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Abstract

The elassical and quantum dynamice of a one-ditnencional atomic system perturbed
by a periodic electric field of frequency, ; in the regimes of high and low field frequency
is studied. '

At high frequencics various ionization mechanisms are considered in both dynamics.

- We show that for systcms having analytic potentials; and for sufficiently high frequencisg,
the classical system can ionize through regular orbits; in contradistinction to the driven
Coulomb system. '

An area~preserving map is constructed which approximates the classical motion well

at high frequencies; explioit quantisation of this map, in terms of the Fourier components

~of the clagsical motion, provides a very efficient means of obtaining approximate solutions
to the one-dimensional, time-dependent Schrodinger equation. The Morse oscillator is
considered in detail: tho classical map io found to agree well with the numerical golution
of ITamilten’s equations. Classical and quantal ionization probabilities are compared and
circumstances delineated where they agree. »

Oompa.riaons"of various theorctical models with cxperimental data for the ionization of
excited hydrogen atoms in low frequency microwave fields are usced to distinguich betwean
tunnelling through and clagsical cccape over the slowly oscillating barrier and between
onc- and many-state dynamical processes. Formulae used to interpret low frequency laser
multi-photon ionization date are found not to dcucribcv the experimental data which are
best reproduced by the new semiclassical model presented here. Ra.nges of validity of .
other models are delineated. .

A new analytic approximation for the solutions of the two-state equations of mot}on
is obtained and uscd to predict the positions and widths of each member of the infinite
set of resonances between any finite value of  and 0. This analysis shows why recent
experiments on the microwavce ionization of hsfdrogon atoms by low frequency fields failed

to observe any resonances.
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Introduction

In rcoent years; much work has bé_on devoted to tho study of nonlincar dynamics and
chaos. A system is regarded ac chaotic when its long-time cvolution depends o gensitively
upon the initial conditionc that it becomes de facte unpredictable and it has become
increagingly clear that virtually all systeme which are not obvioucly integrable are prono
te chaegs, cven seemingly simple cyctemc with few dggrees of frecdom: Indeed, if we allow
. timc dependent gystems; we can even observe chaos in systems with only one degree of
freedom. .

The stud_;,z of classically chaotic systems has become one of the most popular and
rapidly growing subfields in many areas of physics. In plasma physics, for example,
it is relevant to the study of the confinement of charged particles in electromagnetic
fields, such as particles in an accelerator (see, for instance, Rechester and Rosenbluth
1978, Month and Herrera 1979 and Jowet et al. 1985) whilst in astrophysics it plays
an important role in our understanding of the great quantity of observed data on white
dwarfs (Angel 1977) and the study of the stability of our solar system (Wisdoin 1987).
Atomic physics provides soveral examples of Gimplc; yet non-trivial;, systems which arc
obscrvable in the laboratory and whose classical motion cxhibits all the chaotic features
currcntly causing cxcitement, Many of these examples are escentially of a quantai nature
‘and, because the lincar Schrodinger equation that governe the quantal dynamics contains
neither the local instability of the nonlinear claseical equations of motion that allow for
the onset of chaos nor the sensitivity to small changes in the initial conditions, there
is a need to understand the ma.njfesta.tions of classical chaos in quantum mechanice; a
problem which reduces to a ctudy of the correspondence pringiple in & regime where the
classical motion is irregular.

The devclopment of quantum theory in the ecarly decades of this century revolution-
ized physies. The seemingly unshakoeable concept of a particle moving along a trajectory;
sharply defined and uniquely detecrmined by its initial position and momentum coordi—
nates, was replaced by a description of cloctronc as wave pacletsc whose position and
momentum carry inherent uncertainties; classical mechanics could no longer be regarded

"as providing a correct deseription of the dynamics at the atomic level. However, cstab-



lishing a correspondence betwoen classical and quantum mechanics remained one of the
fundamental problems of physics. Whilst solutions to particular problems, such as the
quantizetion of simple syctems have beon found; many questions remain unanswered and,
together with the rapid growth of intercst in classically chaotic systemc and the contin
ued gcarch for manitestationc of chaos in quantum mechanics, the field of cemiclassical
mechonics has talien on a new and crucial importance. After decades in the wilderness;
clagsical mcchanies is now being reinctated as a relevant theory for the study of atomic
systems.

Two cxamplec of atomic systems whoce classical motion is chaotic involve highly ex
cited hydregen atoms in the prescnoc of strong ficlds; in one case a periodically ogcillating
electric ficld and in the other in a uniform magnetic field. Each of thece cyctems may
be rcodily studicd both theoretically and cxperimentally and can thus give insight into
the relationship between classical and qu'é.nta.l dynamics when the classical motion is
irregular.

An excitcd hydrogen atom in o homogencous magnetic field provides an example of
a time-indcpendent systcrﬁ of two degreon of frecdom for which the claccical dynamice
cxhibito a transition from fc@ulu.rity to chaos and itc ctudy has yielded several surpricing
results. For deminuntly regular or dominantly chaotic clascical motion; the short-ranged
corrclations in the quantum spectra have been directly linked to the chorter classical
periodic orbits. The quantum mechanical energy level spectra has also been related
to periodic orbits via a scrmiclassical sericc formula, with the information contained in a
comparatively few isolutud orbils being cufficient to deceribe the speetra with romarkable
accuracy, cven for the relatively low-lj,'ing;,r ctates: further details of current work in thic
field can be found in the review by Friedrich and Wintgen (1989).

Highly excited hydrogen atoms in a microwave ficld provide a physical rcalization of
a time-dcpendcnt gystem for which the clascical motion ic chaotic; it is the study of thic
latter system which motivates the work presented in this thesis. ' V

The microwavce ionisation of highly excited hydrogen atoms, firct observed by Bayficld
and Koch (1974), provided a new challenge for theorists. Quantal perturbation theory,
which had previously been used to describe multiphoton ionization ciperiments, proved
to be woefully inadequate for studying this new phenomenon, with between 50 and 100
orders perturbation theory being nceded to describe the microwave ionization process.
The firat theorctical study to provide rcaconable agreement with tho threchold ficlds
observed experimentally by Bayfield and Koch (1974) and Bayfield et al. (1977) was
provided by Leopold and Percival (1979) who carried out a purely classical, numerical
simulation of the dynamics of a periodically driven Kepler system. Subsequently, the

onset of ionization in the quantal atom was linked to the onset of stochasticity in the



corresponding classical system, see Meerson et al. (1979).

Since then, the microwave ionization of highly excited hydrogen atoms has provided
a rich source of study for experimentalists and theorists alike. In recent yea.fs, the exper-
iments of Koch and co-workers, see van Leeuwen et al. (1985) and Galvez et al. (1988)
and references therein, have considerably refined the original cxperiments to produce
very accurate measurements, whilst the experiments of Bayfield et al. (1989 and refer-
encee therein) have shown the way towards direct comparison with. quantal calculations
by restricting the electron to move collinearly with the field, so producing quasi one-
dimensional atoms.

From a theorctical viewpoint, the ionization dynamics of an excited hydrogen atom
in a microwave field is complicated and incompletely understood. There are no rigorous
theorics to provide a guide to the system behaviour and, moreowver; there are many pa-
rametera defining an individual experiment or calculation so it is very difficult to obtain
an overall picture of the dynamical response. The two parameters defining the applied
field, the ficld strength, F, and frequency, €2, together with the initial principle quan-
tum number; ng; are the main syctem parameters; but it is convenient to measure these
in terms of the scaled field strength, Fy, and frequency, €, see equation (1.1), page 9
below; the classical ionization probabilities satisfy scaling laws (see Leopold and Per-
cival 1979) and depend only upon the parameters Fy and 2y and not upon F, Q and
ng separately. Other important parameters are the initial distribution of substates, the
interaction time, the shape of the field envelope, A(t) in equation (1.27) below, and the
strength of the static field, if present. Classically, the numerical integration of Hamil-

_ton’s equations is relatively straightforward provided regularisation-ic uced to remove the
Coulomb singularity (see Leopold and Richards 1985, Rath 1990). The quantal study,
however, is further complicated by the need to include the continuum; that is the region of
phase space whore the classical motion ceases to be bound; and the addition of a further
‘parameter, Planck’s constant, to parameter space. In addition, for the large quantum
numbers of interest here, solving the three dimensional Schrodinger equation numerically
is prohibitively expencive and probably not possible on the computers currently available.

For these reasons, following Jensen (1984), much of the recent theoretical interest has
been devoted to the study of the one-dimensional atom, equation (1.26) below; this prob-
lem, being computationally much simpler; allows quantal calculations to be performed on
relatively modcest computem'i provided approximations to the continuum arc made. One
of the main findings of these theoretical studies, together with the recent experiments
of och and co-workers, is that there are at least six distinct ranges of the scaled ficld
frequency (gce; for instance; Koch 1990) in which the dynamics of the problem, both one:
and three-dimensional, has quite different characteristics and needs different theorctical



~ models. The boundaries of these regions are approximate; some depend on both g and

Qp, but for the values of ng currently used are given by the following inequalities. -

R1

The tunnelling regime, 20<0.07: at these very low field frequencies, experimen-
tally observed threshold fields lie systematically below the corresponding classical
values. Comparicong of experimentally obtained ionization probabilities with those
calculated using various theoretical models (see Sauer et al. 1992 and chapter 4
below) have shown that for values of the coupling strength Cy = ngFpfo < 0.12,
trancitions between adjacont ctatos can be neglectod and the atom ionises from the
initial level via quontal penctration of the slowly occillating potential barrier; this

ionization mechanism has no classical analogue.

The low-frequency regime, 0.055820<0.3¢ in this region the experimental ioniza-
tion curves cxhibit & great deal of structure which ic not reproduced by classical
simulations (see Richards et al. 1989b), One-dimensional quantal models have,
however, reproduced t_his structure fairly accurately. Richards et al. (1989b) have

. shown that in this regime the qua.nté.l dynamics is well described by rclatively few

R4

adiabatic states and that rcsonances between thege states arc responsible for the
observed behaviour; this mechanism cannot be reproduced by classical dynamics.
As C; increases so does the required number of adiabatic states: for C; > 1.5

many states are nceded and although the the quantum resonances porsict there are

.30 mony that classical dynamicc provides a good estimate of the average quantal

behaviour. An equivalent explanation is given by Bliunel and Smilansky (1987,
1990) who link the cxpcfimeptal structure to ‘unresolved clusters of many Floquet

avoided crossings’, see also Breuer et al. (1989).

The semi classical regime, 0.1<820<1.2: here there is broad agreement between
threshold fields obtaincd ucing classical three-dimensional simulations and experi-
mental results, see van Leeuwen et al. (1985), except at the low-order resonances,
Qy = r/s for integerc 7 < 5. Off resonance agrecment ic usually good for all field
strengths: on or near rcsonance; detailed agreement ic not co good although the
oretical studies by Jensen et al. (1989a) and Leopold and Richards (1993b) have

linked quantal resonance effects to classical phase space structures.

The tranottion regime, 15824 <2: in this region the agreement between experimental
and classically computed threshold fields begins to break down; quantal effects
both lowers the experimentally observed threshold fields and raices them above the

classical values, depending upon circumstances.



R5 The high-frequency regime, o > 2: here there is a clear divergence of the three-
~ dimensional classical and experimental threshold fields (see Galvez et al. 1988,
Bayfield et al. 1989); for long exposure times, the classical thresholds decrease
slowly with Qg; as £ 1 3, while the experimental and quantal thresholds snerease
approximately linearly with Qg. This ‘quantal suppréssion of classical chaos’ was
first predicted by Casati et al. (1984). The theoretical reasons for these differences
are still the source of some controversy. Casati et al. (1988) described the un-
derlying dynamics producing the obgsorved behaviour via the theory of ‘dynamical
photonio localization’ and pointed to the existence of a critical field strength; the
‘delocalization border’; below which the quantal wave fuﬁction ic ‘exponentially
localized’ in photon states, at least near the initial state, and above which there is
tdiffusive’ ionization. An alternative theoretical explanation hac been proposed by
Lcopold and Richards et al: (1989). Here; it was shown that the one-dimensional
quantum dynamics is dominated by relatively few quasi-resonant states, that is
thoge stateo whooe cnergy differs from that of the initial state by an integer number
of the photon encrgy; and that this drasticallf reduces the cffective dencity of states

so making the classical and quantum dynamics quite different.

RE The photocleetric effest; Qy > 0:5ng: at these very high field frequencies the photon
energy rises above the threshold for one-photon ionization, A2 > 0.5ue*/(nk)?, and
all vestigea of classical behaviour disappear; at least for weak field intensities; see
Koch (1990). ‘

Whilst thesc boundarics have been determined for hydrogon; it scoms likely that other
gystems will behave simila.rlj,;. In thic thesis we concentrate on the dynamical response
of a one-dimensional system in frequency regimes R1, R2 and RS.

The remainder of this thesis is organized as follows. In chapter 1 we study the
classical motion of an atomic system of one-degree of freedom in the presence of an
periodic electric field via the Hamiltonian formulation of dynamics. Following Leopold
and Richards (1991); we provide a rigorous derivation of the Hamiltonian of a hydrogen
atom maving through a region containing a periodic electric field; give the generalization
of this to an arbitrary one-dimensional system and derive equivalent representations in
‘which the dynamical response can be more conveniently studied when the field froquency
is cither very high or very low. For low frequency fields we show how a related conservative
gystem can be used as o starting point in the study of the more complex time-dependent
problem. At"'high frequcncies, we obtain an estimatbe of the critical field strength required
for the onsct of chaotic motion and show that, for come systems, classicail ionigation can

take place through regular orbits, in contradistinction to the periodically driven Coulomb



potential. In addition, we construct an area- preserving map which is applicable to a wide
varicty of onc dimensional syctems and which reproduces the oxact dynamics remarkably
accurately at high frequencies.

Chapter 2 discusses some aspects of the corresponding quantal system. We re-
view somc of the teehniques which have been used to date to solve the time-dependent
Schrodinger equation and highlight the problem of including the interaction with the
continuum. In the low frequency regime we show how the quantal motion may be ef-
ficiently described using the adiabatic basis representation of Richards (1987). Studies
of the quantum dynamics of a hydrogen atom in the prescnce of a high frequency pori
odic field have yielded two important, yet controversial, theoretical explanations for the
discrepancies between classical and quantum dynamics in this regime of field frequency;
‘stabilization?! and ‘lecalization’: wc review some of the more important recults in both
of these fields of study. We end the chapter by providing an explicit quantization of the
general classical map, derived in chapter 1, which provides us with an efficient means
of numerically solving the one-dimensional tirﬁe—dependent Schrodinger equation at high
field frequencies. )

In chapter 3 we apply the classical theory developed in chapter 1 to the specific caso of
the Morse potential in the presence of a high frequency field. The Morse potential is often
used to model moleeular intcractions with periodio electric fields (see Waller and Precton
1977 &and Goggix; and Milonni 1988); its analytic proportiec mean that its responce to
a high-frequency periodic field is distinctly different to that of the Coulomb potential.
By both numcrically integrating the equations of motion and iterating the classical map,
which we find mimics the exact dynu.micé fairly accurately; we chow that, at sufficiontly
high frequencies, the driven Morse oscillator can ionize classically via regular orbits. In
addition we previdc comparisons between ionization probabilities obtained by itcrating
the classical and quantal maps and, for the Morse potential in a high frequency field,
Jdelincate circumstances where there is agrecment betwoen classical and quantal dynamics.

Ohapters 4 and & both consider excited hydrogen atoms in a low- frequency microwavo
field. In chapter 4 we compare ionization probabilitics calculated using various theoretical
models with those obtained experimentally. These comparisons allow us to distinguish
between tunnelling through and classical cscape over the slowly oscillating barrier, formed
by the combination of the Coulomb potential and the poriodic electric field; and between
viae- and many-state dynamical processes: In particular; we find that thoories which are
often used to interpret data for low frequency multi-photon ionization experiments fail to
describe the experimental data presented here. We find that the new semiclassical model,
derived in chapter 4, reproduces the expcrimental data remarkably well and delincate

ranges of validity of other models.



In chapter 5 we re-investigate the quantal resonance behaviour experimentally ob-
served in the low frequency regime. By obtaining a new, accurate and tractable solution
of the two-state equations of motion, we are able, for the first time, to obtain approxi-
mations to the resonance widths as Qg — 0. In particular we show that the width of the
resonance at §}p ~ p~! is approximately p~%/2¢=C?, C being’a positive constant, and that
for the quantum numbers and frequencies dealt with in chapter 4 they arc too narrow to
be observed.

Our conclugions arc given at the end of cach of the chapters 3; 4 and 5 where most

of the new results are presented.



Chapter 1

'Classical Theory

1.1 Introduction

" In this chapter we study the classical motion of an atomic gystem of one degree of freedom
in the presence of a periodic electric field. For moderate field strengths, the classical
metion of such & system is complicated ag there ic no general theory available to degeribe
how & given system will behave: Clearly, the response of the system depends upon a ®
variety of parameters, the applied field frequency, (2, field strength, F, initial principal
" action, Iy, and the interaction time being the main system parameters. Fortunately,
numerical solutions of Hamilton’s equations are relatively easy to obtain for specific
oystemg and so it is not too difficult to cxplore limited regions of parameter space in
order to build up an approximate picture of the dynamical response.

In receat ycaro; olassical dynamicc hac played an important role in the theoretical
study of the microwave ionization of highly excited hydrogen a.tbms. Indeed, the first
theoretical study to provide reasonable agreement with the ionisation thrwﬁolds reported
by Bayfield and Koch (1974) and Bayfield et al. (1977) was provided by Leopold and
Pcfciva-l (1978, 1979) who; rcasoning"th'at because of the high principal quantum numbers
involved, 63 < ny < 69; classical methods could be applied to the problem; carricd out
o purely clagsical numerical cimulation of the dynamics of a periodically driven Kepler
. oyotcm. An important recult of thic work was the observation that ionization occurs
.elasgieally vin unatnhle trajectoriec which do not lic on invariant tori; orbitc on invariant
tori do not ionize. In subsequent studies, Delone et al. (1978) gave the new name ‘diffusive
ionization’ to this process while Meerson et al. (1979) linked the onset of microwave
ionization in the quantal atom to the onset of ctochasticity in the corresponding classical
system. It was further noted by Leopold and Percival (1979) that the classical ionization
probabilities satisfy scaling laws and depend only upon the scaled field strength and



frequency,
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and charge of the electron respectively and 27h is Planck’s constant. The scaled field,
Iy, is the ratio of the applied field strength to the mean Coulomb ficld while the scaled
frequency, €o, is the ratio of the applied field frequency to the unperturbed classical
frequeney; together, these provide a possible means of experimentally measuring quantal
effects (see Koch et al. 1989). Throughout this thesis we shall, where possible, use the
scaled variables defined in equation (1.1) when concidering the microwave ionization of
excited hydrogen atoms. ‘

Following the success of these carly theoretical studies, many authorc have used clag-
sical dynamics to model the microwave ionization process. For the hydrogen atom, these
studies have often considered the simpler one-dimensional model given by equation (1.26)
below (see, for example, Jensen 1984, Leopold and Richards 1985 and Casati et al. 1988),
although two-dimensional (Leopold and Richards 1986) and three-dimensional (Rath
1990) calculations have also been made. Classical models have also been used to study
other periodically forced atomic systems. In particular, Walker and Preston (1977) and
Goggin and Milonni (1988) have considered the claccical responce of the penodlca‘lly
driven one—dlmensmna.l Morse oscillator.

In this chapter we study some aspects of the classical motion of an arbitrary one-
dimensional system in the presence of a harmonic field. We begin in section 1.2 by
providing a brief everview of the Hamiltonian formulation of dynamics for a cystom
of one degrec of freedom: In particular; we introduce the concepts of timevdopondont'
canonical transformations and angle-action variables. . '

In section 1.3 we derive the Hamiltonian functions for both the one- and three-
dimensional hydrogen atom in the presence of a microwave field and generalise this work
to providc a Hamiltenian for an arbitrary systcm of one degree of freedom in the presenco
of a periodic forcing lerm. The one-dimensional Hamiltonian 3o obtaincd docz not al- -
wa&s providc us with the mogt convenient deccription of the motion, particularly for very
high or very low frequency fields. In such circumstances we show how time-dependent
canonical transformations can be used to obtain cquivalent Hamiltonians which provide
a more useful description of the dynamics.

The regime of low field frequency is discussed in section 1.4. We show that in the
adiabatic limit, € —+ 0, where the action is an approximate constant of the perturbed
motion, it is possible to use a related conservative system, the adiabatic Hamiltonian, to
describe the dynamics.

In section 1.5 we concentrate aon the high frequency regime and in particular we con-

-



sider resonant motion, where the applied field frequency is an integer multiple of the
unperturbed classical frequency. For such fields, we show how the Chirikov (1979) reso-
nance overlap eondition can be used to cotimate the field strength required for the onset
of chaotic motion. We find that this estimate depends crucially upon the smoothness of
the potential and that for analytic potentials other ionization mechanioms may become
important at \}ery high frequencies. We investigate two such mechanisms in scction 1.6
where we derive the ‘mean-motion’ Hamiltonian which provides a good approximation
of the motion in very high frequency fields.

Finally, in section 1.7, we generalize the work of Casati et al. (1988) on the Kepler
map and Graham and Hohnerbach (1990, 1991) on the Morse map, to derive an area-
preserving map which is applicable to a wide variety of one dimensional systems and
provides us with an cfficicnt meano of obtaining solutions to Hamilton’s equations when

the field frequency is high.

1.2 Hamiltonian dynamics

In this section we provide a brief overview of the Hamiltonian formulation of dynamics
for a system of one-degree of freedom: generalizations to higher dimensional systems can
be found, for example, in Goldstein (1980).

Suppose we have a particle of mass, u, moving in the one-dimensional, time-inde-
pendent potential, V(q); the Hamiltonian function or Hamiltonsan for such a system is
defined to be

Holg,p) = ipz +V(9), (1.2)

where ¢ i3 known as the generelized coordinate and p as its conjugate momontum. The
pair (q‘,' p) are called conjugatc variables and define a point in two-dimensional phase space
representing the state of the system. During a particular motion of the system, (g,p)
trace out a continuous curvc in phase-space named a phase surva: a typical potential,
V(q), and its phase curves are sketched in figure 1.1.

The time evolution of the conjugate variables, (g, p); ic deseribed by Hamilton’s equa-

tions of motion: ‘
d_q _ 0Hy 91_7 _ _aHo'

, d¢t  9d¢°' dt  9q
Note that the variable ¢ need not describe the configuration of the system nor need p

(1.3)

represent a physical momentum, though they frequently do have this meaning.

The Hamiltonian, Hy, has no explicit time-dependence and so its value is always
conserved: for the systems of interest in this thesis its value is equal-to the energy,
E. Henceforth, we shall refer to Hy as the unperturbed Hamiltonian for which we shall

assume that Hamilton’s equations of motion have known solutions.

10



Vq)

»QV.

'<3 )

Figure 1.1 Sketch of a typical potential, V(g), and its phase curves.

In general, we ghall be considering one-dimensional systcms in the presence of an

periodic field for which we assume the Hamiltonian can be written in the form

H(q,p,t) = Ho(g,p) + Hi(g,p, 1), (1.4)

where H, represents & time-dependent perturbation. Hamilton’s cqua.tior}n of motiog for
the system described by H are then given by equation (1.3) but with H replacing Hp.
Nete that H now depends explicitly on the time; #; and so ite value ic no longer conserved.

The general theory of time dependent Hamiltonianc is difficult and only for special
classes of time-dependent systems does a general theory exist. However, it is sometimes
possible to consider the motion of a rclated concervative system or to use the colutions of
the unporturbed system, Hy, as the starting point for finding approximate solutions to
a more complex time-dependent system: for these reasons we first consider the motion

described by the conservative Hamiltonian, Hyp.

1.2.1 Conservative Hamiltonian systems

The contours of the conservative Hamiltonian, Hp, are invariant sets of the system.

Hamiltonian systems have fized points which are also invariant sets. The fixed points
" occur whenever the gradient of the Hamiltonian is zero:

| (%o 8Ho

dq ’ dp

At fixed points the system is in equilibrium. The location and nature of the fixed points

) = VHO = 0, (ﬁxed pomt) (1’5)

allow us to determine an ovcrall description of the motion. For one-dimensional conser-

vative Hamiltonian gystems only elliptic and hyperbolic fixed pointe can occur: cl]jpf;io

11



fixed points occur when the potential function, V'(g) is at a minimum whilst hyperbolic -
fixed points occur at the maxima of V'(g). Hyperbolic fixed points are joined by phase’
curves, called separatrizes, that divide phase space into different invariant regions with
different types of motion.

For conservative one-dimensional systems, the motion is usually periodic. Two dif-

ferent types of periodic motion can occur.
1. When the velocity; ¢ always has the came sign the motion is said to be o rotation.
2. When ¢ changes sign the motion is'said to be a libration.

For rotational motion, it is often morec convenient to choose the coordinate g in the
range [0,2n] with the ends of the range identified. The Hamiltonian, Hy(g,p), is then

2m-periodic in q.

1.2.2 Time-dependent canonical transformations

The coordinates; (g; p); used to formulate the problem do not always provide us with the
mogt convenient rcpresentation in which to study the evolution of a Hamiltonian sys-
tcm. Other cquivalent Hamiltonians, for which the equations of motion take on a more
convenient form; can be obtained by malking a canonical transformation to o new sot of
conjugatc variables, (@; P): Such transformations may be-time-dependent and may be
applied to either the conservative Hamiltonian, Hp, or the time-dependent Hamiltonian,
H, and arc particularly useful for two reasons. Firstly, thoy preserve the form of Hamil
ton's cquations and secondly they arc arca-proserving, that ic the Jacobian determinant
of the transformation is unity, .

8@, P) _9Q0P 0QoP _

o(g,p) ¢ 8p Op Oq

This area-preserving property can be used to infer the existence of a function, F;(Q, g,t),

(1.6)

(see, for example, Goldstein 1980, chapter 9) which generates the transformation (g, p) —

(Q, P) via
oF, oF;
—_— — P == -0 1.
P=5 50 (L.7)
The function, F; is called a generading funciion: note that it ic only defined up to an
additive constant.

In the (Q, P)-representation the Hamiltonian is

K@P)=Hp)+ 2 Qat), - (18)

12



where ¢ and p are expressed in terms of @ and P, efter taking the time derivative, and

the equations of motion are,

dQ 0K dP oK
3 = 3P’ Frie ~%0" _ (1.9)
The form of the generating function, Fj, requires ¢ and @ to be independent vari-
ables and thus does not exist for certain important classcs of transformation, such as
coordinate transformations in configuration space. However, other generating functions
can be found by considering (P,q), (Q,p) or (P,p) as independent variables. There are
four different types of generating function depending upon the choice of independent
variable: F1(Q, q,t), F2(P,q,t), F3(Q,p,t) and Fy(P,p,t). The relationships between the
dependent variables and the various generating functions are summarized in table 1.1

and the new Hamiltonian is given by

Tabloc 1.1 Table showing how the dependent variablos aro rolatod te the various genorating
functions.

" Generating Dependent variables
function q P Q P
F1(Q,9,) OF1/0q —0F1/9Q
Fa(P,q,1) OF,/0q OF,/0P
F3(Q,p,t) —0F3/0p —0F3/9Q
F4(Pap1t) » _3F4/8p ' 3F4/3P
OF; .
K(Q) P’ t) = H(q"p‘lt) + YRR ) (] = 1)27 3’ 4)' (1'10)

Canonieal tranafarmations are uced in many areas of classical ﬂmchanicc, in particular
the Hamilton-Jacobi theory, which is extensively explained in Goldstein (1980) and briefly
but elegantly by Landau and Lifshitz (1976), and are the classical equivalent of unitary

transformations often used in quantum mechanics.

1.2.3 Augle-action variables

The variables used to formulate a problem are not always the best for solving it. Indeed,

for the systems of interest in this thesis, we will often use the solution of a relatively
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‘simple system as the starting point for finding the solution to a more complex system.
In such circumstances it is best to choose variables so that the solution of the simpler
problem is expressed in the simplest possible way: for the bounded motion of conservative
Hamiltonian systems these variables are called angle-action variables.

For Hamiltonians of one-degree of freedom, such as Hy of equation (1.2) above, the
motion i8 usually periodic in time and may be either librational or rotational. First we

consider librational motion.

Librational motion

The thecory of angle-action variables requires that the phascAcurvc be closed but not a
separatrix. Specifically, we consider the unperturbed Hamiltonian, Hy of equation (1.2),
with typical potential and phase curves shown by figure 1.1. In (g, p)- representa.tlon the

~ phase curve of energy, E, is represented by the two-valued function

p(q, E) = £4/2u(E - V(q))- (L11)

The multivaluedness of this function is clearly unsatiofactory, so we seck a new pair of

variables, (6, I), with the properties:

1. each phase curve is labelled uniquely by I, which is constant along that curve;

2. each point on the phase curve is labelled by a single-valued function of 6.

In the (@, I)-representation, the contours are lines of constant I, so that the Hamil-
tonian is independent of # and, since I is constant, § increases linearly with time. This

is expressed in Hamilton’s equation of motion:

dI _ 8H,  d6 _OHp _
%= "5 5 = ] = coustant. (1.12)

The angle-action variables are obtained by making 6 increase by 27 in each period. Then
@ is named the angle variable and I the aclson vartable. The phase curves in the anglo
action representation are thus straight lines parallel to the §-axis, as shown in figure 1.2.

The time-dependence of § is given directly by Hamilton’s equation (1.12),

_ 8o

0 =w(I)t+6y, where w(l)= a7 (1.13)

is the angular frequency of the motion and 6 is an arbitrary constant. The dependence

of the angle variable upon ¢ is more complicated to derive and is given by

0a) = 3 [ da'd\ D). o aw

14



Figure 1.2 Phase curves in angle-action representation for librational motion.

Note that care must be exercised when evaluating 6(q) using equation (1.14) béca.use
p(g,I) is a multivalued function of gq.

The Hamiltonian, Hy, in angle-action representation is obtained by comparing the
area enclosed by a phase curve during one full period in the (g, p)-representation with
the corresponding area in the (6, I)-representation; as the transformation (g,p) — (6, 1)
is canonical, these two areas are the same, see figure 1.3:

: 92(E) 2%
A(E) = f dgp(g,E) = 2 / dg/2u(E — V(g)) = / d0I =271,  (115)
q1(E) . 0 4
where V(g) = E, i = 1,2. Thus, for librational motion, the action variable is propor

P (g.p) > (©.0)
/—

—\ )
/ A(E) \ R A(E)
2mn

Figure 1.3 Area enclosed by a phase curve in (g, p)- and (6, I)-representations.

.

Y /

A

tional to the area and, as a function of the energy, E, is given by

I(E) = % /q :" dgr/2u(E —V(9), (1.16)

which is a mdnotonic increasing function of E within each invariant region. By inverting
equation (1.16) we can obtain the Hamiltonian, Hqg(I) = E, as a function of the action.
For potentials where there is a minimum energy, Ey, below which motion is impossible,
the phase curves in the (g, p)-representation reduce to a point and I(Ep) = 0; the action
then has a natural boundary at I =0. -

The action variable has the same dimensions as angular momentum; the angle variable

is dimensionless and usually represents an angle in configuration space. Since the points
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(6,I) and (6 + 2, I) label the same points in phase space, the (6,I) coordinates can
be represented upon a semi-infinite cylinder, where 6 is the angle around the cylinder

and I is the coordinate along its axis, see figure 1.4: on this cylinder, ¢ and p are both

Figure 1.4 Representation of angle-action variables upon a semi-infinite cylinder.

2m-periodic functions of the angle variable,

q(6 + 2w, I) =q(0,1), p(6 + 2m,I) = p(0,1I). (1.17)

A scparatrix divides phase apace into invariant regions which contain phase curves
with differcnt’ propcrticé. Within each such invariant region either all motions are periodic
or none are. When the motion ig periodic, angle-action variables may be defined but
they are not defined on the separatrix itself nor are the angle-action variables in different

invariant regions related.

Rotational motion

For rotational motion, the phase curves on the plane are not closed and the coordi-
nate, g(t), is a continuously incrcasing or continuously decreasing function of time. Tho
ITamiltonian is then periodie in ¢ and, for convenience, we suppose this period to be 2w,
Hy(g + 2m,p) = Ho(g, p)-

As before, we require that each phase eurve is labelled by an action; I; and cach point
on a phase curve is labelled b'y a variable, 6, that is linear in time as in equation (1.13):
the phase curves in each representation are shown in figure 1.5. The action is then given
a3 a function of the encrgy by cquating the arcas between phase curves in the (g, p)- and
(8, I)-representations: , .
1B) = 5- [ dasta, ), (118)

where p(q, E) is a function of ¢ given by the solution to the energy equation, Hy(g,p) = E,

which usually has more than one solution; for a Hamiltonian given by equétion (1.2) there

are two solutions correspending to the different signs of the square root and represonting

16



I

>

2:11 E 2n B

Figure 1.5 Phase curves in the angle-action representation for rotational motion.

rotations in epposite dircctions: Thus for cach energy there are; in this case; two actions
defined by equation (1.18), corresponding to each direction of the motion. .
Different choices of horizontal axis give actions differing from equation (1.18) by
additive constants. Thus, unlike librational 'motion, for rotations thero ic no natural
boundary for the action and any arbitrary constant may be added to it.
The form of the equation for 6(q) is identical to equation (1.17) above but since p(g, I)
is a single-valued function for rotations, 6(g) is a continuously increasing or decreasing

function of q.

Semiclassical methods: quantization of the action variable

We shall often be eoncerned with providing quantizations of particular classical systems:
for & one-dimcngional system cxpressed in terms of angle-action variables; this is achieved

using the prescription,

1=,(n+%) B (n=0,1,2,...),  (119)

where 27 is Planck’s constant and « is the Maslov index (see Percival 1977). The value
taken by the Maslov index depends subtly upon the topology of phase-space: for our
purposes we simply note that @ = 2 for librations and a = 0 for rotations give the

correct quantization conditions for motion in a one-dimensional system.

1.3 The Hamiltonian and gauge transformations

1.3.1 The Hamiltonian for a hydrogen atom in a microwave field

There are currcatly two octs of experiments which gub ject an excited hydrogen atom to a
microwave field but which produce these fields in different ways. Here] we:follow Leopold

and Richards (1991) and derive the oquations of motion for both sete of ecxperimonts.
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The Koch experiment

In the experiments of Koch and co-workers (see Koch 1982, Koch 1990 together with
section 4.5 below) an excited hydrogen atom, initially prepared in a microcanonical en-
semble of substates, moves through a microwave cavity with a linearly polarized field in
the & dircciion of the motion. If Sy, is the laboratory rest-frame, with ;.:oordinate axes
0XY Z, then the electric ficld in 8y, is asoumed to comprise static, F;, and ogcillatory

components:
E' = [F, + A(2)F,, sin(Qt + 6)] 2, ) (1.20)

where A(z) reprecents a smoothly varying envolope which is zoro outside come finite
region, positive inside this region with A’(z) > 0 for 2 < 0 and A’'(z) < 0 for z > 0; usually
A(z) is an even function of z: in current experiments F, = 0. In the reference frame Sy
'moving with congtant velocity V' with origin at the nuclecus of the hydrogen atom; the
vector and scalar potentials of this field are, on using the Lorentz transformation (see
Landau and Lifshitz 1971 §24), 4nd assuming V < ¢, - .

|4
A, = %—A(Z + Vt) COS(Qt + 6) + ?(Z + Vt)Fs, Az = Ay =0, (1'21)
~ ¢ = —(2+VH)F, - %A(z + Vt) cos(Qt + 6), (1.22)

where Oxyz are the coordinates in Sy with 0Z parallel to 0z and c is the speed of light.
Assuming that A(z -I- Vt) varies little over the atomic diameter, it may be replaced by
the function A(Vt) = A(t) of time only to give the Hamiltonian, "

1 eFm .. 2 e? ~
H = ﬂ (P - TA(t)Z COS(Qt + 6)) - eF,z - 7, (123)
e e, ”
P = p+ EA ~p+ Tz\(t)z cos(§t + 6), (1.24)

where (P, r) are the conjugate variables:

The i3ayﬁeld experiment

The cxpcriments of Bayfield (1987) and co-workers are different. The excited hydrogen
atoms move through & wavoe-guide perpendicular to ito axis; tho wave-guido ic excited
to the TE,y mode and, in addition to thic ficld, there ic alco a magnetic field precent
perpendicular to both the wave-guide and the direction of the motion. In the moving
frame, Sy, the electric field is perpendicular to V2 and the vector and scalar potentials

of the combined field are,

. .
A= %a‘; sin (%) cos(92t + 8), ¢ = —Fyz, (1.25)

-
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where T is the time of passage throﬁgh the wave-guide, about 23.6 ns in the Bayfield
et al. (1989) experiments. The Hamiltonian is therefore the same as that given in equa-
tion (1.23) except that Z is now in the direction perpendicular to the beam wvelocity and
A(t) = sin(nt/T). :

In the Bayfield expcriments the hydrogen atoms arc prepared in an extremal Stark
state, ng > 1,m, = ng —n; = ng — 1,m = 0: the electron is confined close to the field -
axic and ita motion io well described by a one dimensional Hamiltonian which may be

written in the form,

‘ 1, e eFm

—_— e—— _——-—— - > . M
H(z, P,t) 2MP p eF _#Q A(t) cos(S2t + 6), 220 (1.26)
At this point it sheuld be noted that the form ucua,liy used by theorists to model the Bay-

field experiments also neglects the static field, F;, see, for example, Casati et al. (1988).

