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A bstract

This subject of this thesis is the physical application of deformations of Lie 
algebras and their use in generalising some exotic quantum optical states.

We begin by examining the theory of quantum groups and the g-boson alge
bras used in their representation theory. Following a review of the properties 
of conventional coherent states, we describe the extension of the theory to 

various deformed Heisenberg-Weyl algebras, as well as the g-deformations 

of sw(2) and s it( l ,l ) .  Using the Deformed Oscillator Algebra of Bonatsos 
and Daskaloyannis, we construct generalised deformed coherent states and 

investigate some of their quantum optical properties. We then demonstrate 
a  resolution of unity for such states and suggest a way of investigating the 
geometric effects of the deformation.

The formalism devised by Rembielinski et al is used to consider coherent 
states of the g-boson algebra over the quantum complex plane. We propose 

a new unitary operator which is a g-analogue of the displacement operator 
of conventional coherent state theory: This is used to construct g-displaced 
vacuum states which are eigenstates of the annihilation operator. Some 
quantum  mechanical properties of these states are investigated and it is 
shown tha t they formally satisfy a Heisenberg-type minimum uncertainty 

relation.

After briefly reviewing the theory of conventional squeezed states, we exam

ine the various g-generalisations. We propose a g-analogue of the squeezed 
vacuum state, and use this in conjunction with the unitary g-displacement 
operator to construct a general g-squeezed state, parameterised by noncom
muting variables.. It is shown that, like their conventional counterparts, such 
states satisfy the Robertson-Schrodinger Uncertainty Relation.

We conclude with a brief discussion about the appearance of noncommuting 

variables in the states that have been considered.



For my wife, Rachel, 

and my parents, Roger and Sheila.

A.M.D.G.



Acknowlegem ents

It gives me great pleasure to be able to thank the many people whose con

tributions have enabled me to complete this thesis.

Firstly, I would like to thank my supervisor, Professor Allan Solomon, for 

introducing me to the subject of quantum groups and for his constant en
couragement and support during the period of my research. I am extremely 

grateful for the kindness and generosity that he has shown, as well as the 
way in which he has been able to bring out positive aspects of my research. 
I wish to also express my gratitude for his critical reading of this text and 

the many improvements that he has suggested,

I would also like to thank Professors Joe Birman, Mario Rasetti, Jacob Ka- 
triel and Costas Daskaloyannis for their help and advice on the subjects of 
quantum groups, condensed m atter theory, quantum optics, and physics in 

general. I am grateful for the help of Professor Ruggero SantiUi on Lie ad
missible algebras. Thanks are also due to the students and lecturers of the 

1994 Quantum Groups and their Applications in Physics course of the Inter
national School of Physics “Enrico Fermi” at Varenna, Italy, for numerous 
discussions and clarifications on many aspects of mathematical physics.

I would like to express my appreciation to the Open University for the 

postgraduate studentship which enabled me to undertake this work. I am 
grateful to the academic staff of the Faculty of Mathematics and Computing 
and to the members of the Deanery who have helped make my studentship 

so enjoyable. I would also like to thank the Higher Degrees Office for helping 
me to survive the administrative difficulties of being a research student.

I am especially grateful to my friends, David Wooding and Cristyn Williams, 
whose help and advice on enduring the trials and tribulations of postgradu
ate life have been invaluable. I would also thank David Wooding for proof

111



reading the text.

I would especially like to thank my parents and all the members of my fam
ily for their constant support throughout the past three years.

Finally, no thanks can be enough for my wife, Rachel, whose love has always 

been the primary inspiration for my work.

IV



C ontents

1 Introduction  1
1.1 Deformations of the Quantum Oscillator A lg e b ra .................... 2

1.1.1 Quantum Groups and the q-Boson A lg e b ra ................. 4
1.2 Overview of the T h e s is .........................................    7

2 Q uantum  G roups and A ssociated  D eform ations o f  A lgebras 11
2.1 Classical Hopf Algebras  ....................................................  11

2.2 Quasitriangular Hopf Algebras ....................................................  16
2.2.1 The DrinfelM-Jimbo Approach: s iç ( 2 ) .......................... 18
2 .2.2  The F.R.T. Approach: G I > ç (2 ) .........................   20
2.2.3 The Manin Approach ....................................................... 22

3 T he H eisenberg—W eyl A lgebra and its Q uantum  Group  

C ounterparts 24
3.1 The Classical Heisenberg-Weyl A lg e b r a .................................... 24

3.2 The q-deformed variants of the Heisenberg Weyl Algebra . . 27
3.2.1 The Heisenberg-Weyl Quantised Universal Envelop

ing Algebra, ......................................................................  27
3.2.2 The Arik-Coon q-OsciUator Algebra, Aç....................... 29
3.2.3 The Macfarlane-Biedenharn q-Boson Algebra, Bq. . . 31
3.2.4 The SU,(N) Spinor A lg eb ra .....................    35
3.2.5 Multiparameter Deformation of the Boson Algebra . 36

4 C oherent S tates 39
4.1 Overview  .............................................................................   39



4.2 Quantum Noise and Uncertainty P r in c ip le s .............................  42

4.3 Coherent states of the electromagnetic f i e l d .............................  43
4.3.1 Group-theoretical description of Photon coherent states 47

4.4 Generalised Coherent States for other semisimple Lie groups . 49
4.5 Coherent States for SU(2 ) ................................  51

4.5.1 The Irreducible Representations ....................................  51

4.5.2 The Coherent S ta te s .......................................................  , 53

4.6 SU (l,l)-C oherent States    ........................................................... 54
4.6.1 The Irreducible Representations .................................... 54
4.6.2 The Coherent S ta t e s ..........................................................  55

5 C oherent sta tes o f  q—analogues o f  sem i-sim ple Lie groups 57
5.1 The Coherent States associated with the q-analogues of the

Heisenberg-Weyl group .................................................................  58

5.1.1 The Arik-Coon q-coherent sta te .......................................  58

5.1.2 The Macfarlane-Biedenharn q-boson coherent state . 61
5.1.3 Coherent states of the Quantum Heisenberg Universal 

Enveloping Algebra ...........................................................  63
5.2 Coherent States of the su ,(2) and sw ,(l, 1) A lg e b ra s   65

5.2.1 The 3Ug(2 ) coherent s t a t e ................................................  65
5.2.2 The sug(l, 1 ) coherent s t a t e .............................................  66

5.2.3 Applications of sug(2) and suq(l, 1) coherent states . . 67
5.3 Appendix: Properties of the Jackson q-Exponential ............  68

6 G eneralisations o f  the q -b oson  algebra 72
6.1 The Deformed Boson .Algebra . .  ............................................. 72
6 .2  The Daskaloyànnis-Bonatsos Deformation S c h e m e ...............  73
6.3 The Deformed Derivative O p e ra to r ............................................. 77
6.4 Generalised Deformed Coherent S ta te s ..................   80

6.5 Noise Reduction Properties of the Deformed Coherent States 81
6.5.1 E x a m p le s ..............................................................................  83

6 .6  An Overcompleteness Relation for the Coherent States . . . .  85

6.6.1 The Resolution of Unity.......................................................  86

VI



6.7 The Physical Status of the Deformed B o s o n s .......................... 88

7 T he q -A n alogue o f  the U nitary D isplacem ent O perator 91
7.1 The Complex Quantum P la n e ....................................................... 91

7.2 The Two-Dimensional Quantum Plane and its Differential
Calculi.................................................................................................... 92

7.2.1 The Complex Differential Structure of the Quantum 
Plane ....................................................................   96

7.3 The q-Boson Algebra and the Complex Quantum Plane . . .  97

7.3.1 Left Eigenvalue States of the Annihilation Operator . 99
7.4 The Unitary q-Displacement O p e ra to r .........................................100

7.4.1 q-Exponential Disentangling R elations.............................101
7.4.2 Properties of the q-Displacement O p e r a to r ................... 104

7.5 q-Analogue Displaced Vacuum S t a t e s ..................... ................ 107

7.5.1 The Relationship between Left and Right Eigenvalued 
E ig e n s ta te s ................................................  108

7.5.2 Quantum Noise Properties .................................................109
7.5.3 Other States Associated with the Unitary q - 

Displacement Operator ....................................................... 109

7.6 A p p e n d ix .............................................................................................110
7.6.1 Other g-analogue Unitary Displacement Operators . . 110
7.6.2 Proof of some re su lts ..............................................................113

8 Squeezed and C orrelated C oherent S tates 116
8.1 The Uncertainty R elations............................................................... 116

8.2 The Squeezing of Photon S ta te s ..................................................... 119
8 .2.1  Phase Space Description of S q u e e z in g .............................121

8.3 The Squeezed Vacuum S ta te ............................................................124
8.3.1 The standard one-mode realisa tion ................................... 124

8.3.2 The Holstein-Primakoff realisations ..............................   125
8.4 Higher Order S q u eez in g ...................................................................127

Vll



9 q—D eform ed Squeezed and C orrelated S tates 128
9.1 An Overview of q-Squeezed S t a t e s ..................................................128

9.1.1 Undeformed squeezed states generated by q-deformed 
b o so n s ........................................................................................128

9.1.2 The q-analogue Bogoliubov Transform ation................... 129

9.1.3 su ,( 1,1) and su,(2)-Squeezed States using q-Boson 

R ealisations..............................................................................131
9.2  Squeezed States using q-Numbers  ..........................   132

9.3 The q-Squeezed Vacuum S t a t e ........................................................135
9.3.1 Noise Properties of the q-Squeezed Vacuum State . . 136

9.4 The Displaced q-Squeezed Vacuum State.  .......................... 139
9.4.1 Eigenvalue Properties of the q-Squeezed States . . . .  145

9.4.2 Other Definitions of the q-Squeezed S t a t e .......................146
9.5 Appendix; Proof of R e s u l t s .............................................................. 148

10 T he U se o f  N oncom m uting Variables in Q uantum  M echan
ical S ta tes 154

Vlll



Chapter 1 

Introduction

The investigation of deformations of physical theories has a long and prof
itable tradition in mathematical physics: indeed, it has been claimed that 

the two paradigmatic changes in physics over the last century are precisely 
concerned with the deformation of the older classical theories [Kib:92]. If 
one analyses the language used by physicists when they talk about relating 
the theories of quantum mechanics or relativity theory to classical physics, 
the concept of a special limit of some im portant parameter often occurs. 

Newtonian mechanics, invariant under Galilean relativistic transformations 
can, in some sense, be thought of as the k —?> 0 undeformed limit of the 

theory of special relativity, the deformation parameter being k =  c~^. At 
the microscopic level, classical mechanics is often said to be the Ifi —5- 0 limit 
of quantum mechanics which indicates that the magnitude of the quantum 
of action, h, is thought of as a deformation parameter. The idea of deforma
tion provides an elegant way in which older models can be generalised and 
so be subsumed into newer theories.

The subject of this thesis is the physical application of deformations of some 

well-known Lie algebras and their use in generalising some exotic quantum 
mechanical states found in quantum optics. The deformations discussed 

can trace their conceptual lineage back to Heisenberg near the foundation of 
quantum mechanics but the main source of inspiration of this research has 
been the study of quantum groups and the algebras associated with their



representations, especially the g-boson algebras. To set the scene for this 

thesis, we therefore give a brief historical survey of some of the ideas which 
have contributed to its development.

1.1 D eform ations o f the Q uantum  O scillator A l
gebra

As has been previously mentioned, deformations of physical systems, espe
cially quantum mechanical systems, have been studied for quite some time. 
One of the first such studies was the quantum mechanical oscillator whose 
algebraic properties are described by the Heisenberg-Weyl Lie algebra. The 
simple harmonic oscillator was one of the first systems to be quantised using 
algebraic quantum mechanical techniques and it still plays a fundamental 
role in our understanding of many aspects of the theory. It provides the key 
example for the canonical quantisation procedure and, under the guise of 

the second quantised creation and annihilation operators, forms the basis of 

the subjects of quantum field theory and quantum statistical mechanics. It 
is interesting then, that what are now called g-deformations of the oscillator 
algebra were known to Heisenberg (as mentioned in [RSW;65]). These de

formations were rediscovered at various times by different authors and are 
now im portant elements in the theory of representations of quantum groups.

During the 1930’s, the relation between spin and statistics, namely that 
integer-spin particles obey Bose statistics and odd-half-integer spin parti

cles obey Fermi statistics (first stated by Pauli [Pau:36]) was proved from 
the basic requirement of local commutivity of observables. This meant tha t 

the theory of particles whose creation and annihilation operators obeyed de
formed commutation relations was linked to the search for particles with 
exotic properties; in particular those obeying some sort of intermediate 

statistics. The first attem pt to go beyond Bose and Fermi statistics ap
pears to  have been that proposed by Gentile [Gen;40]. This scheme, which 

interpolated between fermions and bosons, proved unsatisfactory due to the



fact tha t the maximum number of particles allowed in one state was not 
invariant under changes of basis. A more successful generalisation was the 
parastatistics oi H.S. Green [Gree;53]. He used trilinear relations between 
the creation and annihilation operators resulting in a theory which yielded 

an infinite class of statistics, each parameterised by an integer called the 
order. Later analysis of parastatistics by Doplicher et al [DHR:69] using al

gebraic field theoretic techniques confirmed tha t they give consistent field 
theories.

In the late 1960’s, another deformation of the boson commutation relations 
was investigated by SantiUi [San:67]. EssentiaUy, he proposed to replace the 

com m utator bracket found in the conventional theory by a weighted sum 
of commutator and anticommutator terms. This leads to a theory in which 
there is a  change in the multiplication between elements of the Lie alge

bra with a  coresponding change in the unit and results in a generalisation 
of the theory of Lie algebras and the formulation of concepts such as Lie 
Admissibility and Lie Isotopy (see [San:94] and references therein). These 
provided the theoretical framework for the extensive investigation of what 
we shaU caU A rik -C œ n-type  g-deformed bosons carried out by Jannussis 

et al throughout the 1980’s.

The Dual Resonance Model in the string theory of the early 1970s 
was the motivation behind the g-boson algebra introduced by Arik and 
Coon [ArC:76]. Using techniques drawn from classical g-analysis, they were 
able to  construct a set of g-coherent states. Deformations of the com
m utation relations were also studied by Kuryshkin [Kur:80, Kur:88]. As 
has been mentioned above, Santilli’s theory of Lie-admissible algebras pro

vided the background for much of the work done by Jannussis et al in the 

field of dissipative quantum systems [JPS:80, JBS:81, JBSPPS:82, SJBP:83, 
JBPKPL83, Jan:84, Jan:85] during the 1980’s. This group produced many 
of the familiar technical results of what might be called q-boson theory 
including the bosonisation schemes, coherent states and even a type of g-



analogue unitary displacement operator.

