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ABSTRACT

Transcriptional attenuation by RNA polymerase II (pol H) has been 

shown to regulate the expression of many genes (Spencer and Groudine, 1990) 

bu t the mechanism of this control has been poorly understood. In this thesis I 

present data which indicate that in  X.laevis oocytes transactivator proteins 

stim ulate transcriptional elongation by pol II. T ranscription complexes 

activated by recombinant factors bound to prom oter elements in  synthetic 

genes have high competence to elongate meaning they are able to read through 

pausing and term ination sites efficiently. Furthermore, activation dom ains 

differ in the processivity of the transcription they stimulate from a given 

promoter. In contrast, non-activated transcription and transcription "squelched" 

by a non-binding factor mostly terminates prematurely. A general transcription 

factor, TBP, is found to stimulate initiation, bu t not elongation of pol II 

transcription. These results suggest that program m ing the competence of 

RNApolymerase II to elongate is an integral part of the initiation step which is 

controlled by activators co-operating with the basal transcriptional machinery.

The positive effect of transcriptional activators on pol II processivity is 

counteracted by the suppressor of transcriptional elongation DRB (Dichloro- 

ribofuranosyl-benzimidazole) and by protein kinase inhibitors such as H-8 and 

H-7. Here I characterise a transactivator binding CTD-protein kinase which is 

highly sensitive to DRB, H-7 and H-8. This protein kinase co-purifies w ith the 

general transcription factor TFIIH on affinity chromatography resins and has 

properties indistinguishable from the TFIIH associated kinase. I suggest that 

the effect of DRB on transcriptional elongation is mediated by inhibition of the 

TFIIH associated kinase activity.
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The hum an protein BM28, which is analogous to the yeast MCM2 and 

MCM3 proteins, has been proposed to participate in DNA replication. In this 

thesis I include experiments which indicate that BM28 is also essential for pol II 

transcription in X.laevis oocytes.
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INTRODUCTION

l.l.Regulation of Eukaryotic Class H Genes Expression

Regulation of eukaryotic class II gene expression is a complex multistep 

process that involves the concerted action of num erous transcriptional 

activators and at least eight general transcription factors (GTFs, reviewed in 

(Buratowski, 1994; Zawel and Reinberg, 1993) in addition to RNA polymerase 

II (pol II). Several stages in the RNApol II transcription cycle, nam ely 

transcription initiation, promoter clearance, elongation and termination, are all 

potential targets for different control mechanisms.

Initiation includes the correct positioning of RNA polymerase II at the 

prom oter and unwinding of the DNA strands. This process is accompanied by 

m ultiple interactions between factors, generally required for transcription from 

m ost class n  prom oters (the GTFs) and the polymerase itself, and is greatly 

influenced by transcriptional activators. Once the first phosphodiester bond is 

synthesised, the polymerase proceeds through a stage, referred as to promoter 

clearance, in which it leaves the preinitiation complex and transforms into the 

elongating complex. Elongation is the phase during which the enzyme moves 

along DNA and extends the growing RNA chain. Termination is the stage, in 

which RNA synthesis is suspended and the polymerase and the nascent RNA 

are released from the template. Elongation ceases at the 3' region of the gene or, 

alternatively, termination can occur w ithin the transcription unit, as will be 

discussed further. Initiation is thought to be the principal stage, where gene 

expression is regulated and, undoubtedly, is most extensively investigated. 

Significant progress has been m ade in identifying transcription initiation 

factors and understanding their role in the formation of preinitiation complex 

and prom oter clearance (for review see (Buratowski, 1994). Less is know n



about factors that are generally involved in elongation and term ination by 

RNApolymerase H.

It is becoming evident that transcriptional elongation is also a critical 

stage where gene expression can be controlled. Prem ature term ination or 

attenuation in response to physiological signals has been docum ented in a 

num ber of eukaryotic genes. Thus it is possible to m odulate the mRNA levels 

of these genes by regulating the efficiency with which RNApolymerase H reads 

through intragenic termination and pausing sites. The mechanisms, governing 

transcriptional processivity and attenuation, though, are m uch less well 

understood than transcriptional initiation.

A  definition of prem ature termination, attenuation and processivity of 

RNApolymerase II should facilitate this discussion. In this thesis, attenuation 

defines pausing of the polymerase or termination within the gene rather than 

at its 3' end, or both. In many cases, it is yet unclear whether pausing (that is 

tem porary cessation of elongation, where the polymerase and the transcript 

rem ain  associated w ith  the tem plate) or true term ination takes place. 

"Processivity" refers to the competence of RNApolymerase n  to read through 

potential pausing and termination sites.

In  this review I shall describe the GTFs, the common features of 

sequence specific transcriptional activators and the mechanisms, by which 

they are thought to control RNA pol II transcription. More details will be given 

about the GTFs, which are investigated in the experimental section of the 

thesis. Special attention will be paid to elongation by RNA polymerase II in 

several genes, w here prem ature term ination of transcrip tion  has been 

observed. The current knowledge about transcriptional attenuation will also be 

discussed.



l.l.l.RN A pol n  General Transcription Factors

Eight factors (TFIIA, TFHB, TFHD, TFIIF, TFIIE, TOTH, TFIIS and  TFI®, 

see (Zawel and  Reinberg, 1993) which are necessary for basal transcription 

from m ost class II genes, have been described. These factors are highly 

conserved from yeast to mammals and share significant functional similarities. 

Throughout this review I shall use predominantly the hum an nomenclature, 

since it is generally accepted and since hum an GTFs are m ost thoroughly 

investigated . H um an analogues in  D rosophila have identical nam es. 

S.cerevisae and rat analogues of the hum an GTFs are given below, 

hum an rat yeast

TFIIA - TFIIA

TFHB a  e

TFHD T d

TFIIE e a

TFIIH 5 b

TFIIF(RAP30/74) py g

l . l . l . l .  TFHD is the factor, which binds to the TATA element of class II 

prom oters and  provides the foundation for form ation of pre-in itia tion 

complex. It consists of TBP (TATA Binding Protein) and several tightly 

associated proteins, called TAFs (TBP Associated Factors).

TBP is one of the most highly conserved proteins in eukaryotes. The C- 

term inus region of TBP, which harbours the DNA binding dom ain, shares 

m ore than  80% homology from yeast to mammals, while the N-term inus is 

divergent across different species. Resolving of the crystal structure of TBP 

dem onstrated that its shape resembles a saddle. Its irmer surface contacts w ith



the minor grove of the TATA element, causing significant distortions in DNA, 

while the outer surface is accessible for other transcription factors (Kim et al., 

1993a; Kim et al., 1993b). TBP alone is sufficient to direct basal in vitro 

transcription, when supplemented with other GTFs. Binding of TBP (TFHD) to 

the prom oter is the first step in the formation of the preinitiation complex 

w hich nucleates further association of the rest of the factors and RNA 

polymerase H. Direct interaction between TBP and TFHB on DNA (Hisatake et 

al., 1993), TFIIA (M aldonado et al., 1990) and the non-phosphorylated 

carboxyterminal domain of the catalytic subunit of RNApol II (Usheva et al.,

1992), respectively, have been documented.

TFIID is a target for num erous positive and negative regulators of 

transcription. TBP can interact with the transactivation domains of the Herpes 

Sim plex V irus p ro te in  VP16 (Stringer e t al., 1990), the  H um an  

Immunodefficiency Virus TAT protein (Kashanchi et al., 1994), the Adenovirus 

type 2 E la protein (Horikoshi et al., 1991), the Epstein-Barr Virus Zta protein 

(Lieberman and Berk, 1991), the Cytomegalovirus IE2 protein (Hagemeier et 

al., 1992) and the cellular p53 protein (Seto et al., 1992). A lthough these 

interactions are likely to contribute to the process of activation, they are clearly 

not sufficient since TBP alone does not m ediate regulation by upstream  

binding transcription factors.

Stimulation of in vitro transcription by transactivators can be detected 

only if purified TFIID, but not TBP, is used (Pugh and Tjian, 1990), which 

suggests th a t a t least som e subunits of TFIID can function  to  link 

transactivation domains with the basal transcription machinery. TFIID was 

found to exist as a stable complex, composed of TBP and at least seven TAFs in 

Drosophila (Dynlacht et al., 1991; Hoey et al., 1990) and eight TAFs in m an 

(Tanese et al., 1991; Takada et al., 1992; Zhou et al., 1993). TBP exists mainly as 

a free subunit in S.cerevisae, which led to the conclusion that there are no TAFs



in  this species. Recently, though, TAFs were also described in yeast (Poon and 

Weil, 1993).

Cloning and analysis of seven Drosophila TAFs revealed m ultivalent 

protein-protein TAF-TAF and TAF-TBP interactions, which could account for 

the remarkable stability of the TFIID complex (for review see (Goodrich and 

Tjian, 1994b). Three of the TAFs have been dem onstrated to  associate w ith  

transcriptional activators. TAFn250 interacts directly w ith TBP and is identical 

to the described hum an protein CCGl, which is necessary to overcome the G1 

arrest of a tem perature sensitive cell line presum ably by  com plem enting a 

defect in transcription (Sekiguchi et al., 1991; Wang and Tjian, 1994). In vitro, 

transcription activation in extracts from these cells (ham ster tsl3 ) can be 

restored  by  addition  of exogenous holo-TFIID (W ang and Tjian, 1994). 

TAFiillO  interacts w ith Spl (Hoey et al., 1990), while TAFn40 interacts w ith 

the transactivation dom ain of VP16 (Goodrich et al., 1993). M utations or 

antibodies that d isrup t the TAF-activator interactions in  these tw o cases 

revealed tight correlation between TAF binding and transcriptional activity. 

Thus, TAFs appear to be mediators of activation both in  vivo and in vitro  and 

possibly provide a w ide range of contacts, which can be used selectively by 

different classes of transcriptional activators. Furthermore, TAFs can m ediate 

interactions betw een activation domains and GTFs, other than  TBP. For 

example, TAFn40 interacts with both VP16 and TFHB (Goodrich et al., 1993).

In addition to  activators and mediators of activation, TBP was show n to 

interact w ith  several proteins, which function as transcriptional repressors. 

N C I and NC2 (Meisterernst and Roeder, 1991; M eisterernst et al., 1991) are 

hum an factors, which both form complexes with TBP and inhibit association of 

TFIIA and TFHB w ith the TBP-DNA complex. In a different study two other 

inhibitors of basal transcrip tion in  hum an cells - D rl and  Dr2, w ere 

characterised (Inostroza et al., 1992). D rl is a 19 kDa protein, w hich upon  

phosphorylation can stably interact w ith the TBP-DNA complex and displace



TFIIA. Upon déphosphorylation D rl cannot bind stably to TBP bu t precludes 

association w ith TFHB and interferes w ith the assembly of the preinitiation 

complex (Inostroza et al., 1992). Dr2 and NCI display similar chromatographic 

behaviour and m ight be equivalent (Merino et al.,1993). Dr2 w as initially 

isolated as an activity that suppresses basal transcription, bu t potentiates the 

function of acidic activators. Subsequently, it was found that Dr2 is actually 

Topoisomerase I (Merino et al., 1993). Interestingly, mutations that abolished 

the topoisom erase activity of Dr2 had  no effect on its function  as a 

suppressor/activato r of transcription. This fact im plied tha t the role of 

Topoisomerase I in  transcription initiation should not be directly connected 

w ith  its enzyme properties. Dr2/Topoisom erase I w as show n to interact 

specifically w ith TBP too (Merino et al.,1993).

(Auble and Hahn, 1993) reported the purification of an ATP-dependent 

Inhibitor (ADI) of transcription in yeast. This factor was not similar to the 

previously described inhibitor activities in hum an cells. It interacts directly 

w ith  TBP and dissociates it from DNA in  a ATP dependent m anner. In 

addition, ADI suppression of transcription can be overcome by TFIIA. It was 

pred ic ted  tha t ADI prevents TBP from  non-specific or w eak specific 

interactions with DNA.

Several studies have dem onstrated tha t TFIID is necessary for 

transcription from TATA-less class n  prom oters (for review see (Weis and 

Reinberg, 1992)). TBP is also a putative subunit of SLl, SNAPc and I'FUiB - 

factors, required for RNApol I transcription, and transcription from TATA- 

containing and TATA-less pol HI prom oters, respectively (for review see 

(Goodrich and Tjian, 1994b; Hernandez, 1993). in  these cases TBP is complexed 

w ith  different sets of TAFs, which program  the specific function of these 

factors at different promoters.



1.1.1.2. TFIIB is a single polypeptide of 33 kDa, which binds to and 

stabilises the TBP-DNA complex (Buratowski et al., 1989; M aldonado et al,, 

1990; Ha et al., 1991). It seems to play crucial role together w ith  pol II in 

selecting the transcription start site in S.pombe and S.cerevisae (Li et al., 1994). 

Binding of TFHB to the TBP-DNA complex and subsequent association w ith 

the TFUF.pol n  complex is thought to be a rate limiting step in the in vitro 

transcription reactions (Lin and Green, 1991; Lin et al., 1991). Recently TFHB 

was reported to interact w ith TAFn40 (Goodrich et al., 1993) and acidic 

transactivation domains via positively charged amphipathic helix, positioned 

in  its carboxyterminal domain. Mutations in this region d id  not affect basal 

transcription, bu t completely abolished activation of transcription by GAL4- 

VP16 and GAL4-AH (Roberts et al., 1993). Hence, TFIIB has distinct functions 

in basal and activated transcription and the effect of acidic activators is at least 

partially mediated by contacts with TFIIB.

1.1.1.3. TFIIA. There has been a lot of controversy considering the role 

and the requirem ent for TFIIA in  transcriptional initiation. TFIIA was 

originally characterised as an activity, that stabilises the DB-DNA complex and 

stimulates basal transcription when TFIID rather than TBP was used (Zawel 

and Reinberg, 1993). Nevertheless, highly purified TFIID and TBP do not 

require TFIIA for transcription (Zawel and Reinberg, 1993). Recently it 

emerged that TFIIA counteracts repressors of transcription such as D rl, Dr2 

and ADI, presumably through interactions with TBP.

TFIIA consists of 35,19 and 12 kDa subunits in m an and of 30 and 20 

kDa subunits in Drosophila (Dejong and Roeder, 1993; Yokomori et al., 1993). It 

was shown by affinity chromatography that Drosophila TFIIA, in  addition to 

TBP, could interact w ith TAFnHO and TBP (Yokomori et al., 1993). Tight 

association betw een the endogenous TFIID and TFIIA w as fu rther 

demonstrated by co-immunoprecipitation of these two factors (Yokomori et al.,



1993). This im plied that TFIIA might affect form ation of the preiiütiation 

complex, which was not due solely to its anti-inhibitory properties. In support 

to such idea (Wang et al., 1992; Ma et al., 1993), indicated that TFIIA is 

essential for activated transcription, while there was no requirem ent for that 

factor in basal transcription. The novel function of TFIIA in transcriptional 

activation w as associated w ith the carboxyterminal dom ain of the 19 kDa 

subunit (Ma et al., 1993), but the authors did not assay w hether the same 

am inoacid  residues w ere necessary for counteracting  the effect of 

transcriptional inhibitors.

1.1.1.4. TFIIF consists of two subunits (RAP30 and RAP74, (Flores et al., 

1990; Flores et ali, 1988). In solution it exists as a heterotetram er. RAP30 

suppresses non specific binding of RNApol II to DNA and is responsible to 

recruit pol II to the DAB-DNA complex through interactions w ith  TFIIB 

(Killeen and Greenblatt, 1992). A lthough RAP74 does not appear to be 

obligatory for the recruitment of RNApol II, it stabilises the DAB-DNA-pol II 

complex. Both RAP30 and RAP74 are necessary for transcription initiation in 

vitro, since RAP30 alone can not substitute for TFHF (Flores et al., 1991).

RAP74 is extensively phosphorylated in vivo, possibly by the TFIIH 

associated kinase (Ohkuma and Roeder, 1994). In addition to its function in 

transcrip tional initiation, TFIIF w as show n to stim ulate elongation by 

suppressing RNApol II pausing in vitro (Bengal et al., 1991 ; Chang et al., 1993). 

Recently, direct interactions between RAP74 and SRF or the transactivation 

dom ain of VP16, but not Spl, respectively, were dem onstrated (Zhu et al.,

1994). This indicates a possible role of RAP74 in transcription activation. It is 

not known, though, whether phosphorylation of RAP74 affects its interaction 

w ith transactivators or its function as a stimulator of elongation in vitro.
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1.1.1.5. TFIIS (initially described as RAP38, (Sopta et al., 1985)) is a 38 

kDa single polypeptide, which directly interacts w ith the catalytic subunit of 

RNApol II. Recently TFIIS was shown to be identical w ith RTF (Szentirmay 

and Sawadogo, 1993), a factor required for reinitiation in vitro. TFIIS does not 

directly participate in the second and further rounds of initiation from one and 

the sam e prom oter, bu t rather stim ulates elongation of the reinitiated  

complexes on templates, which already contain a paused RNApol II at the end 

of the G-less cassette (Szentirmay and Sawadogo, 1993). TFIIS functions by 

triggering a 3-5 ' RNAase activity from the catalytic subunit of RNApol II, 

w hen the RNApol II complex stalls on the template. After digestion of several 

bases backwards, TFIIS facilitates the resumption of elongation presumably by 

re-establishing a proper elongation conformation of RNApol H, which might be 

lost upon pausing (Izban and Luse, 1992; Johnson and Chamberlin, 1994). TFIIS 

has been used as a tool to distinguish paused  polym erases from  true 

term ination events in vitro, since TFIIS can promote extension of the RNAs 

associated with the template (Christie et al., 1994; Kerppola and Kane, 1988 ).

1.1.1.6. TFIIT is a not well characterised factor, that was found to 

contam inate different TFIIA, TFIID or TFIIH preparations (Zawel and 

Reinberg, 1993). It is required for transcription with highly purified TFHD or 

TBP and is believed to enter the preinitiation complex after the formation of 

DABpoIIF-DNA. Recently it has been reported that the TFIIJ activity copurifies 

as a 55 kDa polypeptide and  stim ulates elongation (D. Reinberg, in 

preparation).

1.1.1.7. TFIIE is a heterotetramer, composed of two subunits - p34 and 

p56 (Inostroza et al., 1991). It is assum ed that TFIIE enters the PIC and 

functions after the form ation of DAB-DNA-polIIF complex (Zawel and 

Reinberg, 1993). Although the p56 subunit contains a region bearing homology



w ith a consensus sequence present in the catalytic loop of several kinases, no 

enzym e activity has been detected in that factor (Zawel and Reinberg, 1993). 

Recently, Ohkuma and Roeder (1994) demonstrated that TFIIE stimulates both 

the TFIIH dependent ATPase and kinase activities at a late stage in  the 

assem bly of the p rein itia tion  complex. p56(TFIIE) b inds the non- 

phosphorylated, but not the phosphorylated form of RNApol H, RAP74 (TFIIF) 

and the carboxyterminal dom ain of TBP, while p34(TFIIE) associates w ith 

RAP30 (TFIIF) (Maxon et al., 1994). TFIIE was also show n to interact w ith the 

holo-TFIID complex or with T FIIH via the ERCC3 subunit (Maxon et al., 1994). 

The functional relevance of these interactions still rem ains obscure, although 

they indicate that TFIIE could enter the preinitiation complex at an early stage 

or even could exist in a large heterogeneous GTF conglom erate (see "the 

multistep model for transcription initiation").

I.I.I.8 . Tm IH is a multisubunit (at least five subunits in yeast and man 

and  a t least seven in rat) versatile factor, w hich copurifies w ith  DNA 

dependent helicase, ATPase and RNApol II carboxyterminal dom ain (CTD) 

kinase activities (Conaway and Conaway, 1989; Fischer et al., 1992; Gerard et 

al., 1991; Lu et al., 1992; Schaeffer et al., 1993; Serizawa et al., 1993b), ail of 

which have been proposed to play some role in the transition from initiation to 

elongation. TFIIH, as well as TFIIE, is required for transcrip tion from 

linearised templates, but not from supercoiled tem plates (Parvin and Sharp,

1993). Surprisingly, the TFIIH kinase activity w as found not obligatory for 

initiation, formation of open complex (melting of DNA at the transcription 

start site and synthesis of the first phosphodiester bond) or prom oter clearance 

(release of the polymerase from the prom oter) on  bo th  supercoiled or 

linearised tem plates in in vitro transcription assays w ith  highly purified 

com ponents (Goodrich and Tjian, 1994a; Serizawa et al., 1993a). The TFIIH 

kinase activity was required, though, when TBP was replaced w ith holo-TFIID
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in vitro (Serizawa et al., 1993a). By introducing a non-hydrolysable analogue of 

ATP (AMP-PNP), Goodrich and Tjian demonstrate that ATP, bu t not GTP 

hydrolysis supports promoter clearance on linearised templates. Since GTP is a 

substrate for the TFIIH kinase (Serizawa et al., 1993b), that hydrolysis was 

associated w ith the ATPase and the helicase rather than the kinase activities of 

TFIIH. Thus, the functional significance of the TFHH kinase remains obscure.

Initially it was thought that the ATPase and helicase activities of TFIIH 

are required  to  unw ind the transcription start site and to form  an open 

complex (Buratowski, 1993; Schaeffer et al., 1993). The experiments, presented 

in  (Goodrich and Tjian, 1994a) clearly indicate that ATP hydrolysis is not 

necessary prior to the formation of the first phosphodiester bond both  on 

linearised and supercoiled templates, but is required at a late stage (after the 

synthesis of a dinucleotide) on linearised templates. It is believed that negative 

supercoiling provides the energy, needed for prom oter clearance and thus 

circumvents the requirement for TFIIE and TFIIH. TFHH and TFllE were found 

not necessary for elongation either, since addition of these two factors after 

promoter clearance has no effect on transcription (Goodrich and Tjian, 1994a). 

The former conclusion, though, could be challenged by the fact that TFIIH is 

dissociated upon  transition from initiation to elongation, so that the p62 

subunit of TFIIH remains associated w ith the polymerase, while ERCC2 and 

ERCC3 do not. TFIIE was also absent from the elongation complex (D. 

Reinberg, P.Kumar; personal communication). Nevertheless, the data from 

both groups imply that the ATPase and kinase activity of TFIIH and TFIIE are 

not directly engaged in elongation. Since the helicase activity was not required 

for DNA unwinding either, it is not clear what the precise role of the TFIIH 

helicase activity in transcription is.

Some of the subunits of the yeast and hum an TFIIH were recently 

cloned and characterised. Hum an p62 (Fischer et al., 1992) and yeast p74 

(TFBl, (Gileadi et al., 1992a) are analogues, representing a putative subunit of
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TFŒH in these two species. Of potential importance is the fact that hum an p62 

can specifically interact w ith the transactivation dom ains of VP16 and p 5  

(J.Greenblatt, in  press). No enzyme activity is associated w ith p62 or p74. The 

helicase and most of the ATPase activity of the hum an TFIIH w ere show n to be 

carried by p89 (also called ERCC3)(Roy et al., 1994). Two other subunits of the 

hum an TFIIH - p44 and p36, share a conserved Z n finger m otif w ith the yeast 

SSLl protein (Hum bert et al., 1994; Yoon et al., 1992), and see below). In 

addition, p44 is 58 % homologous to the yeast SSLl (Yoon et al., 1992). Unlike 

SSLl, p34 and p44 do not display any helicase or ATPase activity.

Interestingly, p89 is identical to the protein, encoded by  the previously 

characterised excision repair gene ERCC3 (Schaeffer e t al., 1993). Another 

excision repair protein - ERCC2, is also associated w ith  TFIIH, although not 

that tightly as ERCC3 (Schaeffer et al., 1994). None of the hum an TFIIH 

subunits, cloned so far, carries a kinase activity. The functional importance of 

p62, p34 and p44 in  RNApol II transcription was dem onstrated by inhibiting 

basal transcription in vitro by antibodies against these peptides (H um bert et 

al., 1994; Schaeffer e t al., 1993). M utations in ERCC2 and  ERCC3 were 

previously characterised as the causes for the DN A-repair deficiency in 

Xeroderma pigmentosum (for review see (Tanaka and Wood, 1994).

In  S.cerevisae, TFIIH was also found to contain proteins, that were 

show n to participate in the repair of DNA damage. The yeast homologues of 

ERCC2 (named iad3), ERCC3 (rad25 or SSL2) and p44 (SSLl) were detected as 

putative subunits of transcription factor b (Feaver et al., 1993). SSLl and SSL2 

were cloned as genes, which when m utated were capable of overcoming the 

inhibition of translation  by an artificial stem -loop struc tu re  in  the  5’ 

untranslated sequence of a mRNA (Yoon et al., 1992). Rad3 and  rad25 were 

independently  cloned, based on their ability to com plem ent DNA repair 

defective S.cerevisae mutants. SSLl, SSL2 (rad25) and rad3 are all show n to 

posses helicase activity. Temperature sensitive m utants of rad3 and rad25
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demonstrated the significance of these genes for transcription (Guzder et al., 

1994a; Guzder et al., 1994b; Qiu et al., 1993). Upon transition to non-permissive 

tem perature, both pol II and pol I transcription were severely inhibited in the 

rad25fs and rad3k mutants, while pol HI activity was unaffected. Interestingly, 

the m utation in rad3^g did not affect the helicase activity of this protein (Qiu et 

al., 1993). In contrast, mutation in rad25, which abolished its helicase activity, 

completely inhibited transcription in vitro and is lethal in vivo (Guzder et al., 

1994b).

Highly purified TFIIH complemented DNA excision repair in cell-free 

extracts from ERCC3 m utant hamster cells (Vanvuuren et al., 1994) and from 

hum an XPB(ERCC3) and XPD(ERCC2) cells (Drapkin et al., 1994). Thus, TFIIH 

can directly function both in transcription and DNA repair.

1.1.2.1. RNA polymerase II

RNA polymerase II activity copurifies w ith  several polypeptides, 

ranging form 220 to 10 kDa (Zawel and Reinberg, 1993). Interactions between 

the large subunit (200 or 220 kDa according to different authors) and some of 

the GTFs were described in the previous chapter.

The carboxyterminal domain of the largest subunit of RNApol II is 

composed of 26 copies in  yeast, 42 copies in  Drosophila and 52 copies in 

m am m als of a consensus heptapeptide repeat (YSPTSPA) (Zawel and 

Reinberg, 1993), whose function in gene regulation has been subject of 

considerable research and speculation. Deletion mutants that result in the loss 

of m ore than half of the heptapeptide repeats in m ouse. Drosophila and 

S.cerevisae are lethal, indicating that this domain is essential in vivo (Allison 

and Ingles, 1989; Bartolomei et al., 1988).In S.cerevisae, reducing the number of 

the heptapeptide repeats from 26 to 13 does not alter significantly activation by
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the acidic activator GAL4. Mutations, affecting the transactivation dom ain of 

GAL4, though, resulted in  suppression of activation in m utants w ith p a rtia l^  

deleted CTD. Extending of the CTD to more than 26 copies of the heptapeptide 

enhanced activation by the crippled GAL4 activator relative to the w ild  type 

CTD (Allison et al., 1989 ; Edwards et al., 1991 ; Nonet et al., 1987 ; Peterson et 

al., 1991).Thus it appeared that a longer CTD can complement m utations in  an 

activation domain, suggesting that CTD plays an im portant role in the process 

of transcriptional activation. In agreement w ith that, m utations in  several 

proteins th a t in teract w ith  CTD or TBP and suppress CTD truncation  

m utations (SRBs, (Thompson et al., 1993) were also required for activation in 

vitro and in vivo (see also chapter 1.1.5).

In vivo, the large subunit of RNApol II exists in two forms - HA, w hid i 

is not phosphorylated, and HO, which is extensively phosphorylated at the 

CTD dom ain. In vitro, the nonphosphorylated form of RNA polym erase II 

preferentially enters the preinitiation complex. Subsequently it undergoes 

phosphorylation of the CTD upon transition from initiation to elongation 

(Cadena and Dahmus, 1987; Payne et al., 1989). Since TBP interacts w ith  non­

phosphorylated, bu t not w ith phosphorylated YSPTSPA-oligopeptide, it was 

proposed that phosphorylation of CTD facilitates the disruption of the PIC by 

decreasing the affinity of CTD-TBP and other CTD interactions (Usheva et al.,

1992); Phosphorylation is also believed to cause conformational changes in  the 

CTD dom ain (Zhang and Corden, 1991) which could possibly lead to promoter 

clearance. One model suggests that phosphorylation of the CTD is necessary to 

trigger e longation and  to prevent the transcrib ing polym erase from  

interactions w ith  initiation factors (Peterson and Tjian, 1992). How ever, 

phosphorylation of CTD by the TFIIH kinase was not required for transcription 

in vitro (Serizawa et al., 1993a). In addition, the kinase activity of TFIIH had 

properties, distinct from the ATPase activity, necessary for prom oter clearance 

from  superco iled  tem plates (G oodrich and Tjian, 1994a). C learly ,
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phosphorylation of CTD is not obligatory for releasing RNApol II from the 

preinitiation complex on a minimal promoter. It is possible, though, that 

phosphorylation of CTD is required for activated transcription.

1.1.2.2. CTD-Kinase Activities from different organism s have been 

purified  and  characterised. The TFIIH associated CTD-kinase activity 

phosphorylates CTD during in  vitro transcription reactions w ith  highly 

purified  com ponents. Im portantly , TFIIE and AdM L prom oter DNA 

dramatically enhance the TFIIH CTD-kinase activity (Feaver et al., 1991; Lu et 

al., 1992; Ohkuma and Roeder, 1994; Serizawa et al., 1993b). Phosphorylation of 

recombinant or synthetic CTD peptide substrates, though, is not stimulated to 

a similar extent by promoter DNA (Roy et al., 1994). TFIIH is a good candidate 

fo r th e  k in ase , re sp o n sib le  for the  tra n s c r ip tio n  a sso c ia ted  

hyperphosphorylation of CTD in vivo, although the data from the in vitro 

experiments do not explain the necessity for that modification.

The DNA-dependent protein kinase (DNA-PK) phosphorylates in vitro 

several DNA binding proteins and the RNA polymerase II CTD dom ain 

((Gottlieb and Jackson, 1993) and the references therein; (Peterson et al., 1992)). 

(Arias et al., 1991) reported that on immobilised linearised templates the DNA- 

PK is present in association with the transcription complex and phosphorylates 

RNApol n  in a promoter dependent manner. DNA-PK consists of a 350 kDa 

catalytic component (A) and a regulatory component(B), which contains two 

subunits of 70 and 80 kDa. Component B was recently shown to be identical 

w ith the hum an autoantigen Ku. It is essential for the protein kinase activity 

and recruits the catalytic subunit to DNA by its intrinsic ability to recognise 

DNA ends (Dvir et al., 1993; Gottlieb and Jackson, 1993). In this respect, it is 

difficult to rule out whether the CTD phosphorylation in the experiments of 

(Arias et al., 1991) results from co-localisation of DNA-PK and RNApol II on 

DNA or whether this is a genuine promoter dependent phosphorylation.
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Several other protein kinases were also shown to phosphorylate CTD. 