1.3.2 The Hamiltonian for a one-dimensional system

We now pf&vide a gencralization of the Hamiltonians derived in the previous scction to
obtain a Hamiltonian which describes an arbitrary one-dimensional system, described
by the potential V'(g), in the presence of an oscillating electric field. In particular, we
wish tob model the Koch experiments, and so we neglect the static field and re-write

Hamiltonian (1.23) in the form,

Hp(g,pt) = Ho(q,p)+p/\(t)£z- cos(2t + 8), (1.27)
Ho(q,p) = ipzﬁtV(q),. : (1.28)

where y is the reduced mass of the system, F' = eF,, and Q the applied field amplitude
and frequency, § the ficld phasc and (g, p) are the conjugate variables: henceforth we ghall
refer to equation (1.27) as the momentum gauge Hamiltonian. Note that the change of
sign preceeding the cosine in equation (1.27) simply corresponds to a change in the
definition of the field phase, , and has no effect on the dynamics. Whilst the derivation
of Hamiltonian (1.27) was carried out with a microwave field in mind, it should be
noted that the samc Hamiltonion can be used tu describe laser excitation of ground stato
hydrogen atoms, provided suitable changes in the parameters are made.

The time-dependent field envelope function, A(t), represents the finite extent of the
field in the laboratory: typically, it is zero for a time ¢ < 0 and for £ > 0 rises monoton-
ically to unity over a prescribed time, Tg, remains at unity for many field periods and
finally decreases monotonically to zero at time ¢ = T,,. In general; it is important to
include this envelope in any thebretica.l, model because, for the experimental work car-
ried ont to date, the ﬁeid is rarely switched on suddenly. Typically, A(¢) takes the form
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Figure 1.6 Typical variation of the field-switch functipn; A(t), with ¢t for 0 <t<Tnm.

shown in figure 1.6: note that this differs from a typical laser pulso which may have no
flat portion to the envelope. ' ' ' .

In order to accurately model cxperimento it io cooential to inéorpora.tg the variation
uf A(t) into any theorctical model because adiabatically and suddenly switched ficlds
produce different effects. Classically, the initial conditions are usually chosen to, lic on an
invariant torus of the unperturbed system. When the field is switched on adiabatically,
the ensemble of initial conditions evelves onto o single invariant toruc of the perturbed
system; a sudden switch, on the other hh.nd; projects cach different initial condition onto
a different initial torus of the perturbed system. Moreover, if the ﬁeld is switched on
suddenly the field phase, §, plays an important role in the dynamics, see section 1.6
below; it is then neceésa.ry to average results over §. For an adiabatic switch, on the
other hand, the field phase has little effect on the dynamics, as is shqwn by the results
" presented in chapter 3. '

The phase space of the unperturbed system, Hy(g, p) of equation (1.28), is assumed to
comprise a bounded and an unbounded region between which there is a single separatrix
of energy ES. Typically, the potential, V(g), will take the form shown by the solid lines
of figures 1.8 and 1.9, see page 30 below. It is also assumed that the frequency, w(FE), of
the unperturbed motion decreases with increasing energy. An orbit ionizes by.crossing

the separatrix and remaining in the unbounded region until £ > Ti,.

1.3.3 Gauge transformations

The Hamiltonian of equation (1.27) does not always provide us with the most conveniont
description of the motion, particularly when the field frequency is very high or very.low.

Other equivalent Hamiltonians can be obtained by making a general time-dependent
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linear transformation in phase spé,ce,

P=p+a(t), Q=q+b(t), ' (1.29)
produced by the generating function,

Fy(P,q) = (P—a(t))(g+5(t), (1.30)

o that in this represontation, and on ignoring terms solely dependent upon time; Hamil

tonian (1.27) becomes, '
K(Q,P,t) = -2%192 +V(Q—-b(2) + % (g,\(t) cos(Qt + 6) — a(t) + ub(t)) - Q. (1.31)

This Hamiltonian can be simplified by removing the term linear in P and there are two
" obvious ways in which this may be achieved. It should also be noted that because the
canonical transformation generated by F3(P, q), equation (1.30), is linear, the Schrodinger
equation corresponding to Hamiltonian (1.31) is obtained by replacing the momentum,
P, by its quantal operator equivalent, P= —-ihd/8Q.

- 1.3.4 The dipole gauge Hamiltonian

For low frequency ficlds; 8 &« w; a convenient description of the motion is obtained by
choosing, |
a(t) = F—;\zﬂ cos(t + 6), b(t) =0, (1.32)
to give the dipole gauge Hamiltonian,
Ha(q1,p1,t) = 5=} + V(@) - 015 o (AH) cos(Q + 6)), (133)
24 - T Qadt

where, F
a=¢, n=p+ ﬁA(t) cos(2t + 6). (1.34)

The initial state is almost alwaye described in terms of the conjugate variables, (g1;p1);
or the angle-action variables, (6,I), of this representation and in this gauge p; = pq1-
Hamiltenian (1.33) reduoces to the form usually used to describe the microwave ionization
of hydrogen atoms (see, for exawple, Leopold and Percival 1979, Jensen 1982, 1984,
Casati et al. 1987b, 1988, Blimel and Smilansky 1987),

Hu(as,p1,t) = 5+ V(@) + aFA(Osin@e + ), (1.35)
only when the field envelope changes insignificantly during one ficld period, that is when
;\/,\ « Q. This condition is satisfied for most experiments performed to date but may
not be in future experiments. In particular, Hamiltonian (1.35) describes the dynamics
incorrectly when the field is switched-on suddenl&-
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1.3.5 The acceleration gauge Hamiltoniaﬁ

For high field frequencies, > w, the dynamics is best described in the ‘acceleration’

gauge, obtained by setting

t
a(t) =0, b(t) = —L/ dt’ A(t") cos(QU’ + 6), (1.36)
u2 Jo
to give .
1 ,
Ho(g2,p2,t) = EP% + V(g2 — b(t)), (1.37)
with .
p2=p, qQ=g+b). : (1.38)
This representation is useful when the field frequency is high because the perturbation
is O(N72).

It is important to note that the three Hamiltonians just described, equations (1.27),
(1.33) and (1.37), provide equivalent descriptions of the dynamics but, for times 0 <t<
T, the canonical variables, (p,q), (p1,¢1) and (p2,q2) are different in each of the three

gauges.

1.4 Low frequency behaviour: the adiabatic Hamiltonian -

In this section it is assumecd that the applicd field frequency is very much less than the
frequency of the unperturbed motion, Q < w, so that the dynamics is best described
using Hamiltonian (1.33). In this case, the Hamiltonian for the system changes little
during onc unperturbed period and 6o the the principle of adiabatic invariance ig valid,
see Percival and Richards (1982, chapter 9). Classically, this means that the action of
the perturbed motion io an approximate constant of the motion and o it is possible to

use a related conservative system to understand the dynamics.

1.4.1 The adiabatic Hamiltonian

Consider a Hamiltonian having the general form,
1
H(g1,ps,t) = Tﬂpf +V(g) - f(Oa, (1.39)

where f(t) varies slowly between finite limits (fy, f2). If it is assumed that A(t) varies very
little during one field period, so that f(t) ~ —FA(t) sin(Q2t + §), then Hamiltonian (1.39)
is just the conventional dipole gauge Hamiltonian (1.35).

The related conscrvative aystom io degeribed by the unperturbed adiebatic Hamilto- .

nian (see Leopold and Richards 1993a), defined by, ot

1 '
Hap(q1,p1) = Z_;Zﬁ +Via) — s, (1.40)
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where « is a constant. It is assumed that for f; < & < f, the unperturbed system sup-
ports bound motion with angle-action variables (6, I) and generating function F (I,q1; %),
parametrically dependent upon « (see Percival and Richards 1982). In this case the un-
perturbed motion is periodic with frequency war (7, s): subsequently it will be useful to
define w(I) = wap(I,0) to be the frequency of the field-free system. All phase space
variables are 27-periodic functions of 4, so can be expressed as Fourier oeries; in partic-
ular, since the Hamiltonian is an even function of p; and p; = ug;, it may be assumed

that the Fourier development of the position coordinate has the form,

010, 1) = qu(1, &) + iQs(I, K) cos sb, (1.41)

s=1

where g is the mean of q1 over an unperturbed orbit,
1 [~ '
am) =5 [ w0a0.D. (1.42)
TSz

The variation of the perturbation of the original system, equation (1.39), is slow if

the relative variation of f(¢) during one period is small, that is provided,

1df .
‘f&' K wap- (1.43)

In the case where f(t) = Fsin(Qt + §) we need the scaled frequency to be small, Qy =
Qfwap < 1.

The time-dependent generating function, F5(I, q1; f(t)), obtained by replacing x with
f(t) in the generating function for the unperturbed system, produces a time dependont
cononical transformation which, when applicd.to the original system gives the new Hamil

tonian,
K\(0,1,1) = Han(l, £() + 2(T,a1: ), (1.44)
where Hap(Z, f) io the adiabatic Hamiltonian in angle-action representation. Here the
partial derivative of I',(I,q); f) with respect to time, is expressed asc a function of the
angle-actien variables, (8;I); after differentiation with reopect to ¢: ag f(¢) is a clowly
varying function of time this term, being proportional to f , 18 small and in the adiabatic

limit can be neglected to give the adiabatic Hamiltonian,
Ky(0,1,t) ~ Hap(I, f(t)), (adiabatic limit, Q — 0). (1.45)

This approximation is valid provided changes in the classical action arc sufficiently small

to be neglected and has the correet otatic field limit ac the ficld frequency tende to zero.
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1.4.2 The breakdown of adiabatic invariance

The transformation between Hamiltonians (1.39) and (1.44) is exact provided the initial
orbit remains in the region where the angle-action variables are defined. If the original
system ionizes then this condition is violated and Hamiltonjan (1.44) is no longer valid.
Hence, it is assumed that the applied forces are not strong enough to ionize the system.

As the field frequency, €2, increases from zero, the adiabatic approximation breaks
down and the second term of equation (1.44) can no longer be neglected. It is then
necessary to use the exact Hamiltonian (1.44) to describe the dynamics. Leopold and
Richards (1993a) show how to obtain an expression for the time-dependent generating
function, Fy(Z, q1; &), of the unperturbed system and its time derivative. The former can
be defined in terms of the integral given by Percival and Richards (1982, page 112),

q1 q1 :
RI,q;x)= | dem(l,q)=v2u | day/E(I,Kk)—V(q)+ &g, (1.46)
qo .

90

where E(I,x) = Hap(I, k) is the unperturbed energy expressed in terms of the action
and go(I, k) is the smallest turnmg point, corresponding to 6 = 0. Differentiation with

OF, | N 3E/8n+q
%?m\/g/ dg \/—(I k) —V(q) + kg (1.47)

Provided éx is sufficiently small, first-order perturbation theory can be used to write,

respect to x gives,

E(I,k + 6k) = E(I, k) — (I, k)6Kk + O(6k?), (1.48)

which is a classical version of the Hellmann-Feynman theorem of quantum mechanics
(see McWeeny and Sutcliffe 1969). Thus,

. 3F .

e = [atla® - a@n), (1.49)

where the integral is evaluated over one orbit of Hsp(I,x). Using the Fourier series
expansion of equation (1.41) and setting § = wap(I, k)t + 6y gives,

oFy
ok

wAn(I ) Z Q,(I K) sin s6. (1.'50)

Returning now to the time-dependent system described by Hamiltonian (1.44) and writ-

e oF, _OF
2 _O0f;
5~ Bf f (1.51)
gives the following expression for Hamiltonian (1.44),

A, f)

Ki(8,1,t) = Hap(I, £(t)) + f(t) Z (I ) sin s6. (1.52)
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This Hamiltonian is exact provided the orbit remains inside the separatrix of the unper-
turbed system, equation (1.40), defining the boundary of the invariant region in which
. the variables (6, I) are defined. '

When the field is switched on over many field periods, so that A/A <« § and f (t) ~
—FA(t) sin(%t + 6), Hamiltonian (1.52) becomes, '

K1(6,1,t) = Hap(I, f(t)) —Fz\(t)ﬂi Qs((If})

where other correction terms due to the ficld envelope are small and may be neglected.

sin s6 cos(t + 4), (1.53)

The major advantage of this represcntation is that the perturbation is now proportional
to F'Q) rather than juét F.

Hamiltonian (1.52) can be treated either classically or quantally: the quantal be-
havieur is discussed in chapters 23, 4 and 5 below; the classical behaviour is described by
Leopold and Richards (1993a) where first-order perturbation theory is used to approxi

mate the dynamics.

1.5 Resonant motion: the resonance overlap condition

At higher field frequencies, 2 > w, and for sufficiently high field strengths, it is possible
for the elassical system to ionize via chaotic orbite: Chaotic ionization occurc when a
significant preportion of tho orbits become unstable and the distribution in action satis-
fies, approximately, a diffusion equation (see Lichtenberg and Lieberman 1983, page 286).
For roconant frequencies, Q — rw for integer , an estimate of the field strength required
for the onset of chaotic motion can be obtained by using the Chirikov (1979) resonance .-
overlap method which estimates the ficld strength at which adjacent rceonance islands
intersect.

In order to dcrive the overlap criterion for the one dimensional system under congid.
eration here, it is convenient to express Hamiltonian (1.27) in terms of the angle-action
variables, (6, I), of the unperturbed system, Hp(I): '

H(6,1,t) = Ho(I) + FV(6, DA cos(t+8),  V(6,1) = uiﬂ‘p(e, 0. (154)

The perturbation, V(8,1), is a 2w periodic function of the angle variable, 6, and henco

may be expanded in a Fourier series, so that Hamiltonian (1.54) becomes:

H(8,1,t) = Ho(I) + FA(t) i Va(I)e %8 cos(Qt + 6), (1-.55)
where, f
Vi(I) = 21 A0V (0, I explish), Voo =V>. (1.56)
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For sufficiently small fields the Kolmogorov-Arnol’d-Moser (KAM) theorem '(see Arnol’d
1978) ensures that the majority of straight-line trajectories in angle-action space are only
slightly distorted by the perturbation; the maximum distortion of the trajectories occurs |
at resonances, s = &r, where the phase sf — U, is stationary. By writing § = w(I)t + 6o, -
we see that this occurs when = rw(I) so that in the vicinity of the resonance at s = r

an approximate expression for Hamiltonian (1.55) is,

CH(6,1,t) ~ Ho(I) + FA(t)|V-(X)| cos(r — Qt — & + ;). (1.57)

where f.(I) is the phase of the Fourier component, V;(I) = |V,.(I)|e”*-. By making a

time-dependent canonical transformation,

¢=9_gt_§+ﬂ_f£i),' J=I-1, (1.58)

by means of the type 2 generating function,
Fo(J,0,8) = (J + L) (e _ %t) +(J), (1.59)
where I, is a constant and y(J ) a suitable function of J, the new Hamiltonian is obtz;.ined:
K(,J)=Ho(J+ I) — JTQ + FAW®)|V-(J + I.)| cos(re). (1.60)

The unperturbed Hamiltonian, Hy, is now expanded as a Taylor series to O(J?); on
choosing the constant, I, to be the action of the exact resonance, so that rw(l;) = Q,

we obtain the following approximation to Hamiltonian (1.60):

J? dw(I,)

K($,J) = 50/ (B) + XD (E)leos(re),  w'(F) = =577, (1.61)

where an irrelevant constant and higher order terms in the expansion of V,.(I) have been
neglected: the quantal equivalent of transformation (1.58) is given by Zaslavsky (1981).

Thus, for small perturbations, Hamiltonian (1.54) can be approximated in the vicinity
of each resonance by the Hamiltonian of a simple pendulum; trajectories of the system
close to the resonances are thus confined to narrow island chains in angle-action space.
Between the resouances, the surviving KAM surfaces prevent trajectories from wandering
from one resonance to another and so no net change in energy occurs.

In figure 1.7 we sketch the width of the adjacent resonance islands with increasing F'.
We see that as the perturbation increases, the resonance islands grow wider, in action.
When the islands are sufficiently large the system can diffuse in action, or equivalently in
energy, by wandering from one island chain to another. These transitions.occur when the

the field is sufficiently strong for the islands generated by adjacent resonances overlap.
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Figure 1.7 Sketch showing how adjacont resonance island widthe increase with increaging F',
eventually causing them to intersect.

The width of the reconance icland in angle action space correcponds to the width of

the libration region of the pendulum,

W, =4, /F/\(t)%, | (1.62)

and the separation of the resonances at r and 7 + 1 is given by,

w(l,)
' (1)’

AL =Ly — I;| ~ r> 1 (1.63)

Referring onoe more to figure 1.7; it ic clear that the zeroth-order iclands overlap when the
island width, W,, is greater than the separation, Al,. From equations (1.62) and (1.63)
we see that this occurs when, '

dw(I,)
daI

Incquality (1.61) provides an a.pproxiina.té condition for the critical field required to

16FAQ)|V, (L)] >r4Qt  rw() =0 (r>1). (1.64)

destroy the KAM surfaces between the 7 and 7 + 1 island chains. If the system has an
initial energy corresponding to an action lying between I, and I, then the application
of an ogcillating ficld with amplitude greater than the critical field will cause the system
to diffuse in action.

In extensive numerical calculations, Chirikov (1979) showed that the overlap condi-
tion (1.64) provides a good eotimate for the ficld strength required for global ctochacticity.
Jenson (1984) argued that secondary icland chains; generated by the nonlincar intorac
tion of the primary resonance islands; accelerate the destruction of the confining KAM
surfaces and thus estimate (1.64) provides an upper bound on the critical field strongth
required for the onsect of ctochastic excitation and ionization of the system; more precise
calculations of the island widths and separation for-the r =1 and r = 2.resonances give
values for the critical ficld approximately 10% lower than that obtained uscing the simple
analysis given here (see Jensen 1984). ’
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For the Hamiltonian of equation (1.27), with V (0, I) defined by equa;.tion (1.54) above,
condition (1.64) suggests that a significant proportion of orbits become chaotic for F >

Feop with,
-1

1 w(d)* |dw(]) . =R, (1.65)

Fon = 5 V(D[ | ar

where [z] is the integer part of z. In appendix A we show that this criterion is gauge

independent, so that Hamiltonians (1.27), (1.33) and (1.37), yield identical expressions
for Fop. o '

The important point to notice in expression (1.65) is that Foy is proportional to
(Va Jw)” ! and that the rate at which tho Fouricr components decrease with Q/w depends
upon the analytic properties of the potential. For analytic potentials, such as the Morse
potential which is discussed in detail in chapter 3, V; decreases faster than any power
of r, sce equation (3.7) page 70 below; but for potentials with discontinuities in the nth
dcrivative, V; -~ p—(M+1), Thus, the critical field ctrength required for chaotic ionization
by high frequency fields depends crucially upon the smoothness of the potential: for
analytic potcntialg it inoreases very rapidly with increasing field frequency whercas for

the singular one-dimensional Coulomb potential it decreases.

1.6 High frequency behaviour: the mean-motion Hamil-
tonian

For high frequency ficlds; where € » w, the reconance overlap criterion described in
section 1.6 can agoin bo used to give an cotimate of the ficld strength required for the
onset of chaotic motion. However, chaotic orbits are only significant for very high fields
and so other ionization mechanisms may become important at lower field strengths. In
this section, two such mechanisms are-described, one which occurs when the field is
switched on adiabatically, the other when it is switched on suddenly.

1.6.1 The mean-motion Hamiltonian

For high ficld frequencicd the clagsical dynamics is best described by the Hamiltonian

Hulanp2t) = 5203 + V(a2 = b(0), (1.66)
F t ! l. !
bt) =~ A dt' A(t) cos(Q¢ + 6), (1.67)

which, it should be woled, is exact but remains time-dependent unless V(g) = 0. A
simplification can be made by noting that during the course of one field period the
variables, (g2, p2), change vory little and that the exact motion consists of a slowly varying
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dverage motion upon which are superimposed small, high-frequency oscillations. Thus,
an approximation to Hamiltonian (1.66) can be formed by taking its average over one

field oscillation to obtain the mean-motion, or ‘dressed’, Hamiltonian,
_— 1 —
H(gp) — i +V(@), - (1.68)

where .
1% Qo dtv b(t 1.69
(@) =3, [ dtVie—50). (169)

For many functions, V(g), the integral for the mean-potential, equation (1.69), can-
not be evaluated in terms qf known functions; the field ewitch function, \(¢), causes
further complications. Howover; when the field is turned on over a large number of fiold
oscillations, so that A/A <  and b(t) =~ —(FA(t)/pQ?)sin(Qt + §), then A(t) may be
treated a3 a constant when computing V to produce the mean motion Hamiltonian with

the function, A(t), present as a slowly varying parameter,

1 _ FA(t)
H(Q2,p2, a) _ﬂ:p2 + V(Q?: ) a= ”Qz ) (170)
where, 1
Viga) = 5 [ d$V(g+asing) (1.71)

and thc change of variable, ¢ = Q¢ §; hag been made: The theory of adiabatic invariance
can riow be used to deduce that the mean-motion action variable is an approximate
constant of H. '

The dynamics of Hamiltonian (1.70) is best understood by treating o as a small
parameter. The ‘space-translated’ potential, V(g2 + asin¢), can then be expanded as a
Taylor series in a:sin ¢ to give an approximation to Hamiltonian (1.66),

H, ~ 2—p2 + V(q2) + asin ¢—— + ( asi n¢)2 ld > + (ozsqu 63;3/ +0(a?). (1.72)
993

Taking a time-average over one field period gives the following approximation to the

mean-motion Hamiltonian,

T~ ip% +V(g) + lozea—ZK + O(at). ' (1.73)
2 4~ 0g3

This approximation can be used to establish some simple propertics of the mean-motion
potcnﬁiol, V(g2,«), and obtain o qualitative description of the mean-motion for various
values of the parameter a.

Using approximation (1.73), it can be seen that V(q) > V(g)-if V*(¢g) > 0. In
figure 1.8, we show the mean potential, V(g), equation (1.71), correspondixig to a potential
of the Morse-type, V(g) = (1~e~9)?, for various values of the parameter a: the full curve,
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V(g,o)

Figure 1.8 Graph of V(g,a), equation (1.71), corresponding to the potential,
V(q) = (1 — e79)%, for various values of the parameter, c. Note that the full curve, with & =0,
represents V(g).

q
. FPigure 1.9 Graph of V(g:,c), equation (1.71), corresponding to the . potential,
V(g) = —-1/(1 + ¢3), for various values of the parameter, a. Note that the full curve, with

o = 0, represents V(q).
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with & = 0, corresponds to the unperturbed potential, V(q). The important point to
notice here ig that the area under the scparatrisc of the motion; and honce the action of
the mean-motion, must be a decrea.sing funétion of a.

A further example is given by the potential V(¢) = —1/(1+¢?): the graph of V(qs, @),
equation (1.71), corresponding to this potential for various values of the parameter a is
shown in figure 1.9. This figure shows that for o < /2 the mean potential is qualitatively
similar to the unperturbed potential, but that for & > /2, the minimum at ¢ = 0
becomes a maximum and two other minima are created at g2 = +¢q,

Beeause chaotic orbits are significant only for very high fields other ionization mecha.
nisms may bccome important. Assuming that the mean-motion Hamiltonian accurately
describes the dynamics so that there is no chaotic motion, ionization can only occur if
the motion crosses the separatrix and, within a time-dependent approximation, there are
anly two wayg in which this can occur: The first is when the field ie switchod on suddenly;
the second when it is switched on adiabatically. In both cases, the dependency of the

separatrix of the mean-motion Hamiltonian upon F is needed.

1.6.2 Sudden field switch

For a sudden field switch ionization can occur simply because the phase curve of the
initial state intersects the separatrix of the mean-motion Hamiltonian. In this case the
field phase, 8, becomes significant. The initial state is a phase curve of Hy in the (g1,p1)
representation, equation (1.33): at time ¢ = 0 each point on this phase curve starts

moving on a different phase curve of H, that is the initial position and momentum are,
F
p2(0) =p1 — g cos 6, q2(0) = q1, (1.74)
where (q1,p1) lie on the energy contour of Hy(q1,p1) = Eg, with p; given by
p} = 2u(E4 - V(q1)). (1.75)

Similarly, the value of the momentum, p, on the separatrix of H, with enérgy contour

- F(Q21p2) = E-Sa is given by1
—S = !
- p3 =2W(E" —V(g2,@)): (1.76)

By using the approximate mean-motion Hamiltonian (1.73), it may be seen that, for

small a, V(gs, ) =~ V(g2) = V(q1). On writing ps = p1 — (F/Q) cos §, equations (1.34)

and (1.38), the following expression is obtained for the value of p; at which the initial,
torus intersects the separatrix of H, -

2
- 2171% cosd + (g—) cos? § ~ 2/.&(—ES — Ey). (1.77)

31



In appeudix B, this expression is be used to obtain ionization probabilitics as functions
of the unperturbed dipole energy, E4, the applied field strength and field frequency for
the specific case of the Morse potential. In appendix C it is shown that for any potential

the classical and quantal ionization probabilities for this process are similar.

1.6.3 Adiabatic field switch

For slowly switched fields, the variable, ¢, of equation (1.70), varies slowly with time,
a — oft), and the principle of adiabatic invariance ensures that the action, I{a), is
an approximate constant of the mean motion. For some potentials, the area under the
separatrix, A(ca), of H is a decreasing function of c; thus there is a critical value, o,
at which I = A(a.)/2m, beyond which bound motion ceases and the system ionizes. An
illustration is given in figure 1.10, where an orbit, denoted by the broken curve, is shown
in a potential of the Morse-type, V(q) = (1 — e79)2. Here we see that as o increases,
the potential changes shape from that in panel A through panel B to panel C, with a
corresponding decrease in A(a). Because the action of the mean-motion remains constant
the energy of the orbit must gradually increase until, in panel D, it crosses the separatrix
and ionizes. '

Near the separatrix, the bound frequency, w, is small, so the ratio, £2/w, increases
and the accuracy of the mean-motion approximation improves. However the principle
of adiabatic invariance breaks down so that a., as given above, is only a very rough
approximation. In practice, the breakdown of adiabatic invariance affects only a small
proportion of orbits and is discussed at the end of this section.

A second example is given by the potential V(¢) = —1/(1 + ¢?), shown schematically
in figure 1.11. In this case, the mean-motion Hamiltonian acquires a separatrix at time,
t =t,, where a(t;) = v/2, and there are two possible outcomes depending upon whether

the mean energy, F, remains greater than the separatrix energy,

B =-(1+)2,  a>V7, (1.78)
or whether the mean energy becomes less than E° at some time. As both _E- and E°
are complicated fuuctions of ¢, we can determine whether or not this change occurs only
by carrying out detailed calculations. Again, the invariance of the action can be used to
obtain a qualitative description of the motion.

As oft) increases through v/2 at t = ¢,, a separatrix is formed when the potential
changes shape from that in panel A of figure 1.11, through panel B to panel C. This change
alters the nature of the phase curves: for ¢t < {, there is only one invariant region — note
that only energies E < 0 for which the motion is bounded are considefed here — and

for t > t, there are three invariant regions. Imagine an orbit shown schematically by the
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Figure 1.10 Schematic picture of the motion in the potential, V(g) = (1—e~?)? with increasing
a. The dotted line marks the energy of the same orbit in each of the panels A to D.

Figure 1.11 Schematic picture of the motion in the potential, V(q) = —1/(1 + ¢*) with
increasing . The dotted line marks the energy of the same orbit in each of the panels A to D.
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dotted line in fgure 1.11: a3 ¢ increases, the action I of this orbit remains approximately
constant. For times slightly larger than ¢,, the area A(«) under the separatrix will be
small so the mean energy of this orbit must satisfy E > E-. Thus when the separatrix
is created, and immediately after, the orbit will begin to oscillate about the two centres
at g3 = £qm, so its amplitude and period will increase dramatically.

As t increases further, the area under the separatrix increases, and when the action
I satisfies I ~ A(t)/2n we must have E ~ E°. Now it is helpful to imagine the orbit
rather than the phase curve. If of(t) increases still further at a time when the particle
is not near ga = 0, then by the next time it reaches the vicinity of g2 = 0 it will find a
barrier which it has insufficient energy to cross: it will then start oscillating in one of the
two wells centred on g2 = £¢m. Because the potential is even, the action variable of this
new motion will be approximately I/2. Precisely on which side of ¢ = 0 the particle
ends depends upon the initial conditions and the form of A(%).

1.6.4 Breakdown of adiabatic invariance

The action is an approximate constant of the motion provided that the frequency of the
unperturbed motion is not too small. Here, it is found that some orbits behave as though
the action is almost constant even though there is a time when the ‘frozen’ motion has a
zero frequency, that is at the instant when the separatrix and mean-motion energy are the
same, thus violating a condition requirgd for the prin;:iple of adiabatic invariance to hold.
This paradox may be resolved by noting that the mathematical proof of the adiabatic
invariance of the action variable (see, for example, Percival and Richards 1982, chapter 9)
concerns all orbits: what happens here is that some orbits behave as if the action is an
approximate invariant, even though w(t) = 0 at some instant. The physical reason for
this is quite simple: the equations of motion are local in the sense that a particle at
point ¢ is not immediately affected by changes at a different point, g5, provided the
potential at ¢} is unchanged. Therefore, for the example considered in figure 1.11, if E is
the mean-motion energy and E- (t) the slowly changing separatrix energy, then if E° ()
changes from just below to just above E at a time when the particle is at the far turning
point, it will not noticc the change until it reaches the new turning point near ¢ = 0, at,
which point it will just assume the nature of the motion in the newly created invariant
region. Some orbits will, however, will be significantly affected by this small change in
Es(t); these will be the orbits which are close to the new unstable fixed point when it
is created. Precisely how these orbits are affected is a complicated problem which is not
considered here. .
The two ionization mechanisms described in this section involve simi)le properties of

time-independent Hamiltonians and clearly have their quantal analogues which, for large
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quantum numbers, will give similar ionization probabilities. However, the effectiveness of
these mechanisms depends upon the properties of the potential. This is discussed further

"~ with reference to the Morse potential in chapter 3 below.

1.7 Classical area-preserving maps

Whilst it is rclatively casy to integrate Hamilton’s equations numerically, this can prove
to be excoedingly time consuming; particularly when one ic making a systematic cearch
of parameter space. A ‘more efficient approach ic to use a clagsical map to approximate
the dynamical bechaviour. The idea of using a map to approximate the dynamics is based
on the simple, yet ingenious, idea due to Poincaré of using a stroboscopic classical map
to give the change in the dynamical variables over one period of the ezternal field. In this
section, we generalize the work of Casati et al. (1988) on the Kepler map (see also Graham
1988, Nauenberg 1990) and Graham and H6hnerbach (1990, 1991) on the Morse map to
derive an arca-preserving map which gives the change in the appropriate variables over
one orbital period and which is applicable to a wide variety of one-dimensional systems.

In the next chapter, we shall provide an explicit qua.ntiza.tidn of this map

1.7.1 The general classical map

Following Richards et al. (1989a), we write Hamiltonian (1.27) in terms of the angle-
action variables of the unperturbed Hamiltonian, Hy, see equation (1.54) page 25 above,
and expand the 27-periodic perturbation, V (6, I), as a Fourier series to obtain Hamilto-

nian (1.55), namely,

o0
H(8,I,t) = Ho(I) + FA(t) Y Vi(I)e ™ cos(Qt + 6). (1.79)
8=—00
Firat-erder perturbation theory then gives the change in the action variable during time,
t, to be,

AI(fg,t) = iF - i sV, (I)e™ %% \(¢) /0 © dtf emislD cos(Qt' + 6), (1.80)
s—=00

where 8 = w(I)t + 6y and it is assumed that the field envelope, A(t), changes little over
the time, ¢, 5o that it moy be treated as an approximate constant: The following analysis
assumes that the perturbation is weak enough for this approximation to A to be reason-
able for times eomparable to the unperturbed period. In practice, a periodic perturbation
cauccs the invariant tori to break up; but even when this happens, perturbation theory
atill provides a réasonable approximation to the motion in the vicinity of the unperturbed

tori for short times.
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" In order to progress, it is convenient to express the applied frequency, €2, in terms of

a large integer, r, and a detuning parameter, z:
Q=w()(r—-zx), T>1, Jz|<1/2, ' (1.81)

and to define time in terms of the unperturbed frequency, ¢ = 277 /w. Then for times,
T ~ 1, the integrals of equation (1.80) are dominated by the resonant terms at s = %r;
on ignoring all other terms the following expression for the change in the action variable
is obtained,

2nT

Al(Go,7) = rEIVi(DIA() (w ( 1)) (Sifr;rf) sin(rar + 100 — 6 + 1),
= rF(r,[)\(t)sin(rzT + 700 — 6 + Br), (1.82)

where Br(I) is the phase of the Fourier component, V,(I) = |V;(I)| exp(—if;), and the
first equation defines F(r, I). Taling an average over the detuning parameter; @, assuIn-

ing 7 large, and using the result,

1/2 ;
/ dg 3272 L1 (1.83)
_1/2 T T
gives, '
' 2r :
F(r, 1) = —=F|V,(I)], . (1.84)

w(I)
since rw(l) ~ . i '
The perturbation results, equations (1.82) and (1.84), are now used to approximate

the motion by s map: for o suddenly switched field it is convenient to write this map in

the form,
Iepr = Lo+ r(I)F(r(Le), Ie) cos e, (1) = Q/w(l), (1.85)
Yerr = Vet —2 (g =r(1)6), - (1.86)
w(Te+1)

where the subscript r is now treated as a continuous variable.

One consequence of this construction is, that an iterate Iy — Ix4q corresponds to
the transformation of the original variable I(t) — I(t + T'(t)) through a time interval,
T(I(t),¥(t)), dependent upon the initial values of both ¢ and J. This poses no problem
for the classical map where it is possible to keep track of the time elapsed along any
orbit. However, the quantal evolution of the map corresponds to an iterate of a curve in
phase space 30 the correspondcnce between the original time and the number of iteratione
is lost. This is a potentially serious problem for the quantization of such maps and is
discussed in chapter 2, section 2.7. -

In appendix A it is shown that the map (1.85) and (1.86) is gauge independent, 80
ionization produced by a suddenly switched field, as described by equation (B.6), cannot

36



be included in this formulation. Neither does it accurately describe the system when the -
mean-motion has a significantly different frequency to the unperturbed system, although
it could clearly be modified to deal with this case, see the discussion in section 1.7.2
below.