One type of deformed oscillator algebra, developed in the late 1980’s which 
also gives a consistent field theory is the so-called quon algebra developed 

by Greenberg [Gre:90|. This has commutation relation

afcfll -  ga/a* = (1.1)

and so can be thought of as a multimode generalisation of the g-osciUator 
of Arik and Coon. One of the strange features of this model is that no 

commutation relations can be specified between two creation operators or 
two annihilation operators, except for the g = 1 case. Greenberg found 

tha t many of the properties of the quon algebra were qualitatively illus

trated  in the simplest g = 0 case. This algebra had been known for 
some time from the work of Cuntz [Cun:77] in the context of operator al

gebras. Investigation of the implications of a field theory based on quon- 
statistics are continuing with generalisations of ( 1.1) appearing in the liter

ature [Fiv:90, Gre:91, Zag:92, GT:93].

While the examples given above illustrate the argument tha t the search 
for deformations of quantum mechanical algebras has a long history, it is 

the recent interest in quantum groups tha t has been the biggest source of 
inspiration.

1.1.1 Quantum Groups and the q-Boson Algebra

Quantum groups were first discovered through the study of integrable sys
tems [Fad:84] especially those arising from the Quantum Inverse Scattering 

Method developed by the (then) Leningrad School of Faddeev et al in the late 
1970’s and early 1980’s (see [Fad:87, FT;87] and references therein). The 

Q.I.S.M. is a technique for obtaining exact solutions for integrable quantum 
field theories in 1-1-1 dimensions and classical models of statistical mechan

ics in 2 dimensions. Such solutions or exactly solvable models have a long 
history going back to the work of Bethe [Bet:31] who devised the ansatz for



diagonalising the Hamiltonian of the one-dimensional spin chain that nowa

days bears his name. Later developments include such achievements as On- 
sager’s solution of the Ising model in classical statistical mechanics [Ons:44], 
the work of Yang [Yan;67] on factorisable 5-m atrices, Baxter [Bax:82] on 

the lattice models and modern field theoretical work by Zamalodchikov and 

Zamalodchikov [ZZ:78, ZZ:79]. This latter work led eventually to the dis
covery tha t the ultraviolet limit of certain exactly solvable models are con
formai field theories and the realisation that the braid group and exchange 
algebras played an im portant role in 2-dimensional quantum field theories 

[FRS:89, Ger:90]. Given the importance of such structures to string theory, 
it is not surprising that integrable systems in general and the Quantum In

verse Scattering Method in particular, became a im portant area of research.

Although it was known quite early on that the structure of the objects 
underlying the theory was some deformation of the conventional Lie al
gebra found in the classical case, their true mathematical description was 
given by the work of Drinfel’d [Dri:83, Dri:85]. From studies of the formal 

quantisation of Poisson-Lie groups, he was able to show tha t the underly
ing structure was tha t of a noncommutative, noncocommutative Hopf al

gebra [Dri:86]. A similar picture emerged from the work of Jimbo (Jim:85) 
around the same time. It was found tha t the noncocommutivity of the 
Hopf algebra was effectively controlled by an algebraic element called the 
universal %-element (also somewhat confusingly called the universal 7Z- 
matrix). For the Hopf algebras of interest, this object was found to be 
quasitriangular, which essentially meant that it could be used to provide 
a realisation of the generators of the Braid group [Art:47] and obeyed the 

Yang-Baxter Equation [Yan:67, Bax;72, Jim:89]. This equation had previ

ously arisen in many diverse areas of mathematics and physics such as sta
tistical mechanics [Bax:82], knot theory [Tur:88 , Jon:89, Kau:91] and field 
theory [Wit:90, A1C:92]. Moreover, a matrix representation of Tl called the 
(numerical) E -m atrix  had appeared in the Q.I.S.M. as a solution to the 
same equation. Some time after this, Woronowicz [Wor:87a] found réalisa-



tions of these objects in the context of the noncommutative geometry of 
Connes [Con:86] using matrix pseudogroups with coefficients in various C*- 

algebras. From the physicist’s point of view, however, probably the most 
intuitive picture of quantum groups (at least of the matrix group type) is 

tha t provided by Manin [Man:88]. He considered quantum matrix groups 

to be invariance “groups” for noncommutative structures called quantum 

planes. This led to the construction, initially by Woronowicz [Wor:87b] and 
later by by Wess and Zumino(WZ:90, Zum:92], of noncommutative differen
tial calculi on quantum groups, which once more provided explicit examples 

of the kind of noncommutative geometric structures proposed by Connes. 
Since tha t time, there has been an explosion of interest in the use of quan

tum  groups to provide a noncommutative model of spacetime structures. 
One can mention, for example, Majid’s programme of using quantum group 
techniques to work in spaces which have non-trivial braiding between tensor 
products (see [Maj:93] and references therein), the quantum group Cartan 
calculus of Schupp [Sch:93], or the work of Kulish et al[DKR:94] or Castel- 
lanni and Aschieri [AsC:93] in developing a g-analogue of Minkowski space.

One result of the interest generated in quantum groups was the system

atic investigation of their representation theory. For generic values of the 
deformation parameter, the unitary irreducible representations of the g- 
analogues of the compact simple Lie algebras are in one-to-one corre

spondence with their undeformed counterparts [Ros:87, Ros:89, Lus:88]. 
This means tha t much of the machinery for looking at the represen

tation theory of Lie algebras extends quite naturally to the quantum 
group case. Since boson realisations of Lie algebras through the Jordan- 

Schwinger map or its noncompact variant have found so many applica
tions in physics, it was only natural to look to see if there was some 
kind of deformed oscillator structure that could be used in the g-case. 
The result of this search was the g-boson, first described by Macfar- 
lane [Mac:89] and Biedenharn [Bie:89], which was used to realise the gener
ators of sUq{2). These techniques have since been applied to many different



g-algebras [Hay:90, Fu:91, SmK:92, BCN:93, Que:93]. In addition, both the 
quantum optical [CEK:90, SK:90, KS:91a, CJ:92b, WK:93] and statistical 
mechanical [Mar:91, GeS:91, NU:92, BB:92, HL:93, SDI:93, CGM:93) prop
erties of the g-bosons themselves have been considered.

The thesis presented here uses the algebraic properties of such g-analogue 

bosons to investigate their quantum optical properties. In the next section, 
we give a short overview of the work that it contains.

1.2 O verview  of th e Thesis

The thesis starts with an introduction to quantum groups. This not only 
illustrates some of the concepts lying behind the work but also serves to 
clarify notation. The concept of a quasitriangular Hopf algebra is built up 
in stages and the examples are given from the different approaches of Drin

fel’d, Faddeev et al and Manin.

The third chapter is concerned with the probably the most im portant al

gebra found in quantum mechanics, the Heisenberg-Weyl Lie algebra. The 
deformations of this algebra will provide the central theme running through

out this work. We discuss the different aspects of the algebra which appear 
in physical theories. In the undeformed case, one is essentially dealing with 

one algebra (with more or.less added structure) playing various roles. This 
is not the case, however, upon deformation. It is seen that the form of the 

deformation dictates the structure of the new algebra and this, in turn, con

strains the role tha t it plays in the generalised theory. The g-analogues of 
the Boson algebra are discussed in this context.

Chapter 4 considers the application of the algebraic and group-theoretical 

techniques of quantum mechanics to the problem of coherent states. The 
concept of a coherent state is one of the most im portant ideas to have 

come out of the algebraic approach to quantum mechanics. Their use is



widespread in almost ail aspects of mathematical physics. In this chapter, 

an introduction is given to the theory of coherent states starting from their 
role as states of the electromagnetic field which minimise the uncertainty 
product. The properties of the Glauber coherent states are reviewed and 

Perelomov’s abstraction of the group theoretical content of this analysis is 
discussed. The coherent states for the Lie groups SU{2) and 5 f / ( l , l )  are 

briefly described.

Chapter 5 gives a description of the extensions of the theory of coherent 
states to the g-deformations of the boson algebra and the quantum deforma

tions of the semisimple Lie algebras su(2 ) and su ( l, 1). Given the different 
geometrical setting of conventional Lie algebras and quantum groups, it is 
to be expected tha t the elegant group-theoretical formulation of the theory 
of coherent states decribed in the previous chapter should break down. The 

result is a theory based on the somewhat ad hoc method of g-exponentiating 
the raising-operator associated with the relevant algebra. The different ways 

of deforming the boson algebra manifest themselves in different sets of co
herent states. Some applications of the states associated with suq{2 ) and 
suq(l, 1) are also given.

The fact tha t there are several types of g-deformed boson coherent states 
each produced by different algebras suggests tha t there is a more fundamen
tal structure underlying this system which could be of use in the construction 
of better or more general physical models. Several authors have attem pted 

to analyse the basic properties of the g-deformed boson algebras as the first 
stage in developing such physical theories. There have been many proposals 
for general deformation schemes which subsume the different g-oscillators, 

as well as conventional (para)bosons and (para)fermions, as special cases. 
Probably the most well-known is the deformation scheme of Daskaloyannis 
et al which uses a  general structure function  to define the oscillator algebra. 

In chapter 6 , we discuss various deformation schemes before considering the 
Daskaloyannis-type deformations. We then investigate the quantum optical



properties of the coherent states associated with the general algebra and 

show that, given certain conditions on the structure function, the boson 
field described by this type of state exhibits unconventional quantum noise 
properties such as simultaneous squeezing in both field quadratures. The 

relationship between the deformed oscillators and the conventional boson 
operators is considered and an overcompleteness relation for the deformed 
coherent states is proposed. Some suggestions for further work are also 
rhade. The author’s work on this subjects has been published in the follow
ing articles [MS:93a, MS:93b, SM:93, MS:94a, MS:94c]

The seventh chapter begins a new part of the thesis devoted to the use of 

noncommuting variables in the construction of quantum optical operators 
and states. The work of Rembielinski et al on the differential calculus of the 
complex quantum plane is discussed in the context of the use of annihilation 
operator eigenstates parameterised by noncommuting variables. A modifi
cation of the theory is proposed, leading to the construction of a unitary 
operator which can be thought of as the g-analogue of the Heisenberg-Weyl 

displacement operator. This is used to construct a  new set of g-displaced 
vacuum states which are also eigenstates of the annihilation operator. The 

quantum optical properties of these states are formally investigated. The 
results of this analysis have been published in [MS:94b]. This is followed 
by a brief discussion of an alternative proposal for the g-analogue of the 
displacement operator.

Following the investigation of coherent states and their deformed analogues, 
we then consider another set of quantum optical states — squeezed states. 

Such states, characterised by having a minimum uncertainty product which 
is asymmetric in the field quadratures, have no classical analogue but have 
been produced in the laboratory. The noise reduction in one field compo

nent relative to the vacuum state (at a corresponding noise amplification 
in the other component) means tha t they have found use in experiments 
requiring extreme sensitivity, such as the detection of gravity waves. After



a description of conventional squeezed states in chapter 8 , their g-analogues 

are discussed in chapter 9. As with the definition of g-deformed coherent 
states, two different approaches can be identified. The first parameterises the 
states by c-numbers. The second builds on the work done in chapter 7 using 
g-numbers. A squeezed state, constructed using noncommutative variables, 
is described and is found to obey the Robertson-Schrodinger minimum un

certainty relation. We conclude this thesis with a brief discussion concerning 
the appearance of noncommuting variables in the states tha t were proposed.

N o te  on th e Bibliography

The list of references cited in this thesis may seem somewhat excessive run

ning as it does to over twenty pages. However, it should be noted tha t the 
study of quantum groups is a new and very fast-moving field. In fact, the 
articles mentioned in the bibliography represent only a fraction of the pub
lished body of work on the subject. For a rather more complete exposition 
of the mathematical aspects which lie at the heart of the subject such as 

Poisson-Lie groups, quasitriangular Hopf algebras and noncommuting ge
ometry, together with an accompanying list of references, see Chari and 
Pressley [CP:94].
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C hapter 2

Quantum  Groups and A ssociated  
Deform ations o f Algebras

The m ajor impetus for the recent development of deformed oscillator tech
niques has been the advances made in the study of quantum groups. We 
will therefore give a description of these mathematical objects. This chap
ter gives a brief but standard introduction to Quasitriangular Hopf Algebras 

following the lines of, say, Majid [Maj:90] or Tjin [Tji:92].

2.1 Classical H opf Algebras

A Quantum Group is a Quasitriangular Hopf algebra. Since the definition 

of this object is quite involved, it is constructed in several stages.

An associative (unital) algebra (A, m ,g; t )  over a field k (often assumed to

be C) is a linear space A  with a bilinear map m such that for a,b ^ A

m  A  X A  —  ̂ A  (2 .1)

(a,6) I— ab (2.2)

where m  satisfies the associativity condition

m o ( m ® i d )  — m o { i d ® m )  (2.3)

{ab)c =  a(6c) (2.4)

11



and id  is the identity map.

T hat A is a unital algebra is expressed by the fact that there is a special 
non-zero element € A such that

a = a = a (2.5)

which, in turn, can be rephrased as the existence of a map rj from k to A

such tha t g (l)  =  1a and

mo(r}® id) = id = m o  [id © rj) (2.6)

where we make the canonical identification

k ® A ^ A ^ A ® k  (2.7)

Given an algebra (A, m, g;A;), a linear space V  and a map, p, from A  to
the space of linear operators on V,  the pair (V,p) is called a representation

of A in y  if p is linear and

p{xy) = p(x)p{y)  (2 .8 )

for all æ, 3/ € A.

It is often necessary to compose two representations (e.g in the physical prob
lems such as the addition of angular momentum [BL:81]), and this means 
that we must consider tensor product representations of the underlying al

gebra. However, there is no canonical way of doing this unless additional 
algebraic structure is imposed.

If A  is an algebra with identity element 1^, then the tensor product algebra 
v4 © X naturally takes on the structure of an algebra with identity element 

1a ® 1a if we define the product of a © 6 and c © d as ac © bd.

A coassociative coalgebra with coumi[Swe:69, Abe:80] (A, A ,£; A;) is a linear 
space A  with linear mappings A : A  — A  ® A  (comultiplication) and

12



£ : A  — > k (counit) such that the following conditions hold

(A ® 2d) o A = (id©  A) o A (2.9)

(c © id) o A = id = (id © f  ) o A (2.10)

These are dual to the axioms-that defined the structure of a unital algebra. 

Consequently equation (2.9) is known as the coassociativity condition and 
equation (2 .10) expresses the existence of the counit.