Two of these contained the p34cdc2.pj.otem (Cisek and Corden, 1989; Steveis 

and M aupin, 1989) and their function was directly associated w ith  RNApol E 

transcription. Two others (CTDKl and CTDK2) were partially purified and 

more cautiously implicated in the control of class n  gene expression (Payne 

and Dahmus, 1993).

1.1.3. Sequence Specific Transcriptional^ctivators

Transcriptional activators act through prom oter elements in  a sequence 

specific m anner. A  transactivator usually contains a specific DNA-binding 

dom ain (or a dom ain which anchors the factor to the prom oter by protein- 

protein interactions), a dimérisation domain that allows formation of homo- or 

hetero- multimers, and an activation dom ain (Ptashne, 1988). Transactivation 

domains are loosely classified as acidic, glutamine rich, proline rich and serine- 

threonine-rich (Gileadi et al., 1992b). Interestingly, m utagenesis studies 

indicate that the am inoadd residues, which are most im portant for activation, 

are no t necessarily the predom inant residues in the dom ain (Cress and 

Triezenberg, 1991; Gill et al., 1994; Leuther et al., 1993; Vanhoy et al., 1993; 

W alker et al., 1993). Instead, interspersed hydrophobic residues w ithin the 

addic or glutamine am inoadds appear to be im portant elements of activation 

(Tjian and Maniatis, 1994).

The structural relationship and functional spedficity of the different 

dasses of transactivation domains remain undear. Since no evidence for some 

defined secondary structure of activation domains have been obtained (O'Hare 

and Williams, 1992; Vanhoy et al., 1993), it is speculated that they can assume 

particular three-dimensional conformation upon adhering to a partner, thus 

undergoing induced fit (Tjian and Maniatis, 1994). Clues about the specihcity 

of transactivation domains are suggested by the preferential association of
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different transactivators to distinct TAFs (see chapter 1.1.1.1., (Goodrich and 

Tjian, 1994b).

There are many reported interactions between transactivation domains 

and general transcription factors, TAFs, SRBs and other "mediator" molecules. 

It is conceivable that most of the effects of transcriptional activators are 

m ediated by these molecules. Some of the interactions between activators and 

GTFs were described in chapter 1.1.1. Transactivators also act to relieve the 

repression of histones and other chromatin factors on transcription. However, 

investigation of the interplay between transcriptional activators and chromatin 

in vitro are severely limited by the difficulty of correctly assembling chromatin 

(for review see (Wolffe, 1994; Wolffe and Schild, 1991) and the deficiency of 

highly purified transcription factors to work in such systems.

1.1.4. Initiation of Transcription by RNApolymerase II - the Multistep Model

The current view, based predominantly on biochemical data, is that the 

preinitiation complex (PIC) in vitro is assembled on the prom oter from free 

factors in a highly ordered stepwise fashion. Significant am ount of data 

indicate that the formation of the PIC is nucleated by binding of TBP (or TFUD) 

to the TATA box. For basal transcription, TBP is sufficient for the subsequent 

incorporation of the other GTFs. Transcriptional regulation by activators, 

however, requires the entire TFIID complex and other factors such as the SRBs, 

for example. The next step, which is believed to be a rate limiting stage in the 

formation of PIC, is the association of TFIIB. TFIIB has at least two functions. It 

stabilises the TBP-DNA complex and is responsible for the recruitment of pol 

II-TFIIF into PIC via contacts w ith RAP30. At this stage it is likely that 

dissociation of unstable TBP-DNA complexes takes place, possibly prom oted 

by negative regulators of transcription (if not highly purified TFUD is used). In

17



basal transcrip tion , TFIIA and TFIIB antagonise the  effect of these 

transcriptional inhibitors. Upon the entry of RNApol II into the PIC, DNA is 

m elted at the initiation site and the first phosphodiester bond is synthesised 

TFIIE, TFIIH and TFHJ join the PIC after the incorporation of RNApol H  

Following the form ation of a complete PIC, RNApol H-CTD dom ain is 

phosphorylated by the TFIIH associated kinase. ATPase hydrolysis, most 

likely by one of the TFIIH helicase activities, is also required for the transition 

from initiation to elongation. Both the kinase and A ^ a s e  activity of TFIIH are 

believed to be essential for prom oter clearance, although som e uncertainty 

comes from recent reports (Goodrich and Tjian, 1994a; Serizawa et al., 1993a; 

Timmers, 1994). After promoter clearance the polymerase is released from its 

contacts w ith  the initiation factors and synthesis of RNA proceeds. TFnS 

clearly is no t necessary for transcription initiation. U pon pausing of the 

polymerase (at the end of a G-less cassette or at a natural pausing site), though, 

this factor is required for resumption of elongation. O ther tw o GTFs - TFIIF 

and TFnj - have been also indicated to stimulate elongation in reconstituted in 

vitro transcription systems, although their function is not well understood.

After the disruption of the preinitiation complex TBP (TFIID) and 

probably TFHA remain at the promoter, poised for reinitiation events. TFIIB 

and TFIIE leave the preinitiation complex and can recycle betw een different 

tem plates in  a template commitment assay, while both subunits of TFIIF travel 

along w ith the phosphorylated form of RNApol II (as determined by western 

blot analysis of elongation complexes on im m obilised tem plates). M ost 

in teresting ly , TFIIH is decom posed upon transition  from  initiation to 

elongation, so that a phosphorylated variant of p62(TFIIH) remains w ith the 

elongating polymerase, while ERCC2 and ERCC3 leave the complex (D. 

Reinberg, personal communication). The disruption of TFIIH m ight explain 

w hy this factor can not be recycled in template commitment assay.
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Of the GTFs, TFIIB, TFIID, TFIIF and pol II are required for most in vitro 

basal transcription systems, while TFIIE and TFIIH were found dispensable for 

transcription from supercoiled templates as described in chapter I.I.I.8 . (Flores 

et al., 1992; Parvin and Sharp, 1993; Tyree et al., 1993).

According to the stepwise model for the formation of the preinitiation 

complex, transactivators exert their function mainly by recruiting GTFs to the 

prom oter via protein-protein contacts w ith different components of the basal 

transcription machinery or "adaptor" molecules. They are also believed to 

enhance the rate lim iting step in the form ation of DB-DNA complex. In 

addition, (Choy and Green, 1993) dem onstrated that acidic transactivation 

domains can also enhance the stability of the preinitiation complex, possibly by 

increasing the affinity of interactions between the GTFs. Based on significant 

am ount of in vitro obtained data, the major consequence of transcriptional 

activation appears to be increased rate in the formation of productive initiation 

complexes.

So far, almost no influence of transactivators on other stages in the 

RNApol n  transcription cycle has been suggested. It is assum ed that once a 

p rein itia tion  complex is form ed, prom oter clearance and  elongation 

automatically take place. Not in complete agreement w ith that assum ption, 

however, is the fact that in vitro longer templates are less efficiently transcribed 

(D.Reinberg, personal communication). One explanation for these observations 

is that the in vitro systems with highly purified initiation components are 

deficient in elongation factors. Another possibility is that in the absence of 

activators and auxiliary factors the transcription complexes lack the ability to 

elongate efficiently. That ability at present seems enigmatic, but several points 

of evidence indicate that transactivators might prom ote novel functions for 

GTFs as compared to basal transcription. TFHA has been presum ed as an anti­

suppressor factor, but only recently show n to be necessary for activated 

transcription in vitro (Ma et al., 1993). It is not known w hether the anti-
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Using a similar approach, (Kim et al., 1994) purified a RNA polymerase 

n  activity, which consisted of about 32 polypeptides. This activity transcribed 

m inim al prom oters w ith higher efficiency than  the in v itro  transcription 

system, reconstituted from purified factors, and was responsive to activators 

upon addition of TFIIB, TBP, TFIIE and TFHH. Furthermore, the transcription 

associated phosphorylation of RNApol II-CTD by TFHH was about 8 fold more 

efficient w hen using the "holoenzyme" as compared to the reconstituted 

system. SRB2, SRB4, SRB5, SRB6, SUGl, G A Lll and the three subunits of yeast 

TFIIF were found in the complex, while no TBP or TAFs were detected. G A Lll 

was recently shown to enhance activated transcription through its effect on the 

basal transcription machinery rather than being a gene specific factor (Sakurai 

et al., 1993). The SUGl gene was characterised as a suppressor of an activation 

defective GAL4 m utant (Swaffield et al., 1992). The SRBs (Suppressors of RNA 

polymerase B) were isolated as suppressors of a deficiency in transcription 

activation, caused by partial truncation of the RNApol H CTD (Thompson et 

al., 1993). Initially, SRBs were copurified w ith  RNApol II and  TBP and 

considered as yeast functional analogues of TAFs (Thompson et al., 1993). (Kim 

et al., 1994) demonstrate that highly purified "holoenzyme" is devoid of TBP or 

TAFs. Thus, the SRBs, G A Lll and SUGl, which were previously reported to 

mediate activation, were all found complexed in an activator responsive pol n  

complex. It is possible that these proteins comprise a novel class of "adaptors" 

distinct from the TAFs.

(Kim et al., 1994) estimate that at least half of the RNA polymerase II 

molecules in the yeast cell are associated w ith  the "holoenzyme". The 

holoenzyme itself can be separated into "mediator" of transactivation and 

"core" enzyme. The "mediator" contained about 20 polypeptides, including the 

SRBs, G A Lll and SUGl. It was indicated that the "core" enzyme can respond 

to activators upon addition of GTFs and either yeast TAFs or "mediator", but
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the authors did not assay for the joint effect of the "mediator" and  TAFs on 

activated transcription.

The integrity of the "holoenzyme" m ay depend on  the m ethod of 

fractionation, which can in  part explain the discrepancy in  the content of Üie 

activator responsive pol II complexes, prepared by these tw o groups. Notabfy 

absent from both complexes are TFHA, TBP and TFIIE. Moreover, TFHA was 

not required either for basal nor activated transcription by the holoenzym e 

The current view of TFHA is that it competes with negative factors that adhere 

to TFIID and block the assembly of the preinitiation complex. Hence, negative 

factors such as ADI (Auble and Hahn, 1993) are possibly absent in these in 

vitro transcription reactions. Alternatively, the holoenzyme is already in  a pre­

activated state, which is not sensitive to inhibitors of transcription.

The in  vitro transcription assays, employed by (Koleske and  Young, 

1994) and (Kim et al., 1994) do not distinguish whether there are differences in 

the properties of the elongating polymerases, initiated by purified factors or by 

the "holoenzyme".

Purification of an  activator responsive RNApol II "holoenzyme" 

provides biochemical confirmation of the genetic evidence that the SRBs, SUGl 

and G A Lll are all required for activation of transcription in yeast. It remains to 

be elucidated whether these proteins and the TAFs could further co-operate in 

activation of pol II transcription. Finally, the studies by (Koleske and Young, 

1994) and (Kim et al., 1994) raise the question whether activator dependent 

enhancement of PIC assembly actually operates in vivo.

1.2.Control of Transcriptional Elongation by P NApol II

As discussed in chapter 1.1.4., m ost transcriptional regulation  in 

eukaryotes is believed to be mediated by transactiyators modulating the rate of
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initiation by pol II. There are several examples however, of regulation at the 

level of transcriptional processivity; that is the ability to elongate through sites 

where the polymerase is liable to pause or terminate prematurely (reviewed by 

(Greenblatt et al., 1993; Lis and Wu, 1993). It is not known w hether different 

factors control initiation and elongation respectively. Nor is it known whether 

regulation of processivity is widespread or confined to a few special cases.

1.2.1. Transcriptional Attenuation in Viral Genes 

1.2.11. HIV-1

One of the m ost intensely stud ied  exam ples of regu la tion  of 

transcriptional elongation is that of HTV-1. Efficient synthesis of HTV-1 mRNA 

requires the virally encoded protein TAT, which binds to a stem-loop structure 

in the 5' region of the viral RNA (TAR). Premature term ination in that gene 

occurs at m ultiple sites dow nstream  of the stem-loop. N uclear run-on 

experiments indicated 5-3' decline in the density of polymerases in the absence 

of TAT. In the presence of TAT, though, a high density of polym erases 

throughout the transcription unit and accum ulation of long RNAs was 

observed both in vitro and in vivo (Kao et al., 1987; Feinberg et al., 1991; 

Marciniak and Sharp, 1991; Kato et al., 1992). This led to the prediction that 

TAT is a sequence-specific anti-term ination factor (Feinberg et al., 1991; 

Feinberg and Green, 1992), although some evidence did not fully support such 

an idea. Deletion of the TAR (initially proposed to be the termination directing 

element) did not reduce the degree of transcriptional attenuation throughout 

the gene (Laspia et al., 1989), and TAR mediated stimulation of transcriptional 

processivity by TAT decreased as TAR was moved away from the promoter 

(Selby et al., 1989). TAT or the adenovirus protein E la  each stim ulated
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initiation from the HIV-1 LTR promoter in HeLa cells by m ore than  15 times 

(Laspia et al., 1989). E la, however, had far smaller effect on processivity, which 

was low and resembled that of basal transcription from the gene. In contrast, 

TAT enhanced both initiation and efficient elongation through the TAR 

element. These results im plied that TAT, in addition to suppressing of 

prem ature term ination, could function like transcriptional activators in 

stimulating initiation.

A further indication that TAT resembles conventional DNA binding 

transcrip tional activators came from the observation th a t the  VP16 

transactivation domain increased initiation, when targeted to the promoter via 

TAR by fusion with the TAT RNA binding domain (Tiley et al., 1992). This 

im plied that TAT might function as an activator. It has also been shown that 

TAT stimulates transcription from a synthetic LTR prom oter as a GAL4-TAT 

fusion protein, targeted to DNA (Southgate and Green, 1991). However, TAT 

function required co-operation with other transactivators, since TAT alone was 

not able to increase CAT expression of an HIVl-LTR-CAT reporter either via 

its cognate RNA binding site or when targeted to DNA by a GAL4 binding 

dom ain. W hen a synthetic LTR prom oter was activated to high levels by 

GAL4-Ela or GAL4-VP16, TAT had little effect on HIV-1 transcrip tion 

(Southgate and Green, 1991), implying that TAT and conventional activators 

stimulate HTV-1 expression in a similar way. Hence, TAT seems to function via 

interactions w ith  prom oter-bound factors by enhancing the form ation of 

elongation-competent transcription complexes (Cullen, 1993). Recent findings 

dem onstra ted  that TAT could directly associate w ith  TBP and TFIID 

(Kashanchi et al., 1994), thus confirming its predicted capacity to intimately 

influence the transcription initiation machinery.

The complexity in the control of the HIVl LTR prom oter requires low 

levels of basal transcription in order to provide the m eans for TAT 

transactivation. Clear evidence for a independent prom oter elem ent (1ST -
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inducer of short transcripts), which is essential for the production of short HIV- 

1 transcripts, was provided by (Sheldon et al., 1993). 1ST was m apped between 

-5 and +26 relative to the start site of HIVl LTR prom oter and m utations in  it 

substantially reduced the formation of non-processive transcription complexes, 

while having no effect on transactivation by TAT. In another study, the TATA 

elem ent w as also show n to be essential for d irecting non-processive 

transcription from the LTR promoter (Lu et al., 1993).

1 2 1 2 . Control of TranseriptionaLElongatlon in  Other Viruses

In eukaryotes, attenuation was first documented in the Adenovirus type 

2 by investigation of RNA synthesis in isolated nuclei (Evans et al., 1979). A t a 

late stage in  infection, transcripts from the AdMLP term inate prem aturely 

approximately 120 and 180 bases downstream of the initiation site. These short 

RNAs were stable enough to be isolated from infected cells or from in  vitro 

transcription reactions (Hawley and Roeder, 1985; Maderious and Chen, 1984). 

It was concluded that the short RNAs observed resulted from true termination 

rather than being products of pausing or processing of longer transcripts, since 

these RNAs can not be chased into longer transcripts. The RNA sequence 

preceding the termination site at +180 has the potential to form a stable stem- 

loop structure and is followed by a stretch of 5 U ’s, where term ination takes 

place (Seiberg et al., 1987).

Attenuation of transcription was also observed during late infection of 

SV40. In vitro, nuclei isolated from the infected cells produced a 95 base RNA 

species from the viral major late promoter (Hay et al., 1982). The prem aturely 

term inated RNA contained two m utually exclusive stem-loop structures, 

followed by five U’s. Truncated SV40-MLP RNAs have not yet been detected in 

vivo, presumably because of their instability (Resnekov et al., 1989).
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Cessation of transcriptional elongation at descrete sites has been also 

documented in the minute virus of mice (MVM) and the polyomavirus (Grass 

et ah, 1987; Resnekov and Aloni, 1989). In these cases attenuation  of 

transcription within the first 200 bases of the transcribed units appeared early 

or late during the infection, respectively. Stem-loop structures and stretches of 

U's in the transcribed RNAs were implicated for the possible mechanism of 

termination.

The prem ature termination of transcription from AdMLP, SV40-MLP, 

the P4 prom oter of MVM and the early prom oter of polyom avirus was 

temporally regulated during the course of infection (Evans et al., 1979; Grass et 

al., 1987; H ay et al., 1982; Resnekov and Aloni, 1989), w hich led to the 

suggestion that attenuation could serve as a control mechanism. In these cases, 

a stem-loop secondary structure followed by a stretch of U's in the elongating 

RNA seems to play an important role in the process of termination. Indeed, 

mutations that destabilised the stem-loop or reduced the num ber of U  residues 

suppressed  the efficiency of the elongation block in  MVM, SV40 and 

Adenovirus (Bengal et al., 1991; Kessler et al., 1989; Seiberg et al., 1987). Such 

structure is reminiscent of the intrinsic prokaryotic rho-independent and some 

factor dependent terminator elements (for review see (Greenblatt et al., 1993; 

Spencer and Groudine, 1990b). This raises a possibility of further analogy in 

the patterns of term ination and antitermination between eukaryotic viruses 

and prokaryotes. A lthough eukaryotic m echanism s of anti term ination, 

resembling these m ediated by phage lambda-N and Q proteins in E.coli can 

not be ruled out, no convincing experimental support for such hypothesis has 

so far been produced. The only parallel that can be draw n is betw een the 

lambda-N and the HIV-TAT proteins. Both of them carry a arginine-rich motif 

and exert their function via binding to RNA. Nevertheless, it seems that TAT 

stimulates transcription of HTV-1 in an essentially different way (at the level of

26



initiation, see chapter I.2.I.I.), compared to the lam bda-N  protein, w hidi 

modifies established elongation complexes.

1.2.2. Transcriptional Attenuation in  Cellular Genes 

1^2.2.1.JPrematur^jrjerminationjif_chmyc Transcription

In normal cells c-myc is subject to a complexity of control mechanisms in 

a diversity of cell types and under a variety of physiological conditions. C-myc 

transcription is upregulated by different proliferative agents such as mitogens 

or growth factors and conversely, it is downregulated by differentiation signals 

(Bentley and Groudine, 1986b; Eick and Bomkamm, 1986; Lindsten et al., 1988). 

In  addition, c-myc expression directs the processes of program m ed cell d ea th - 

apoptosis (Evan et al., 1992). Not surprisingly for an  im portant factor in cell 

grow th and differentiation, aberrant regulation of c-myc is associated w ith  a 

w ide variety of neoplasms.

The steady-state level of c-myc RNA is controlled by m odulating 

transcription initiation, elongation and mRNA stability (reviewed by (Spencer 

and Groudine, 1991). The mouse and hum an genes are transcribed by two 

prom oters, P I and F2, which are separated by about 160 bp. Transcripts, 

originating from the PI promoter, read the full length of the gene or terminate 

prem aturely at position T l, which overlaps the P2 TATA box (Wright et al., 

1991; Roberts et al., 1992). Transcripts, originating from  the P2 promoter, 

term inate at position T2 near the end of the first exon (Bentley and Groudine, 

1988). Notably, P I transcripts do not terminate at T2. Enhanced usage of PI, 

thus surpassing the block of elongation at T2, has been suggested to have an 

im portant im pact for the deregulation of c-myc in Burkitt's lym phom as 

(Spencer and Groudine, 1990a).
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The first indication that c-myc is regulated at the level of transcriptional 

elongation came from experiments w ith differentiating hum an HL-60 cells 

(Bentley and Groudine, 1986a; Eick and Bornkamm, 1986). U pon treatm ent 

w ith  retinoic acid these cells differentiate into granulocytes and reduce the 

steady-state  level of c-myc RNA m ore than  10 fold. N uclear run-on 

experim ents, which detect the density of RNA polym erases over discrete 

segments of the gene, indicated that the rapid initial downregulation of c-myc 

results from a 10 fold increase in a block of transcriptional elongation at the 3' 

end of exon 1. In normal human T-lymphocytes or tonsilar cells stimulated by 

mitogens, increased levels of expression of c-myc are due partially to release of 

that elongation block (Eick et al., 1987; Lindsten et al., 1988). Short truncated 

RNAs, corresponding to attenuated products at the end  of exon 1 have not 

been detected in vivo presumably because they are highly unstable. W hen the 

m urine or hum an c-myc are injected in X laevis oocytes or analysed in vitro, 

though, prem ature termination occurs at T tracts positioned at the end of exon 

1 or at the beginning of intron 1, respectively (Bentley and Groudine, 1988; 

London et al., 1991). These RNA species were unlikely to be products of 

splicing of full length transcripts, since injection of synthetic full length RNA 

d id  no t result in  truncated RNAs. The sequences preceding the sites of 

term ination  have a potential of form ing a stem -loop structu re  in  the 

transcribed RNA both in the human and the mouse c-myc. A 95 bp  fragment 

from the hum an and 180 bp fragment from the m urine gene were sufficient to 

p rogram  prem ature  term ination in X laevis oocytes, w hen  positioned 

dow nstream  from some, bu t not all heterologous prom oters (Bentley and 

Groudine, 1988; Roberts and Bentley, 1992). Interestingly, deletions of the T 

stretches (Bentley and Groudine, 1988) did  not reduce the efficiency of the 

elongation blockage in X.laevis oocytes. Furthermore, the sequences around T2 

w ere found dispensable for attenuation in hum an cells as determ ined by 

nuclear run-on assay. Instead, sequences upstream  of position +47 of P2
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conferred the attenuation of c-myc transcription (Krumm et al., 1992) and see 

below). The idea that promoter elements rather than terminators are essential 

in the control of elongation in c-myc was supported by mutational analysis of 

the c-myc P2 prom oter (D. Bentley, published in (Yankulov et al., 1994). In 

these experiments, mutations of putative transactivator binding sites upstream  

of the m urine P2 prom oter (M elal, E2F and M ela2) reduced the level of 

readthrough transcription, while m utation of the TATA element preferentially 

reduced the level of terminating transcription.

The efficiency of prem ature termination at the c-myc term inator (T2) 

was dependent on the distance from the start site (Bentley and Groudine, 1988; 

Roberts et al., 1992; Spencer et al., 1990). Higher levels of attenuated transcripts 

were observed w hen the T2 element was closer to the start site, while almost 

no termination was detected if this element was more than 500 bp downstream 

of the initiation site regardless of which promoter was used.

The results, obtained in vitro and in X.laevis oocytes by analysis of 

steady-state RNA and in mammalian cells by nuclear run-on assays suggested 

that a genuine pausing or termination of RNApol II takes place at the exon 

1/in tro n  1 boundary. Surprisingly, in vivo detection of ssDNA regions by 

treatment w ith KM n04 (presumably caused by open pol II complexes, in vivo 

footprinting of RNApol II) demonstrated no paused RNApolymerase II at that 

position in HL60 cells (Krumm et al., 1992). KMn0 4  sensitive sites, however, 

were detected about 30 bases downstream of the P2 initiation site both in non­

differentiated and differentiated HL-60 cells. No such KM n04 sensitive sites 

were detected in vitro or in X.laevis oocytes (Meulia et al., 1993). Of potential 

interest is the fact that just upstream  of +30 in the hum an c-myc there is a 

sequence of dyad symmetry, capable of forming a stem-loop structure. High- 

resolution nuclear run-on analysis of c-myc elongation in  HL-60 cells 

supported the notion of polymerase paused at +30, which was released during 

the assay (Krumm et al., 1992; Strobl and Eick, 1992). Interestingly, in the run-
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on analysis the polymerases from differentiated cells were significantly less 

processive and term inated transcription in  the prom oter-proxim al region, 

while those from non-differentiated cells elongated more efficiently in the run- 

on reaction. Sequences downstream of position +47 were found completely 

dispensable for the attenuation of transcription. The authors speculate that 

prom oter-proxim al pausing in c-myc provides a po ten tial signal for 

modification of RNApolymerase H, which transforms it into an  elongation 

competent form. In  X laevis oocytes such a transformation was not associated 

w ith pausing at +30. It was possible that different chromatin structure of c-myc 

in these two systems might influence promoter-proximal pausing.

The observations of (Krumm et a l ,  1992; Meulia et al., 1993) raise the 

obvious question whether the control of c-myc transcriptional processivity in 

mammalian cells and in oocytes is underlayered by a common mechanism or 

not. Recent investigation in our laboratory suggests a positive answer to that 

question. Full discussion of this problem will be given in section 3.1.3.

1.2.2.2. Transcriptional Attenuation in Other Cellular Genes

Pausing or polymerase 'hold-back' close to the start site, similar to that 

in the hum an c-myc, has also been foiind in p i-tubulin , glyceraldehyde-3- 

phosphate dehydrogenase and polyubiquitin genes in Drosophila (Giardina et 

a l ,  1992; Rougvie and Lis, 1990) and the hum an transthyretin gene (Mirkovitch 

and Darnell, 1992). In hsp70, a high density of RNApol II complexes in the 

prom oter- proximal region of the gene can be detected even in cells, which 

have not been heat shocked. Unlike c-myc, in vitro these complexes can be 

released only by high salt or sarcosyl treatm ent (Rougvie and Lis, 1988). 

Activation of HSF by high tem perature in vivo facilitates release of the 

polymerases, which are paused at position +25 relative to the start site, and
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stimulates high levels of transcription over promoter-distal regions of this gene 

(Rougvie and Lis, 1988; Rougvie and Lis, 1990). M utations in the hsp70 

prom oter known to bind another factor (GAGA factor) reduced markedly the 

am ount of "hold-back" polymerases (Lee et al., 1992). GAGA is believed to 

prevent association of nucleosomes or histone 1 w ith DNA, allowing access of 

transcription factors to the promoter (Kerrigan et al., 1991). Thus, promoter- 

proximal arrest in this gene is dependent on sequence specific transcriptional 

factors. Interestingly, polymerases stalled at the 5' end in the quiescent gene are 

hypophosphorylated on the CTD, whereas the elongating polymerases are a 

mix of hypo- and hyperphosphorylated forms (Weeks et al., 1993).

Elongation arrest mechanisms also contribute to developmental timing 

and tissue specificity in the expression of N-myc and L-myc genes (Xu et al., 

1991). In L-myc the block of transcriptional elongation is m apped w ithin the 

first intron of the gene. Loss of this block accounts for the high steady-state 

levels of L-myc mRNA in some small cell lung carcinomas (Krystal et al., 1988). 

In hum an pre-B cells N-myc transcription is attenuated between exon 1 and 2. 

Transcriptional processivity over that region is stim ulated by interleukin-7 

(Morrow et al., 1992). It is not known whether the mechanisms of attenuation 

between c-myc, L-myc and N-myc are related.

Attenuation of transcription at the 5' region of other mammalian genes 

has also been reported. Steady-state levels of N-ras (Jeffers and Pellicer, 1992), 

c-myb (Bender et al., 1988; Watson, 1988), c-fos (Mechti et al., 1991) and ADA 

(adenosine deaminase, (Maa et al., 1990; Ramamurthy et al., 1990) messenger 

RNAs are at least partially controlled at the level of prem ature termination of 

transcription. In all these cases modulations of transcriptional elongation were 

in response to extracellular signals or corresponded to the tissue specific 

distribution of mRNA.

W hen transcriptional elongation of the m urine ADA gene was 

investigated in  injected X.laevis oocytes, term ination occurred m ainly at
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position +96 relative to the initiation start site (Ramamurthy et al., 1990). 

Surprisingly, deletion of 65 bp fragment beginning 8 bp 3’ to the term ination 

site decreased transcriptional blockage at +96, but increased attenuation at a 

secondary site 189 bp further downstream.

Interesting data, which are in tune with the notion that the actual site of 

termination m ight not be the most important determinant in attenuation, were 

provided by analysis of the X.laevis a-tubulin gene in injected oocytes (Hair 

and  M organ, 1993). The 3’ ends of the truncated RNAs w ere m apped 

immediately downstream of a stem-loop structure in the 5' leader. Deletion of 

that structure did not increase the level of extended transcripts, but prem ature 

term ination continued at non-specific sites farther downstream . Sequences 

from -200 to +19 were sufficient to program  attenuated transcription. 

Furthermore, competition with the same fragment specifically stimulated the 

blockage of elongation in the wild type gene. As in the case of the c-myc P2 

prom oter, these findings indicate that prom oter-dependent d isruption  of 

elongation rather than abrogation of a specific antitermination mechanism is 

the cause of prem ature termination.

1.3. Mechanisms of Control of Transcriptional Elongation

1.3.1. The Inhibitor of RNApol II elongation DRB

The adenosine analogue 5,6-dichloro-l-b-D-ribofuranosylbenzimidazole 

(DRB) is a well documented inhibitor of RNApol II transcription which acts at 

the level of elongation. Initial experiments revealed that DRB reduced the 

production of long mRNAs, while short RNAs were not affected by the drug 

(Tamm, 1977; Tamm and Sehgal, 1977; Zandomeni et al., 1983; Zandomeni et 

al., 1982). Subsequently it was dem onstrated that in several genes where
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natural pre-mature termination occurred, DRB inhibited only the fraction of 

polymerases which could read through the attenuation sites (Chodosh et al., 

1989; M arciniak and Sharp, 1991; Marshall and Price, 1992; Roberts and 

Bentley, 1992). Based on these studies, a hypothesis of two classes of RNApol II 

complexes w ith different processivity was introduced. Processive and non- 

processive transcription complexes can be distinguished by tw o major 

criteria. Non-processive polymerases are released from  the tem plate at 

term ination sites within the first few hundred bases of the transcription unit 

(Marshall and Price, 1992). For this reason, non-processive complexes are 

m ostly found in the 5’ part of the transcription un it w hile processive 

polymerases are mostly found at promoter-distal positions (Marciniak and 

Sharp, 1991; Roberts and Bentley, 1992). Processive and  non-processive 

transcrip tion complexes also differ in their susceptibility to DRB which 

specifically inhibits the processive form. According to the hypothesis, non- 

processive complexes have to be converted into the processive form to allow 

read through of potential termination sites. DRB was predicted to inhibit that 

conversion (Marciniak and Sharp, 1991; Roberts and Bentley, 1992; Marshall 

and Price, 1992).

