

region at times close to training; 2-DG uptake is increased in the left LPO if the 

injections of 2-DG are given either 5min pretraining or lOmin posttraining, as 

measured 30min posttraining (Rose & Csillag, 1985). This early activity of the IMHV 

and LPO may be part of the priming effect postulated above. The increased bursting 

seen in IMHV and LPO during the period 4-7hr posttest may represent the neural 

activity responsible for the consolidation of this memory trace into long-term memory 

('hard-wiring' the memory trace). In the absence of the LPO at trainiiig, a different 

(compensatory?) circuit might be established between the IMHV and other forebrain 

areas during perhaps the first two hours posttraining. This would be a circuit in which 

the IMHV becomes a necessary store for memory. This scenario explains, to a certain 

degree, why the IMHV does not exhibit an increase in bursting during the period 4- 

7hr posttraining; there is no LPO at training so the circuit that would normally be 

formed is compromised. With no LPO, the long-term consolidation proposed to occur 

between IMHV and LPO during the period 4-7hr posttraining would be absent, 

evidenced as a lack of increased activity in the IMHV.
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.Another possible mechanism for the formation of memory for passive avoidance 

training in the chick is that different areas of the chick brain are responsible for 

encoding different aspects of the training task, e.g., colour of the bead, taste of the 

bead etc. Whilst this scheme and the one outlined above are not necessarily mutually 

exclusive, the proposal that different brain regions are responsible for different parts 

of the representation does allow for these 'parts' of the memory trace to be formed 

sequentially. For instance, the IMHV might initially code for visual components of the 

task, whilst the LPO could code some other, perhaps emotional, components of the 

task. This activity of the LPO could occur, perhaps under the influence of the IMHV, 

at some later period, e.g., 4-7hr posttest. If this were indeed the case, then the absence 

of the LPO at training would imply that the representation of memory for the task 

within the chick brain would be 'different' in lesioned chicks to that for non-lesioned 

chicks, that is, whatever it is that chicks remember about the task differs between 

lesioned and non-lesioned chicks. This scheme also explains why; (1) there is no 

overall difference in bursting between lesioned M and W chicks; and (2) why there is 

an apparent drop in bursting in lesioned M chicks during the period 4-7hr posttest. 

The part of the representation encoded by the LPO/TMHV (4-7hr posttest?) cannot be 

formed in the absence of an intact LPO and hence no increased activity is seen in the 

IMHV.

It must be reiterated that the above proposals are based upon the results from only a 

small number of animals, further work would need to be undertaken to establish their 

validity. Lesion studies are notoriously difficult to interpret and the Experiment 

reported here is no exception. However, it has suggested further experiments and has 

also provided some further evidence to suggest that the IMHV and LPO are 

functionally connected.

The following General Discussion reiterates some of the points discussed so far.
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CHAPTER 7. General Discussion and Future Directions

This Thesis was primarily aimed at an investigation into the effects of learning on the 

spontaneous electrical activity of neurons in two regions of the chick forebrain; the 

IMHV and the LPO. Such an experimental approach to the study of learning and 

memory in the chick can be rightly criticized for trying to "run before it has learned to 

walk", as very little is known regarding the intrinsic firing repertoires of chick 

forebrain neurons. This means that when a multi-unit recording from the chick is 

studied, the various components of the trace cannot be confidently associated with 

known neuronal generation sites, for example, IMHV bursting cannot be said to be of 

dendritic origin. Nevertheless, the results ftom the various Experiments detailed in this 

Thesis are important in that they describe an effect of learning/memory on (at least) 

one type of spontaneous neuronal firing; bursting. The remainder of this Chapter will 

deal with both a review of the work presented in this Thesis and also suggestions for 

further work to be carried out on the basis of these findings.

Chapter 3 described an Experiment in which the spontaneous neural activity of the 

IMHV of the day-old chick was recorded after passive avoidance training. Recordings 

were made with low-impedance glass microelectrodes to allow the simultaneous 

recording of a number of neurons, a technique called multi-unit recording. Using this 

technique. Mason and Rose (1987; 1988) have shown a significant, memory-specific 

elevation in burst-firing in the IMHV following training. The Experiment detailed in 

Chapter 3 sought to both replicate this training-induced effect on IMHV bursting and 

also to extend the previous findings to include a timecourse of bursting after training. 

To this end, groups of chicks were trained to either peck a water-coated bead (W 

chicks), or to avoid a methylanthranilate-coated bead (M chicks). Multi-unit recordings 

were made ftom the right and left IMHV of both groups of chicks over the period 1- 

9hr posttest. Analysis of the results firom this Experiment demonstrated that M chicks 

displayed a higher mean burst rate, when compared to W chicks, in data pooled over
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the posttest period. The overall burst rates for the IMHV of both the left and right 

hemispheres of M chicks were also higher than the respective values for W chicks. 

These findings essentially replicate the original effect described by Mason and Rose

(1987). This replication proves just how strong an effect training has.on bursting 

activity in the IMHV, especially when one considers that perhaps only 10 cells are 

recorded from at any one time using the multi-unit technique. This means that if, for 

example, 6 sequential recordings are made from the left or right IMHV, then only 

about 60 cells will contribute to the multi-unit recordings taken. The cells that 

contribute to the multi-unit trace are recorded from on a random basis, that is, there is 

not (and probably cannot be) any systematic sampling of readily identifiable cells as, 

for instance, is possible when recording from Aplysia ganglia. The number of 

neurons in the IMHV is probably in the order of 120,000 (T. Doubell, pers. comm.). 

This means that recording the activity of 60 cells represents a sampling of only 1/2000 

of the total neuronal population of the IMHV. When one also considers the rather strict 

definition of what, for the purposes of analysis, constitutes a burst, then the total 

number of units that contribute to the final analysis is made even smaller.

To summarize the above, the ability to replicate an effect based upon the recording of 

spontaneous activity from random populations of cells within the IMHV indicates two 

things: (1) that the effect is both very reliable (i.e., easily reproducible); and (2) that, 

many cells in the IMHV must, theoretically, contribute to the effect It is difficult to 

confidently state whether the effect of training on burst-firing is to: (a) produce 

bursting discharges from more cells, that is, to recruit more bursting cells; (b) increase 

the burst-firing rate of a stable population of cells; or (c) produce an increased number 

of bursting cells that exhibit an enhanced level of bursting.

The second aim of the Experiment in Chapter 3 was to describe the timecourse of 

bursting in the IMHV after training. From the discussion above it would seem that a
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large percentage of the population of cells in the IMHV of M chicks show enhanced 

levels of bursting after training. Is this a general increase in the discharge rate of cells, 

or are increases in bursting isolated to certain posttest periods? From the results of the 

timecourses presented in Chapter 3, the latter seems to be the case for IMHV bursting. 

Bursting is significantly higher in M chicks during the periods 3-4, 5-6 and 6-7hr 

posttest. Also, the right IMHV of M chicks displays a significantly higher mean burst 

rate when compared to the left during 6-7hr posttest. This suggests that large numbers 

of neurons in the IMHV show a high level of burst-firing during specific posttest 

periods. These increases in burst firing have been shown to be memory-specific, as 

chicks rendered amnesic with the use subconvulsive ECS show no increase in 

bursting above levels seen in W chicks (Mason & Rose, 1988).