If y  is a linear space we can define the linear twist operator r  on y  © y

r ; y © y —r y © y (2.11)
t ( v \ ® V 2 )  I— > V 2 ® V I  (2.12)

The multiplication m  in the algebra (A ,m , g; &) is called commutative if

m o  T = m  (2.13)

Dually, the comultiplication A in the coalgebra [A, A,£; k) is called cocom- 

mutative if
T o A = A (2.14)

It is customary to use Sweedler's notation[Swe:69] for the coproduct. Since 
for X Ç A^ A (z) 6  A © A, we denote

^ (3;) = Ç  •'C(i),-® æ(2)i (2.15)
i

.=  ar(i)®a^(2) (2.16)

where the summation is understood.

A Bialgebra (A ,m , 77, A,£;A') is a linear space A  which has the structure of 
both an algebra and a coalgebra in a compatible way. The compatibility 

condition is tha t the mappings A and e are algebra homomorphisms.
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Given the map A, it is now possible to compose representations. If (V i,pi) 

and (V2,p 2) are two representations of A , then the tensor product represen
tation p i2 in V\ © V2 is given by

Pi2 =  (P i@ P2)A (2.17)

Thus the coproduct A can be thought of as the minimal extra structure 
tha t an algebra must have in order to form tensor product representations. 

In addition, the counit implies the existence of a trivial one-dimensional 
representation of the algebra given by £.

A Hopf algebra (H, m, 77, A ,£, 5; A;) [Hop:41, MM:65, Swe:69, Abe:80] is a 
bialgebra together with an antilinear homomorphism, S  (the antipode), such 

that
772 o (5  © id) o A = 77 o £ = 772 o (id ® 5) o A (2.18)

In practice, the field is often taken to be C and this is omitted from the data 

of the definition.

Many algebraic objects used in mathematical physics can be shown to have 
a unified structure as examples of Hopf algebras. Two notable cases are 
the algebra of functions on a compact topological group and the universal 

enveloping algebra of a Lie algebra.

Example 1: Let ^ be a compact topological group and let C{G) be the 

space of continuous functions on G- Then C{G) is a commutative Hopf 
algebra with the Hopf-structure maps (tti. A, 77, e and 5 ) given by

•  m: ( /  ■ h){g) =  f{g)h{g)

•  A: A (/)(^ i,g 2 ) =  fi9i92)

• 77; r}(x) =  x l  where 1(g) = 1 for all g G G

• £ !£ ( / )  =  f {e)  where e is the unit element of G

• S: 5 ( /) (g )  =  / ( g " ')

14



where g, gi , 92 ^  G, x € k  and f , h e  C(Ç).

E x am p le  2: Let C be a Lie algebra and li(C ) its universal enveloping 
algebra, then U{C) is a cocommutative Hopf algebra with structure maps 
given by

• m: ordinary multiplication in U(L)

•  A; A(æ) =  a ;© l- |- l® a 7 , and A (l)  =  1 © 1

• 77: 77(a) = alw(£)

• 6: c(lt,(o) =  1 and g (r) = 0.

• S: S(x)  = — X

where a; G jC C ZY(T) and l^^c) is the unit element of this algebra.

If ("K, 772, 77, A ,f , 5) is a Hopf algebra and H* is its dual space then the 

structure maps on H  induce a Hopf structure on H* by duality. If the 
brackets (•, •) denotes the evaluation map of Ti* on H  (or indeed of 7i on 
H*) then (7Y", 772*, 77*, A*,g*, 5*) is a Hopf algebra with structure maps 

defined by

• {m*{f  ® g), x) = { / © g, A (i))

• (A * (/) ,x © g ) =  i f . x y )

•  =  a  6(z)

• ^*{f)  — ( /i fw)

.  { S * { f \ x )  = { f , S (x ) )  

where f , 9  € H *  , z ,g  G and a  G C.

Since we consider the dual of the multiplication map to give the comulti

plication map^ this implies tha t we identify the spaces {H © H)* (which is 

the codomain of 772") and H* ® H* (which is the codomain of A). If 7Y was
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finite dimensional, this would not be a problem. Unfortunately, for infinite

dimensional algebras, (H 0  H)* is bigger than H* 0  H* and so m* does not 
necessarily map H* to H* © H*. To rectify this difficulty, it is necessary to 

enlarge H* ® 'W to include elements such as Y X  i.e. work with the
completion of the space.

It is a well-known result of Lie theory (e.g. [Hel:78]) that if 0  is a simply- 
connected Lie group, Cf^{Ç)  denotes the algebra of C'°®-functions (with 
compact support) on Q, g is the Lie algebra of Ç and l/(g)  its associated 
universal enveloping algebra, then (7(g) may be identified with the subalge
bra (with unit) of (C^(Q))*  generated by tangent vectors at the identity of 
Ç. Consequently it can be seen tha t the examples of Hopf algebras given 
above are dual to each other not only as linear spaces but also as Hopf al

gebras.

2.2 Q uasitriangular H opf Algebras

In the examples given above, the commutative multiplication in one Hopf 
algebra induces cocommutivity in the coproduct of its dual. The question 

therefore arises whether there are any examples which are both noncom- 
mutative and noncocommutative. One positive answer to this question is 
provided by a special type of Hopf algebra which forms the basis of the study 

of Quantum Groups — the Quasitriangular Hopf a(pe6ra [Dri:86].

A Quasitriangular Hopf algebra (7f, 7%; m, 77, A ,6, S) (abbreviated to (7f, 7Z)) 

is a  Hopf algebra for which there exists a universal invertible element,
7% € % 0  which intertwines between the coproduct A and the opposite

coproduct A ' =  r  0 A, i.e. for all x 6

A '(x) =  7eA(x)7l*^ (2.19)

In addition, 7Z should satisfy

{ id®A)n  =  7%i37ei2 (2.20)
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( A 0 i d ) 7 Z  = ?Zi3%23 (2.21)

where TZij £ acts as 7Z in the ith and j th  tensor product space
and as the identity in the remaining one (e.g. 7^i2 = TZ® /^ ) .

One consequence of this definition is that for all a: @ j/ G W x

'JZuiA ® id){x ® y) = (A ' ® id)(x ® y)TZi2 (2.22)

whereupon taking x® y  =  72, we obtain the Quantum Yang-Baxter equation,

72i 272i37223 = (2.23)

As has been remarked in the Introduction, this is a fundamental equation 
in many areas of mathematical physics. Essentially one can say that the' 
universal 72-element, through the quasitriangular structure of the Hopf al

gebra, keeps the noncocommutivity under control.

If pj is a matrix representation of H  in some module V, then

( r t® W )’2.= 4 -i . (2-24)

is a X matrix of End(V ® V) called the (numerical) fZ-matrlx. The 
Yang-Baxter equation can then be formulated as a matrix equation in 
V ® V  ® V .

If we define the element 72 by

72 = To72 (2.25)

where r  is the twist map, then the Yang-Baxter equation (2.23) can be
rewritten as

^12^23^12 =  ^23^12^223 (2.26)

which shows tha t 72 provides a representation of the generators of the Braid
Group [Art:4 7).
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The examples of Hopf algebra considered previously are trivially quasitrian

gular, the universal 72-element being simply the identity in the tensor square 
'H © H.  Just as in the classical case where the most common examples fall 
into two mutually dual types — the group-like type and the universal en

veloping algebra type, so it is in the Quantum Group or quantised The 
quantised universal enveloping algebra (QUEA) of a Lie algebra is a non- 

commutative, noncocommutative Hopf algebra, as is the quantised algebra 
of functions on a (Lie) group. There are several approaches to the study of 
quantum groups depending on the type of algebra under investigation. We 

will first consider the approach of Drinfel’d and Jimbo to QUEA’s using the 
example of Uq{sl{2))  or slq['2), and then look at that of Faddeev and the 
St. Petersburg School, Finally we consider the approach of Manin. The 
C'*-algebra approach of Woronowicz will not be considered here.

2 .2 .1  T h e  D r in fe l’d -J im b o  A pp roach: sf,(2)

Drinfel’d ’s approach to the study of quantum groups was motivated by the'
structure of Lie-Poisson bialgebras [Dri:83] and their formal quantisation. 
Consequently, the algebras that he investigated were of the universal en

veloping algebra type.

The quantum group slq{2) is a single parameter ç-deformation of the uni
versal enveloping algebra of the Lie algebra s/(2), generated by the elements 

{ H , E + , E - }  with relations

[ H, E±]  =  ± E ±  (2.27)
-  Q-^

(2.28)

where ç 6 C is a  free parameter and the right hand side of equation (2.28) 
is .understood in terms of a power series expansion. In the limit g 1, 
the deformed commutation relation (2.28) becomes the usual commutation 
relation for the Lie algebra s/(2).
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The additional Hopf-structure of slq{2) is given by

A(7r) =  H ® I  + I  ® H  (2.29)

M E ± )  = e ±  ® © £;± (2.30)

and

£ ( / ) = ! ,  £(7T) =  0 , £{E±) = 0 (2.31)

S{H)  = - H ,  S iE ±)  = (2.32)

The coproduct clearly shows the noncocommutivity of the algebra. In this 

case, (with q not a root of unity), the universal 72-element can be given 
explicitly as

QQ f  1 / ï “ 2 \ t i

K  =  ^  @ (2.33)
n>0  W g -

where {nj^! is a function related to the basic factorial of,classical ̂ -analysis
(see section 3.2.3). This 72-element does not actually lie in slq(2) 0  s/g(2)
but in some completion of it.

As in the classical case, the imposition of a compatible *-structure on the 
algebra allows the definition of the quantum groups suq{2)  and s u , ( l , l ) .  
Just as higher rank Lie algebras also obey the Serre relations, so their q-  

analogues have to obey g-Serre relations.

The representation theory [Ros:87 , Ros:89 , Lus:88] of these algebras is very 

similar to that of the underlying Lie algebra for generic ç (i.e. q not a root of 

unity). In fact, for suq{2)  the unitary irreducible representations are in one- 

to-one correspondence with those of su{2)  and have the same dimension. 

If we take E +  =  J+  =  { J - Ÿ  =  (^ -)^  and =  Jq =  then for every 

j  =  0 , | ,  1 , . . . there is an irreducible representation of s u ,(2 ) in a (2j  +  1)-  

dimensional Hilbert space spanned by vectors | — j ) ,  | — 7 +  1),. • •, \j)- The 

action of the generators is

J o \ h ^ ) =  m|7 , m) (2.34)
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J+\j^ =  y l j  -  M q  + 1> (2.35)

. / - 1;, m)  = yJU -  m + 11̂  [ j +  m JJ j, m -  1) (2.36)

where the function [n|^ is given by

W ,  = (2.37)
q i  -  q 2

2 ,2 .2  T h e  F .R .T . A pproach: GLg{2)

The observation (2.24) that a matrix representation of the Hopf algebra 
gives rise to a numerical matrix version of the universal 72-element was 
used extensively by the St. Petersburg school of Faddeev, Reshetikhin, 
Takhtajan, Kulish, Sklyanin et al in their approach to quantum groups. 

Since the coordinate functions on a matrix group have an obvious matrix 
representation, equation (2.24) can be rewritten as

( 7 2 ,T f 0 r / )  =  A% ' (2.38)

where Tj is the matrix of coordinate functions whose coproduct is given by 

m atrix multiplication

A T =  T@T i.e. A ( r j)  =  7 j ® r /  (2.39)

From this it can be shown that the matrix elements of T  satisfy the so-called 
i^TT-relations

(2.40)

or in more concise notation

R 12T1T2 =  T2T1R 12 (2.41)

where Ti = T ® / ,  T2 = /  @ T and I  is the unit matrix. This is the F.R.T.
approach (see [RTF:90] and references therein) and has been successfully

applied to all the classical groups as well as their corresponding Lie alge

bras.
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(2.42)

If We consider the algebra Fun(GL{2))  generated by the ring of coordinate 

functions on the group GL{2), this can be quantised to give the quantum 
group Fun(j{GL(2)) =  6 'L ,(2 ), which is generated by elements Tj, where

0

The ^ -m atrix  for this quantuni group is

/  q 0 0 0 \
0 1 0 0

0 (9 - 9 - ' )  1 0

\  0 0 0 9 /

where the rows and columns of the matrix have a multiple index running 
(11), (12), (21), (22). This then yields the following commutation relations 
for the elements of T}

(2.43)

ab =  96a, ac =  qca, bd — qdb, cd = qdc 

be =  c6 , ad — da = (9 — 9 “ ^)6c 

with a bialgebra structure given by 

f a b

c d

a b 

c d

a b 

c d

1 0 

0 1

a b 

c d

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

where 0  is a combination of tensor product and matrix multiplication, i.e. 

A (a) =  0 0 0 - 1 - 6 0 c, etc, and s(o) =  c(d) =  1, c(6) =  c(c) =  0.

If we define the quadratic product V  =  det,T  = ad — 96c, then it can be 
shown tha t it is both central and group-like. If the algebra is then extended 
by formally adjoining to it the element the antipode matrix, 5 (T ), 

may be defined by

5  f “ M = o - '  f '
\  c d I \ -q c  a

e Gi,-.(2) (2.49)
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This provides a full Hopf algebra structure. Moreover since V  is central and 
group-like, it may be set to unity with the result that the quantum group 
becomes the 9-analogue of 5Z/(2), i.e. 5L ,(2). Given an appropriate *- 
structure on the elements, it is possible to define other subgroups of G L q{2)  

such as SUq{2). Among the remarkable properties of these matrices, (more 
easily explained by Manin’s approach to the subject) is the fact that if T  and 

T ' are mutually commuting copies of a particular matrix quantum group, 
then their product T" defined by

a" b"

c" r

a b'
(2.50)

satisfy the same relations.

2 .2 .3  T h e  M an in  A p p roach

One approach to matrix quantum groups (or matrix pseudogroups in the ter
minology of Woronowicz [Wor:87a]) pioneered by Manin [Man:88] was based 

on the fact tha t they can be considered as comodule algebras for the so- 
called Manin OT Quantum Plane. If we consider again the example of G L,(2), 
then this is the “automorphism” algebra of a complex algebra gener

ated by two elements x and y (which commute with all elements of GL q {2 ) )  

such that
xy = qyx  (2.51)

The fact tha t G L q{2)  is a comodule algebra (or alternatively that there is a 
coaction of  G L q ( 2 )  on the quantum plane A^*°) means that if we define x'  

and y' by
(  X' \  /  a b \ (  X

\ y '  j  \ c  d

then x'y' = 9 y'x'.