Several points of evidence support the idea that the conversion into 

processive form occurs at promoter-proximal positions or at the level of 

initiation. For example, addition of DRB after initiation in vitro (Zandomeni et 

al., 1983) or during  the elongation stage of run-on analysis (Roberts and 

Bentley, 1992) had no effect on transcription. In addition, complexes which had 

travelled more that 500 bases were resistant to DRB (Roberts and Bentley, 1992; 

Kephart et al., 1992; Marshall and Price, 1992). These data clearly indicate that 

although DRB inhibits transcription at the level of elongation, it can not 

promote intragenic termination throughout the transcription u n i t . RNApol H 

complexes, which have already been converted to high processivity mode, are 

not sensitive to the drug. Two studies, though, directly contradicted that model
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(Chodosh et al., 1989; Marshall and Price, 1992). In these assays, addition of 

DRB subsequently to initiation inhibited the synthesis of longer transcripts, 

although continuous reinitiation events or modification of pol II complexes at 

early stage of elongation were not ruled out.

The molecular basis for the difference in processivity and susceptibility 

to DRB betw een different pol II complexes is unclear. Insight into the 

mechanism of action of DRB is provided by the fact that in vitro it can inhibit 

several protein kinases, including some CTD kinases (Zandomeni et al., 1986; 

Cisek and Corden, 1989; Stevens and Maupin, 1989). A recent study by (Dubois 

et al., 1994) indeed showed inhibition of the phosphorylation of RNApol II 

CTD by DRB, which correlated with the level of RNA synthesis in vivo. The 

effect of DRB was very similar to that of two well characterised protein-kinase 

inhibitors: H-7 and H-8. The work of (Dubois et al., 1994), though, does not 

d istingu ish  w hether dephosphorylation of CTD results from  inhibited 

transcrip tion (hyperphosphorylation of CTD is associated w ith  actively 

transcribed polymerases in vivo) or alternatively, inhibition of a CTD kinase 

directly suppresses transcription.

Better understanding of how exactly DRB operates in the control of 

transcriptional elongation is hampered by the lack of reasonable target for this 

drug. M arshall and Price (1992) have suggested the existence of P-TEF 

(Positive-Transcription Elongation Factor), w hich converts elongation 

complexes from abortive into processive mode before the polymerases have 

synthesised several hundred bases. Besides speculating that P-TEF could be a 

k i n a s e ,  n o t h i n g  e ls e  is k n o w n  a b o u t  t h i s  f a c t o r .
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1.3.2. Role the Promoter in Control of RNApol II Elongation

Throughout this review I described several cases in viral and cellular 

genes, where attenuation of transcription was implicated in the overall control 

of their expression. In some of these genes discrete sites of prem ature 

termination were characterised and shown to operate in the context of different 

promoters and different expression systems. Although no sequence homology 

betw een different intragenic term inators was reported , RNA stem -loop 

structures followed by stretches of T's in DNA were proposed to constitute the 

a ttenua tion  responsive elem ents in som e, b u t no t all term inators. 

Paradoxically, deletion of the T2 element from c-myc (Krumm et al., 1992), 

TAR from HIV-1 (Sheldon et al., 1993) and the X laevis a-tubulin  terminator 

(Hair and Morgan, 1993) respectively, does not abolish attenuation, bu t shifts 

the positions where the polymerases pause or cease elongation. A plausible 

explanation for this observation is that though they are not essential for 

term ination per se, these elements facilitate efficient term ination at discrete 

sites making it more easily detectable than if it occurred inefficiently at many 

positions. A nother indication that transcriptional elongation m ight be 

controlled at positions, distal from term inator elements, is the fact that no 

factors, binding to the sequences that direct premature termination, have so far 

been discovered.

As described in the previous chapter, efforts to explain the mechanism, 

by which DRB inhibits elongation, led to the hypothesis of promoter-proximal 

modification of RNA polymerase n  complexes. Thus, the question whether the 

promoter regulates transcriptional processivity becomes quite important.

The prom oter has been implicated in the control of transcriptional 

elongation in the U1 and U2 snRNA, c-myc, HTVl and Hsp70 genes. The U1 

and U2 snRNA prom oters are essential for the generation of transcription

35



complexes which recognise the 3' box terminator and therefore produce correct 

3’ ends (Neum an de Vegvar et al., 1986; H ernandez and W einer, 1986). 

Replacement of U1 and U2 promoters w ith HSV TK or HIV-1 prom oters, 

respectively, resulted in decreased usage of the 3' box and  increased 

term ination at heterologous downstream poly A sites. In Hsp 70 and H sp 26 

genes, activation of the promoter bound HSF releases paused polymerases and 

dramatically induces transcription over the 3' region of the gene (Lis and Wu, 

1993). Similar mechanism of modulation of transcriptional processivity exists 

in  the c-myc gene. Mutations or deletion of putative transactivator binding 

sites (M elal, E2F, M ela2) markedly decreased transcription through the T2 

termination element in oocytes (D.Bentley, published in (Yankulov et al., 1994).

Interesting possibility that prom oter based factors could positively 

regulate elongation of pol II transcription also comes from analysis of synthetic 

HIV-1 genes (Southgate and Green, 1991). GAL4-VP16 and GAL-Ela 

stim ulated  transcription to high levels w hen targeted to the synthetic 

prom oter. In  these experiments processivity was not addressed, bu t in the 

presence of GAL4-VP16 and GAL-Ela TAT had no additional effect on the 

expression of the reporter CAT gene. Thus upregulation via promoter elements 

circumvented the requirement for a stimulator of elongation. The fact that TAT 

enhances both initiation and elongation (see chapter 1.2.1.1) further supported 

a hypothesis that strong transactivation domains could increase processivity of 

transcription from the HIV-1 LTR promoter (Cullen, 1993; Greenblatt et a l,

1993).

Since attenuation has been observed at the 5' regions of many genes, it 

is reasonable to expect the existence of prom oter based sequences which 

generate non-processive transcription. In the Hsp70 gene, such element is the 

GAGA factor binding site which is required to establish paused polymerase 

(Lee et al., 1992), whereas in the hum an c-myc sequences upstream +47 relative 

to the start site are sufficient to confer promoter pausing (Krumm et al., 1992).
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Detailed analysis, of the mouse c-myc P2 promoter in XJaevis oocytes indicated 

that m utations in the TATA box significantly reduced transcription, bu t 

surprisingly , com pletely abolished term ination at the T2 site. Similar 

requirement for the TATA element in maintaining low levels of non-processive 

transcrip tion was observed in HIV-1 too (Lu et al., 1995). In addition, 

production of attenuated transcription in HIV-1 also requires 1ST (see 1.2.1.1, 

(Sheldon et al., 1993) which overlaps the initiation site.

1ST can support non-processive transcription w hen incorporated into 

other promoters and mutations in it do not affect TAT transactivation (Sheldon 

et al., 1993). Based on its autonomy and sequence, 1ST is rem iniscent of 

Initiator elements, found in many cellular genes (for review see (Weis and 

Reinberg, 1992). In itiators are necessary and sufficient for accurate 

transcription initiation in vitro at TATA-less promoters. They were also found 

in m any TATA containing promoters, but their in vivo significance in such a 

context has not been determined. It is possible that the 1ST. element represents a 

initiator m otif in the HIV-1 LTR. Most interestingly, there is a significant 

similarity in the sequence of the transcription start site of the hum an c-myc, 

HIV-1 LTR and the Ad2ML promoters, all of which produce relative high 

levels of non-processive transcription (Krumm et al., 1993). It is then possible 

that certain initiator-like elements specify initiation events which give rise to 

prematurely terminated transcripts.

In sum m ary, prom oter elements of certain genes can positively or 

negatively regulate processivity of pol II transcription. Negative elements in 

HIV-1 and c-myc coincide w ith sequences that are required for basal or non­

activated transcription in vitro. The GAGA factor, which binds the Hsp70 

promoter, functions by antagonising chromatin repression of transcription in 

different promoters. In contrast, in all cases described so far, upregulation of 

pol n  processivity via the promoter is by transcriptional activators. It is not 

know n w hether the same activation domains can contribute to increased
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processivity of transcription in different promoter contexts. Neither is it known 

w hether all transactivators possess intrinsic properties to increase the 

elongation competence of RNApolymerase n.
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RESULTS

2.1. Transcriptional Activators Stimulate RNApol II Processivity

2.1.1. Strategy of Investigation

As described in chapter 1.3.2., promoter elements which bind sequence 

specific activators, contribute to  regulation of the efficiency w ith  which 

polym erases read through the 5' regions of the transcription units. It was 

possible that this type of control is confined to c-myc, HIV-1 and some genes 

w hich are norm ally regulated at the level of transcriptional elongation. 

Alternatively, control of RNApol II processivity by transactivators could be a 

w idespread phenomenon.

In order to study in detail the role of transactivators on processivity of 

RNA polymerase II transcription a strategy of investigation, based on the 

injected X.laevis oocyte system, was designed. X.laevis oocytes have the 

advantage that they do not degrade attenuated transcripts so that the am ount of 

term inated and readthrough RNA can be directly quantified by RNAse 

pro tection  assay (Bentley and G roudine, 1988). W hether or no t RNA 

polymerases terminate at T2 or HIV-2 TAR was used as a criterion to indicate 

w hether they are of the processive or the non-processive type (Roberts and 

Bentley, 1992). Previously it has been shown that processive polymerases which 

read through the c-myc T2 element do not terminate at a second T2 site in 

tandem  (Roberts and Bentley, 1992). The fraction of transcripts which read 

through (RT/RT+TM) was a measure of the processivity of transcription. The 

interpretation of the experiments in my thesis is unaffected by whether or not 

the 3’ ends detected are generated by termination at these sites or termination 

followed by processing.
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Several synthetic genes with promoters, containing five binding sites for 

the yeast transcriptional activator GAL4 upstream of different TATA elements 

were constructed. TATA boxes were from the mouse c-myc P2 prom oter (Gals- 

P2CAT); A denovirus E4 and E lb prom oters (Gal5-E4mycCAT and Galg- 

ElbmycCAT); from HIV2 LTR (Emerman et al., 1987) (Gal5-HIV2CAT) and 

from the hum an TK promoter w ith or without an initiator element - n  and IV 

(Smale et al., 1990) - (Galg-II-TKmycCAT and Galg-IV-TKmycCAT). All 

constructs except Gal5-HIV2CAT contained the c-myc T2 term inator element 

(Bentley and Groudine, 1988) 100-300 bases downstream of the transcription 

start site. Gal5-HTV2CAT contained the HIV2 TAR terminator element. HIV-1 

and HTV-2 LTR promoters are highly conserved (Emerman et al., 1987; Guyader 

et al., 1987). Transcription from both of them is activated via Spl and NF-kB 

sites and is attenuated at TAR (Guyader et al., 1987). Schematic representation 

of the constructs used in this investigation is given in Fig. 1.

These constructs were co-injected in X.laevis oocytes w ith GAL4-fusion 

proteins or w ith  BSA as a control. The GAL4-proteins contained the DNA 

binding domain of GAL4 (GAL4(1-147)) fused to the transactivation dom ain of 

the Herpes simplex virus protein VP16 (GAL4-VP16, (Sadowski et al., 1988); the 

conserved region 2&3 transactivation domain of the Adenovirus E la protein 

(GAL4-Ela, (Lillie and Green, 1989) or the synthetic acidic amphipathic domain 

AH (GAL4-AH, (Giniger and Ptashne, 1987). VP16 and AH transactivation 

domains are highly acidic, while Ela(CR2&3) is not. H um an recombinant TBP 

w as used to investigate the control of processivity directed by the TATA 

element. As a control for injection efficiency and RNA recovery, the Adenovirus 

VAl gene which is transcribed by pol m , was co-injected with the test plasmids.

RNA from the oocytes, injected w ith each construct and each of the 

recom binant proteins w as analysed by RNAase protection assay and  the 

products were quantified by a Phosphorimager (Molecular Dynamics) or by 

densitom etry. Processivity (RT/RT+TM) of non-activated transcription (co-
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Figure 1. Schematic representation of the genes, used in  the 

analysis of RNApol II processivity.

The transcription initiation sites are indicated by long 

arrows. P I and P2 - Promoter 1 and Promoter 2 initiation sites of 

the m ouse c-myc gene. T1 and T2- term ination site 1 and 

term ination site 2 of the c-myc gene. TAR-the transcription 

activation responsive element of HIV. Short arrow s indicate 

m ultiple sites of premature termination in the HTV2 TAR. TATA 

boxes and the TdT initiator element are represented by open 

circles. The sequences of the TATA boxes and the Initiator are 

given below each of these elements. Filled in circles m ark the 

positions of transactivator binding sites in the mouse c-myc and 

the LTR HIV2 promoters. GAL4-binding sites are show n by 

squares. CAT-Chloramphenicol-Acetyl-Transferase encoding 

sequence. More details about the constructs used are given in the 

text and in Materials and Methods.
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injection of BSA) and transcription, driven by different activation domains or 

the wild type promoters was estimated.

2._L2.^^nthelic_Activators Enhance Processivity of c-myc Transizription

C-myc transcription is regulated by attenuation at prem ature termination 

sites. Transcripts, originating from the PI promoter read through or terminate at 

the T1 site, which overlaps the P2 TATA element (Roberts et al., 1992), while 

transcripts from the P2 prom oter read through or term inate at the T2 site 

(Bentley and Groudine, 1988). It is possible that this promoter interacts w ith a 

special class of activators that can regulate processivity. A lternatively, it is 

possible that the ability to stimulate elongation could be a general property of 

transcriptional activators. To address that question, I assayed whether synthetic 

activators could affect transcriptional processivity from a chimaeric c-myc gene, 

in  which sequences upstream  of the P2 TATA box were replaced by five 

binding sites for the yeast transcription factor GAL4 (pGal5rP2CAT, see Fig. 1). 

The plasmid was co-injected with BSA as a control or saturating amounts of the 

recom binant transcription factors GAL4-AH, GAL4-VP16 or GAL4-Ela. The 

total protein concentration injected was equalised w ith BSA. Processivity 

(RT/RT+TM) was determ ined after quantifying the RT and TM RNAase 

protection products by a Phosphorimager (Molecular Dynamics).

In the absence of transactivators most of the transcripts from Gals-P2CAT 

term inated prem aturely at the T2 site (Fig. 2, lanes 2 and 6). The average 

processivity (RT/RT+TM), measured in 5 experiments, was 10% (Table 1 and 

Fig. 6). In contrast, the intact c-myc P2 promoter is typically transcribed with 

about 75% processivity (see for example Figure 12, lane 1). Most of the non­

activated transcription was inhibited by 2 Jig/m l a-am anitin (Fig. 2, lane 7) as
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Figure 2. Activation of processive transcription from a chimaeric 

c-myc promoter by GAL4 fusion proteins.

RNAse protection of transcripts from oocytes injected with 

Gal5-P2 CAT plasm id plus BSA (C), GAL4-AH (AH), GAL4- 

VP16 (VP) or GAL4-Ela (El). The antisense XhoI-BamHI probe 

was transcribed from pSX943 by T3 RNA polymerase. A m ap of 

Galg-P2 CAT with a diagram of the RNAse protection strategy is 

show n in  the lower panel of the figure. M: M spl cut pBR322 

markers 404,309, 242, 238 bp. Probe, P, and protection products 

corresponding to correctly initiated readthrough (RT) and T2 

term inated (TM) RNA are marked. Full length protection of the 

probe corresponds to RNAs which read all the way around the 

p lasm id . P rocessiv ity  values (RT/RT+TM ) b ased  on  

Phosphorim ager analysis are shown below each lane (The TM 

band has 1.25 times fewer labelled residues than the RT band, nd: 

not determined). Lanes 6 and 7 are from a different experiment in 

which oocytes were injected with BSA with or without 2 |ig /m l 

a-am anitin (final intracellular concentration). RNAse protection 

products from the co-injected Adenovirus VAl gene (VA) are 

shown below.
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expected for pol n  transcription, while transcription of the co-injected VAl gene 

was unaffected. (Lanes 1-5 and lanes 6 ,7  are from different batches of oocytes).

Next, transcrip tion activated by recom binant transactivators w as 

examined. GAL4-AH, -VP16 and -Ela stimulated transcription from the Gals- 

P2 CAT gene approximately 15 fold relative to BSA injected controls (see Table 

1 and Fig. 6). Interestingly, the GAL4 activators increased not only the total 

am ount of transcription but also its processivity. In the presence of GAL4-VP16 

or GAL4-Ela, the processivity of Gal5-P2 CAT transcription increased from 8% 

to about 90% (Fig. 2, compare lane 2 w ith lanes 4,5). GAL4-AH activated 

transcription had a processivity value of 68% (Fig. 2, lane 3) which is m uch 

higher than that of non-activated transcription but significantly lower than 

GAL4-VP16 or GAL4-Ela activated transcrip tion . A verage values of 

processivity from several independent experiments are given in Table 1 and 

Figure 7.

In conclusion, the truncated c-myc P2 prom oter in w hich sequences 

upstream  of the TATA box were replaced by GAL4 b inding  sites was 

transcribed w ith far lower processivity in the non-activated state, as compared 

to the wild type gene. Chimaeric GAL4 transactivators dramatically stimulated 

processivity of transcription from this prom oter however GAL4-VP16 and 

GAL4-Ela had a consistently larger effect than GAL4-AH.

2.1.3. Synthetic Activators Enhance Processivity of HIV2 Transcription

I w anted to ask w hether the effect of synthetic transactivators on 

transcriptional elongation applied to genes other than  c-myc. Initially, a 

chimaeric HTV2 construct, which has terminator and basal promoter elements, 

unrela ted  to c-myc, w as tested. Like c-myc, HIV2 produces prem aturely
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terminated transcripts in oocytes. The 3’ ends of these truncated RNAs are in the 

TAR region 120-145 bases from the start site (Fig. 3, lane 6) in  agreem ent w ith 

the 3' ends previously mapped in Hela transcription extracts (Toohey and Jones, 

1989). A HIV2 LTR CAT fusion gene was constructed, in  w hich sequences 

upstream  of the TATA box were replaced by five binding sites for GAL4 (Galg- 

HIV2CAT). Processivity of transcription (RT/RT+TM) from this gene was 

determ ined in injected Xenopus oocytes by quantifying RNAase protection 

products as for the Gals-P2CAT gene.

The Gal5-HIV2 gene was transcribed with 25 % processivity on average 

in the absence of transactivators (Fig. 3, lanes 2 and 7 and Table 1) in contrast to 

the intact HIV2 LTR which is transcribed with about 70 % processivity (Fig. 3, 

lane 6). Most of the non-activated transcription was by RNA polymerase II as 

shown by its sensitivity to 2 jig /m l a-am anitin (Fig. 3, lane 8. Lanes 2-6 and 

lanes 7, 8 are from different batches of oocytes.). When saturating amounts of 

GAL4-VP16 or GAL4-Ela protein were co-injected w ith  the tem plate, 

processivity increased from 21% with BSA alone to 72% and 63%, respectively 

(Fig. 3, compare lane 2 with lanes 4,5). Transcription activated by these two 

proteins closely resembled transcription from the intact HIV2 LTR which is 

activated by endogenous oocyte factors (Fig. 3, lane 6). GAL4-AH also 

stim ulated processivity relative to the BSA control (46% versus 21%, Fig. 3, 

compare lanes 2 and 3) but consistently less well than GAL4-VP16 or GAL4- 

E la. The results of several experiments in different batches of oocytes are 

summarised in Table 1 and Fig. 6.

Interestingly, truncated HIV2 transcripts from the intact LTR and from 

Gals-HIV2 CAT in the presence of GAL4-VP16 were about 10 bases longer on 

average than those made in the presence of GAL4-AH, GAL4-Ela or in the 

absence of activator. 5' end-m apping showed that the HIV2 start site was 

unaffected by any of the activators (see Fig. 10). This variation in the preferred 

site of term ination may reflect different elongation properties of transcription
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complexes activated in different ways. I conclude that synthetic activators 

stimulate transcriptional elongation in both the HIV2 and the c-myc constructs 

in a similar manner.

2.1.4. Activation Domains Differ in Their Ability to Stimulate Processivity

GAL4-VP16 and GAL4-Ela consistently stim ulated transcription of 

higher processivity from the Gal5*P2 and Gal5-HIV2 promoters when compared 

to GAL4-AH (Figs, 2 and 3). This difference could reflect some special property 

of the HIV2 and c-myc genes which are normally regulated at the level of 

elongation or a genuine dissimilarity in the functional properties of the three 

activation domains. I asked whether these activators w ould have similar effect 

on  processivity of transcription from synthetic promoters, unrelated to c-myc or 

HIV2. Two constructs composed of five GAL4 binding sites, TATA elements 

from the Adenovirus E4 or Elb genes and the c-myc T2 element positioned 

about 110 bases downstream the initiation site were chosen for these assays 

(pGal5-E4mycCAT and pGals-ElbmycCAT, see Figure 1). In the experiment 

presented in Figure 4 the plasmids were injected in X.laevis oocytes along with 

BSA or saturating amounts of recombinant GAL4-AH, GAL4-VP16 or GAL4(1- 

94) proteins. Correctly initiated readthrough and term inated transcripts were 

detected by RNAse protection assay and quantified by a Phosphorimager (see 

also Table 1).

Gal5-E4mycCAT and Galg-ElbmycCAT genes produced low levels of 

non-activated transcription with less than 5% processivity (Fig. 4, lane 1 and 5), 

w hereas GAL4-AH and GAL4-VP16 activated transcription w as far more 

processive. (The signal in the control lanes, injected w ith BSA only, is too weak 

to be seen in Figure 4. Representative signals can be observed under longer 

exposure of the gels, for example see Fig. 8 and Fig. 13). Non-activated 

transcription was by pol II, as shown by its sensitivity to 2 lig /m l a-am anitin in

47



Figure 4. Activation of processive transcription from synthetic 

promoters by GAL4 fusion proteins.

RNAse protection of transcripts from oocytes injected with 

pGals-ElbmycCAT or pGal5-E4mycCAT and BSA (C), GAL4(1- 

94), GAL4-AH (AH), or GAL4-VP16 (VP), respectively. The 

m apping strategy is diagrammed below using probes derived 

from pVZ-Gal5E4myc and pVZ-GalgElbmyc. RNAase protection 

of the co-injected VAl control (VA) is shown below. (The lanes in 

this gel do not align with the corresponding lanes in the upper 

gel). Lanes 9,10: Gals-E4myc transcripts activated by GAL4-AH 

from oocytes incubated in the presence (DRB) or absence (C) of 

75 mM DRB. The slight difference in mobility of the TM bands 

w ith  and w ithout DRB were not confirmed w hen the two 

samples were mixed. Experiments in lanes 1-4, 5-8 and 9,10 are 

from three different batches of oocytes. RT: readthrough, TM: 

term inated, nd: not determined. The positions of 201 and 110 

bases m arker bands (Mspl digested pBR322) are also indicated. 

TM products in lanes 1 and 5 can be observed under longer 

exposure of the gel. Processivity values (RT/RT+TM), based on 

Phosphorim ager analysis, are given below each lane. The TM 

product contains 1.4 less labelled U residues than  the TM 

product. "<5" indicates detection of TM signal only.
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(Fig. 8, lane 2). GAL4-VP16-stimulated transcription w as m ore than  99% 

processive w ith  no detectable prem ature term ination at T2 for both  of the 

constructs used (Fig. 4, lanes 4 and 8). A significant fraction of GAL4-AH- 

stim ulated  transcrip ts term inated prem aturely , giving 71% and  68% 

processivity for Gal5-E4mycCAT and Galg-ElbmycCAT, respectively (Fig. 4, 

lane 3 and 7). However, GAL4-AH activated transcription was still far more 

processive than non-activated transcription from these two constructs (Fig. 4, 

lane 1 and 4). For reasons I do not understand, GAL4 (1-94) suppressed the low 

level transcription observed in the presence of BSA for all the constructs I tested 

in oocytes (Fig. 4, lane 2 and 5 and data not shown).

The adenosine analogue DRB specifically inhibits the bulk of processive 

b u t not non-processive RNApol II transcription in many cellular genes (Tamm 

et al., 1976), This general effect of DRB was confirmed in the specific cases of the 

c-myc gene in vivo and HTVl in vitro (Roberts and Bentley, 1992; Marciniak and 

Sharp, 1991), It was important to test whether DRB also affected transcription 

from synthetic promoters, activated by recombinant transactivators. pGals- 

E4mycCAT was co-injected w ith GAL4-AH and the oocytes were incubated in 

m edium  containing 75 p.M DRB. DRB reduced the processivity of transcription 

(RT/RT+TM) of this gene from 72% to 28% (Fig. 4, lanes 9 and 10). Similar 

effects of DRB were observed in experiments w ith the Gal5-P2CAT^ Galg- 

ElbmycCAT and Gals-HIV2CAT constructs (see Fig. 13 and data not shown). 

Hence processive transcription activated by GAL4 fusion proteins resembles 

transcription of many genes in vivo in its sensitivity to DRB.

In conclusion, the processivity of transcription from synthetic promoters 

can be stimulated by activators and inhibited by DRB in a similar way to the 

w ild type c-myc and HIV2 genes implying that these properties are quite 

general and not restricted to a special class of genes. The results indicated that 

GAL4-AH driven transcription had consistently lower processivity than GAL4- 

VP16 or GAL-Ela driven transcription. A summary of the effects of several
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chimaeric GAL4 activators on the transcription of four different reporter genes 

in Xenopus oocytes is shown in Table 1 and Fig. 6.

2.1.5. The Initiator Element Does not Affect Processivity in X.laevis Oocytes

The initiation sites of HIVl-LTR (CTGGGTCTCT), the hum an c-myc P2 

(CTAACTCGCT)(Krumm et al., 1993), HIV2-LTR (TTCGGTCGCT) and the 

m ouse c-myc P2 (CTCGACTCGCT) share certain level of hom ology and 

constitute a Initiator-like element (Krumm et al., 1993). No such sequence is 

present in Gal5-E4mycCAT or Galg-ElbmycCAT. Interestingly, at non-activated 

state Gals-P2CAT and GAL5-HIV2CAT always produced higher levels of 

transcrip tion  than  Gals-E4mycCAT and G alg-E lbm ycCA T. A ctivated  

transcription from Gal5-P2CAT was slightly less processive as compared to 

Gal5-E4mycCAT and Galg.ElbmycCAT. Note that these three synthetic genes 

had identical transactivator and terminator elements. These differences could 

reflect some quality of the initiator-like element in the c-myc P2 prom oter (and 

that in the LTR-HTV2) to support high levels of non-processive transcription. I 

assayed the possible role of the initiator element in the control of transcriptional 

elongation by using pGalg-II-TKmycCAT and pGalg-IV-TKmycCAT. The only 

difference between these two promoters is that pGalg-IV-TKmycCAT contains 

the hum an terminal transferase initiator element downstream of the TK TATA 

box, while pGalg-IV-TKmycCAT does not (see Figure 1).

pGalg-II-TKmycCAT and pGalg-IV-TKmycCAT were injected in oocytes 

and transcription was activated by GAL4-AH. Both constructs produced similar 

low levels of non-processive transcription, w hen co-injected w ith BSA (Fig. 5, 

lanes 1 and 5, these products can be observed under longer exposure of the gel). 

GAL4-AH stimulated transcription with almost equal processivity (69 % for 

pGals-ITTKmycCAT and 75 % for pGalg-IV-TKmycCAT) independently of the

50



Figure 5. The Initiator element does not affect processivity in 

X-laevis oocytes.

RNAse protection of transcripts from oocytes injected with 

pGalg-il'IKmycCAT or pGalg-IVTKmycCAT and BSA or GAL4- 

AH (AH), respectively. Antisense probes were synthesised by 

Sp6 RNA polymerase from Bgin linearised pVZ-GalsIITKmyc 

and pVZ-GalglVTKmyc templates. The m apping strategy is 

diagram m ed in the lower panel of the figure. RNAse protection 

of the co-injected VAl control (VA) is shown below (The lanes in 

this gel do not align w ith the corresponding lanes in the upper 

gel). RT: readthrough, TM : terminated. 201 and 123 bases marker 

bands are as marked by arrows. TM products in lanes 1 and 5 can 

be observed under longer exposure of the gel. "+" and 

correspond to oocytes, injected or not with a-amanitin at 2 Kig/ml 

final intracellular concentration.
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Figure 6. Sum m ary of the effect of GAL4 activators on  the 

processivity (RT/RT+TM) of transcription from four reporter 

p lasm ids in  injected X.laevis oocytes: Galg-PZCAT, G als- 

HIV2CAT, Gals-E4mycCAT and Gals-ElbmycCAT. Average 

values are given for n independent experiments in different 

batches of oocytes. The processivity of Galg-ElbmycCAT was not 

determined w ith the GAL-Ela activator. The graph is based on 

the data in Table 1.

Table 1. Summary of transcriptional processivity from four Gal5- 

promoters in non-activated state and stimulated by recombinant 

GAL4-AH, GAL4-VP16 or GAL4-Ela in injected Xenopus 

oocytes. Processivity is expressed as the percentage of total 

transcription which reads through the termination sites in each 

gene (RT/RT+TM). The data represent analysis of RNAse 

protection assays as described in the text and in the figures. 

Average values are given for the num ber of experiments (n) 

w hich were quantified by Phosphorimager. The average fold 

stim ulation (X) of total transcription relative to non-activated 

state is also given.
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presence of the initiator element in the prom oter (Fig. 5, lanes 3 and 7). In all 

cases transcription was by RNApol II as dem onstrated by its sensitivity to 2 

|xg/m l a-am anitin (Fig. 5, lanes 2,4,6 and 8). In summary, in injected X.laevis 

oocytes the TdT initiator element does not influence the the levels of non- 

activated transcription or the processivity of RNA polymerase II in  the presence 

of an activator. This experiment does not directly address the role of the c-myc 

P2 or HIV-2 initiation sequences in regulating the processivity of transcription. 

It does not establish w hether specific TATA and initiator elements can co­

operate to support high levels of non-processive transcription.

2.1.6._Controls

Xenopus oocytes do not contain GAL4-binding activity as determined by 

gel mobility shift assay (data not shown).

All GAL4 fusion proteins were injected at about 5X molar excess to the 

GAL4 binding sites in the plasmids (about 100 p.g/ml. The am ount of GAL4 

pro tein  injected was equalised using a gel m obility shift assay w ith  

CTGCAGTCGGAGGACAGTACTCCGACCCGGG as a probe (data not shown). 

There was a possibility that some of the effects I observed could be due to minor 

differences in the concentration of the transactivators. To control for such 

potential mis-interpretation of the results I titrated GAL4-AH and GAL4-VP16 

at fixed concentration of the templates (10 jig/m l). The proteins were injected 

betw een 5 iig /m l and 150 pig/ml. The results dem onstrated reduced level of 

expression of the reporter plasmids at lower concentration of the transactivators, 

bu t no significant change in processivity of transcription w as observed. In 

Figure 7, titration of GAL4-AH with Gal5-E4mycCAT is shown.
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Figure 7. T itration of GAL4-AH w ith  Gal5-E4mycCAT as a 

template.