What does this increase in bursting represent? As discussed in Chapter 3, bursting in 

the IMHV may be under the influence of afferents arising from the medial septal 

nuclei. Another possibility is that bursting is intrinsic to the IMHV. Bursts in IMHV 

are associated with large negative deflections in field potential (Fig. 3.2), a similar 

association to that seen between bursts and sharp-waves in the CA fields of the 

hippocampus (Buzsaki, 1989). Sharp-waves appear to be intrinsic to the 

hippocampus, that is, they are not induced by extra-hippocampal input (Buzsaki et al., 

1988; 1989). Subcortical afferents may actually exert a tonic suppressive action on 

burst-synchronization mechanisms of the hippocampus; when these subcortical inputs 

are temporarily antagonized the reduction of inhibition allows the occurrence of sharp- 

wave associated bursting in the hippocampus (Buzsaki et al., 1983). It is possible, 

therefore, that increased (synchronized?) bursting in the IMHV seen during the 

posttest periods outlined above arises from some reduction in afferent inhibition. 

Indeed, studies using a chick brain slice preparation have indicated that neurons in the 

IMHV are subject to high levels of tonic inhibition (A. Webb pers. comm.). 

GABAergic activity, as measured by (^H) muscimol binding (Stewart et al., 1988), is 

very high in the IMHV of chicks. Work by Muller and Scheich (1988) has shown that
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GABAergic inhibition in the HV and neostriatum (caudal auditory telencephalon) 

increases the neuronal selectivity to natural sounds. What relationship has this to 

bursting activity? In the hippocampus, GABAergic inhibition has a controlling effect 

upon bursting. Pyramidal cells are sequentially excited when GABAergic inhibition is 

reduced. Normally, GABAergic 'tone' will limit the communication between neurons. 

However, blockade of this inhibitory tone allows cells to fire bursts of action 

potentials in response to a single synaptic input (Miles & Wong, 1987). If inhibition is 

decreased to some threshold level, then the neuronal population may exhibit epileptic, 

seizure-like cascading excitation.

The mechanism by which inhibitory tone is decreased is unclear. Repeated electrical 

stimulation will rapidly decrease GABAergic inhibition (Ben-Ari et al., 1979). A 

number of mechanisms possibly underlying GABA fading' have been proposed. 

These include : an increase in GABA uptake from the extracellular medium; GABA ' 

receptor desensitization; and an increase in extracellular potassium (see Taylor, 1988 

for review). The activation of NMD A receptors in CAl pyramidal neurons has been 

found to block GABAergic inhibition (Stelzer et al., 1987). A decrease in inhibition 

alone, therefore, seems to be insufficient for the spread of bursting type activity. What 

does appear to be necessary, according to recent work by Yaari and Jensen (1987), is 

an increase in the extracellular potassium concentration. This potassium rise could be 

produced by gradual depolarizations of neurons and glia, elevations which have been 

seen prior to seizure-like activity in the hippocampus (Taylor, 1988). What these 

observations propose is that, for burst firing to occur, at least two processes must be 

in evidence: (1) an increase in the overall excitability of the population via an increase 

in the concentration of extracellular potassium, regulating the threshold for burst 

firing; and (2) a modulation of excitatory and inhibitory synapses, possibly regulating 

focal bursting discharges.
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What is the possible role of bursting in memory formation? As mentioned earlier, 

bursting in the chick is 2-APV sensitive, i.e., microinjection of 2-APV into the IMHV 

will prevent bursting in this stmcture (Mason, pers. comm.). Intracerebral injection of 

2-APV into the area of the IMHV has also been shown to produce amnesia for passive 

avoidance training in chicks (Patterson et al., in prep.). This amnestic action of 2-APV 

is only evident if injections are given around the time of training. If the amnestic action 

of 2-APV in this instance is to antagonize burst firing in the IMHV, then it can be 

inferred that bursting in the IMHV is elevated around the time of training. This is of 

some interest in the light that during bursting in the hippocampus the intracellular 

calcium concentration increases via depolarization and/or activation of NMDA 

receptors. If we consider bursting to be involved in some way with memory 

formation, possibly via routes outlined in the General Introduction, then this sharp rise 

in intracellular calcium concentration could have some functional aspect in the 

establishment of a memory trace. A well established route for this could be via 

phosphorylation of specific stractural proteins. It has been suggested that calcium 

influx activates both calcium/calmodulin dependent protein kinases 1 and 2 as well as 

protein kinase C. This activation of multiple calcium regulated protein phosphatases 

and dephosphatases may underly pleiotrophic physiological actions of calcium at the 

nerve terminal (Wang et al., 1988). These changes in biochemical regulatory kinases 

etc. could underly the morphological changes seen after passive avoidance training. M 

chicks show significant increases in spine density of multi-polar projection neurons in 

both the IMHV and LPO 24-26hr posttraining (Patel & Stewart, 1988; Patel et al., 

1988; Lowndes & Stewart, 1990). It is of some interest that similar changes can be 

induced in the mammalian hippocampus I5min following the initiation of bursting 

activity by the application of kainate (Petit et al., 1989). Whilst the increase in IMHV 

bursting around the time of training is entirely speculative, the Experiment in Chapter 

3 indicated that bursting is elevated in the IMHV during the period 3-4hr and 5-7hr 

posttest. As will be discussed later, similar increases in bursting are seen in the LPO
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4-7hr posttest (Chapter 4). If similar biochemical processes to those described above 

occur during these periods in IMHV and LPO, then this may be the posttest period in 

which the increase in spine density is initiated However, as mentioned previously, it 

is unknown whether (a) bursting is produced by the dendrites/axons of single cells 

and (b) whether these presumed bursting neurons are of the same class as those 

shown to undergo spine density changes, that is, large multi-polar projection neurons. 

Further experiments in which neurons in IMHV and LPO are recorded from 

intracellularly and then filled with horseradish peroxidase should provide the answers 

to these questions.

Which area(is) of neuronal membrane are responsible for bursting in the IMHV and 

LPO? Bursting in both of these structures seems to occur in a time-locked fashion with 

negative shifts in the focal EEG activity. From morphological investigations it appears 

that the IMHV and the LPO are homogeneous structures with no clear layering of cell 

processes as, for instance, is seen in the hippocampus. It can be inferred, therefore, 

that when multi-unit recordings are made from IMHV and LPO, the chances are that 

the electrode tip will be predominantly surrounded with, and electrically affected by,

dendrites. If this is the case, then these negative shifts in potential are occurring
\

predominantly in dendritic fields. This, together with the fact that bursts may occur 

with a spike frequency of over lOOOHz (pers. observation), approaching the absolute 

refractory period for action potential generation, suggests that bursting may be of 

dendritic origin. However, it must be emphasised that there is no direct proof for the 

presence of areas of active dendritic membrane in the IMHV or the LPO of the chick. 

Until recordings can be made from identified dendritic regions of neurons in these 

areas of the chick brain the source of bursting discharges remains unresolved.

Bursting has also been associated with other models of memory formation. Buzsaki 

(1989) has proposed a two-stage model for memory formation in which theta activity 

and sharp-wave associated bursting play prominent roles. This model was briefly
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outlined in Chapter 3 and will be more fully discussed here. During the first stage of 

the model, information is acquired and stored in a relatively labile form during 

exploratory behaviour (theta behaviours). In terms of hippocampal activity, it is during 

this period that CA3 pyramidal cells receive converging excitatory input from fast- 

firing granule cells. This excitatory input transiently potentiates synaptic connections 

between granule cells and CA3 pyramidal cells. During the second stage of the model 

this labile trace is then converted into a long-lasting form. This is suggested to occur at 

the termination of exploration, when shaip-wave associated bursting occurs in CA3 at 

the termination of theta. This synchronous bursting induces a long-term enhancement 

of synaptic efficacy in CA3 neurons and in some of their CAl target neurons. 