(2.52)
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Alternatively, there exists a  left coaction, i.e. an algebra homomorphism 
Af, : ' G Lq{ 2)  © such that

This, however, produces only half the relations for the matrix elements of T. 
The rest are obtained by requiring G'X,(2 ) be a right coaction for another 

algebra (the 9-deformed Grassmann plane), generated by two elements 
rj and ^ obeying

= 0 (2.54)
772 = ^2 ^  0 (2 .55 )

This right coaction is then given by

( ?7, (  ) = ( 77,^  ) © ^ ^ ^ j  (2.56)

In fact the algebra A,^° is invariant under the coaction of a larger quan
tum group than G X,(2 ), namely the multiparameter quantum group
GLq^s{2)  [Sud:90, Schi;91). This is the the quantum matrix group with fun

damental representation T where

r . ( ; ; )  (2 .5 „

whose elements have commutation relations

ab = sq~^ba ac — qca bc = s~^q^cb
, • , (2.58)

bd = qdb cd = sq~ dc ad = d a A q  ^(s —l) 6c

Clearly, the single-parameter quantum group is the same as the multipa
rameter quantum group with the restriction that s = q"̂ .

We note in passing tha t the quantum plane is also invariant under a group 
action, namely that of the group of scaling transformations on the elements 

of aJ*°. This group is the diagonal subgroup of G L ( 2 ) .  The coordinate ring 

of this subgroup is isomorphic to the coordinate ring of the abelian diagonal 

sub-quahtum -group of G L q { 2 )  (or even GX,,a(2 )).
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C hapter 3

T he H eisenberg—W eyl Algebra and its 
Quantum  Group Counterparts

3.1 T he C lassical H eisenberg-W eyl A lgebra

Of all the Lie algebras used in quantum mechanics, probably the most im
portant is the Heisenberg-Weyl algebra. This basic structure, together with 

its various representations, forms a family of algebras which underpin the 
mathematical structure of both the first and second quantised versions of 

the theory. Classically (i.e. in a non deformed setting) there are several 
ways in which it may be introduced.

We may abstractly define the Heisenberg-Weyl Lie algebra HW{3)  as the 
universal enveloping algebra of the Lie algebra whose generators {H ,E ± }  
have the commutation relations

[E. ,E+] = H, [H,E±] = 0 (3.1)

This Lie algebra may, for example, be considered a contraction of the Lie 

algebra u(2 ) (see, e.g., p460 in [Gil:74]).

In the construction above, the generator H  is central. We may therefore 
consider representations of the algebra in which H  is given by a multiple of 
the unit operator (or alternatively consider the quotient algebra 7iW {2) fB  

where B  is the two-sided ideal generated by / f  -  and I  is the unit element
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of the algebra). This algebra will be denoted 7f(3).

One reason that the above algebra is so im portant is that it has a realisation 
in terms of the coordinate and derivative operators of single variable calculus

r (I '
= I  (3.2)

This clearly has immense implications for its importance in both classi
cal and quantum mechanics where position and momentum have coordi
nate/differential realisations. Indeed, if a *-structure is imposed upon the 

H{3) algebra such that the elements E± are realised by hermitian (self- 
adjoint) operators and the central element is realised by i / ,  then the commu

tation relation for the Lie algebra expresses the fundamental commutation 
relation linking the position and momentum operators in first-quantised 

quantum mechanics.

The algebra 7f(3), together with an appropriate Hilbert (Fock) space and 
♦-structure, is also realized as the algebra of boson creation and annihila

tion operators of second-quantised quantum mechanics. This is the algebra 
generated by three elements {6 , 6  ̂ =  (6)* ,/}  with commutation relations

[&,&*] = I  (3.3)

[&,/] =  = 0 (3.4)

If we consider the universal enveloping algebra of this Lie algebra, we can 
also form the element JV = b^b which clearly has relations

[AT,6] = - 6 , [iV,6t] =  6t, [ N J ]  = 0 (3.5)

The algebra generated by the elements {6 , 6 ,̂ /}  together with the element 
[ N  = 6l6} wiU be called the Boson algebra “H(4).

The Fock space in which the operators act is built up from a lowest weight 

vacuum vector |0) by the action of the creation operator 6 .̂ This vacuum 

vector is annihilated by the annihilation operator. The multiparticle states
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are eigenvectors of the operator N,  and are labelled by its eigenvalues. For 
this reason, N  is called the Number operator. The orthonormal number 
eigenstates are

|n) =  —= 1 0 )  (3.6)
VTlI

and the action of the generators on the number states is given by 

iV|n) — n \n)
b\n) =  y/n |n -  1) (3.7)

6l|n) = \ / n  4- 1 In +  l)

This algebra is covariant under the action of the group 5p(2, R) =  5(7(1,.1),

(3.8)

where 6' and 6 '̂ obey the same relations as b and 6l.

The boson algebra is of great use in providing an elegant approach to Lie 

group symmetry by means of the Jordan-Schwinger mzp  [Jor:35, Schw:65]. 
If we consider the Lie algebra g of a compact Lie group Gy we may realise
the generators of g by n x n matrices (pof)ti of the fundamental irreducible
representation. Given n independent (i.e. commuting) sets of boson creation 
and annihilation operators

z,7 = l , . . . r a  (3.9)

we may define a new realisation by means of the Lie algebra homomorphism 

J  • (9a) —̂ ^oty where Xa  are operators defined by

X .  = f^b\{ga)i jbj  (3.10)
ij

It is therefore possible to construct irreducible representations of Lie alge
bras associated with compact Lie groups in the usual Fock space of quantum 

field theory.
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One further occurrence of the boson algebra is in the construction of modules 
for an irreducible representation of SU(N)y  i.e. elements of an SU{n)-  
spinor. If we consider the simplest example of 5(7(2), we find that if {61, 
and {62, 62} are a pair of independent (i.e. commuting) sets of creation and 
annihilation operators, then the transformation

(3.11)

together with the relations obtained by hermitian conjugation, preserve the 
commutation relations, i.e. {61, 6ĵ } and {62, 62 }̂ are another set of indepen
dent boson operators. The annihilation operators (resp. creation operators) 
therefore form a  basis of a fundamental (resp. conjugate) representation of 
the special unitary group.

3.2 T he q-deform ed variants o f the H eisenberg  
W eyl Algebra

In the Lie algebraic setting of conventional quantum mechanics, the 
Heisenberg-Weyl/Boson algebra appears as one unified structure playing 
many roles. Unfortunately, this is not the case when it comes to the q-  
deformations of the structure.

3 .2 .1  T h e  H e ise n b e r g -W e y l Q u a n tised  U n iv ersa l E n v elo p in g  

A lg eb ra ,

If one considers the deformation of the abstract Heisenberg-Weyl algebra, 
one can obtain a  QUEA structure by contracting the two-dimensional uni

tary quantum group swç(2) [CGST:90, CGST:91]. For example, if we make 
the scaling transformation

(3.12)

( E .  > < 6^/2 b 0 0 >

E+ 0 6^/^ 0 0 J -

H 0 0 2e 0 Jo
( 0 0 0 > \  log 9 >
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where { ./o ,X + ,/-}  generate 6%,(2 ), then in the hmit, 
Hopf algebra with relations

w/2 
[E^,H] = [E . ,H ]  = Ü

0 , we obtain a

(3.13)

(3.14)

and Hopf structure

^ { H )  = l© 7 r  +  Xr@ l (3.15)

A (£+ ) =  e-'"/'*’"  ® £ + +  £ + @ (3.16)

A (£ _ ) =  0  £ _  +  £ .  0  (3.17)

In addition,

£(%) =  0, .9(A ) =  ^  _ x  (3.18)

where X  G {H.,E±}.  It is possible to see that the contraction procedure 
is consistent with the Hopf structure of the system. It is also possible to 
introduce another primitive generator N  with the relations

A( iV ) =  iV © 1 1 © iV 

£(A ) =  0, S ( N ) = - N

(3.19)

(3.20)

(3.21)

This has the advantage tha t the Hopf algebra formed is now fully quasi
triangular, i.e. a quantum group. This particular Hopf algebra was called 

H{l)q  by Celeghini et al[CGST:90, CGST:91, GS:93, BM:93], but we will 
denote it as Tf,. It may be thought of as a different contraction from a 

central extension of sw^(2), this time the Jq generator mapping onto the 
operator N  and the central extension mapping onto H.  It is im portant to 
note tha t, at the Hopf-algebraic level, the generator H  is primitive and so 
it is impossible to represent H as a multiple of the unit operator since the 
unit of a Hopf algebra is always group-like.
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3 .2 .2  T h e  A r ik -C o o n  q -O sc illa to r  A lg eb ra , Aq.

Well before the advent of quantum groups, Arik and Coon [ArC:76] produced 
a minimal 9-deformation of the ordinary boson algebra for use in extending 
the theory of coherent states. They considered a one-parameter deformation 

7^, of the usual Fock space Py (with the parameter 9 6  ( 0 ,1) ), spanned by 
orthonormal vectors |n) generated from the vacuum state |0 ) by the action 
of a deformed creation operator . The creation operator and its hermitian 
conjugate, a, obeyed not the conventional commutation relation but rather

aa^ — qa^a — I  (3.22)

together with
[iV, a] = —a , [A, a ]̂ =  a} (3.23)

where N  is the hermitian number operator

iV|n) =  n\n) (3.24)

This algebra will be denoted Aq.

The spectral properties of such operators have been considered by a number 

of authors (e.g. [Fiv:91]). Defining

1 -  0"
[n] =   ----   (3.25)

i -  9
n

[n]! = (3-26)
k=l

[0]! =  1 (3.27)

the base vectors can be calculated explicitly as

\n) =  - 5 ^ 1 0 )  (3.28)
y  W!

where the normalised ground state is annihilated by a. For 9 G (0,1), the 
operators a and «1 are bounded with ||a || =  ||a f || =  (1 -  9)"? . As 9 -> 1, a, 

«f become unbounded.
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The Casimir of the algebra is given by

c = ç-"([JV] -  a^a] (3.29)

In the representation space Pq however, we have the relation that

a^a = [iV] — ------ — (3.30)
9 - 1

so the Casimir eigenvalue is zero.

In the conventional case, the operator N  has an expansion in terms of the 
creation and annihilation operators (namely N  = 6 6̂). This is also true in 
the deformed case but the expansion is more involved. In fact there are two 
possibilties: firstly given equation (3.30), it is clear that

1 4.
iV = - l n ( l  +  (9 -  l)a^a) , a = In 9 (3.31)

A second, more interesting expansion was found by Chakrabarti and Jagan- 

nathan [CJ:92a]

^  = E  (3 32)

The functions defined in (3.25), (3.26) are the basic numbers of classical 
9-analysis and as such have been used extensively in the study of basic hy
pergeometric series (see, e.g. [Ext:83]). Moreover, as in the conventional 
case, there exists a differential realisation of the algebra. In this, the ana

logue of the annihilation operator is not the ordinary derivative operator 
but a  finite difference q-derivative (Jac:08, Jac:51) qDx defined by

.■Dx/(*) = , (3.33)

While there is no known Hopf structure for the algebra Aqy it can be obtained 
from the quantum group 5W,(2 ) by means of a contraction at fixed 9 [Kul:91]

a = lim (3.34)
/-^o

a^ = lim (3.35)
y -o  '

9^  =  lim ^ - /9 " ? ‘̂ ° (3.36)
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with w = (92 -  9 2 ).

If this contraction is done in the first space of the coproduct of suq(2), then 
most of the Hopf maps do not survive. The comultiplication however still

gives a sensible result and can be interpreted as a coaction of sug(2 ) on Aq.

A/% : Aq ->■ Aq @ suq{2) (3.37)

A r {N)  = N ® I ~ I ® J o  (3.38)

A /%((%) =  a ® 9 "̂ °/̂  -  ® .7+ (3.39)

A/%(a^) = ® 9 “̂®/̂  -  y/uq^^^ © 7_ (3.40)

This coaction has no 9 = 1 analogue.

Another coaction, this time one which has a well-defined 9 = 1  limit in the 
form of the Bogoliubov transformation (3.8), is the SUq{ly  1) coaction

(3.41)

where a, P, P* and a* G 5 ( /,( ! , 1) and * denotes the involutive automor
phism of the 5  (7,(1,1) algebra.

3 .2 .3  T h e  M a c fa r la n e -B ie d e n h a r n  q -B o s o n  A lg eb ra , Bq.

The deformed oscillator algebra which is the counterpart of the conventional 

boson algebra in the 9-analogue of the Jordan-Schwinger construction was 
discovered independently by a number of different authors [Mac:89, Bie:89, 
Hay:90]. It is generated by three elements { a ,,a j =  (o,)*,iV} with the 

commutation relations

(iqul -  9 ^ a ja , - q ~ T  (3.42)

[iV,a,] =  -dq  , [IV, aj] = oj (3.43)

Again, the * denotes an involution of the algebra which reduces to hermitian 
conjugation on representations. This algebra will be denoted Bq.
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The Fock space of this oscillator is constructed in the same manner as that 

of the ordinary boson algebra, the base vectors being the orthonormal eigen

states of the number operator N .  The operator a, annihilates the lowest 
weight vacuum ket |0) and the multiparticle states are constructed by mul

tiple applications of the 9-creation operator aj. If, for. all z  € C and m G 1̂ , 

we define the functions [z]^ and [m]^! by

— q—x/2
b io  = -J/2 r P U2 (3.44)q - f - -  9 

sinh(7z) (3.45)

m

sinh(7)
m

= n  H g  (3.46)
k=l

with 7 =  In y/q  and [0]^! =  1, then the n-particle states are

The action of the operators on this 9-deformed Fock space is then 

iV(n) =  n [n)

«gk> = h -  1) (3.48)

4 1 4  = l]g l « + l )

One difference between this 9-deformed algebra and the undeformed case is 

that the product a ja , no longer equals the number operator N .  Instead we 

have

=  1^ 1? = sinh(7 )^

where the last term is understood as a power series expansion. Clearly in 

the limit 9 —̂ 1,  [zj^ —»• z and so we recover the ordinary boson algebra. 

One notable symmetry property of the q-boson states is their invariance 

under the transformation 9 q~^.

The Casimir operator, C,  for the algebra is given by

C = (3.50)
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and is identically zero in the Fock-space representation. It has recently been 

pointed out[OS:94] that the definition of the 9-oscillator is dependent on 
the represetation space. Thus, for example, although the equations (3.42) 
and (3.48) imply each other in the representation outlined above, there are 

other representations (labelled by a non-zero Casimir eigenvalue) in which 
this is not the case.

The algebra of this 9-boson in the Fock-space representation does not have 
a  Hopf structure [OS:94] but has been shown [CPT:91] to close (with other 

generators) under the action of the graded-commutator to give the super- 
Hopf algebra {quantum supergroup) oap,(l|2).