RNAse protection of transcripts made in oocytes injected 

w ith pGal5-E4mycCAT together with 5,50 and 150 jig /m l GAL4- 

AH, respectively. RNAase protection was as in Fig.2. "+*' and 

correspond to oocytes, injected or not with a-amanitin at 2 lig /m l 

final in trace llu lar concentration. RT: read th rough , TM: 

terminated. VAl controls are shown below. The positions of 201 

and 110 bases the MspI-pBR322 markers is denoted by arrows.
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E.coli proteins, purified in the same way as the GAL4-fusion proteins, 

were used in mock-injection experiments to check whether some impurities in 

the protein  preparations could alter the pattern  of transcription from our 

templates. No effect of these proteins was observed (data not shown).

I also assayed w hether GAL4-AH and GAL4-VP16 acted specifically 

through the GAL4 binding sites on the plasmids and not in any other way. 

AGalHIV2 plasmid, in which the five GAL4 binding sites of pGal5-HIV2 were 

deleted, was co-injected separately with each of the proteins. The resulting RNA 

was analysed as for pGal5-HIV2CAT. No effect of these proteins on the minimal 

prom oter activity or processivity of transcription w as observed (data not 

shown).

Transcription in X.laevis oocytes, stimulated by the three GAL4-fusion 

proteins from all templates used, was by RNA polymerase n, as determined by 

its sensitivity to injecting of 20 jig /m l a-am anitin in the cytoplasm (the final 

intracellular concentration is about 2 pg/m l)(data not shown).

All probes used were tested for artifactual cleavage that can result from 

the RNAase protection assay. Standard amounts of labelled RNA probes (70 000 

cpm) were mixed w ith sense transcripts from the corresponding plasmids and 

X.laevis RNA, extracted from one oocyte, and proceeded in parallel w ith the test 

samples. No bands at the positions of RT or TM products of any of the genes 

assayed were resulting from the RNAase protection (data not shown).
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2.2. TBFStimulates Non-processive Transcription

2.2.1. Activators and TBP Differ in the Processivity of Transcription They

Stimulate

Point m utations of the c-myc F2 TATA box significantly decrease the 

streng th  of the prom oter, b u t surprisingly, alm ost com pletely elim inate 

term ination at the T2 site of the gene (D.Bentley, published in  (Yankulov et a l, 

1994). These results pointed out the important role of the TATA box in directing 

non-processive transcription and suggested that a high rate of initiation is not 

necessary in  order to support highly efficient elongation. Nevertheless, I wanted 

to rule ou t the possibility that the effect of activators on processivity could be a 

secondary consequence of an increased initiation rate, w hich m ight result in 

titration of a lim iting term ination factor, for example. In order to stimulate 

initiation w ithout using an activator, I coinjected into oocytes recom binant 

hum an TATA-binding protein (TBP) together w ith some of the synthetic genes, 

used in my experiments. Previously TBP has been show n to stim ulate TATA- 

containing prom oters in Drosophila Schneider cells (Colgan and Manley, 1992).

The Gal5-E4mycCAT and Gal5-P2CAT genes were initially investigated. 

These constructs were injected in X.laevis oocytes w ith  100 lig /m l TBP or 1 

m g /m l BSA as a control (Final concentration in the TBP containing injections 

was brought to 1 m g /m l w ith BSA). a-amanitin was injected separately into the 

cytoplasm (Fig. 8, lanes 2,4,5 and 7) at 20 ng/m l. Both Gal5-E4mycCAT (Fig. 8, 

lane 1) and Gal5-P2CAT (Fig. 8, lane 6) produced low levels of transcripts, most 

of which term inated prematurely at the T2 site of the genes as observed before 

(longer exposures were necessary to see the bands from the Gal5-E4mycCAT 

analysis). TBP stim ulated transcription from both prom oters 3-4 fold (Fig. 8, 

lanes 3 and 8), bu t unlike transactivators it did not increase the processivity as
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Figure 8. TBP stimulates non-processive transcription from the 

Gal5-E4mycCAT and Gal5-P2CAT constructs.

RNAse protection of transcripts made in oocytes injected 

w ith pGal5-E4mycCAT or pGal5-P2CAT and BSA as a control (C) 

or recom binant hum an TBP (TBP), respectively. RNAase 

protection was as in Fig.2 for Gal5-P2CAT and as in Fig. 4 for 

pGal5-E4mycCAT. "+" and correspond to oocytes, injected or 

not w ith a-am anitin at 2 |j.g/ml final intracellular concentration. 

P: probe, RT: readthrough, TM: terminated. VAl controls are 

shown below. The positions of some of the MspI-pBR322 markers 

are denoted by arrows. Lanes 1-4 and 5-8 are from different 

batches of oocytes.
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Figure 9. TBP stimulates non-processive transcription from the 

Gal5-HIV2 construct.

RNAse protection of transcripts from oocytes injected 

w ith  BSA, hum an recom binant TBP, or GAL4-VP16 was as 

described in Fig. 3. Controls (C: Lanes 2 ,3 ,6 ,10) were compared 

With oocytes co-injected with a-am anitin (2 jig /m l intracellular 

concentration) (Lanes 4, 7,11), anti-CTD antibodies (8W G16,10 

p.g/ml final intracellular concentration) (Lanes 5, 8,12) or both 

(Lanes 9,13). Lane 2 is a 5 fold longer exposure of lane 3. M: 

m arkers 160,147,123,110 bp. RT: readthrough, TM: terminated. 

VAl controls (VA) for lanes 3-13 are shown below.
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no increase in the RT signal appeared. Significant amount of the TBP stimulated 

transcription in both cases was not sensitive to a-am anitin (Fig. 8, lane 4). Both 

non-activated and TBP stim ulated transcription from Gal5-P2CAT was not 

completely sensitive to a-amanitin too.

2.2.2. TBP Stimulates Transcription. Sensitive to anti-RNApol H Antibodies

The c-myc T2 termination site (also present in Gal5-E4mycCAT and Gal5- 

P2CAT) coincides w ith a run of T residues which can function as a RNApol XU 

terminator (Bentley et al., 1989). Since TBP is also a pol in factor, TBP stimulated 

a-am anitin  resistant transcripts terminating at this position could actually be 

products of pol m . On the other hand, injecting of the wild type c-myc gene in 

X.laevis oocytes at high concentration can produce certain amount of a-amanitin 

resistant prem aturely terminating transcription (Bentley et al., 1989). This data 

were interpreted as evidence that RNApol m  can compete successfully for the c- 

myc prom oter w hen RNApol II factors are titrated out. Gal5-E4 prom oter 

containing genes, though, had never been reported to be transcribed by pol HI. I 

decided to clarify whether TBP stimulated pol II or pol in transcription by using 

the Gal5-HIV2 construct and to introduce a monoclonal antibody against the 

CTD domain of the large subunit of RNApol II (8WG16, (Thompson et al., 1989) 

as a specific inhibitor of RNApolymerase U. This approach circumvented three 

of the major problem s in the previous experiments. First, like the Gals-E4 

synthetic prom oter, the HIV2 LTR prom oter has never been reported to be 

transcribed by RNApol HI. Second, the HIV2 TAR terminator element does not 

contain any runs of T's which could act as a pol IH terminator. Third, the 8WG16 

antibody is unlikely to inhibit pol III transcription and has been previously 

reported to inhibit pol II transcription (Thompson et al.,1989). The results of an 

experim ent in which I compared the sensitivity of Galg-HIV2 transcription
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In  conclusion, TBP enhanced initiation of all the TATA-containing 

prom oters I tested, bu t unlike the GAL4 activators it d id  not increase the 

processivity of pol II transcription from the same prom oters. That data is 

consistent w ith the idea that the greater processivity of activated transcription 

w as mediated by a specific effect of activation domains on the transcriptional 

machinery and is not a secondary effect of the increased initiation rate.

2.2.3. Transactivators and TBP Do not Change the HIV2 Transcription Start Site

Truncated HIV2 transcripts from the intact LTR and from Gals-HIV2 

CAT in the presence of GAL4-VP16 were about 10 bases longer on average than 

those m ade in the presence of TBP, GAL4-AH, GAL4-Ela or in the absence of 

an activator (see Figures 3 and 9). 5' end-mapping showed that the HIV2 start 

site was unaffected by different transactivators or TBP (Fig. 10), which proved 

that the difference in the length of the TM RNAase protection products in 

Figures 3 and 8 resulted from premature termination at different positions. This 

variation in the preferred site of termination may reflect some difference in the 

processivity of transcriptional complexes that read the 5’ portion of HIV-2 in 

X.laevis oocytes.

2.2.4. TBP Does Not Affect Activated Transcription

TBP and the GAL4 recombinant activators displayed opposite effects on 

processivity of RNApol II transcription. Since all my experim ents were 

perform ed under non-physiological concentrations of TBP on non-activated
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Figure 11. Transactivators overcome the effect of TBP.

RNAse protection of transcripts made in oocytes injected 

w ith pGalg-E IbmycCAT or pGal5-HIV2CAT. Oocytes were co­

injected with BSA (C), TBP, GAL4-AH (AH), GAL4-VP16 (VP16) 

or combination of TBP and transactivator. RNAase protection 

w as as show n in Fig. 3 for Gal5-HIV2CAT and in  Fig. 4 for 

pGal^-ElbmycCAT. P: probe, RT: readthrough, TM: terminated. 

VAl controls are shown below each lane. The positions of some 

of the MspI-pBR322 markers are indicated. Lanes 1-4 and 5 ,6  are 

from different batches of oocytes.
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tem plates, I asked whether TBP could also affect the level of initiation and 

processivity of activated transcription. To check that, I injected pGalg- 

ElbmycCAT together w ith BSA, TBP, GAL4-AH or both GAL4-AH and TBP, 

respectively (Fig. 11, lanes 1-4). In a separate experim ent I com pared the 

processivity of transcription from the Galg-HIVZ gene, which was co-injected 

w ith TBP or TBP plus GAL4-VP16 (Fig. 11, lanes 5 and 6).

In the presence of BSA, TBP and GAL4-AH transcription from pGals- 

ElbmycCAT was identical to that, demonstrated in my previous experiments 

(Fig. 11, lanes 1-3. Com pare to Fig. 4 and Fig. 8). GAL4-AH activated 

transcription with 65 % processivity, while TBP stimulated the synthesis of low 

levels of prem aturely term inating RNAs. W hen TBP and GAL4-AH were 

injected together, the resulting transcription closely resembled that, observed in 

the presence of GAL4-AH alone (Fig. 11, lane 4). Processivity of transcription 

(RT/RT+TM) in the presence of GAL4-AH and TBP was 67 %.

A similar dom inant effect of a transactivator over that of TBP was 

observed w hen pGal5-HIV2CAT was used as a template. In the presence of 

GAL4-VP16 and TBP Gal5-HIV2CAT was transcribed w ith  processivity, 

characteristic for activated transcription from that template (see for example Fig: 

9, lane 10) rather than TBP-stimulated transcription (Fig. 11, lanes 5 and 6).

This data indicate that in X.laevis oocytes TBP can stim ulate low 

processivity RNA polymerase II transcription from non activated templates, but 

the effect of TBP can be almost completely suppressed by co-injecting of 

transcriptional activators.
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2.3. Protein Kinase Inhibitors Reduce RNApol II Processivity

2.3.1. Kinase Inhibitors Reduce Transcriptional Processivity in the c-myc Gene

It has been previously demonstrated that the adenosine analogue DR6 is 

an  inhibitor of RNApol II elongation (Sehgal et al., 1976; Tamm et al., 1976) 

(Roberts and Bentley, 1992; Marciniak and Sharp, 1991; M arshall and Price, 

1992). DRB also inhibits several CTD kinase activities in  v itro  (Cisek and 

Corden, 1991; Stevens and Maupin, 1989). To address the question w hether a 

protein  kinase is involved in DRB suppression of pol II elongation I tested 

whether two well characterised kinase inhibitors (H-7 and H-8) (Serizawa et al., 

1993b) can also inhibit pol II processivity (RT/RT+TM). H-7 and H-8 do not 

affect basal transcription in vitro (Serizawa et al., 1993a; Serizawa et al., 1993b), 

however their effects on activated transcription have not been reported.

Processivity of pol II transcription was studied in injected X.laevis 

oocytes by RNAase protection using templates that were show n to produce 

detectable levels of prematurely terminated RNAs (pSX943, pLTR-HIV2, pGal- 

E4-mycCAT and pGal-Elb-mycCAT, see Figure 1). The strategy of investigation 

was the same as described in Chapter 2.1.1 of this thesis.

Initially I compared the effect of DRB, H-7 and H-8 on transcription of the 

wild type mouse c-myc gene (pSX943). In oocytes this gene produces full length 

transcripts (RT) as well as descrete prematurely terminated RNA species (TM) 

of 300 bases (Fig. 12, lane 1). In Fig. 121 present an experiment, where X.laevis 

oocytes were injected with pSX943 together with pSPVAl as an internal control 

for pol in  transcription and RNA recovery. The inhibitors (DRB at 50 ^M; H-7 

and H-8 at 200 ^iM) were added to the oocyte incubation media. The resulting 

RNA w as analysed by RNAase protection assay as show n in  Fig. 12 (lower 

panel) and quantified by a Phosphorimager (Molecular Dynamics).
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DRB, H-7 and H-8 significantly reduced RT transcription and lowered 

processivity (RT/RT+TM) over the c-myc gene from 73 % to 23-25% (Fig. 12. 

Only RT and TM signals were used to calculate the RT/RT+TM ratio). In 

addition to the increased termination at the previously defined T2 site (TM) 

(Bentley and Groudine, 1988) shorter RNAs, not detected in the control sample 

(tm) were observed when transcription was performed in the presence of DRB, 

H-7 or H-8. The results also indicated that DRB, H-7 and H-8 did not reduce 

significantly the rate of initiation at the c-myc P2 promoter, bu t prevented the 

polymerases from efficiently elongating through the 5' region of the gene. The 

control VAl gene was unaffected by any of these inhibitors.

DRB, H-7 and H-8 also decreased severely processivity of transcription 

(RT/RT+TM) when the wild type LTR HIV-2 gene was used as a template to 

inject X.laevis oocytes (data not shown). In both cases (LTR HIV-2 and c-myc) 

the three inhibitors had similar effect in dramatically suppressing the efficiency 

of elongation, but did not affect pol m  transcription.

2.3.2. DRB. H-7 and H-8 Inhibit Processivity of Transcription. DrivenJby

Synthetic Promoters

In the chapter 2.2. of this thesis it was demonstrated that the efficiency of 

pol II elongation in X.laevis oocytes is controlled predom inantly  at the 

prom oter level by transactivators. It was possible that DRB, H-7 and H-8 inhibit 

a kinase w hich specifically upregulated a factor, responsible for high the 

processivity of transcription from the w ild type c-myc and HIV2 LTR 

prom oters. Alternatively, DRB, H-7 and H-8 could inhibit a kinase activity, 

generally required for high RNApol II processivity. To distinguish between 

these possibilities, I assayed
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Figure 13. DRB, H-7 and H-8 inhibit processivity of transcription 

from a synthetic promoter.

RNAase protection of transcripts from oocytes injected 

w ith  pGal5-ElbmycCAT and BSA or GAL4-AH. DRB and H-8 

were added to the oocyte incubation media at the concentrations, 

given above each lane. RNAase protection was as in Fig. 4. 

Abbreviations: C: control, RT: readthrough, TM: terminated, VA: 

RNAase protection products from the coinjected Adenovirus 

V A l gene. Processivity values (RT/RT+TM ), based  on 

Phosphorim ager analysis are shown below each lane. The TM 

band has 1.4 fewer labelled residues than the RT band. The 

positions of the 201 and 110 bases markers are as indicated.
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w hether these three kinase inhibitors could function independently  of the 

nature of the promoter by using one of our synthetic GAL4 activated genes.

pGalg-ElbmycCAT (see Figure 1) was injected together w ith GAL-AH 

(Fig. 13, lanes 4-9) or 1 ing /m l BSA (Fig. 12, lanes 1-3). The final protein 

concentration in the GAL-AH injections was brought to 1 m g /m l with BSA. The 

injected oocytes were incubated with 500 jiM H-8 (Fig. 13, lanes 2 and 5) or w ith 

different concentrations of DRB (50 jiM - lanes 3 and 6; 1 pM - lane 7; 10 piM - 

lane 8; 500 piM - lane 9). Processivity of transcription w as determ ined by 

RNAase protection assay as described before (see Fig. 4).

H-8 (500 p.M) and DRB (50 pM) had no effect on the typically non- 

processive transcription from GALg-ElbmycCAT in the presence of BSA only 

(Fig. 13, compare lanes 1-3. Lanes 1-3 are from a longer exposure of the gel). In 

contrast, the same concentrations of H-8 and DRB caused increase of the TM 

signal and decrease of the RT signal, when transcription was activated by GAL- 

AH. Processivity (RT/RT+TM) was reduced from 65% in the control to 44% and 

40% for H-8 and DRB, respectively (Fig. 13, lanes 4-6). Titration of DRB revealed 

that it d id not affect the efficiency of elongation when applied at 1 ^iM (Fig. 13, 

lane 7). 10 ^M DRB lowered the processivity values dow n to 42%, while much 

higher concentration (500 jxM) inhibited not only processivity, b u t the overall 

transcription too (Fig. 13, lanes 8 and 9). The VAl gene, which was co-injected as 

a control for pol HI transcription, was unaffected by either H-8 or DRB. Similar 

sensitivity of transcription to H-8 and DRB was observed in experiments, where 

template was pGal5-E4mycCAT (data not shown).

The results in Fig. 12 and Fig. 13 indicated that two kinase inhibitors (H-7 

and H-8) inhibited RNApol II transcription in a way, similar to that of DRB. 

DRB, though, was more efficient than H-8 and H-7. The effect of DRB, H-7 and 

H-8 does not confine to some special class of genes, as dem onstrated by the 

uniform  response of divergent prom oters to these inhibitors. Since non-
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activated transcription was not sensitive to DRB, H-7 and H-8, it seemed that 

activation was a prerequisite for the action of the drugs.

2.3^.a.Jnhibition of Processivity under "Squelching" Conditions

In m any systems, a high concentration of transactivation dom ains 

inh ib its gene expression presum ably because they sequester general 

transcription factors. This phenom enon was term ed "squelching” (Gill and 

Ptashne, 1988). The results; presented in section 2.1. of this thesis demonstrated 

that transactivators can stimulate processivity of pol II transcription. Hence, it 

w as likely that some factor(s), which were required for high efficiency of 

elongation, could interact with transactivation domains and can be sequestered 

under "squelching" conditions. It was possible that DRB was suppressing the 

activity of some of these factor(s) or alternatively acted in transactivator- 

independent manner. These questions were addressed by asking whether high 

concentration of non-binding VP16 transactivation dom ain w ould inhibit 

RNApol n  processivity and whether DRB and VP16 would have additive effect 

on reducing the efficiency of elongation.

X.laevis oocytes were co-injected with the mouse c-myc gene either with 

0.8 m g /m l GAL4(1-147)VP16 or 0.8 m g /m l GAL4 (1-147), which is a much 

w eaker activator in oocytes (data not shown), a -am an itin  w as injected 

separately in  the cytoplasm. DRB was added at 50 |iM to the oocyte incubation 

medium. Processivity of transcription was determined by quantifying RNAse 

protection products as in Figure 12.

A t 0.8 m g /m l GAL4(1-147)VP16 and GAL4(1-147) reduced the total 

am ount of c-myc transcription to 44% and 68% (relative to the VAl gene), as 

compared to the BSA control, respectively (Fig. 14, lanes 1,4 and 7). Contrary to 

its effect on prom oters w ith GAL4-binding sites, GAL4-VP16 decreased the
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processivity of c-myc transcription (RT/RT+TM) from 80% in the BSA control to 

38% (Fig. 14, compare lanes 1 and 7). GAL4 (1-147) had little effect, reducing 

processivity from 80% to 72%, (Fig. 14, lanes 1 and 4). Neither of thé GAL4 

proteins affected the a-am anitin sensitivity of transcription (Fig. 14, lanes 2, 5 

and 8). Interestingly, when GAL4(1-147)VP16 injected oocytes were treated with 

50 pM DRB, RT/RT+TM values remained almost unchanged (38% and 34%; Fig. 

14, lanes 7 and 9). In contrast, 50 p.M DRB inhibited processivity of transcription 

in the BSA and GAL(1-147) injected oocytes to the typical for this gene values of 

20-25% (Fig. 14, lanes 3 and 6). The control VAl gene which is transcribed by 

RNApol in was unaffected by GAL(1-147)VP16 or DRBi

Figure 14 shows that the elongation of c-myc transcripts is markedly inhibited 

under "squelching" conditions. This observation implies that the factors which 

are titrated out by a non-binding activation domain include activities required 

for processive transcription. Inhibition of elongation by "squelching" further 

supports the idea that one general property of transactivation dom ains is to 

interact w ith factors that stimulate transcriptional processivity. In addition, the 

reduced sensitivity of "squelched" transcription to DRB indicates that DRB and 

high concentration of the VP16 transactivation domains could use the same 

pathw ay to decrease the elongational capacity of RNApol II complexes. One 

plausible explanation is that VP16 sequesters a transcription factor (most likely a 

kinase) which is a DRB target.
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2.4. The TFIIH Associated Kinase Activity Is Essential for High Processivity of

RNApol n  Transcription

2.4.1. CTD-kinase Activity Binds VP16

The data presented so far suggested that the activity of a kinase, required 

for high efficiency of elongation in X.laevis oocytes (and in in vitro transcription 

experiments w ith HeLa Nuclear extracts: D.Bentley, unpublished results) was 

sensitive to DRB, H-7 and H-8. Several studies had shown that DRB, H-7 and H- 

8 can inhibit the phosphorylation of CTD (RNApol II carboxiterminal domain) 

in vitro (Cisek and Corden, 1991; Serizawa et al., 1993b; Stevens and Maupin, 

1989) and in vivo (Dubois et al., 1994a; Dubois et al., 1994b). On the other hand, 

DRB did not inhibit transcription "squelched" by GAL4(1-147)VP16, which 

raised a possibility of either direct or indirect interaction betw een this 

hypothetical kinase and the VP16 transactivation domain. To further explore 

that possibility I fractionated HeLa nuclear extract on different affinity resins 

and  looked for CTD-kinase activities that bound specifically to the VP16 

transactivation domain.

GST, GST-SW6 and GST-VP16 proteins were expressed in  vitro and 

im m obilised at sa tu ration  levels on G lutathione-Sepharose 4B beads 

(Pharmacia). GST-VP16 contained the same fragment (aminoacid residues 410- 

490) of the VP16 protein, which was present in GAL4-VP16. GST-SW6 is a fusion 

w ith  the SW6 m utant of the VP16(410-490) activation dom ain in  which Phe 

residues at positions 442,473, 475 and 479 are substituted w ith Pro, Ala, Ala and 

Ala respectively. A lthough it still remains highly negatively charged, this 

m utant has almost no transcriptional activity (Walker et al., 1993).

10 mg aliquots of HeLa nuclear extract proteins in buffer D (50 mM KCl) 

were loaded on 0.6 ml of each resin and the columns were subsequently eluted
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Figure 15. A CTD kinase activity binds specifically to GST-VP16 

affinity resin.

Preparation of the affinity resins, fractionation of HeLa 

Nuclear Extract and kinase activity assay were as described in 

M aterials and Methods. The concentration of KCl (50, 100, 200 

and 600 mM respectively) in  the affinity column fractions is 

indicated by arrows. L: load; FT flowthrough.

A. 0.3 p.1 of each fraction were assayed in standard kinase 

reactions (see M aterials and M ethods) w ith  GST-CTD as a 

substrate. Fixed dried gels were quantified by a Phosphorimager 

(Molecular Dynamics) and the data plotted on a graph. The GST- 

SW6 and the GST-VP16 column CTD-kinase profiles are shown 

below the graph.

B. SDS-polyacrylamide gel analysis of the GST-VP16 

colum n fractions. 5 \i\ of fractions L and FT, 15 |il of fractions 1 

and 2, and 30 jil of fractions 3-8 respectively, were separated on 

10 % SDS-acrylamide gel according to Laemmli (1970) and 

stained w ith Coommassie. The arrows indicate the mobility of 

Rainbow (Amersham) protein molecular weight markers.
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w ith buffer D supplemented with 50, 100, 200 and 600 mM KCl (two fractions 

of two bed volum es for each KCl concentration, respectively). Schematic 

representation of the experiment is given in Fig. 15. Very little or no protein was 

recovered in fractions 3 to 8 from the GST column as judged by Bradford assay 

(BioRad), w hile GST-SW6 and GST-VP16 fractions contained detectable 

amounts (0.05-0.3 m g/m l) of total protein. Each of the GST-SW6 and GST-VP16 

fractions were further analysed by SDS-gel electrophoresis and  by a kinase 

assay using GST-CTD as a substrate (Fig. 15, A and B).

SDS-electrophoresis showed multiple polypeptide bands throughout the 

chrom atographic profile from both GST-SW6 and GST-VP16 columns. No 

significant difference in the polypeptide content of the corresponding fractions 

from the two columns was observed (Fig. 15 B, only the GST-VP16 profile is 

shown). This similarity was likely to result from the ion-exchange properties of 

the resins, since both SW6 and VP16 were highly acidic. Differences in the 

chromatography of concrete proteins will be given in the next chapter.

GST-CTD kinase activity was found in all fractions from both GST-SW6 

and GST-VP16 columns (Fig. 15 A). The protein kinase reaction was specific for 

CTD, since no phosphorylation of GST only was detected (data not shown). 

Fixed and dried gels were quantified by a Phosphorimager and the data plotted 

on a graph to compare the levels of CTD phosphorylation. Most of the CTD- 

kinase activity was recovered in the 0.2 and 0.6 M KCl fractions from both of the 

columns. In fractions 5 to 7 the CTD-kinase activity from the GST-VP16 column 

w as several fold higher than the corresponding fractions from the GST-SW6 

column and ten fold higher than the preceding fractions from the GST-VP16 

column (Fig. 15 A). Thus, it occurred that a CTD-kinase activity bound to the 

VP16 transactivation domain with greater affinity than to the SW6 mutant.
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2.4.2. The VP16 Binding CTD-Kinase Activity Co-clutes w ith  TFIM

Several CTD-kinase activities have been implicated in the control of RNA 

polymerase U transcription. Some of them contain the p34cdc2 kinase (Cisek 

and Corden, 1989). Other two are the DNA-dependent kinase (Dvir e t al., 1993; 

Gottlieb and Jackson, 1993) and the TFIIH associated kinase (Fischer e t al., 1992; 

Lu et al., 1992). I assayed whether the peak of CTD-kinase activity from the 

VP16 affinity column w ould coincide w ith the presence of any of these CTD- 

kinases. The pattern  of fractionation of p34^dc2^ the Ku subunit of the DNA- 

dependent kinase and the p62 subunit of TFIIH was investigated by western 

blot analysis. In addition, antibodies against proteins that were reported  fb 

interact w ith VP16 ((RP-A (Li and Botchan, 1993; He et al., 1993)and TBP 

(Stringer et al., 1990)) were used to estimate the relative affinity of interaction 

between VP16 and other proteins. The results are shown in Fig. 16.

None of the proteins bound to the GST-Sepharose resin. As expected, 

both  TBP and RP-A were eluted in the higher salt fractions (5 to 8) from the 

GST-VP16 column, confirming their previously described affinity to the VP16 

transactivation domain. Interestingly, the m utant GST-SW6 did  not retain either 

of these two proteins. p34^dc2 and the Ku antigen did not bind specifically to 

GST-SW6 or GST-VP16. Although Ku was detected in fractions 1 to 5 from  the 

GST-VP16 column, the signal was weak (the filters w ith the anti-Ku antibody 

were overexposed in order to see these bands) and did not follow the pattern of 

fractionation of TBP or RP-A, indicating relatively low, if any, affinity of 

interaction. Unlike p34cdc2 and the Ku antigen, p62 was alm ost entirely 

depleted from the nuclear extract and found predominantly in fractions 5 ,6  and 

7 from the GST-VP16 column. Far less, although significant am ount of p62 was 

detected in fraction 5 from the GST-SW6 column, bu t the protein  w as not 

depleted from the FT fraction. The elution pattern of p62 on the GST-VP16 

column resembled that of RP-A and TBP and demonstrated comparable affinity

76



Figure 16. W estern blot analysis of the GST, GST-SW6 and GST- 

VP16 affinity column fractions.

5 nl of fractions L and FT, 15 p,l of fractions 1 and 2, and 30 

îl of fractions 3-8 from each column, respectively, were separated 

on  10 % SDS-acrylamide gels and transferred to Immobilon 

m em branes. W estern blot analysis (0.5-3 p g /m l for the 

monoclonal antibodies and 1:200 dilution for the rabbit antisera. 

For detailed description of the antibodies see Table 3) was 

perform ed in parallel with the three filters for each antibody as 

described in Materials and Methods. The filters treated w ith the 

anti-Ku antibody were overexposed to bring up the bands in 

lanes 1-5 from the GST-VP16 column. After each analysis the 

filters were washed in 2% SDS, 100 mM 2mercaptoethanol at 

500C and reused several times. Anti-RPA antibody in  these 

experiments was 70C.
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Figure 17. TFIIH associates with Ela (CR2&3)

Preparation of the GST-Ela(CR2&3) affinity beads, affinity 

chrom atography and western blot analysis were identical to the 

experim ents w ith  GST, GST-SW6 and GST-VP16 resins. 10% 

C oom m assie sta ined  SDS-acrylam ide gel, show ing the 

polypeptide profile of the GST-Ela(CR2&3) column, is presented 

below the results from the western. The arrows indicate the 

m obility of Rainbow (Amersham) protein molecular w eight 

markers.
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for the VP16 transactivation domain. The mutations in the SW6 protein did not 

completely abolish association w ith TFIIH, nevertheless the efficiency of 

interaction was substantially reduced. Most interestingly, TFIIH (p62) followed 

closely the fractionation of the CTD-kinase activity both on the GST-SW6 and 

GST-VP16 columns.

Similar affinity chromatography experiment was perform ed w ith GST 

resin, in which the conserved regions 2 and 3 of the Adenoviral protein E la was 

used as a ligand. The results showed that hum an p62 was retained by the GST- 

Ela(CR2&3) column and eluted at 0.2 M KCl (Fig. 17). In addition, p62 from 

X.laevis oocyte extract interacted specifically with the GST-VP16 resin (data not 

shown). This data imply that the association of TFIIH w ith  transactivtion 

domains (direct or indirect) is not species specific and is not restricted to W 16 

only.

Other pol II GTFs (TFIIF, TFIIE , TFIIS) and the large subunit of RNA 

polymerase II were also detected in fraction 5 from the GST-VP16 column, 

although they were not effectively depleted as in the case of TFIIH and TBP (Fig. 

16). TFIIE and the large subunit of RNApol II were found mostly in the 0.2 M 

KCl fraction, while TFIIF and TFIIS were present in the lower salt fractions too. 

TFIIF, TFIIE, TFIIS and large subunit of RNA polymerase II were not retained 

by neither GST or GST-SW6 resins.

The experiments presented in this chapter do not distinguish whether 

any of the interactions observed were directly between VP16 and the assayed 

proteins or were mediated by other proteins (see Discussion).