Specificity of information is proposed to be ensured by the weakly potentiated CA3 

cells (stage one) becoming initiator neurons of the subsequent sharp-wave associated 

bursts (stage two). Buzsaki (1989) hypothesizes that these CA3 initiator cells receive 

maximum convergence of excitation during sharp-wave associated bursting. This is 

proposed to occur by a reverberatory action; initiator CA3 cells fire, triggering the 

sharp-wave burst, which causes less excitable cells to fire. As the population burst 

spreads, the maximum effect of the reverberatory activity converges on the initiator 

cells. In essence, the 'function* of the second stage of the model is to select a group of 

neurons (burst-initiators) and to strengthen the synaptic connections between them. 

Recall will occur if the same subset of cells are reactivated.

A similar scenario in which groups of neurons (functional units) are selected forms the 

basis for a theory of cortical function developed by Edelman (1987). Edelman's 

'group selection' theory proposes that: (1) specific intrinsic and extrinsic cortical 

connections, developed during ontogeny, provide the basis for the selection of 

neurons into isofunctional groups, or units; (2) these units provide the basis for 

neuronal representation (coding of information) and that different units interact with 

each other, and (3) repeated activation of a cortical unit results in alterations of the
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efficacy of synaptic interactions between members of that unit, such that the 

probability of the selection of the unit would be increased relative to that of other units.

An alternative hypothesis has been proposed by Abeles (1988). According to this 

hypothesis, information is coded not by the firing rates of neurons but rather by the 

combination of neurons that fire in synchrony. The recruitment of neurons into a 

circuit does not involve the sequential activation of single cells, but results from the 

synchronized firing of groups of neurons. The chain of neurons that fires in 

synchrony (what Abeles calls a 'synfire chain') transfers information by activating a 

second synfire chain, which in turn excites another chain and so on. The process of 

recruiting neurons into a synfire chain is dynamic, that is, at different times a single 

cell may participate in different synfire chains. Statistical analyses (Abeles, 1982) have 

shown that neurons are activated 10 times more efficiently by synchronous 

presynaptic firing, compared to postsynaptic integration of asynchronous inputs; The 

former of these might be represented as synchronous, perhaps bursting dendritic 

spikes at a number of diffœ nt dendritic loci. Such bursting may act to consolidate the 

connections between cells in the synfire chain by potentiating groups of dendritic 

synapses. As such, bursting can be envisaged as an extremely efficient means of 

communication between cells. Other evidence to support the role of bursting in the 

formation of new functional connections between cells has come from a study by 

Miles and Wong (1987). In this study pairs of burst firing CA3 pyramidal cells were 

simultaneously recorded from in a hippocampal slice preparation. After tetanic 

stimulation of the mossy fibre input to CA3, polysynaptic excitatory pathways 

between previously unconnected cells became apparent. The efficacy of recurrent 

inhibitory circuits was also reduced after tetanization. This treatment led to the 

fonnation of groups of synaptically associated cells, seen as an enhanced synchronous 

firing of groups of CA3 cells, and the ability of some cells to initiate synchronous 

firing in a larger group of cells through recurrent pathways. This is consistent with the
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hypotheses presented above in relation to group selection of neurons.

Hoffman and Haberly (1989) have also shown that long-term electrophysiological 

changes can be produced by bouts of bursting activity. This work was conducted in 

slices of olfactory cortex. Bursting was induced by either removing extracellular 

magnesium, or decreasing the extracellular chloride concentration. Upon return to 

normal artificial cerebrospinal fluid, afferent stimulation induced a new long-lasting, 

high-amplitude depolarizing potential that followed the normal graded postsynaptic 

potential. The authors suggest that this late potential is the result of enhanced 

synchronous activity amongst a large number qf cells.

The selection of groups of neurons has also been associated with neural network 

models of memory formation. Whilst a review of neural network research is beyond 

the scope of this Thesis, some recent work is quite relevant to the results presented in 

earlier Chapters. The operation of neural networks can be thought of as a parallel 

action of neurons, or classes of neurons, each with potentially different output/input 

relationships and intrinsic capabilities, interconnected by synapses with complex 

properties. For any given set of inputs to a neural network, cells are thought to fire in 

a cyclical manner. If a given configuration of firing neurons has repeated itself once, it 

will repeat itself indefinitely, as the very same postsynaptic potentials are generated. In 

other words, the dynamics of the network can lead fix)m some initial configuration (the 

initial network state), to an attractor state at which the activity of the network remains 

(essentially a stationary, or fixed state). Amit (1989) has postulated that elementary 

cognitive phenomena (such as memory retrieval and recogrtition) are represented by 

patterns of activity in large networks of neurons, containing 10  ̂to 10^ cells, and that 

these patterns are fixed point attractor states. It may be of some significance that Amit 

(1989) proposes that when a network reaches an attractor state, some neurons will be 

firing maximally (in bursts), whilst other neurons are silent. A pattern (memory) is 

recalled if, under the influence of external stimuli, the network drifts rapidly into an
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attractor such as a fixed point. However, although the process by which such 

attractors can provide associative memory recall appears to be well founded, the means 

by which memories are learnt and stored as patterns of altered synaptic efficacies 

between cells in the networks is unclear. Amit (1989) proposes that learning may 

occur in a network through a process that appears to be similar to that proposed by 

Buzsaki (1989) for hippocampal pyramidal cells, as described earlier. According to 

Amit (1989), 'training' starts with a network that has random connections. There is 

then a persistent imposition of an external stimulus into a subset of the neurons in the 

network, constraining that subset into either active or inactive states (similar to the 

'stage one' dentate input to CA3 proposed by Buzsaki). The rest of the neurons are 

left to their natural threshold dynamics. In other words, the network is set in a random 

configuration and allowed to vary according to usual neural dynamics, with the fields 

of the training stimulus added to the afferent network postsynaptic potentials. This is 

continued until the neural system enters an attractor, a fixed point. Recognition is a 

rapid convergence into an attractor when the same stimulus is presented at a future 

occasion. This transition to a fixed point may be similar to the 'stage two' 

synchronized, reverberatory activity proposed by Buzsaki (1989) to occur amongst 

groups of CA3 cells and their target cells in CAl at the termination of theta-associated 

activity.

Gray and Singer (1989) have proposed that local neuronal populations in the (visual) 

cortex engage in stimulus-specific synchronous oscillations resulting from an 

intracortical mechanism. They measured multi-unit activity and local field potentials 

from areas 17 and 18 of the cat visual cortex and discovered a transient, rhythmic 

firing of neurons when they were presented with their preferred stimulus. It is of some 

interest that these neurons fired in bursts of spikes, with each burst closely correlated 

with a negative shift in field potential. This negative field potential was thought to 

represent the activity of a larger group of neurons than that sampled by the multi-unit
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electrodes. Because of of the close correlation between multi-unit activity and field 

potential. Gray and Singer (1989) postulate that the field potential must reflect the 

synchronous activity of a population of cells. This close correlation between multi-unit 

activity and field potential is also seen in the IMHV of the chick (Fig. 3:2). Gray et al. 