The procedure [Bie:89, Hay:90, Pol:90] for constructing the Jordan- 
Sch winger representations of the 9-deformed Lie algebras is similar to the 

undeformed case except that the diagonal matrix generators are obtained 

by replacing a ja , by the number operator N . For the case of the simplest 
QUEA, s u ,(2), the fundamental matrix representation coincides with the 

9 = 1 case. The representations p of the generators {To, are

p { jo )=  ( ; j. X A )  =  (  0 J ) - = ( ! 0 )
and so the Jordan-Sch winger map J  in terms of two sets of independent 

9-bosons, {a(i),,a |jj^ , and {a(2)g>0 (2),> ^ ( 2)} gives the realisation as

J { J q) =  |(W(x) — iV(2)), y ( J + )  =  J { j ~ )  =  ®(2),®(l)g
(3.52)

Then the states which form the s u ,(2 )-module are

y -m

where j  m  = n\  and j  -  m  = n^. The generators of the s u ,(2 )-algebra 
defined in (3.52) act on these states to give the required action. It is impor

tan t to note tha t the Jordan-Sch winger map only yields the correct result
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for states that terminate with the vacuum state. This is unlike the conven
tional case where the generators close abstractly.

For 9 G R, there is a simple invertible deformation map between the algebra 

Bq and the algebra A q  defined in (3 .22 ) namely

a = = N  (3.54)

The invertibilty of the map means that it is possible to use the oscillator 
algebra Aq to realise the generators of a quantum group in the same way as 
for the algebra Bq.

There is also a deformation map from the algebra Bq (and hence from Aq)  

to the ordinary boson algebra ’H(4) [Pol:90, CGZ:91].

dq = b y / ^ ^ ,  a\ -  Na  ̂ =  =  N  (3.55)

These two maps are special cases of a more general transformation discussed 
later.

Just as the algebra Aq has a  realisation in terms of the coordinate operator

X and a 9-derivative qDx y so Bq has a similar realisation in terms of the
z-m ultiplication operator, the symmetric 9-derivative operator ,5® and the 
9-dilation operator Tq. The representation is defined by

a j z, a , -I- qSxy q ^  fq = 92®^ (3.56)

where the action of Tq and ,5® on an arbitrary function of z is

= / ( 9^a;) (3.57)

(3-58)

= (3.59)
(9 2 - 9- 2 )®
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3 .2 .4  T h e  S U ,(N )  S p in or A lg eb ra

While the 9-bosons described above are very useful in constructing Jordan- 
Schvvinger representations, they are not covariant under SUq{N) transfor

mations. Essentially, one requires the existence of a quantum group coaction 
on a  module composed of annihilation operators. Since the quantum ma

trix group preserves a quantum plane structure, it is clear that the elements 
of an 5 Cf,(yV)-module must have non-trivial commutation relations among 
themselves. Consequently, simply taking n independent (i.e. commuting) 
sets of 9-bosons will not be successful. The problem is resolved by building 
in covariance from the outset [PW:89, WZ:90, Kem:93].

It was observed by Zumino [WZ:90] that the statement that a set of non

commuting coordinates {z,} belong to the iV-dimensional quantum plane 

can be re-expressed as

X { X j  = 9 Rij,kl^l^k (3.60)

where, for convenience, all indices are written as subscripts. If {/!%} is a 

set of deformed annihilation operators, these will be covariant under the 

coacjtion of SUq{N)  if

AiAj  =  q~^Rij^kiAiAk (3.61)

If we require the relation between the annihilation operators and their coun
terpart creation operators to be of the same form but with a minimal central 

extension, then this leads to the relation

AiA] = qRkij iAlAi  -I- 6ij (3.62)

Invariance of this relation under hermitian conjugation means tha t 9 must 
be real and R  must satisfy

Rij,ki = RJkji ' (3.63)

which in turn implies that

A}a ] =  (3-64)
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Clearly the algebra should have the same size as the commutative one. This 
condition manifests itself in relations obtained by using the above commu
tation relations to reorder triples such as A{AjAk  and and then
equating Uke-order terms. If this is done, the cubic terms equate if R  satis

fies the Yang-Baxter equation and the linear terms equate if R satisfies the 
Hecke condition which can be written as

{PR + q-'^I){PR - q l )  = 0 (3.65)

where P  =  Pij,ki = bu6jk is a permutation which implements the twist op
eration in a pair of vector spaces. The Hecke condition is fulfilled by the 
Æ -matrices of the quantum unitary matrix groups and so the equations 

(3.61), (3.62), (3.64) define an 5U,(iV)-covariant 9-boson algebra.

Explicitly, the commutation relations come out as

AiAj  = qAjAi for i < j (3.66)

a \ a ] = qA]A] for i > j (3.67)

Ai a ] = qA]Ai for i =  j (3.68)

q^A\Ai  = I f  (9^ - 1) ^  a ]A i (3.69)
j<i

3 .2 .5  M u lt ip a r a m e te r  D efo rm a tio n  o f  th e  B o so n  A lg eb ra

As well as deformations of the boson algebra depending on one param

eter, there are also multiparameter generalisations. One such is the
{py q)-deformed boson algebra [CJ:92b, ADTEM:92] generated by elements

{a, iV} with relations

aa^ -  q^a^a =  (3.70)

[yV, a] = —a, [IV; (3.71)

The corresponding deformed Fock-space is spanned by vectors of the form

36



where

M P.<7 ,1/2 _  0 - 1/29 ‘ / ‘  -  p -

m
M p ,,-  =  n  Wp.g

f c = l

which implies tha t in the usual Fock-space,

t _ i  t ^  aa' — p 2a 'a  = ç 2

(3.73)

(3.74)

(3.75)

This deformation clearly subsumes both the algebras Aq and Bq as special 
cases.

It is possible to find the 9-deformed calculus characterised by the deformed 
derivative

i,pDxf{x) —
f ( Q ^ )  -  f ( P  x ) (3.76)

( 9 - p - i ) i

The (9 ,p)-boson algebra can be used to form the Jordan-Schwinger repre
sentations of the two-param eter quantum deformation of su{2) as well as 

its noncompact counterpart 5u,,p(l, 1) [Schi:91, CJ:92b]. The Æ-matrix for 
these algebras is given by

R  =

0
qp -1

0 0 \ 
0 0

0 ( 9 - P  M 1 0
VO 0 0 9 /

which leads to the deformed commutation relations

[JOyJ±] =

T+ T_ -  9 ^pJ-J+ =

±J±

[2 Tolg p

for suq^p{2), and

[A'o,A’±l 

K . K +  -  qp -^ K + K .

= ±A'±

= P A 'o l ,,

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
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for s u ,(1 , 1).

The comultiplication map for the two algebras is the obvious one given the 
two-param eter nature of the deformation, namely

A(.Yo) = A'o © /  f  /  ® A'o , A (A j.) = 9^® © X ±  +  X ±  © p~-^° (3.82)

where X  is J  or K  depending on the algebra..

The deformed boson realisations of these quantum algebras then follow in 

the same way as for the single-parameter deformations, e.g., the one-mode 
(9 ,p)-boson su 2̂ p2( l ,  1) realisation is

Ao =  i(iV  +  1/2) , A-+ = (A '.) t =  [2 l- ‘ at^ (3.83)

There are also multimode systems of two parameter deformed oscillators 

which are covariant under the actions of the two-param eter quantum group 
GLp^q(n) and its quantum supergroup counterpart [Vbk:91, JSVCKSS:92]. 
A discussion of these systems would proceed along the lines of the single
parameter case but will not be undertaken here since it is not pertinent to 
the present investigation.
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C hapter 4 

Coherent States

In 1926, Schrodinger [Schr:26] introduced a system of wavefunctibns to de
scribe the dynamical evolution of classical, i.e. non-spreading wave-packets 
for quantum harmonic oscillators. However, the fact that these wavefunc- 
tions were non-orthogonal mitigated against their use in further work. In 

1932, in. his work on the quantum mechanical measurement problem, von 
Neumann [Neu:32] considered a subset of the Schrodinger wavefunctions pa- 
rameterised by points on a regular lattice in a complex phase space. Both 

these examples show that the concept of the coherent state was implicit in 
the work of some of the founders of Quantum Mechanics. It was, however, 
the application of states modelling coherent light by Glauber [Gla:63a] and 
Sudarshan [Suda:63] which provided the impetus for the many advances in 

the use of coherent state techniques which have emerged since the early 
1960’s.

4.1 O verview

In one of his early papers [Gla:63b], Glauber gave three definitions for the 
coherent states associated with the quantum harmonic oscillator.

1. Coherent States jo) are eigenstates of the photon annihilation opera

tor, 6:
6|o:) =  a[û) (4.1)
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where a  G C.

2. Coherent States are the states obtained by applying a unitary dis

placement operator D(a)  to the oscillator ground state |0):

|a) =  D (a)|0) (4,2)

where D{a)  is defined by

D{cn) =  exp(a6^ -  a*6) (4.3)

3. Coherent States are the quantum states tha t minimise the Heisenberg 
Uncertainty Relation [Hei:27]

(A X )2 (A P )2 >  ( i ) '  (4.4)

where the field coordinate and momentum operators are defined as

^  +  (4.5)

P = ^ ( 6 - 6 ^ )  (4.6)

and (AA)^ = (a|A^ -  (A )a|a) ; (A)a = (a |A |a).

About the same time, Klauder [Kla:63], in his work on continuous represen

tations of states in a Hilbert Space, described the minimum requirements 
for a set of states to be coherent. According to Klauder [KIS:85], coherent 

states I a ) are a  set of state vectors in a  Hilbert Space 7i (finite or count ably 
infinite dimensional), parameterised by an element of a (possibly multidi
mensional) label space C which is endowed with an appropriate topology.

Coherent states have two properties:

1. The vector |o:) is a strongly continuous function of the label a.

2. There exists a  positive measure dfi{a) on C such that the coherent

states admit a  resolution of unity when integrated over a .

/ \a){a\dfi{a) = I  _ (4.7)
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It is notable that the continuity property rules out both discrete orthogonal 

voctnrs (|//) : // = 0 .1 .2  with (//,|//?.) = and normalized orthogo
nal coiitiiuiiim vectors ; -oo  < ./• < cc-. with (.i’'(;c) = 6(x -  .c')}. In 
the former case, the vectors do not form a continuous set. whereas in the 

latter the vectors are not continuous in the labels. In fact, the eigenvectors 
of any self-adjoint operator never constitute a set of coherent states [KIS:S5].

The existence of a resolution of unity gives rise to representations of vectors 
and operators. For example, if |p). \ é) are arbitrary vectors in 'H

(P |p) = j {i'\a){oi\é) d^L[a) (4.8)

and i f #  is some operator.

(a (# |o ) = j  {a\Ba‘){ot \̂4>)d^L{ct) (4.9)

The functional representations of the states induced by the coherent states

05(a) =  {cv|0> (4.10)

gives rise to vector representatives that are continuous functions. Moreover, 

since, for all o £

{(p\<l>) =  J  |(a|p)|'^dXa) < 00 (4.11)

the functions of the continuous representation are all square integrable. If 

we further impose the condition that the Hilbert Space should be equipped 
with a Reproducing Kernel K[a,a' )

such tha t

^ (o .  ( /)  = (o |a ')  =  (a'lo)* (4.12)

(cvl/i) = J  {oi\oi'){Q'ld)dfi{oi*) (4.13)

or
/C{a,i3] = J  K.'{a.a')K.{a\p)dp{a') (4.14)

then it is possible to show that only a subset of all square-integrable func

tions is needed to represent vectors in H.
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4.2 Q uantum  N oise and U ncertainty Principles

One of the most striking differences between classical physics and quantum 
mechanics is that, in the latter theory, simultaneous measurements of vari

ables described by noncommuting operators cannot be made with arbitrary 

precision. This statem ent was formalised in a number of ways, the most no
table being the Uncertainty Principle first proposed by Heisenberg [Hei:27]. 

Since much of the following work will involve the calculation of various un
certainty products, we briefly recall the calculation of the general formula, 
following the derivation found in [Gar:9-1].

We consider two operators X  and Y  and define

6X  = X  -  {X)  , 6Y = Y  - { ¥ )  (4.1.5)

where (•) denotes the quantum mechanical average over the range of states 

in question. We can write both the commutator of X  and V, as well as the 
variances (A%)^ and (AT)^, in terms of the new operators;

[X ,y ] = [6X,6Y] (4.16)

(AX)= = {X^ -  { X f )  = { (SXŸ)  (4.17)

{ A Y f  =  {Y^ -  { Y f )  = {(SYŸ)  (4.18)

It is known from spectral theory that, for any operator Z  with hermitian 
conjugate

( z z t )  > 0 (4.19)

Consequently, if we form the operator Z = 6X  +  \\\e*^6Y and substitute 

into (4.19), we obtain

((«% )') +  lA|{cos9([<X,dy]+) - i s i n # % , ü y ] ) }  +  |A|=((«y)^) > 0 (4.20)

where [ ,  denotes the anticommutator. Equation (4.20) is a quadratic in 

|A| and so the inequality for the discriminant gives

{cosfl([dx,«y)+) -  i sin «([(% ,<y])} ' <  4((dX )^)((dy):) (4 .2 1 )
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Since this must be true for all 9, we may maximise the left hand side to 
yield

(4.22)

The term involving the anticommutator is the quantum mechanical analogue 

of the square of the covariance A X Y  where

A xy = l([x, y]+> -  (A-)(y) = \([6x, fy]+) (4.23)

and so (4.22) can be rewritten as

y l ( A X ) \ A Y f  -  { A X Y f  > l |([J f,  y )) |  (4.24)

which is the Robertson-Schrodinger Uncertainty Relation[SchT:30, Rob:30]. 

Since the square of the covariance is positive or zero, a less accurate lower 
bound on the uncertainty product is obtained by neglecting its contribution 
on the left hand side of (4.24). (Alternatively, if the two operators are 

uncorrelated, the covariance is identically zero). We therefore obtain the 
more familiar Heisenberg Uncertainty Relation (H.U.R.),

A X A y >  i | ( [X ,y ] ) l  (4.25)

4.3 Coherent states o f th e electrom agnetic field

The physical motivation for the consideration of photon coherent states was 
the application of Quantum Field Theory to Quantum Optics. Specifically, 
Glauber wished to factorise the correlation functions of the electromagnetic 
field to all orders.