2,4.3. The VP16 Kinase is Highly Sensitive to DRB and DisplaysJOFIIH Substrate

Specificity
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Several points of evidence presented so far suggested that a kinase might 

be involved in  the control of pol n  processivity. Indication about the nature of 

that kinase was provided by the fact that a CTD-kinase specifically interacted 

w ith  the transactivation domain of VP16 and was coeluted w ith the p62 subunit 

of the general transcription factor TFIIH. Based on the results in Fig. 14, it was 

predicted that such a kinase may be sensitive to DRB. To test that prediction, it 

w as essential to assay whether DRB (and H-8 and H-7) would inhibit the VP16- 

binding kinase. Another important issue, raising from the results in Fig. 16, was 

w hether it would phosphorylate other substrates, characteristic for the TFIIH 

kinase (RAP74 (TFIIF), p56(TFIIE) and TBP (Ohkuma and  Roeder, 1994). 

Initially, the peak 200 mM KCl CTD-kinase activity fraction from the GST-VP16 

colum n (VPl6-fraction 5) was assayed for its ability to phosphorylate TFIIH 

substrates. In  Fig. 18 A it is shown that VP16-fraction 5 phosphorylates w ith 

almost equal efficiency (15-20 pmoles P i/m g  protein) RAP74 (TFIIF), p56 (TFIIE) 

and CTD (GST-CTD) and less efficiently TBP (about 7 pmoles P i/m g  protein) in 

a kinase reaction that was linear for more than 1 h. Endogenous activity, which 

can phosphorylate these proteins in the absence of TFIIH was not detected in 

the preparations of the recombinant substrates used (data not shown). In 

agreement w ith the previously reported substrate specificity of TFIIH (Ohkuma 

and Roeder, 1994), the VPl 6-binding kinase did not phosphorylate RAP30 

(TFIIF) and p34(TFIIE) (data not shown). As dem onstrated in Fig. 18 A, the 

kinase reaction with all four substrates was highly sensitive to DRB.

In a separate experiment I tested the DRB sensitivity of TFIIH, which had 

been passed through five columns before the final Hydroxyapatite purification 

step (HAP-TFIIH). This preparation was a gift from J.M. Egly. Both HAP-TFIIH 

and VP16 fraction 5 kinases were equally sensitive to DRB w ith RAP74(TFIIF) 

and p56 (TFIIE) as substrates (Fig. 18 A ). (The signal from the gel w ith the 

HA P-purified TFIIH was about 20 times weaker as compared to the VP16- 

fraction 5 kinase). The Phosphorimager data obtained w ith the TFIIF and TFIIE
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Figure 18. Characteristics of the GST-VP16 fraction 5 kinase.

0.3 |xl from fraction 5 from the GST-VP16 column were 

used in  standard kinase reactions which were linear for more 

than 1 h. Substrates were GST-CTD (40 M-g/ml), TBP (40 pg/m l), 

TFIIE (60 p g /m l) and TFIIF (45 pg /m l). 3.3 p g /m l pA dH , 

linearised w ith EcoRI, and the kinase inhibitors (DRB, H-7 and 

H-8) were added to the reactions 30 min before the substrates 

and ATP.

A. The GST-VPl6 fraction 5 kinase and highly purified 

TFIIH kinase are uniformly sensitive to DRB.

The concentration of DRB (pM) in the samples is shown 

above the lanes. 0.1 pi of Hydroxyapatite purified hum an TFIIH, 

45 pg /m l TFIIF and 40 pg /m l TFIIE were used as kinase activity 

and substrates respectively, in HAP-TFIIHxTFIIF samples. The 

gels from GST-VP16 fraction 5 kinase experiments were exposed 

30-120 m in for the different substrates, while the gel from the 

HAP-TFIIHxTFIIF experiment was exposed for 18 h. Fixed dried 

gels were phosphorim aged and the data were plotted on the 

graph, shown in the lower part of the figure. The activity of the 

non-inhibited reactions was normalised to 100%, although there 

were differences in the specific phosphate incorporation.
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substrates were plotted on the graph, shown in the lower panel of the figure. 

The activity in the non-inhibited reactions w ith these two substrates was 

normalised to 100%, although there were differences in the specific phosphate 

incorporation. Signals, relative to the non-inhibited samples were then plotted 

to demonstrate the uniform sensitivity of the two kinase activities to DRB.

The VP16-fraction 5 kinase activity w as further characterised by 

comparing its sensitivity to DRB, H-7 and H-8. Each of the four substrates (GST- 

CTD, TFIIF, TFIIE and TBP) were used. Fixed dried gels were quantified by a 

Phosphorim ager (Molecular Dynamics) and the data plotted on a separate 

g raph  for each substrate. A graph, characteristic for GST-CTD, TBP and 

p56(TFIIE), is shown in Figure 18 B. In that particular case the substrate was 

GST-CTD. DRB typically inhibited the kinase activity to 50% of the control when 

applied between 10 and 50 pM, while the same effect w ith H-7 and H-8 was 

reached at 200 piM or more. Note that similar concentrations are necessary to 

inhibit processivity of pol II transcription both in vitro (D.Bentley, 

unpublished  results) and in injected X.laevis oocytes (Figs 12-14). The 

phosphorylation of RAP74(TFIIF) was as sensitive to DRB and H-8 as the rest of 

the substrates. For reasons I do not understand, phosphorylation of TFIIF was 

not inhibited bu t slightly stimulated by relatively low concentrations of H-7 

(data not shown).

2.4.4. Other Characteristics of the VP16 Binding Kinase

Phosphorylation of the large subunit of RNA polymerase II and some 

synthetic CTD substrates by the TFIIH associated kinase is markedly stimulated 

by promoter DNA (Lu et al., 1992; Roy et al., 1994; Serizawa et al., 1993b) and 

TFIIE (Ohkuma and Roeder, 1994). Another feature of this kinase activity is that 

GTP and dATP, but not UTP and CTP, can compete with ATP for the catalytic
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Figure 18 B. Inhibition of GST-CTD phosphorylation by the 
VP16-fraction 5 kinase in the presence of DRB, H-7 and H-8.

Kinase reactions were perform ed in the presence of 
several concentrations (0-1 mM) of the kinase inhibitors. The 
radioactive band in the lane, corresponding to the non treated 
w ith inhibitors sample, was excised and counted to estimate the 
phosphate incorporation in GST-CTD. The gel was quantified by 
a Phosphorim ager (M olecular Dynamics), the figures w ere 
norm alised for phosphate incorporation based on the counts 
from the excised band and the data were plotted on a graph.



Figure 18 C. Stimulation of the GST-VPl6 fraction 5 kinase

activity by DNA.

Relative kinase activities in reactions, perform ed in  the 

presence or absence of 3.3 ^ig/ml pAdH linearised with EcoRI, is 

presented. The activity in all samples without DNA is normalised 

to 1, although the specific phosphate incorporation for different 

substrates was not equal.

Figure 18 D. The V P l6 fraction 5 kinase activity is selectively 

competed by GTP and dATP.

Standard kinase reactions with GST-CTD as a substrate 

were performed in the presence of 0.5 mM ATP, GTP, dATP, ÇTP 

and  UTP. The fixed d ried  gel w as quan tified  by a 

Phosphorimager (Molecular Dynamics) and the data plotted on 

the graph. The bars represent percentage of the GST-CTD kinase 

activity relative to the control (C).
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Figure 19. Im m unodepletion of the kinase activity in VP-16- 

fraction 5 w ith anti-p62 antibodies.

Rabbit prebleed, polyclonal and monoclonal antibodies 

against p62(TFnH) were immobilised on Protein A-Sepharose as 

described in M aterials and M ethods. VP-16-fraction 5 was 

incubated w ith the prebleed and the affinity resins for three 

hours. Kinase: 2 ^il of the input (L), 2 \l\ of the resulting 

supernatant fractions (S) and 2 p.1 settled volume of the washed 

beads (B) were analysed by standard kinase reactions w ith TFIIF 

as substrate. p62: 20 ^1 of each fraction and 20 jxl settled volume 

of the beads were analysed by western blot analysis as in Figure 

16.
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site of the enzyme. I assayed whether the same characteristics apply for the 

VP16 binding kinase.

Linearised plasmid, containing AdML prom oter DNA stim ulated the 

phosphorylation of GST-CTD and TBP about three times, while having no effect 

on the phosphorylation of RAP74 (TFIIF) and p56 (TFIIE) (Fig. 18 C). Addition 

of recom binant TFIIE to VP16-fraction 5 did not enhance the kinase activity 

(data not shown), bu t it should be emphasised that endogenous TFIIE had 

already been detected in this fraction (see Fig. 16).

Previously I hypothesised that a kinase is involved in transcriptional 

activation. Since the affinity purified kinase activity had all the characteristics of 

the hypothetical kinase, it was interesting to check w hether the VP16 

transactivation domain would stimulate it. GAL4-VP16 had no effect on the 

phosphorylation of GST-CTD, but subsequent western analysis indicated the 

presence of GST-antibodies reactive polypeptide w ith the mobility of GST-VP16. 

Thus, it was possible that GST-VP16 leakage from the affinity resin could have 

interfered with that assay (data not shown).

Addition of excess unlabelled NTPs to the kinase reaction w ith GST-CTD 

as a substrate dem onstrated that GTP and dATP, bu t not UTP and CTP, 

competed effectively with ^^P-A TP (Fig. 18 D). The same substrate specificity 

was reported for highly purified TFIIH (Roy et al., 1994; Serizawa et al., 1993b).

2.4.5. Immunodepletion of VP16-associated kinase with anti-TFHH antibody

The results presented so far showed that the VP16-assodated kinase had 

m any of the properties of TFIIH and contained the bulk of p62(TFHH) from 

Hela nuclear extract. Although the kinase subunit(s) of TFIIH have not been 

identified, the activity is known to associate tightly w ith p62 (Schaeffer et al.,
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1993). In order to further establish whether the VP16-assodated kinase was 

indeed TFIIH, I reacted it with a mixture of monoclonal and polydonal anti-p62 

antibodies immobilised on Protein-A Sepharose (Pharmada) and monitored the 

kinase activity of the washed beads (B) and the supernatant (S) using TFIIF as a 

substrate. The presence of TFHH was assayed by W estern blot analysis w ith 

m onoclonal 3C9 antibodies against p62 (TFIIH). As a control, pre-im m une 

serum  from the same rabbit was used. Despite the high background binding to 

the pre-im m une beads, the result in Figure 19 dem onstrates that the kinase 

activity eluted from the VP16 column is quantitatively depleted by anti-p62 

antibodies (Fig. 19, compare the activity of the input sample w ith that of the 

imm une supernatant). Western blotting of the proteins bound to the beads and 

in  the supernatant confirmed that p62 was depleted along w ith  the kinase 

activity by the immune antibody (Fig. 19).

In  summary, a VP16 binding kinase activity from HeLa nuclear extract 

co-fractionated with the GTF TFIIH and had substrate specificity and properties, 

indistinguishable from the kinase activity of this factor.

2.4.6. Processivity of Pol H Transcription is Inhibited by Antibodies Against

7 m i ( p 62}

Inhibition of processivity of the mouse c-myc gene by "squelching" 

implied that factor(s), required for pol II elongation, can be sequestered by the 

VP16 transactivation domain. To clarify whether one of these factors could be 

TFIIH, the effect of monoclonal antibodies against p62(TFIIH)(Schaeffer et al., 

1993) on the transcription of c-myc was investigated in X.laevis oocytes.

X.laevis oocytes were injected with the mouse c-myc gene together w ith 

m ouse monoclonal antibodies against p62 (3C9); against hum an RP-A (70C or 

34A, (Kenny et al., 1990) or hum an C-MYC (9E10, (Evan et al., 1985) as controls.
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Figure 20. Antibodies against TFIIH (p62) inhibit processivity of 

c-myc transcription.

RNAase protection of transcripts from oocytes injected 

w ith pSX943. Injections and RNAase protection was as in Fig.l2. 

Abbreviations: C: control, P: probe, RT: readthrough, TM : 

terminated, VA: RNAase protection products from the coinjected 

A denovirus VAl gene. Full length protection of the probe 

corresponds to transcripts from the P I promoter or RNAs that 

read all the way around the plasmid. The injection samples 

contained 1 m g/m l BSA (lane 1 and 7) or the following mouse 

monoclonal antibodies: a-p62 (3C9)-0.3 m g/m l (lanes 2, 8 ,9  and 

10) or 0.03 m g /m l (lane 3); a-RPA (70C) - 0.15 m g/m l (lane 4); a - 

RPA (34A) - 0.15 m g/m l (lane 5); a-C-MYC (9E10)- 0.15 m g/m l 

(lane 6). The total protein injected was made up to 1 m g/m l w ith 

BSA. The sam ples (10 jil) presented in lanes 7 and 9 were 

prem ixed w ith 10 \i\ settled volume of p62-NTA-Agarose. DRB 

(50 pM) was added to the oocyte incubation media. Lanes 1-6 

and lanes 7-10 are from different experiments.
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Figure 21. BM28 binds specifically to GST-VPl6 and GST- 

Ela(CR2&3).

All fractions from the GST, GST-SW6, GST-VP16 and GST- 

Ela(CR2&3) chrom atography experiments were analysed by 

Western blot analysis with antibodies against BM28 as described 

in Fig. 16.
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The final protein concentration in the injections was equalised to 1 m g /m l w ith 

BSA. The 3C9 and 70C monoclonal antibodies reacted w ith 62 and 70 kDa 

X.laevis oocyte polypeptides, respectively, while 34A and 9E10 did  not 

recognise any antigen as determined by western blot analysis (data not shown).

The anti-p62 antibody, injected at 0.3 m g /m l, decreased significantly 

processivity (RT/RT+TM) of transcription of the c-myc gene as compared to the 

BSA control (Fig. 20, lanes 1 and 2). Ten times less 3C9 antibody (0.03 m g/m l) 

and the three control monoclonal antibodies (70C, 34A and 9E10, each injected 

at 0.15 m g/m l, respectively) had no effect on c-myc transcription (Fig. 20, lanes 

3-6). The effect of the anti-p62 antibodies was not due simply to interfering with 

pol II transcription, since antibodies against RNApol II CTD (8WG16) 

completely inhibited the expression of c-myc (see Figure 22 A). The control VAl 

gene was unaffected by any of these antibodies.

The specificity of the effect of 3C9 antibodies was further assayed by 

preincubating the injection mixtures with p62, immobilised on NTA-agarose 

beads (Novagen). DNA was mixed w ith p62-beads, 3C9 antibodies at 0.3 

m g /m l, or both as described in Fig. 20. As show n in  Fig. 20 (lane 7), 

preincubation of the injection sample w ith p62-beads did  not alter c-myc 

transcription (compare lanes 1 and 7). The effect of 3C9 antibodies on pol II 

processivity (lane 8) was highly specific to p62, since premixing of the antibody 

and p62-beads completely reconstituted the pattern of transcription observed in 

the control lane (Fig. 20, compare lanes 7,8 and 9). Some of the oocytes, injected 

w ith 3C9 antibodies were treated with 50 pM DRB to check whether the drug 

could inhibit RNApol II elongation independently of TFIIH. In the presence of 

anti-p62 antibodies DRB was not able to significantly decrease the processivity 

of c-myc transcription (Fig. 20, compare lanes 8 and 10). This result was 

consistent with the idea that most, if not all, of the effect of low concentrations of 

DRB on processivity is mediated by inhibition of the TFIIH kinase activity.
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2.5. BM28 Regulates RNApol II Transcription

The hum an protein BM28 was recently cloned and  show n to share 

significant level of homology with the S.cerevisae proteins MCM2 and MCM3, 

S.pombe CDC21 and the mouse protein P I (Todorov et al., 1994). All these 

proteins have been considered to be involved in the onset of DNA replication in 

yeast (Chen et al., 1992; Van et al., 1991) and mouse (Thommes et al., 1992). 

Injection of antibodies against BM28 protein in G1 cells delayed entry in S-phase 

and inhibited RNA and DNA synthesis (Todorov et al., 1994); I Todorov, 

unpublished observations). So far, no direct participation of BM28 or its yeast 

analogues in RNA synthesis has been reported. In collaboration w ith  Dr. 

I Todorov we investigated whether BM28 could play some role in RNApol II 

transcription.

2.5.1. BM28 Binds to Transcriptional Activation Domains

Initially we asked whether BM28 could associate w ith transactivation 

domains of sequence specific RNApol II factors. All fractions from the affinity 

chrom atography experiments described in Chapter 2.4.2. were assayed for the 

presence of BM28 by western blot analysis (Fig. 21). BM28 was found w ith the 

bulk of the GTFs and the large subunit of RNApolymerase n  in the 0.2 M KCl 

fractions of the GST-VPl6 and the GST-Ela(CR2&3) columns. Non-specific 

association  w ith  the control GST-Sepharose resin  w as no t detected. 

Interestingly, BM28 interacted w ith the m utant SW6 domain, although much 

less efficiently as compared to the VP16 dom ain (Fig. 21). That pattern  of 

fractionation of BM28 was reminiscent of p62(TFllH), p56(TFIIE), RAP74(TFHF) 

and the large subunit of RNApolymerase II (see Fig. 16). A major difference 

between these proteins, though, was that while the amount of many of the GTFs
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in  the FT fractions of the affinity columns was substantially decreased, a 

relatively small proportion of BM28 associated w ith  the transactivation 

domains.

2.5.2. Antibodies Against BM28 Inhibit c-myc Transcription

The results from the affinity chromatography experiments indicated that 

BM28 interacted specifically w ith RNApol II transcription factors. Further 

support of that observation was provided by immunoprécipitation assays with 

the anti-BM28 antibodies (I.Todorov, unpublished). In order to clarify if these 

interactions had any functional significance, we asked w hether the same 

antibodies would affect pol n  transcription in injected X laevis oocytes.

First I studied the effect of anti-BM28 antibodies on transcription of the 

mouse c-myc gene. X.laevis oocytes were co-injected w ith pSX943 together with 

BSA (Fig. 22 A, lane 1) or antibodies against p62(TFHH) (3C9, Fig. 22 A, lane 2); 

against CTD (8WG16, Fig. 22 A, lane 3) or against BM28 (Fig. 22 A, lane 4). As 

demonstrated in chapter 2.4.6., the anti-p62 antibodies suppressed RNApol II 

processivity without significantly decreasing the level of initiation. The anti- 

CTD antibodies almost completely inhibited c-myc transcription, although some 

resistant non-processive RNA species was also detected. Previously I had 

observed similar effect of the anti-CTD antibodies on Gals-HIV2 transcription 

(see Fig. 9). The anti-BM28 antibodies were very efficient in inhibiting RNApol 

II transcription and abolished c-myc expression. Neither of the antibodies used 

had any effect on the VAl control gene.

2.5.3. Antibodies Against BM28 Inhibit Transcription of a Synthetic Gene

It was possible that BM28 function could be specific for certain genes.
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Figure 22. Anti-BM28 antibodies inhibit RNApol n  transcription 

in  X laevis oocytes.

RNAase protection of transcripts from X.laevis oocytes, 

injected w ith pSX943 (A and C) and pGal5-P2CAT (B). Injections 

and RNAase protection were as in Fig. 12 and Fig. 2, respectively. 

Abbreviations: C: control, P: probe, RT: readthrough, TM : 

terminated, VA: RNAase protection products from the coinjected 

Adenovirus VAl gene.

A. Oocytes were injected with pSX943 together w ith BSA 

(C) or antibodies against p62(TFIIH) (3C9, 0.3 m g/m l), the 

carboxyterminal domain of RNApol II (8WG16, 0.15 m g/m l) or 

against BM28 (0.15 m g/m l). All samples contained 1 m g/m l BSA. 

Full length protection of the probe corresponds to transcripts 

from the PI promoter or RNAs that read all the way around the 

plasmid.

B. Oocytes were injected with pGal5-P2CAT together with 

BSA (C) or antibodies against RPA (70C, 0.15 m g/m l) or against 

BM28 (0,15 m g/m l). Transcription from this construct was 

activated by co-injecting of 0.1 m g /m l GAL4-AH. The protein 

concentration of the samples was equalised with 1 m g/m l BSA.
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Figure 22 C. Oocytes were injected with pSX943 and anti-BM28 

antibodies (a-BM28) as in Fig. 21A. Recombinant BM28 was 

injected at 0.8 m g /m l (lanes 2 and 4). BSA (0.8 m g /m l) was 

added to the samples, presented in lanes 1 and 3.
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including c-myc. Alternatively, it could be a factor that is generally required for 

RNApol n  transcription. To distinguish between these possibilities, the effect of 

BM28 antibodies on transcription from a synthetic GAL5-P2mycCAT construct 

was investigated. The GAL5-P2mycCAT plasmid was co-injected w ith GAL4- 

AH and anti-BM28 antibodies (Fig. 22 B, lane 3) or antibodies against RP-A 

(70C, Fig. 22 B, lane 2). These samples were compared to a control, injected with 

the plasmid and GAL4-AH only (Fig. 22 B, lane 1). While the 70C antibodies had 

no effect on both pol II and pol in transcription, the anti-BM28 antibodies 

abolished pol n  transcription as in the case of the wild type c-myc gene. The 

anti-BM28 antibodies also inhibited completely transcription from the wild type 

HIV-2 LTR promoter (data not shown). These results indicated that the BM28 

was required for the expression of a wide range of class n  genes.

2.5.4. The Effect of the Anti-BM28 Antibodies is Specific for BM28

I further investigated the specificity of the in vivo effect of the anti-BM28 

antibodies by blocking them with excess of BM28. In the experiment presented 

in Fig. 22 C pSX943 was injected w ith BSA (lane 1), recombinant BM28 at 0.8 

m g /m l (lane 2), anti-BM28 antibodies at 0.15 m g/m l (lane 3) or both BM28 and 

anti-BM28 antibodies (lane 4). BM 28 caused some decrease in processivity of c- 

myc transcription in a way, similar to that of "squelched" c-myc expression (see 

Fig. 14). W hen BM28 and the antibodies against it were co-injected, pol II 

transcription was partially recovered from the effect of the antibody (Fig. 22 C, 

compare lanes 3 and 4), although the level of prem ature term ination was still 

high. The VAl control was unaffected by either the antibodies or BM28. Thus, 

the antibodies against BM28 act specifically to inhibit RNApol II transcription.
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DISCUSSION

Transcriptional activators stimulate the expression of eukaryotic class II 

genes by specifically interacting with their promoters. A t present, it is assumed 

that the major, if not the only function of transactivators is to increase the low 

basal level of initiation, observed in vitro at m inim al prom oters (see Chapter

1.1.3.). M ost of the published models postulate that transactivators stimulate 

transcription by direct and indirect interaction betw een activation dom ains and 

general transcription factors thus facilitating assembly of the preinitiation complex 

(reviewed in  (Drapkin et al., 1993)). It is likely that transactivators can further 

affect the incidence w ith which initiation takes place by inducing higher affinity 

interactions within the preinitiation complex (Choy and Green, 1993). (Hahn, 1993) 

hypothesised that there is a qualitative difference between initiation at activated 

and non-activated states of the promoter. According to that hypothesis, activators 

prom ote "effective" initiation, while in the non activated state "abortive" initiation 

complexes, which can not trigger synthesis of RNA, are formed. Transactivators 

in  general have never been im plicated to control subsequen t stages of 

RNApolymerase n  transcription such as promoter clearance and elongation. Some 

of the experiments presented here and studies from other laboratories suggest that 

this view should be revised.

3.1.1. Activators Enhance Transcriptional Processivity

In chapter 2.1. of this thesis I show that transactivators not only stimulate 

the rate of initiation, but substantially increase the efficiency w ith  which 

RNApolymerase II reads through sites of pausing or prem ature termination. The 

experim ents in  figures 2-6, 8, 9 and 11 dem onstrate fundam ental qualitative 

difference betw een the processivity of activated and non-activated RNApol II
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transcription in injected X.laevis oocytes. N on-activated transcription from 

truncated c-myc P2 and HTV-2 LTR promoters lacking their natural sequences 

upstream  of the TATA box has low processivity (see Figs. 2 and 3). In contrast, 

transcription activated from the wild type prom oters by endogenous oocyte 

factors is highly processive and elongates efficiently through potential pausing 

and intragenic termination sites (compare Figs. 2,3 and 12, for example). Similarly, 

recom binant GAL4 activators injected into oocytes stim ulated transcriptional 

processivity in reporter genes containing GAL4 binding sites, which were fused to 

basal prom oter elements from HIV-2, the mouse c-myc, the hum an TK and the 

A denovirus E4 and E lb genes (Figs. 2-6 and Table 1). On the other hand, 

"squelching" by GAL4-VP16 severely inhibited the processivity of c-myc 

transcription (see Fig. 14), possibly by sequestering factors, necessary for efficient 

elongation. This observation suggests that among the factors sequestered by an 

excess of the VP16 activation domain in trans are proteins which stimulate pol II 

elongation. The nature of the "elongation" factors will be discussed in detail later 

on.

Upregulation of transcriptional processivity by transactivators is not an 

exceptional feature of the injected X.laevis oocyte system. Some of the synthetic 

constructs described in Fig. 1 were assayed for processivity of transcription in 

v itro  (D.Bentley, unpublished results) or in transfected m am m alian cells 

(D.Bentley, published in (Yankulov et al., 1994); J. Blâu, unpublished). In 

agreement w ith the results obtained in X.laevis oocytes, these systems produced 

activated transcription which was far more processive than non-activated 

transcription. In transfected mammalian cells RNApol II processivity has been 

estim ated by nuclear run-on assays, which employs different criteria for the 

efficiency of elongation. Thus, my observation that RNApol II processivity is 

m odulated by transcriptional activators was confirmed in a different system and 

w ith a different assay.
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The similarity in the results, obtained in Xlaevis oocytes and other systems 

strongly suggest that activator mediated stimulation of transcriptional elongation 

by RNApol II is a wide spread phenomenon. Together, these observations imply 

that regulation of processivity is not promoter-specific nor is it peculiar to  one 

type of transcriptional activator. For example w hereas the AH- and  VP16- 

activation domains are highly acidic, E la- is not.

A n im portant outcome from the recent w ork in our laboratory, part of 

w hich is presented in section 2.1 of the thesis, is that transactivators stimulate 

RNApolymerase II to efficiently elongate at prom oter-distal sequences of the 

genes, while non-activated complexes fall off the template soon after leaving the 

promoter. A logic consequence of this observation is that a qualitatively different 

initiation events m ight occur in the presence or in the absence of transaçtivators. 

Experimental support of such a hypothesis is provided by Fig. 9 and section 2.3. 

of the thesis and by previous studies by (Roberts and Bentley, 1992) and 

(Marciniak and Sharp, 1991). This issue will be discussed in detail later on.

In conclusion, the effect of transactivators on pol II transcription is not 

confined to increasing the frequency of initiation bu t also affects the elongation 

properties of the RNApol II complex once it is released from the promoter.

3.1.2.Implicatidns for the Control of Transcriptional Processivity in HDWLand

ISYzZ

A connection betw een stim ulated initiation and  the com petence for 

extensive elongation has been established previously only for HIV transcription 

activated by TAT (Laspia et al., 1989; Marciniak and Sharp, 1991). The VP16 C- 

term inal dom ain activated transcription from  the H IV l LTR prom oter as 

effectively as TAT when measured by CAT reporter activity but it was not assayed 

w hether this effect w as due to stim ulated initiation or enhanced elongation
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(Southgate and  Green, 1991; Tiley e t al., 1992). Southgate an d  G reen (1991) 

observed that w hen the HIVl promoter was activated by GAL4-VP16, TAT had a 

significantly smaller effect than in the absence of GAL4-VP16. This fact suggested 

that these tw o activators operate through some common pathw ay. My results 

show that a strong activator such as VP16 produces the same effect as TAT o n  the 

processivity of HIV2 transcription (Figs. 4 and 9). Therefore I hypothesise that in 

this respect the effect of TAT is not unique but quite general and is due to its 

property to activate transcription from the HIV LTR promoter.

The first d irect evidence th a t a factor other th an  TAT m ay affect 
#

processivity w as reported by (Laspia et al., 1990) w ho found that E la  weakly 

stim ulated processivity of H IV l transcription. Furtherm ore E la  an d  TAT 

synergised to increase processivity. Based on these observations it was predicted 

that VP16 and other strong activators m ay mimic the effect of TAT on processivity 

(Cullen, 1993; Greenblatt et al., 1993). This prediction is confirmed by the data 

presented here (Fig. 4).

TAT itself stimulates both initiation and elongation (Laspia et al., 1989)and 

was recently shown to interact w ith TBP and TFIID (Kashanchi e t al., 1994). These 

characteristics are reminiscent of VP16 and Ela, as well as other transactivators 

(see chapter 1.1.1.1.). In  my experiments, prom oter b ind ing  transactivators 

displayed properties similar to these reported for TAT in  different systems, 

indicating that m ost of the effect of TAT on processivity of HIV-1 and HIV-2 

transcription m ight be achieved through the prom oter by interactions with 

prom oter-bound factors. Additional implication from my research and  others 

studies (see chapter 1.2.1.) is that production of long mRNAs from the HIV-1 LTR 

prom oter is not critically dependent on TAT. This point predicts that some 

inducible sequence specific factors that bind the LTR prom oter can provide 

temporary stimulation for processive transcription. In this way the initial synthesis 

of TAT will be prim ed and a positive feedback loop can be established (Cullen, 

1993). It is not clear whether the relatively high non-activated transcription from
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the LTR prom oter, observed in my experiments, can contribute to the initial 

synthesis of long mRNAs, for example by facilitating the response to weak 

activation signals. A certain level of basal transcription, though, is essential for 

TAT transactivation, since this protein is tethered to the prom oter via its RNA- 

binding domain.

3.1.3. Implications for the Control_ofjrranscriptional_Processivity in c-myc and

other_genes

Transcription from the c-myc P2 promoter is attenuated within the first 500 

bases of the transcription unit in both the m urine and hum an genes (Bentley and 

Groudine, 1988). The 3’ ends of the truncated prematurely terminated c-myc RNAs 

have been m apped at T-rich sequences close to the ex o n l/in tro n l boundary, 

called T2, and detected both in X.laevis oocytes and in vitro  (Bentley and 

Groudine, 1988; Nepveu and Marcu, 1986). In mam m alian cells, though, such 

short c-myc RNAs have not been observed presumably because of their instability. 

Surprisingly, deletion of the sequences, contributing to prem ature termination at 

the T2 site in vitro and X.laevis oocytes do not abolish the gradient in the density 

of RNApol n  complexes over the gene (Krumm et al., 1992). High resolution run- 

on assay confirmed the elevated RNApolymerase II density in the prom oter 

proximal region of the gene as compared to the prom oter distal regions, bu t no 

sharp decline downstream of T2 was observed (Krumm et al., 1992; Strobl and 

Eick, 1992). This data clearly indicated that modulation of a specific conditional 

block of elongation at T2 was not the cause of attenuation in c-myc. Instead, 

pausing of the elongating complex immediately downstream of the initiation site 

in a way, similar to that previously described in the Drosophila Hsp70 and other 

genes, w as proposed  to be the principal m echanism  by w hich c-myc 

transcriptional processivity is controlled in mammalian cells (Krumm et al., 1992).
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In  the Drosophila Hsp70 gene, the prom oter bound GAGA factor facilitates the 

establishing of a paused polymerase, while release of the paused complex requires 

activation of the HSF factor (Lee et al., 1992; Rougvie and Lis, 1990).