(1989) have suggested that the synchronous activity of neuronal populations in the 

visual cortex may serve as a mechanism for the extraction and representation of global 

and coherent features of a pattern. They further suggest that these synchronous 

responses may have a more general function in cortical processing by acting to 

establish cell assemblies that are characterized by the phase and frequency of their 

coherent oscillations.

To summarize the above, it appears that memories may be represented in the brain as 

certain patterns of connections between groups of neurons. Patterns of connections 

may be formed/modified by an increased level of synchronized neuronal bursting 

within and between such networks of cells. This highly synchronized activity may 

best be seen in local field potentials (Gray & Singer, 1989). This raises the possibility 

that the increased level of bursting seen in the IMHV of M chicks after training may 

represent the emergence/modification of neuronal groups (attractors?). Increased 

bursting may represent some consolidation of long-term memory for passive 

avoidance training, via the strengthening of connections between member cells of such 

networks. As was discussed in the General Introduction, bursting appears to be the 

most favourable of firing modes for the induction of LTP, especially when bursts 

occur at a theta periodicity (Douglas, 1977; Staubli & Lynch, 1987; Diamond et al., 

1988; 1990). When burst rates are highest in IMHV, during the period 6-7hr posttest, 

groups of bursts tend to occur with a between-burst interval that falls within the theta 

range (Table 3.11), suggesting that a similar mechanism of potentiation may be 

occurring in the IMHV. During this posttest period, bursting appears to be highly 

synchronized within the IMHV, in particular the IMHV of thé right hemisphere (Fig.
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3.10). The groups of IMHV bursts mentioned above appear to occur with quite a 

regular oscillation of about 2secs, as shown by the interburst interval histograms of 

Figure 3.10. It is important to emphasize that these histograms represent the 

accumulated bursting activity from different depths within the IMHV, that is, it 

appears that the bursting activity of the right IMHV during the period 6-7hr posttest is 

highly synchronous throughout the entire vertical electrode penetration. This proposed 

synchrony of bursting in IMHV is supported by the burst-associated large negative 

shifts in field, which may represent the synchronous activation of large numbers of 

bursting cells in the IMHV. In addition to some within-IMHV consolidating role, the 

increased level of bursting in IMHV may also serve to 'output' locally processed 

information regarding memory for the task to other areas of the brain. This may lead to 

both the formation of new associations and also the consolidation of previous 

associations with respect to different components of the task.

From the 2-DG study of Rose and Csillag (1985) two areas of the chick brain were 

seen to exhibit a significant increase in neuronal activity following training on a 

passive avoidance task; the IMHV and the LPO. The effect of training on the 

spontaneous activity of the IMHV suggested that a similar training-induced increase in 

spontaneous activity might also occur in the LPO. Chapter 4 described such an 

investigation into the spontaneous multi-unit activity of the LPO after training. 

Recordings were taken from M and W chicks over the period 1-lOhr posttest. The 

results indicated that the LPO of M chicks displayed a significantly higher burst rate 

when compaied to the LPO of W chicks. Although this increase in LPO bursting in M 

chicks exhibited no lateralization, that is, it could only be seen as an overall increase, 

there was a trend for the LPO of individual hemispheres of M chicks to exhibit higher 

mean bursting rates when compared to the respective hemispheres of W chicks. When 

bursting levels were described as a timecourse, a significant elevation in LPO bursting 

was seen to occur during the period 4-7hr posttest; precisely the same time as the 

posttest increa% in IMHV bursting. Bursts recorded from the LPO during the 4-7hr
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posttest period were also seen to occur in similar patterns to those seen for bursts in 

the right IMHV, that is, groups of bursts with a between-burst interval within the theta 

range. The between-group interval for bursts in LPO during the 4-7hr posttest period 

was also similar to that for bursts in right IMHV during the 6-7hr period. This 

between-group patterning was most evident in the burst autocorrelelograms. These 

results suggest that when levels of bursting are maximal in the LPO and the right 

IMHV the patterns of bursts are very similar. From the above discussion for IMHV 

bursting, it follows that similar mechanisms may be controlling the generation of 

bursting in the LPO. In other words, large populations of cells in the LPO and right 

IMHV appear to be synchronously active during the same posttest period. This 

suggests that there may be a functional, if not anatomical, connection between the 

IMHV and the LPO. It also suggests the emergence/consolidation of neuronal groups 

both within and between the two structures.

Chapter 5 described an Experiment which examined whether the increase in LPO 

bursting seen in M chicks was a direct correspondent of memory formation for the 

task. In this Experiment chicks were trained using a methylanthranilate coated bead. 

Chicks that pecked the bead and showed a disgust response were then given 

subconvulsive ECS 5min after training. When these chicks were tested one hour later 

they could be split into two groups, based upon their behaviour at test; a group that 

remembered the task (avoided the bead) and a group that forgot the task (pecked the 

bead). As both groups had been subjected to similar experiences of housing and 

training etc., the only difference between the groups was the presence, or absence of 

memory for the task. Multi-unit recordings were then made from the LPOs of these 

chicks. Analysis of the mean levels of bursting between these two groups of chicks 

demonstrated that the group that avoided at test exhibited a significantly higher mean 

level of bursting. This suggested that increased levels of LPO bursting were directly 

associated with memory for the task, that is, they were not due to aspects of the task
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non-specific to memory formation such as the taste or the smell of the bead etc.

When levels of LPO bursting between groups of chicks that either remembered or 

forgot the task were compared as a timecourse the increased bursting in the group that 

remembered the task was predominantly confined to the 4-7hr posttest period. This 

time-dependent increase in bursting is similar to that for training-induced bursting 

from both the LPO (Chapter 4) and the IMHV (Chapter 3) of non-electroshocked 

chicks. This provides more evidence to suggest that bursting during the 4-7hr posttest 

period in both the IMHV and the LPO is crucial to learning of the task and that the 

neuronal activity in/between these two areas may be subject to some form of mumal 

control.

As suggested in the General Conclusion of Chapter 6, memory for passive avoidance 

training may exist as a 'structural engram', produced by the potentiation of 

connections both between and within certain areas of the chick forebrain. These areas 

may include the IMHV and the LPO, During training, the chick visually Wents to die 

bead. Such behaviour has been shown to induce EEG within the theta frequency range 

in the hyperstriatum. The left IMHV has been shown to be important for the learning 

and/or early processing of information for the task (Davies et al., 1988; Patterson et 

al., 1990a). It is possible, therefore, that during orientation to the bead certain cell(s) 

within the left IMHV (and LPO?) are excited, and their connections transiently 

potentiated. This may occur in a similar manner to which CA3 cells and their CAl 

targets are excited in the first stage of Buzsaki's (1989) two-stage model. At the 

termination of theta-behaviour (after pecking?) the potentiated cells in the left IMHV 

become the initiator cells for population, shaip-wave associated bursting. This may 

involve a mechanism similar to that suggested to occur during stage two of Buzsaki's 

(1989) model, that is, excitatory reverberatory activity may then ensue in the IMHV 

such that the initiator cells receive maximal excitation. Possible reverberatory activity
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has been seen in stimulus-evoked field potentials in the left IMHV (Mason & Gigg, in 

prep.). Such activity may then cause the emergence of groups of interconnected, 

potentiated cells in the left IMHV. This increased activity within the left IMHV may 

also aid the enhancement of synaptic bonds in target structures of the left IMHV. 