Ehrenfest’s theorem [Ehr:27] for a particle in a quadratic potential (such as 
a harmonic oscillator) states tha t the motion of the centre of the wavepacket 

obeys the classical evolution equation. In terms of the quantum mechanical 

operators % (t) and P{t) and the corresponding classical variables Xc{t) and 

Pc(t), this means tha t [MeS:90]

(4.26)

W ' P i t m  =  Pc{t) (4.27)
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Classically, the energy of a field oscillator of unit angular frequency is given 
by the Hamiltonian function He,

4- A‘^
ff. =  (4.28)

= ^ { W H t M f  +  (ÿ|X(Olï»>"} (4.29)

In terms of the boson creation and annihilation operators b and 6 ,̂ this can 
be rewritten as

He = (4.30)

The corresponding quantum mechanical oscillator has energy

{H) = {i>\HW = (4.31)

and so the requirement that the quantum mechanical energy be equal to the
classical energy leads to the factorisation condition

{ip\b%\ijj) = {i}\b^\‘il^){i;\b\ij) (4.32)

Glauber named the states that fulfilled such a condition to aU orders, 

Coherent States,

Equation (4.32) can be rewritten as

= W k ^ b W  (4.33)

If the identity is now resolved into the projector onto |^ )  and the projector
onto the orthogonal complement of |^ )  (which we will write as
i.e.

I  = |^ )(^ (  +  \ '^k){^k\  (4.34)
k

then we can insert this resolution into (^|6^6|i^) to get

= Wb^W{i;\b\'ti;)+ Y^{ip\b^\i;j^){i;j^\b\i}) .(4.35)
k

= +  (4.36)
k
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Therefore, using (4.33), we see that

= 0 (4.37)
k

Since each term in the sum is positive definite,

= 0 (4.38)

for all A:, i.e. 6 |0) must be orthogonal to any and so must be propor

tional to l* )̂. Consequently coherent states are eigenstates of the annihila
tion operator.

Such coherent states have found immense application in the area of quan
tum optics. In such circumstances, consideration of the algebraic content 
of the equations show tha t the dynamical properties of the field (which is 

essentially a sum of terms linear in the photon creation, annihilation and 
number operators) emerge from the Hamiltonian and its Hilbert space. Such 

operators realise the (Heisenberg-Weyl) Boson algebra, 7f(4). A detailed in
vestigation of this algebra was made in chapter 2. We recall that this Lie
algebra is spanned by three elements {6,6^, /}  with fundamental commuta

tion relations
[6,6^] = I  [b,I] =  [6^/] = 0 (4.39)

with an extra element N  = b^b, which also forms a  system closed under 
commutation

[N,b] = - b  ; [iV,6t) = 6t ; [JV,/] = 0 . (4.40)

The Hilbert Space (in this case, Fock Space) is spanned by the eigenstates 
of the Number operator {|0), |1), |2), |3 ) ,. . . ,  |n ) , ...}  where

N\n) — n\n) (4.41).

and it is easy to show tha t the n -th  normalised number state is given by

|n) = ^ | 0 >  (4.42)
v n l
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The vacuum state, |0), is annihilated by the lowering operator, 6, and forms 
the ground state of the system.

Given this Hilbert Space, the photon coherent states are generated by uni
tary transformations of the ground state, |0).

|a) = # (a ) |0 )  (4.43)

=  exp(a6^ -  a*6)|0) (4.44)

=  exp(-^ja|^)exp(a6f)exp(-O !*6)|0) (4.45)

= e x p (- i |a p )e x p (a 6 t) |0 )  (4.46)
^  A"

= e x p ( - i |a |2 ) 5 ^ - = |0 )  (4.47)
n=0  v n l

where we have used the Baker-Campbell-Hausdorff formula to get a decom
position of the coherent state as a superposition of number states.

If we set the adjoint vector (o| = |a)^, the non-orthogonality of the coherent 

states is evident

{a\a') = e x p f - i |a p  -f aa'  - j |a 'P )  (4.48)

which is a no where-vanishing continuous function of the variable a  and a'.

The relation

exp( 6 exp(o6^) = 6 -h a  (4.49)

is a  direct consequence of the basic commutation relation, so clearly

6exp(o6^)j0) = aexp(a6^)|0) (4.50)

This shows that the coherent states are indeed eigenstates of the annihi
lation operator with eigenvalue a. Moreover, by explicit calculation, it is 

seen tha t the field variances [ù^QŸ  &nd (A P)^  are both equal to 1 which 

minimises the H.U.R. as stated by Glauber.
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The photon coherent states, i.e. coherent states associated with the bo

son algebra, were successfully applied to a wide variety of problems. Apart 
from Glauber’s work on photon correlations and optical coherence, Sudar- 
shan [Suda:63] established the validity of the semiclassical approach to opti

cal problems. The solution of the harmonic oscillator in a time-dependent 
potential was solved by Carruthers and Nieto [CN:65]. Cummings and John

ston [CuJ:66] used coherent states to study superfluidity problems and there 
has been widespread use of such techniques elsewhere in condensed m atter 
physics, as well as plasma physics. There have also been applications of 
the boson coherent states to atomic and nuclear physics. A bibliography of 
relevant papers appears in [K1S:85]

4 .3 .1  G r o u p -th e o r e t ic a l d escr ip tio n  o f  P h o to n  co h ere n t  

s ta te s

Such success prompted a number of mathematical physicists [Per:72, Ras:73, 
Ras:75, Gil:72] to try to extend the notion of coherent state to other physical 

systems not adequately modelled by the harmonic oscillator. In order to do 
this, it was necessary to abstract the algebraic and group theoretic content of 

Glauber’s construction and apply this to more complex systems, particularly 
to other Lie groups [Per:8 6 , ZFG:90J. It is clear that the algebraic or group 
theoretical content of the Glauber coherent state emerges from considera

tion of the Hamiltonian of the system. The photon creation and annihilation 
operators generate an irreducible representation of the Heisenberg-Weyl al
gebra. The corresponding Lie group, ^{7f(4)}, can therefore be constructed. 
The Hilbert space for this group is spanned by eigenvectors of the Number 
operator and has an extremal (in this case, lowest) weight vector — the 

vacuum state.

The extremal state is stable only under the action of the Isotropy or Stability 

subgroup of the full Heisenberg-Weyl Group. This is the subgroup spanned 
by group elements corresponding to the operators { N , I }  and so having the
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general form
h = (4.51)

where u^O £ C ,  and so

A|0) = e‘*|0) (4.52)

The isotropy subgroup for the Heisenberg-Weyl group is isomorphic to 
U{1)® U{1). It is possible to form the coset space with respect to the sta
bility subgroup. This provides a unique decomposition for any element of 

the group. A typical representative of the coset space G{H{4)}/ U(I) @ U(1) 
is given by

D{a)  = exp(a6  ̂ -  a*6) (4.53)

where a  G C. The coherent states for this system are defined by the action 
of the coset elements on the extremal state

ja) =  D (a)|0) (4.54)

The operator D{a)  provides a one-to-one correspondence between the states 
|a ) and the points in the complex a-plane, with the coset representative gen

erating finite displacements. This mapping is continuous where the metric 
for the coherent state is taken to be the usual Hilbert space inner product 
while tha t of the complex plane is just the ordinary Euclidean metric. This 
means tha t the corresponding invariant measure, dfj.{a), is (up to normali

sation) just given by
dfx{a) = d^a — da da* (4.55)

The resolution of unity can therefore be calculated to be

/ | a ) ( a | — = I  (4.56)

Since the Hilbert space was assumed to have been spanned by a denumerable 

set of number states and these coherent states are labelled by a continuous 
param eter, they are over-complete.

It is evident tha t this group-theoretical construction of the Heisenberg-Weyl 
states clearly exhibits Klauder’s criteria for coherent states.
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4.4 G eneralised Coherent S tates for other  
sem isim ple Lie groups

The definition given by Glauber of the HWCS suggest three possible means 
of extending the concept to other groups. Firstly one could use eigenstates 

of the lowering operator to define states for arbitrary dynamical systems. 
This was done by Barut and Giradello [BaG:72] for the non-compact group 
SU(1,1), the Lie algebra of which is an im portant spectrum generating al
gebra. However such a construction is not possible for compact Lie groups 
such as SU(2 ) which have finite dimensional Hilbert spaces.

Another extension could be to use Minimum Uncertainty States (MUS). 
For two observables, A and B,  the states |^ )  which minimise the quantum 
mechanical uncertainty relation

( A A ) V £ ) 2 >  l l ( [ A , B ] ) |  (4.57)

(with averages taken in \i)) ) are given as solutions of the eigenvalue equation

{ A ^ - i \ B m  = { { A )^ iX { B ) } \ i ; )  (4.58)

Such states were constructed by Aragone et al[AGST:74] who named them 
Intelligent states. They were extensively studied in a series of papers by Ni
eto and others [NS:78, Nie:84a] for various arbitrary dynamical systems. For 
a classically integrable system, it is possible to define canonically conjugate 

functions, Xc{xc,Pc) and Pc(xcpc),  of the standard position and momentum 
variables Xc and pc th a t vary sinusoidally with time. Often this means that 
the classical Hamiltonian is quadratic in these functions. If this system is 
quantised canonically, the functionals Xc and Pc become operators A' and 

P  with commutation relation

[X,P] = iG (4.59)

where G  is some operator. This gives the dispersion relation

. ( A X ) ^ (A P )2 > i | ( [X ,P ] ) |^  = l ( G ) '  (4.60)
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The states which minimise this uncertainty relation are given by the solu
tions to the eigenvalue equation

+  2(A^P)2^ )  =  ( W  +  2 [ ^ j 2  W )  M m u s  (4,61)

By requiring that the ground-state of the Schrodinger equation be a solu
tion, Nieto et al solved the eigenvalue equation and calculated the arbitrary- 

potential MUS.  There are, however, some problems with this extension of 
the concept of coherent states. Such states follow the classical motion but 

show dispersion with time evolution, i.e. do not remain minimum uncer
tainty states. Moreover the set of states may not be complete or may lack 
a resolution of unity.

The most widely used generalisation of Heisenberg-Weyl coherent states 
to other dynamical systems is that proposed by Perelomov and oth
ers [Per:8 6 , Ras:75, ZFG:90]. Perelomov considered the case where the dy
namical symmetry group was a finite-dimensional Lie group, G. In such a 

case, one considers its unitary irreducible representations, T(g), acting in a 
Hilbert space Ji. We then take a fixed (cyclic) vector |^o) &nd consider the 

set where for ^ E G

= T (p ) l^ )  (4.62)

If H is the Isotropy subgroup, i.e. the maximal subgroup which, for h E H,

r(fi)l^o) =  exp(m)l^o) (4.63)

then the set of states {A|0^),A E C} is determined by a point x(g)  in the 
homogeneous coset space G j H  corresponding to the element g and so we 

can use this a parameterisation, i.e.

\i)g) =  exp(m )|z(^)) (4.64)

The group G  may be considered as a fibre bundle with base x  =  G / H  and 
fibre H.  A choice of ^(æ) then corresponds to a cross-section of the fibre
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bundle.

Perelomov’s construction is not the only one which can be made. The inputs 
for the above algorithm are essentially the Lie group structure of the dy

namical symmetry, the unitary irreducible representation and the reference 
state. There are other choices which may be made however. Gilmore et 

al [ZFG:90] considered an arbitrary dynamical symmetry group instead of a 
Lie group and the representation in the Hilbert space was square-integrable. 
His fiducial state was not arbitrary, as with Perelomov, but was required to 
be an extremal state annihilated by a maximal subset of the algebra associ
ated with the symmetry group. This choice of reference state is im portant 
as it can greatly simplify calculations. Usually the most useful choice is 

to make the state the unperturbed physical ground state. This is then an 
extremal state (at least for a discrete spectrum). The coset space and hence
the coherent states can then be constructed from a knowledge of the positive
root elements of the group which associate to shift operators in the weight 

space.

4.5 Coherent States for SU (2)

4 .5 .1  T h e  Irred u cib le  R e p r e se n ta tio n s

The Lie group S U {2) has unitary irreducible representations labelled by a 

non-negative integer or half-integer j .  The dimension of the representation 
is 2j +  1. The Lie algebra of SU{2) is generated by three elements { Jq, J±} 

with commutation relations

[Jo,J±] = (4.65)

[J+,J_1 =  2 Jo (4.66)

We can form a finite dimensional Hilbert space basis of eigenstates |j, m) of 
the Cartan element, J q , of the Lie algebra. The label m  lies in the range 
—j  < nf i<  j  and increases in integer steps. The element Jo acts on the basis
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as
=  m\j ,m )  (4.67)

The representation label, j ,  can be related to the eigenvalue of the Casimir, 
which has action on the canonical basis '

rn) =  j { j  +  1)1 j, m) (4.68)

The other generators act as ladder operators, raising and lowering the label 

m.

and so

and

J+\j ,m)  =  y  (j -  m )(j +  m ■+ l) |j ,  m) (4.69)

J - \ j , m )  =  y  {j + m ) { j  - m  + l ) |j ,  m) (4.70)

J - b ' , - j ) = 0  (4.71)

The holomorphic realisation of the representation is generated by first order 
differential operators

•̂ 0 = 2 - ^ ,  J+ = +  2j 2 , J_ =1 -  j  (4.73)

where the operators J+ and J_  are conjugate to each other with respect to 

the scalar product

</il/2> =  (2j +  1) /  Â W  A(Z) dn,(z) (4.74)

and the measure is given by

= fl +~^p)W
The basis vectors are the monomials /,m
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4 .5 .2  T h e  C o h eren t S ta te s

The unitary group-theoretical displacement operator for the SU(2)  group 
is given by

D (0  =  e x p ( ( J + - ( J _ )  (4.77)

=  exp(ÇJ+)exp(77J o )e x p ( - f j_ )  (4.78)

where we have used the Baker-Campbell-Hausdorff formula in the last line 
to decompose the single exponential into normal form. If we write ^ as 
{0/2)e~^^, for (0 < 0 < 7T,0 < 0 < 27t), then the parameters t) and Cj are 
related to the original ones, ^ and Ç*, by

C =  tan(^/2) exp(-%0) (4.79)

V =  ln (l +  |Çp) (4.80)

If we choose the lowest weight state |i, —j)  to be the cyclic vector, the 
group-theoretical coherent states take the form

10 =  e x p ( ? J + - f j _ ) | j , - j )  (4.81)

=  exp(Ç J+)exp(j)Jb)exp(-C ./-)|j,- j )  (4.82)

=  ex p ((J+ )(l +  |( |Y ° U ,- j>  (4.83)

=  ( l  +  IO 0”- 'e x p ( a + ) | i , - j )  (4.84)

Then using (4.72), the coherent states can be written as

10  =  (4.85)

The Lie group S U {2) is locally isomorphic to the group S0(3) of rotations in 
three dimensional Euclidean space. Consequently, these coherent states have 

been used extensively in the study of spin systems, especially atomic spin 
systems where they correspond to semiclassical states on the spherical spin 

phase manifold. The techniques used to construct 5î/(2)-coherent states can 
be generalised to other compact Lie groups. Since the dynamical groups of 
many-fermion systems are compact, it is not surprising that the coherent
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States of such systems play an im portant role in such physical phenomena 
as superconductivity, charge-density waves and spin-density waves [BS:82, 
SB:84, SB:87).