There are two problems in using equations (1.85) and (1.86) to approximate the
classical motion. First, since the variables (6,I) are conjugate, the variables (3, I) are
not and second, the map, being an approximation, is not area-preserving. The first
problem is simply dealt with by finding the action variable; £, conjugate to ¢, using the

generating function,

o(D)¥ 8Hy

F(I,9) = _—_Q._,' w(I) = i (1.87)
giving the appropriate action variable £,
- OF;  Hy(I)
£= 5% - o (1.88)

which is just the unperturbed energy divided by the applied frequency; in section 2.7
of chapter 2, we shall show how the quantization of this variable approximates the
quasi-resonant levels defined by Richards et al. (1989a), or the ‘photonic-states’ of Casati
et al. (1988). Then, since AE ~ (w(I)/Q)AI, the next approximation to equation (1.85)

of the classical map is,
£k+1 =& + .7'-(1‘, I(gk)) CcOoS ‘(ﬁk, r= Q/w(é’k). . ' (1.89)

The map of equations (1.86) and (1.89) is not area-preserving, but is approximated

by the generating function,
Fy(Exv1, V) = Exp1¥k — F(r(Ex41), Ex1) sin g + 27 (Eg41) (1.90)

and the map produced by this is area preserving:

k1 = Ep+ F(r,€p1)costhg, 7= Q/w(Ekq1), (1.91)
.27 dF o

= + — sin Y. 1.92

Yk+1 Y Y o) 3 Ték | (1.92)

This is our final approximation to the classical motion.

In order to use this map it is necessary to solve the implicit equation (1.91) for £x41,
but this is generally easier than solving Hamilton’s equations and appears to be the
necessary consequence of forcing the map to be area-preserving, except in the case of the
Coulomb potential for which Kepler’s laws ensure that the function F is independent of
€. In chapter 3, it is shown that ionization probabilities given by this imap are a very
good approximatien to thosc obtained by numerical integration of Hamilton’s equations.

[l

37



\

Classical ionization is defined to have occurred if the right hand side of (1.89) is larger

than the separatrix energy, £5 = ES/Q, so the classical ionization proba.blhty from the
state of action £, per unperturbed period of that level i is,

1 cos™l —(——355—5 Ek + F(r,E) > ES ‘
Rd(gk) — T~ (.7'_ F,Sk ) k + ('r). k) (1.93)
0 othe_rWise. . -

1.7.2 The mean motion map ‘

As was pointed out in the previous section, the map, equations (1.85) and (1.86), is gauge
invariant. Consequently, ionization produced By a suddenly switched field, as discussed
in section 1.6.2 above and described by equation (B.6) of appendix B, cannot occur.
In addition, the unperturbed frequency, w(I), occurs in the formulation. However, at
very high field frequencies the correot unperturbed motion is that produced by the mean
Hamiltonian (1.70), page 29, and so the map will be inaccurate whenever the mean-
motion has a significantly different frequency to the unperturbed system.

A more accurate map can be constructed by Fourier-analyzing tho potential of the

. mean-motion, equation (1.71) page 29, and retaining only the lowest harmonics,

V(ga +asing) ~ V(g, )+ Vi(gs,a)sin ¢, | (1.94)
Vi(ge,@) = 2—1;/_ d¢ V(g2 + asin ¢) sin ¢, (1.95)

so that an approximate Hamiltonian is, for a suddenly switched field,
1 - —
H~ 2—}:1)% +V(g2,0) + Vi(gz,a)sin(Qt + 6), - (1.96)

where a = F'/ﬂm. This Hamiltonian can be treated in the came manner as the original
Hamiltonian in order to produce a map equivalent to that of equations (1.85) and (1.86).

In chapter 3, classical results for the map based upon this Hamiltonian arc presented
and shown to be in better agrecment with exact calculations than the resultc obtained
from the original map, equations (1791) and (1.92), see table 3.2 and ﬁgure 3.13 on
pages 78 and 88 respectively. There is, however, a caveat: the mean-motion niap is
superior if the field is switched on suddenly, but for slowly switched fields an extra term,
representing the change in ¢, is needed and this is not easy to approximate. Indeed, for
very high frequency fields the change in « during one orbital period is large and can no
longer can be regarded as adiabatic, even for very slow field switches.

For the quantal map, which we shall derive in section 2.7 below, approximation (1.96)
becomes important at large o and high frequencies because the number of quasi-resonant
states is different a.ccordmg as V or V is used and this will produce 51gmﬁcant changes

in the quantal ionization probabilities.
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1.7.3 Local behaviour and the standard map

~ The dynamics of the map equations (1.91) and (1.92) is difficult to understand. However,
by expanding about the initial value £y = H(Ip)/S2 of £ and defining the new variable:

P=(E-&) (L97)
the following local approximation to the map of equations (1.91) and (1.92) is obtained:
Plc+1 = Pk-i-fCCOS’(/lk, lc=f(7‘,[0),

272% dw(lp)
= TP T=
Yi+1 Yk + TPet1, o(Eop al

(1.98)

where higher order terms in the expansion of F (r, &) have been ignored and an unessential
constant has been dropped in the expression for ¥4;. Thus, the local approximation,
equation (1.98), yields the standard map with parameter, X = T, the classical dynamics
of which has been studied by several authors (see the review by Chirikov 1979 and
references therein). For values of K > 1, most initial values of ¥ lead to chaotic or
diffusive motion, with diffusion coefficient x2/2 (see Lichtenberg and Lieberman 1983,
page 286). For K ~ 1, regular and chaotic trajectories co-exist. This gives a criterion
for the onset of chaotic motion, namely K > 1, with the same functional form, -but
a different numerical coefficient, as equation (1.65), page 28, which is based upon the

resonance overlap condition:

dw(Tp)
dI

-1

F”mp _ 1 {1)(r0)4

CH ™ 4.02 IVr(IO)I ('1-99)

~

The map (1.98) should provide a reasonable approximation to the motion in the
vicinity of the initial action: for the 1d-hydrogen atom, Casati et al. (1988) have compared
iterates of the classical Kepler map with the numerical solution of Hamilton’s equations

and found reasonable agreement.

39



Chapter 2

Quantal theory

2.1 Introduction

In chopter 1 the classical dynamics of a one-dimensional system in the presence of o
periodic ficld of amplitude F' and frequency €2 was studied. Despite the complexity of the
problem and the lack of a rigorous theory to describe the bohaviour of a given gystem,
numerical solutions of Hamilton’s equations are relatively easy to obtain. Thus, it is
poocaible to explore limited regions of parameter cpace in order to build up an approximate
picture of the dynamical response for specific systems.

In this chapter the dynamics of the corresponding quantal system is considered. The
study of the quantal dynamics of cuch a system is far more complica.tc_d largely becausc
of the need to include the cffects of the continuum, that is tho region where the classical
motion ccasces to be bound. In addition, a further parametor; Planck’s constant; has been
added to parameter cpace and again no rigorous theory cxiste to provide a guide to the

behaviour of the system.

2.2 The Schrodinger equation and gauge transformations

In general; the study of a quantal particle moving in a three dimensional potential; V(r),
under the influence of a classical periodic field described by the vector potential; A(w; ),
in the Coulomb gauge involves finding the solution, T(w, t)? of the Schrodinger equation;

A |
in%t‘l_’ - {i (—'nv - %A(t)) + V('r)} v, (2.1)

where e is the electron charge, 4 the reduced mass, c the speed of light, 27h is Planck’s
conatant, iV io the momentum operator and where, for the reasons discussed in sec-
tion 1.3.1 above, the spatial variation of the vector potential describirg the field has
becn neglected, A(r;t) — A(t): As with the classical Hamiltonians described in chap
ter 1; other equivalent Schrédinger equations may be obtained by making unitary gaugo
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transformations. By making the transformation,

vr) = oo [ T2 e, O =-10), (2.2)

the Schrodinger equation (2.1) is transformed to the dipole gauge,

2
hg;yt—d (—Z'—#Vz +V(r) - er.E(t)) ¥, (2.3)

A third form may be obtained by using the co-called ‘Kramerc Hennebergor’ transforma.~
tion (see Kramers 1956 page 262 and Henneberger 1968),

a(t).v d’a
o(r,t) = e2O-Vu(r 1), w gz (t) = eB(?). (2.4)

In this ‘space-translated’ frame, the acceleration gauge Schrodinger equation is,

.a\pa_( A2

5 2 —ViiV(r+a(t))+ ;La ) U, ‘ (2.5)

It should be noted that the Schrodinger equations (2.1), (2.3) and (2.5) are all related
by time-dependent unitary transformations and therefore make identical physical pre-
dictibns. However, the operators which correspond to true physical observables differ
in all three cases. Thio should be compared with the corresponding classical pituation
where the canonical variables (g, p), (g1, 71) and (g2, p2) of the Hamiltonians (1.27), (1.33)
and (1.37), described in section 1.3.3 above, are different in each of the three gauges for
times 0 < t < Tpy.

For all but the simplest of cagses, there is no known analytic colution to the three
dimensional Schrodinger equation and, for the high qua.ntum numbers of interest here,
numerical solutions are prohibitively expensive. Thus, attention is usually restricted to

the simplified, one-dimensional model which is usually expressed in the dipole gauge,

2
n%% = ;‘ ?;‘f FV() —zf@)T,  f(t) = eE(t), (2.6)

or equivalently, using Dirac notation,
.. 0
i (@) = H[L(),  ¥(z,t) = (2] L(2), 2.7

where H is the Hamiltonian or energy operator, obtained from the Hamiltonians dis-
cussed in chapter 1 by replacing the momentum variable, p, with its operator equivalent,
—ihA/Ax. Whilst numerically it is far more efficient to solve equation (2.6) than its full
three-dimensional counterpart there are still no known analytic solutions:for the systems
of intérest here. In some circumstances, for instance the hydrogen atom in the pres-
ence of a static electric field (see, for example, Bayfield and Pinnaduwage 1985, Bayfield
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and Sokol 1988a, 1988b) where the clectron is constrained to move along the ficld axis,
the one-dimensional model provides a good approxirﬁation to the fully three-dimensional
problem. Further simplifications are always made by making approximations the to con-
tinuum or neglecting its effect completely. L

Mueh of the worle published to date has concentrated on tho one dimensional hydrogen
atom; the remainder of this chapter concentrates on this specific system and is organized
as follows. Firstly, in section 2.3, the various approaches used to solve equation (2.6)
are reviewed. In section 2.4 the problem of including the effect of the continuum is
highlighted and four different approximations are discussed. Section 2.5 concentrates *
on the low-frequency regime; in particular; the adiabatic basis expancion (see Richarde
1987) io intreduced. In section 2.6 the high frequency regime is considered and finally, in
gection 2.7, we provide an explicit quantisation of the classical map derived in ceetion 1.7
above to give a general quantal which; for high field frequencies; provides a cimple and
cfficicnt methqd of obtaining approximate solutions to the one-dimensional Schrédinger

equation (2.6).

2.3 Solving the Schrodinger equation

There are two main approaches to obtaining the solution of Schrodinger’s equation. Ono
method is to usc Finite Differencc mctheds to golve the partial differential equation (2.6)
exactly. A mere usual approach is expand the time dependent wave function in torms of

an appropriate set of basis functions. Both methods are described in this section.

2.3.1 Finite difference methods

The major advantage of using finite difference mothods to solve Schrodinger’s equation ic
that the continuum is automatically taken into account. However, to solve Schrodingor’s
equation numerically is exceedingly time consuming, even when carried out on cuporcom-
puters. The method involves solving the equations on a finite grid and this introduces
an addcd complieation; an approximation has to be used to account for the non physical
. behaviour which may occur if the wave function reaches the edge of the grid: one method
is to introduce a complex, or optical, potential (see, for instance, Leforestier and Wyatt
1982) at the edge of the grid to ‘absorb’ the wave function. For the one-dimensional
model of a hydrogen atom, the Coulomb singularity introduces still further difficulties.
The use of a finite difference method for solving the time-dependent one-dimensional
Sihrddinger equation involves a partial spatial discretization together with the algorithm,

AtH(t + At/Z)) AtH(t+ At/2)\ !
n+l _ (1 _ n
ot = (1 i o (1 +i o ) o7, (2.8)
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for unitary time evolution by a step At of the wave fﬁnction at grid-point j: the method
is stable for At = O((Ax)?), where Az is the separation of consecutive grid-points in the
spatial mesh. This procedure leads to a tridia.gonai linear system of equations which can
be solved by an efficient ‘two-sweep’ method (Richtmyer 1957).
Finite difference methods have been employed by seve;'al authors to.study a one-
 dimensional quantal model of the ground state hydrogen atom, the so-called ‘soft-core’
model, in the presence of an oscillating electric field, (see for example Bardsley and
Comella 1989, Su et al. 1990 and Burnett et al. 1991) whilst Goggin and Milonni (1988)
utilized the finite difference approach in their study of the driven Morse Oscillator.

2.3.2 Basis expansion methods

The more usual approach is to expand the time-dependent wave function |¥(t)) in terms
of an appropriate set of bagic functions in order to reduce the problem to the solution of
a set of ordinary differential equations. One mothod is to use the bound end continuum

eigenfunctions of the unperturbed Hamiltonian, |n) and |k) respectively, where

Holn) = Buln),  (nlm) = bum, = (2.9)
Holt) = Elk),  (kIK) = 6(k &), (2.20)

so that the wave function is then written,

¥@) = ¥ an®in) + [ dk ax@)lB), (2.11)

where the sum is taken over all bound states and the integral over the whole continuous
speetrum: On ucing tho orthogonality of both bound and continuum state wave functions
the time-dependent Schrodinger equation (2.7) reduces to an infinite set of ordinary
differential equations for the amplitudes a,. For the one-dimensional hydrogen atom
these take the form, '

ih%" = Baan—f(¥) (mzzjl(nlzlm)am%- /0 wdk(nlxlk)ak), . (212)
i = Bk - (2 (él(klxlm>am+ /owdk’(klﬂk’)au)- (2.13)

However, no analytic solution to equations (2.12) and (2.13) has yet been found and
sbluti,ons arc usually obtained by truncating the cums and integrals and using an approx:
imation to take the coupling with the cuulinuum into account. However, truncating the
basis introduces itc own problems; for the one»dimonoiona,l hydrogoni(.; baiais, whero there

arc an infinite number of bound states; the matrix elements {n|z|m) arc large; as can bo
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seen by using the Heisenberg correspondence principle to give, for n # m,

h? n+m)2J{,(s) h? 0.103(n + m)? s m (2.14)
—_— L —— =m —n, )

("lxlm)ﬁ’—w( 2 s —‘ueg—w—,
where Jy(z) is an ordinary Bessol function and a standard asymptotic citpansion (sec
Abramowitz and Stegun 1965, equation (9.3.33)) has been used. The matrix elements,
equation (2.14), decay slowly as n — m + N, N > 1; this is caused by the Coulomb
singularity and can be overcome by an efficient choice of basis (seec the discuscion of
sections 2.5.1 and 2.6.1 below and, in particular, equation (2.56) on page 55). However,
{n|z|m) increases as n? and this is a more serious problem. For states n > ng, the
eouplings are very large and, a5 the energy scparation decreases ac n~3; this means that
a very small time-step is required to deal with these states numerically. Bliimel and
Smilansky (1987) found that when a large number of bound states are strongly coupled,
basie truncation may introduce large errors, with satisfactory convergence obtained only
with a basis of more than 400 bound states.

In their study of thc onc-dimengional hydrogen atom in the presence of a microwave
field, Casati et al. (1984) considered an approximation with a truncated basis of hy-
dregcnic states which excluded the continuum coinpletel:,n A further simplification was
made by neglecting the switch function. Thus equation (2.12), with V{(z) = —1/|z| and
f(t) = F cos Qt, was reduced to, : '

. da" Nmaz
lﬁE= n0n + F cos 2t Z (n|zlm)an,. (2.15)

M=Nmin

'The total number of states used was about 200 in a typical range 20 < n < 226 with nnin
chogen to lie approximately 20-10 levels below the initially excited ctate; ng; a furthor
v decrease in n,i, was shown to have no appreciable influence on the dynamics.

A similar expansion; this time in terms of a basic of unperturbed oscillator states,
wag used by Wallier and Preston (1977) in their study of the quantal response of a driven
Morac oscillator far below the dissociation threchold. Again; the continuum and cwitch
function werc ignored and sufficient basis states were included to encurc convergence of

results; typically, ouly (he lowest twelve oscillator states were required.

2.3.3 Floquet theory

Another frequently used method exploits the time-periodicity of the Hamiltonian to con:
struct the unitary time evolution operator, equation (2.20) below, by numerically inte-
grating the Schrodinger equation for each state in the basis over asingle field period,
T = 2r/Q; solutiono of the Schrodinger cquation can then be found at longer times by

simply applying the time evolution operator to the initial state. Although this method

- 44



has tremendous numerical advantages when the interaction time is large, it only describes
the evolution within the bound space since the coupling to the continuum is difficult to
include. In addition, it cannot be used to model the effect of the field switch, A(¢), which
introduces other frequency components, although for A < 1 this effect may be incorpo-
rated approximalely (see Breuer ¢t al. 1989 and references t;l'mrein), An extensive review
of the Floquet approach is given by Chu (1985).

By considering a quantal system driven at frequency €2 and described by the T-

periodic Hamiltonian H (%),
H(t+T)=H(T), T =27/, (2.16)

Shitley ‘(1905) utilized Floquet’s (1883) theorem to show that thero existe a complete set
of states |¢i(t)) of the time-dependent Schrodinger equation, )

, .
(H(t) - ih§> [u(8)) =0, (2.17)
which can be chosen with the property, '

I6k(t)) = exp(—iext/R)|ux(t)), (2.18)
[uk(t +T)) [uk(2)), , (2.19)

where the real parameter, ¢, is called the quasi-energy and where the states, |ux(t)), are
known as the quasi-energy or Floquet states.
In order to describe the time evolution of quantum sta.tes subjected to the dynamics

. defined by H(t), the time evolution operator is used,
. . i fts
Oty ts) = Texp (-5 / dt H(t)) , (2.20)
. t

where 7' is the time-ordering operator. The time evolution operator, U(t #»ti), transforms
the state, |¥(¢;)), at initial time, ¢t = t;, into the state, |¥(t;)), at time, ¢ = t;. Applying

U (tf,ti) to the states, |ux), over one cycle, T, gives, on using equation (2.19),
U(ti + T, ti)|ug(t;)) = exp(—iexT/h)|us(t:). (2.21)

Therefore, the states |ug(t;)) diagonalize the one-cycle time-evolution operator U(t; +
T,t;) and, beca.use,f] is unitary, the quasi-energies, €, are real and the states, |ux), are
orthogonal and complete. The quasi-energies, €, determine the spectrum of U(t; +T,t)
and hence contain valuable information regarding the dynamical properties of H(t).

As mentioned earlier, the time-evolution operator is usually constructed numerically.
The easiest way of achieving this is to expahd the'time-de’pendent wave function in terms

of a basis consisting of N unperturbed states and then to integrate the resulting set of
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differential equations, see for example equation (2.15) above, over one period, T, with
N linearly independent initial conditions. For each different initial condition |¥(tp)), a

column of the time-evolution operator can be constructed using the relation,
[¥(ta + T)) = 17 (to + T 10)| ¥ (t0)). (2.22)

The solutions to the Schrodinger equation can then be found at longer times simply by
multiplying by U(te + T, to) = U(T), '

¥(to + NT)) = U(T)M ¥ (to)). (@)

When the effect of the continuum is included, the quasi-energies, €, become complex
(see Yajima 1982 for a rigorous proof) and the time-evolution operator is no longer
unitary: this problem is not addressed here. Instead, we proceed by discussing other

methods used to date to model the coupliflg to the continuum.

2.4 Inclusion of the continuum

As was mentioned at the otart of this chapter; one of the major difficulties encountered
when solving the Schrodinger cquation is the need to approximate the cffect of the con-

tinuum. In this section we discuss the methods which have been used to date.

2.4.1 A discrete representation

In their study of the one- dimensional hydrogen atom in the presence of an oscillating field;
Sugslind and Jencen (1988) made an expancion of the time dependent wave function in
termo of the bound and continuum eigenfunctions 0f theunperturbed hydrogen atom and
introduced a diséfete representation of the continuum. Using this method, the authors
were able to obtain numerical solutions of the Schrodinger equation. Discretization of
the continuum consists of dividing the continuous index, k, into N, segments in [0, kmaz),
each centred at k;, j = 1, N, with width A;. The integral over the continuum states in
equation (2.12) can then be approximated by,

oodk " Ne ki+A;/2
nlz|k)a, = dk (n|z|k)ay,
f) dktnlalbten = 3 [T ak nlslklay

Ne
~ Z(n|x|kj)aijj, (2.24)
‘=0

where it is assumed that (n|z|k)ai varies little on the scale A;. A similar approximation

is also applied to equation (2.13) to obtain, )

N

' [o) ’ k4+A
/ dx’ (k|:1:|k')akr ~ E ((kla:|k’)a,k,A,» +,/]; A
0

./2
’ dk'(k|a:|k')ak:). (2.25)
§=0,k#k; —4;/2
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However, because the divergence of the matrix elements, (k|z|k'), causes numerical diffi-
culties, the authors were for;:ed to neglect the continunm-continuum transitions.

With this scheme; the authors note that the bound states and the discretized con-
tinuum can both be treated in the same way by truncating the bound states to a finite
number, Ny, and expressing the problem in terme of a large set of ordinary differential
6quations. If all the A; are chosen to be equal, then this prescription is essentially equiv-
alent to putting the onc dimencional hydrogen atom in a large box of length proportional
to A7

Howevcr, diseretizing the continuum introduces two additional conctrainte. Firetly,
if the discretized continuum states are chosen with an cqual cpa,cing in k; where Ak =
kmaz/Ne, then the minimum eﬁergy resolution of the discretized continuum is,

AE = knapAk = ng'lT (2.26)
and this limits the time of integration. :On using the time-energy uncertainty relation,

we see that the approximation fails after T, field periods, where,

3
ngd Ny
~ = 2.27).
€ 'n.gAE o ( )
For longer times the number of continuum states, N., must be increased in order to
resolve the continuum adequately. Secondly, the requirement that (n|z|k)ai varies little

on the scale A; introduces an upper limit to the energy considered.

2.4.2 The Sturmian basis

The wave funetion can be expressed in terms of any complete set of basic functions.
For problems involving a one dimencional hydrogen atom in a strong statse cleetric or
magnctic ficld the so celled Sturmian basis functions have often been used in preference
to the hydrogenic eigenfunctions (see, for example, Rotenberg 1970 and Edmonds 1973).

The Sturmian basis has the advantage of being both complete and discrete. These
properties malke it convenicnt to usc in problems where continuum cffects are important
without having to deal with the ineonvcﬁiences which arise through using the hydrogenic
continuum wave functions; such as diserctizing the continuum or dealing with singulwr
matrix elements. Another advantage of using the Sturmian representation is that the
matrix elementa arc casy to cvaluate; being given in termo of simple, algebraic expres:
cions. Howevcr, the Sturmian functions have no direct physical significance and in order
to interpret the results of Sturmian calculations it ic necessary to project back onto tho
basis of bound and continuum hydrogenic states: In addition; when highly excitod bound
statca and low--energy continuum states play an important role in the dynamics, numer:

ical caleulations require at least twice as many Sturmian functionn to achieve the same
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resolution as carefully chosen bound and discretized continuum states of the hydrogenic
basis, see Susskind and Jensen (1988).
For the one-dimensional Coulomb potential, with orbital angular momentum quantum

number | = 0, the Sturmian functions, S(z), are defined by the eigenvalue equation,

1428
- 5—&? — gs = EOS, $.> 0, Eo < 0, ﬁ > 0, (2.28)

with .S;(:c) = 0 for z < 0 and S(z) bounded as z — co. The fixed parameter Ey charac-

terizes a particular basis; {S 59 (=)}, with cach element of the basis being characterized by

the cigenvaluc 8. In other words; Sturmian functions satisfy a Sturm-Liouville problem

where the eigenvalues are the coefficients of the Coulomb potential.

Multiplying by f~2 and rescaling z by 8 reduces equation (2.28) to the Schrédinger
equation of the unperturbed hydrogen atom,

_K. ¢

2u 0z

¢n = n¢n (229)

with E, = E¢f~2. Therefore, the Sturmian functions a.re'l_‘éla.ted to the hydrogenic

eigenfunctions, ¢, by,
. 0 2 |
$50(z) = Cgn(Bz) with /0 dz S*(2)= SF2(z) = bpp (2.30)

and where C is o proportionality constant detcrmined by the normalization condition.
A Sturmian basis was used by Casati et al. (1987b) in their numerical study of the mi-
crowave ionization of highly excited hydrogen. Using up to 600 Sturmian basis functions
they solved Sehrodinger’s equation for a one-dimengional hydrogen atom in an occillat-
ing clectrie field. By rcoursively evaluating the hypergeometric functions in the formal
' cxpressions for the projection onto the bound states of the hydrogenic basis, the authors
werc able to study the cxcitation of bound states in the precence of a strong perturba
tion. Unfortunately, the complexity of the corresponding expressions for the projection
of the Sturmian basis onto the hydrogenic continuum ctates prevented Casati and co-
workers from performing a detailed study of the ionisation process. Thic was remedied
by Suszkind and Jensen (1988) who derived convenient formulae for the projection of the
Sturmian basio onto both the bound and continuum states of the hydrogenic basis, thus
cnabling them to eomparce theoe two differont approaches to the solution of Schrédinger’s

equation.

2.4.3 Projection operators and decay factors

Blimel and Smilansky (1987, 1990) used o quantal one -dimensional model to study the
hydrogen atom perturbed by a low frequency field. By using projection operators, the
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equalions of motien werc written in the form of coupled differential equations for the
bound and continuum states. By formally integrating equation (2.13) for the continuum
states, Schrédinger’s equation was reduced to an integro-differential equation in which the
kernel describing the bound continuum tmﬁsitions was approximated by a combination of
decaying exponentials. Continuum-continuum transitions were neglected. Briefly, given

the Hamiltonian

H(z,t) = Hp(z)—V(z,t), (2.31)
Ho(z) = % - 9;, V(z,t) = FzsinQt, (2.32)

where the energy spectrum of Hy is given by equations (2.9) and (2.10) above, Bliimel
and Smilansky used the orthogonality of the states |n) and |k) to obtain equations (2.12)
and (2.13) for the amplitudes an(t) and ax(t) respectively. On ignoring continuum-

continuum interactions, equation (2.13) was formally integrated to give,
i rt
bu(t) = / dt' exp(iBxt' /B)F sin Qt' S (k|z|m)am(t), (2.33)
0 m
where ai(t) = exp(—iExt/h)bi(t). Inserting this result into equation (2.12) gives,

ihan(t) = Enan(t)—FsithZ((n|x|m)a,m(t)

: ot
% /0 dt' Kpm(t — t')F sin Qt’-a,m(t’)) " (2.34)
where the kernel, Knm(t — t'), is defined by,
oo .
Knm(s) = / dk (n|z|k) exp(—iExs/h)(k|z|m), s=t—t >0. (2.35)
0

This integro-differential equation is then converted into a set of first-order differential
equations by expanding K(s) in a finite series of decaying exponentials. The authors
caution that truncation of the basis may produce large errors if not dealt with correctly.

One of the main conclusions of this work is that there exist ‘window states’ !, ny ~
noFo_l/ * such that all ionization occurs from levels in the vicinity of nw. As noted by
-Leopold and Richards (1991), it is curious that Bliimel and Smilansky’s expression for
nw is independent of the applied field frequency. In the low-frequency limit considered by
Richards et al. (1989b), it is shown that the state |nw) overlaps most with the adiabatic
state at the barrier top whereas in the high-frequency limit, where one- or two-photon
ionization is permitted, it is clear that ny must depend upon the field frequency. Thus,
Leopold and Richards (1991) helieve that the window states, and hence the decay rates
of Bliimel and Smilansky are valid only at low frequencies.

!The role played by window states in the low-frequency reg'lme is discussed further in section 2.5,
below.
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2.4.4 A semiclassical ionization' mechanism

Following Bliimel and Smilansky, Leopold and Richards (1991) also include the contin-
uum using decay factors, providing two approximations to these dccay factorc both based
upon classical perturbation theory. Onc approximation uces purely clossical dynamics,
the other uscs scmiclassical methods. Both theso approximations arc obtained using the

classical Hamiltonian,

H(z,P,t) = Ho(z,P,F,)— eFZ#Pcos(Qt+6), (2.36)
1 _, e
Hy(z,P,F;) = -ﬁP - - eF,z, z2>0, (2.37)

where F, represents the constant static field used in the experiments of Bayfield and
co-workers (see, for example, Bayfield and Pinnaduwage 1985, Bayfield and Sokol 1988a,
1988b) to maintain the onc-dimensional nature of the wave function. The presence of the
static field has the effect of lowering the continuum threchold; so that the unperturbed
systena, [Ty, supports only a finitc numbcer of bound states and has a potential barrier
with saddle energy, By — —2e/F;. The time dependent wave function is then expanded

in terms of the bound states of the unperturbed Hamiltonian,
[&) = ba(t)|n, Fs) exp[—iEa(Fs)t/R)], (2.38)

where,
Ho(z, P, F)In, Fs) = (Bn(F) — i€a(Fy))In, Fy), (2.39)

to give the usual coupled equations for the amplitudes b,(¢),

ih%‘- i€ — % c8(Rt +6) 3" b (n, Fi| Plm, Fi) expli(Bn — Em)t/B],  (2.40)

where f = F,A(t), E,(F,;) are the complex parts of the energy introduced to model
the interaction with the continuum and P is now the momentum operator. In deriving

expressions for the ionization rates, the following assumptions are made:

1. for times comparable to the unperturbed electron period classical perturbation
theory is a reasonable approximation to the exact classical dynamics: this was

checked numerically;

2. 1f the energy becomes greater than the saddle energy, E; = —2e+/F}, then in this

time there is a negligible chance of it returning to the neighbourhood of the initial

energy;

3. direct ionization occurs only from those states where Q2 = (n®/nd)Qg > 1;
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4. tunnelling through the barricr gives a negligible decay rate compared with that
produced by the periodic field for the quantum numbers of interest, ny>30; note

that this final approximation is not essential.

The classical approximation is obtained by assuming that the field envelope, A(t),
varies sufficiently slowly for it to be considered constant. An approximation to the
maximum energy change during one period, T'(n), of the classical atom initjally in a level

n is then obtained using classical first order perturbation theory,
max(AFE) = en frz(I), (2.41)

where 2,(I) are the Fourier components of z(t), I = nh and w(l, F) are the action and
frequency of the unperturbed classical orbit respectively, and r ~ Q/w. In the presence

of a static field, F,, direct ionization occurs from level n if,
max(AE) > —2e/F, — E,(F,), (2:42)

When this condition holds, the total classical ionization probability from level n is, |

[_23\/F: - En(Fs)]
max(AE) )

P = %, cosx = (2.43)

For smaller max(AFE) direct ionization is classically inaccessible and P§ = 0. The total
classical ionization probability per unit time, P, is.obtained by dividing P# by the
unperturbed period giving a classical estimate for the complex part of the energy for

level n of,
a PPR _Ta _ wn(Fs)h

1

= my T2 - am X

where I';! is the lifetime? of level n. The authors note that for the high quantum numbers

(2.44)

and moderately high fields used in current experiments, equation(2.44) provides a good
approximation to the decay factors. However, as the field frequency increases, the number
of photons needed for direct excitation to the continuum decreases and semiclassical
effects become more important.

The semiclassical approximation is obtained by using WKB wave functions to evaluate
the semiclassical transition amplitude, 57°(I, n), from a bound level, n, to the continuum

state of energy E. The total ionization rate into all the continuum states is then,

P = / dE|SE1 ~ 3 Ji(), 2.45
_Ze\/F,-—E" | I k% k( ) ( )

N —2eVF,—FE,| . . _ 2.58Fqyng

kmm = 1+ {'—‘——Qh } zZ 1, a = ———Qg/3 3 (246)

]

?Further discussion regarding the lifetime of a quantum state in the ]Sresence of a static electric field
_ is given at the beginning of chapter 4.
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where Ji(a) is a Bessel function of order k, {z} is the integer part of z and ky,;, is the
minimum number of photons required for direct excitation from level n to the continuum.

The final semiclassical expression for the complex part of the energy of level n is,

kmin .
£y = wn Pl (%(1 NCEEDS Jk(a)’) , (2.47)
k=1

where the Bessel function addition theorem (see Abramowitz and Stegun 1965, equa-
tion (9.1.76)) is used to express the infinite sum as a finite sum. If kmin = 1, the sum is
zero.

In the limit of oné—photon ionization with weak fields, kmin =1, a € 1, the.a.uthors
show that the semiclassical &pproxiniation reduses to the Formi golden rule; in the oppo-
site limit, kmin 3> o > 1, the classical expression (2.44) is recovered. The authors also
show that thé scmiglassical method naturally gives rise to structure in the continuum
usually associated with ‘above-threshold ionization’ peaks in laser ionization of ground

state atoms.

2.5 Low frequency theories

A3 montionod bricfiy in spction 3:3.2 above, using the hydrogenic bagis ctates '(zzan; in
gomc situations; be numcrically’very incfficient because a large number of basis states
are needed to provide an adequate description of the system. In such cases, the one-
diwensional Schrddinger equation can only be solved on large computers. One such
situation arises when the frequency of the appliéd ficld is emall compared with the un-
perturbed atomic frequency, g << 1. One method which has been used to study the
quantal dynamics of an excited hydrogen atom in a low frequency field involves the

introduction of an adiabatic basis which we now describe.

2.5.1 The adiabatic basis expansion

Motivated by the need for a numerically cfficient one-dimensional quantal method which
could be reodily cxtended to include higher dimensional systems but at the scame time
retaining the essential physics, Richards (1987) used an approximation, valid for low
frequencics; to obtain a set of coupled equations which can be solved ﬁsing a ;ela,tively
omall, time-dependent, basis: The aim of this approximation was not to ebtain quantita
tive agrecment with cxporimentally obtained ionisation probabilities but to describe the
qualitative fcatures of the dynamics, in partivular the dppondcncc' of ionization probabil

ities upon the various system parameters.
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The starting point is the static limit of the one-dimensional system consisting of an

electron in a Coulomb and periodic field,
1 e? .
2#p -5 zf(t), z>0. (2.48)
For constant f < 0 the spectrum of H is discrete; for f > 0, the spectrum is continuous
but for large initial quantum numbers, ng > 30, and for energies below the classical
saddle, o | |
E<E(f)=-2¢JF, (f>0), " (2.49)

the lifetimes of the resonant states are so long that this part of the spectrum may be -
considered discrete. Richards (1987) used these adiabatic states as a basic for an expan-
gsion of the time-dependent wave function, [¥(¢)), in the limit where the field frequency
is small with respect to the unperturbed energy splitting, that is when 2y < 1. The use
of these adiabatic statey introduces a cignificant part of the time dependcncc of the wave
function into the basis, thus reducing the number of basis states required. Whén f<o0
then,

i t
(@)Y = Ok, flexp | —= | dt’' Ex(f(t) ), < 0), 2.50
190 = e oo (~3 [ BUE), G0 @)

where, : )

Hap(f)lk, f) = En(f)Ik, ). | (2.51)
and H,p is the adiabatic Hamiltonian introduced in section 1.4 of chapter 1 above: the
‘adiabatic states, |k, f), are simply the eigenstates of H4p(f).

When f > 0 it i necessary to include the continuum and an expansion similar to that
of equation (2.50) is used but with a complex energy term, &,(t), included to take into
account coupling with the continuum. Incerting this expansion into the time-dependent
Schrodinger equation gives the following equation for the tra,hsition amplitudeS'

dan _ _ n(t _ (n, flaH/apr,f)
dt fz En(f) - Bo(f) 7 ( /dt [Ea(f) - p(f)]) (2.52)

with £,(t) = 0 when f < 0. The major advantage of this representation is that the

coupling is now proportional to F'(2 rather than F.

After oblaining approximations to lifetimes, energy levels and matrix elements, cqua
tion (2.52) was mtegrated with initial quantum numbers ny = 30,60 and various field
otrengthg. The author wag then able to obtain the relative variation of the ionization
"probability with the system parameters. The main result of these calculations was to
show that thc ionization probability has a resonant structure clearly associated with the
ng — ng + 1 transition, which is of courée absent in the classical a.pproxi_ma.tion.

In chapter 4; we consider the situation where the field frequencey ic oufficiently small
for there to be negligible coupling between states; by using the adiabatic basis and -
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‘ neglecting the coupling terms, we are able to integrate equation (2.52) to obtain ionization
probabilities for the fully-three-dimensional hydrogen atom. In chapter 5 we follow
Richards et al. (1989b) and consider the weak coupling regime in which few states are
significantly coupled together; in this case a reasonable approx1ma.t1on to the dynamics

is provided by a two-state approximation.