Promoter-proximal pausing downstream  of P2 w as confirmed w hen  the 

Gal5-P2mycCAT gene was transfected in  293 cells, although considerable decrease 

in  polymerase density 3’ of the T2 site was also detected. W hen transcription from 

th is construct was activated by GAL4-VP16, bo th  prom oter pausing  and 

attenuation at the exon l/in tron l boundary was suppressed (D.Bentley, published 

in (Yankulov et al., 1994)). Gal5-P2mycCAT contains the mouse c-myc sequences 

dow nstream  of position -44 relative to the P2 start site. In the hum an c-myc, 

sequences upstream  of position +47 relative to the P2 start site were sufficient to 

program  polym erase pausing (Krumm et al., 1992). Taken together, these 

observations show that sequences, consisting of the TATA element and  the P2 

initiation site comprise an element that directs pausing of RNApolymerase! H, 

w hile upstream  sequences are responsible for activation and stim ulation of 

transcriptional elongation. Further mutational analysis of the sequences upstream  

of the P2 TATA box dem onstrated that transactivator responsive elements 

upregulate the efficiency w ith which RNApol II reads through the T2 site in 

X.Iaevis oocytes (D.Bentley, published in (Yankulov et al., 1994).

In Xlaevis oocytes, a paused RNApol n  complex downstream of P2 was not 

detected (Meulia et al., 1993). Nevertheless, sequences downstream  of -44 relative 

to the P2 start site were sufficient to support transcription which term inated 

prem aturely at T2; and to support GAL4-transactivators stimulated transcription 

w ith  high processivity, respectively (Fig. 2 and Fig. 8). These similarities strongly 

suggest that the same mechanisms of transcriptional elongation control operate 

in  X laevis oocytes and in mammalian cells. The difference in  the manifestation of 

low  processivity transcription (prom oter proxim al pausing  or preferential 

term ination at T2, respectively) is likely to result from the chromatin structure of 

the c-myc gene in these two experimental systems (Meulia et al., 1993).
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Over 20 cellular and viral genes have been identified which transcription is 

regulated  by m odulating the efficiency of elongation through pausing and 

termination sites (Spencer and Groudine, 1990). Based on the results, described in 

Figs. 2-6, it is likely that regulated transcriptional elongation in these genes is 

controlled by the activation domains of "conventional" transcription factors.

3.1.4. Role of Terminator Elements in the Control of Transcriptional Elongation

Although discrete sites of pausing and prem ature termination by RNApol 

II have been identified in a num ber of genes including c-myc (Bentley and 

Groudine, 1988), adenosine deaminase (Ramamurthy et al., 1990), c-fos (Mechti et 

al., 1991), a-tubulin (Hair and Morgan, 1993), and HIVl and HIV2 (Toohey and 

Jones, 1989), these sites may not be essential in order for RNApol II transcription 

to be regulated at the level of elongation. As discussed in chapter 3.1.3., the T2 

term inator element of the hum an c-myc gene is dispensable for transcriptional 

attenuation (Krumm et al., 1992). It has also been demonstrated that the efficiency 

of elongation in mammalian cells can be controlled by transactivators even over 

sequences of prokaryotic origin (CAT), which are unlikely to posses specific 

eukaryotic terminators (D.Bentley, published in (Yankulov et al., 1994; Laspia et 

al., 1990).

In X.laevis oocytes, deletion of the ADA +96 term inator elem ent 

(Ramamurthy et a l, 1990) or the a-globin terminator element (Hair and Morgan, 

1993), respectively, did not abolish attenuation in these genes, bu t shifted the 

position of prem ature termination further downstream. In a different study, the 

levels of premature termination at the c-myc T2 site in X.laevis oocytes were found 

inversely dependent on the distance between the start site and the term inator 

element (Roberts and Bentley, 1992). These results are consistent w ith the idea that 

thé competence of RNApol II to read through the term ination sites rather than
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sequence specific term ination factors control the am ount of attenuation at a 

particular position in the gene. Indeed, my investigation on transcriptional 

processivity in  X.laevis oocytes indicates that the block of transcriptional 

elongation at T2 or TAR in synthetic genes can be almost entirely overcome by the 

strong transactivation domain of VP16 (Figs, 2,3,4).

All these observations suggest that at non-activated state, RNApol II 

elongation is inefficient regardless of the template sequence, although some 

sequence elements clearly block the progress of RNApolymerase II far more 

effectively than others.

3.1.5. Processivity and Promoter Strength

The levels of premature termination at the c-myc T2 site in injected X.laevis 

oocytes is significantly increased at high levels of injected template DNA (Meulia 

et al., 1993; M iddleton and Morgan, 1990; Spencer and Kilvert, 1993). These results 

were interpreted as evidence for a limiting elongation factor in  X.laevis oocytes, 

which might be titrated out under conditions of high levels of pol II transcription 

(Spencer and Kilvert, 1993).

The experiments in this thesis were conducted at constant concentration of 

the injected DNA, which was significantly lower than those, used in the above 

m entioned studies. Furthermore, I always injected an excess of recom binant 

transactivators together w ith the test plasmids. The results, obtained in  my 

investigation are not consistent w ith the interpretation of Spencer and Kilvert 

(1993), since transcription can be activated to high levels by injecting GAL4-W16 

or GAL4-Ela proteins and any of the constructs w ithout incurring increased 

prem ature termination (Figs. 2-6). Therefore, my results do not support the idea of 

a limiting elongation factor in oocytes. Here I suggest an alternative explanation 

for the template titration results of (Spencer and Kilvert, 1993), namely that high

104



levels of DNA sequester transcriptional activators thus prom oting non-activated 

transcription with low processivity.

In certain cases (Figs. 2 and 4), the processivity of GAL4-VP16 activated 

transcription approximated 100%. Is it possible that high levels of transcription 

titrate out some termination factor(s)? In Fig. 2, GAL4-AH, GAL4-VP16 and 

GA L4-Ela each stim ulated the overall c-myc expression about 15 fold, 

nevertheless the intensity of premature termination differed significantly. Another 

argum ent against the existence of a limiting termination factor in oocytes is the 

fact that c-myc TATA box mutants were expressed poorly, but w ith higher than 

90% processivity (D.Bentley, published in (Yankulov et al., 1994). Thus, no 

correlation betw een prom oter strength, intensity of transcription and pol II 

processivity can be made.

3.1.6. Transactivation Domains Differ in Their Capacity to Stimulate 

Transcriptional Processivity

Three different transactivation domains, fused to the GAL4 DNA binding 

domain, were used to investigate processivity of activated RNApol n  transcription 

in injected X.laevis oocytes. Two of them - AH and VP16 - were acidic, while the 

E la  dom ain  w as not. GAL4-AH consistently produced  less processive 

transcription w ith  all the constructs used as com pared to the VP16 and E la 

transactivation domains (see Figure 6 and Table 1). On the other hand, GAL4-Ela 

and GAL4-VP16 activated transcription with similar processivity w hen Galg- 

P2mycCAT was used as a template (Fig. 2), while in the case of Gal5-HIV2CAT 

GAL4-Ela was not as efficient as GAL4-VP16 (Fig. 3). This data indicate .that 

different transcativation domains can stim ulate transcription w ith  different 

degrees of processivity in an identical prom oter context; and that at different 

promoters transactivators could display distinct properties. It is also necessary to
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m ention that all constructs, used in my investigation, contained five GAL4 binding 

sites. It is possible that reducing the num ber of these sites (and in this way the 

num ber of transactivation domains at the promoter) could reveal even greater 

dissimilarities between the activation domains.

W hat is the principle that governs the differences in the "elongation" 

capacity of different domains? It seems that the type of transactivation dom ain is 

not of major importance, since AH and VP16, although being acidic, did not 

equally stimulate transcriptional elongation (see Fig. 6 and Table 1). Furthermore, 

E la  w hich is non-acidic, resembled VP16 (Fig. 6 and Table 1). Hence, other 

qualities are essential for the elongation capacity of the transactivation domains.

Extensive research has documented specific associations betw een some 

activation domains and TBP (TFIID), TFIIB a n d /o r  other general transcription 

factors. Many, bu t not all of these were described in  Chapter l . l . l . l .  It is clear that 

d ifferent transactivators can establish different interactions w ith  the basal 

transcription machinery and other factors. It is possible that the affinity and the 

range of interactions, which a transactivation dom ain can form may reflect its 

competence to stimulate initiation an d /o r processivity of transcription. Such an 

assum ption suggests that the exceptionally potent transactivation domain of VP16 

should interact with a wide range of GTFs. Support for this hypothesis is provided 

by the affinity chromatography experiment in Fig. 16. Moderate transactivators, 

which need co-operation w ith additional transcativation dom ains (for example 

S p l and  TAT in the case of HIV-1 (Southgate and Green, 1991), m ight have a 

narrower range of interactions with the GTFs.

3.2.1. Role of Basal Transcription Elements in Transcriptional Processivity

All synthetic constructs used in this study contained an identical block of 

five GAL4-binding sites positioned upstream  of different basal transcription
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elements (see Fig. 1). However, basal transcription elements such as the TATA box 

and  the in itiator-like elem ents could also influence the regu la tion  of 

transcriptional elongation.

The TATA element seems to affect directly that regulation. For example, 

GAL4-AH consistently activated slightly more processive transcription from the 

Gal5-E4 prom oter than from Galg-Elb which differs only in the sequence of its 

TATA box (see Fig. 1 and Table 1). The TATA sequence is also im portant in 

determining the processivity of transcription from the c-myc P2 promoter. Point 

m utation in  this TATA box in the context of the complete m ouse P2 prom oter 

almost abolished non-processive transcription (D.Bentley, published in  (Yankulov 

et al., 1994). Similar observations were m ade for TATA box m utations of the 

hum an c-myc gene and HIV-1 (Meulia et al., 1993; Lu et al., 1993). All these data 

imply that the TATA element might be involved in the maintenance of some basal 

levels of non-processive transcription and in m odulating the response to 

activators. How the TATA sequence affects processivity is unknown. One possible 

explanation is that different forms of TFIID (Timmers and Sharp, 1991) which bind 

preferentially  to different TATA elements, are responsible for prom oting 

transcription by complexes with different degrees of processivity.

As discussed in 2.1.5., the Gals-HIV2 and the Gal5-P2myc prom oters are 

transcribed w ith  higher efficiency in the non-activated state than  the Galg-E4, 

G alg-Elb and Galg-TK promoters. LTR-HIVl, LTR-HIV2, the m ouse and the 

hum an c-myc P2 and the AdMLP prom oters contain a sim ilar Initiator-like 

element (Krumm et al., 1993), see also chapter 2.1.5), which might contribute to the 

significant levels of basal transcription observed from the Gal5-P2mycCAT and 

Gal5-HTV2CAT. Another important similarity between HIV-1, HIV-2, c-myc and 

the AdML genes is that they all are controlled at the level of transcriptional 

elongation (Krumm et al., 1993). It has been reported that m utations in the 1ST 

(Initiator of Short Transcripts) sequence, which overlaps w ith  the Initiator-like 

elem ent in HIV-1, completely inhibited the production of abortive transcripts
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(Sheldon et al., 1993). Mutations in the TATA box of HIV-1 LTR promoter have the 

same effect (Lu et al., 1993). Thus, it was interesting to assay w hether basal 

tran scrip tion  elem ents could co-operate in  su p po rting  non-processive 

transcription.

In  Fig. 5, insertion of the TdT Initiator elem ent (Smale et al., 1990) 

dow nstream  of the TK TATA box had no effect on both  non-activated and 

activated transcription. The result suggests that no t any TATA-Initiator 

com bination can serve as an effective non-processive transcription element. 

Alternative explanation is that Initiators and TATA boxes do not co-operate at all 

or at least not in X.laevis oocytes. It is noteworthy, though, that a m utant HTVl- 

LTR, in which the TATA box was replaced by the TdT Initiator, was unresponsive 

to TAT (Berkhout and Jeang, 1992).

The amount of experiments in the direction of cooperation betw een basal 

transcription elements allows restricted field for speculation. Nevertheless, it is 

essential to check whether mutations in the Initiator-hke elements in c-myc P2 and 

AdML prom oters w ould have a similar effect as in  HIVl-LTR before m aking 

general conclusions.

3.2.2. TBP Enhances Non-Processive Transcription

Analysis of the HIV-1 LTR and the c-myc P2 TATA boxes suggested that 

non-processive transcription can be directed through this element (see chapter

3.2.1.). Since many of the TATA box functions are believed to be m ediated by TBP 

(TFIID), a possible way to check that hypothesis was to assay for the effect of TBP 

on non-activated transcription. In Figs. 8, 9 and 111 demonstrate that in X.laevis 

oocytes, coinjecting of hum an TBP stimulates non-processive transcription from 

three different minimal promoters - Gals-P2, Gals-E4 and Gal5-HIV2 (see Fig. l  for
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details about these promoters). Elevated transcription from  TATA-containing 

prom oters by cotransfection of TBP was previously also reported by (Colgan and 

Manley, 1992). While initiation at Galg-P2 and Gal5-E4 w as enhanced about 3-4 

fold by TBP (Fig. 8), transcription from the Gal5-HIV2 prom oter was increased by 

more than 20 fold (Fig. 9). The reason for that difference is unknown.

In contrast to transcriptional activators, TBP enhanced initiation, b u t not 

elongation, since most of the transcripts made in the presence of TBP terminated 

prem aturely at the T2 or TAR sequences, respectively (Figs. 8 and 9). Processivity 

values for non-activated and TBP-stimulated transcription in all experiments were 

alm ost equal (compare Figs. 2, 3, 4 w ith Figs. 8 and  9), w hich suggests that 

stim ulation by TBP is not changing qualitatively the properties of the elongating 

polymerase.

H ow  TBP enhanced transcription from the minimal promoters is not clear. 

It is possible that TBP directly interacts w ith the TATA element, m ost likely 

together w ith  endogenous oocyte factors, and increases the rate of initiation. Such 

an  explanation might be supported by the results of (Cormack and Struhl, 1993). 

They reported  tha t yeast TBP m utants, w hich w ere defective in  pol III 

transcription, produced higher levels of mRNA, which indicates that competition 

for limiting amounts of TBP between the RNApolymerase activities takes place in 

vivo. So far, though, we have not observed any indication of limiting amounts of 

pol n  factors in X.laevis oocytes. In addition, injection of TBP did  not enhance 

activated transcription, nor did it reduce its processivity although the synthesis of 

RNA was m uch more intensive (Fig. 11).

A lternatively, the injected TBP counteracts som e inhibitors of pol II 

transcription such as NCI, NC2, D rl and DR2 (see chapter l . l . l . l . )  arid releases 

otherwise suppressed basal transcription. In this respect, injecting of TBP with a 

m utant DNA binding domain will provide evidence to distinguish between these 

possibilities.
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W hatever the mechanism of the effect of TBP on initiation is, the resulting 

elongation complexes are obviously deficient in processivity, since m ost of them 

term inated prem aturely at T2 or TAR. Hence, TBP stimulates transcription, bu t 

can not substitute for transactivators in promoting high efficiently of elongation. 

A  simplified conclusion from that observation is that different initiation events 

take place in  the presence of excess of TBP and transcrip tional activators, 

respectively.

In  sum m ary, the data presented in Figs. 8-12 clearly indicate that 

processive and non-processive transcription can be regulated independently. 

Factors which interact w ith the TATA box and elements such as the 1ST in  the 

HIV-1 LTR stim ulate non-processive transcrip tion  w hile transactivators 

preferentially stimulate processive transcription. Another im portant conclusion 

from these experiments is that increased initiation is not necessarily coupled to 

increased efficiency of elongation. Hence, the effect of transactivators on 

processivity is specific.

3.2.3. Is TBP Stimulated Transcription IMvenJBy RNAp_olymerase H

The c-myc P2 prom oter can support a-am anitin  resistan t transcription 

w hich term inates a t the T2 site, when a high concentration of tem plate DNA is 

injected into X laevis oocytes (Bentley et al., 1989). The c-myc T2 site coincides 

w ith  a run  of T residues, which can serve as a RNApol IE term ination signal 

(Bogenhagen and Brown, 1981). Therefore, this data was interpreted as evidence 

for a shift in  the P2 promoter specificity when RNApol II factors were insufficient. 

O n the other hand, significant proportion of the TBP stim ulated transcription in 

X.laevis oocytes at low template levels was resistant to low concentration of a - 

am anitin (Figs. 8 and 9) and terminated at the T2 site (Fig. 8). TBP is a 

putative subunit of TFlilB - a factor required for pol m  transcription (Hernandez,
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1993). Is it possible then that TBP actually shifted the specificity of the minimal 

prom oters used and activated pol IE transcription? Several points of evidence 

argue against that. When Gal5-HIV2CAT was used as a template, TBP stimulated 

the production of prematurely terminating RNAs (Fig. 9). The same effect of TBP 

was observed w ith the Gals-P2mycCAT and Gal5-E4mycCAT constructs. In the 

case of Galg -HIV2CAT, though, the sites of prem ature term ination d id  not 

coincide w ith  runs of T s. Furthermore, this non-processive transcription was 

resistant to a-amanitin, bu t was sensitive to anti-RNApol E antibodies (Fig. 9). In 

contrast, transcrip tion  of the coinjected A denovirus V A l gene, w hich  is 

transcribed by RNApol IE, was not sensitive to these antibodies.

The definition of a-am anitin resistant RNApol II transcription should be 

cautiously introduced. Nevertheless, the comparison between transcription from a 

genuine pol El prom oter (VAl) and the Gals-HIV2CAT construct indicates that 

the TBP stimulated non-processive transcription is not driven by RNApolymerase 

IE because it is sensitive to anti-RNApolymerase II antibodies. Therefore, the 

difference in  the a-am anitin  sensitivity of non-activated(non-processive) and 

activated(processive) transcription could reflect the properties of biochemically 

distinct RNApolymerase E  forms. A possible connection betw een a -am an itin  

sensitivity and processivity of RNApol E has been previously pointed out by 

(Coulter and Greenleaf, 1985; Chen et al., 1993), who observed that a m utation in 

the large subunit of Drosophila RNApol E which conferred a-am anitin resistance 

also reduced the elongation rate in vitro. Additional evidence for biochemical 

distinction between non-activated and activated elongation complexes is provided 

by the experiments in chapters 2.3. and 2.4. and will be discussed in chapter 3.3.

3.3. Protein Phosphorylation and Transcriptional Processivity

DRB (5 ,6 -d ich lo ro -l-b -D -rib o fu ran o sy l-b en z im id azo le ) in h ib its  

RNApolymerase E  at the level of transcriptional elongation (Sehgal et al., 1976;
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Tamm, 1977). It has also been reported that in HIV-1 and c-myc DRB inhibited 

only the fraction of polymerases which read through the sites of prem ature 

term ination (Marciniak and Sharp, 1991; Marshall and Price, 1992; Roberts and 

Bentley, 1992). The results, presented in Figs. 4,12 and 13 indicate that DRB is not 

simply preventing the formation of elongation competent complexes, bu t rather 

shifts the population of transcribing polymerases from high processivity to a 

predom inantly  low processivity form. As discussed in  chapter 3.1., both 

tran scrip tion  in itiation  and RNApol II processivity  are regu la ted  by 

transactivators. In this respect, DRB seems to predom inantly antagonise the 

stimulatory effect of activators on RNApol H elongation. Therefore, identification 

of physiological substrate(s) for DRB and understanding the mechanism of DRB- 

m ediated inhibition of transcription would provide information of how exactly 

transactivators influence processivity.

So far, the only indication about the mechanism by w hich DRB m ight 

suppress pol n  transcription is that DRB is an adenosine analogue and inhibits 

several protein kinases in vitro, including some RNApol IICTD  kinase activities 

(Cisek and Corden, 1989; Stevens and Maupin, 1989; Zandomeni et al., 1986). In 

this chapter (3.3.) I discuss the possibility that the target of DRB is the TFIIH 

associated kinase activity.

3.3.1. Protein Kinase Inhibitors Decrease RNApolymerase II Processivity

In Figs. 12 and 13 I demonstrate that two well characterised isoquinoline- 

sulfonam ide kinase inhibitors (H-7 and H-8, (Hidaka and Kobayashi, 1992; 

Serizawa et al., 1993) can suppress RNApol II elongation in X.laevis oocytes in a 

way, equivalent to that of DRB. This similarity between the effects of H-7, H-8 and 

DRB; and the previously reported properties of DRB as a kinase inhibitor (Cisek 

and Corden, 1989; Stevens and Maupin, 1989; Zandomeni et al., 1986) strongly

112



suggest that DRB works by inhibition of some protein kinase. The experiments in 

Figs. 12 and 13 do not distinguish whether the three inhibitors have the same 

target or not. Nevertheless, it seems unlikely that DRB, H-7 and H-8 inhibit a 

kinase(s) which positively regulates specific transcriptional activator(s). If each 

inhibitor separately inhibits a specific kinase, one w ould expect to observe 

differences between the suppression of processivity in different genes. HIV2-LTR, 

the mouse c-myc and the two synthetic promoters used (Galg-Elb and Gal5-E4),. 

besides the TATA box, share no common element, but all these genes responded 

uniformly to DRB, H-7 and H-8.

A n additional indication that DRB, H-7 and H-8 exert their function 

through a similar or identical target comes from the comparison of the effective 

concentrations of these inhibitors in different systems. I found that DRB is a more 

potent inhibitor of transcriptional elongation than H-7 and H-8 (Figs. 12 and 13). 

Maximal inhibition by DRB on the transcription of four different genes in injected 

X.laevis oocytes was observed when the drug was applied at 10 pM (Fig. 13), 

w hile equal effect w ith H-7 and H-8 was achieved at 100-200 pM. Similar 

concentrations of DRB, H-7 and H-8 were necessary to significantly suppress 

transcriptional elongation of Gal5-HIV2CAT w hen this gene was transcribed in 

HeLa nuclear extracts (D.Bentley, unpublished observations). The incorporation of 

^H-uridine and the expression of a luciferase reporter or heat shock genes in Hela 

cells (Dubois et al., 1994a; Dubois et al., 1994b) were also inhibited more efficiently 

by DRB as compared to H-7 and H-8. It is noteworthy that (Dubois et al., 1994b) 

detected inhibition of the RNApol II transcription in vivo at drug concentrations, 

sim ilar to those I used in  oocytes for specific genes. I suggest that in the 

experiments of Dubois et al. (1994) the overall inhibition of RNA synthesis is 

m ediated by reduced efficiency of elongation by RNApol H.

The data discussed in this chapter indicate that DRB, H-7 and H-8 have a 

general effect on RNApol II transcription rather than a specific effect on the 

expression of particular genes. As discussed in chapter 2.3.2., the TFIIH kinase is
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sensitive to these inhibitors at concentrations that inhibit RNApol II elongation. 

Hence, I propose that the major effect of H-7, H-8 and low concentrations of DRB 

on RNApol n  transcription is mediated by inhibition of the TFIIH kinase activity.

3.3.2. A DRB Sensitive Protein Kinase is Involved in Coupling Activation and

Transcriptional Processivity

"Squelching" of c-myc transcription by a non-binding VP16 transactivation 

dom ain and DRB are not additive in suppressing RNApol II processivity (Fig. 14). 

This result implies that "squelching" and DRB could work through a common 

mechanism. As discussed in  the previous chapter, DRB is likely to inhibit a 

function, generally required for pol II transcription. If VP16 "squelches" by 

interacting w ith factors necessary for transcriptional elongation, one of these 

factors m ight be the target of DRB. In support to that model, a CTD kinase activity 

w hich binds specifically to the VP16 transactivation domain, was isolated by 

affinity chromatography (Fig. 15). The CTD-kinase bound less well to a control 

m utant VP16 domain (SW6), which was a poor activator, but retained the negative 

charge of the wüd-type domain (Walker et al., 1993).

The most intriguing property of this kinase activity was its high sensitivity 

to DRB (Fig. 18, A and B). As demonstrated in Fig. 18,50% inhibition of the kinase 

(Iso) was achieved at 10 to 50 pM DRB, while I50 for H-7 and H-8 were between 

200 and 500 pM. These values are in good agreement with the minimal effective 

d rug  concentrations, which inhibit transcriptional elongation in  vitro (D.Bentley, 

unpublished observations) and in X.laevis oocytes (Figs. 12 and 13). An additional 

point of interest was that the peak of CTD-kinase activity coincided w ith the 

presence of RNApol II and the bulk of GTFs, which also were specifically retained 

by the GST-VP16 column (Fig. 16). Thus, the kinase, isolated by VP16 affinity 

chrom atography had all the characteristics of a hypothetical factor that couples
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activation and transcriptional processivity : it is sensitive to DRB, interacts w ith a 

transcriptional activator (directly or indirectly) and is associated w ith the general 

transcription factors.

3.3.3. Comparison Between the VP16-associated Kinase and TFHH ••

The affinity chrom atography fractions from  Fig. 15 w ere further 

characterised by Western blotting and kinase assays. Special attention was*paid to 

the distribution of components of three protein kinases that phosphorylate the 

RNApol n  CTD in vitro, namely p34cdc2^ the DNA-dependent kinase and TFIIH 

(see chapter 1.1.2.2.). The elution profile of the TFIIH p62 subunit, bu t not p34^^c2 

or the Ku subunit of the DNA-dependent kinase, closely followed the profile of 

the CTD kinase activity both on the GST-VP16 and GST-SW6 columns (Fig; 16). 

This result suggested that TFIIH is a likely candidate for the activator coupled 

kinase. An additional similarity betw een the TFIIH kinase and the VP16- 

associated kinase was that both were sensitive to H-7 and  H-8 (Fig. 18 B and 

(Serizawa et al., 1993)).

Subsequent analysis demonstrated the close similarity between the VP16 

associated and the TFIIH kinases. Both enzymes phosphorylated CTD, TBP, p56 

(TFIIE), RAP74(TFIIF), b u t not RAP30(TFIIF) and p34(TFIIE)(Fig. 18 A and 

(Ohkuma and Roeder> 1994)). dATP and GTP, but not UTP or CTP compete with 

ATP for the catalytic site of the VP16 associated kinase (Fig. 18 D). The same 

nucleotide specificity was previously established for highly purified TFIIH kinase 

activity (Roy et al., 1994). Like TFIIH (Serizawa et al., 1992; Serizawa et al., 1993), 

the VP16-associated kinase was stimulated by prom oter containing DNA when 

substrates were GST-CTD and TBP, but not TFIIE(p56) and TFIIF(RAP74) (Fig. 18 

C). My experiments do not rule out whether this difference results from the nature 

of my in vitro kinase assay or represents some significant prom oter dependent
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preference of the kinase for its substrates. The VP16 associated kinase activity was 

not stimulated by addition of recombinant TFIIE (data not shown) as reported for 

TFIIH (Ohkuma and Roeder, 1994), bu t significant am ount of endogenous TFIIE 

was detected in the same fraction.

In an Im m unodepletion experiment, m ost of the kinase activity and 

p62(TFIIH) in the VPl6-fraction 5 were depleted by anti-TFIIH (p62) antibodies 

(Fig. 19). This result strongly indicates that the major kinase which associates with 

V P l6 is TFIIH, although a minor contribution of other kinases w ith  similar 

properties can not be eliminated.

Inhibition of the TFIIH kinase by DRB has never been reported. In Fig. 18 

(À and B) I demonstrate that the VP16-associated kinase and highly purified TFIIH 

are equally sensitive to DRB when a substrate was TFIIF. The same results were 

obtained w hen a substrate was GST-CTD (data not shown). In the experiments 

described in chapter 2.4.3. the I50 for H-7 and H-8 was 200 jiM or more for the 

different substrates. (Serizawa et al., 1993) have reported that the rat analogue of 

TFIIH (factor 6) kinase activity was sensitive to lower concentrations of H-7 and 

H-8, w hen substrates were the large subunit of RNA polym erase or a CTD 

peptide. One reason for this difference could be the different species source of the 

kinase. Other reason could be the nature of the substrates (GST-CTD versus CTD 

peptide or the large subunit of RNApol H). It is also w orth mentioning that some 

of the delta factor properties - DNA stimulation, kinase activity, dependence on 

TFIIE; were altered at different KCl concentration or w ith different CTD substrates 

-peptide or the large subunit of RNApol H. In yeast, the TFHH (factor b) kinase 

w as less sensitive to H-8 as compared to the delta factor from rat (Li: and 

Kornberg, 1994; Serizawa et al., 1993). In the assays of Li and Kornberg (1994), the 

same concentration of H-8 inhibited RNApol II transcription w ith higher efficiency 

w hen purified factors were used instead of crude yeast extract. However, the 

levels of CTD phosphorylation and transcription were not compared.
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If TFIIH is an  activator coupled kinase, it m ight be stim ulated by 

transactivation domains. So far that question has not been addressed, although 

RNApol n  isolated as an activator responsive "holoenzyme" (see chapter 1.1.5.) is 

m uch more efficiently phosphorylated by TFIIH as com pared to the pure 

RNApolymerase n  (Kim et al., 1994). In my assays, GAL4-VP16 had no effect on 

the phosphorylation of GST-CTD (data not shown), but there was an indication of 

contamination with GST-VP16 from the affinity resin, (Ohkuma and Roeder, 1994) 

reported that the TFIIH kinase activity is stimulated conditionally by TFIIE at a 

late stage in the formation of the preinitiation complex. So, it is also possible that 

transactivators can indeed stimulate the TFIIH kinase activity, bu t only in  the 

context of a promoter bound activator responsive complex.

3.3.4. Importance of CTD. TBP. TFHF and TFIIE Phosphorylation for RNApol II

Transcription

TFIIH phosphorylates TBP, the RNApolymerase II CTD and the large 

subunits of TFIIF and TFIIE in vitro (Fig. 18 A and (Ohkuma and Roeder, 1994)). 

The relevance of the phosphorylation of these substrates for transcription in vivo 

is not well understood. It is not known whether TBP is phosphorylated in vivo or 

not. Neither is it known whether phosphorylation of TBP w ould alter its functions, 

the integrity of the TFIID complex or the affinity of interactions w ith GTFs and 

transcription activators. The most likely position for phosphorylation in TBP is a 

CTD-like sequence in the N-terminus of the protein (Ohkuma and Roeder, 1994), 

b u t the significance of that site is unknown. Since TBP phosphorylation is 

stim ulated by prom oter DNA in a way, similar to that of CTD (Fig. 18 C), it is 

tem pting to speculate that this event could be coupled to initiation or prom oter 

clearance.
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Maxon et al. reported that TFIIE interacts w ith TBP, TFIIF, TFIIH and the 

nonphosphorylated form of RNApolymerase II (Maxon et al., 1994). All these data, 

though, were obtained with non-phosphorylated TFIIE. The authors did  not assay 

w hether phosphorylation of p56(TFIIE) by TFIIH will change the spectrum  of 

TFIIE interactions. Nothing is known about whether phosphorylation will alter the 

properties of TFIIE in basal transcription reactions either. In m y kinase assays, 

phosphorylation of TFIIE, as well as TFIIF, was not enhanced by promoter DNA 

(Fig. 18 C). Clearly, further work is necessary to establish the functional 

significance of TFIIE phosphorylation.