4.6 SU( 1,1)—Coherent States

4 .6 .1  T h e  Irred u cib le  R e p r e se n ta tio n s

The non-compact Lie group 5C/(1,1), which is locally isomorphic to both 

5 0 (2 ,1 )  and 5p(2, R), consists of all matrices of the form

“  ^  )  (4.86)

where |a|^ -  |/3p =  1. Because the group is non-compact, its unitary irre
ducible representations are infinite dimensional. Moreover, unlike the group 
51/(2), it has several series of unirreps: the principal, discrete and supple- 
mentsary series. We shall consider only the discrete series.

The Lie algebra of 5C/(1,1) is generated by three elements K q, K±  with 
commutation relations

[A'o, I<±] =  ± K ±  , • [X+, K-]  =  2Ko (4.87)

with Casimir
C =  /f2 _  (4.88)

The irreducible representations are labelled by the number k, determined
from the eigenvalues k{k -  1) of the Casimir. For the discrete series, k takes
values 1 ,3 /2 ,2 , . . .  and the basis vectors take the form \k ,k  -\-m) where m  
is an integer and k + m i s  the eigenvalue of K q.

Ko\k,k + m) = (k + m ) \ k , k + m )  (4.89)

and m  E 1̂ . The action of the ladder operators on the basis vectors is given 

by

K + \ k , k A m )  = \J{2k + m )(m  -}- 1)|A:, A; +  m -1-1) (4.90)

A'_|A;, A:-I-m) =  yjm{2k  4- m — 1)|A:, A; 4- m — 1) (4.91)
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The Lie algebra generators have a realisation in terms of first-order differ
ential operators

I<o = z i  + k , A'+ =  2= ^  + 2fc2 , K -  =  i  (4.92)

which act on the space of functions analytic in the unit circle, e.g. the 

polynomial basis -____________

One im portant realisation of the algebra is in terms of single-mode boson 
operators, b and b̂ . The bilinear operators

Ao =  l ( 6fct +  6t 6) , A+ =  i(6*)2 , A _ =  l 6= (4.94)

satisfy the defining commutation relations and give a Casimir operator with 

eigenvalues This corresponds to fc-values of |  or The ordinary
number basis for the bose oscillator provides a basis for /c =  J realisation 
with n  is even, and a basis for the fc =  |  realisation if n  is odd. There 
is also a two-mode realisation which is analagous to the Jordan-Schwinger 

representation. This has generators

Ko =  ^{bib\ 4- 6262 +  1) , A+ =  b\b2 , K -  =  \ b 1b2 (4.95)

with Casimir

C  =  i ( 6Î6i -  6^62) '  -  \  (4.96)

A basis for this representation is

4 .6 .2  T h e  C o h eren t S ta te s

The unitary displacement operator for the group is

D (0  =  e x p ( (A + - (K _ )  (4.98)

=  exp((A +) exp(??Ao) e x p (-(A _ ) (4.99)
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where C =  tanh and g = -  ln (l -  |(|^). If we act on the lowest weight
state, jA:,0), with the displacement operator, we obtain

IO =  ( l - |C P ) ‘ exp(ÇÀ+)|0) (4.100)

which gives a decomposition of the coherent state over the polynomial basis

These coherent states obey the eigenvalue equation

( K -  -  2ÇKo + C^A+)K) =  0 (4.102)

The fact that 5C/(1,1) is the dynamical group for the harmonic oscillator 
means tha t 5Î7(1, l)-coherent states techniques have found great applica

tion in situations where one is. dealing with the physics of bosonic systems.. 
These include many apects of condensed m atter theory such as the study of 
superfluidity [Sol:71j. They have also been used to study squeezed states of 
light in quantum optics (see, e.g., [WE:85]). This latter application will be 
considered in detail in chapter 9. The techniques applied to the non-compact 
SU {1,1) group can also be extended, in many cases, to other non-compact 
groups such as 5 0 (3 ,1 ) and 5 0 (n , 1) [Per:86].
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C hapter 5

Coherent states o f q—analogues o f  
sem i-sim ple Lie groups

Given the importance of coherent state techniques to mathematical physics, 
it is not surprising tha t the analogues of coherent states for quantum groups 
were one of the first things to be examined. Unfortunately there is a problem 
with the definition of such objects. As illustrated in chapter 4, the most use
ful definition for extending coherent states to semisimple Lie groups was that 

of Perelomov (or some conceptually equivalent scheme). This was a group- 
' theoretical construction based on the embedding of the group manifold in 

some completion of the universal enveloping algebra. The duality between 
the space of functions on the group and the enveloping algebra meant that 
the representation of the group elements was given by exponentiation of the 
Lie algebra generators. In the case of quantum groups, however, there is no 
underlying group manifold. Consequently there is no representation of the 
m atrix quantum group by an analogue of exponentiation on the generators 

of the corresponding quantum universal enveloping algebra. This is a seri

ous problem and effectively rules out a straightforward generalisation of the 
Perelomov approach.

The failure of the group-theoretical method means tha t less elegant pro

cedures must be applied and the difficulties of alternative definitions, that 

were detailed for the undeformed case, occur. The most coinmon approach is
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based on the observation that the undeformed coherent states can be formed 
from the ground state by the exponential action of the raising operator. If 
normalised, use of the Baker-Campbell-Hausdorff theorem shows that this 

is the same state as that produced by Perelomov’s method. In the quantum 
group context, an obvious analogue is that state, produced by the action of 
the q-exponentiated raising operator. In the case of q-deformations of the 

Heisenberg algebra, the resulting states are also eigenstates of the deformed 
annihilation operator.

In the following section, we give a review of the basic results of g-coherent 
state theory following the approach of Jurco [Jur:91], before going on in later 
chapters to see how the formalism may be expanded.

5.1 T he Coherent S tates associated w ith  the q— 
analogues o f the H eisenberg—W eyl group

As we have seen, there are several different ways of deforming the Lie algebra 
of the Heisenberg-Weyl group, each of which leads to algebras with different 

properties. If we restrict ourselves to deformations of the one-mode algebra, 
the following deformations are the most common

• The Arik-Coon ^-oscillator algebra, Aq.

•  The Macfarlane-Biedenharn g-boson algebra, Bq.

e The quantised universal enveloping algebra of the Heisenberg quantum 

group, Hq

We will consider these deformations in turn.

5 .1 .1  T h e  A r ik -C o o n  q -c o h e r e n t  s ta te .

As detailed earlier, the Hilbert space Hq of the Arik-Coon oscillator is 
spanned by eigenstates |n) of the number operator N.  These are gener-
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.ated from the vacuum |0) by the action of the creation operator which 
obeys the commutation relation

aa^ — =  1 9 G (0 , 1) (5 .1)

The above equation leads to the following

a(at)"  -  5 V ) " o  =  , (5.2)

where [m]^ =  2 is the basic number of classical ^-analysis. By acting 
with (5.2) on the vacuum Arik and Coon [ArC:76] obtained

a(nt)’>|0> =  [n ),(a t)" -‘ |0) . , .(5.3)

which implies that
a#^(aa^)|0) =  aA ,(aa^)|0) (5.4)

where Bg(x) is the Jackson ^-exponential function [Ext:83] (see appendix) 

and O' E C. _
°°  3-n

®2(^) =  E r ; ^  (5-5)
n=0 1 Ig"

For q E (0,1), this converges provided |æ| < (1 — q)~^^^-

It is clear tha t if we define a coherent state of the algebra Aq by

|a> =  A(a;q)Eg(au^)|0) (5.6)

where A(a; q) is a normalisation constant given by

.4 (a ;î)-2  =  £ , ( |a p )  (5.7)

then |a) will be a (normalised) eigenstate of the annihilation operator

a|o;) =  ajo:) (5.8)

The overlap integral between two such states can be calculated

{P\a) = A ,(|^ |= ')-‘/ ’ S ,( ^ a )Ê ,( |a |2 ) - ‘/2 (5.9)
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which reduces to the conventional result for ^ =  1.

A ^-analogue of the Bargmann representation [Bar;61] of the Fock space can 

be provided. For every vector |0) =  Y2 <Pn\n), there corresponds an analytic 
function 0(z) in the region \z\^ < [oo]  ̂ =  (1 -  given by

(f>{z) =  (z|0) =  ^  0„2" (5.10)
n=0

Then the creation and annihilation operators have the following realisation 

(z|a^|0) =  z 0(z); {z\a\d>) -  qDz((>{z) (5.11)

where qDg is the g-analogue of the derivative operator, i.e.

The analogue of the indefinite integral, i.e. the inverse of the g-derivative, 
was discovered by Jackson [Jac:51, Ext:83|. It can be derived operationally 

by formally inverting the operator qD^

(,£>,)-* =  ( l - f , ) - H l - « ) 2  (5.13)

= (5.14)
Jk=0

where Tq is the g-dilation operator. The Jackson q-integral can therefore 

be defined as
f  0(z) dqZ = (1 -  g) 6 ^  (5.15)

*=0

which goes to the Riemann integral of 0(z) in the g =  1 limit.

Using this, it is possible to define a scalar product. First the measure dp{z) 

is given by

where for z =  |z|e*^, d^z  indicates a conventional integration over the 9-
variable and g-integration over \z\^. The scalar product is then given by

{i)\(f)) = ^  j  i)(z)4>(z)dti(z) . (5.17)
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The multiplication operator z and g-derivative operator qDz are hermitian 
conjugate under this scalar product, i.e.

J  dfi{z)jp{z) qDs(/}{z) ~  J  d(i{z) {zip{z)](l){z) (5.18)

There is also a g-analogue of the usual overcompleteness relation for conven

tional bosonic coherent states. A result of classical g-analysis is the analogue 

of Euler’s integral representation of the Gamma function. In terms of the 
Jackson g-exponential function and the integral, this can be stated as

L
z^dp{z)  = [n]\ (5.19)

0

If |o) is the coherent state defined in (5.6), then the overcompleteness rela
tion can be stated as

-  J  |a ) (a | dfi(a) =  I  (5.20)

5 .1 .2  T h e  M a c fa r la n e -B ie d e n h a r n  q -b o so n  co h ere n t s ta te

If we now consider the algebra Bq, the Macfarlane-Biedenharn g-deformed 

boson algebra, we find tha t we may form coherent states in a manner for
mally similar to that for the algebra A , [Bie:89]. Given the commutation 
relation

a ,a j  -  q îa ja ,  =  (5.21)

the eigenstate of the annihilation operator |/3) is given by

W) =  exp,(l/?|2)“  ̂expç(^aJ)lO) (5.22)

where expg(x) is the symmetric g-exponential function

=  Soli
= Z  (5-24)

n=0

The essential step in demonstrating an overcompleteness relation for these 

g-arialogue coherent states is the proof of an analogue of Euler’s integral
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formula for r(x). In the case of the g-bosons of the algebra Aq, a result 

from classical g-analysis gives the required formula. The properties of the 
function exp^(a;), however, are non-trivially different from the Jackson g- 
exponential Eq{x)  [NG:94]. Moreover, the definition of the g-integral and 

the measure used in the integration are not the same.

The integral which is the inverse of the symmetric g-derivative can be found 

by the same methods as the Jackson g-integral and is defined on the interval 

[0,a] by

r  f { x )d , x  = a E  (:"+:)/!») (5.25)
''0 jfc=0

and on the interval [0, oo] by

FOO
/  f (x)d,X = {g-^ f ^ - , ^ / ^ )  g  , ( 2 n + D /2 / ( , ( 2 n + l ) / 2 )  ( g .g g )

fc=-oo

W ith such formulae, it is possible to give an integral representation of the 

symmetric g-Gamma function, r^(rc)

f  expo(-x)a;"d,a: =  [n|! (5.27)
Jo

where —Ç is the largest zero of exp,(a;). It is known that (  >  0 and as g 1, 

expg(z) —» exp(x). and (  —> oo.

A resolution of the identity for the coherent states can therefore be given as

1 = j \P){P\d^ l , {P) '  (5.28)

where, for p =\p\e^^,

dfi(P) =  ^  expç(l/?p) expg(-|/)|^)dg|^|^ dB (5.29)

the integral over the \p\ variable being a g-intègration and the integral over 

the 9 variable being a conventional one.

62



Just as in the conventional case, a (g-analogüe) Bargmann representation 
of the Fock space is possible. Vectors |^ ) in the Fock space are mapped into 
entire functions if;{z) by

0(z) =  {z\i}) (5.30)

where |z) is the unnormalised coherent state

and the entire function ^ (z ) =  Z )^oC „z” satisfies

X ] W -K I^  < oo (5.33)
n=0

If a function 0(z) satisfies the convergence criterion (5.33), then it corre

sponds to a vector

10) = XI \/iW^I^) (5.34)
n=0

The scalar product of the function represented by this vector with another 
entire function 0(z) =  is given by

(0,0) = (010) = XI H-^nCn (5.35)
n=0

In terms of the usual integral representation, this scalar product is

(010) = y  0(z)0(z)exp,(-|z|^)d^z (5.36)

5 .1 ,3  C o h e ren t s ta te s  o f  th e  Q u a n tu m  H e ise n b e r g  U n iv e r sa l

E n v e lo p in g  A lg eb ra

We recall tha t Hq, the (one-mode) quantum group version of the 
Heisenberg-Weyl algebra [CGST:90, CGST:91, GS:93, BM;93], has de

formed commutation relations

|E _ .E + ] =  (5.37)

[iV,B±] = ±£± (5.38)
[E±,H] =  [yv,/rl =  0 (5.39)
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By a simple rescaling of the generators E± we may rewrite (5.37) as

where q =  exp(w).

Hq has a Hilbert space representation given by

E- \n )  -  J/ij2 v/^|t2 -  1) (5.41)

E+ln) =  [/ij2 y/n +  l |n  +  1) (5.42)

H\n)  =  h\n) (5.43)

iV|n) =  {k' 4- n)\n) (5.44)

where |n), n =  0 ,1 ,2 , . . .  indicates an orthonormal basis,

A-jo) = 0 (5.45)

and the analogue of number states are therefore

In) =  =  |0) (5.46)

The irreducible representations are labelled by the eigenvalues of the two 

Casimirs, and C = [^7] N  -  E + E - ,  (i.e and |/i] k' respectively). We 
consider here only the {k' =  G)-representati6n in which (n|iV|n) =  0.