2.5.2 Expansion on unperturbed basis states and Floquet theory

The dynamics of the hydrogen atom in a low-frequency field, €27<0.4, has also been
_studied by Bliimel and Smilansky (1987, 1990) using the one-dimensional quantal model
described in seotion 2:4.3. As mentioned at the cnd of that section, the major conclusion

of this work is that there exist ‘window’ states, nw ~ noF, 1/4

, such that all ionization
oceurs from gtates in tho vicinity of nw. By comparing caleulatod ionization probability
curves with expcrimental results, Blimel and Smilansky advance a physical picture of
‘ionization’ as a two step process consisting of excitation from the initial state, |ng), to
statca inside the ‘window’ which then decay with appreciable rates into the continunm.
By using the Floquet approach, the authors propose two distinct mechanisms through

which excitation to a window state, |nw), can occur:

1. as the field strength increases the Floquet states, |ux), broaden until one or more
of them has an appreciable overlap with both |ng) and |nw): the authors claim
that this mechanism io responsible for the onset of quantal ionization as a function
of the field strength;

2. at certain specific values of the field frequency and streng‘th,' two quasi-energy
levels, €, and ¢,, undergo an avoided érossinga; at the avoided crossing, linear
combinations of |u,) and |u,) have appreciable overlaps with both |ng) and |nw)
which leads to an enhanced transfer of probability between the initial state and
the ienization window. This mechanicm is linked by the authors to sub.ionigation

threshold structures observed in experimental data.

Breuer et al. (1989) have also uced the Floquet approach, with a basis consisting solely
of bound states, to study the oxcitation of the one dimensional hydrogen atom in a low
frequency field. Here, the non-monotonic behaviour observed in experimental ionization
probabilities is again linked to the behaviour of the Floquet states in the vicinity of
avoided crossings of the qua.31-energy spectrum. | '

Note that the thearetical calenlations of both Bliimel and Sn'ula.nsky (1987, 1990) and
Breuer et al. (1989) were carried out using a basio of unperturbed hydrogenic statos and

3At avoided crossings two quasi-energies become almost equal.
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are thus, numefica]ly, far leso efficient than calculations carried out using the adiabatic

-basis discussed in the previous section.

2.6 High freqﬁency theories

When the field frequeney is very high; the usual method of solving the time-dependent
dipole gauge Schrodinger equation (2.3), see page 41, by expa.hding the wave function
in terms of the unperturbed basis functions, as deécribed in section 2.3.2 above, is nu-
merically very inefficient: for n 3> ng, where nyg is the initial state, the matrix eleménts,
{n|z|m), are large, showing a rapid increase with (m + n) see equation (2.14), so that a
large number of basis states are required to dcscril;e the dynamics in the vicinity of ng
adequately. In such situations, it is more cfficient to uoe the momentum gauge reprcoenv-.
tation, for which the Hamiltonian is given by equation (1.26), page 19; for convenience

we re-write this in the form,

2
Hz,p,t) = — i s- —A(t) cos(Qt+6), z>0.  (253)

On expanding the wave function in ‘terms of the bound states of the unperturbed

hydrogen atom

¥) = 3 bu(t)|n) exp[~iEnt/h)], S (258)

we obtain the following coupled equations for the amplitudes b,(t),

n% _ F:{(zt) cos(% +6) T bm{nlfim) expli(Bn — Bm)e/H,  (255)

where p is the momentum opcrator. We now see that for high frequencics these cquations -
have two advantages over those in equation (2.12), page 43, obtained using unperturbed
hydrogenic basis states with the dipole gauge Schrodinger equation (2.3):

1. the coupling terms are O(Q7!) so that the overall coupling between states is re-
duced;

2. the matrix elements are, on using the Heisenberg correspondence principle,

2ipe? ipe?  0.822sgn(s)

(nlﬁlm)"'( )R a() Ttk A s=m—-n#0, (2.56)

which decay more slowly with increasing s than those of z, equation (2.14) above,

but decrease with (m + n) rather than increase. , ,
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2.6.1 Compensated energy representation

A similar approach was used by Leopold and Richards (1989) in their study of the quantal
response of a one-dimensional Hydrogen atom to a high-frequency time-dependent field.
By using the conventional dipole gauge Ha.miltonian, equation (1.35) given on page 21
above, the authors noted that for high frequency fields a classical orbit comprises seg-
ments of ellipses upon which are superimposed small, high-frequency oscillations and
conjectured that the quantal dynamics should be similar so that the high n-states should
play a relatively unimportant role in the quantum dynamics. This unimportant oscilla-
tory behaviour was removed by using the compensated energy representation of Leopold
and Percival (1979). Classically, the rate of change of momentum is given by,

) 8H e? '
P=—F-=73" f(t), (2.57)

so that, for large values of z, the rapid oscillations may be removed by introducing the

compensated momentum p, with,

pelt) =p(H) +a(t),  a(t)= [ats(). (2.58)
This new momentum defines the compensated Hamiltonian,
_ "1 2 62
c= 2lec o (2.59)

and as this is an approximate constant of the motion, Leopold and Richards (1989) sug-
gested that a basis expansion using the eigenstates of H, rather than those of Hp would be
numerically more efficient. It should be noted that the compensated Hamiltonian (2.59),
_ is similar to Hamiltonian (2.53) above, but not the same as H, is an approximation.

Diagonalization of H,. was carried out by introducing the ‘compensated energy’ states,
Ca(z,t) = (z|n) exp[—iza(t)/h], a(t) = f(t), where H.Cn(2,t) = E,Cn(2,t). (2.60)
+ Thus, on writing the wave function as,

W(z,t) = E b,.(t)C.(z,t) exp(—iEat/h), : (2.61)

Leopold and Richards (1989) obtained equations of motion for the amplitudes, b,(t),
similar to those given by equation (2.55) above.

Using this representation, Leopold and Richards (1989) were able to show that, for
moderate fields which are slowly switched on and off, only the few quasi-resonant states,
nk, defined by, '

Engyr — Bny ~Qk, -M <Ek<N, (2.62)
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for some suitable M, N, where ng labels the initial state (see also Jensen et al. 1988),
are significantly populated and found that a basis comprising typically between ten and
twenty compensated energy quasi-resonant states provided a remarkably good and effi-
cient basis. For Qy » 1, many states lie between these quasi-resonant states and thus
there is a dragtic reduction in the ctfective density of states léading to differences between
classical and quantal behaviour in this frequency region. Even for ng > 1 the differences
between the high-frequency classical and quantal motion doscribed by the dipole gauge
Hamiltonian (1.35), sce page 21, are quite dramatic. By considering a simple model,
Leopold and Richards (1989) showed that for moderate valuce of the principle quantum
number, ny, the classical limit is only achieved for very strong fields for which the ion-
ization times are shert. On the other hand; for fixed ficld strengths and variable ng; the
authors suggest that the classical limit is reached only for ng > 3Q3.

2.6.2 The Kramers-Henneberger transformation and stabilization

. Other authors have also studied the high field frequency regime. Gavrila and Kamin-
ki (1984) developed o non-perturbative theory to describe clectron-atom interactions in
intcnoc, high-frequency, laser ficlds: Briefly; by assuming the laser field to be described

“ by the electrodynamic potential,

F .
A(t) = Sﬁé cos Qt, ¢=0 (2.63)

where ¢ is the speed of light and é is the polarization vector, and applying the time-
dependent Kramers-Henneberger transformation, 7 — 7 + a(¢) (see Kramers 1956, Hen-
neberger 1968 and also equation (2.4), page 41 above) , the authors obtained the accel-

eration gauge Schrodinger equation,

v h?
e = | —— V2 : )
i ( ZuV +V(r+ a.(t))) o, (2.64)
where ) .
a(t) = —— / "4 A() = aosin®Qt,  ap= ——e (2.65)
— pcdo - ' 07 Tuz™ ]

which is the quantal equivalent of the acceleration gauge Hamiltonian (‘1.37)', see page 22
of chapter 1. ' '

At this point there are two problems regarding the Kramers -Henneberger transforma.
tion which should be highlighted: firstly; there ic no advantage to be gained in ecmploying
the Kramers-Henneberger frame to study the one dimengional Coulomb potential; see
ondly, gauge transformations are only ezact for constant field envelopes.

Using the Floquet ansatz, described in section 2.3.3 above, Gavrila and Kamin-
ski (1984) cast equation (2.64) in the equivalent form of a system of coupled, time-
indcpendent differential cquations for the Floquet components of the wave function, ¥,
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_containing the quasi-energy E which is, in general, complex. By keeping |ag| ~ O(1) with
respect to {2, an iteration scheme was developed to solve these equations with successive
steps containing increasing powers of 271. To the lowest order, the system reduces to

the time-independent Schrodinger equation,
h2 '
(—'zﬁvz + Vo(ao,r)) Uy = BV, (2.66)
for the Floquet component, ¥q, where,

Vo(ag,7) = % /_ " 44V (r + agsind), " (2.67)

is the mean or ‘dressed! potential. This is the quantal equivalent of the classical mcan-
motion Hamiltonian described by equation (1.68), see page 29 of chapter 1, with |ag| =
aA(t). To the next order in the iterative procedure, multi-photon processes become
possible and an imaginary part is obtained for E together with expressions for the n- '
photon decay rates.

Using this prescription, Pont and Gavrila (1987) and Pont et al. (1988) calculated
the levels of a ground-state hydrogen atom interacting with an intense, high-frequency,
laser field. The time independence of the Schrédinger equation (2.66) lead the authors to
predict that a high-frequency field would not ionize the system. This effect, whereby the
ionization probability dcercascs whilst the field amplitude increases over some intorval,
the field frequency remaining fixed, has since been termed ‘stabilization’, although this
term is not always clearly defined; the definition of stabilization often differs between
papers and occasionally within a single paper.

The theoretical prcdiction of atomic stabilization hag since been a source of great
controversy. The described approach assumes that the atom can be cxi)oscd to a con.
stant, high intensity, high-frequency field; however, high powered lasers are invariably
pulsed so that the effect of the field switch must be taken into account. In addition,
the experimental observability of such an effect has also been brought into question (see .
Bardsley and Comella 1989, Pont and Gavrila 1990) because the states are very 'short
lived at intermediate field strengths and may not survive the build-up of intensity in a
true laser field. Recently a vast amount of theoretical and computational effort has boen
directed towards resolving this controversy. Only a few of the major contributions are
mentioned here.

In an attempt to resolve this controversy, several authors (see, for example, Bardsley
and Comella 1989, Su et al. 1990, Burnett et al. 1991, Pont et al. 1991) have made
time-dependent calculations in the Kramers-Henneberger frame using. 2 simpler one-
dimensional atomic model, the so-called ‘soft-core’ model, V(x) = —1-/\/1—-1-_:57, with
~ the field amplitude either being switched on gradually over a number of field periods
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to some constant value, or switched on and off. These calculations provide qualitative
confirmation of some of the predictions of stabiligation theory in that either the ionization
rate, after the initial switch-on time, or the total ionisation probability after the pulsc, io
an increasing function for ‘small’ field strengths but, at higher field amplitudes, reaches
a maximum and then decreases. ’

Tang and Baasile (1991) questioned theorctical calculations using a one -dimensional
model, noting that thesc may lack many of the fundamental propertios of the real threo-
dimensional atom. By numerically integrating both one- and three-dimensional time-
dependent soft-core models in the momentum gauge and using a Gaussian envelope for
the vector potential (Knight 1993) to switch the field on and off, the authors found
that only for extremcly short pulses did the system exhibit a significant probability of
surviving at the end of the pulse. Further; it was shown that the one dimensional model
" exhibits a higher survival probability than the three-dimensional. These findings were
confirmed by independcnt numerical studies of the three-dimengional atom by Kulander
et al. (1991) and Horbatsch (1991).

Time-independent calculations using Floquet methods (see for instance Pont and
Gavrila 1990, Dorr et al. 1991, Vos and Gavrila 1992) also show that, in some cases,
for fixcd ficld frequency, the ionisation rate decreases with increasing field strength until
some minimum is reached after which it increases. However, there is no reason to suppose
that the mechanisms producing these time independent stabilization effects are the same
as those which produce time-dependent stabilization.

One of the principal difficultica cneountered in the ctudy of these strong ficld offocts
has been the lack of good analytic approximations from which physical ingight can bo ob-
tained. All the rcsults queted above have been produced by fairly intensive computations
which provide little physical insight a.pd, moreover, do not allow for a systematic inves-
tigation of parameter space. Indeed, for frequencies high enough to produce one-photon
ionization, therc appears to be no gimple cxplanation for the observed phenomenon. At
lower frequencies, where two photons are required to reach the continuum, recent ex-
perimental observations by Jones and Bucksbaum (1991) of highly stable Stark states of
barium irradiated by an intense, short-pulse laser field suggest that this phenomenon is
best explained in terms of the model presented by Burnett et al. (1991) where coupling
to excited states is responsiBle for some of the behaviour. Whether this experimental
observation of supprcased ionization is a true manifestation of atomic stabilization as
understood from a purely theoretical point of view remains to be seen.

A quite different stabilization mechaniem, valid for short pulses has been suggested by
Richards (1993). By considering the one-dimensional h}"drogen a.ton:_l in“the presence of
a high-frequency field, where the interaction time is shorter than, or comparable to, the
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classical orbital period and the frequency, €, is sufficiently high that one or two photon
ionization is possible, the author is able to make analytic approximations to obtain the
dependence of the ionization probability Von the field strength. For the case where the
field frequency is sufficiently high to produce one-photon ionization, the author finds that,
after an initial rise, at relatively weak fields, the quantal ionization probability reaches
a local maximum at that field for which the energy transfer, Q#h, becomes classically
accessible. Thus, in this case, it is seen that stabilization can be interpreted as a ‘rainbow’
phenomenon, the low intensity side of the maximum being on the dark side of the rainbow
with oscillations on the bright side.

From these few examples it seems plausible that there is no single mechanism for

stabilization but that different mechanisms occur for different types of fields.

2.7 The quantal map

As has already been seen, solving the time-dependent Schrodinger equation is exceedingly
time-consuming when there are many coupled states. For this reason any approximate
scheme enabling the time-dependent Schrodinger equation to be integrated with relative
ease is welcome. This section considers one such approximate scheme which is applicable
for scaled frequencies €2 > 2.

The idea of using a map as an approximate quantal evolution operator for the one-
dimensional hydrogen atom perturbed by a periodic field was first introduced by Casati
et al. (1987a) (see also Casati et al. 1988 and Graham 1988 for details). The derivation of
this map, the so-called quantum Kepler map, was based upon the construction a classical
area-preserving map, which gave the change of the appropriate dynamical variables over
one orbital period of the electron, followed by a direct quantiiation of this map. More
recently, Graham and Hohnerbach (1990, 1991) have developed the Morse map using a
similar technique in order to study periodically driven molecular vibrations in the Morse
potential in both the classical description and its quantal counterpart. In this section,
these two specific results are generalized to provide a quantal map applicable to a wide

variety of one-dimensional systems (see also Dando and Richards 1990).

2.7.1 Derivation of the general quantal map

In this section the general quantal map is derived by obtaining an explicit quantization
of the classical map, given by equations (1.91) and (1.92) on page 37. The connection
between quantal operators and classical generating funclions is described in detail by
Miller (1974): in this case, since our derivation assumes the perturba.tii)n to be small,

the pre-exponential factor can be ignored and the quantal operator further simplified by
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noting that the generating function, eqﬁa.tion (1.90) above, is simply the product of the
evolution for the ‘free’ motion, 2rI, and the ‘kick’, F sin. Thus,

U = exp (— 27ri7€(£)) Pexp [% (f(f,f)sinw + sin ¢.7:(1“',¢‘f))] (2.68)

where £ is the operator conjugate to ¢, £ = —ihd/8v, the product has been symmetrized
and where I is a projection oporator onto the bound states; that is those values of £ for
which the action I(£) is defined, £ < £5 = E5/Q, where ES is the separatrix energy. The
eigenfunctions of £ are approximations to the quasi-resonant states, equation (2,62), in
angle-action representation and the eigenvalues of & are the integer labels of these states
with the origin chosen, for convenience, to coincide with the initial state, Iy = ngh. In

order to avoid confusion capitals are used for these eigenvalues, so that

where the M 4 1 i3 the smallest number of photons required for direct excitation from
the initial state to the continuum and where L is some lowest level usually chosen to
ensure convergence, see Leopold and Richards (1990). One must be careful to avoid
confusion between the classical iterates £ and the quantal eigenvalues £(K). Notice
that the values of the action variable, I, corresponding to these eigenstates, that is the
solutions of the equation £ + Nk = Hy(I)/Q2, are not necessarily integer multiples of #,
that is they do not coincide with the original states of Hp, except possibly at particular
values of §2. Moreover, many states of Hy may lie between consecutive eigeustates of U,
see for example equation (2.62), page 56 above.

The eigenvalucs of & are neither bounded above nor below. This is clearly unphysical
but, in most.circumstances, unimportant. The higher states are removed by the projec-
tion operator, P; the lower states cause no problem provided they remain insignificantly
populated. Tor the quantal eoleulations presented in chapter 3, it is found that esonver-
gence is achieved before the value of L, equation (2.69), becomes unphysically large. It
is also found that L can often be predicted using classical dynamics.

TLe operation of U on the wave function is thc quantal cquivalent of one itoration
of the classical map (1.91) and (1.92). The most significant difference being that for the
classical map it is possible to keep track of time along the individual orbits, wheroag this
is impossible for the quantal map. A quantal state is represented by a classical torus:
classically, we can take cach point on the torus and follow its time evolution; quantally,
each state now lies on a different classical torus having a different fundamental frequency
and hence the meaning of time is lost (see also Casati et al. 1990, LeBpoId and Richards
1990).

61



The Mth iteration of the initial state |0) is then UM|0) and the ionization probability
is ‘ -
A 2

Pi=1- |UM]0)| . (2.70)

A convenicnt way of using U is to construct its matrix representation in the 'eigensta.tes
of £, that is -

1
N) = —exp(iNy), 2.1
(¥IN) = ——exp(iVy) (271)

and an casy way of obtaining the matrix clemento of the exponcential of an operator is to

find each column by solving the set of coupled differential equations

dUNR_ i - .
% = 7 ;(lesmz/)+sm1/)}'|P)UpR, '(2.72)

by integrating from z = 0 to z = 1 with initial conditions Uxyg(0) = ényg. Since the
right hand side is non-zero only for P = N & 1 and since the basis of quasi-resonant
states is relatively small, it is a quite trivial task to solve these equations. The resultant
matrix is, however, unitary so ionization is missing; thic is because coupling to the con
tinuum has been removed by iﬁcluding only bound ctatec in equation (2.72), the function
T (r,€) being undcfined in the continuum because the action I ic defined only for bound
motion. For the Morse potential Graham and Hoéhnerbach (1990, 1991) have overcome
this problem by extending the classical unpérturbed Hamiltonian, Hy, into the region of
unbound motion, £ > £%, —00 < ¥ < 'oo, and thus obtain an analytic continuatio;l of
F(r,&) into the continuum. Here, we adopt the semiclassical approximation of Leopold
and Richards (1990), outlincd in scotion 2:1:4 above; which mimics the clascical ioniza
tion of equation (1.93), see page 38; and which we considcr to be more realictic ac tho
meaning of the analytic continuation of F (r,€) is unclear and, moreover, requires the
Fouricr cocfficicnts to be aﬁalytic functions which restrictc the olacs of potentials to those
" for which the cocfliciento can be obtained in cloced form; the mothod outlined below is
not limited by this constraint.

The basis of our approximation is the classical ionization probability per ‘kick’,
PS(&,) of equation (1.93). This can be incorporated into the differential equations (2.72)
simply by adding a decay rate —D(N)Ung/h to the right hand side, where D(N) =
PE(E(N))/2 with £(N) the ‘energy’ of the quasi-resonant level N. A uniform semiclassi-
cal approximation to this decay rate is given by equation (2.47) above, with a = F(N)/h,
F(N) = F(r(N),E(N)).

Thus the final set of equations for the matrix elements Uyg are

du 1
A= = ~D(MUnr+ 7 (F(M)+F(M~1))Uy-1r ~
"d[é’:R = —D(N)Une | (2.73)
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£ L AFW) + FV = 1)]Un-t ~ [FN) + FOV +1)] Uns1x)

dU_rr
dz

These equations can be used to obtain the matrix elements of U and then the iterates

h

= _D(-L)U_pr- % (F(=L) + F(~L + 1)) U—s1 1.

of the wave function are obtained either by multiplication of the matrix or by finding
ils eigeuvectors. Some results for the application of thic map to the Morse oscillator are

presented in the next chapter.

2.7.2 Dynamical Photonic Localization

The response of excited hydrogen atoms to a high-frequency microwave .ﬁeld, Q > 1,
has beeu a source of interest and controversy for both theorcticians and oxporimentalists
since Casati et al. (1984), using a quantal one-dimensional model, observed a quantal
limitation of classically chaotic motion and predicted that classical and quantal ioniza-
tion mechanisms are different for a wide range of field strengths. The authors further
conjeétured that the quantum excitation process is determined by competition between
a diffusive process that would be predicted classically and the ‘localizing’ effects of quan-
tum interference, which tends to suppress the diffusive broadening of the wave function
at a maximum spread, the so-called ‘localization length’.

Using a curious mixture of classical diffusion theory and quantum mechanics, Cas,ati
and co-workers obtained an expression for the localization length in terms of the classical
local diffusion coefficient and determined quantitative conditions for diffusive ionization
to take place in the quantal system (see the review by Casati et al. 1987b for deta;ils).
In particular, the authors pointed to a ‘window’ of field strength, determined by the
classical chaotic border, Fop defined by equation (1.65), page 28 of chapter 1, below
which there is no diffusive motion, and the ‘delocalization border’, Fpp of equation (2.77)
below, which defines the critical value of the field strength above which the increase in
the classical diffusion coefficient, and hence the localization length, triggers an unending
escape of the wave function into the continuum despite the paralyzing effect of quan-
tum interference. It was claimed that within this window of field strength the classical
diffusive process is ‘frozen’ by quantum effects and a quasi-stationary distribution over
the unperturbed levels is reached. This phenomenon has since been termed ‘dynamical
photonic localization’. .

" An unsatisfactory aspect of this theory was its inability to account for the form of
the localized distribution, in particular the chain of equidistant multiphoton peaks in
the tail of the steady-state distribution function observed in numerical simulations by
Casatiet al. (1984, 1987b). For this reason, the authors were una.ble to estimate quantal

ionization rates using localization theory.
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An alternative theoretical approach, suggested by Casati et al..(1987a., 1988), which
confirmed the older results and, moreover, allowed for a gross description of the whole
distribution, was based upon the construction of the quantum Kepler map. Thus a close
connection was cstablished between the hydrogen atom problem and the qua,ntum-luckcd
rotator?, o simple quoantal model where the numerically obsorved quantal limitation of
classical chaotic excitation (see, for instance, Casati et al. 1979) had been formally related
by Fishman et al. (1982) and Grempel et al. (1984) to Anderson localization, a theory
originally developcd to desecribe the effecta of disorder on clectronic wave functions in a
spatially-periodic, one-dimensional, lattice.

A more dircet link between the quantum Kepler map and the one-dimencional lattice
equation, derived by Shepelyansky (1987 ), led Casati and co-workers to predict that the
localized distribution should be exponential in the number of absorbed photons; the form
of the steady-state distrihution being ‘borrowed’ from the results obtained by Chirikov
and Sheﬁelya.nsky (1986) for the quantum-kicked-rotator, namely,

-1 2IN — N, 2IN — N,
In=—11+ ——l ol exp ———-—I ol ) (2.74)
20y lg lg

where NV = [[}/Q] labels the ‘photonic state’ and is equal to the number photons absorbed
by the system, ly4 is the photonic localization length and Ny = —[no/2] labels the initial
photonic state; here, [z] denotes the integer part of z.. 'By assuming that F > Fcy,
cquation (1.65), so that the olassical motion is chaotic and the distribution in action
f(n,7) obeys, approximately, a Fokker-Planck equation,

% ;aa (D Zi) (h=1), (2.75)

where D, is the classical diffusion rate, Casati et al. (1988) used a simple heuristic ap-
proach to show that, for the hydrogen problem, an estimatc for the photonic localization
length, ls, may be obtained by setting it equa.l to the constant diffusion coefficient of the
classical Kepler map,
. B\
ly ~3.33 (W) . | (2.76)
For ly « Ny, where N; = [ny/2€y] is the number of photons needed for ionication from
the initial state, the corresponding ionization rate is negligible so that homogeneous
exponential localization is expected.
The decreasing tail in the distribution function, fy of equation(2.74), for increasing
N shows the ‘exponential photonic localization’ behaviour which can be expected for
lg < Ny. At higher field strengths, the localization length increases until, at Iy =~ Ny,

“Interest in the quantum-kicked-rotator was originally motivated by the known chaotic dynamics of
the correspanding classical system, the standard map discussed in section 1.7 above.
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the distribution extends far enough for there to be appreciable transport of action to the

continuum and occurs for scaled fields with,

7/6

Q
Fy>Fp= ——,60(;_%, (2.77)

where Fp is the ‘delocalization border’ (see Casati et al. 1988).

To account for the experimental cut-off ®, n., Brivio et al. (1988) defined the ionization
probability to be the total probability above the level n = n. (see also Casati et al. 1990).
An estimate for the 10% threshold field was then obtained by evaluating the integral®,

o 1 nd
/Rc dRfr =0.1 R. = 5720 (1 - n_ﬁ) . (2.78)
where R = |[N — Np|. It is this border that is often referred to as being the closest ‘:to the
experimental threshold for 10% ‘ionization’ and was used to analyze the experimental
results of Bayfield et al. (1989) and Galvez et al. (1988).

At this point, it should be noted that localization theory only describes some ‘average’
behaviour of the system when €29 > 2 and l; < N;j. It does not encompass the physics
producing the experimentally observed resonances nor does it take into account the effect
of the field envelope or the toi:a.l interaction time: the final-state distribution is given with
the field envelope at its maximum value. Nor has it yet treated the case of a static field
superimposed with the microwave field so crucial to the quasi-one-dimensional experi-
ments of Bayfield et al. (1989) where the good agreement obtained between theoretical
predictions and experimental results was claimed to validate the theory of photonic local-
ization. Perhaps more surprisingly, and also somewhat paradoxically for a theory used to
understand the ionization process, the continuum, or more significantly the interaction
time, does not feature in this theory.

That there is indeed a range of field strengths for which the quantal probabilities are
localized but for which the classical system is chaotic is now abcepted as theoretically
correct. Furthermore, recent experimental results of Galvez et al. (1988) and Bayfield
et al. (1989) confirm that for 25 > 2 the experimental ionization threshold is higher than
that predicted by classical dynamics, althongh no detailed measurements of the excited-
state population have yet been made so there is, as yet, no direct experimental evidence\
for quantal localization. However, the more precise predictions of Casati et al. (1988)
regarding the underlying dynamics giving rise to the observed behaviour, namely the
existence of the delocalization border, Fp, equation (2.77), below which the quantal

*Experimentally, ‘ionization’ often consists of true transport to the continuum.plus excitation to final
n-states above some cut-off n-value, n., determined by static electric fields used in-the apparatus for
particle deflection and detection, see Koch (1990) for details.

8An analytic estimate for the integral (2.78) is given by Chirikov (1989).
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probability is exponentially localized and above which there is ‘diffusive’ ionization, are
still a source of some controversy.

Leopold and Richards (1989) studied the response of a one-dimensional hydrogen
atom to a high-frequency microwave field using the compensated energy representation,
described in section 2.6.1 above. For weak ficlds they found exponential decay of the quan-
tal probabilities, as predicted by Casati et al. (1988), but that the range of fields for which
this behaviour occurred was not given by the condition Fy < Fp, equation (2.77). In-
stead, they conjectured that the cxistence of an approximate selostion rule (sos Richards
et al. 1989a), which drastically reduces the density of states, was the main reason for
disagreement between classical and quantal dynamics at high-frequencies; the relevant -

parameter was found to be the reduced action given by,

A= Tofo (2.79)

0
For A < 1 transitions between adjacent quasi-resonant states are classically forbidden
and the theoretical quantal probabilities were found»to be smaller than the classical.
For A > 1, it was found that the wave function was spread over many quasi-resonant
states but that this was not a sufficient condition for classical dynamics to provide a good
description of the motion, thus contradicting the prediction of Casati et al. (1988) that
for Fy > Fp the quantal and classical excitation processes will be similar.

A further study by Jensen et al. (1989b) found the quantal distributions to be very
different to those predicted by localization theory. The authors developed an alternative
theory which provided both an estimate of the width of the quantum distribution and
a necessary condition for diffusive ionization. Again, the relevant parameter was found
to be the reduced action A of equation (2.79). For A < 1, a two-level approach was
* used to show that each peak in the distribution is dominated by a single photon-state.
‘As A increases, the height of each succeeding photon peak increases and the two-level
model breaks down; the narrow photon peaks are all st'fdngly coupled and the quantum
picture is well described by the few quasi-resonant states (see Richards et al. 1989a).
For A > 2, neither the two-level nor the truncated basis theories could be applied.
Instead, Jensen and co-workers used the high density of coupled states to write down a
set of master equations (see, for example, van Kampen 1981).to describe the transport of
probability between the photon resonances, an approach which neglects all interference
effects. These master equations were then approximated by a classical Fokker-Planck
equation from which the authors concluded that the diffusive description is only valid

when A > 2. This gives a new criterion for the onset of quantal ‘diffusive’ ionization:

Fo > Fp =~ 2.403" In,. (2.80)
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Thus, Jensen et al. (1989b) predict that dynamical photonic localization theory is only
applicable for Fr/Fp =2 0.23N ,1 & > 1; that is when the number of photon pcalio between
the initial state and the continuum is large, Ny > 19. Thus, it would appear that
localization theory i3 only valid at much larger quantum numbers than are accessible in
current experiments.

Koch (1990) has made a very careful study of the Galvez et al. (1988) and the Bayfield
et al. (1989) experimental data. For n. = 89 localization theory roughly reproduces
‘the mean behaviour of the experimental data of Galvez et al. (1988) but for n. = 175
significantly overestimates the 10% ‘ionization’ threshold. Both n-cutoff values satisfy
the Casati et al. (1990) criteria for the applicability of localization theory, I < Nj. The
author concludes that the photonic localization theory does not quantitatively reproduce
experimental data for all conditions so far investigated and that the distribution over
final bound atomic states n > ng is not the one ‘borrowed’ from the kicked-rotator
model, given by equation (2.74) above. These conclusions differ from those presented by
Bayfield et al. (1989). '

Whilst localization theory does not agree quantitatively with all experimental and
numerical data, it should be recognized that its prediction of the quantal suppression
effect, now verified by two independent experiments (Galvez et al. 1988 and Bayfield
et al. 1989) and many calculations (see, for example, Casati et al. 1988, Leopold and
Richards 1989 and Jensen et al. 19895, Jensen et al. 1991), was erucial in drawing both
experimental and theoretical attention to the region of high-scaled field frequencies. The
elegant route along which Casati and co-workers developed the theory should be also
be acknowledged. However, a clear implication is that the present version of photonic
localization theory does not correctly describe transport to the final, bound n-levels that
are far from the initial level, no. ;

In the next chapter we use the classical and quantal maps, derived above in sections 1.7
and 2.7 respectively, to study the classical and quantal motion of the Morse oscilla.tbr in
the presence of a periodic, high-frequency, field. We provide further numerical evidence
that localization theory, as described in this section, does not describe correctly the

quantal evolution of this system.
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Chapter 3

The Morse oscillator in a high-frequency field

3.1 Introduction

In this chaptor wo proesent results of numerical caloulations carried out in the region of
high ficld frequency, 22w. As a model for our discussion we consider the driven Morse
oscillator, described by Hamiltonian (3.1) below.

The analytic properties of the Morse potential mean that its response to a high
~ frequency periodic field is distinctly different to that of the one-dimensional Coulomb
potential. In particular, we see that the Fourier components of the classical motion,
see equation (3.7) below, and hence tho critical field strength required for the onset of
chaotic ionization, increase with increasing field frequency. This means that at very
hich frequencies, the cyctom may ionize via the mean motion mechanisms diocuosed iﬁ
chapter 1, section 1.6 above. By numerically integrating Hamilton’s equations of motion,
and by iterating the area-preserving map derived in section 1.7 above, we are able to
declincate fangec of field frequoney, for both suddenly and adiabatically switched fields
for which the classical system ionizes through regular orbits. In addition, by comparing
ionization probabiliticc obtainod by itorating both the classical and quantal maps we arc
able to delineate circumstances where the classical and quantal dynamics agree.

The remainder of this chapter is organized as follows. In section 3.2 we apply the
clagcical theory; deccribed in gcection 1.5 and 1:6 above; to the driven Moroe oscillator:
First, we use the resonance overlap condition, equation (1.65) on page 28 above, to
obté,in a theoretical expression for the critical field strength required for the onset of
chaotic ionisation. Next we consider the mean-motion dynamicc and obtain expressions
for the throshold ficldc roquired for the onget of both cuddon and adiabatic mean-motion
ionization. By comparing thece throchold ficlds we are able to predict the boundaries
of three different regions of fiold frequency for which the clascical ionization mechanicmg
will be different. ,

In section 3.3 the numerical methods used to nbtain the classical and ionization
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probabilities presented in sections 3.5 to 3.7 are described. The classical probabilities
are obtained either by numerical integration of Hamilton’s equations or by iterating the
classical area-preserving maps derived in-section 1.7 above; in section 3.4 we discuss the
accuracy of these classical maps, The quantal probabilities are obtained by iterating the
quantal map described in section 2.7 above. C

In sections 3.5 to 3.7 we compare the numerically calculated classical and quantal
threshold fields and ionization probabilities with the theoretical values obtained.in sec-
tion 3.2 for each of the three ranges of field frequency delineated in section 3.2. Finally,

in section 3.8 we present some conclusions.

3.2 Application to the Morse oscillator

In this section we obtain expressions for the critical field strengths required for classical
ionization to take place by each of the mechanisms described in chapter 1 for the specific .
case of the periodically driven Morse oscillator for which the Hamiltonian corresponding

to equation (1.27), see page 19, is given by,
I ne, T )
Hp, = 2‘up + Vo(1 — exp[—agq]) ﬂ—qu/\(t) cos(2t + 8). : '(3.1_)

The .sepa.ra,trix energy, Vo, and the length scale or ‘Morse parameter’, a, can be related
by introducing the variable A, = +/2uVp/a, which is the action of the separatrix, that
is the area under the separatrix divided by 27. The number of bound states the well
san support is tho intogor part of .A;/%i. We aleo introduce the -folloWiné dimensionless
variables; the scaled energy and field, -
E 2uE- F 2uF

“%ma@m Tt e ©2)
whore for bound motion, 0 < s < 1. In terms of these ecaled variables, the angle-action
variables, (6,1 ),' of the unperturbed system are, .

1—¢

I(e) = As(1-V1-¢), exp[—ag(f)]= 1= Vecosd’ (3.3)
and the unperturbed frequency is,
_ aHo _ a.2 _ G,ZAS
w(I)—W—”(Ag_I)— P \/1-—'6. (34)

Henceforth, it will be convenient to describe the initial state of the system using the

initial scaled action and energy,
Ao=Do/As, €0 =Ao(2 - Ad), ' (3.5)

respectively, where Iy is the initial value of the action variable.
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3.2.1 The resonance overlap condition

For a general one-dimensional system, the critical field strength, Fcy, for the onset of
chaotic motion is given by equation (1.65) on page 28. In order to obtain an expression for
Fcy for the system under consideration here, we need to calculate the Fourier coeflicients;

from equation (1.56), page 25, these are,

_ 1 bl kg Wew [T sin 4 sin k6
%) = 5o /_ dop(o, N = 2 [ ag PRI (3.6)
i AO k/2

In terms of the scaled variables, equation (3.2), and on substituting equation (3.7) into
the expression (1.65) we obtain the scaled critical field strength for the onset of chaotic

motion in the periodically driven Morse oscillator:

_ 2wFer _ (1—A0)? (12— Ao\™? _ e
ﬂC’H - a3A3 - 87 ( AO ) y T= _Asa"'——z(l — .Ao), (38)

r being the ratio of the applied frequency to the unperturbed frequency. For field

strengths, 8 > B¢y, we expect a significant proportion of the motion to be chaotic. How-
ever, the analytic properties of the Morse potential mean that the Fourier coefficients,
V; of equation (3.7), decrease rapidly with increasing field frequency with a correspond-
ing increase in the magnitude of B¢y, see the full curve of figure 3.1 on page 73: for
sufficiontly high frequoncy ficlds, this means that the classical system may ionize via the

mean-motion mechanisms which were discussed in section 1.6 above.