TFIIF is known as an elongation factor w hich suppresses pausing of 

RNApolymerase II in vitro (Bengal et al., 1991). Therefore, the phosphorylation of 

TFIIF by TFIIH suggests a possible function in  controlling elongation. One 

possibility is that phosphorylation of RAP74 might disrupt the interaction of this 

protein w ith other GTFs such as TFIIE, and to stimulate elongation by stabilising 

the interaction w ith RNApol II which is quite labile (Price et al., 1989). It is also 

intriguing that RAP74 interacts with the transactivation domains of VP16 and SRF 

(Zhu et al., 1994), implying that it m ight be directly involved in transcriptional 

activation. In this respect, the kinase activity of TFIIH m ight m odulate the 

association between activation domains and RAP74.

The strongest candidate for an in vivo substrate of the TFIIH kinase is the 

RNApol II CTD. The phosphorylation of CTD by TFIIH is prom oter and TFIIE 

dependent (Lu et al., 1992; Ohkuma and Roeder, 1994; Serizawa et al., 1993c); and 

the transition from transcriptional initiation to elongation is accompanied by 

hyperphosphorylation of CTD in vivo (Payne et al., 1989) and in vitro (Lu et al.,

1992). Importantly, polymerases stalled at the 5' end of the quiescent Drosophila 

Hsp70 gene are unphosphorylated whereas actively elongating polymerases in the 

heat-shocked state are a mixture of hypo- and hyperphosphorylated forms 

(O'Brien et al., 1994). On the other hand, DRB treatm ent of cells causes a shift in 

mobility of the pol II large subunit from the hyperphosphorylated IIO form to the
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nonphosphorylated HA form (Dubois et al., 1994b). This data along w ith the 

evidence that TFIIH is inhibited by DRB in vitro (Fig. 18 A) suggest that the CTD is 

a substrate of TFIIH in vivo and that this phosphorylation is essential for RNApol 

n  elongation.

3.3.5. Implication for the Function of TFIIH in Activated Transcription

There is a lot of controversy about the mechanism by which TFIIH regulates 

RNApol II transcription. It has been proposed that a helicase functions at a late 

stage in the formation of preinitiation complex to unw ind DNA and allow the 

form ation of the first phosphodiester bond (Buratowski, 1993). A CTD-kinase 

activity which will phosphorylate the large subunit of RNApolymerase II and will 

release CTD from its contact w ith TBP to trigger elongation, was also predicted 

(Usheva et al., 1992). The discovery of such enzyme activities, associated, w ith 

TFIIH (Lu et al., 1992; Schaeffer et al., 1993; Serizawa et al., 1992; Serizawa et al., 

1993) seem ed to explain the role of this factor in RNApol II transcription. 

Surprisingly, both the helicase and the kinase activity of TFIIH are dispensable for 

transcription under certain conditions.

Several studies have established a requirement for the ATPase and helicase 

activity of ERCC3 (TFIIH) in promoter clearance on linear tem plates (Goodrich 

and Tjian, 1994; Roy et al., 1994; Timmers, 1994). On supercoiled templates, 

though, the TFIIH dependence of basal transcription is specific, so that for certain 

prom oters such as IgH and Adenovirus MLP TFIIH is dispensable (Parvin and 

Sharp, 1993). The helicase activity of TFIIH is not required for the unw inding of 

DNA and establishing of an open transcription complex either on supercoiled or 

linearised templates, since on both templates addition of highly purified TFHH is 

no t critical for the initial synthesis of RNA (Goodrich and  Tjian, 1994). 

Nevertheless, the helicase activity of rad3 (the yeast homologue of ERCC2) but not
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that of rad25 (the yeast homologue of ERCC3) is essential for pol n  transcription 

both in vivo and in vitro (Guzder et al., 1994a; Guzder et al., 1994b; Qiu et al,,

1993). Mutations in rad25 also abolished pol II transcription in vivo, bu t they did 

not affect the helicase activity of this protein (Qiu et al., 1993). While these findings 

demonstrate that the helicase activity of rad3 has a direct role in RNApolymerase 

II transcription, they do not specify whether it is essential for open complex 

formation or some other process.

W hen TFIIE and TFIIH were added after promoter clearance to an in vitro 

transcription reaction, no effect was observed on transcriptional elongation 

(Goodrich and Tjian, 1994). Goodrich and Tjian (1994) interpreted their results as 

evidence that these two factors are not involved in regulation of transcriptional 

elongation. Kumar et al. (D. Reinberg, personal com m unication), though, 

dem onstrated that TFIIH is disintegrated and red istributed  at the stage of 

promoter clearance, so that the p62 subunit remains associated w ith the elongating 

polymerase, while ERCC2 and ERCC3 leave the complex. Hence, the experiments 

of (Goodrich and Tjian, 1994) do not rule out possible role of TFIIE and TFDH for 

transcriptional elongation, bu t indicate that their function is not mechanistic 

participation in the elongating RNApol II complex. My results predict that TFIIH 

actually  controls elongation, bu t by establishing a elongation-com petent 

RNApolymerase II complex at the promoter level.

So far, a function for the TFIIH associated CTD kinase activity in 

transcription has not been defined. The initial prediction that phosphorylation of 

CTD is essential for prom oter clearance (Payne et al., 1989) was directly 

contradicted by  the results of Serizawa et al.(1993b). In their experiments w ith 

highly, purified transcription factors (this system does not contain any CTD-kinase 

activ ity  o ther than  TFIIH) inhib ition  of the TFIIH kinase and  CTD 

phosphorylation by H-8 had no effect on the transcription from a minimal AdML 

prom oter. Another proposal, namely that phosphorylation of CTD prevents the 

elongating polymerase from contacts w ith the initiation factors (Peterson and
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Tjian, 1992), is not consistent w ith the results of Serizawa et al (1993b) either . 

Transcription in vitro can also proceed in the absence of ATP or GTP (up to the 

points where A or G are incorporated), which are substrates for the TFIIH kinase 

(Goodrich and Tjian, 1994). It is important to note that the results described in this 

paragraph were obtained by basal transcription assays. They do not address 

w hether activated transcription requires CTD phosphorylation and the TFIIH 

kinase. Furthermore, these assays are designed to detect initiation, b u t not the 

efficiency of elongation. My results also indicate that transcriptional initiation in 

X.laevis oocytes is not very sensitive to kinase inhibitors, which m ight explain 

w hy Serizawa et al. (1993) did not detect any effect of the inhibited TFIIH kinase 

activity (Figs. 12 and 13).

Although it seems clear that the TFIIH kinase activity is not required for 

basal transcription, the experiments in chapters 2.2. and 2.3. of this thesis strongly 

suggest that it is necessary for activated transcription. Inhibition of pol II 

transcription and the TFIIH kinase by DRB, H-7 and H-8 does not m arkedly 

reduce overall initiation or promoter clearance but it does dramatically reduce the 

elongational capacity of activated transcription complexes in X.laevis oocytes (Figs 

12 and 13). Similar effect of these inhibitors w as observed in  v itro  w hen 

transcrip tion  w as perform ed in  crude HeLa nuclear ex tract (D.Bentley, 

unpublished observations). These results support the idea that phosphorylation of 

neither CTD nor other substrates by TFIIH is essential for initiation. Instead, the 

TFIIH kinase activity fulfils a significant function in transform ing the initiation 

complex into an elongation competent complex. A significant, bu t probably not 

the only modification of the elongation complex is the phosphorylation of CTD.

Price and colleagues have suggested that DRB inhibits a factor (P-TEF, 

positive transcription elongation factor) which is able to function in  the short 

interval after initiation and before polymerases have extended 500 bases (Marshall 

and Price, 1992). CTD phosphorylation in vivo appears to occur in the period
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immediately following initiation. The available evidence is therefore consistent 

w ith the possibility that P-TEF corresponds to TFIIH.

3.3.6. Role of RNApolymerase II CTD in Activated Transcription

Both non-specific or promoter-specific basal transcription in  vitro  are 

unaffected by the absence of CTD in yeast (Li and Kornberg, 1994). In contrast, 

truncation of more than 50% of the CTD heptapeptides is lethal in vivo (Edwards 

et al., 1991; Nonet et al,, 1987; Allison and Ingles, 1989). CTD truncation mutants, 

containing half of the CTD, display a phenotype characterised by retarded growth 

and defects in inducible gene expression (Allison and Ingles, 1989; Peterson et al., 

1991). Interestingly, soine of the suppressors of CTD-truncation m utants appear to 

be proteins which mediate transcriptional activation (Thompson et al., 1993; Kim 

et al., 1994). Furthermore, the level of transcriptional stim ulation by activation 

dom ain fragments of GAL4 and GCN4 is modulated by the length of CTD (Allison 

and Ingles, 1989), see also chapter I.I.2.I.). Therefore, an intact CTD seems to be 

essential for normal activator function in yeast.

It is known that elongation in vitro is inhibited on chrom atin templates 

(Izban arid Luse, 1991). Since two of the suppressors of CTD-truncation m utants 

appeared to be histone H3 and SINl (a HMG-like protein) (Kruger et al., 1991; 

Peterson et al., 1991) CTD might also be involved in stim ulation of elongation 

through chromatin structures in vivo. If CTD is essential both  for activation and 

elongation of RNApolII transcription, and if there is a direct link betw een 

activation and elongation, then one could explain w hy a partial CTD deletion 

m utation  can be complemented by unrelated proteins such as m ediators of 

activation (SRBs) and chromatin factors (H3 and SINl).
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Finally, m y results, presented in chapters 23  and 2.4 suggest that not CTD 

itself, b u t ra ther phosphorylated  CTD is responsible to m ediate  bo th  

transcriptional activation and processivity.

3_.3_._7. Role ofGTFs in Control of Transcriptional Elongation

W hat is the difference betw een  processive and  non-processive 

RNApolymerase II complexes? According to the data presented in 2.3. and 2.4. a 

major constituent in the control of transcription elongation is the TFIIH protein 

kinase activity. As discussed in chapter 3.3.4. the most likely substrate for TFIIH 

kinase activity in  vivo is the CTD domain of the large subunit of RNApol II. While 

I assume that highly processive elongation complexes require phosphorylation of 

CTD, the role of other basal transcription factors in the control of pol II 

processivity remains to be established.

TFIIF (RAP30/RAP74) which recruits RNApolymerase II into the pre­

initiation complex through contacts with TFIIB (Drapkin et al., 1993; Flores et al., 

1989) also stimulates elongation by suppressing pausing of RNApolymerase II. 

(Bengal et al., 1991; Kato et al., 1992) have reported that TFIIF and TAT work 

through similar pathways since the effects of TAT and TFIIF on HIVl transcription 

in vitro were not additive. Furthermore, anti-RAP74 antibody inhibited activation 

by TAT in  v itro  (Kato et al., 1992). Recently it was dem onstra ted  that 

RAP74(TFIIF) interacted w ith some transactivation domains (VP16 and SRF, but 

not Spl (Zhu et al., 1994)), however it is not clear to w hat extent these interactions 

contribute to transcriptional activation and processivity. Another indication of 

d irect functional involvem ent of TFIIF in elongation is p rov ided  by the 

observation that both RAP30 and RAP74 travel along w ith the phosphorylated 

form  of RNApol II in experim ents w ith im m obilised tem plates in  vitro 

(D.Reinberg, personal communication).
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Two other activities, termed TFIIX (Bengal et al., 1991) and TFIIJ (Flores et 

al., 1992) were reported not to be required for initiation, b u t to stim ulate 

transcriptional elongation. These factors are not well characterised and the 

mechanism of their function is not known.

TFIIS is a factor w ith defined function during RNApol II elongation. It 

triggers 3'-5' RNAase activity from the catalytic subunit of RNApolymerase II 

upon pausing thus facilitating resumption of elongation (Izban and Luse, 1992; 

Johnson and Chamberlin, 1994). It remains unclear whether TFIIS is an integral 

subunit of the elongation complex or w hether this protein  interacts w ith 

RNApolymerase II upon pausing. However, it is notew orthy that TFIIS was 

initially characterised by affinity chromatography as a protein that specifically 

associates with RNApol II (RAP38, (Sopta et al., 1985)). My results from analysis of 

the proteins that were retained by the GST-VP16 resin showed that TFIIS coelutes 

w ith several GTFs and the large subunit of RNApol n  (Fig. 16). This indicates that 

TFIIS m ight be incorporated into the elongation complex at the early stages of 

transcription due to its affinity to the initiation factors or RNApol II itself. Such a 

hypothesis, though, requires further investigation.

3.3.8. Is There Differential Stringency in the Requirement for CTD Phosphorylation

The model proposed in chapter 3.3.5. assumes that the TFIIH kinase 

activity is required for high processivity of activated transcription, bu t not for 

basal or non-activated transcription. Indeed, basal transcription in vitro (Serizawa 

et al., 1993b), as well as non-activated transcription in X.laevis oocytes (Fig. 13, 

lanes 1-3) are not sensitive to the kinase inhibitors DRB, H-7 and H-8. In contrast, 

processivity of activated transcription was m arkedly suppressed by the same 

inhibitors (Figs. 12-14; D.Bentley, unpublished results). Hyperphosphorylation of 

CTD, however, takes place in basal in vitro transcription experiments (Lu et al..
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1992; Serizawa et al., 1993a). W hat contributes to the differential processivity of 

activated and non-activated transcription then? The available data can not answer 

that question. One possibility is that in basal transcription phosphorylation of CTD 

(and /o r other substrates) is inefficient. Support for this idea is provided by the fact 

that in the activator responsive "holoenzyme" phosphorylation of CTD is about 8 

fold higher as compared to the "core" enzyme ((Kim et al., 1994), see also chapter

1.1.5.). It is also equally possible that activated transcription complexes incorporate 

elongation factors and obtain novel characteristics (e.g. high processivity) relative 

to non-activated complexes. Phosphorylation of CTD itself m ight not exemplify 

these characteristics, but is essential for them. Thus, phosphorylation of CTD 

might be differentially required in basal and activated transcription.

Indication of differential necessity of CTD is provided by the experiments 

of (Li and Kornberg, 1994). Yeast CTD-less RNApolymerase II is active and 

indistinguishable from the intact polymerase in basal transcription w ith the CYCl 

prom oter. In contrast, the CTD-less RNApolymerase II is completely inactive 

w hen transcription is performed with crude extracts (presumably activated) w ith 

the same promoter.

Differential requirement for CTD phosphorylation betw een activated and 

non-activated transcription (and phosphorylation of other substrates) may explain 

why "squelched" transcription is less sensitive to DRB (Fig. 14). In activated state, 

the c-myc promoter directs transcription which is highly sensitive to DRB, so that 

processivity is reduced to 15-20% upon treatment with that drug (Figs. 12 and 14). 

"Squelching" by VP16 at the concentration used competes w ith the c-myc specific 

transactivators for TFIIH and other factors required for efficient elongation. .As a 

result of that, RNApol II processivity over the c-myc gene is substantially reduced 

and  m im ics non-activated transcription. Therefore, the requ irem ent for 

phosphorylation of CTD is abolished and transcription is not any further sensitive 

to DRB.
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3.4. Evidence for RNApol II "holoenzyme" in HeLa cells

In the affinity chromatography experiments presented in Figs. 15 and 16, 

RNApolymerase II, TBP, TFQH, TFIIE, TFIIF and TFIIS were all found to co-purify 

in the 0.2 M KCl fractions of the VP16 affinity column. Previous experiments have 

shown that TBP (Stringer et al., 1990) and TFIIB (Lin and Green, 1991) can interact 

directly w ith  VP16. Affinity chromatography w ith crude extracts, which was 

applied in my investigation, confirmed the interaction between VP16 and TBP, but 

can not distinguish whether these general transcription factors bind directly to the 

GST-VP16 column. Binding of TFIIH (p62) to VP16, though, appears to be stronger 

as compared to the rest of the GTFs (Fig. 16), which m ight be an indication that 

TFIIH and  VP16 in teract directly. Indeed TFIIH and  TBP w ere alm ost 

quantitatively depleted from the extract by passage over the VP16 column, while 

the rest of the tested GTFs and RNApol II were not. Recently, a direct interaction 

between VP16 and TFHH was reported (J.Greenblatt, in press).

The co-elution of five general transcrip tion factors during  affinity 

chrom atography under mild conditions raises an interesting possibility that a 

transactivator responsive RNApol II holoenzyme m ay exist in  Hela nuclear 

extract. A foundation for such a complex could be provided by the multiple 

affinity interactions between the GTFs. Recently, RNApol n  "holoenzymes" have 

been isolated from S.cerevisae. They contain homologues of several of the factors 

which co-purify from Hela extract on the VP16 column. (Koleske and Young, 1994) 

isolated a complex which contains TFIIH, TFIIB, and TFIIF hom ologues in 

add ition  to SRB proteins and RNApol II in its hypophosphorylated form. 

Kornberg and colleagues (Kim et al., 1994) isolated a different complex which 

lacked TFIIH and TFIIB. Both "holoenzymes" conferred responsiveness to the 

VP16 activation domain in transcription assays. My results suggest that a similar

126



holoenzym e(s) w hich can be substan tia lly  enriched  by  VP16 affinity  

chromatography may exist in mammalian cells.

A n alternatively possibility is that the VP16 transactivation dom ain could 

nucleate the formation of a RNApol n  complex in the absence of prom oter DNA. 

In that situation, less potent transactivation dom ains w hich have restricted 

capacity to interact w ith  general transcription factors, w ill form  different 

complexes. In vivo, cooperation between transactivators associating w ith discrete 

sets of GTFs could be required to activate gene expression.

3.5. A Model For the Regulation of RNApolymerase II Elongation

A model which describes my investigation, as well as other experimental 

data from our laboratory, is presented in Figure 23. We suggest that there are two 

types of transcription complex: non-processive and processive, although it is also 

possible that processivity varies continuously. The idea of different levels in the 

elongation competence of RNApolymerase II is inspired by the observation that in 

HIV-2 VP16 activated transcripts terminate at promoter distal sites as compared to 

transcripts, activated by the relatively weaker activator GAL4-AH (Fig. 3). In the 

non-activated state and w hen transcription is stim ulated by TBP, the non- 

processive form predominates whereas in the activated state the processive form 

predominates. As discussed in chapter 3.1.6., activators differ quite extensively in 

the processivity of the transcription they stimulate. These differences are 

represented in Fig. 23 by moderate (middle) and high processivity (bottom) modes 

of transcription. We propose that the balance betw een processive and non- 

processive elongation is determined by basal prom oter elements including the 

TATA box, and by the repertoire of activation dom ains bound to prom oter 

elements. Highly potent transactivation domains such as VP16 and E la will recruit 

m ore efficiently elongation factors to the promoter, while weaker activators will
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require cooperation for elevated gene expression. Significant levels of initiation 

does not necessarily lead to effective elongation, as demonstrated by the effect of 

TBP on transcription from minimal promoters in Figs. 8 and 9. In this respect, it is 

possible that transactivators stimulate initiation and elongation in different ways. 

The idea of independent regulation of initiation and elongation by transactivators 

is also supported by the fact that kinase inhibitors do not suppress significantly 

initiation, bu t do prevent the polym erase from  efficient elongation. O ur 

observations imply that different types of initiation event occur in the presence or 

absence of activators resulting in the assembly of processive or non-processive 

transcription complexes respectively.

Is stim ulated processivity essential for the overall activation of gene 

expression? Although the results obtained in my investigation do not directly 

answer that question, it has been dem onstrated by nuclear run-on assay that 

increased initiation rate and enhanced processivity both make an im portant 

contribution to the synthesis of functional mRNAs (D. Bentley, published in 

(Yankulov et al., 1994). We consider the low processivity of non-activated 

transcription as a mechanism, which reduces gene expression in the absence of 

specific activators while permitting the promoter to m aintain an open "standby" 

configuration, which may permit rapid activation in response to environmental 

stimuli.
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Figure 23. Model describing processivity of transcription 

in  the basal and activated states.

Two classes of tran scrip tion  com plex are 

represented  : non-processive (filled) and  processive 

(open), however it is also possible that processivity could 

be m odulated continuously. Only one copy of each GAL4 

activator is shown although multiple dimers were bound 

to each prom oter in our experiments. Non-activated or 

TBP-stimulated transcription (top) is predominantly non- 

processive. The GAL4-AH (middle) and GAL4-VP16 

(bottom) activated states are characterised by increasing 

levels of transcriptional processivity.
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3.6.Involvement of BM28 in RNApol II transcription

In section 2.5 of this thesis I present data indicating a possible involvement 

of BM28 (Todorov et aL, 1994) in RNApolymerase II transcription (Figs. 21-22). 

The first piece of evidence is that BM28 associated specifically w ith VP16 and 

Ela(CR2&3) as demonstrated by affinity chrom atography (Fig. 21). BM28 also 

interacted w ith  the activation-deficient m utant of VP16 (SW6), although less 

efficiently than VP16 (Fig. 21). Similar fractionation was observed for TFIIH(p62) 

(Fig. 16 and 17), but any further exploration of that fact at present will be hugely 

speculative. The nature of the association between BM28 and transactivation 

dom ains is unclear, although its should be em phasised that only a small 

proportion of BM28 was retained by the affinity resins. Since the ligand proteins 

were in excess, it is conceivable that the activation domain-BM28 interactions were 

m ediated by other less abundant proteins. An important point, arising from these 

experiments, is that BM28 was found to coelute w ith the bulk of GTFs and 

RNApol II. The significance of that co-purification is w orth considering, since 

antibodies against BM28 specifically and completely inhibit pol n  transcription in 

X.laevis oocytes (Fig. 22). Following that line, it is not unlikely that BM28 

participates in a RNApol H "holoenzyme" complex (see chapter 3.4.).

A second evidence that BM28 plays a role in pol II transcription comes from 

the experiments, presented in Fig. 22. Anti-BM28 antibodies abolished pol II 

transcription in  X.laevis oocytes w ithout incurring any decrease in  pol III 

transcription. Importantly, the effect of anti-BM28 antibodies was identical to that 

of anti-CTD antibodies (Fig. 22 A).

By w hat m echanism  does BM28 control pol II transcription? BM28 

(Todorov et al., 1994) is a hum an homologue of the S.cerevisae proteins MCM2, 

MCM3 (Van et al., 1991) and CDC46/MCM5 (Chen et al., 1992). MCM2, MCM3 

and CDC46/MCM5 are all believed to be involved in  an early step in DNA
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replication (for a review see (Diffley et aL, 1994) and to be members of yeast 

"replication licensing factor" (Yan et al., 1993). The "licensing factor" itself , as 

predicted by (Blow and Laskey, 1988), is required for initiation of replication and 

can gain access to chromatin only during mitosis. It activates replication and limits 

the initiation of replication to once per origin per cell cycle. MCM2, MCM3 and 

CDC46 are present in yeast nuclei until the onset of S phase and are tightly 

associated w ith DNA during G1 (Yan et al., 1993). In addition, mcm2, mcm3 and 

cdc46 m utants are defective in maintaining minichromosomes. Therefore; they 

fulfil some of the properties required for a "licensing factor". As for BM28, it has 

nuclear localisation throughout the cell cycle and microinjection of antibodies 

against it delays entry into S phase (Todorov et al., 1994). A t present, close 

functional relationship between MCM2, MCM3 and BM28 is only proposed, but 

not experimentally confirmed.

It is surprising that BM28 which has a significant homology with replication 

factors m ight be involved in pol II transcription. No indication of any participation 

of mcm2, mcm3 and cdc46 in transcrip tion has been pub lished  so far. 

Nevertheless, the results in Fig. 22 strongly suggest that BM28 is essential for pol II 

transcription in X.laevis oocytes. The effect of anti-BM28 antibodies should not be 

connected to some interference between replication and transcription factors in 

that system, since antibodies against a genuine replication factor such as RP-A 

(Kenny et al., 1990) had no effect. At present it is not clear whether BM28 would be 

required for pol II transcription in systems, different from  injected X.laevis 

oocytes. Neither is known how exactly it affects that process. Therefore, it is 

prelim inary  to speculate about the m echanism  w hich couples BM28 % and 

transcription.
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MATERIALS AND METHODS

4.1. Materials

All chemicals used were analytical grade, purchased mainly from Sigma, 

BDH or Fissons. Enzymes were purchased from Boeringer, Strata gene, 

Promega, New England Biolabs or Sigma.

4.2. Chromatography Supports and Resins

Bio-Rad Economy Colum ns, tubings and other accessories were 

generally used for chromatography experiments and protein purification. 

Chromatography resins were purchased as follows:

S-Sepharose Fast Flow, Q-Sepharose Fast Flow, Glutathione-Sepharose 

4MB, Heparin-Sepharose 4MB, Protein-A Sepharose 4MB and Sephadex G-70 

were from Pharmacia.

dsDNA-Cellulose was from Sigma. f

NTA-Agarose was from Qiagen.

Disposable Bio-Rad P-10 columns were used for fast buffer exchange of 

small samples.

Small volume dialysis was performed in Pierce Microdialysis Unit.

4.3. Inhibitors

PMSF (Sigma) stock solution was 50 m g/m l in DMSO.

DRB (Sigma) was kept as 50 mM suspension in EtOH at -20°C.

M icrocistin (500 pM), H-8 (20 mM), H-7 (20 mM), a-am anitin  (1 m g /m l), 

L eupeptin  (1 m g /m l), aprotonin (1.8 m g/m l) and p -G ly ce ro p h o sp h a te
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(IM )were purchased from Sigma and stored, as solutions in w ater at -209C. 

Pepstatin (Sigma) was dissolved in  MeOH at 1 m g /m l and stored at -209C. 

Benzamidine (Sigma) was added to the buffers prior to use.

Ampicilin and IPTG were from Sigma.

4.4. Buffers and Solutions

MBS (Modified Barths Solution)

10 mM HEPESNa pH  7.6

0.088 M NaCl

Im M K C l

2,4 mM N aH C bs

0.8 mM MgS04

0.7 mM CaCl2

50 p g /m l Gentamycin

BUFFER A 

10m M H EPESpH 7.9 

100 mM NaCl 

10 mM 2-mercaptoethanol 

100 pM ZnCl2

XL wee EXTRACTION BUFFER 

SOm M TrisHCl pH  8 

100 mM KCl

10 mM 2-Glycerophosphate .

2m M EGTA

Im M D T T
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2 mM Benzamidine 

BUFFER D

20m M K H EPESpH 7.9

SOmMKCl

0.2m M N aED TA

0.2m M K E G T A

2m M D TT

FORMAMIDE LOADING BUFFER 

99% Formamide (Fluka)

10 mM EDTA

0.1 % Bromphenol Blue

0.1 % Xylene Cyanol

10 X GLYCEROL LOADING BUFFER 

50% Glycerol (w /v), 2% Orange G, in TE

GEL EXTRACTION BUFFER 

0.5 M Ammonium Acetate pH 6.5 

Im M E D T A  

0.1 % SDS

GEL FIXING SOLUTION 

10% Acetic Acid, 10% MeOH

XL EXTRACTION BUFFER 

1% SDS
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0.1M T ris-H C l,pH 8.0  

10 mM EDTA

XL GUAMDEJM BUFFER

4 M Guanidium  HCl

5 mM Na Citrate 

0.1 M 2-ME 

0.5% Sarcosyl

FORMAMIDE HYBRIDISATION BUFFER 

80% Formamide 

0.4 M NaCl 

20 mM PIPES pH  6.4 

1 mM EDTA

SDS-LOADING BUFFER 

2% SDS 

10% Glycerol 

50 mM Tris pH  6.8 

100m M DTTor2-M E 

0.02 % Bromphenol Blue

TBE running buffer

89 mM Tris Borate, 89 mM Boric Acid, 2 mM EDTA, pH  8.3 

TAE running buffer

20 mM Tris Acetate, 10 mM Sodium Acetate, 5 mM EDTA, pH  8.0
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PROTEIN TRANSFER BUFFER, pH  9.2 

48 mM Tris .

39 mM Glycine 

10% Methanol 

0.03 % SDS

PROTEASE INHIBITORS were added where indicated to the following final 

concentrations:

1 mM Benzamidine 

50 p g /m i PMSF 

1 pg /m l leupeptin,

1 pg /m l pepstatin,

1.8 pg /m l aprotonin

4.5. Gel Electrophoresis of Nucleic Acids 

ACRYL AMIDE GEL ELECTROPHORESIS

4.5 - 6.5 % denaturing acrylamide gels were used for RNA m apping 

(RNAase and SI protection assays) and purification of RNA or DNA probes for 

analysis of RNA. The gels contained IX TBE, 7M Urea, 20:1 m ixture of 

Acrylamide/bis-Acrylamide and were run  in IX TBE. Samples were heated at 

95°C for 2-3 m in in more than 70% Formamide Loading Buffer just before 

loading. Short gels were run  at 25W and long - at 38W.

4:5 % non-denaturing gels were used for gel mobility shift assay and for 

purification of probes for that assay. The gels contained 0.5X TBE and 37.5:1 

Acrylam ide/bis-Acrylam ide mixture and were run  in 0.5X TBE at 200 V.
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Samples were loaded in Glycerol Loading Buffer or Gel Shift Buffer (see GEL 

MOBILITY SHIFT ASSAY).

All gels were run in Cambridge Electrophoresis Ltd. tanks.

AGAROSE GEL ELECTROPHORESIS

1-2% Agarose (SeaKem GTG) gels in TAE were used for analysis of plasmid 

preparations and restriction enzyme digestions, as well as for purification of 

restric tion  d igest fragm ents. Gels w ere ru n  a t 80-100 V in  Ellard 

Instrum entation Ltd. tanks. TAE and the gels contained 10 p g /m l Ethidium  

Bromide.

4.6. Protein Electrophoresis and Blotting

Protein electrophoresis was performed according to (Laemmli, 1970). 

The samples were heated for 5 min at 95°C in SDS-Loading Buffer. The gels 

were run  in BioRad Mini Protean gel tanks at 130 V for 1.5-3.5 hours.

PAA gel separated proteins were transferred to Immobilon-P PVDF 

mem branes (Millipore) in a Trans-Blot SD Semi-Dry Transfer Cell (BioRad) 

following the manufacturer's instructions. Immobilon membranes were soaked 

for 2 m in in Methanol and then equilibrated for at least 15 m in in Transfer 

Buffer. PAA gels were equilibrated in Transfer Buffer for 10-15 min. Blotting 

was at 20V/200 mA for 25-90 min (depending on the concentration of the gel 

and the molecular weight of the protein(s) of interest) between three sheets of 

soaked 3MM paper (Whatman) at each electrode.
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4.7. Gel M obility Shift Analysis

The DNA binding activity of GAL4-fusion proteins was m easured by a 

gel mobility shift assay with the oligonucleotide probe

CTGCAGTCGGAGGACAGTACTCCGACCCGGG

The probe was armealed to a complementary oligonucleotide, giving 

CTGC sticky ends. 20 ng of the annealed oUgo were labelled w ith  Sequenase 

2.0 (USB) in  10 pi filling in  reaction w ith 40 pCi a^^p-dATP and 100 pM  cd d  

dCTP, dGTP and dTTP in Sequenase buffer. This labelling gives typically about 

200 000 cpm /ng  oligo. The labelled oligonucleotide was purified from a 4.5 % 

non-denaturing acrylamide gel by exising the hot band and extraction in  Gel 

Extraction Buffer. The eluted signal was counted, the oligo precipitated in  Z5 

volumes EtOH, 20 mM Mg2Cl and resuspended at 100 000 cpm /pl.