These targets may include the right IMHV and the LPO, amongst others. The 

enhancement of connections in the LPO may be crucial, as the LPO appears to be a 

necessary store of memory for the task (Gilbert et al., in press).

Assuming that sharp-wave associated bursting underlies the formation of neuronal 

groups responsible for the storage of memory traces, then incidences of shaip-wave 

associated bursting subsequent to the task should enhance the retention of memory 

(Buzsaki, 1989). This is possibly what is occurring during the period 4-7hr posttest in 

the IMHV and the LPO of methyl-trained chicks. Synchronized, field potential- 

associated bursting may enhance the connections both within and between burst 

initiator cells of the IMHV and LPO. How might such a 'faithful' communication 

between areas such as IMHV and LPO come about? Evidence to demonstrate that 

synchronized activity may occur between widely separated groups of cells has come 

from one of the studies described earlier, that of Gray et al. (1989). In this study 

neurons in primary visual cortex that were separated by as much as 7mm were seen to 

fire synchronously, suggesting that large distances between cells does not hinder their 

synchronous activity. Miller (1989) has proposed that the emergence of connections 

both between and within networks of neurons may be under the control of temporal 

aspects of connectivity, that is, axonal conduction delays. He proposes that loops of 

connections which carry neural activity resonating at theta rhythm can become 

preferentially selected. This might occur by means of Hebbian processes of synaptic 

modification that act within loops of connections that exhibit a variety of axonal 

conduction delay times. This would provide a means by which connections between 

different cortical structures could become strengthened. If, as described above, the 

firing of cells in the left IMHV becomes synchronous after training, then this may
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provide the means for the emergence of one or more local cell assemblies within the 

left IMHV. This synchronous activation, which may exhibit a similar theta periodicity 

to that seen in the right IMHV 6-7hr posttest and LPO 4-7hr posttest, could provide 

for the enhancement of reciprocal synaptic connections between the left IMHV and its 

target structures. These connections, which take the form of a variety of long delay 

lines, may become established as follows. Assume that a regular cycle of rhythmic 

neural activity is imposed at one end of such a series of loops, in this case 

synchronous bursting in the left IMHV. For those pathways with a total loop time that 

approximates the period of the imposed rhythm, signals generated by one "beat' of the 

oscillator (left IMHV) will return to the oscillator in time for the next beat This is 

exactly the circumstance in which the Hebbian mechanism is recruited, tiiat is, cells 

will fire action potentials at the same time as they receive return excitation (coincident 

pre and postsynaptic activation). If Hebbian mechanisms do operate at both ends of 

the loop, then the synaptic modifications that occur will tend to strengthen only those 

connections which form loops whose delay times approximate the oscillator 

period.This process of 'phase-locked loop' conduction allows for the emergence of 

'global cell assemblies'. Such a 'global' structure may be resistant to the posttraining 

removal of certain constituent parts, e.g., the IMHV. Long-term consolidation of 

memory in such an assembly could be induced by posttraining periods during which 

the pattern of connections is 'reactivated'. This proposal is similar to that of Buzsaki 

(1989) in his description of a two-phase model of memory formation. Bouts of 

synchronized, sharp-wave associated bursting that occur after an experiential event 

would tend to aid the 'hard-wiring' of connections between groups of burst-initiator 

cells, thereby consolidating the connections between cells in the assembly. Such a 

consolidation of connections may be occmring between the IMHV and LPO during the 

4-7hr posttest period via an increase in the frequency and synchrony of burst-firing.

As suggested in Chapter 6, an alternative hypothesis to the 'global' representation of
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memory is that different parts of the representation may be sequentially registered For 

example, the IMHV may initially be important for the storage of visual aspects of the 

task, e.g., colour of the bead, whilst the LPO may be important for the later 

registration of more emotive task aspects. If this is the case, then the 'function' of 

increased bursting during the 4-7hr posttest period may be to 'code' for a certain 

aspect of the task.

Another possible means by which memory for passive avoidance training may be 

stored in the chick forebrain has been proposed on the basis of lesion studies 

(Patterson et al., 1990a; Gilbert et al., in press). According to this proposal memory 

for the task transfers between the IMHV and the LPO. The left IMHV has been shown 

to be necessary for the acquisition and/or early processing of memory for the task 

(Patterson et al., 1990a). However, neither the left nor the right IMHV is necessary 

for longer-term storage of memory for the task. Is memory stored elsewhere in the 

forebrain? Bilateral posttraining LPO lesions have demonstrated that the LPO may be 

such a long-term store as this procedure is amnestic (Gilbert et al., in press). 

However, bilateral pretraining lesions of the LPO are non-amnestic. Does the IMHV 

Ijecome' a necessary store for memory in the absence of the LPO at training? It 

appears that this is the case. Pretraining bilateral lesions of the LPO together with a 

posttraining lesion of the right (but not the left) IMHV are amnestic, suggesting that 

the right IMHV becomes a necessary store for memory in the absence of the LPO at 

training (Gilbert et al., in press). This sequence of experiments led the authors to 

suggest the following: memory is initially stored in the left IMHV. Memory then 

transfers to the right IMHV. From the right IMHV memory then transfers to the left 

and right LPO for long-term storage. All posttraining lesions were made Ihr 

posttraining. Therefore, the transfer of memory is assumed to occur during the first 

hour posttraining. Do the bursting data agree with such a memory transfer proposal? 

Although the activity of the IMHV and LPO has not been sampled during the first hour

Page 195



posttraining, the period assigned to the proposed transfer, the bursting data during the 

4-7hr posttest period does 'fit in' to a certain degree with the idea of memory 

transference. According to the model, the establishment of long-term memory requires 

the combined activities of the right IMHV together with the left and right LPO. From 

the preceding discussion it appears that the most efficient way in which this memory 

flow could occur is by an increase in the frequency and synchronicity of burst firing 

in/between these structures. This is precisely what can be seen during the period 4-7hr 

posttest; bursting is increased in the right IMHV and both LPOs. This suggests that 

these bursting increases may reflect the consolidation/read out' of memory for the 

task.

The capability of the right IMHV in LPO-lesioned chicks to become a necessary 

structure for memory suggested that this changed capacity might be reflected in its 

spontaneous neural activity. Chapter 6 described an Experiment designed to 

investigate the effects of pietraining bilateral LPO lesions on posttest IMHV bursting 

levels. On the day before training two groups of chicks were prepared; one group 

received bilateral radiofrequency LPO lesions, the other group received bilateral sham 

lesions. Sham operated chicks underwent identical surgical procedures to the lesioned 

chicks with the exception that the lesioning current was not turned on when the lesion 

electrode was in place. On the day of training each of these groups was split into two. 

One half was methyl-trained, the other water-trained. This training procedure 

generated a final total of four groups of chicks; sham M and W chicks and lesioned M 

and W chicks. The spontaneous activity of the IMHV over the period 1-lOhr posttest 

was recorded in chicks from all four of the above groups.

The results fiom this experiment were quite surprising. Methyl-trained sham-lesioned 

chicks showed a significant increase in mean bursting levels over sham-lesioned 

water-trained chicks, which suggested that sham operated chicks were good controls 

for the surgical and anaesthetic procedures associated with the lesion protocol.
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However, there was no significant difference in bursting levels between lesioned M 

chicks and lesioned W chicks. By examining the overall bursting levels for all four 

groups, it appeared that bursting levels for lesioned M and sham M chicks were 

similar. One possible reason for the lack of significant difference between lesioned M 

and W groups appeared to be that that the overall bursting level for lesioned W clucks 

was raised in comparison to that for sham W chicks. Àovious work has showed that 

chicks leam and remember pecking a dry (non-reinforcing) bead (Barber et al., 1990). 