3.2.2 Mean-motion

In soction 1.6 above wo considered two cimplo ionization mechanicmg which aro valid
when the mean-motion Hamiltonian (1.68), see page 29, provides an accurate description
of the dynamice, one which occurs for sudden field switchos and the other for adiabatic
switchos. Hero, we obtain analytic exprossiong for the critical ficld strengths required
for the onsot of both suddon and adiabatic mean motion ionization in the driven Morso
oscillator. These enable us to predict the field frequencies at which ionization by the
mean-motion mechanisms will predominate.

For the Morse potential, the mean-motion Hamiltonian, see equation (1.68), page 29,

bepomes
. .
H= z—u-p% + Vo{1 — 24p(acx) exp(faqz) + Ip(2ac) exp(—_Zaqgk)}, (3.9)

where Jp(z) is a modified Besoel function of zoro order, not to be confused with the initial

action, and a = FA(t)/us2?.
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For the mean Hamiltonian (3.9), the action of the separatrix is,

Z =,/2‘/.LV0 .Io(aa) ~A In(ac) (3.10
° e /Iy(2a0) *VI(2ea)’ 10)

which is a decreasing function of o. Quantally, this means that the number of bound

states of the mean Hamiltonian, that is the integer part of A,/h, is also a decreasing

function of &. The mean-motion angle-action variables (8, ) are,

I(E) = A, —AVI—G, | (3.11)

1-%
Io(aa) — /Ip(aa)? — Iy(2ac)(1 — &) cos @’ (3.12)

exp[—aq2()]

where € = E/V; is the scaled mean-motion energy with 0 < < 1 for bound motion, and

the mean-motion frequency is,
A1 —E. (3.13)

Firstly, we consider a sudden field switch.

Sudden field switch
For suddenly switched fields, the condition for ionization to occur is given by equa-
-tion (1.77), see page 31 above,

F\? =
- ZpIS—I;- cosé + (ﬁ) cos” 6 = 2;1.(E'S — Ey). (3.14)

In térms of the variables defined in this eection, the following expression for the value of

p1 at which the initial torus intersects the separatrix of H is obtained:

B2 cos? § — 4r2(1 — Ap)*
P1 = aA; ,
4r(1 — Ag)Bcosé
where Q = .Asraz(l_ — Ag)/p and F = a®A2B/2u. In appendix B, equation (3.15) is
used to calculate the ionization probability, Psyp, as a function of §, Ao and r averaged
over the field phase, §. However, by setting § = 0 and ;1 = /2E = a.A:/Ao(2 — Ag),

an approximation to the critical field strength required for the onset ionization by the

(3.15)

sudden mean-motion mechanism, that is the field strength at which ¢; = 0 is the value

at which the initial torus intersects the separatrix of H, can be obtained

2r(1 — Ao)°®

Bsup = T VA &) ] (3.16)

which, for high frcquencies; io considerably lower than fields needed for chaotic ionization.

This can be seen in figure 3.1 on page 73 where we show the theoretical curves given by
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Bcx and ﬁsAUD, equations (3.8) and (3.16) respectively, for Ag = 0.5and 1 < r < 12. This
type of ionization occurs only because the field is switched on suddenly and the averaging
approximation is valid. Similarly, an a.ppro:_cima.te threshold field for 50% ionization can
be obtained by setting § = 0 and obtaining the value of 3 in equation (3.15), at which
p1 = 0 is the value at which the initial torus intersects the separatrix of H. This is,

Bso = 2r(1 — Ag)2. (3.17)

Adiabatic field switch

When the field is switched on adiabatically, the action, I, equation (3.11), of the mean-
motion Hamiltonian (3.9), is an approximate constant of the motion and therefore re-

mains close to its initial value, Iy. The area under the separatrix, A(c), of H, is

_ho(ae) = FAQ)
VIo(2a0) |’ = pz’

which is a decreasing function of «; note that in équation (3.18), Ip(x) is again a modified
Bessel function of zero order. Thus, the critical value of the field strength for adiabatic

- Al@) =21 A, = 2w A, ( (3.18)

ionization to occur is given by the value of o at which the area under the separatrix

becomes equal to the area under the initial phase curve,

_ _fo(eaap) Bap = 2ar*(1 — Ag) aap. | (3.19)

Ao = VI(2aa4p)’

For aasp > 1, that is Ap < 0.8, this critical field strength is given to within 5% by

2r? 3 4
Ban = (1 = Ao (14 55.48) ()

on using the asymptotic form given by Abramowitz and Stegun (1965, equation 9.7.1).
For high frequoncios, B4p is considerably lower than the ficlds nceded for chaotic ioniza-
tion, Bcy. This is shown in figure 3.2, see page 74, where the theoretical curves given
by Bcx and Bap, equations (3.8) and (3.18) respectively, are depicted for Ag = 0.5 and
1<r<12.

3.2.3 Predicted behaviour

By comparing the theoretical threshold fields obtained in sections 3.2.1.and 3.2.2, that
is BcH, Bsup and Bap of equations (3.8), (3.16)' and (3.20) respectively, we are able
to make some predictions about the theoretical classical ionization process at different
valuos of the fiold froquency. Wo consider two ways of switching the fiold on; suddenly
and adiabatically.
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For a suddenly switched field, we use the values for Bcr and Bsyp, equations (3.8)
and (3.16) respectively, to estimate the values of 2 at which we expect ionization to
occur through chaotic orbits and through the mean-motion mechanism. In figure 3.1
the theoretical curves given by Bcy (full curve) and Bsyp '(broken curve) for A9 = 0.5
and 1 < r < 14 are shown. For 2512w, Bcy < Bsyp which suggests that. classical

5.0,

Figure 3.1 Graph showing the dependence of Bcy (equation (3.8)), full curvé, and Bsup
‘(equation (3.16)), broken curve, with field frequency for Ay = 0.5.

jonization will occur predominantly through chaotic orbits: for 2 > 12w, the onset of
classical ionization is expected to occur through the mean-motion ‘mechanism. Indeed, '
at Q = 5w, Bcy ~ 0.1 whereas fsyp ~ 0.67; for 2 = 15w, fcy ~ 7.89 and Bsyp =~ 2.01.
By comparing the expressions for fcy and Bsyp, given by equations (3.8) and (3.16)
respectively, we see that as Ag increases the value of r at which Bcyg = Bsyp also
increases.

For an adiabatic switch, we use the values for Scy and B4p, equations (3.8) and
(3.20) respectively, to delineate the values of the field frequency for which the onset of
olagsical ionization will be due to a cignificant proportion of the orbits becoming chaotic
and those for which the mean-motion mechanism will dominate. In figure 3.2 we show
the theoretical curves given by Boy (full curve) and S4p (i)roken curve) for Ag = 0.5 and
1 < r < 27. For 2524w the threshold field strength for chaotic motion, B¢y, is much
less than that required for mean-motion ionization, S84p. For example, when 2 = 15w,
Bap ~ 620 and Bcy ~ 8. As (Q increases, Scy increases exponentially until, at Q ~ 25w,
Bap = Bcu. For Q > 25w, we expect no chaotic ionization and, indeed, at §2 = 30w,
Bap =~ 2480 compared with Scy =~ 14950. By comparing the expressions for oy and
BAD, given by equations (3.8) and (3.20) respectively, we see that as Ay increases the
value of r at which Bcg = Bap also increases.
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Figure 3.2 Graph showing the dependence of Scx (equation (3.8)), full curve, and S4p (equa-
tion (3.20)), broken curve, with field frequency for Ag — 0.5.

Thus, for field frequencies, w < Q2<12w, we expeci: all classical ionization to be due
to chaotic trajectories for both sudden and adiabatic switches. In the frequency range,
12w < 2 < 24w, we expect all classical ionization to occur through chaotic orbits when
the field switch ic adiabatic but for suddenly cwitehed fields we expect classical ionization
to occur through both the chaotic and mean-motion mechanisms. For very high field
.frequencies, 2 > 24w, we expect all classical ionization to occur through the sudden
and adiabatic mean-motion mechanisms. With this in mind, we base our discussion
of sections 3.5, 3.6 and 3.7 upon these three different regions of field frequency and in
each region we consider the effect of using both sudden and adiabatic switches. In the
next goction wo doscribo the numoriocal methods used to obtain the clagsical and quantal

ionization probabilities.

-

3.3 Numerical methods

In this section, the numerical methods used to obtain the classical and quantal ionization
probabilities presontod in tho following sections of thic chapter are described: We restrict
our discussion to the case Ag = Iy/A, = 0.5; for fixed frequency ratio, r, and scaled field,
B, the classical results are independent of A,. 'F‘urthet results obtained by varying Ao
show the classical behaviour of this case to be typical. We note that the parametefé Vo,
a and p may be varied by changing the value of A,. In all calculations and the remainder
of this chagtef we set a = 4 = h =1, so that the integer part of A, is then the number

of bound states of the quantal system.
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3.3.1 Classical calculations

The classical results given in this chapter were obtained either by numerically integrating
the equations of motion in the acceleration gauge or by iterating the classical maps
described in sectiou 1.7 above; the accuracy of the maps is discussed in section 3.4 below.

The classical ionization probabilities were calculated using the Monte-Carlo method
as described by Leopold and Percival (1979). We have assumed that the system was
initially on an unperturbed torus of the dipole gauge Hamiltonian, with action given
by Ag, and that the initial value of the angle variable, 6y, was uniformly distributed
in (0, 27), but we used a stratified sample of either 200 or 1000 orbits. Each orbit was
integrated for a time, Tr,, or until the orbit satisfied the ionization conditions detailed
below.

The oscillating field was switched on over M, field periods or a time T, = 27 M, /2,
and lasted for M,, field periods or a time T;,. The field envelope function A(t) was of

the form,
0, t<0,t>Tn,
2w
A(t) = sin ﬁf:, 0<t< Ty,
11 TaStSTm_Taa

gin? i%(Tm —t), T —Ts <t < T,

(3.21)

and we have assumed that all results are independent of the form of A(t) for T, sufficiently
large. The value of T, was chosen carefully; sufficiently large to allow time for any
chaolic orbits to ionize, but small enough to keep computation time and numerical errors
to a minimum. We consider two ways of switching the field on, suddenly (7, = 0) or

| adiabatically (T, > 0).
The main source of error is statistical, although this could be improved by integrating
more orbits. If n; orbits from a sample of N, ionize, then there is a 66% chance that the

ionization probability lies in the range

P \/R(U-PR)/N,  P=ni/N, CE)

and a 95% chance of it lying in twice this width. For P; ~ 0.5, the statistical uncertainty
is about £0.035 or +£7% when 200 orbits are used. '

Numerical integration of Hamilton’s equations

The numerical solution of the equations of motion was carried out using a seventh-order
Runge-Kutta-Fehlberg method (see for example Ledermann 1981 page 326). Ionization
was said to have occurred once ¢(t) > ¢maz and € > 1.0. The value chosen for gmaz
depended upon both the value of 2 and the field switch-on time, T,. For field frequencies,
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2 < 20w, surface-of-section plots (see for example Lichtenberg and Lieberman 1983),
suggested a value of gmaz = 5 should be used for all values of T, but for Q@ > 20w, these
suggested that gmaz = 5 for T, = 0 and gmaz = 15 for T, > 0 should be used.

Iteration of the classical maps

The area-preserving classical map derived in section 1.7 above,

Expr = Ex+ F(r,Expr)cosr, 7= w(Eks1), (3.23)
27Q ,
Ye41 = Yt u sin Y, (3.24)

was iterated with

F(r,€) =

7BA2 (A, — JAE—20E\? oE) = -2 (5.25)
Q \A-yAI-29¢) VAI =2QE’ '

which agrees with the expression used by Graham and H6hnerbach (1990, 1991) in their
derivation of the Morse map. For the mean-motion map, F(r,£) was replaced with its

mean-motion counterpart, F(r,€):

Lie) L(2a)
Ii(a) In(2a)

— =~ 7(6)/2
=V ] (3.26)

F(r,E) =2n [z:z, -
A, — || A2 - 20F

Q+ 7{,)]

where (€) = Q/1/A? — 2Q€ and Ip(z) and I;(z) are modified Bessel functions of zero-
and first-order respectively. Note that for small values of &, F(r,£) reduces to the
expression (3.25) for F(r,£).

For both maps, the implicit equation (3.23) for £x4; was solved by supplying the
initial estimate &4+ = & to the NAG routine CO5AJF. The modified Bessel functions;
Ip(z) and I (z) were calculated using the NAG routines S18AEF and S18AFF respectively.
Ionization was said to have occurred once € > A,/22. For the reasons given in chapter 1,

we only consider the effect of a sudden switch when iterating the classical maps.

3.3.2 Quantal calculations

The quantal results were obtained using the map described in section 2.7 with

xBA2 [ A, — JAT—2E(N) | PV AR

F(N) Q A+ VA -26(N)Q , (3.27)
wBA, : N
mexp(—r(1 - Ap)), 26(N)Q =~ A2
with @ = rA,(1 — Ao) and :
£0 =Ty M=+ N (3.28)
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Notice that if 26(N)2 =~ A2, that is for states near the separatrix, then F(N) is prac-
tically independent of N and the map is then similar to the quantum Kepler fnap with -
JF(N) replacing k (see Leopold and Richards 1990, equation 9) but with a different phase
which, because the number of states is finite, remains bound in contradistinction to the
quantum Kepler map. ' .

The quantal operator, U of equation (2.68), page 61, was constructed by solving the
coupled. differential equations (2.72), see page 62, using the NAG routine DO2CAF. The
iterates of the wave function wero thon obtained by finding the cigenvectors and values of
U using the NAG routines FO2AKF and FO4ADF respectively. As with the classical maps,

we only consider the effect of a sudden switch when using the quantal map.

3.4 Accuracy of the classical map

In this section the ionization probabilities obtained by iterating the classical maps de-
rived in section 1.7, one given by equations (3.23) and (3.24), the other based upon the
approximate mean-motion Hamiltonian of equation (1.96), are compared with those ob-
tained by exact numerical integration of Hamilton’s equations. All numerical integration
was carried out as described in section 3.3 above.

For field frequencies 2 < 12w, figure 3.1 suggests that all classical ionization takes
place through chaotic orbits and that the mean-motion mochanism plays little or no part
in the dynamice. Thus, it might be expected that probabilitics obtained by iterating the
classical maps should be in good agrecment with those obtained by numerical integration.:
In table 3.1 we show probabilities at 2 = 5w with varying field strength; all three prob-
abilities agree remarkably Qeﬂ, even at high fields where P; ~ 0.9. Other comparisons,
see for instance figure 3.8, suggest that the map is accurate down to 2 = 2w.

Table 3.1 Comparison of classical ionization probabilitics obtained by intcgrating Hamilton’s
equations, P!, using the area-preserving map, P;"*”, and the mean-motion map, P*", for

= 5w, a sudden field switch and 1500 field oscillations. In each case, 1000 orbits were used
with A, = 100 and Ay = 0.5.

B 0.05 0.055 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.16

Pg 0.06 0.11 0.23 041 056 062 0.73 0.86 091 0.94
P™? 0.09 015 027 040 0.52 054 0.73 0.77 0.87 0.93

1]

pm™ 0.09 012 023 039 052 062 085 094 095 0.97

For ficld frequencies; § > 12w; figure 3.1 suggestsc that the mcan motion Hamiltonian
of equation (3.9) is the correct approximation. Table 3.2 shows similar results to table 3.1
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but at the higher frequency, {2 = 15w. Here it can be seen that for F; < 0.3 the mean-map
is a far better approximation than the map based upon the unperturbed motion, but for

P; > 0.5 there is little difference between the two. Other comparisons, see for instance

Table 3.2 Comparison of classical ionization probabilities obtained by integrating Hamilton’s
equations, P!, using the area-preserving map, P"°, and the mean-motion map, P™", for

Q) = 15w, a sudden field switch and 2500 field oscillations. In each case, 200 orbits were used
with 4, =100 and A4y = 0.5.

B 20 30 40 5.0 100 20.0 30.0 400 500 60.0

pd 0.02 0.10 0.19 0.27 0.55 0.78 0.90 0.93 095 0.97
P™P 0,00 0.00 0.00 0.00 025 0.79 0.89 096 0.97 0.99

1

P™ 003 013 019 027 054 0.76 0.87 0.91 0.95 0.94

i3

figurc 3.13 on page 88, also show the mcan -map to be a far better approximation at
higher field frequencies.

The agreomont shown here betweon the ionization probabilitiec obtained by iterating
the maps and numerically integrating Hamilton’s equations is not unexpected; Casati
ct al. (1988) have shown that the classical Koplor map mimics the exact dynamico fairly
accurately whilst Graham and Hoéhnerbach (1990, 1991) compare results obtained by
iterating the clagsical Morse map for the same parameter values studied in exact classical
calculations by Walker and Preston (1977) and find good quantitative agreement.

From these comparicons we conclude that the classical map mimios the exact dynam-
ico remarkably woll, but that at high ficld froequencics and weak ficlds it is necessary to
use the moan motion Hamiltonion to define tho unporturbed motion. Thic suggests that
a quantal map basod upon these classical maps should also be a good approximation to

the exact quantal solution.

3.5 Classically chaotic region

For ficld frequencies; < 13w, all classical ionization talies place through chaotio orbite:
Figure 3.3 shows the variation in P; with scaled field strength, 8, when Q = 5w, for which
Bcu =~ 0.097, and various values of switch-time, M,, and field phase, 4: all ionization
probabilities were calculated by exact numorical of the equations of motion as described
in section 3.3 abovo. Tho cimilaritice betwoen the four curves suggest that the ionization
probabilitics, F; are almost independent of the ficld phase and not véry %eﬁsitive to the

field switch-on time. Additionally, the relatively low value of 3 required for ionization
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Figure 3.3 Graph showing the dependence of the classical ionization probability, P;, with
for varying field switch-on times and ficld phase for Q = 5w, Ag — 0.5 and 4, — 100. The sudden
switch, M, = 0 with M,,, = 1500, are shown by full circles (§ = 0) and asterisks (§ = m/2). The
adiabatic switch, M, = 500 with M, = 2500, are shown by crosses (§ = 0), and open circles
(6 = m/2). All ionization probabilities were obtained by numerical integration of Hamilton’s
equations.

compared with Bsyp ~ 0.67 means that all classical ionization takes place through -
chaotic orbits.

In figure 3.4 we compare various ionization probabilities, obtained byviterating the
classical and quantal maps, as functions of 8 for 2 = 5w and the long time of 1500 field
. periods. The quantum mechanical probabilities shown in figure 3.4 are complicated to
describe as these now depend upon A,. We see that for A; = 100 the classical (crosses)
and quantal (full curve) are quite different, with the quantal probabilities approaching
the classical probabilities with ihcréasing A,. The reason for this is quite simple. The
approximate number of quasi-resonant levels is Ngg ~ A,(1 — Ap)/2r, so that for A, =
100, Ngr = 5, and this is a very small number of states. As Ngpg, that is A,, increases
we expect the quantal probabilities to approach the classical probabilities'(which are
independent of A; for fixed Ap). . '

There are two main differences between the classical and quantal probabilities shown
in figure 3.4. First, we note that even at A, = 1500 there are many oscillations in the
quantal probabilities, though it is not known whether these are real or a consequence of
using a map — for f.he quantum Kepler map, it has been shown (Leopold and Richards
 1990) that similar oscillations are a property of the map and the mechanism producing
these is also present in the Morse map. Second, the Gquantal proba,bilit_ies are smaller than
the classical probabilities: it is not immediately clear whether this is a réa‘l difference in
the bound-state dynamics or duo to the difforont manner in which ionization io treated
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Figure 3.4 Graph showing the dependence of the ionization probability with 8 for { = 5w and
Ay = 0.5. Probabilities ehown by the crosses were obtained from the classical map using 1000
orbits with 4, = 100; those shown by the full, dotted and broken curves from the quantal map
with A, = 100, 500 and 1500 respectively. A sudden switch was used with M,, = 1500.

in the classical and quantal systems. On doubling the quantal decay rates probabilities
are obtained which differ insignificantly from those in figure 3.4, which suggests that the
bound-state dynamics is responsible for the differences.

The results shown in figure 3.4, for A, = 500 and 1500 (Ngg = 25 and 75 respectively)
suggest that for long interaction times the claséical limit is well beyond physically realistic
values of A,. In figure 3.5 we show quantal probabilities for A, = 3000 (Ngr = 1l50) and
As = 5000 (Nggr = 250). At these high values of Aj; there are fewer oscillations in the
quantal proba.bﬂities and, for A; = 5000, the agreement between classical and quantal
probabilities is quite good. In particular, the local minimum observed in the classical
probabilities at 8 ~ 0.08 is reproduced in both sets of quantal calculations. For 520.12,
the quantal probabilities for A, = 5000 lie systematically above the classicé.l. This is due
to the value of —L, equation (2.69), being too small which leads to an unphysical loss
of probability, or ‘ionization’, from the bottom of the basis. This also accounts for the
apparent agreement between the classical and quantal probabilities for A, = 3000 in this

A region. These results suggest that the quautal map is correct in the classical limit, albeit
for unphysically largo valuos of .4, and justifies the use of the comiclassical -decay rates
discussed in chapter 2, section 2.4.4 above.

In figure 3.6 we compare the classical and quantal bound-state populations in the casc
Q = 5w, 8 = 0.08, A, = 1500 after 1500 field periods for which P/ = 0.5: superimposed
on this is the classical jonization probability per iteration, given by-equation (1.93) on
page 38, as a function of N, which is seen to be significant only for N>64. There are
two points to notice in this comparison. First, the overall agreement between classical
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Figure 3.5 As for figure 3.4 with quantal probabilities for .4, = 3000 and 5000 shown by the
full and dotted eurves rospectively. Probabilities chown by the crosses were obtained from the
classical map using 1000 orbits.
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Figure 3.6 Comparison of classical (full curve) and quantal (full circles) bound state popula-
tions for the case Q = 5w, 8 = 0.08, A9 = 0.5 and A, = 1500 for a sudden switch with M,,, = 1500.
The broken curve represents the classical ionization probability, P of equation (1.93). The clas-
sical probabilities were obtained from the map using 10000 orbits.
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and quantal probabilities is quite good; the large plateau centred on N = 0 is due
to the classical resonance island, though it is unclear why the quantal plateau should
extend to larger values of N. The lower edge of this island, at N ~ —10, marks the
Ilower edge of both classical and quantal probabilities. Indeed we have found that the
lower limit of the quantal basis can be estimated well by classical dynamics: as r passes
throﬁgh integer values, the value of L, see equation (2.69), page 61, changes dramatically
according as the resonance island is above or below the initial state. The probabilities
for 10 < N < 50, that is the classically chaotic region, are in broad agreement, with the
.quantal results oscillating about the less structured classical probabilities. However, for.
N > 50 the quantal probabilities are generally significantly smaller and it is precisely
from this region that direct-ionization occurs, as can be seen from the broken curve. This
explains why the classical and quantal ionization probabilities differ in this model.

As the interaction time decreasns; thn field producing a given ionization probability
increases so direct ionization occurs from a wider band of states. In figure 3.7 we show"
the equivalent of figure 3.4, but for only 100 field periods, and it is seen that at A; = 1000
there is good agreement between the classical and quantal probabilities, that the field
producing 10% ionization is considcrably larger and that the quﬁntal probabilitics have

less structure.
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Figure 8.7 Graph vhowing the dependenco of the ionization probability with 8 for 0 = 5w and
Ap = 0.5. Probabilities shown by the crosses were obtained from the classical map using 1000
orbitg with .4, = 100; those shown by the broken, dotted ard full curves from the quantal map
with A, = 100, 500 and 1000 respectively. A sudden switch was used with M,, = 100.

Our numcrical calculations show that the \classical probabilities are insengitive to
small variations in the applied frequency. The quantal probabilities of the map; however,
show o fairly erratic dependence upon £2: the rcasons for this are given in Leopold and
Richards (1990); and Casati of ak (1990) suggest that these fluctuations ought to be aver
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aged over to obtain tho correct result. The effect of cuch fluctuations ic seen in figure 3.8
where ';7ve show the threshold fieldc required to produce 10% ionization as a function of
r = Q/w. The classical results are shown by the crosses (numerical integration) and
the broken curve (map); theoe threshold fields both follow the chaotic boundary, Be;
of equation (3.8), but are always lower. The data shown in figures 3.1 and 3.2 suggests
that in the frequency range 2w < Q < 8w classical ionization ic dominated by chaotic.

dynamics. In fact, the corresponding values of Bsyp range from 0.27 at @ = 2w to 1.07

06

05
- 0.4]
B, 03]

0.2

b
-
»

011 *Classical

0.0 EXEK —
3 7 8

Figure 3.8 Graph showing the variation in the threshold fields, B0, required to produce 10%
jonization with © and 4y = 0.5. The threshold fields chown by the erosses wore obtained by
numcrical intcgration of Hamilten’s equations; those by the brolien curve from the classical map
and those by the dotted curve from the quantal map with 4, = 100. A sudden switch was nsed
with M,, = 1500 and § = 0. The full curve represents the theoretical values B¢y, equation (3.8).

at 2 = 8w, higher than any value needed for chaotic ionization.

" The quantal thresheld fields arc quite different: they are close to the classical thregh-
old fields for < 3w but for larger frequencies they show very large fluctuations; which
are not very surprising because the number of quasi rosonant states is cmall; for instance
at Q = 6w, Ngi = 4, so we should expect resonances and little resemblance to the clas.
sical behaviour. It i3 a matter for future calculations to determine whethor or not theso
fluctuations are real or an artifact of the map: the work of Leopold and Richards (1990,
1991) suggests that more exact calculations will remove at least some of these fluctua-

tions.

3;5.1 Localization

The localization theory of Casati et al. (1987b, 1988) has been used to qobtain estimates
of the field strengths required for the onset of quantal ionization (see also section 2.7.2
above). In this section we apply this theory to the periodically driven Morse oscilla-
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tor and compare the theoretical field strength for the onset of quantal ionization, Ay,
equation (3.30) below, with those obtained by iterating the quantal map.

The estimate of the field strength required for the onset of quantal ionization is
obtained (see Casati et al. 1987b, Casati et al. 1988) by setting the localization length,
l¢, equal, approximately, to the classical diffusion constant, and then equating l3/2 to

max(N). For the driven Morse oscillator, [y is given by,

Iy~ lf(N)2

222 42
. B A, 5 exp[—2r(1 — Ao)]; (3.29)

= 2r2(1 - Ag)
see also Graham and Hohnerbach (1990, 1991): note that for the parameters of figure 3.6,
ls ~ (1098)%. On setting l/2 = max(N) = A,(1 — Ap)/2r, we obtain an approximate
.. quantal ionization threshold, in the same spirit as Casati et al. (1987b, 1988),

by (21‘(1;8./40)3) 2 exp[r(;— )l PR (3.30)

In mest cases we have congidered the cxzponential distribution given by cquation (2.74)
on page 64, that is P(N) = l;l exp(—2N/ly), is a rather poor fit to that produced by
the Morse-map, and deteriorates as the interaction time increases. Despite this poor
fit, the localization thresheld; fBr; sometimes agrees reasonably well with our numerical
thresholds, Bn, and sometimes does not; for example at Ap = 0.5, Q = Sw if A, =
500 then Br = 0.19 and Sy = 0.14, but for A, = 100, S = 0.43 and By = 0.21.
This should be contrasted with the agreement obtained by Bayfield et al. (1989) for
the hydrogen atom. Both of these comparisons are for short interaction times with
M,, = 100 field periods: for longer times therc is no agrccment. We therefore concludo
that the localization theory, as presented by Casati et al. (1987b, 1988) provides a poor

description of the quantum dynamics in the high frequency regime.

3.6 Intermediate frequency region

At intermediatc frequencies, 13w < £ < 20w; the classical dynamics is more complicated.
Here, ionizatien probabilities are more dependent upon the field switch-on time and, for
sudden switches, the ficld phasc. When an adiabatic switch i3 used, all classical ionigation
is through chaotic orbits; for a sudden switch there is evidence, see figures 3.10 and 3.11,

that ionization can occur through both chaotic and mean-motion mechanisms.

3.6.1 Adiabatically switched fields

For an adiabatic switch, with M, = 500 and M,, = 3500, the comp;arison between
Brw and the numerically calculated classical threshold fields required for 10% and 50%
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Figure 3.9 Values of B required for 10% (crosses) and 50% (a.stérisks) ionization for
120 £ O < 209 with Ao = 0.5 and A, = 100. The field was switched on adiabatically with
M, = 500, M,, = 1500 and § = 0. The full curve represents the theoretical values B¢y, equa-
tion (3.8).

ionization for 12w < @ < 18w and 6§ = 0 is shown in figure 3.9. Again, there is good
_agreement between the numerical thresholds and B¢y, suggesting thqi; chaotic ionization
ic prevalent in these cases, a view reinforcod by considering the relevant values of Bup,
which range from 396 at 2 = 12w to 890 at Q2 = 18w. ‘

3.6.2 Suddenly switched fields

For.suddenly switched fields, with intermodiate froquencics, come orbits ionige becausc
their initial tori cross the mean-motion separatrix, whilst others become unstable and
ionize chaotically. This behaviour is shown by the surface-of-section plot, figure 3.10.
Here = 15w and § = 11.5; we show one orbit, with §; = 1.257, ionizing via separatrix-
crossing whilst a second orbit, with 8y = 0.697 ionizes cha.otica.lly. The same behaviour,
again at Q = 15w, is seen by examining the results shown in figure 3.11. The probabilities
indicated by the crosses were obtained by integrating 200 orbits with 20 different values
of 8y and 10 different values of §, all chosen as described above. The full curve shows the
theoretical ionization probability, Psyp, as calculated in equation (B.6) of appendix B.
For B8 < Bcu =~ 8, there is good agreement between the theoretical and numerically
calculated probabilities which suggests that here there ought to be agreement between
claccical and quantal ionization probabilities: In thic region the clascioal map of cqua
tion (3.23) and (3.24) underestimates the ionization probability, see table 3.2, but the
'ma.p based on the mean-motion, equation (1.96), provides a more accurate description.

Ac B increases; como classical chaotic ionisation occurs and hence; for o given §; the
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Figure 3.10 Surface-of-section plot for Q = 15w, 4 = 0.5, A, = 100, 8 = 11.5 and a sudden
switch with § = 0. The orbit with initial angle variable 8, = 1.257, shown by the crosses,
ionizes through the mean-motion mechanism; that with o = 0.697, shown by the dots, ionizes
chaotically. .

20 40 60 80 100

Figure 3.11 Craph chowing tho dopondence of the classical ionization probability with 8 for
Q = 15w, Ay = 0.5 and A, = 100 with various values of M,, M,, and 6. The asterisks and open
circles represent the ionization probabilities obtained using an adiabatic switch with M, = 500
and M, = 3500 for § = 0 and § = w/2 respectively. The crosses represent the ionization

probabilities obtained using a sudden switch with My, = 2500, averaged over the field phase.
The full curve represents the theoretical probabilities, Psyp, as calculated in appendix B.
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computed ionization probability is higher than that given by the theoretical curve. In
figure 3.11 we also show the computed classical ionization probabilities for an adiabatic
switch of M, = 500 with § = 0 and § = 7/2: both require higher values of 8 for 10%
ionization than a suddenly switched field, because all classical ionization occurs through
chaotic orbits when the field is adiabatically switched.

In this case we should not expect classical and quantal ionization probabilities to agree
except when A, is huge, simply because the selection rule picking out the quasi-resonant
states dramatically decreases the density of states. The classical dynamics does, however,
suggest that the mean-motion Hamiltonian is the correct zero-order approximation to the
dynamics and this ought to be taken into account in any approximate quantal description,

especially as it leads to a reduction of the number of bound states.

3.7 Mean-motion region

At very high frequencies, 2 > 20w, numerical calculations suggest that the mean-motion
approximation provi‘dcs a good description of the classieal dyna.l.:nics for both adiabatic
and suddenly switchod on ficlds. This is slightly lower than the theorctical values shown
by figure 3.2 which suggest that, for adiabatic switches with 20w < Q < 25w, B¢y is still
significantly lecc than B4p. In figure 3.12 wo chow the variation in the clagsical ionisation
probability, P;, with increasing § for Q = 30w and an adiabatic switch of M, = 3000,
M,, = 7000. Here, the theoretical threshold field is S4p ~ 2475, whereas Scy ~ 14 950.

Figure 3.12 Craph chowing the variation of tho classical ionization probability with g for
Q = 30w, Ay = 0.5 and A, = 100. An adiabatic switch was used with M, = 3000, M,, = 7000
(crosses) and M., — 6000, M,,, = 13000 (full circles). In hoth cases the field phase, § = 0.

In theory, no classical ionization should take place for 8 < 84p and thére should be 100%
ionization for # » Bap. The discrepancy between the actual and theorctical dynamical
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behaviour is caused by switching the field on too quickly. In figure 3.12 we also show the
classical ionization probabilities obtained for an adiabatic switch wifh M, = 6000 and
M., = 13000 and these show better agreement with the theoretical behaviour. Whilst
switching the field on over longér time intervals improves the agreément with theory, true
adiabatic conditione aro difficult to achiove as the period of the classical motion increases
towards infinity with increasing field amplitude, leading to a breakdown of adiabatic
invariance. '

" At high field frequencies, the classical map, equations (3.23).and (3.24), greatly over-
estimates the 10% ionization threshold, giving Big ~ 37000. This is because the map
is gauge invariant so ionization due to the mean-motion mechanism is absent. In this
frequency range, the map based upon the mean-motion Hamiltonian (1.96) is a far bet-
ter approximation. This is seen in figure 3.13 where probabilities with a sudden switch,
Q = 30w and M, = 1000 are shown, and it will be noticed that the field strengths
needed to ionize the system are considerably smaller than for an adiabatic switch. Here,
the crosses show the results obtained from the numerical integration of 200 orbits con-
sisting of 20 values of fp and 10 values of 6, chosen as before, and the asterisks show the
" results 6btained using the mean-motion map; the full curve shows the theoretical prob-

abilities, Psyp, equation (B.6) of appendix B. Again, there is good agreement between
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Figure 3.13 Graph chowing the variation of the clascical ionization probability with § for
Q = 30w, Ay = 0.5 and A; = 100. A sudden owitch, averaged over the ficld phase; was used with
M,,, = 1000. The crosses dopict rosults obtained by numecrically integrating Hamilton’s cquations
and the asterisks show results obtained by using the classical mean-motion map. The full curve
shows the theoretical ionization probabilities, Psyp, as calculated in appendix B.

the theoretical and the numerically calculated probabilitics: In this limit the analysio of
appendix C shows that the classical and quantal ionization probabilities ‘are similar.
In the very high frequency region if Q/w > A(1 — Ag)/2 the quantal -and classical
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ionization mechanisms are fundamentally different, for the quantal description allows for
direct single-photon transitions into the continuum, a process not allowed in classical
dynamics. This mechanism is present in the quantal mé.ps described in section 2.7, but
the distortion duc to the mean-motion clearly becomes important so only the map based

on the mean-motion, equation (1.96), is accurate.

3.8 Conclusions

In this chapter we hawve studied the response of the Morse potential to a high frequency
field. The analytic properties of the Morse potential mean that, for sufficiently high
frequency fields, classical ionization can ogcur through regular orbits, in contradistinction
to the driven Coulomb potential. .