Gel retardation assays were performed w ith less than 0.5 ng of the fusion 

proteins and  50 000 cpm of the labelled oligo in a 20 p i reaction w ith  final 

concentration:

50 mM NaCl

20 mM Tris HCl 7.5

50 p g /m l poly(dLdC) (Pharmacia)

1 mM EDTA

1 mMDTT

5% Glycerol

0,1 % NP-40

1 m g/m l BSA

50 pM ZnS0 4

2.5 mM MgCl2

0.1 % Bromophenol Blue
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The reaction mixtures were incubated on ice for 30 m in and 15 pi were loaded 

on a 4.5 % Acrylamide gel (37.5:1 Acrylamide : Bis-Acrylamide) in  0.5X TBE. 

The gel was pre-run for 30 min and run for 90 min at 200 V, dried on DEAE- 

paper (W hatman) and exposed to Kodak XAR films or quantified by a 

Phosphorimager (Molecular Dynamics).

4.8. Injecting of X.laevis Oocytes

X. laevis oocytes were obtained from the ICRF Animal Unit at Clare Hall 

and kept in MBS at room temperature. They were separated by treatm ent with 

collagenase type II (Sigma) at Ip g /m l in MBS for at least 5 hours and then 

extensively washed. After this treatment the oocytes can be maintained in MBS 

for 2-3 days.

Injections were performed following centrifugation of the oocytes at 

1400 rpm. for 11 m in in a lEC Centra-7C centrifuge. This allows the nuclei to 

surface and become visible under a stereoscope. Each oocyte was injected with 

46 nl mixture, containing 0.46 ng of the test plasmid, 0.46 ng of pSP65-VAl 

control plasm id and protein where indicated w ith a Drum m ond "Nanoject" 

apparatus according to the instructions of the manufacturer, a  -  am anitin was 

injected at 20 p g /m l into the cytoplasm to give final intracellular concentration 

of 1-2 p g /m l. DRB, H-8, H-7 were added to the incubation m edia at 

concentrations, indicated in the text.

4.9. Oocyte RNA Isolation and Analysis 

RNA Isolation

RNA isolation was as described (Bentley et al., 1989; Bentley and 

Groudine, 1988). Briefly, 10-20 healthy oocytes were harvested 16-20 h  after

139



injection, drained and crushed by a pipette in 250 pi of XL Extraction Buffer. 

250 pi of XL Guanidium Buffer were added and the homogenate was extracted 

once w ith 500 pi of phenol/chloroform and once w ith 400 pi of chloroform. The 

final extract (500 pi ) was added to 1 ml of absolute EtOH and the RNA was 

stored a t -20% .

4.10. RNAase and Nuclease SI Protection Analysis

RNAase Protection Assay 

RNA isolated from 1 oocyte was co-precipitated w ith 70 000 cpm of the 

VA and 70 000 cpm of the test gene RNA probes for RNAase protection. 

H ybridisation was for 3 h  or overnight in 10 pi Form am ide H ybridisation 

Buffer at 48^C. The samples were then digested at 37®C for 30 m in in 100 pi 

RNAase reaction (0.3 M NaCl, 10 mM TrisHCl pH  7.5,5 mM EDTA, 5 p g /m l 

RNAase T1 and 0.5 pg /m l RNAse A). The RNAase reaction was term inated by 

adding 2 pi 10% SDS and 2 pi 10 m g /m l Proteinase K and incubated for 

additional 15 m in at 37%  to inactivate any residual RNAase activity. The RNA 

was then Phenol/Chloroformed, precipitated in EtOH, dissolved in 2.5 pi water 

and 5.5 p i Form am ide Loading Buffer and separa ted  on denatu ring  

Acrylam ide/Urea Gels, Fixed, dried gels were exposed on Kodak X-Omat films 

Or quantified on Phosphorimager (Molecular Dynamics).

SI nuclease Protection Assay 

Co-precipitation and hybridisation were the same as for RNAase 

protection assay except that 50 K of the 5’-labelled DNA probe was used. The 

samples were digested in 100 pi SI reaction (30 mM NaCOOH pH  4.6, 2 pM 

ZnS04; 0.3 M NaCl, 25 U SI nuclease (Boeringer)) for 30 m in at room
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tem perature, EtOH precipitated and analysed as in the RNAase protection 

assay.

4.11. Probes for RNA Analysis 

Probes for SI Protection Assay

H indlll end 'y^^P-ATP labelled Hindlll-EcoRI dsDNA fragment, derived 

from pGal5-HIV2CAT, was used for m apping of the 5' ends of HIV2CAT 

transcripts. The fragment was labelled at the H indlll site by PNK and y32p_ 

ATP. This probe was made by D.Bentley.

Probes for RNAase Protection Assay

Probes for RNAase protection assays were synthesised for 45 m in at 

3 7%  from linearised plasmids in 10 pi reaction which contained :

1 pi template ( 1 m g/m l linearised plasmid)

2 pi 5X transcr. buffer (Stratagene)

1 pi 100 mM D IT

1.5 pi N  mix (1.88 mM ATP, GTP, CTP; 0.375 mM UTP)

4 pi y32p UTP (800 Ci/mmol)

0.5 pi RNA polymerase

The reaction was terminated by adding of 20 pi Formamide Loading 

Buffer and heating the samples for 2 m in at 95^C. The probes were purified 

from 4.5% denaturing gels by excision and extraction of the hot band in 500 pi 

Gel Extraction Buffer for 2 hours at 65% . Typically 75 000 cpm were used per 

sample in the RNAase protection analysis.
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The plasmids, the restriction enzymes and the RNA polymerases used 

are listed in Table 2. The lengths of the probes and the im portant products of 

the assays are also shown.

Table 2. Probes for RNAase Protection Assay

probe plasmid Linearised 

with (enz)

Synthesised 

by (enz)

Length (nucleotides) 

probe RT TM

HTK pVZGalHTK B gin Sp6 340 185 130

IVTK pVZGallVTK B gin Sp6 340 220 130

Elbmyc pVZGalElbmyc H indm T7 350 195 105

E4myc pVZGalE4myc H indm T7 350 200 105

943myc pSX943 BamHI T3 400 356 302

hiv2 pVZmV2 EcoRI T3 410 165 130*

VA pS'VA Xbal T7 130 70 -

^multiple bands from 120 to 140 bases 

RT - readthrough band 

TM - terminated band

Sense RNA was produced from the same plasm ids, using T3 RNA 

polymerase for pGalüTK, pGallVTK, pGalElbmyc and pGalE4myc. T7 RNA 

polymerase was used for the synthesis of sense c-myc RNA from pSX943. All 

these RNAs were synthesised with 100 pM cold NTPs only.
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4.12. X. Laevis Whole Cell Extract

X.laevis oocytes were collagenased and washed in MBS in the same way 

as for injecting. Finally the oocytes were washed twice in  ice-cold XL wee 

Extraction Buffer and transferred to 15 or 30 ml Corex tubes so that to fill about 

75 % of the tube volume. The tube was topped with XL wee Extraction Buffer 

and overlayered with 1 ml of liquid paraffin (Boots). This helps to keep the yolk 

vesicles at the phase boundary and facilitates the collecting of the clear extract. 

Protease inhibitors were added to the water phase. The oocytes were crushed 

and extracted in a single step by spinning for 20 m in at 10 000 rpm  in a Sorvall 

HB-4 rotor. The midphase was carefully collected by a syringe and immediately 

respun for 90 min at 40 000 rpm in a Beckman SW-40 rotor. The clear midphase 

was collected, avoiding carefully the upper yolk layer, brought to 20% glycerol, 

aliquoted and frozen in liquid nitrogen. After thawing the extract was filtered 

through 0.45 |im  filter.

4.13. HeLa Cell Nuclear Extract

The protocol follows that of (Shapiro et al., 1988). I used the 1985 

freezing of Hela from Clare Hall. All manipulations were on ice or at 4°C. 20 

litre cells were harvested at 5x10^ per ml (10 ^0 cells total). The cells were 

pelleted at 2000 rpm  for 5 min in Beckman J-6 rotor, washed twice w ith  cold 

PBS and transferred to 50 ml Falcon tubes (7,5 ml packed cells per tube). The 

tube was filled w ith hypotonic lysis buffer plus protease inhibitors and the cells 

were allowed to swell for 10 min on ice. After repelleting the final volume of 

the suspension was brought to 27 ml w ith hypotonic buffer plus protease 

inhibitors and the cells were homogenised in a pre-chilled 40 ml W heaton
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Dounce by 8 strokes w ith the B pestle. 3 ml (1/10 vol.) sucrose restore buffer 

were added to the homogenate and mixed in with 2 gentle strokes. The crude 

nuclear fraction was quickly pelleted in 30 ml Corex tubes by spinning in a 

swinging bucket Sorvall rotor HB4 at 10,000 rpm  for 30 seconds. The turbid 

supernatant was discarded and the nuclei resuspended by gentle douncing in a 

total volume of 58.5 ml nuclear resuspension buffer plus protease inhibitors. 6.5 

ml (1/10 vol.) of saturated neutralised Am m onium  Sulphate were added 

dropwise while stirring to give final concentration of 0.41 M. The suspension 

was stirred in ice bath for 30 m in and then spun in a Beckman TI45 rotor at 45 

000 rpm  for 90 min at 49C. Solid ammonium sulphate (0.33g/ml) was added 

slowly to the supernatant and stirred for 20 min. The pellet was collected in 10 

ml of nuclear dialysis buffer plus protease inhibitors, dialysed twice in 2 litres 

dialysis buffer for 90 min, clarified by spinning for 10 m in at 10 000 rpm  in a 

Sorvall HB-4 rotor, aliquoted and frozen in liquid nitrogen.

Solutions for HeLa Nuclear Extract

HYPOTONIC BUFFER 

lOmMHEPES pH  7.9 

0.75mM spermidine 

0.15mM spermine 

O.lmMEGTA 

O.lmM EDTA 

lOmM DTT 

lOmM KCl

NUCLEAR DIALYSIS BUFFER (BUFFER D)

20m M KH EPESpH7.9 

100 mM KCl
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0.2mM NaEDTA 

0.2mMKEGTA 

2mMDTT 

20% glycerol

NUCLEAR RESUSPENSION BUFFER

20m M KH EPESpH7.9

0.75 mM spermidine

0.15 mM spermine

0.2 mM Na EDTA

2mM EGTA

2 mM DTT

25% glycerol

10 X SALT 

0.5HEPESpH 7.9

7.5 mM spermidine

1.5 mM spermine 

100 mM KCl 

2mM EDTA 

lOmMDTT

SUCROSE RESTORE 

9 vols. 75% sucrose, 1 vol lOX salts
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4.14. Affinity Chrom atography

Preparation of affinity GST-; GSTSW6-; GSTVP16- and GSTEla(CR2&3)- 

Sepharose resins is described in Production of GST-fusion Proteins. The resins 

(0.6 ml) were packed in Bio-Rad Economy Columns and equilibrated w ith 

buffer D (50 mM KCl). 1 ml H e la  Nuclear Extract ( about 10 m g /m l initially, 

diluted twice w ith equal volume of buffer D without KCl to bring down the salt 

concentration to 50 mM KCl) or 4 ml of X.laevis Whole Cell Extract (2-3 m g/m l) 

were passed three times through the columns. The resins were subsequently 

washed and eluted with the following buffers (2 fractions of 1.35 ml each, equal 

of 4.5 resin bed volumes): buffer D+50 mM KCl (fractions 1 and 2); buffer 

D+lOO mM KCl (fractions 3 and 4); buffer D+200 mM KCl (fractions 5 and 6); 

buffer D + 600 mM KCl (fractions 7 and 8). In all cases buffer D was 

supplem ented with 20 % v /v  Glycerol and protease inhibitors. Fractions were 

immediately transferred to -20°C. Aliquots were used for subsequent analysis.

4.15. Preparation of Antl4?62_Beads_and Immunodepletion

100 \l\ Protein-A Sepharose beads were mixed w ith  1.2 ml of rabbit 

antiserum , raised against the p62 subunit of TFIIH (this antiserum  was 

prepared by D.Bentley) and 5 pg of 3C9 monoclonal antibodies or prebleed 

serum , respectively, and rocked for two hours at 40C. The beads were then 

washed three times with PBSA and twice with 200 mM Na-Borate buffer pH  8. 

1 ml of 40 mM Dimethyl Pimilmaleimid (Sigma) in Borate buffer was mixed 

w ith the resin and rocked for 1 h  to cross-link the antibodies and Protein A. 

Finally the beads were washed extensively w ith PBSA and equilibrated with 

buffer D+50 mM KCl. 50 pi of the VP16 fraction 5 were diluted w ith 150 pi
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buffer D without KCl to lower the KCl concentration to 50 mM, mixed w ith the 

beads and rocked for three hours at 4®C. The supernatants were collected and 

the beads washed three times with 1 ml of buffer D+50 mM KCl.

4.16. Standard Protein Kinase Assay

Kinase activity was assayed in a 20 pi standard reactions w ith final 

concentration:

50 mM KCl 

20 mM Tris HCl pH  8 

7 mM MgCl2 

2m M D TT

5 mM 2-Glycerophosphate 

1 mM Microcistin

3.3 pg /m l pAdH3, linearised by EcoRl

100 pg /m l BSA

25 pM ATP

4nCi732p.ATP

IX protease inhibitors

Substrates were used at the following concentrations: 

G ST-C T D ,at40pg/m l 

GAL-CTD, at 120 pg /m l 

hum an recombinant TBP, at 40 pg /m l 

hum an recombinant TFIIF, at 45 pg /m l 

hum an recombinant TFIIE, at 60 pg /m l 

TBP, the two subunits of TFIIF and the two subunits of TFIIE were 

expressed and purified by D.Bentley and T.Purton. The two subunits of TFIIF
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and of TFIIE, respectively, were mixed after purification of each individual 

component.

Test fractions were preincubated in Falcon 96 well microtiter plates for 

40 m in at 30^C w ith 5 pM cold ATP (and inhibitors, w here indicated) to 

prevent high autophosphorylation signals from the sample. Subsequently the 

final cold ATP concentration was brought to 25 pM, and the substrates and 4 

pCi 7^2p_ATP were added to initiate the reaction. After 1 h  at SO^C the 

reactions were terminated by 5 pi 5X SDS-Loading Buffer and the samples were 

heated for 5 min at 90^0. The products of the reaction were separated on 10-12 

% SDS-Polyacrylamide gels for 90 min at 150 V. Finally the gels were washed 

extensively (at least 2 h) in Gel Fixing Solution, dried and exposed on Kodak 

XAR film or phosphorimaged.

4.17. Western Blot Analysis

Proteins w ere separated and b lotted  as described in  PROTEIN 

ELECTROPHORESIS AND BLOTTING. Rainbow Markers (Amersham) were 

always used to control for the quality of separation and transfer. After blotting 

the filters were marked with a pencil and protein binding sites were saturated 

for 4-15 hours at 4°C in milk-PBSA (5% Marvel Fat Free Dry Milk, 0.25 % 

Tween-20 in PBSA).

Monoclonal antibodies and affinity purified rabbit antibodies were used 

at 0.3-5 p g /m l. Polyclonal sera were diluted 100-400X. All antibodies were 

diluted in 3% Bovine Albumin (Fraction V, Sigma), 0.25 % Tween-20, 0.02 % 

N aN s in PBSA and used several times.

Secondary anti-mouse and anti-rabbit immunoglobulin HR-peroxidase 

conjugated antibodies were purchased from Daco (Copenhagen) and were 

diluted 1:5000 in milk-PBSA.
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Filters were incubated with the primary and secondary antibodies for 1 

h  at room temperature. After each incubation the filters were washed 4-5 times 

in 100 ml of milk-PBSA for 5 min. Finally the filters were rinsed in PBSA. 

Detection of the immune complexes was for 1 min by ECL reagent (Amersham) 

according to the instructions of the manufacturer.

After each antigen detection all the antibodies were stripped from the 

filters by incubation in STRIP (2% SDS; lOOmM 2-Mercaptoethanol in PBSA) for 

15 min at 50°C. The filters were then extensively washed in PBSA, incubated 

for 1 h in milk-PBSA and used for immunodetection of other antigens.

4.18. Expression and Purification of Recombinant Proteins 

GAL-fusion proteins

GAL4-AH was produced from the plasmid pTMC2. GAL4-VP16 was 

expressed from pET21bGAL4VP16. This protein contains the Herpes simplex 

virus VP16 protein sequence 412-490 and LDRSVEHHHHHH C-terminal of 

VP16 residue 490. GAL4-Ela(CR2&3) was produced from pET21dGAL4-Ela 

and containis E la residues 121-222 (Zhou et al., 1992). This protein has a K to A 

substitution at position 2 and contains the sequence RAALEHHHHHH C- 

terminal of the E la sequence. GAL4 (1-147) was expressed from pET21bGAL4 

(1-147) and contains the sequence PVDKLAAALEHHHHHH C-terminal to 

residue 147. GAL4 (1-94) was expressed from pET21bGAL4 (1-94). C-terminal 

of amino acid 94 the sequence is AALEHHHHHH. Host strains were XA90 for 

GAL4-AH and BL21 DE3 (pLysS) for the others.

Cultures were initiated from either fresh plates or 100 times diluted 

overnight cultures. Cells were grown in BHI media at 37®C to OD600=0-6. The
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tem perature was then decreased to 3Q0C and protein expression was initiated 

by adding of 1 mM IPTG. After 3h the cells were collected and washed in  buffer 

A. All subsequent manipulations were at 4®C. The cells were sonicated (6 x 10 

s), the homogenate was supplemented with protease inhibitors and 0.2 % NP40, 

rocked for 30 min at 4°C and centrifuged for 10 m in at 10, 000 rpm  (Sorvall, 

HB-4 rotor). GAL4 (1-94), GAL4(1-147), GAL4-AH and GAL4-VP16 were 

further purified by adding of 5 ml settled volume of Heparin-Sepharose CL6B 

(Pharm acia) to the supernatant. After 15 m in the resin  w as pelletted, 

transferred to a column and washed w ith 10 column volumes of buffer A. 

Proteins were eluted w ith 0.6 M NaCl in buffer A and mixed w ith 2 ml of S- 

Sepharose Fast Flow (Pharmacia). The m ixture was diluted six times w ith 

buffer A without NaCl. After 15 minutes the resin was transferred to a column 

and washed with 0.2 M NaCl in buffer A. GAL4-fusion proteins were collected 

in 0.4 M NaCl in buffer A without protease inhibitors. Aliquots were stored at 

-70 OC.

GAL4-Ela was purified from inclusion bodies which were washed in 

2% Na-Deoxycholate and then solubilised in 6M Guanidine HCl in buffer A. 

The proteins were loaded on a Ni-NTA-Agarose column (Qiagen) and eluted 

w ith  100 mM Imidazole in buffer A and 6M Guanidine HCl. Subsequent 

renaturing was by step-wise dialysis in 3M, 1.5 M and 0.75 M Guanidine HCl in 

buffer A, supplemented with 1 mM ZnCl2 (Each step was 1.5 h). After the final 

dialysis the renatured protein was purified by mixing w ith 1 ml of DNA- 

Cellulose (Sigma) and slowly (30 min) diluting the mixture to 0.3 M Guanidine 

HCl w ith buffer A. The resin was transferred to a column, washed w ith buffer 

A w ithout protease inhibitors and eluted with 0.4 M NaCl in the same buffer.

p62

p62 was expressed from pET21Dp62SA in Topp2 and purified in the 

same way as GALEla(CR2&3). It was either eluted and used as antigen for
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imm unising rabbits or renatured together w ith the resin as for GALEla and 

used as affinity beads.

GST-fusion proteins

GST, GST-VP16 and the m utant GST-SW6 w ere expressed using 

derivatives of the pGEX2T vector (Pharmacia). The VP16 fragm ent fused to 

GST w as the EcoRI fragm ent derived from pSGVPA490 (Sadowski e t al., 

1988)encoding residues 410-490 of VP16. GST-SW6 w as constructed by 

substitution of the Sphl-Styl fragment of pSW6 (Walker et al., 1993) into the 

GST-VP16 plasm id. GST-Ela was expressed from  pGST-Ela. pGST- 

Ela(CR2&3) and GST-CTD was expressed from pGCTD (Peterson et al., 1992) 

or from  a derivative of this plasm id pET21a-GCTD. pGST, pGSTVP16, 

pGSTSW6 and pGSTEla(CR2&3) and pGCTD, respectively, were transfected in 

Topp2 (Promega) cells. Cells were grown in BHI media at 37°C to 00600=0-6. 

Protein expression was initiated by adding 1 mM IPTG. After 90 m in the cells 

were collected and washed in buffer NENT. Expression for shorter periods 

were introduced when not-full length recombinant GST binding species were 

produced in the cells (GST-VP16 and GST-Ela(CR2&3) were expressed for 30 

min only). All subsequent manipulations were at 49C  ̂Protease inhibitors were 

added prior and NP-40 - after sonication. The homogenate was rocked for 30 

min, spun for 15 m in in HB-4 Sorvall rotor and the supernatant loaded directly 

to 2 ml of GST-Sepharose (Pharmacia). The resin was w ashed w ith  buffer 

NENT plus IM  NaCl and either stored for affinity chrom atography 

experiments or eluted w ith 15 mM Glutathion (reduced form. Sigma). The 

proteins were dialysed against buffer D, aliquoted and snap-frozen.

BM28 was a gift from Dr. I.T. Todorov. This protein was expressed in 

insect cells by baculovirus and purified over three columns.
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Hum an TBP was expressed and purified by D.Bentley and T. Purton. 

H um an TFIIH was a gift from Dr. J.M. Egly. This protein has been 

extensively purified over six columns (Roy et al., 1994).

4.19. Antibodies

The antibodies used are listed in Table 3.

Table 3. List of Antibodies

Antibody Antigen Type Reference

anti-CTD

8WG16

R N A p o l II -CTD  

domain

MAb, IgG2a 

ascitie

(Thompson et al., 1990)

anti-TBP

(MTB6)

TBP MAb

Prot.A-IgG

(Chatterjee et al., 1993)

anti-RPA

(70C)

the large (70 kDa) 

subunit of RP-A

MAb

Prot.A-IgG

(Kenny et al., 1990)

anti-p62

(3C9)

62 kDa subunit 

of TFIIH

MAb, IgG2a 

ascite fluid

(Fischer et al., 1992)

anti-Ku

(N3H10)

Ku subunit 

of DNA-PK

MAb,IgG2b 

ascite fluid

(Wang et al., 1993)

anti-CDC2 CDC2 protein 

from X.laevis

MAb

Prot.A-IgG

(Kobayashi et al., 1992)

anti-myc

(9E10)

hum an c-myc MAb

Prot.A-IgG

(Evan et al., 1985)

anti-BM28 N-terminus 

of human BM28

R-PAb Prot.A- 

IgG

(Todorov et al., 1994)

anti-GAL yeast GAL(1-147) R-PAb serum



anti-nS hum an TFIIS R-PAb serum

anti-rap30 30 kDa subunit 

of TFIIF (rap 30)

R-PAb serum

anti-HE the small (34 kDa) 

subunit of TFIIE

R-PAb serum

MAb - mouse monoclonal antibody

R-PAb - rabbit polyclonal antibody

Prot.A-IgG - Protein A-Sepharose purified antibodies

All MAb were gifts from the authors. Anti-IIS, anti-IIF(rap30) and anti- 

nE  were made by D.Bentley and T.Purton.

4.20. Plasmid Preparation

200 ml overnight cultures were pelletted and resuspended in 25 ml cold 

TES (25 mM Tris-HCl pH 7.5, 10 mM EDTA, 15 % sucrose). 50 ml of 0.2 M 

NaOH, 1 % SDS were then added and the suspension was vigorously mixed to 

lyse the cells. After 10 min on ice 37.5 ml 2,7 KAcetate pH  4.8 were added and 

the mixture left for 30 min on ice. After spinning (10 min, 4 500 rpm  in Beckman 

rotor J-6) the supernatant was carefully collected (decanted through Miracloth, 

Calbiochem) and the plasmid precipitated with equal volume of isoprpanol at 

room tem perature for 5 minutes. The pellet was dissolved in 5 ml TE and 5 ml 

5M LiCl were added. After 5 min on ice the precipitate was discarded by 

centrifugation (10 min at 3000 rpm, J-6) and the supernatant precipitated by 

adding of 25 ml EtOH for 5 min at room tem perature. The final pellet was 

dissolved in 2.5 ml TE. 4.2 g CsCl were slowly dissolved together w ith 0.2 ml of 

10 m g/m l EtBromide. The plasmid solution was underlayered beneath 8 ml 55
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% CsCl and spun overnight at 50000 rpm. The plasmid band was collected by 

punching the tube with a 24 g needle. EtBr was extracted 3 times w ith  NaCl 

saturated butanol. 3 volumes of water were added to the extracted DNA and 

the plasmid precipitated with 2.5 volumes EtOH. After one more precipitation 

w ith EtOH and AmAcetate the plasmid prep was dissolved in water. The 

concentration was measured by OD260 and the quality of the prep - by agarose 

electrophoresis.

4.21. Plasmids

pSX943 contains the 943 base Sma I-Xho I fragment of the mouse c-myc 

exon I cloned into the Sma I - Sal I sites of the Bluescribe derivative pVZ 

(Henikoff and Eghtedarzadeh, 1987).

p G al^-P 2C A T  w as m ade by substitu ting  the TATA box of 

pGAL4/ElbTATA (Lillie and Green, 1989) w ith the BamHl-SacI fragment of c- 

myc exon 1 which starts 15 bases upstream of the TATA sequence.

pGal^-ElbmycCAT was derived from GAL4/ElbTATA by insertion of 

the mouse c-myc exon 1180 b.p. Notl-SacI fragment between the BamHI and 

S ad  sites of the polylinker.

pGal4-E4mycCAT contains the c-myc 180 b.p. Notl-SacI fragm ent 

between the BamHI and Sad sites of the polylinker of pGalg-E4 CAT (Flint and 

Jones, 1991) pGals-E4 CAT is identical to G A L 4/E lb TATA except for 

substitution of the E4 TATA box, CTATATATACTCGC, for the E lb  sequence 

AGGGTATATAATG between the Xbal and BamHI sites of the polylinker.

pGalq-IITKmycCAT contains the mouse c-myc *Not I-Xho I (the T2 

element), inserted downstream of five GAL4 binding sites and the hum an TK 

TATA element in pSP72.
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p G a l ^ - I V T K m y c C A T -  contains the TdT in itia to r elem ent 

(GGCCCCTCATTCTGGAGAC), inserted downstream  the TK TATA box of 

pGals-UTKmycCAT.

pHIV2-LTRCAT-556/+156 was described in (Emerman et al., 1987). 

p G a M - H I V 2 C A T  w as m ade by su b stitu tin g  the  TATA of 

GAL4/ElbTATA with a PCR product extending from -32 to +156 of HIV2 

betw een the Xbal and Smal sites. The HIV2 sequence was derived from the 

plasmid pHIV2-LTR-CAT-556/+156.

pAGaK-HIV2CAT was made by exising of the EcoRl-Hindlll fragment 

from pGal5-HIV2CAT. That fragment contained the five GAL4 binding sites.

pSP65-VA contains the Xbal-Sall 258 base fragment of Adenovirus 2 

containing the VAl gene subcloned from pMHVA (Mellits and M athews, 

1988).This plasmid was a gift of K. Mellits.

pVZGaK-P2. pVZGalq-Elbmyc. pVZGaM-E4myc. pVZGal^-IITKmyc 

and pVZGal^-IVTKmyc. T7 RNA probes complementary to Gal5-P2CAT, 

G al5-ElbmycCAT, Gal5-E4mycCAT, Galg-IITKmycCAT and Galg-IVTKmyc 

CAT transcripts were synthesised from pVZ subclones of these plasmids in 

which HindlH-SacI fragments containing the GAL4 sites, TATA elements and 

myc sequences were inserted into the Bluescribe derivative pVZ (Henikoff and 

Eghtedarzadeh, 1987).

pVZHIV2 contains the 415 b.p. Kpnl-Hindlll fragm ent of HIV2-LTR- 

CAT-556/+156 extending from -259 to +156 subcloned in pVZ. Antisense RNA 

probe was synthesised from this template for analysis of Gal5-HIV2 and HIV2- 

LTR-CAT-556/+156 transcripts.

p5'VA was used for preparation of AdVA probe. It contains the Xbal- 

BamHI fragment that includes the first 73 bases of the transcribed sequence 

(Herrmann and Mathews, 1989).

pGSTCTD was described in (Peterson et al., 1992).
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pGSTVP16 is a derivative of the pGEX2T vector (Pharmacia). The VP16 

fragm ent fused to GST was the EcoRI fragment derived from pSGVPA490 

(Sadowski et al., 1988) encoding residues 410-490 of VP16.

pGSTSW6 was constructed by substitution of the Sphl-Styl fragment of 

pSW6 (Walker et al., 1993) into the GST-VP16 plasmid.

pGSTEla(CR2&3) was cloned by inserting the_EmRI-Xba_I_fr_agmenJ: 

(encoding residues 121-222) of pET21dGAL4-Ela (Zhou et al., 1992) into the 

BamHI site of pGEX20T (J.Armstrong).

pTMC2 (Un et al., 1988) was used for expression of GALl-147. 

pET21bGAL4VP16 was derived from pSGVPA490 (Sadowski et al., 

1988). The plasmid contains the Herpes simplex virus VP16 prtein  sequence 

412-490 and was used for expression of GAL4VP16.

p E T21dG A L4-E la  was a subclone of the Ncol-Xbal fragm ent of 

pET8cGAL4-Ela containing E la residues 121-222 (Zhou et al., 1992).

pET21bGAL4 (1-147^ was m ade by insertion of the GAL4 (1-147) 

sequence in the plasm id pGST-GAL4 (1-147)-CREB (S. Goodbourn, personal 

communication) into Nhel-Sall cut pET21b.

pET21bGAL4 (1-94^ was made by cloning the Xbal-Hpal fragm ent of 

pET21bGAL4 (1-147) into pET 21b cut with Xbal and N otl (filled in).

pET21Dp62SA was made by insertion of the the BsmI 1.7 kb fragment, 

encoding the full length p62(TFIIH) (Fischer et al., 1992a) into the Smal site of 

pET21D.

pÀdH3 contains the 2.1 kb Sma I - Hind III of Adenoviruus 2, containing 

the MLP, in the pVZ derivative of Bluescribe.

Most of these plasmids had been cloned by D.Bentley and generously 

donated for my experiments.
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