In the absence of the LPO at training, an increased demand for memory storage may 

be placed on remaining structures of the brain such as the IMHV. If, as seems likely, 

IMHV and LPO bursting is associated with memory for pecking a methylanthranilate- 

coated bead, then in the absence of the LPO at training, such an increased demand may 

be seen as an increase in bursting in the IMHV.

Another interpretation of this data is suggested from the above memory transference 

proposal. According to the model, if the LPO is absent at training, memory for the 

task is first registered in the left IMHV and then passes to the right IMHV. Because 

the LPO has been lesioned memory cannot pass out of the right IMHV, which now 

becomes a necessary store for memory. According to the model this process occurs 

during the first hour posttraining. It seems likely that the increased activities of the 

LPO and right IMHV 4-7hr posttest are associated with long-term memory 

consolidation. It is not surprising, therefore, that in chicks with pretraining bilateral 

LPO lesions there is no increased bursting activity in the IMHV during the period 1- 

lOhr posttest: there is no LPO to receive any information output from the right IMHV. 

Long-term memory formation has occurred in the right IMHV well before this posttest 

period. According to this, the lack of increased bursting posttest in the IMHV of the 

pretraining LPO-lesioned chick supports the memory transference model.

As will be discussed below, the LPO inay be involved in circuits controlling motor
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behaviour. Theré circuits may be especially involved with the inhibition of ballistic 

head movements such as pecking. When chicks with LPO lesions are housed in pens 

they appear to be far less vocal when compared to non-operated chicks, suggesting 

that these lesions may in some way reduce the amount of subjective stress (fear?) to 

environmental changes (personal observation). The general pecking behaviour of 

chicks also appears to be affected by LPO lesions; lesioned chicks will peck far more 

readily compared to non-operated chicks, which may explain why these lesioned 

chicks are 'easier to train', that is, peck more readily at training (Patterson, pers. 

comm.). It appears, therefore, that LPO lesions affect the general behaviour of chicks, 

perhaps tlirough some disinhibition of pecking. As stated above, chicks with 

pretraining LPO lesions can still leam a passive avoidance task, however, the LPO is a 

necessary structure for memory posttraining (Gilbert et al., in press). If the LPO is 

involved in memory for the task via some role in the inhibition of pecking, then the 

rise in bursting in the IMHV and LPO of non-operated chicks 4-7hr posttest may 

represent some consolidation of a neuronal circuit responsible for the association of 

the chrome training bead with inhibition of pecking. In the absence of the LPO at 

training, bursting levels in M chicks are very low during the period 4-7hr posttest; the 

posttest period during which maximal bursting in M unopera^  M chicks is evident If 

the LPO and IMHV are indeed involved in the representation of memory for the task, 

then the absence of an increase in IMHV bursting during the period 4-7hr posttest may 

indicate that the representation of the memory trace is different in lesioned chicks.

What might be the functions of the LPO and the IMHV? The IMHV is thought to have 

a role as a polysensory processing centre, possibly analogous to mammalian 

association cortex, as it receives information from a number of sources including the 

visual, auditory and somatosensory systems (Horn, 1985; Bradley et al., 1985). Tlic 

LPO may form part of the avian olfactory system, as primary olfactory afferents 

project to the LPO from the olfactory bulb (Reike & Wenzel, 1978). As indicated
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above, the LPO has also been associated with motor control, as it appears to form part 

of the paleostriatal complex, the avian equivalent of the mammalian basal ganglia 

(Karten & Dubbeldam, 1973).

Certain pathways between the IMHV and LPO that involve intermediary brain 

structures have been identified (Figure 7.1). Boxer and Csillag (1986, chick) hâve 

shown that the LPO receives afferent projections from four brain regions: the 

aichistriatum; the nucleus superficialis parvocellularis; the area ventralis tegmentalis of 

Tsai (AVT); and the nucleus tegmenti pedunculo-pontinus (TP). Projections from the 

archistriatum to the LPO have recently been confirmed in the chick with the use of 

lectin tracing (Stewart & Csillag, pers. comm.). Kitt and Brauth (1981) have 

described afferent connections from the LPO and PA to the AVT and TP, which 

together with the results of Boxer and Csillag (1986) suggests that the PA and LPO 

are reciprocally connected to these structures: Kitt and Brauth (1986) consider the 

AVT and TP to be similar to the AlO and A9 components of the mammalian nigral 

complex. As the archistriatum of the chick is reciprocally connected to the IMHV 

(Bradley et al., 1985), it is in a position to influence the activities of neurons in both 

the IMHV and the LPO via its efferent projections.

The HV of the mallard duck projects to distinct regions of the neostriatum: the dorsal, 

ventral, and lateral portions of the neostriatum frontale (Dubbeldam & Visser, 1987). 

The dorsal portion of the neostriatum frontale projects to both the archistriatum and the 

LPO. Bradley et al. (1985) have demonstrated a projection from the neostriatum to tiie 

IMHV. From this, it appears that (at least) two regions of the avian brain (the 

neostriatum and the archistriatum) send afferent projections to both the IMHV and the 

LPO. This provides two candidate brain regions for the role of synchronizing the 

activities of the IMHV and the LPO. Another candidate is the PA, which is 

reciprocally connected to the IMHV (Bradley et al., 1985). However, there is no clear 

morphological boundary between the PA and the LPO, which makes it is difficult to
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Fig 7.1; Schematic Diagram to Show Some of the Connections 
Between the HV and the LPO.

H V

Nfd
Nfl

Nfv
Nil

PA

LPO
IN P

PP

AVT

SpL
TP

TECTUM M OTO R OUTPUT

Figure 7.1. Diagram to show some of the principal connections between the HV 

and the LPO in relation to tectal motor output By the nature of their connections 

with the LPO and HV, two areas of the chick forebrain emerge as candidate 

regions with the ability to control and possibly synchronize the activities of the 

IMHV and the LPO. These candidate areas are the neostriatum and the 

archistriatum. For simplicity, the reciprocal connection between the HV and the 

FA is not shown. Abbreviations: A, archistriatum; Nfl, Nfd and Nfv are the 

lateral, dorsal and ventral aspects of the neostriatum frontale; Nil, lateral aspect of 

the neostriatum pars intermedia. Other abbreviations are included in the text The 

diagram is based upon data from the following publications: Boxer and Csillag 

(1986); Bradley et al. (1985); Dubbeldam and Visser (1987); Kitt and Brauth 

(1981; 1986) and the review by Reiner et al. (1984a).
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perform tracing studies between the two areas (Stewart, pers. comm.). Nevertheless, 

it seems likely that the PA and LPO are anatomically connected.