We bave compared ionisation probabilitics obtained by iterating the classical area-
preserving map with those obtained by exact numerical integrzition and find that, for the
driven Morse potential, the map mimics the exact dynamics remarkably well. Further,
we have shown that the quantization of this map provides a very simple and efficient
method of ebtaining approximate solutions to the time-dependent Schrodinger equation:

We have also compared ionization probabilities obtained by itcrating the classical and
quantal maps: For the classical system we chow that there are three pogsible ionization
mechanismg; chaotic ionization dominates for physically realistic fields and frequencies
and for this therc is no quantal counterpart for the quantum numbers of current interest
03 on approximate selection rule drastically reduces the deasity of states, We further chow
that the localization theory proposed by Casati et al. (1987b, 1988) does not provide a
correct déscription of the quantal evolution of the driven Morse potential.

The two other classical ionization mechanisms, which become significant at high-
frequencies, do not involve chaotic orbits and have quantal analogues so classical and
quantal ionization probabilitice arc similar: For suddenly switched high frequency fields
ienization can oeccur simply by a momentum transfer due to a gauge change; in ap-
pendix C we show that classical and quantal probabilitics for thic mechanism are the
same, apart from interference effects. ' , '

For an adiabatically switched high-frequency field the classical system can ionize by a
proccas involving the adiabatio invariance of the mean-motion which gradually ‘equeezes’
the phase curve into the unbounded region of phase space. Similar dynamics effects the
quantal syotem, but in this case dircct transitions into the continuum may be possible
from the cigenstates of the elageical adiabatic Hamiltonian; and the squersing now bringg
these states nearer to the continuum into which they may decay more easily: the com-

bination of these two effects needs to be considered in detail, but it seems likely that
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at these very high frequencies quantal ionization probabilities are larger than classical

ionization probabilities.
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Chapter 4

Low frequency behaviour I: the tunnelling

regime

4.1 Introduction

We now concentrate on.the regime of low field frequency; for excited states of the hydrogen
atom in a 9.9 GHz microwave field, this means that the scaled frequency, £0<0.03. Due
to the availability of experimental data for the microwave ionization of hydrogen (see
section 4.5 below) this chapter concentrates exclusively on this particular system.

Quantally, the dynamics can be described by the equations of motion (2.52), page 53,
derived in chapter 2 using a basis of adiabatic states (see also Richards 1987); for the
purposes of this chapter it is convenient to recast these in the form given by Richards
et al. (1989b),

d;; — _ﬁjlt(({z)o)a" — ngFoSo cos(Qpt) Z ap% exp [i /0" dt'AEnp(f)] , (4.1)
a p#n n _ X
where,
AEn, = (En(f) = Ep(f))(noh)’/une?, - (4.2)
M"P = (n» f‘zlpa f)ﬂ'ez/(noh)zv- . (43)

with Qg and Fp the scaled frequency and field strength respectively, wae(no) the classical
orbital frequency and £ = ue*t/(ngh)? the rescaled time. The classical motion is best
described by the adiabatic Hamiltonian (1.40) given on page 22 of chapter 1, provided
the ionization probability per field period is small.

In the scaled units used in equation (4.1), both M and AE are of order unity, so it is
clear that the most important parameters are the scaled frequency, 2o, and the coupling
strength, C; = ngFyd, which determines how many states are needed to describe the
quantal motion adoquately. By comparing the difforont theoretical models discussed in
this chapter with experimental data, see section 4.7 below; we can determine the values
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of C; for which the validity of each model holds: three different ionization mechanisms

are found to predominate.

1. For small values of the couphng strength, C,;<0.12, transitions between adiabatic
states can be neglected. In this case the system cah only ionize by tunnelling
through the slowly moving barrier, formed by the interaction between the Coulomb

potential and the oscillating field; this mechanism has no classical analogue.

2. For slightly larger values of the field strength, for which 0.12<C; <0.16, the potential

barrier is lowered and classical ‘over-the-barrier’ escape can occur.

3. For C,20.16 transitions between adiabatic states become important. In this case
an atom, in an initial state with principle quantum number ng, can be excited to a
level n > ny: ionization can then occur from level n either by tunnelling through,

or by classical escape over, the slowly moving barrier.

In this chapter we are interested in the first mentioned situation where C, and g are
both small so that transitions between states can be neglected; in this case equation (4.1)
reduces to,

dan, _ _gno(t)

where ng labels the initial state. We compare and contrast numerical results obtained
using this model both with those obtained using other theoretical models and with ex-
perimeuntal data. '

The roalization that a quantal particlo could traverse a clagsically impenetrable static
potential barrier arose early in the development of quantum mechanics. However, there
has been continuing interest in, and some controversy over, quantum mechanical tun-
nelling (see, for instance, the reviews by Hauge and Stgvneng 1989, and Olkhovsky and
Recami 1992). Questions which have been raised include the definition of tunnelling
times and how a non-statlonary barrier is traversed.

Several theories based on the original work of Keldysh (1965), and later Faisal (1973)
and Reiss (1980), have addressed the tunnelling ionization of atoms in an oscillating
electric field (see also Perelomov et al. 1968, Delone and Krainov 1985, Ammosov et al.
- 1986). The so-called Keldysh-Faisal-Reiss (KFR) theory has been used to apply tun-
nelling interpretations to some intense-laser multiphoton ionization (LMPI) experiments,
often with noble gas atoms and their ions (see, for example, Baldwin and Boreham 1981,
Yergean et al. 1987, Chin et al. 1988, Perry et al. 1988, Augst et al. 1989, Gibson
et al. 1990, Xiong and Chin 1991, Augst et al. 1991). However, gi{'en that tunnelling
rates increase exponentially with the field amplitude (see Landau and Lifshitz 1977, §77)

92



and that, according Petite et al. (1987) and Gibson et al. (1990), the absolute determi-

2 in focussed laser beams is

nation of relevant peak intensities greater than 1012 Wem™
difficult even to within a factor of two, LMPI experiments have not provided sensitive
tests of dynamic tunnelling theory. Indeed, Augst et al. (1989) even ascribed the term
‘tunnelling ionization’ to LMPI experiments that were analysed with 2 model based on
classical over-the-barrier escape.

Recently, Sauer et al. (1992) have used data from the microwave ionization of excited
hydrogen atoms to make direct comparisons between experiment and theory. Microwave
technology facilitates precise determination of the field amplitude and pulse shape (see
Sauer et al. 1991 and section 4.5 below), a major advantage over LMPI experiments.
By comparing their experimental ionization probabilities with those obtained from the-
oretical calculations, the authors were able to distinguish between tunnelling ionization,
classical escape over the slowly oscillé.ting barrier and Lelween one- and many-state dy-
namical processes. They found that formulae based on the KFR-theory, often used to
model laser tunnelling ionization experiments, failed to describe their data, which were
best reprodu(fed by the new semiclassical model presented in section 4.3.2 below.

The objective of this chapter is to utilize approximate expressions for the complex part
of the resonant energy, £,, in order to evaluate the amplitudes, a,, of equation (4.4), and .
hence obtain the probability of ionization due to tunnelling. We use as a model the three-
dimensional hydrogen atom which enables us to draw comparisons both with available
data obtained from microwave experiments (see Sauer et al. 1992) and other existing
theories allowing us, for the first time, to give conditions where tunnelling theories are
valid. | |

In section 4.2, we give a brief description of the Schrodinger equation for the unper-
turbed, three-dimensional hydrogen atom in parabolic coordinates. In section 4.3 the
effect of a uniform static electric field on the unperturbed hydrogen atom is considered.
We show how classical and quantal methods have been used to address the problem and
provide a new semiclassical approximation for the ionization probability.

In section 4.4 the hydrogen atom in a slowly varying field is discussed. We show
how the static tunnelling rates derived: in section 4.3 can be used to obtain ionization
probabilities in the presence of an oscillating field. We also provide a brief description of
KFR and related theories.

In addition to models which involve tunneling, an adiabatic model is also considered
in soction 4.4, This modol ascumes transitions to adjacent states of the adiabatic basis
followed by classical over-the-barrier escape and is complementary to tunnelling.

In section 4.5 the microwave experiment is described and in section 4.6 we give de-

tails of the numerical methods used to calculate the ionization probabilities which are
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presented in section 4.7. Finally, in section 4.8, we present some conclusions.

4.2 The unperturbed hydrogen atom

The Schrodinger equation in cartesian coordinates (z,y, z) for the unperturbed, three-

dimensional hydrogen atom is,
(Eo- )y s

where y is the reduced mass, e the electron charge, V2 = 62/9z2 + 8%/0y? + 8%/82% is
the Laplacian operator and where 72 = z2 + y* 4+ z2. Owing to the O(4) symmetry of
the fieldless hydrogen problem, equation (4.5) can be separated in many different coor-
dinate systems: the solution of Schrodinger’s equation in terms of parabolic coordinates
is particularly useful when invesligaling problems where there is an axial symmetry, as
when a static electric field is present. Moreover, separability of the Schrodinger equation
in parabolic coordinates is maintained when the atom is pfa.ced in a static électric field;
this situation is addressed in the next section. '

The parabolic coordinates, (£,7,¢), are connected with the cartesian coordinates,

(z,v, z), by the relations, .
E =r+z, 7I'=7"‘é, ¢=ta.n—1(y/z),
= Vencos¢, y=+Eysing, z= %(,é -n), (4.6)

with 7 = (£ + 1), and where 0 < ¢ < 27 with £ and 7 defined on the semi-infinite

interval 0 < &,7 < co. In these coordinates the Laplacian operator is,

and V = —e?/r = —2e%/(€ + ). The Schrodinger equation (4.5) is then,

B D A0 35 (e oo o

In order to solve equation (4.8) a solution is sought in the form,

xa(€) x2(n)
VE A

where m is the magnetic quantum number. Substituting equation (4.9) into equa-

¥(&,me) = exp(im¢), (4.9)

tion (4.8) and effecting the separation gives the following equations for x; and xa,

d?xy m /19 m2—1 ‘
— _ = 0,. 4.10
d£2 + (th ﬁ2§ﬂ1 452 X1 - ( )
d*x2 7 pe’ m? —1

— B+ 50y — ——— = 0 4.11
d172 + (27},2 + hznﬂ2 47]2 X2 ) | ( )
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where 3, and [, are the separation constants related by the constraint,
B+ B2=1 ‘ (4.12)

It should be noted that both B; and B2 are functions of the energy.
In order to proceed, we restrict attention to the discrete energy spectrum, E < 0,

and introduce the dimensionless quantities,

2 2 2
’ A — Ke _ ke
n A 2E y Pl . nhz fa P2 nh2 n. (413)
. In terms of these variables, equations (4.10) and (4.11) can be re-written in the form,
d%x; 1 1 (|m|+1 ) 1-m?
sy : =0, (i=12), 1
a0 +l-zt o g —tni)+ )% (4 ) (4.14)
where,
1 1
n1 = _E(lml +1) +np, ng = _E(Iml +1) +nps. (4.15)
Examination of equation (4.14) shows that the functions, x;, behave as exp(—p;/2) for
pi > 1 and as pS’mIH)/ ? for pi < 1, so solutions are sought of the form,
' 1)/2
xi(ps) = exp(=pi/ D™ W), (4.16)
where the functions W;(p;) are the regular solutions of the equation,
‘ d*w; dW; )
oy + (Im| + P, tmWi=0, (4.17)

which may be recognized as the equation for the confluent hypergeometric functioﬁ (see
Abramowitz and Stegun 1965, chapter 13); the solutions which are finite at the origin
are, ‘ ' :
W; = M(—n;, |m| + 1, p;), ' ©(4.18)
where n; must be a non-negative integer. Thus, each stationary state of the discrete
spectrum is determined in parabolic coordinates by three integers: the parabolic quantum
numbers, n; and ng, and the magnetic quantum number m. For a principle quantum
number, n, we have,

n=mn;+nz+|m|+1. (4.19)

The wave function Wy, n,m Of the discrete spectrum is then of the form,

Unyngm = Anyngm fram (€€ /nh?) from(ne®n/nh?) exp(img), (4.20)

where Ay n,m is the normalization constant and the functions fn,m and fn,m are defined
by, )

fom(p) = M(=p,|m| + 1, p) exp(—p/2)p D2, (p=my,ma).  (421)
In the next cection wo discuss the modifications to the unperturbed hydrogen atom,

described by equation (4.5), in the presence of a static electric field,
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4.3 The hydrogen atom in a static electric field: the Stark
effect '

The Schridinger equation for a hydrogen atom in a uniform electric field F parallel to

the z-axis is, ‘
h2 e? '
(——V2 - —+ Fz) ¥ =EV, (4.22)

_ 24 T
where F is the field strength.

As mentioned in the previous section, equation (4.22) is also separable in parabolic
coordinates, defined by cquation (4.6) above. Effecting the soparation with the product

ansatz (4.9) gives the following equations for x; and x»:

d%x1 pE el m2—1 uF ’

By — — =0 4.2
a2+ (zrﬁ T T T et ’ (4.23)
d?x, LE  pe? m2—-1 uF
—_— — + 02 — — = 0. 424
az * <2h2 TR T T T x (4.24)

where f; and f; are again related by constraint (4.12). These equations describe the
properties of the hydrogen atom in the presence of a static electric field F: equation (4.23)
ic the radial Schrodinger equation for bound motion in a § potential, shown ochematically
for m? > 1 in figure 4.1, page 101; equation (4.24) represents the motion in an 7-potential
which diverges to —oo as  — 00, see figure 4.2, page 101.

It is important to realize that the potential, V = —e?/r 4+ Fz, possesses a barrier
whose height and width depend upon the external electric field. Classically, the pres-
onco of the electric. field has littlo offoct on tho dynamicc; merely reducing the ionization
threshold; ionization occurs when the energy of the electron exceeds the barrier maxi-
mum. Quantally, the problem’is rather more subtle. In the field free case with E < 0,
both the £- and n-potentials support bound states. However, in the presence of an elec-
tric field, whilst the £-potential still supports bound states, the energy spectrum of the
7-motion is continuous; the electron tunnels through the potential barrier leaving the
" atom ionized. One way of ropresonting this cffoct ic to introduce a phenomenological
~ decay rate into equation (4.22); the wave function, ¥, then represents a resonant state.
Such states can bo charactorizod by a resonant cnorgy and a width; as the rcoonant en
ergy increases 60 doee the corresponding width; with the recult that the initially narrow
resonance becomes wider as the classical saddle is approached. The energy, E(n, F), of
the roconant state corresponding to a bound lovel, n, of the unperturbed system is then
complex and is written, ‘ -

E(TL, F) = Eg(n, F) - 2 ’ F'r 20, (4'25)

96



where the real values Fr and I'p correspond to the position and width of the reso-
nant state respectively. On relating I'r to the phenomenological decay term, &,, of
equation (4.4), Cr(n,F) = 2E,(F), we see that the static field ionization probability,

P#(n, F), of an initial level, n, is
PfY(n,F) =1— |an|® = 1 — exp[Cr(n, F)t/h), Qny = 1. (4.26)

When calculating the Stark energy, F, equations (4.23) and (4.24) are treated as
one-dimensional Schriodinger equations with discrete bound states. One approach is to
numerically integrate equations (4.23) and (4.24) and then use constraint (4.12) to ob-
tain the energy E as a function of the field strength, F' (see, for instance, Damburg
and Kolosov 1983). In practice, this treatment is quite elaborate due to the particu-
lar properties of the differential equation (4.24). The subsequent calculations are thus
numerically too intensive for the application we have in mind here where the principle
quantum number is large, n220. In addition, quantal perturbation theory, semiclassical
approaches and classical methods have all been employed and we proceed by describing

each of these three methods in turn.

4.3.1 Quantal perturbation theory

The Stark effect furnished the first example for the application of quantal perturbation
theory, carried out by Schrodinger (1926) who obtained the formula for the linear Stark

energy levels, .
4
ue 3 Fh
- TR P (427)
already known from the calculations of Schwarzschild (1916) and Epstein (1916) based

on the old quantum theory. Since then, several authors have studied the series expansion

E=-—

for the Stark levels, the first two terms of which are given by equation (4.27). The
derivation of higher order terms is non trivial and the continuous energy spectrum of the
n-motion means that any perturbative approach will produce a series which is merely
an asymptotic expansion: after a certain point in the series, which becomes later as the
perturbation is reduced in magnitude, the terms increase rather than decrease and the
series does not converge. .

To overcome some of these difficulties, Damburg and Kolosov (1983) found it conve-
nient to use a modified procedure. Using the transformation (£,7) — (p1, p2) defined by
equation (4.13) and seeking solutions for x; and x2 of the form given in equation (4.16),
the authors were able to cast equation (4.17) in the form,

2147 : . :
prddr?,t +(Im|+1 - pi)(fi‘z/-z * (’\" - %(lml + 1))]Wi = (1)} [4aR)W;, (i =1,2),
' (4.28)

97



where,
6
pe
TwnE NI (29)
The energy is then obtained from the separation constants,

E= ——(/\1 +A)72 (4.30)

For F oufficiently small, R i o large parameter and a solution of equation (4:28) is sought
in the form of a power series expansion in R,
wi=YwhR™, A= Z AR (4.31),
1=0
Thus Damburg and Kolosov (1983) obtain a series in F for the Stark energy: to fifth

order in Fy thls is,

98n%(ny — n3)? + 772n%m? — 21(n; — ny)* + 725m*

1 3F 2
EPK = §+ 5 (ny —ng) — ™ 2{17'n ~3(my —ng) —9m +1?}
3F3 23n? 2 +11m? + 39
+ o 3(n1 —n2){23n* — (n; — n2)* + 11m* + 39}
F4 2 2
= Toadn £ {5487n* + 35182n% — 1134m?(n; — np)
+ 1806n2(n; — ng)? — 3402n2m? + 147(n; — ny)* — 549m*
+ 5754(n; — ny)? — 8622m? + 16211}
3F¢
+ Topan ——"0—(n; — ny){10563n* + 90708n” + 220m?(ny — ng)?
+
+

780(ny — na2)?® + 830m? + 59293} + O(Fy), (4.32)
where Ey = (nh)2E/pe* is the scaled energy and Fy is the scaled field strength.

Asymptotic formula for the resonance width

Standard perturbation theory only gives an expression for the real part of the energy
eigenvalue. In order to obtain an expression for the imaginary part, Damburg and
Kolosov (1983) used a uniform asymptotic approach, as described in appendix D, us-
. ing the A‘iry equation (see Abramowitz and Stegun 1965, chapter 10) as the comparison
equation. In this way, the authors obtained an asymptotic formula for I'g:
(4R)*ra+m+1 exp(~2R/3)

Tr = n3ny!(ng + m)! 39
Fo 53\ .,
- x (1= (34n] + 3tnam + 46np + Tm? +23m + =) + O(F) ) ,
where
: —9pDK)3/2
g M2BPT) . (4.34)

Fo
For ground state hydrogen (n = 1, n; = ng = m = 0), the first term of equation (4.33)

reduces to the form given by Landau and Lifshitz (1977, §77).
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Semiempirical formula for the resonance width

By analysing their numerical results and re-writing the multiplier 1 —aFy+O(F2) of equa-
tion (4.33) as exp(—aFp), Damburg and Kolosov (1983) obtained the following semiem-
pirical formula for I'p,
DK _ (4R)ratm+l
n3ny!(ng + m)!

2 Fo
X exp [—gR - ﬁ (34n§ + 34n9m + 460y + Tm? + 23m + 5—3%)] .

'(4.35)

In section 4.7 we compare numerically calculated ionization probabilities, P.°X (ng, Fp),
obtained using the Damburg and Kolosov (DK) formula (4.35) both with those obtained
experimentally and those obtained numerically using the semiclassical model which we

now derive.

4.3.2 A uniform semiclassical approach

The starting point for our semiclassical approach is the Hamiltonian,

H=1p_-% . (4.36)

= 2up " . .
As before, the equations of motion associated with equation (4.36) are separable in
parabolic coordinates defined in equation (4.6) above. Effecting the separation, we obtain

the equations,

1, I} &3 F E
— o SR £ NS = 4.37
ufe ™ (8;42 2% 18 e (4.37)
1, Iy e, F E .

— — — — — — 4-
2p.p" (8;1,7]2 2n g 4’ (4.38)

where I is a constant equal to the action of the ¢-motion, and where, as before, (1
and f; are-related by constraint (4.12). Replacing p; and p,, with their quantal operator

equivalents and carrying out the quantization of I in the standard way,
Iy = mh, » (4.39)

we obtain the following Schrodinger equations,

d’x1 , (pE [ pe*Bi m? uF
S o N iaill = 0, 4.40
aez +<2n2+ 2 8 T apt) ™ (440)
d®x2 , (WE | pe*fa  m?  uF
_ B _m”  BE - 0 4.41
dn? “L,(zn2 3y Tzt =0 (4.41)

It should be noted that with this method we do not retrieve exactly equations (4.23)

2

and (4.24); the m? — 1 term has been replaced by m?. This apparent anomaly was
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explained by Langer (1937) who noted that application of standard WKB formulae to
radial Schrodinger equations, such as equations (4.23) and (4.24) above, yields a solution
which becbmes infinite at the origin and so is not the desired wave function. However,
by making the substitution, r = €%, ¢ = e*/ 2u(x), where r and ¥ represent the fadia.l
coordinate and wave function respectively, Langer noted that a Schrédinger equation is
obtained to which WKB methods are directly applicable. By Langer-transforming the
basic equations (4.23) and (4.24), Gallas et al. (1982) obtained precisely equations (4.40)
and (4.41); note that the main effect of the Langer transformation is to replace the m2 —1
term by m2. Thus, equations (4.40) and (4.41) are the correct equations to use for the
semiclassical approximation.

Equations (4.40) and (4.41) are Schrodinger equations for motion in the potentials,
o2 m2h2
2?1 + 8#?2 + gf, (4.42)
) B m2h? F

Ve(€)

Va(n)

Schematic views of the potentials for m? > 0 are given in figures 4.1 and 4.2. The negative
parts of the £- and 7-axes have no physical meaning but are of considerable help in the
mathematical formulation. As shown in figure 4.1, the motion along the é-coordinate is
confined for all values of the field strength: classically the particle is bound to oscillate
between the turning points 0 < €3 < §; and quantization of the motion can be carried

out in the standard way,

I = , df \/E/4 V{( = (n1,+ 1/2)71‘ (4.44)

The motion in the 7-coordinate, shown in figure 4.2, is much more complicated and the
source of all difficulties in studying the Stark effect. For physically meaningful energies,
-that is those lower than the classical saddle energy, the classical motion near the nucleus
is bounded between 0 < 71 < 72 whilst quantally the electron may tunnel through
the barrier. Since it is necessary to explicitly include the barrier, uniform methods are
needed. | )

We need the wave functions at energies below the saddle energy, E = 4V, "%, so there
are three real turning points, 71(E) < 72(E) < 73(E), see figure 4.2. In appendix D we
describe the general idea of using the comparison equation method to obtain a uniform
approximation to the solution of the one-dimensional Schrodinger equation. For the
system under consideration here, there are two nearby turning points, 73(E) and 73(E)
of figure 4.2, which coalesce as the energy, E, of the system approaches ES. It is necessary
to include these two turning points explicitly in the comparison equation. In this case,
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Vsm'i'n B

Figure 4.1 Potential, V¢, for the £-motion defined by equation (4.42).

Figure 4.2 Potential, V,, for the 7-motion defined by equation (4.43).
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an appropriate conilpa.rison' function is,
Qo(o) = —A+ 0?/4, . (4.45)

where A is positive for energies below the barrier top and negative for cnergies above the

barrier. The comparison equation can then be written in the form,
d?¢  , ‘
EP) +(2%/4-a)p=0, o=2Vh, A= Hha, (4.46)
the golutions of which may be expressed in terms of parabolic cylinder functions; ¢ =
W(a,+tz) (see Abramowitz and Stegun 1965, equation (19.1.3)).
Here, we are only interested in systems with E < ES:in this cafée, there are two close
turning points, 72 < 73, and it is convenient to define A so that o(n;) = —2v/A and

. o(m3) = 2/A with,
1 [m | ‘
AB) = - [" an\/~Qulm),  @atn) =20 {5/4 = Va(m}. (a.47)
The wave function is then given by,

o2/ — - 1/4
X2(7laE) = <-_Q/-:(T)é) {aW(aa z) + IBW(O" _Z)} ’ (4'48')

where we have written z = o(n)/Vh, a-= A(E)/h and where o(n) is given by equa- .
tion (D.11),

%¢a2—4A—Am(°+ A ‘4‘4) = .Lndn’\/Qntn’), o>0, (4.49)

2/14]
Vsl — 44— Aln (3 + Vs - 4A) /ﬂm i \JQ,(r), s>0, (450)

2vI4]

il

where s’ = —¢. ,

In ordcr to proceed further; we need t.d‘ impose appropriate boundary conditions. We
assume that the wave function is delta-function normalized in energy, (E'|E) = §(E-E'),
and that it has the asymptotic form, see Landau and Lifshitz (1977), .

. 1/2
x2(n, E) — ( 7;:;") sin (-;; /': ) dn’ \/Qn(n’)+5(E)), (4.51)

* where the phase shift, §(F), determines the behaviour of the wave function.

At the left-hand turning point, n = 7,(E), we can again use uniform methods, this
time with the Airy equation (see Abramowitz and Stegun 1965, chapter 10) as the com-
parison equation, to obtain the following approximation to the wave function in the inner

region, 71(E) < n < n2(E), : . -

h . 1/ 1/ , — N T
x2(n, E) = (Q_n(ﬂ_)) cos (ﬁ /m(E) dn’ \/Qn(n') ~ Z) ; (4.52)
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where < is a constant to be determined. \
Matching the asymptotic form of the solution, equation (4.48), to the small-n solution,
equation (4.52), gives the following relations between «, 8 and 7,

v sina; = ,Y1COS QY = ﬂk(u.)]/2 YTL =175 (4.53)

%
k(a)1/2
with the phase a;(FE) given by,

1
ai(E)=I,+ Eé(a), (4.54)

wHere, by analogy with equation (4.44) for the {-motion, we have written
S [m ,
I =L ["dn\[B/a— Vo), (4.55)
7

and where the functions & and k are,

o(z) = . z(1 — In|z|) + argI'(1/2 + iz), . (4.56)
k(z) = 1/{y/1+ exp(2nz)+ exprz}. (4.57)

The function ®(z) is odd, positivé for z > 0, and has a single maximum of ® ~ 0.15 at
z == 0.18. In appendix E we give expressions to be uced in the numerical evaluation of
®(z) and also evaluate I, in terms of complete elliptic integrals.

Matching the solution (4.48) to the asymptotic form (4.51) for n > 73 gives,

i 1
§(E) = g +5%(a) + ca(E), (4.58)
where, ‘ - | .
‘ . 2u 1/4
yasinay = avk, 7acosap =pB/VEk, 1= (W) . © (4.59)

On using equations (4.53), (4.58) and (4.59) we obtain the following expression for the
phase shift: :
' k(E)? = tan(8(E) — n/4 — ®(a)/2) cot a1 (E), (4.60)

with o (F) given by equation (4.54).

Energy levels and resonance widths

Various definitions of resonant energies and widths exist, all of which yield numeri-
cally similar results for narrow resonances. Damburg and Kolosov (1983) and Gallas
ct al. (1982) use the Breit Wigner parametrization of the asyuip'totge phase ohift, §(E),
(scc olse Landau and Lifohitz 1977 §145) to determino the résonance pa.r'zz.motom Ep and
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I'r. Here, we follow Richards (1987) and employ the maxima of the time-delay function
(see also Connor and Smith 1981),

dé
= 2 —_—
T=2h 1B ' (4.61)
The real part, Eg, of the resonant energy are those energies at which the time-delay has

- local maxima,; the corresponding resonance widths are then defined by,

4h
Fr=26g= . )
R Er (ER) (4.62)
On using equation (4.60) we find that the time delay is given by,
d®(E) k2a'1 + kk'sin 203
EY=4& 2k ) .
7(E) iE oo a; + k*sin? o (4.63)

For all levels below the barrier top, «1(E) and its derivative are well-behaved functions
of E: for states well below E5, the tunnelling integral, A of equation (4.47), is large s0
that k, equation (4.57) is small. Therefore, in this region the local maxima of 7 are at
the roots of a;(E) = (ng + 1/2)«, that is, .

I, + %@(a) — (ng +1/2)r. (4.64)

The resonant energf is then found by solving equations (4.64) and (4.44) subject to
constraint (4.12). The resonance width, I'3C, is then, on using equation (4.63),

2 da1 dd

-1
k_2d_E + E-E‘—) , FE = ER» (465) .

i =2£R=4(

Er being the complex part of the energy. _ v
In appendix E we show how to express the action integrals I, I¢, the tunnelling
integral, A, and the resonance widths, I'g, in terms of complete elliptic integrals.

Numerical considerations

Mumerical caloulation of the energy levols and reconance widthe, whilst straightforward
in prineciplo, i far from trivial. Firctly we have to colve cquations (4.44) and (4.64)
to obtain values for the energy levels, E, and one of the éepa.ra.tion constants, say 5!
Herein lies the problem: the integral, I, of equation (4.64), is onfy defined for energies
E < ES and ctandard two dimensional root finding techniques invariably attempt to
evaluate I, for £ > ES, particularly for substates with energies lying just below the
olaccical saddle encrgy; ES. Whilst it ic poosibie to extend the definition of I to energics
E > E¥ (sce Callac ot al. 1982 for details) our chief interest here is in states lying below

INote that the second separation constant, B2, is then obtained using constraint (4.12).
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the classical saddle. To this end we need an estimate, for each substate, of the critical
field strength required to give E ~ E° and for this we use the classical critical field, FS:
the method used for calculating F¢ is given in the next section. Further details of our
numerical approach for obtaining semiclassical approximations to the' energy levels and

resonance widths are given in section 4.6 below.

!

4.3.3 The .classical critical field

Banks and Leopold (1978a, 1978b) used an exact classical treatment based on the as-
sumption of adiabatic invariance of the actions to find exp]icif expressions for the critical
ionization energy, EZ, and critical field, F¥, and to calculate Stark shifts for all values
of the electric field up to Ff’. In their treatment of this problem, the authors separate
the classical Hamiltonian (4.36) using a method similar in spirit to that described in
section 4.3.2 above? to obtain equations (4.37) and (4.38). Classically, the total energy,

E4, must lie in the range,
4 max(V{™", VM) < B < 4V,™= <0, (4.66)

where V; and V; are given by equations (4.42) and (4.43) respectively. For any value of
E9 = 4V; = 4V, in this region the equations E¥ = 4V; and E® = 4V, each have three
real roots, &1, €2, €3 and 11, 12, 73 respectively (see also figures 4.1 and 4.2, page 101). The
classical critical ionization energy is defined by Ed = 4V,"** which implies 72 = n3. The
energy E< and the separation constants /3, ffa, are related implicitly to. the actions I,
I, and I; and the electric field F. By imposing the condition 77 = 73 in exact classical
calculations relating I¢ and I, to E, P, P2, F, Iy and the six real roots, Banks and
Leopold obtain expressions for the c}assical critical field, F,f‘, and critical energy, Eg‘ ,in
terms of the furictions, ®.(u,v) and &.(u, v), which aro scale invariant forms of the clcotric
fiold and the energy respectively. Theso functions are dimonsionlesc and independent of
the total action, I = I¢ + I, + I, but dependent on the dimensionless ratios v = I,/I
and v = I4/I. The critical field and critical energy are then 'written,

#2 e4

2z

2,6

Fl=F> 8 (uv), BEY=

T4 Ec(u,v). (4.67)

The authors are then able to obtain values of F¥ and ES and of Stark shifts by using
a polynomial fit to the functions ®.(u,v) and &.(u,v). Their results are in very good
agreomont with quontal calculations of Stark shifts for strong ficlds obtained using the
quantal asymptotic method of Dawbusrg and Kolosov (1983) described in section 4.3.1

above.

*Banks and Leopold (1978a, 1978b) use the coordinates £ = (r + z)/2, 7 = (r — z)/2.

105



4.4 The hydrogen atom in a slowly varying electric field

We may begin to explore the tunnelling ionization probability in the presence of a slowly
oscillating field by integrating the static tunnelling rate for each substate, I'RX of equa-
tion (4.35) or ['3C of equatiou (4.65), over one oscillation of the external field to obtain
a fractional loss of population per field period,

27

W(n) = dr I‘R(n, Fo sin T), (4.68)

1
2Q0h Jo
where we have written 7 = Qgt, n = (n,7n1,m) denotes the substate and where we allow
for the oscillatory nature of the field by writing F = Fysin7. After N field oscillations,

the ionization probability for each substate is,
Pi(n, Fy) =1 — exp[-NW(n)]. (4.69)

The total ionization probability,-P;(n, Fp) is then obtained by a.vera.gmg equation (4.69)
over the microcanonical distribution:

-1 n—|m|-1

Pin. Fo) = Y S RmR) (4.70)

m=1l-n n1=0

In section 4.7 we compare ionization probabilities obtained using the semiclassical approx-
imation, P, and the Damburg and Kalosov (1983) formula, PPX, with experimental
ionization probabilities, P*P*, We alco considor two other approximations; the adiabatie
method, described in section 4.4.3, and the Keldysh-Faisal-Reiss tl;eory described next.

4.4.1 Keldysh-Faisal-Reiss theory

A quantal theory often used to describe intense laser multiphoton ionization (LMPI) and
above-threshold ionization (ATI) data is based on a theory due to Keldysh (1965). The
Keldysh theory was the first attempt to describe ionization by an oscillating field for
a range of frequencies from the tunnelhng limit (’y < 1) to the multiphoton ionization
(MPI) limit (9 > 1) where the ‘Keldysh parameter’, v, is the ratio of the tunnelling time
to the external field period; for the hydrogen atom this is,

Q  Q

¥=

where ng is the initial state and where €2y and Fp are the scaled frequency and field
strength respectively. The double inequalities are consistent with Keldysh’s original
bresenta.tion although one finds in the LMPI literature v < 1 (rather than o < 1) being
called the ‘tunnelling regime’ (see, for instance, Augst et al. 1989).
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Since then, the Keldysh theory has been modified by several authors, most notably
Faisal (1973) and Reiss (1980) and is now known as the ‘Keldysh-Faisal-Reiss’ (KFR)
theory.

In essence, the KFR theory assumes that a single matrix element connects the initial
atomic bound state |¥p) to an unbound (dressed) state, |¥ 7). The final state [¥y) is
assumed to be the Volkov state which is the eiact solution of the Schrodinger equation
for an unbound electron movmg with momentum, p, in a t1me-va.ry1ng electric ﬁeld with

no other potential present;

i t p2
V¢(r,p,t) = (r|¥s) = Cexp [ﬁ (p.r —/‘; dt/ ﬂ + HA(t’)>] , (4.72)

where C is a normalization constant and H4 is the interaction Hamiltonian,

2
Ha(t) = —ip-A(t) + E%A(t)ﬁ,, | (4.73)

with A the vector potential of the electric field, F(t) = (e/c)0A/Ot. Quantal first-order
pe;turba.tiori theory gives the ionization probability at time, t, as, t

2

PKFR(f) — ‘ / dt! (T 5|Ha|To)]| (4.74)

which can be written,

/ dr’ exp( /0 dt”( +H (t")))<PIHA(t')|‘1’0>

‘where (r|p) = exp(ip - r/h). In the KFR theory, the initial state is chosen to be a single

2

PEFR(}) = , (4.75)

bound state, |¥o) = exp[iEot/h][0), where Ejp is the energy of the eigenstate, |0). Note
that the use of first-order perturbation theory assumes that coupling to intermediate
states can be neglected and hence only the initial and final states appear in the formula-
tion. Therefore, KFR-theory cannot provide a correct description of the quantal motion

when other bound states play a significant role in the dynamics.