As mentioned above, the LPO may have a role in the control of motor activity. The 

IMHV has reciprocal projections with the PA (Bradley et al., 1985). The PA and LPO 

together comprise the avian striatum, which sends projections to the avian pallidum 

(Reiner et al., 1984b). Karten and Dubbeldam (1973) were able to show a projection 

from the avian pallidum (paleostriatum primitivum and nucleus intrapeduncularis), via 

the lateral forebrain bundle to the nucleus spiriformis lateralis (SpL). Reiner et al., 

(1984a) suggest that the SpL may represent the major projection target by which the 

basal ganglia influence motor functions. The SpL has only one afferent projection, 

which terminates in the those tectal layers that produce the afferent projections of the 

tectum. This suggests that the tectal input from SpL may modulate the activity of tectal 

neurons. These neurons in turn affect the activity of brainstem and spinal motor 

neurons thought to be responsible for visuo-motor integrative functions. Reiner et al. 

(1982) have provided evidence to support this theory. They showed that pigeons with 

bilateral SpL lesions were severely impaired in the initiation and execution of tasks 

involving motor responses to objects moving in their visual space. On the basis of 

this, Reiner et al. (1984a) suggest that the avian tectum is likely to be involved in the 

initiation and control of ballistic head movements such as pecking and general 

orientation, approach and avoidance movements. This suggests that there is an 

information pathway from the sensory/integrative areas of the avian forebrain, 

including IMHV, via the avian basal ganglia (PA, PP, INP and LPO) to motor regions 

that have been shown to be involved in the initiation and execution of pecking 

responses to visually conspicuous objects such as those used in passive avoidance 

training. This suggests that the increased neural activity seen in the IMHV and LPO 

after training may represent the establishment and/or consolidation of an inhibitory 

tectal input to prevent pecking of the av^sive bead.
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Perhaps the biggest criticism of the experimental work discussed in this Thesis is that 

the data has come from an anaesthetized preparation. It is unknown whether the 

training-induced effects described in this Thesis occur in the awake, fieely behaving 

chick. Although pilot experiments carried out at the Open University by Dr T.A. 

Patterson and myself have shown that bursting can be recorded from the IMHV of the 

awake chick, technical problems have meant that no long-term recordings of behaving 

chicks have been possible. One of the hypotheses presented in the above General 

Discussion is that increased neuronal activity, perhaps of the bursting type, should 

occur in the IMHV and LPO around the time of training. As described in the General 

Introduction, changes in the firing of cells have been closely associated with 

presentations of training/conditioning stimuli. It is difficult to imagine how the 

biochemical and morphological consequences of memory for passive avoidance 

training could be produced without some initial increase in the firing activity of 

neurons during the acquisition of the learned response. One inhibitor of behavioural 

acquisition has proved to be 2APV. This NMDA receptor antagonist has been shown 

to prevent: (1) place-leaming in rats (Morris et aL, 1986); (2) fear-potentiation of the 

acoustic startle reflex in rats; and (3) passive avoidance training in chicks (Patterson et 

al., in prep.). In none of these cases did 2APV prevent the expression of learning, 

which suggests that the effect of 2APV was to block the acquisition of learning. As 

2APV is a potent inhibitor of burst-firing in CAl pyramidal cells, the amnestic effect 

of 2APV in the chick may be mediated by a suppression of bursting in areas such as 

IMHV around the time of training. The only means by which such an effect could be 

observed is in the awake, freely behaving chick. Whilst it is possible to record from 

anaesthetized chicks at times closer to training than used in the experiments reported 

here, it would be difficult to interpret the results. This is because there is a 30min 

posttraining period during which anaesthesia is itself amnestic (Patterson, pers. 

comm.).

Another criticism of the experimental work in this Thesis was levelled at the beginning
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of the General Discussion. Extremely little is known regarding the functional neuronal - 

connectivity both between and within chick brain nuclei. This has meant that the 

results presented throughout this thesis have been constantly compared to mammalian 

studies in which far more is known regarding neuronal physiology and 

morphology/functional anatomy. Further neurophysiological studies in the chick 

should, therefore, attempt to define the mechanisms of burst generation in both the 

IMHV and the LPO. Specifically, the neurotransmitter substances and receptorAon 

channel complexes responsible for spontaneous burst generation/modulation in these 

two regions should be elucidated. Another important investigation would be to identify 

the neuroanatomical areas of the chick brain that control burst generation in the IMHV 

and LPO via the transmitter/receptor systems implied above. One of the implications of 

the results presented in this Thesis is that the IMHV and LPO are functionally 

connected. Simultaneous multi-unit recordings from various sites within both the 

IMHV and LPO, in tandem with evoked potential recording, will clarify the existence 

of this proposed functional connection. From the results of Chapters 3 and 4 bursting 

appeared to be occurring in a synchronous fashion throughout both the LPO and the 

IMHV. Experiments using multi-electrode arrays, arranged both vertically and 

horiwntally, would allow spontaneous recordings to be taken simultaneously from a 

number of different sites within either structure to further examine this synchronous 

activity.

Another important consideration is the very nature of the training effect on bursting. 

Do other learning paradigms produce similar patterns of burst firing in the IMHV and 

LPO, or is increased bursting a phenomenon restricted to passive avoidance learning? 

One way to test whether bursting in the chick forebrain has a more general role in 

memory formation would be to record from the IMHV and LPO of chicks t r ^ e d  on 

the sickness-aversion task developed by Alistair Barber (Barber et al., 1990). Is the 

association between induced sickness and the prior pecking of the dry bead evident in
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increased bursting in these two structures? Once again, the ideal means of recording in 

this instance would be from the awake chick.

In a final summary, the experiments described in this Thesis have shown that training 

chicks on a one-trial passive avoidance task produces a time-dependent, focal elevation 

of neuronal bursting in two regions of the chick forebrain; the IMHV and the LPO. 

The increased IMHV bursting is lateralized to the right hemisphere during the period 

6-7hr posttest. The increased bursting in IMHV has been shown to be directly 

associated with memory for the task (Mason & Rose, 1988), as has the increased LPO 

bursting in Chapter 5 of this Thesis. The peak of bursting in these two structures 

occurs during the same posttest period; 4-7hr posttest. During this posttest period 

bursting in both structures becomes increasingly synchronous. It can be suggested 

from this that (a) the IMHV and LPO are functionally connected and that (b) the 

synchronous activity in the IMHV and LPO may reflect the emergence/consolidation 

of neuronal cell assemblies in/between these two structures that are fundamental to the 

formation of long-term memory for the task. Further experiments, including the 

recording of multi-unit activity from the awake, freely behaving chick, should provide 

clear evidence as to both the validity of these proposals and also the dynamics of 

bursting in the behaving animal.
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'Demonstration of bursts and derived data from bursts 
"Author Greg Smith 24/Apr/88 '
'This will run on the file DEMD.SMR or any'sensible event file
"Variables used
"a Accumulated time in bursts
"b data channel used to hold burst times
"c Number of bursts found
"f Printer output device
"m Total events in the bursts in time range
m Total events in the time range
"p Number of bursts with a spike following in analysis period 
"q Total of times of spikes after bursts
"r Total iqter-burst time
"t Start of time period to be analysed for bursts
"u End of time period to be analysed
Others are used as temporary variables

"Other variables used as work space 
CLEAR
VIEN 1; NORMAL "In case user has been using other script
HINDOH 0 0 100 50-CHARH "set display window for time data
DRAW 0 Maxtime 
Spikedat

"This is used as our exit flag 
PRINTTO "BSTATS.PRN" _ "set name of output print file
f:=0; PRINTTO f "send printer output to the screen
FKEY 0 "Initialise function keys
FKEY 1 2 DoBurst 'Burst* "Set function key definitions
FKEY 1 3 BSTATS 'Stats'
FKEY 1 4 DoPrint 'CmdLine'
FKEY i 5 DoFile "NewMie" "
FKEY 1 6 Spikedat 'Sparams'
FKEY 1 7 BstlntH 'IntBst'
FKEY 1 8 AUTO 'AutoCr'
FKEY 1 10 Stop 'Quit'
REPEAT

FKEY 5 "do what the user says
u nt il V "until they choose F10;Ouit
END "Replace with QUIT to exit SPIKE2
PROC DoPRINT "Choose which output device to use 
DOCASE 

CASE f=0 
FKEY 1 4 DoPrint 'Screen';f:=l 

CASE f=l 
FKEY 1 4 DoPrint 'LPT1:'; f:=2 

CASE f=2 
FKEY 1 4 DoPrint 'File'; f:=3 

CASE f=3 
FKEY 1 4 DoPrint 'CmdLine'; f:=0 

ENDCASE 
PRINTTO f 
RETURN

PROC Spikedat
INPUT h 'How many spikes make up a burst ?' 2 15 
INPUT k 'ISI. to constitute beginning of new burst (sec)' .001 5 
INPUT g 'Max. interval between spikes to make a burst (sec)'.
DoBurst "do initial burst analysis
RETURN



PROC Stop 'set the stop flag
'simply set the flag to request stop 

RETURN and return to the caller
PROC DoBURST 'Do a simple-minded burst analysis of data
CLEAR 1; NORMAL
WINDOW 0 0 100 50-CHARH set display window for time data
DRAW 0 MAXTIME show all the data

MOVETO 10 95; PRINT 1 'Intraburst ISl %8.5d (Sec)' g 
MOVETO 60 95; PRINT I 'Interburst time Z8.5d (Sec)' k

REPEAT
INPUT e 'Channel to analyse for bursts' 1 15 
IF ChanKind[el<2 must be an event channel
Message 'Channel %d is not event data' e 

ENDIF
UNTIL ChanKindleDl 
REPEAT
INPUT b 'Channel to store bursts in' I 15 
z:=l
IF ChanKindCb]>0 "Warn user if channel is in use
QUERY 'That channel is already in use!' 'Really overwrite?' 'Y' z

ENDIF 
UNTIL Z

VIEW 1
OFF 1 2 3 4 5 6 7 8 9 
OFF 10 11 12 13 14 15 
ON e b 
DRAW

CURSORS 2; 'show cursors to select area
INTERACT 'Please select area to be analysed and press Enter'
DRAW cl c2-cl
t:=cl; u:=c2 "take cursors as analysis positions
MAKEBRST now make up a burst
RETURN

PROC MAKEBRST Divide data into bursts based on time intervals 
VIEW 1 "back to the initial view
NEWEVENT 1 9000 ‘make space for bursts
y:=g; z:=k
BURSTS 0 e t u z y Make bursts based on times for demo file
IF EVENT Any events made?
NEWEVENT 5 b 1 'save as channel b
ON b;DRAW t u-t "display this as our data area

ELSE
Message 'That produced no bursts! Nothing saved'

ENDIF
RETURN

PROC NXTBST 'set x,y to start and end of next bursts after y or x=-l 
REPEAT

NEXTTIME b y y X  'find the start of next burst
UNTIL (y<0)I(x=0) "until no times, or a burst start
IF y(0 "if no more times
x:=-l; RETURN "flag that we failed

ENDIF
x:=Y "set start time
NEXTTIME b X  y "get end time
IF y<0
*!=■! "return no time if no end time

ENDIF 
RETURN



PROC BSTNMORE ^
REPEAT 

NXTBST
COUNT e X y d 

UNTIL (d>=h)!(x<8)
IF d>=h 
NEWEVENT 2 x 

ENDIF 
RETURN

PROC BstlntH
CLEAR; VIEW 1; WINDOW 0 B 100 45; DRAW 0 MAXTIME
INPUT i 'Input channel to produce Interburst Histogram' 1 15
ON i; VIEW 2; WINDOW 0 45 100 90; DRAW 0 MAXTIHE
VIEW 1; SETINTH 2 i 100 0.1
VIEW 2; OFF TRAM; ON TITLE; MINMAX 1 0 MAXTIME-1 X Y
YRANGE 1 0 Y
VIEW 2; DRAW
RETURN

PROC AUTO
INPUT j 'Channel to perform Auto Correlation on ' 14
CLEAR; VIEW 1; WINDOW 0 0 100 45; DRAW 0 MAXTIHE
VIEW 2; WINDOW 0 45 100 90; DRAW 0 MAXTIHE
VIEW 1; SETCROSS 2 j 1000 0.01 5 1
VIEW 2; [49B1;=B;[499];=0; I500];=0; [5B13:=0; OFF TRAM;
MINMAX 1 0 MAXTIME-1 x y
YRANGE 1 0 y
VIEW 2; DRAW
RETURN

TITLE;

PROC BSTATS 
COUNT e t u n 
p;=0; q:=0 
r:=0 
m:=0 
a:=0 
f:=0 
c:=0 
y:=t 
CLEAR
MOVETO 10 10 
NEWEVENT 0 
NEWEVENT 

BSTNMORE 
WHILE x>0 

c:=c+l 
COUNT e 
m:=m+d 
l;=(y-x); 
f:=f+(l/(l/d)l 
a:=a+l 
NEXTTIME 
IF 0)0 
o:=o-y 
p:=p+l
q : - q f g

ENDIF .

1 400

X y d

e y.o

t=start time, u=end time, b=burst chan, e=event chan 
"n=total number of events in range 
‘init for post burst spike latency 
'sum of times between bursts 
*m=total events in bursts 
a=total burst time

'c=number of bursts 
set start position

get the first burst uf i  n u i  i n t o  x y

increment burst count
get number of events in the burst

'length of the burst in seconds 
increment total intraburst freq. 
total time of bursts 
'get next spike after burst 
'check we have one 
"latency of next spike 
"increment count 
"increase sum of latencies



* «fi« Delete next line if you don't want details of each burst 
o:=y save old end of burst time
BSTNMORE 'get next burst times
IF x>0 if not the end
r;=r+(x-o) . 'add inter burst time

Is output to screen?
if so, clear it for final information
move to near the top

:Zd' t 
:Zd' u

ENDIF 
WEND 

IF f=l 
CLEAR
MOVETO 10 10 

ENDIF
INPUT q "Channel to store burst start times in'
NEWEVENT .4 q 1 
ON 15 
PRINT "
PRINT 'Start of analysis period 
PRINT 'End of analysis period 
PRINT "Max. interval between spikes to constitute a burst :%d' g
PRINT "ISI t o  t o n s L i t u L e  b e g i n n i n g  o f  nen b u r s t .  : Z d '  k
PRINT 'Number of spikes which make up a burst :Zd' h
PRINT 'Number of bursts found ;Zd' c
IF c>0
PRINT '% of spikes in bursts :Z5.1dZ' m/n«100
PRINT 'Mean spikes per burst :Zd' m/c
PRINT 'Mean burst interspike :Zd' a/(m-c)
PRINT "Mean inter burst time :Zd' r/c
PRINT 'Average interspike interval _;Zd' f/c
PRINT 'Burst frequency (bursts per 2 mini ;Zd' c/(u-t)*120 
P R I N T "
PRINT "

ENDIF 
f : =0 
RETURN

PROC DoFile 
FILE 
DoBurst 
RETURN