4.4.2 Ammosov-Delone-Krainov theory

As mentioned in the previous section, one important approximation made by the KFR
theory is to assume that the final state wave function is the Volkov state, equation (4.72),
thereby neglecting the long-range effect of the Coulomb potential on the ionized electron.
Consequently, for the hydrogen atom in a low frequency field, PXF%, equation (4.75),
does: not reduce to the correct formula for the probability of static field: ionization (see
- Landau and Lifshitz 1977, §77) in the limit @ — 0. Perelomov et al. (1968) corrected
this by using a final slate wave function which does include the effect of the Coulomb
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interaction on the ionized electron. However, analytic expressions for the tunnelling
ionization probability in an alternating field were only obtained for a few specific states of
the hydrogen atom. By starting from the expression obtained by Perelomov et al. (1966)
for the ionization probability for states of the hydrogen atom, Ammosov et al. (1986)
derived an expression for the probability of ionization due to tunnelling for arbitrary
states of complox atoms and atomic ions. For a particular substate of the hydrogen atom

the Ammosov-Delone-Krainov (ADK) tunnelling ionization probability is,

pet (3 )1/2 ((2l+1)(l+|m|)g) (n_l)m/z

‘PiADK(n) FO)

R3n3 \n3 (|m)(l = |m|)! n+l
. 4n 2n—|m|-3/2 1 '
2 _ j2y—nm | *'* _ -
x (n®—1%) (F()) exp [ 2n <3F0 1)] , (4.76)

where n = (n,l,m) denotes the substate and Fj is the scaled field strength. Note that
the result given by Ammosov et al. (1986) contains misprints and errors; equation (4.78)
is our corrected version which agrees with the result obtained for hydrogen atoms by
Delone and Krainov (1985, equation 9.24). The total ionization probability for a given
initial principle quantum number, ng, and scaled field strength, Fp, can be obtained by
summing cquation (4:76) over all the cubstates of the microcanonical distribution, thet
is,

1 n-1
PAPE(mFo) =53 3 BAPE(n, By). (477)

=0 m=-{

4.4.3 An adiabatic model

By way of contrast with the models described thus far, all of which involve tunnelling
through the slowly moving barrier, we alco consider an adiabatic model for which the
| ionization process consists of a rapid transition from an initial level, ng, to the level
no + 1, followed by classical over-the-barrier escape.

For a static electric field, the classical system ionizes if the field strength, F, is
greater than the classical critical field, F¥, given by equation (4.67) in section 4.3.3
above. Now consider an oscillating field. In the very low frequency limit, we assume that
the field io oocillating cufficiontly clowly for it to be considered simply as a ctatic finld
which changos cign: thic allowc us to apply results from static field theory: Now; from
cquations (1.37) and (4.38); page 99, we cce that changing the direction of the static ficld;
F — —F, simply interchanges the ¢- and 7-motions: this means that a field, F, has the
same effect on the parabolic substate, n = (n1,n2,m), as a field, —F, on the substate,

n = (nz,ni, -m) Thus we can assume that the adiabatic critical figld of an atom in a
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substate n = (n1,n2,m) is equal to,
2,6

Fo%8(n) = %min{d?c(uz,v),éc(ul, —v)} where u; = %, =, v=—
(4.78)
and 1t = ny +ng+|m|+1 is the principle quantum number. As mentioned in section 4.3.3
above, the scale invariant form of the electric field, ®.(u,v), is dimensionless and inde-
pendent of n, depending only upon the dimensionless ratios, v = na/n and v = m/n.
Thus, F®¥4(n) depends only upon the principle quantum number, n, through the n=*
term in the prefactor and so decreases rapidly with increasing n.

Provided the interaction time oxtends over many field oscillations; the classieal system
will ionize for F > Fc“d‘“. By considering a microcanonical ensemble of initial conditions,
we obtain the adiabatic ionization probabilities denoted by the full curve in figure 4.3,
where, for comparison we also show the static field ionization curve, P?%; note that
because the adiabatic and the static field ionization probabilities are both calculated
classically, they depend only upon the scaled field, Fp, and not upon ng and F separately.
The two curves shown in figure 4.3 are quite different with P lying below the full
curve throughout the range of Fp shown. Indeed, the adiabatic probability is unity for
Fp20.2 whereas P < 1.0 for F5<0.38; this is because, for a given parabolic substate,
n = (n1,ng,m), F3%4(n) < F(n). Indeed, if we consider the extremal Stark state,
n = (0,n —1,0), we find that n*F¥(n) ~ 0.38 wheteas n*F2%¢(n) ~ 0.13.

As the coupling strength increases, C,20.12, transitions between adiabatic basis
states become important and a simple classical model of the atom can no longer be
applied. Instead, we assume a crude model for the ionization process, consisting of a
rapid transition from an initial level, ng, to the level, ng + 1, followed by classical over-
the-barrier escape. Further, we assume that this ionization mechanism can be approxi-
mated by classical dynamics. It then follows that the ionization probability, P*#¢, can be
obtained from the full curve of figure 4.3 simply by rescaling the field, Fp — (%)4 F.

In section 4.7 we compare the ionization probabilitics obtained numerically using
PADK  pSC and PPX with those given by the adiabatic model, P*#, and those obtained
experimentally, PF*. In the next section the experimental method is described.

4.5 The experiment

For completeness we now describe the method used to obtain the experimental data
shown, for example, by the solid line of figure 4.4. All experiments were carried out by
Professor Koch’s group at the State University of New York, Stony Brook.

The experimental apparatus has been described previously By Richards et al. (1989b)
and Koch et al. (1989). Briefly, Ht-Xe electron-transfer collisions produce a 17 keV beam
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Figure 4.3 Graph showing the dependence of the ionization curve, P*™ (full curve) and the
static field ionization curve, P?* (hraken cnrve) upon the scaled field strength, Fp.

of neutral hydrogen atoms. A fraction of about 10‘? is in a particular parabolic state with
initial quantum number, ng = 7 from which 2C16Q, laser double-resonance excitation
takes place to an extremal parabolic state in an ng-manifold between 24 and 32. After
excitation to this substate the beam passes through a weak eléctric field which has no
effoct on ng but does ‘scramble’ tho substates. Previous work using static field ionization
as a diagnogtic teol just before the microwave cavity has chown that the atomic gubstate
distribution entering the cavity corresponds classically to a microcanonical ensemble of
initial orbits with fixed initial principle action, see van Leeuwen et al. (1985). The initial
phase of the microwave field is averaged over by the experiment. '

The 4.96 cm long, 5.32 cm diameter cylindrical microwave cavity resonates CW in the
TMggo mode at 9.908 GHz. The 0.63 cm thick end caps have 0.26 cm diameter holes on
axis to pass the 0.09 cm diameter beam. The field distribution is calculated numerically
after Halbach and Holsinger (1976). In the atom’s rest frame, the pulse, A(¢), is turned
on and off in 22 cycles (0.05 to 0.95), and remains constant (> 0.95) for 250 cycles.

In thic exporimont, ionization moeans truc ionization plus excitation to bound states
above an apparatus-determined cut-off n-value, n. (see, for instance Richards et al.
1989b, Koch et al. 1989, Koch et al. 1992). Experimental insensitivity to variations
of n. values in the range 75 < n. < 90 (in other words, far above ng) along with cal-
culations, justifioc tho assumption that true ionization completely dominates for the low
frequeﬁcies of interest here.

Thoe moet important aspoct of this oxpariment is that the frequency of the microwave
cavity, €, is fixed and the scaled frequency, Qq, is changed only by vaiying the initial .
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principle quantum number, ng; the relation between the two frequencies is,
Qo = Qc/wat(no) = (Re/GHz)(0.00533757n9)3,  was(n) = pet/(nk)3. (4.79)

Thus, the scaled frequency can only be sampled at discrete values.
All experimental data presented in section 4.7 below have the same relative 5% ab-
solute amplitude uncertainty but the relative amplitude uncertainty between data for

different values of ng is even smaller.

4.6 Numerical methods

In this section the methods used to obtain the numerical results presented in section 4.7
below are described. In all calculations and for the remainder of this chapter we use
atomic units so that y =e=h = 1. _ :

The DK-formula and semiclassical ionization probabilities were obtained by evalu-
ating expressions (4.70) and (4.69) using I'p = I'RX, equation (4.35), and I'p = I'3C,
equation (4.65), respectively. For each substate of the microcanonical ensemble, denoted
by the quantum numbers (n,n;,m), we first calculated the classical critical field, F.
For those states with F' > ch'we set P;(n, Fy) = 1 because their ionization occurs on a
time scale significantly less than the total interaction time. This gives an upper bound
to the ionization probability and should be a good approximation for the pulse length
of the microwave experiment considered here; for very short pulses, however, it would
ovorostimato thu ionwsation probability. Othor subotates were treated as deceribed below.

For the quantal perturbation probabilities, P?X (ng, Fy), denoted by the crosses in,
for example, figure 4.4, numerical ovaluation of the reconance widths was facilitated by
replacing the factorials in the prefactor of (4.35) with the fourth-order Stirling’s for-
mula (see Abramowitz and Stegun 1965, equation (6.1.37)). Numerical evaluation of the
integral in equation (4.68) was then carried out using the NAG routine DO1AJF.

Numerical calculation of the semiclassical ionization probabilities, PSC (ng, Fp), de-
noted by the asterisks in, for example, figure 4.4, was less straightforward as exact nu-
merical evaluation the the integral in equation (4.68) proved to be too time consuming.
Instoad, we usod a modifiod proceduroe to obtain an approximation to the integral. Firgt

we note that the resonance widths, ['4C can be written in the form,
T5 = exp {—no (Ao + Ar1FosinT + ApFf sin? 7 +---)}, (4.80)

where we have written 7 = (yt and where Ay, A; and A; are constants which are to be

calculated for each substate. The integral may then be written as,

x/2
I = 2exp(—noAo) / du exp (—noA1 Fy cosu — no A2 F cos®u + - ) . (481)
0 N
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The major contribution to this integral will come from close to u = 0, so we can approx-
imate cosu by its Taylor expansion and extend the upper limit of the integral to co. On

neglecting terms O(Foz) we obtain a linear approximation,

T
s = 2 ——————— —
Itin 1/ SmoAiTe exp[ ’n,o(Ao =+ AlFo)], . A; < 0. (4.82)

Including the terms O(F¢) gives the following quadratic approximation:

=9 [_ T — 2
Iqua.d = 2\/ 2n0(A1F0 — 2A2F02) exp[ no(Ao + A1 Fy + A2 F )] (4.83)

In table 4.1 we compare semiclassical ionization probabilities calculated using the quad-
ratic approximation (4.83), P*P, with those obtained by numerically calculating inte-
gral (4.68) using the NAG routine DO1AJF, P**™, for ng = 25 (fp = 0.02353) and a
range of Fy. We see that the agreement between the exact and approximate probabilities
is remarkably good; the quadratic approximation (4.83) is thus used in the evaluation of -

all semiclassical ionization probabilities presented in the next section.

Table 4.1 Table comparing values for the semiclassical ionization probabilities obtained by
numerical evaluation of integral (4.68) using the NAG routine DO2AJF, P*“™ with those ob-
tained using the the quadratic fit, Ijyeq, equation (4.83), P/™*, for ng = 25 (Qp = 0.02353) and
0.11 < Fp < 0.128.

Ky 0.110 0.112 0.114 0.116 0.118 0.120 0.122 0.124 0.126 0.128

P 0.000 0.000 0.002 0.008 0.022 0.049 0.087 0.133 0.186 0.244
PP 0.000 0.000 0.002 0.008 0.023 0.050 0.087 0.134 0.187 0.245

To obtain the semiclassical resonance widths, we begin by solving equations (4.44)
and (4.64) coupled by constraint (4.12). Firstly, equation (4.64) was solved using the
NAG routine COSADF for 15 different values of the real part of the energy between Enin =
4ma.x(V,,"’""‘, Vf"“'") and Emqz = 4V to obtain 15 values of B2(E). The NAG routine
E02BEF was then used to fit a cubic spline to these 15 points, thus giving an approximation
to the function B;(F). Next, the real part of the resonant energy was obtained by solving
equation (4.44), again using the NAG routine COSADF, with the value of 51 (F) = 1-2(E)
obtained from the cubic spline fit using the NAG routine EO2BBF. In each case, the action
integrals, ¢ and I,, were evaluated in terms of complete elliptic integrals using the method
described in appendix E; the Carlton symmetrized forms of the complete elliptic integrals
were calculated using the NAG routines S21BBF, S21BCF and S21BDF. Having obtained
the real part of the resonant energy, the tunnelling integral, A(E) of equation (4.47) was’
evaluated, as described in appendix E and finally the resonance width was obtained.
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The ADK ionization probabilities were obtained using formula (4.77). As for the
calculation of the DK ionization probabilities, the factorials in the prefactor were replaced
with the fourth-order Stirling’s formula.

4.7 Comparisori of theories with experiment

In figures 4.4 to 4.12 we compare experimentally obtained ionization probabilities (full
curve) for the hydrogen atom (ng = 24, ..., 32 respectively) with those obtained using the
“semiclassical approximation of section 4.3.2 (asterisks), the Damburg and Kolosov (1983)
quantal perturbation formula of section 4.3.1 (crosses), the adiabatic model described in
section 4.4.3 (broken curve) together with those obtained from classical Monte-Carlo cal-
culations (full squares). We exploit the precise calibration of the microwave amplitude to
distinguish finely between the different theoretical ionization mechanisms and, in partic-
ular, between models involving tunnelling and models involving classical over-the-barrier
escape. All experimental data presented in this section have the same 5% absolute ampli-
tude uncertainty but the relative amplitude uncertainty between data for different values
of ng is even smaller.

Firstly, we note that the classical ionization probabilities, P,-M C, always underestimate
Pf""’t with the discrepancy increasing with decreasing ng. For the lower values of ng, this
discrepancy near the onset of ionization is quantitatively similar to that for classical
versus tunnelling ionization in a static electric field. For example, the fields measured
by Koch and Mariani (1981) that produce static ivuizalion rates in the range I'yy == 10—
108 s~ for individual substates with ng = 30,40 are from 8% to 17% smaller than the
corresponding classical critical field, ¢! (see Banks and Leopold 1978b).

Ionization probabilities, P?%®, denoted by the broken curve in figures 4.44.12 and
obtained using the adiabatic model described in section 4.4.3 above, agree fairly well with
experimental probabilities for ng > 29 but less well at lower ng, with the agreement being
rather poor for ng < 26. The agreement for ng > 31 is particularly good for PF™7°20.2, a
trend which is repeated at lower values of ng. Indeed, close inspection of figures 4.4—4.12
shows that the disagreement. of both P and PMC with P{™* decreases with increasing

‘values of Fy which suggests a growing importance of dynamic couplings between bound
states as Fp increases.

In contrast, ionization probabilities obtained using the semiclassical model, P,-SC,
denoted by the astericks, roproduce tho exporimental ionization curves remarkably well
for ny < 20; tho agreement of R with ionization prohahilitics obtained using the
DK-formula model, PPX, denoted by the crosses, is less impressive for this range of

ng. In fact, for ng < 27, one may clearly distinguich between the semiclasoical and the
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Figure 4.4 Comparison of experimental ionization probabilities (full curve) with those obtained-
numerically using the semiclassical model described in section 4.3.2 (asterisks), the DK formula,
equation 4.35 (crosses) and the adiabatic model described in section 4.4.3 (broken curve) for -
no = 24 (o =~ 0.02083). Also shown are the classical ionization probabilities, PC (full circles).
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Figure 4.5 As for figure 4.4 with ny = 25 (0 ~ 0.02353).
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Figure 4.8 As for figure 4.4 with no = 28 (2o =~ 0.03307).
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Figure 4.11 As for figure 4.4 with ng = 31 (fp ~ 0.04488).
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Figure 4.12 As for figure 4.4 with ng = 32 (Qp ~ 0.04937).

DK-formula model calculations as the latter yields curves having a shape different from
the experimental curves. This may be seen more clearly in figure 4.13 which shows the
ionization curves for ng = 27 but with P; < 0.4 and Fy < 0.13 and where, for clarity,
the adiabatic and classical probabilities have been omitted. Even allowing for the 5%
absolute amplitude uncertainty, we see that a small global adjustment of the experimental
. amplitude does not change this trend. Both of these models involve tunnelling, but the
DK-formula model is clearly inferior, see figures 4.4-4.9 and 4.13 in particular. This
is in part due to the DK-formula, equation (4.33), overestimating I'r; experiments by
Koch and Mariani (1981) with some |m| < 3 substates of iy = 30,40 have shown the
DK-formula to work reasonably well for near extremal substates (that is substates with
n1 =n —1 or n; = 0) but to overestimate the resonance width for other substates by at
least an order of magnitude.

The apparent agreement between the DK-formula model and experiment observed
for higher values of ng, see for example figure 4.11 for ng = 31, is accidental. At higher
values of ng, § and hence the coupling strength, C, = ngFpSdg, increases; the initial
level, ng, is then significantly coupled to the adjacent (ng + 1)-level, with a consequent
increase in ionization probability. Hence, at some value of ng the experimental microwave
ionization curve will lie accidentally near the DK-formula curve.

Figure 4.14 compares the experimental Fey5¢(10), shown by the full curve, with cal-
culated Fy(10) values, Fo(X) being the field amplitude at which X% ionization occurs.
The 3D classical Monte Carlo calculations, F4C(10) denoted by the full squares, only
starl to approaclﬁ Fezp:(10) for the higher values of ng. At the low end, not only is the
210% disagreement significant, but the trend is wrong: with decreéﬁing-’no the classical
10% threshold field, FC(10), rises whereas Feup:(10) gently falls.
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Figure 4.13 Comparison of experimental ionization probability (full curve) with those calcu-
lated numerically using the semiclassical model, P°C, (asterisks) and the DK-formula, PPX for
P,' < 0.4 and Fo S013 at ;no =27 (Qo = 0.0297).

The 10% threshold field, F244(10), of the adiabatic model, denoted by the open
circles, are in close agreement with F.;p:(10) only for ng > 29 which shows that for the
9.9 GHz field considered here, the ionization mechanism in this model is wrong for the
lower ng values.

In contrast, 10% threshold fields, F5'C(10), obtained using the semiclassical model
and shown by the asterisks, agree best with Fezp:(10) only for ng < 29. Though close,
the DK-formula threshold field, FP¥ (10) denoted by the crosses, are less than Fzp:(10)
for 24 < ny < 29. Noto that both of these models produce 10% threshold fields which
decrease monotonically with decreasing ng whereas F.;5:(10) peak mildly near ng = 28.

Figures 4.4-4.13 together with figure 4.14 suggest strongly that for hydrogen atoms
exposed to about 300 oscillations of a 9.9 GHz field tunnelling becomes the dominant
ionization mechanism for C,;<0.12, corresponding to ng < 28 or £ < 0.033; at higher
values of €Y, and Go_nsoqugntly ng and g, coupled: ctate ionization mechanisms beeomo
important. Notice, that for an initial principle quantum number, ng = 28, the classical

“electron hits the moving barrier (2§29)~! = 15 times per half period of the oscillating
field, which sets a time scale for tunnelling tv become important.

We now proceed by describing the ionization probabilities, PAPX, obtained using
the ADK formula given by equation (4.76) of section 4.4.2 above. Calculation of the
10% threshold field, Fg'P%(10) using the ADK-formula yields values nearly a factor
of two below Fezp(10) for ng = 24-32. Since the tunnelling ionization rate depends
exponentially on Fy, thic produces a huge discrepancy in F;. Alternatively, evaluating
PADK gt Forpi(10) values gives ionization probabilities above 0.97, far t00 high.
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Figure 4.14 Comparison of the scaled 10% threshold fields, F5(10), calculated using classical
Monte-Carlo methods (full squares), the DK-formula (crosses), the semiclassical model (aster-

isks) and the adiabatic model (open circles) for 24 < ny < 32. The full curve represents the
experimental 10% threshold field, Fezp¢(10).

The main reason for the failure of the ADK-formula is simple. For ng > 1 and
l = m = 0, the ADK-tunnelling rate formula, equation (4.76), can be written in the

form,

reoson s = [ Zgoo {5 =)+ - ()] oo

The field amplitude at which the exponential factor is zero is clearly important: for large
no this ought to be the scaled classical critical field, ng* F(ng,n1,m). In table 4.2 we

Table 4.2 Values of Fy at which the exponential factor in the ADK-formula, equation (4.84),
is zero for various values of ng.

o 20 50 100 500 1000 10000

Fy 0.0677 0.0661 0.0656 0.0652 0.0652 0.0651

give the Fp-values at which the exponential factor in equation (4.84) is zero for various
values of ng. We see that the exponential factor in the ADK-formula has its zero at
Fy ~ 0.065 whereas ch gives a value of Fp ~ 0.13. For ng = 1 this leads to small errors
but fhese increase dramatically with increasing ng. In figure 4.15 we compare the three
ionization probabilities PAPK (broken curve), PPX (full curve) and P°C (dotted curve)
for ng = 1; the ionization curves produced by the three different models are similar. This
should be contrasted with figure 4.16 which shows the same three curves as figure 4.15
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Figure 4.15 Comparison of the ADK-formula ionization probabilities, PAPX (broken curve),
with those obtained using the DK-formula, P”¥ (full curve) and the semi-classical model (dotted
curve) at ng = 1 and Qg = 0.02.
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Figure 4.16 As figure 4.15 with np = 5 and Qp = 0.02.
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but at ng = 5. Even at these relatively small values of ng, the ionization probabilities
obtained using the ADK-formula model are significantly lower than those obtained using
either the DK-formula or the semiclassical model and this discrepancy increases with
increasing ng. Note that even at these low values of ng, P°C and PPX show remarkable
agreement. Therefore the assertiou (see Augst et al. 1991, page 863) that the validity of

the ADK formula improves with increasing principle quantum number is wrong.

4.8 Conclusions

In this chapter we have made direct comparisons between experimental ionization prob-
abilities obtained for the microwave ionization of excited hydrogen atoms and those
obtained numerically using different theoretical models. These comparisons clearly show
that for C;<0.12 or, equivalently, n9<28, 2y < 0.033, coupling between states can be
neglected; ionization occurs when the electron tunnels through the slowly moving bar-
rier. Moreover we find that KFR-type formulae, which are often used to interpret iow-
frequency LMPI data, fail to reproduce the experimental data presented here whereas
ionization probabilities obtained using our new semiclassical model show remarkable
agreement with those obtained experimentally for ng<29. Unfortunately, evaluation of
the semiclassical ionization probabilities can only be achieved numerically and is far from
straightforward, see the discussion in gection 4.6 for a measure of the complexity invelved.
Glea.ﬂy, it would bo advantageous if the comiclagsical regonance energics and widths could
be expressed as a formula: this, however, is a matter for future work and not considered
in this thesis.

For C; > 0.16 (ng > 29) our study shows that coupling to other states becomes
important and this must be incorporated into any theoretical model; this situation' is
considered in the next chapter where we use a two-state approximation to obtain a

solution to equation (4.1) for ng229.
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Chapter 5

Low frequency behaviour II: resonances

5.1 Introdtiction

In this chapter we discuss the effect of a low frequency periodic electric field on an
excited hydrogen atom in the regime where the ccaled frequency; €p; licc in the range
0.05'= Q¢ << 0.2. For thic range of scaled frequency, the experimental ionization curves
show a great deal of ostructure which ic not reproduced by classical simulations of the
ionization process. ‘

By using a quantal one-dimensional model together with the adiabatic basis, see
-Richards (1987) and also section 2.5.1 above, Richards et al. (1989b) were able to show
that reconances between a fow adiabatic otates were recponsible for various featurcs in
the oxperimontal ionization curves. Although tho oxporiments were performed on three
dimensional atoms tho comparicon gave fairly conclusive ovidence that many of the ob
served features can be understood using a one-dimensional model. Other calculations
ucing an unperturbed basis have also been published but; because of the very large num
ber of states involved, it ic not eacy to obtain analytic cctimateo from cueh ealculations:
Breuer et al. (1989) studied this problem using Floquet methods and an unperturbed
basis and showed, numerically, that the resonances described in Richards et al. (1989b)
can be related to near degoneracics in the quasi energy cpectrum; a similar explanation
_ is given in the earlier work of Bliimel and Smilansky (1987, 1990) who associated the res-
onances with ‘unrcsolvod clusters of many Floquet avoided crossingy’s further discucsion
of these studies can be found in section 2.5.2 of chapter 2.

At first sight the results presented in chapter 4 (see also Sauer et al. 1992) seem to
contradict the theory ;Sresented by Richards.(1987) and Richards et al. (1989b) which
showed that there are resonances whenever 1/€0y ~ p, where p is a large integer, see
cquation (5.13) below; and that at these froquoncies the ionizationr probability ic en
hanced. Thus, according to this theory we should expect to see an infinite series of
resonances as o — (. However, in chapter 4, where we studied the lower frequency
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range, 0.02 < ©p < 0.05, we demonstrated that, for £29<0.03 and initial principal quan-
tum number ng < 28, the simple semiclassical theory, presented in section 4.3.2, sufficed
to explain the experimental results but, more important, no resonance effects were ob-
served, see, for example, the experimental curve denoted by the full line in figure 4.4 -
on page 114 above (see also Sauer et al. 1992). The reason that these are not seen is
simply that as 0y decreases the reconance width becomes very narrow and in any experi-
ment which camploc the frequoncy too coarsely thoy will not be soon; in the oxpcfimcnts
described in chapter 4 only the discrete scaled frequencies €2 = (0.011469n4)3, with
24 < ng < 32, were sampled: ’

Richards et al: (1980b) showed numerically that the resonance widths deercase with
frequency, but the approximate theory of that paper gave only the positions of the res
onances. In order to obtain resorance widths it is necessary to understand how the
aolutions of Schrédinger’s equation dopond upon the driving froquency; so one necds ac-
curate solutions in a tractable form. In this chapter we provide cuch a solution of the
two-state cquations of motion which we use to obtain approximations to the resonance
widths as 9 — 0. In particular we show that the width of the resonance at Qg ~p~! is
approximately p~?/2¢=CP; C being a positive constant, and that for the quantum num
bers and frequencies dealt with by Sauer et al. (1992) and chapter 4 above they are too
narrow to be observed. ’

The remainder of this chapter is organized as follows. Section 5.2 is devoted to
obtaining an accurate analytic colution to the two-state equation, valid for low frequency
perturbations. This is achieved by re-writing Schrédinger’s equation in terms of the
Bloch cquation and then transforming thic into a form in wh'ich first order perturbation
theory is valid. In section 5.3 wo uge thic approximation to obtain oxpressions for both the

pooition and width of the reconances. Finally; in coction 5.4, we present some conclusions.

5.2 Approximate solution for the two-state system

For the low field frequencies considered in this chapter, the classical motion is most
conveniently described using the dipole gauge Hamiltonian (1.35), see page 21 above; for
the one-dimensional hydrogen atom in tho presonce of a low frequency clectric field we
write this as, 1 .
H(z,p,t) = Epz - e; —-zFsinQt, z22>0. (5.1)
Note that here we have neglected both the field envelope, A(t), and the field phase, §; .
for a slowly switched sinusoidal ficld this approximation produces insignificant errors
provided the driving frequency is small compared to the unperturbed frequency of the
gystem ond the oystem starts at ¢ = 0; that is when the perturbation is zero. When the
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_scaled frequency is small the classical electron executes many oscillations of its Kepler
orbit during each field period so it is appropriate to use the adiabatic basis defined by
the conservative adiabatic Hamiltonian given by equation (1.40) on page 22, namely,

1 e? .
HAD(Zapa f) = Zp - ; - Zf, z2 0’ ‘ (52)
where f is a parameter. In section 1.4.1 we showed that the angle-action variables defined
by this Hamiltonian define a new representation which becomes time-dependent if f is

replaced by F'sinQt; then Hamiltonian (5.1) becomes, Leopold and Richards (1993a),

K(6,1,t)=Hap(l,f) +FQ§ 33—’((;‘—})81“3000591&' f= Féith, (5.3)

where

Hap(l, f) = Hap(2(6,1, £),50, 1, 1), ) with wap(L,f)= T2t (5.4)

being the frequency of the conservative motion defined by the Hamiltonian (5.2), and
where Q,(I, f) is the sth Fourier component of 2(6,I,f). In the following we shall
approximate these by their field free values,

2I2 J’(s)

, (5.5)

Qs(I, f) ~ Q,(1,0) =

As already noted in chapter 1, the advantage of this representation is that the perturba-
tion is proportional to F{ rather than just F'. '
In this angle-action representation the eigenfunctions of H4p, that is solutions of

Hapln, f) = En(f)In, f), have the form
(Oln, f) = (2m) /2, with En(f) = Hap(nh, f). (5.6)

For all the numerical results presented in this chapter we use the expressions for Ey(f)
derived by Richards (1987), namely,

2 4 5 i ' :
(n+3) Buh = 57 (% +j§=:1ejﬂ’) 0<, (5.7)
4 3 ’ . '
(n+ 3) Ba(f) = -5 (%+Ze}ﬁ’) f<o, (5.8)
=1

where the coefficients, e;t, are given in table 5.1 and where ( is a dimensionless parameter

defining the field strength, -

S\ 4
c 4 \2pe*

= -1< < = — =Vu. : 5.9

f ﬂ(n+§), 1€8<1,  e=g—— 0.60 au (5.9)
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Table 5.1 Values of the coefficients, e_ff, used in the energy level approximation, equations (5.7)
and (5.8).

j 1 2 3 4 5
et 1.947(-1) 1.474(-2) 4.509(-3) 2.061(-3) 1.148(-3)
e; 1.946 (-1) 1.410(-2) 2.606 (-3) — —

our analysis suggests that the precise form chosen for E,(f) is of no significance. Using
the adiabatic basis, equation (5.6), and the Hamiltonian (5.3) we can re-derive the equa-
tions of motion for the time-dependent amplitudes, an(t) and an+1(2), see equations (2.52)
on page 53 and also Richards (1987): in the low frequency limit only two adiabatic states

are significantly coupled and these equations become,

:—Ta,ﬂ_l = k(r)exp {515 /OT dTé'(f)} Qs T=Q1 (5.10)
gon = k) exp{-o- ["are)} on, (511)
where,
_ FQI ~ n__FO _ AE(f) _ En+1(f) - En(f)
k() = YN ekl 0.325 3 (fos T, = O ()R -, (5.12)

where f(t) = Fsint and Qp is small. In section 5.3 below we shall need to know how
the solutions of these equations depend upon the various system parameters, 2, Fo and
n so here we note that £ is independent of €2y, is a very slowly varying function of n and
only weakly dependent upon Fy. The main dependence upon n comes from k and upon
Qo from the large Qg ! factor in the exponent; for small frequencies this is the cause of
all complications.

The two-state approximation is clearly valid provided k is sma.lI, which is normally
the case when n is small as Fy < 0.13. If n is large then & inay also be large but even
then a two-state approximation is valid provided p is sufficiently small because the rapid
oscillations in the exponent prevent growth of a,y;.

Richards et al. (1989b) showed that the solution to these cquations has resonances ot

the frequencies
_n(n+1/2)
e T
which is just the condition for the energy between adjacent unperturbed states to be an

(p a large integer), - (5.13)

integer multiple of the photon energy . Howavor, the approximation used to obtain the
resonance positions gave their widths to be zero so in order to determine the widths of

these resonances a more accurate solution to equations (5.10) and (5.11) is required.
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5.2.1 Semiclassical approximatibns

Analytic approximations to the two-state equations which deal adequately with the high
frequency oscillations are difficult to obtain. Semiclassical approximations to equations
similar to these have been derived by Crothers and co-workers in the context of diabatic
two-state collisions, see for instance Crothers and Hughes (1977) and Crothers (1976).
This type of approximation begins by converting the two first-order equations into the.

second-order equation

2
%%H — Qio (15 + %%) ad;a,,hq + k('r)za,.ﬂ =0. (5.14)
Since (2 is small the Q7' term dominates except at those times at which k() =~ 0,
that is when the coupling is small. Uniform approximations! to this equation fail for
the current problem because the original equations are unitary and this endows special
properties onto equation (5.14) which are not shared by any comparison equation which
could be used as a basis for a uniform approximation. As a consequence all the uniform

approximations we could find failed to satisfy unitarity.

5.2.2 Bloch representation

In order to proceed we reformulate the equations of motion and then transform the new
equations into a form in which the coupling is sufficiently weak for first-order pertur_ba.tioﬁ
theory to provide an accurate approximation. This procedure is carried out using the
Pauli matrices, see for instance Landau and Lifshitz (19l77, §55):

01 0. —i 1 0 "
g1 = , gy = ) g3 =1 y (5.15)
10 i 0 0 -1

having the commutator relations [oj, 0] = 2iejx101, and making the associations

'|n',f)H((1)) and |n+1,f)4—>(2>. (5.16)

Then, if only two states dominate, Hamiltonian (5.3) may be written in terms of these

matrices: ] 1 . .
K=- (En+1(f )+ Ea(f)) 12 — iAE(f)a3 — k(t)Qhos. (5.17)
where |y is the unit 2 X 2 matrix.

The motion produced by this Hamxltoma,n is most easxly described in terms of the

mean values of the Pauli matrices, 3

.“

slc(t) = (tlaklt)7 k=1,2,3 (518)

! Uniform approximations are described in appendix D.
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with |t) being the wave function at time t:

9 = ensatn + 1, prexp { = [ tthn+1(t)} +anfn, frexp {3 [ t dtEu(t)}. (519)

In the Schrodinger representation the matrices, ok, have no-explicit time dependence so

the equations of motion for their mean values are

dsk i

— = —(t|[K = ) .

dt h( I[ 70k]|t)$ k=1,2,3 (5 20)
Using scaled units we can write these equations in the vector form

0 cosy —siny
ds

=) | ~cosyp 0 0 8 =—((r)M x s, (5.21)
siny 0 0
where
C(r) = /4k2 + (£/Q)* >1 and tany = —%K?(LT(;)- <L (5.22)

" These equations have the same form as those normally associated with a two state atom,
see for example Allen and Eberly (1975, page 39), but because we start with an adiabatic
basis all the coefficients of s; are time-dependent and some are varying very rapidly so
the usual approximations, for example the rotating wave approximation, cannot be used.

The components of s are related to the original amplitudes by introducing real vari-
ables A, B, o and 8 such that a,(7) = Be?? and any1(7) = Ael® to give

- :
51() +isa(r) = 24B expi (a —f— Qi / dr 8(7)) , sy(r)=B?— A% (5.23)
: 0Jo :
In particular the probabilities of being in the two states are
1 1
lan* = B = S (1+55(r)),  lannr|* = A% = 5 (1= s3(7)). (5.24)

Equation (5.21) provides a more graphic picture of the motion than the original
equations of motion. Since s? + s3 + s3 = 1 the vector s(¢) moves on the unit sphere;
instantaneously it is rotating rapidly, with angular speed {(v) > 1, about the slowly

moving vector,
M(r) = (0,sin%,cos9), (5.25)

which itself oscillates slowly about the 2-axis with small amplitude, periodic oscillations
in the Oyz-plane. Note that because ¥ = O(§2p), M is almost parallel to the z-axis. The
combined motion is sketched in figure 5.1. .

It is clear that the motion would appear simpler if viewed from the slowly moving

 reference frame with the new z-axis along M. Thus we define a new vector, x, by the
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Figure 5.1 Diagram showing the how the motion of s comprises the rapid rotations about
M, which itself is executing slow, periodic, small amplitude oscillations about the z-axis in the
Oyz-plane.

equation & = Ry(7)s, where R; is the time-dependent matrix

1 0 0
Ri=} 0 cosyp —siny |, (5.26)
' 0 siny cosy

in which the equations of motion take the simpler form

q 0 ¢ O do
@ = ¢ 0 —4 |z, where 7%= e : (5.27)
0 % 0

Since ¢ = O(Qp") and ¥ = O(f) the dominant motion of x is a rapid rotation about

the new z-axis with angular speed (; this sugges.ts'a, final transformation

cosy sinp 0
z =Re(r)w with Ry=| —sinp cosp 0 | (5.28)
' 0 01 ‘

ﬁ(%) =/OTdTC(T) = Qio/;dn/eumgkz  (5.29)

We shall see later that 7 is approximately the angle rotated by the original vector, s.

and where

This brings the equations of motion to the final form

0.
%_1; = 1/‘}0' Xw, a= (COS W,Sinﬂ,o)» wo == - sindzo . ) (530)

cos g
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where the sign for wg = w(0) depends upon which state is initially populated, the upper
sign being correct when a,(0) = 1. The angle, 9o, is the initial value of ¢ and is given
by

(5.31)

4\
Yo = — tan~! (0.65%@'——-‘_1)—) .

n(n + 1)
Again w(7) is connected to wq by a rotation, but as 9 = O(£p) the angle of rotation is ’
small. Moreover the vector a is rotating very rapidly about the z axis so on average w
changes very little: we shall see later that for Q < 1 the angle of rotation &,, is very

“small and, for a fixed 7, decreases very rapidly as 2 — 0.

The vector, w, changes very little and so its motion can be approximated using first-

order perturbation theory; so if m(7) is the direction of the rotation connecting w(7) to

wo,
By () = JI2+ 12, m(r) ~ —(I, 1,,0)/®, (5.32)
where
L+il, = [ drg(r)en™, .
+ /0 T(T)e (5.33)

On using the vector representation of a finite rotation, Goldstein (1980, page 165) we

obtain the approximate solution to equation (5.30)
w(7) = wo cos B, + m(m - wy)(1 — cos P,) + (wp X m)sin P, (5.34)

which can also be written in the matrix form, w(7) = W(7)wy. The advantage of writing
the approximate solution of equation (5.30) in this form is that it preserves unitarity.

Finally, we collect together all the rotations to relate the initial and final values of s,
8(r) =R(7)s(0), R(r) = Ry(4) ™ Ra(n)W(7)R1(%o)- (5.35)

" Note that the only approximation used in deriving this solution is the approximation of
équa.tion (5.32) for ®,, and m. Since R; and W are close to the identity it is tempting
to assume that a good approximation to 8(7) is obtained by a simple rotation about
the z-axis due to R;. However, 8(0) = *2, so this motion itself does not produce
any transitions: these are caused by the small modulations due to Ry and W which are
therofore vory important. It is thic combination of the rapid rotations of R; and the small
slow ogoillations which eauces difficultios in finding accurate solutions and also aceounts
for their complicated behaviour.

On using equations (5.24) and (5.35) we obtain approximations for the probability,
lan|?. In figure 5.2 we compare this approximate solution for |an|?, the full curve, with
that obtained from the numerical integration of the original equations (5.10) and (5.11),
‘the broken curve, for 0 < 7 < 27 with n = 38, Qp = 0.1 and Fy = 0.12. The 1/§
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oscillations of |a,(t)| are due to the rotations caused by Ry; the other more complicated
variations are produced by R; and W. At lower frequencies the approximation is even
better; for instance at €29 = 0.01, where there are 100 oscillations, these differences are

at worst 2 x 1077 .

. T/
o7 ————t7————
0.0 05 10 © 15 20

Figure 5.2 Graphs showing |a,|? as a function of 7 in the case n = 38, 2y = 0.1 and F; = 0.121.
The solid line depicts the approximate solution given by equation (5.35), the dotted line is the
exact result obtained by solving equations (5.10) and (5.11) numerically.

5.3 Mean probabilities and resonance widths

The equations of motion (5.21) for 8(7) are linear and have 27-periodic coefficients and
so Floquet’s theory can be used to infer that there exists a matrix U relating solutions
at the times 7 and 7 + 2w. Thus, we can obtain the long-time behaviour of the system

from a knowledge of the solutions at 7 = 2m:
s(r+271) =Us(r) and s(r+2N7)=UVs(7), for all 7. (5.36)

Further, since s is confined to lie on the surface of a unit sphere, U represents a rotation
through an angle, ®, in the direction of a unit vector, n. On setting 7 = 0, so U = R(2),
and using the vector represeutation in equation (5.34) we obtain the following cxpression

for s after N field periods,
8(2Nw) = 8(0) cos N® + n(s(0) - n)(1 — cos N®) + (8(0) x n)sin NJ, (5.37)

where ® and n are the angle and direction of the rotation defined by R(2w).
Now suppose that the system is initially in the lower state, |n, f); so that, from
equation (5.24), 8(0) = (0,0,1); the probability of being in the lower state at time
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7 = 2N is then
P(n,N) = -;-(1 + s(2NT) - 2)
_ 1 A 2 3
= —2—(1+n3)+§(1—n3)cosN<I>,, ng=mn-2. (5.38)

The mean probability of staying in the initial state over M field periods is defined to
be

i M
P(n) = Z P(n,N)

(5.39)

(1 2 sin(M®/2) cos((M +1)®/2)
) M sin 8/2 '

If ® is an integer multiple of 27 then P(n) = 1; otherwise, if M is sufficiently large the

second term is small and we have
- 1 )
P(n) = 5 (1 + n3) , ®#2np, M large, (5.40)

so when ng = 0, P(n) = P(n+1) = 1. The continuum enters the equations of motion
via decay terms with decay from the upper state being much faster than that from the
Jower state, see Richards (1987, equation (3.27)). In Richards et al. (1989b) it was shown
that the inclusion of decay, other than destroying unitarity, does not significantly alter
the relative values of P(n) and P(n + 1), so that when n3 = 0 the ionization probability
is enhanced, see for instance figure 5 of Richards et al. (1989b) which shows how peaks

in the ionization probability coincide with the resonance positions computed assuming

no decay.

In figures 5.3 and 5.4 we compare the exact and approximate values of P(n). The
approximate values, depicted by the solid line, are obtained using equation (5.35) to find
ng, while the exact solution is obtained using the Floquet methods described by Richards
et al. (1989b), see also section 2.3.3 of chapter 2 above. In figure 5.3 we show results in
the vicinity of o = 0.09 and see that the approximation predicts the position and width
of the resonance quite accurately. In figure 5.4 we continue figure 5.3 to lower frequencies
and observe that the exact and approximate results are barely distinguishable. We also
note that, apart from the regular array of ever narrowing resonances, P(n) has a rather
erratic behaviour in between resonances: for instance at o ~ 0.0515 and 0.062, P(n)~1
while at g ~ 0.07 it is smaller. From equation (5.40) it is clear that all these features
are a consequence of the dependence of ng upon €, so we now turn to a more detailed

analysis of the behaviour of the approximate solution upon (.
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0075 008 0085 009 0095 01 0105

Figure 5.3 Graphs showing P(n) as a function of € in the case n = 38 and F = 0.121. The
solid line depicts the approximate solution given by equations (5.35) and (5.40), the dotted line
is the exact result obtained by solving equations (5.10) and (5.11) numerically.

T

_ 038
P(n)
0.7
0.6
0.5
. Qp
04—

h 0.05 0.055 0.06 0.065 0.07 0.075

Figure 5.4 Asin ﬁgufe 5.3, but showing P(n) over a different frequency range: the solid line
depicts the approximate solution and the dotted line is the exact result. ' -
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5.3.1 Frequency dependence of the solution

The angle of the rotation, ®, connecting s(0) to s(2x), equation (5.37), is given by the

relation

2cos®+1 = Tr(R) =Tr(R;W)
= (1+cosdy)cosn+ cos Py
—2mgsinnsin &y, + 4m2 sin?(®y,/2) sin(n/2).  (5.41)

This relation is exact, but if the approximation defined in equation (5.32) is used then
m3 = 0 and the last two terms are zero: henceforth we shall normally assume that
mg.= 0. ,

The direction, n, is more difficult to obtain and can only be found by considering
the action of R on two linearly independent vecfors. Consider the vectors x, = de,
k =1, 2,3, with a; the unit vectors élong‘ the axes. Then from equation (5.37) we

obtain
Rij = x; - ap = 8gjcos @ + ngn;(1 — cos B) + exjmy sin @, (5.42)

S0
2n3 sin® = R12 had R21. (5.43)
Thus, provided sin ® # 0, n3 = 0 when Rp; — R12 = 0 or, on using approximation (5.32)

so that m3z =0,

2.cos(n/2) { sin(n/2) [(1 + cos ®y,) cos -+ m1 sin By, sin Y]
— mg sin ®,, sin cos(n/Z)} = 0, (5.44)

where 9 = 9(0) since 7 = 2r. We now consider the roots of this equation.
One solution is cos(n/2) = 0 making 77 an odd multiple of 7; from equation (5.41) we
see that this gives cos® = —1 so that & = #. In this case we cannot use equation (5.43)

to find n3, but instead we have

: . [1+Rr : '
n o 8(0) + 8(27) giving w3 = +2 8. (cosn — —1), (5.45)

where, for cosn = —1 and m3 =0,

R33 = cos2ycos Py + m; sin 2y sin Py, — 2m% sipz(éw /2) sin? 9

~ 1= 2% 4+ 2myd,, — %@1. (5.46)

Some typical values of ¥ and ®,, are shown in figure 5.5, for the case n = 38,
Fp = 0.121, as a function of Qo. Since both ¥ and @,, are small we see that n3 ~ 1 when
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Figure 5.5 Graphs showing some values of 9, equation (5.31) and &, equation (5.32) as a
function of {2 in the case n = 38 and Fy = 0.121.

cos?n ~ —1: indeed, for very small Qy, |®,,]| K ¥ o Qp so in this limit ng ~1 — %7/)2 and
P(n) =1— O(02) when cosn = —1, that is in between resonances.
The other solution is given by the roots of the equation

. _ mg cos(7/2) sin ®,, sin ¢ :
sin(n/2) = (1 + cos ®,,) cos + m; sin Py, sinep (5.47)

The left hand side of this equation varies between +1 as 7 changes from 7 to 3, that is
as Qp E:ha.nges by a quantity Q3, see equation (5.49) below. On the other hand the right
hand side is always very small so the roots must be near 7 = 27p, for some large integer
p, but to determine the corrections, upon which the behaviour at resonance depend, we
need an estimate of ®,,. In the integral (5.33), from which ®,, is obtained, the function
% is O(SYp) and 27-perodic whereas the exponent is monotonic increasing from zero to
about 27/ > 1. A good approximation to this integral is obtained by ignoring the
term O(Q2) in the phase integrand to give the slightly simpler integral

I(Q) = /0 éwd'riﬂ('r)exp (QLO /0 " dTg(T)). (s.48)

When 9 = ?15 f02 " dr £(7) = 2np, that is Qo =~ 1/p, we can change variables to express the
integral (5.48) in the form jg" dy f(y)e*¥ where f(y) is a 2m-periodic, analytic function
of y. In this case I(€p) decreases faster than any power of p, that is |I| < Qj N for any
N > 0. For other values of 0, I is larger as there is incomplete cancellation of the
oscillations. However, we need an estimate of I near the points where 7 = 27p, so we
shall assume that I (€29) does not change sufficiently ra,pidljr near here to invalidate this
assumption; we demonstrate numerically that this is true in figure 556. -

~ In appendix F we show that near a resonance (I>w = |I| decreases as Q(l)/ 2 exp(—C/Qq),
for some positive constant C. In order to illustrate this behaviour we consider a rather
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Figure 5.6 Graphs showing the variation of various functions near the resonance at
o ~ 0.011544688470691 as a function of z = (Qp — 0.011544688470691)!3 for n = 38 and
Fy=0.121.

extreme case, the resonance at £ ~ 0.011544688470691, having a width of §Qy ~ 10~13,
In figure 5.6 we show graphs of P(n), n3, ®,, and sin(n/2) over the width of the resonance
for n = 38 and Fp = 0.121.

These numerical results are representative of all cases we have considered and show
clearly that ®,, changes little over the width of the resonance.

We have shown that the positions of the resonances are at the roots of equation (5.47)
. and we see from the above analysis that n — 27p = 0(93/ 2 exp(—C%1)). In this case
cosn =~ 1 and from equation (5.41) we see that ® ~ ®,,, and that equation (5.43) is
applicable which confirms that the solution of equation (5.47) gives the zeros of n3 and
hence the positions of the minimum of P(n), equation (5.40), as shown in figures 5.3
and 5.4. By comparing the graphs in figure 5.5 with those in figures 5.3 and 5.4 we see
that this is true for all 29 < 0.1; we have not considered larger frequencies.

5.3.2 Resonance widths

" Finally we are in a position to determine the width of the minima of P(n) as a function
of Qp, which is determined by the rate at which n3 passes through zero as 2y changes.
Suppose that 2, is a resonance frequency, ns(§r) = 0; then for a nearby frequency,
Qo = Qr + 6Q, we have énz = n3(Q,)6€. The derivative of n3 at a resonance is
obtained by differentiating equation (5.43) to give nj = (8n/0Q)/ Py, but from the
' definition of 7, equation (5.29), we have '

on 1 /2” £? 2
on _ dr s ~ i (5.49)
% Gl e+ ak202 % - .
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so that
27 6Q0

- Q(Z)q)w(QD) )

Thus on using the above estimate for ®,,(€2p) we see that the width of the resonance

éng = (5.50)

decreases as Qg/ 2¢—C/%_ This very rapid decrease in resonance widths with decreasing
frequency is the main reason why none were seen in Sauer et al. (1992); for example at
n = 28, Fy = 0.123, typical of the parameters considered in Sauer et al. (1992), there is
a resonance at Qg = 0.033236 with a width 682y = 2 x 1075, whereas the experiment was
at a scaled frequency 25 = 0.03307 while at n = 24, Qp = 0.02083, the nearest resonance
is at g = 0.0206 having a width §Qg ~ 1075.

5.4 Conclusions

In this chapter we have studied the behaviour of a one-dimensional hydrogen atom in
the presence of a low frgquency, harmonic electric field in the limit as the field frequency
" tends to zero. For the small scaled frequencies g ~ p~!, p being a large integer, there '
are resonances at which the ionization probability is enhanced and we have shown that
the width of each resonance is of order 93/ 2 exp(—C/Qyp). Our analysis is based upon the
two-state approximation to the coupled equations of motion but, since an adiabatic basis
is used, this is a good approximation at low frequencies. In order to find the resonance
widths we have found a new, accurate solution to these equations. The rapid decrease
in the width as Qg — 0 explains why low frequency resonances were not found in the
experiments reported in Sauer et al. (1992). _

The relationship of this one-dimensional model to a real three-dimensional atom re-
mains an open question. However, it should be noted that a number of quite subtle
features seen in experimental results can be explained by this one-dimensional model.
For instance, the threshold fields for jonization in both one- and three-dimensional atoms
agree remarkably well, provided the scaled field is not too large, while the positions of
the resonances near p = 1/3, 1/2 and 1, for example, agree well, as does the classical
behaviour near them. Finally, we note that the one-dimensional model provides accurate
positions of, and qualitatively accurate behaviour near, the low frequency resonances, see
Richards et al. (1989b). Thus, it seems reasonable to assume that the result obtained
here will be similar to the true resonance width of the three-dimensional atom. However,
‘it is not clear how the equivalent analysis for these atoms should proceed without making

further approximations.
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Appendix A

Gauge invariance of the resonance overlap

condition

In this appendix we show that each of the three Hamiltonians (1.27), (1.33) and (1.37),
derived in section 1.7, yield identical expressions for the critical field strength , Fop of
equation (1.65) given on page 28 and derived using the Chirikov (1979) resonance overlap

condition, above which a significant proportion of orbits become unstable.

The dipole gauge

For convénience, we start with the dipole gauge Hamiltonian, equation (1.33), which we

write in the form,

Hd(ql,plit) = HO(‘IhPl) + quSin Qta (Al)
1 !
Ho(q1,71) = ﬂpf + V(q1), (A.2)

where, for convenience, we have set A(¢) =1 and § = 0.
As in section 1.5 we express Hamiltonian (A.1) in terms of the angle-action variables,
(6, ), of the unperturbed Hamiltonian, Hp: '

Hy(8,1,t) = Ho(I) + (8, I) sin Q. ' (A.3)

The variable, ¢1(8,I), is a 2w-periodic function of § and hence may be expressed as the

Fourier series

qa(0,1)= > Q.I)e™*, (A.4)
§=—00 '
where L g2

Q) =5 [T 00D, Q=@ = IQulexp(-iv).  (AS)

Substituting equation (A.4) into Ha.miltonia.nv(A.B) gives ~

' F & . :
Hy(0,1,t) = Ho(I) + 5 Z Q,(I){e_’(’o_m) - e—l(so-{-nt)}. (A.6)
8=—00
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Resonances occur when s = %r so that rf = Qt, that is at @ = rw. On ignoring the
rapidly varying terms, an approximation to Hamiltonian (A.6) in the vicinity of the

resonance at {0 = rw is, on using equation (A.5),
Ha(9,1,t) ~ Ho(I) — F|Qy(I)|sin(ré — t + 7). (A7)
'The momentum gauge
The momentum gauge Hamiltonian, equation (1.27), is
Hn(q,p,t) = Ho(g,p) + ;L% cos Qt, (A.8)
where the conjugate variables, (¢,p) and (g;,p1) are related by equation (1.34);
F
p=p—geos,  g=q. (A9)

The crucial point here is that the dependency of Hp upon (g2,p2) is given by equa-
tion (A.2) with (q1,p1) replacing (g1,p1); we can therefore use the same angle-action

variables to write Hamiltonian (A.8) as

F .
Hp,(0,1,t)=Hp(I)+ m—p(e, I)cos €. (A.10)
Now, from Hamilton’s equations for the unperturbed motion, we have
3H0 p(07 I)
6,7 = (6,1 = —, A.11
4( ) (11( )= o u (A.11)
so that
. . T, — —isé aHo
p(8,I) = pg:1(0,I) = —ipw(I) E 3Q,(Ie %, where 6 = B = =w(I). (A.12)
On using equation (A.12), Hamiltonian (A.10) becomes,
Hn(6,1,t) = Ho(I) ~ ‘F'S(I) 20 sQu(D){em 07 4 gmile04A0Y, (A.13)

§=—00

Thus, in the vicinity of the resonance at s = &7 we obtain an approximation to Hyp,:

Hn(8,1,t) ~ Ho(I) — F|Q-(I)|sin(r8 — Qt + 7). (A.14)

The acceleration gauge

The acceleration gauge Hamiltonian, equation (1.37), is

.' 1 : F .
Ho(go,p2,t) = EI’% + V(g2 — b(t)), b(t) = Prs sin 2, (A.15)
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where,

P2 =7P1 — 5 cos 2t and - q2 =q1 — W sin Qt. s (A.16)

For high frequencies, an approximation to Hamiltonian (A.15) is given by equation (1.72)
given on page 29: '
v

. F
Ha(g2,p2,t) =~ Ho(g2,p2) + o 51th—5q—2. (A,'17)

Again the dependency of Hy upon (gz,p2) is given by equation (A.2) with (g2,p2) re-
placing (g1,p1) and so again we can use the same angle-action variables to re-write H,

as ‘ .
F ov :
H,(6,1,t) ~ Ho(I)+ prod sin Qta—q2(0, I). (A.18)
On considering the unperturbed motion we see that the equations of motion are, .
. 0Hy, ov . _O0Hy p;
T e— __, = e— ) A..].g
Pz 02 - Oq2 2 % u (4.19)
and so we have
ov - 2 — 2 —is@
200 = —p2(0,I) = pw(I)® )" 8°Qs(I)e™, (A.20)
: 8=—00

where again- we have used § = 8Ho/8I = w(I). Substituting equation (A.20) into
equation (A.18) gives,

g Fu(I &, _i(s0-0t) _ —i(s0+02t)
Ho(8,1,t) = Ho(I) + ~-25 > 2Q.(I){e™ e } (A.21)

' . §=-00

and so, in the vicinity of the resonance at s = +r an approxima.tibn to H, is
Ha(6,1,t) ~ Ho(I) — F|Q.(I)|sin(r8 — Qt + 7,), (A.22)

where Q ~ rw.

Thus the approximate Hamiltonians, equations (A.7), (A.14) and (A.22) take the
same form in each of the three gauges and the gauge-invariance of the overlap criterion,
equation (1.65), follows. A similar analysis can be used to prove the gauge invariance of

the classical map, equations (1.91) and (1.92).
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Appendix B

Sudden ionization: classical

In this appendix, we outline the calculation of the classical ionization probabilities for
the Morse potential, described by equation (3.1), when the oscillating field is switched
on suddenly. In section 1.6, we obtained the following expression for the value of the
momentum, p;, at which the initial unperturbed torus intersects the separatrix of the
mean-motion Hamiltonian,
. . 2 o )
: - 2p1§cos¢$ + (g) cos? 6§ ~ 2/,L(ES - Eg). (B.1) -
In terms of the variables A, and A, introduced in section 3.2, 2[.LES = a2A42 and
2uBy = a2 A%Ay(2 — Ap), which gives, '
p1 = aAs(1 - AP, : - '(sz)
p _ (8% cos? § — 4r2(1 — Ap)?) ® 3)
4r(1 — Ap)?Bcosé -’ )
and where we have written Q = A,ra?(1 — Ap)/p and F = a3 A23/2u.
We now find the values of the angle variables, 6,2, at which the intersection takes

place by using equations (3.3) and (3.4) to write p; in terms of the action-angle variables.

Substituting the resulting expression into equation (B.3) gives,

\Esingd o
' 1—+/ecosf P, (B-4)

" Rearranging this and using equation (3.5) to rewrite € in terms of Ay gives,
sin(f12 +7) = Lid tany = P. (B.5)

VA2 - A)(1 +P?)
The difference, |6, — 02|/27 is then the jonization probability which can be averaged over
the field phase to give our final expression: '
1 o 0
P, ,Ag, ) = — dé cos™! . B.G

sup(B, Ao, T) 27 Jo (\/AO(Z—A03(1+P(5V:) (B.6)
This is used to éompute the theoretical ionization probability curves shown in figures 3.11
and 3.12. ) :
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Appendix C

Sudden ionization: quantal

Here we show how the quantal-sudden ionization probability is related to the classical
sudden probability of equation (B.6), derived in appendix B, and that in the classical limit
they are identical. We assume that for times t < 0 the dipole Hamiltonian, equation (1.33)
with F' = 0, describes the system, and for ¢ > 0 that the Hamiltonian of equation (1.37)

is a good approximation. At ¢t = 0 there is a transition in momentum,

p2 =p1 — (F/Q) cos 6, (C.1)
" go.that the wave functions 14 immediately before and after £t =0 are related by,
ve = voexp(—ita)
. — w —
= Yo+ [ dBa(BRI(E,0) (c2)

where 9 are the éigenstates of H and %_, the initial state, is an eigenstate of Hy. Then,
assuming that the continuum wave functions are delta-function normalized in energy the

" jonization amplitude is, .
Fqcosé
o(B) = [ daB* (B apinla)ex (~i o) (©3)

Since the quantum numbers are large we use the WKB approximations.

WBE) = ||y oin (l /.,:'(md””(E’z)*"’(E’)’ ()
_ 2uw(Ey,) T
@) = (fmepssin (3 [ dep(Eno) + ), (©3)

where ax, k = 1, 2 are the inner turning points. Then the transition amplitude is, on

ignoring the rapidly varying terms,

B = ® w(En) exp cos&)
o) = B [0 s

x cos(ﬁ dz (p(E, <) — p(E,,,x))ﬂp(E)—%), (C6)
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where a3 = max(a1,a2) and b is the outer turning point.
This integral may be eva.lua.t‘ed using the stationary phase approximation with the
stationary phase points at the real roots, q; and g3, of,

Ap(q) = p(E,q) — p(En,q) = i c;;s o (C.7)

Rémembering that p(g) > 0 and that E > E, we see that for each sign of equation (C.7)

only one part of the cosine in equation (C.6) contributes and so we have,

/w(E 2 exp " dz Ap(z) + o(E) — § — Eﬂhﬂ&*&) +-i1'—zh}
)= 2 VP(E, i)p(En, ax)|AP (g1 )] b (C's_)

where the Maslov indices a;re o1 =1 and o9 = 1. The classical limit is obtained by

ignoring the interference termé, and on using the relation,
p(E,9)p(En, 9)AP'(2) = uV'(9)Ap(9), (C.9)

where we assume « small so that V(q, a) V(q), we see that,

2 bw(Ey) 11
= oriagl (7~ 7t (G10)

However, the classical probability is just,
1
P(B) = o~ |62(E) - 61(E)|, | (C.11)

where 6, are the two roots of uE(8) = p(En, q(8))Ap and since,

dE _, dp _ Op 4V

hag =P = Tw(Ea) d (C.12)

the equality of the classical and quantal ionization probabilities in the sudden limit

follows.
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Appendix D

Uniform approximations

For one-dimensional systems it is often possible to use uniform methods to obtain asymp-
totic approximations to the solutions of Schrodinger’s equation. The essence of uniform
approximations is that similar equations have similar solutions, two equations being sim-
ilar if their order, type and number of turning points are the same. A rigorous exposition
of this theory is given by Cherry (1950); here we concentrate on the elementary case
needed for this application. The approximate theory starts with the Schrodinger equa-

tion which we assume can be written in the form:

2
L+ rQEw =0, (D.1)

where Q(z) is some sufficiently well behaved function of z. For our application, this

equation derives from the Hamiltonian,

H(p,q) = p*/21+ V(9), - (D-2)
in which case, |

Qz) = 2u(E - V(z)), (D.3)
where E is the particle energy, p its mass and V' the potential energy. Let,

d? _ :

L +h Qo) =0, (D.4)

be a comparison equation such that Qo(c) and @(z), equation (D.1), have similar turuing
point structure over the z-range of interest. We should then expect the solutions ¥(z)
and ¢(c), of equations (D.1) and (D.4) respectively, to be approximately related by a

coordinate stretch and a rescaling; this can be expressed by writing,

¥z) = f(0)p(0), o =ola), o (D5)

where f(o) and o(z) remain to be determined; naturally, both f, o and their inverses

must be continuous. The function o(z) can be thought of as a non lincar, invertible,
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scaling of coordinates and f(c) the associated rescaling of the wave function. The forms

of the primitive WKB expressions, namely, ‘
va) = QM @e (i [ d'y/a@), (D.6)
#o) = % @exs (i [ a0 /@), (©7)

suggest a solution with,

_ (Qo(o)\*
1) = Q(x)) , | (03)

and o(z) implicitly defined by,

_ ,'/;:dal\/Qo(U' =/;:d:z:'m. (D.9)

The coordinate scaling, o, is obtained by substituting equation (D.5) into (D.1) and
using (D.4) to give, '

R2dg d [ .,do\ d2f /d df d2 do\?
7£a (7252 + 1% (r";(d—;) + Eﬁ—d—x%) + (Q - (32) ) 6f =0, (D.10)

which can be satisfied to O(h?) by choosing o to satisfy,

@) (2) = a@. 1)

For f(o) to be well behaved, o(z) must be chosen so that the zeros of Q(z) and Qo(o)
coincide and are of the same type. Note that with f defined by equation (D.9), we have

' do o
f(or)2azv- =1, (D.12)

*and the first term of-equation (D.10) is zero.
Equations (D.11), (D.8), (D.5) and (D.4) are the important equations for the appli-
cation of this method. In practice, it is essential that Qo(q) can be chosen so that the
solution to equation (D.4), ¢(o), can be represented in terms of standard functions with

known properties.
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Appendix E

Evaluation of action and tunnelling integrals

In this appendix we obtain analytic expressmns for the integrals If, I, and A given by

equations (4.44), (4.55) and (4.47) respectwely of section 4.3.2, together with the quan-

tal correction function, ®(x), equation (4.56) and the resonance widths, '3

of equa-

tion (4.65). The expressions derived in this appendix are used to numerically evaluate of

these functions.

E.1 Evaluation of the action integral I,
The action integral of the £-motion is given by equation (4.;14),
(31
I = @/ a€ \/B/4 = Ve(6)
2h2

’_F —g2 4 2E€+__gl oy
d 2 FTY
&2 \/ ¢34+ 2B tepe min

Following the notation of Gallas et al. (1982), we write this in the form,

_VEF [ ) 2B ) 4€°B1 ) mPR? ()
=g K+ TR -
where, - ' _
: a °F , 4e2f. m2r?\ ?
(3 = 3 _g3 4 222 le _
1 —/£2d£€(£+F§;+F§ =)

il

/61 de &
a  VEa-E-&E)E-&)

The turning points, §1, 2, are the non-negative roots of the cubic equation,

2E , 4e’f;, mK?

¢ T e - T = (- 0~ e - 6 =0,
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and, as shown in figure'4.1 on page 101, are ordered &3 < 0 < & < &;. Equation (E.2)
can be simplified by using the identity,

dV;
22 [PaeEr-vi =22 [T =Tt @my)

d Y3
2h Je 6‘,/E/4—Vf d¢

which is obtained after a trivial integration by parts. From this identity it follows that,‘

Ig =

VBF (1.0) 2P ;o) _ MR (1 |
Combining equations (E.2) and (E.6) and eliminating I, (2) gives,
_ VBF (2B ) 8B o) _ ( )
Te="n \3F% *3F & - ,uF B

The integrals, Ig ), can be evaluated analytically in terms of complete elliptic integrals
(see Abramawitz and Stegun 1965, chapter 17), yielding,

19 = gKke), V= Z—fn(& — &)/, ke),

IV = ge(esK(ke) + (61 — €)E(ke), (E8)

where g2 = 4/(&1 — £3), kf = (€1 — €2)/(&1 — &) and E, K and II are standard complete
elliptic integrals of the first, second and third kinds respectively.

E.2 Evaluation of the action integral I,

For energies E < ES, the action integral of the n-motion, I, of equation (4.55), may be

evaluated in a similar fashion,

L o= Y2 "BV, . ®9)

VEE (25 ) _ 8 1) _ MR p
2h \3F"  3F uF

where the integrals, I,(,j ), are defined by,

(4) = n U
b=, o VO —m)mz—n)ns —n)’ (E10)

with the roots, 0 < 71 < 72 < 73, obtained from,

2E , 43252 m2h2 B
N+ = - F = (n —m)(m — n)(n3 — n). (E11)

As before, the I,(,'7 ) can be expressed in terms of complete elliptic integrals:
I =" g K(ky), IyV= %H((‘flz —00)/%,Top)s
I = gn(nsK(ky) = (13 = m)E(kn)), (E.12)

where g2 = 4/(y3 —m) and k& = (7, —m1)/(m3s  m).
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E.3 Evaluation of the tunnelling integral A(FE)

The tunnelling integral, A(E) of equation (4.47), can also be evaluated in terms of com-
plete elliptic integrals using the method outlined in this appendix:

AE) = Y [T e = /e, (E.13)

_ VuF ([ 2E ) 8B o, m’A®  (y
T or _ﬁA_3FA+p,FA ’

where 71, 72, 713 are again the roots of equation (E.11) and where the AU)’s are defined
by,

W= [™ U
47 = /vn d7,7 Vi =)z —n)(ns — 1)’ (E.14)

and may be written'in the form,
A® = g K(ka), ACD= %gn((na — 12)/ma, ka),
AD = gamK(ka) + (n3 — m)E(ka)), | (E.15)

where g% = 4/(n3 — m1) and k4 = (93 — 12)/(n3 — m). In evaluating A(E), the branches
for the integrals are chosen so that A(E) > 0 for E < ES. ' ‘

E.4 Evaluation of the quantal correction function &(z)

The function ®(z) given by equation (4.56),
®(z) =z(1 — In|z|) 4+ argI’'(1/2 + ix), (E.16)

is odd, positive for £ > 0, has a single maximum of ® ~ 0.15 at £ = 0.18. Forz > 1 it

has the asymptotic expansion,
®(z) = 1/24x + 7/2880z> + 31/40320z° + O(z~7), (E.17)

"which is accurate to 0.3% for £ > 1 and 0.04% for £ > 2. For small z, the formula
given by Abramowitz and Stegun (1965, equation (6.1.27)) may be used to evaluate
arg I'(1/2 + iz) but more rapid convergence is obtained by rewriting it in the form,
— 1 1
argl’(1/2 +iz) = z¥(1/2)+ Z‘:) (z,- - gz? + gzjs- — tan~! Zj)
ﬂ 5 2z

7 ' —
T ORE O NP E

- (E.18)

where ((m) is the Riemann Zeta function (Abramowitz and Stegun 1965, chapter 23)
and ¥(z) =I'(z)/I'(z).
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E.5 Evaluation of the resonance widths I'3¢

A semiclassical expression for the resonance widths is given by equation (4.65). Dif-
ferentiating the function Fi(E), equation (4 60), with respect to E, gives the following

expression for '3
dI, 1d%\ do !
sc el - =
'z 4{]52 (dE+2dE>+dE} s E = Ep, (E.19)
“with, ‘
dI” \f ( M+ 2‘%1(0)) (E.20)
TR
Since, at resonance dIE/dE = (0, it follows that,
(1)
df; dgy I
2802 _ _ 24P _ e
€% €95 ZIéo)’ (E.21)
so that, :
dly _ 1 B 0 1) 4 7(0) 7))
a:@-,.,fém/;(’é 19 1 1O, (E.22)

where the Ig ) and I,(,j )5 are defined by equations (E.3) and (E.10) respectively. Substi-
tuting expression (E.22) into equation (E.19) gives our final semiclassical approximation

to the resonance widths:

-1
2 1 1d® d®
SC _ o H0) y(1 n) 7(1)
s _4{k—2 (-M(—m/f(ff I 4 I 1 )+§d_E)+E} : (E.23)
; .

Numerical determination of I';C therefore only requires the determination of A(E) since
all the Iéj) and I,(,J ) are automatically obtained during the calculation of the energy

eigenvalue, Eg.
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Appendix F | ,

Asymptotic form for resonance widths

In this appendix we derive the asymptotic form of the integrai, defined in equation (5.48),

2% . T T . .
= [ drwexp(i%o—)), or) = [ aree), (F.1)

as a function of g as Qp — 0 at those values of {2y for which the exponent, and hence
‘the integrand, f(7), is 2w-periodic. Since § = £(7) > 0 for all real values of T there are
no real stationary phase points. However, the exponent is sta.tioha.ry at 7, the complex
roots of £(1) = 0 and because of the periodicity 7, + 27 is also a root: it is important to
note that these roots are independentl of Q. '

From the definition of %, equation (5.22), we see that the integral can be written in

o  kE—kE .g(7)
I=2 RS e (197 .
Qo A d'rg2 IR exp _(1 % ) (F.2)

so that near the stationary phase points the-integrand has poles, as shown in figure F.1.

the form

[r Im(7)
T, T,_+27T
x x .
D /7, C r42m
3

W T x'r,+2‘rr
A L B Re(7)
0 T 2n

Figure F.1 Diagram showing the relative positions of the contour used to evaluate the inte-
gral (F.1), the poles, 74, the stationary phase points, 7,, and the stationary path, the dashed
line, used to approximate the integral.

Choose the stationary phase point, 7",, so that ¥(g(7,)) > 0 and consider the contour
C joining the points 7 = 0, 27, 7, + 27 and 7, as shown schematically in figure F.1. Then
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because the integrand is periodic the integrals along BC and DA cancel to give,

2r
I= /0 dr f(r) = 2mR(r-) + /DC dz f(z), (F.3)
R(7-) being the residue at 7—, which is given by,
_ i kE—kE g
RO = e nann o (190) . (E4)
- (-% + 0(90)) exp (-i%:’) . (F.5)

In order to evaluate the integral along DC we need to expand about both D and C
choosing the direction along the path of steepest descent at both ends, but because the
integrand is periodic both contributions are obtained by expanding about D, as shown
by the dashed line in figure F.1.

Near D we set 7 = 75 + 2 and using the definition (5.22) to expand (7) we obtain,

using an obvious notation,

F

tany = ks + vz + O(22 =k, — ky—, F.6
ny = 88 ( Y ( )) Y 8 7 2, ( )
so that near the stationary point,
2Q0ksE, 200k, E,

P =— +0(2%) ~ — (F.7)

2262 + 402 (ks +27)° 2262 + 402k
We nuse this last approximation because the poles of this function differ from those of the
exact function only by O(Q3). Now put z = ze'?, where z is real and § = -3 axg(f,'

so for the integral along DC we obtain,

Ipc =~ —2on Eexpi (ﬂ + gg;)) /;: dz z2€3e2i51+ e exp (—%) . (F.8)
In order to evaluate this integra.l consider the Fourier transform of the product,
, et '
F(y) = / dze'” z2 g2 (F.9)

where € < 1 and o are real and positive and R(a) > 0; we need the value of I"(0). The
Fourier transform of each function in the integrand is readily obtained, so we can express

F(y) as the convolution integral,

- F(y) = -2.0,_1\/5? /_: du exp(—|u|ae — e(y - u)2/4a). (F.10)

On setting y = 0 and expanding the first, more slowly decaying, exponential we find that,
2
F(0) = — g oy —:-‘ +0(1), (F.11)
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and thus
—ip 27!'90

€]
On combining this with equations (F.3) and (F.5) we see that

Ipc =~ — (7r + 2ik;e exp(ig(7s)/Q). (F.12)

1(Q0) = /0 T dr(r) exp (?;; /0 ’ d'rf('r)) ~ —2ik, 2;’;'“ expi(g(rs)/Q — B) (F.13)

S0 that at the resonant frequencies |I| decreases as Qé/ 2 exp(—C/Sp) for some real con-

stant C.
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