We note tha t the commutator (5.40) is actually a quantum  group version of 
the conventional Heisenberg-Weyl commutator in which the Planck constant 

is explicitly stated, i.e. it corresponds in the undeformed case to

[E-,E+] = h I  (5.47)

However, H  is central and simply acts on the number states to give the 
eigenvalue h. Therefore, if we consider the situation only a t the universal 
enveloping algebra level (as opposed to the Hopf algebraic level), (5.40) can 

be written
[E-,E+] = h I  (5.48)
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which implies tha t the algebra Hq and H(4) are isomorphic and therefore 
that their coherent states have the same properties. Since this work is only
concerned with one-mode coherent states, we will not proceed further with
this algebra. However, we note that it has been shown tha t the quantum 

group Hq and its braided version [Maj:93, BM:93] are isomorphic and have 

been used to investigate the time evolution of a multiparticle Fock-space, 
covariant under the action of the braided group.

5.2 Coherent States o f the s u q { 2 )  and sw g(l,l) A l
gebras

5 .2 .1  T h e  stiq(2) co h ere n t s ta te

We recall tha t the quantised universal enveloping algebra, suq(2), is gener

ated by the elements {Jo, J±} subject to the relations

[Jo ,±J±] =  ± J ±  (5.49)

[J+,7-1 =  [2Jbl s  ~ ^ r  (5.50)
Q2 -  q 2

where for convenience, we now drop the subscript on the box-functions. 
These generators act on the [2j 4- l)-dimensional Hilbert space as

Jo|Â"i> =  (5.51)

J+\j, m)  =  yj l j  - m l U  + m  + I jji, m 4-1) (5.52)

J _ |j ,m )  =  - m 4 -  l]| y  4- m j \ j , m - 1 )  (5.53)

with
J . \ j , - j )  = 0 (5.54)

One candidate for the unnormalised g%g(2)-coherent state is therefore

14 =  expg{zJ+)\j , - j )  (5.55)
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The resolution of unity is given by

I  =12j + 1] J  \z){z\dti{z)

where

dfi{z) =
B I1 ,|j2 |;(2 j+ 2 )1  

and the function B  [a, 6; n j for a, 6 € C, n  G N, is given by

B  [a, 6; nj =  ^
&=o

n H !

Note tha t as g —► 1, B [a, 6; n] (a +  6)*.

(5.57)

(5.58)

(5.59)

(5.60)

The generators have a differential realisation in terms of the symmetric q~ 
derivative qSz and g-dilation operator T

J -  =  qDg , =  - q ^ q D z  + l2 j \ z fq-) .n  , Jo =  (5.61)

arid the basis vectors in the representation space are polynomials of the form

  J+rn
f m  —

[2j|! (5.62)
IJ -  U +  H -

5 .2 .2  T h e  s i i g ( l , l )  co h eren t s ta te

If we consider the ^-analogue of s u ( l , l ) ,  we see that a similar procedure 
can be used to generate its coherent states. The quantum group s itg (l,l)  
has generators {/^o, A'±} with commutation relations

[Ko, ±A'±] =  ± K ±  . (5.63)

(5.64)[K+J<-] =  t-2 A o l =  - V  - -
q2 — q 2

We consider only the discrete series representation and we use the standard 
basis |fc, +  m) on which the action of the generators takes the form

Ko\k,k + m) = {k + m)\k,k + m) (5.65)

K+\k,k -\-m) =  \/l2k +  m] [m 4-1] |^, & +  m H-1) (5.66)

K ^\k ,k  + m) =  y jp k  +  m -  1| [m | |A, Â: -f* m — 1) (5.67)
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Defining the unnormalised coherent state |() by

10 =  expg(^/C+)|fc,0) (5.68)

we obtain a resolution of the state in terms of the standard basis

where ^ = {j^|^ < The normalisation factor, A(^), for the state
is given by

The resolution of unity can be expressed as

[2 f c - l l^ J Ç ) (« M A '(0 = - f  (5.71)

where the measure is given by

d'^e

The states obey the eigenvalue equation

(%_ +  +  +«^7f+)IO = 0 (5.73)

5 .2 .3  A p p lic a tio n s  o f  suq{2) an d  5tig(l, 1) co h e r e n t s ta te s

The widespread use of conventional SU{2) and 517(1,1) coherent states has 

meant tha t their ^-analogues have been used increasingly to study deformed 
physical models. I t would be difficult to give an exhaustive list of all the 

applications of g-coherent states, but the following indicates the breadth of 
their use in different areas of g-physics.

Firstly, the influence of deformation on the phase transition from the vibra
tional to the rotational regime has been studied in the deformed versions 
of the Lipkin model [AB:93, AMMD:94), the s%(2) ® sia(2) Moszkowski 
model [MAP:92, BBM:93] and the Pairing model [AvM:93|. In addition
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to this, sug(2)-coherent states were used in the variational method to in

vestigate the g-deformed Thouless model of the strong-coupling limit of 
BCS-superconductivity [BAMP:94].

Another intriguing aspect of the study of g-deformed coherent states is their 
use in examining the geometric effects of deformation on the phase spaces 

of systems with deformed Heisenberg-Weyl, suq{2) or suq{l, 1) dynamical 

symmetries. Ellinas [Ell:93a] used the coherent states of the algebras men
tioned above to construct the propagator for the path-integral method and 
so calculate the symplectic 2-forms and hence the Kahler potentials and 
metrics of the spaces. He was able to show tha t one result of g-deformation 
was the introduction of an effective non-constant curvature.

As a further example of work involving quantum group coherent states, 
we mention their use in developing g-analogues of the squeezed states of 
quantum  optics. The interaction of such states with two-level atoms in a 

deformed version of the Jaynes-Cummings model has been investigated by 

several authors [CEK:90, Buz:91, CJ:92b]. The construction of g-deformed 
squeezed states will be a major part of this thesis and so such considerations 
will be deferred until chapter 9.

5.3 A ppendix: Properties o f the Jackson q—
E xponential

One of the most im portant classes of functions to emerge from the subject 
of g-deformations is the g-deformed exponential function. Given the variety 

of ways in which the g-derivative can be deformed, it is not surprising tha t 
there are various different deformations corresponding to their eigenfunc
tions. The best reference for the properties of the Jackson g-exponentials 
which are associated with the classical Jackson g-derivative (and hence with 
the Arik-Coon g-boson and the algebra Aq) is Exton [Ext:83], whereas the 

properties of the g-exponential associated with the symmetric g-derivative
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(and so with the algebra Bq) have been investigated by a number of authors 

including Gray and Nelson [GN:90], Nelson and Gartley [NG:94] and Moro
zov and Vinet[MV:94] . For our purposes, we will mainly use the Jackson 

g-exponentials and so this section will give a brief summary of the proper

ties needed in later chapters.

The g-exponential Eg(x) is defined to be the eigenfunction of the Jackson 
g-derivative operator qDx, i.e. it is the unique function satisfying

Eq(Xx) =  A qDx Eq{Xx) (5.74)

subject to the condition that

Eq{0) =  1 (5.75)

Explicitly, it is given by

E<,{x) =  £  (5 76)
n=0 I k"

where [ra], =  is the basic integer of classical g-analysis. If |g| < 1, then 
the ratio test shows tha t the series converges absolutely and uniformly with 
respect to x  if |a:| < [oo] =  (1 -  g)“  ̂ and diverges if |x| > (1 -  g)“ ^  If g > 1, 

then convergence is ensured for all finite values of x.

Since [n]^ —♦ n  as g -+ 1, the g-exponential function clearly goes over to the 
conventional exponential in this limit. However, the fact tha t Eq{x)  is its 

own g-derivative, i.e.

means tha t

^ 4 M  =  ( l - i ) -  (5.78)

Repeated application of this formula gives

■" ) — (  =  (1 -  i ) ( l  -  q x ) - ... (1 -  f - ^ z )  (5.79)
(A )
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from which a further q —* I limit can be obtained

lim -  ;  =  (1 -  a;)” (5.80)
(a )

As well as the series representation of Eq{x), there is an infinite product 
representation for |g| > 1

CO
Eq{x) = l l { l  + x i l - q - ^ ) q - ^ ]  (5.81)

fc=0

If the base of the deformed exponential is changed from q to a second q-  
exponential is obtained, denoted by E^-i  (x). This has a series representation

Eq- i (x )  =  51 fTj F (5.82)

■  5  6 ' " " " "  ™

This function is no longer an eigenfunction of the g-derivative operator gVx 

but instead satisfies

qDxEq-i(Xx) = XEg-i(qXx) (5.84)

For |g| < 1, there is an infinite product representation corresponding to 

(5.81)

=  +  (5.85)
k=0

The conventional exponential function has the useful property that its recip

rocal can be expressed in terms of the same function, i.e. exp(x) e x p (-x ) =  

1. For the g-exponential, this is not true. Nevertheless, it is fairly easy to 
show that

Eq( x) Eg- i ( —x)  =  1 (5.86)

where x is a complex number. This formula is a special case of a more 
general expression. If x and y are complex numbers, then

Eq(x)Eg- i ( y )  =  Eq(x;y)  (5.87)

N ,!
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where the function (x; is defined by

(x;y)^”  ̂ =  (.T +  y)(a; +  gy)(x-}-g^y)...(x  +  g”"V ) (5.89)

-  ( . . . )

The most useful property of the conventional exponential function is the 

additivity of exponents upon multiplication. This property does not have a 

close analogue for products where the arguments of the g-exponential are 
c-numbers. However, if we consider the product of two g-exponentials with 
noncommuting arguments (e.g. operators or noncommuting variables), the 
following im portant properties can be verified.

• The q-Addition Property [Schxi:53, Cig:79]

Eq{Y)EqiX) = Eq{X  +  Y )  if X Y  =  q Y X  (5.91)

e The Faddeev-Volkov Identity [FV:93\

Eq(X)Eg{Y) = Bg(X +  y  +  [X ,y]) if x y  =  g y x  '(5.92) 

=  Eg{Y)Eq([X,Y\)Eq(X)  (5.93)

One consequence of these relations is the following reordering formula

E , { Y ) E , ( X )  =  E , { X ) E ,  if X Y  =  q Y X  (5.94)

In the conventional g =  1 case, if two operators do not commute, the product 
of their exponentials is given by the exponential of a series of terms involv
ing nested commutators of the operators in question. The expansion of this 
is computed using the Baker-Campbell-Hausdorff theorem. Unfortunately 
no underlying B C if-theorem  for the g-exponential is known although ex

pansions to low orders have been computed. Indeed, it has been shown 
th a t even if the g-commutator vanishes at one particular order, say n, this 

does not guarantee tha t the g-commutators vanish at orders greater than n 

[KS:91b, KS:94b].
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Chapter 6

G eneralisations o f the q—boson algebra

6.1 T he Deform ed B oson Algebra

Given the similarities between the deformed boson algebras described in 

chapter 5, it is natural to try to abstract the im portant features and so gen
eralise the structure to include more complicated examples. This has been 
done independently by several authors [0KK;91, Das:91, BeD:91, Jan:93, 
MS:94a, MMP:94]. The deformed boson algebras considered in chapter 3 
are all generated by a deformed creation operator a'*", deformed annihilation 
operator a and a number operator N  which satisfies

[iV,a-J =  - a “ , [iV,a+) =  a+ (6 .1)

These operators act in a Fock space of number states which are formed by 

repeated application of the creation operator, the lowest weight state being 
destroyed by the annihilation operator.

The most general reordering relation between a~ and which is linear in 

the products a~a'^ and a'^a~ is

a"a+  -  f ( N )  a+ a"  =  y(iV) (6.2)

where f ( N )  and g(N)  are functions of N.  Since (6 .1) implies tha t the 

products a~a'^ and commute with iV, they can be written as

a+a-  =  $(W ), a~a+ =  + 1) (6.3)
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Equation (6.2) can be rewritten in a number of equivalent forms depending 
on where the N-dependence  is placed. For example, by making a simple 
substitution of the form

a-  a- '  =  ft"0 (iV), a+ 0 (iV) a+ =  a+' N  N '  = N  (6.4)

the reordering equation (6 .2 ) can be made equivalent to

a~ 'a+' -  F( N)  a+ 'a " ' =  I  (6.5)

while changing the function (f>{N), one is also able to bring it into the form

a+ "a"" =  G(iV) (6 .6 )

Equations (6.2), (6.5) and (6 .6 ) account for most generalisations of the q-  

boson algebra.

The creation and annihilation operators are usually assumed to be hermitian 
conjugate to each other (which imposes reality conditions on the functions 
of the hermitian number operator found in the reordering equations) but 
there have been schemes where this is not so, in which case they are linked 

by
=  c{N)  (6.7)

The generalisation which has the most extensive formulation (see [BD:93a,

BD:93b, BDL:93, BDK:93] and references therein) is tha t of Daskaloyannis
and Bonatsos and we will use their notation in what follows, with some 

slight modifications.

6.2 T he Daskaloyannis—B onatsos D eform ation  
Schem e

The D-B deformed oscillator algebra A d  generated by the operators 
{a,a^,AT} and a positive analytic structure function $ (x) satisfying the re

lations

[N, a] =  - a ,  [N, a^) =  (6 .8 )
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and

a^a =  $ (N ), aa^ =  -f 1) (6.9)

If $(0) =  0 and $(??%) > 0 for all m G N, it is possible to use 0  to define 
deformed analogues, [??%], of the positive integers by

[m] =  $(m ) (6.10)

The commutation relation for a and are written in terms of the structure 
function

[a,a '] =  [iV +  l]-[JV ] (6.11)

In addition to the structure function it is useful to define the deformation 
function, / ,  given by

/(.x-) =  ^ ^ i ^  (6 .12)

The function /  measures the degree of deformation of the oscillator system,' 
e.g. when /  =  1 , then $(x) =  x, and the oscillator reduces to the conven

tional bosonic case.

We can build up a Fock space basis of eigenstates of the number operator in
the usual way by repeated application of the creation operator on the. lowest
weight vacuum state, |0),

in) =  ^ | 0 )  (6.13)
y W !

where we define the generalised factorial to be

H - •= Y i W  (6.14)
k=i

[Oj! =  1 (6.15)

Since [n + 1| =  1 +  /(n)(n], we see that

(n) =  l  +  / ( n - l ) + / ( n - l ) / ( n - 2 )  +  . . .  +  / ( n - l ) !  (6.16)

■
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In terms of the deformation function, the reordering relation (6.11) reads

-  f{N)a^a = I  (6.18)

The action of the generators of the algebra A d on the Fock space basis is 

iV|n) =  n  |n)

a|n) =  1  ̂ “  1) (6.19)
=  yj[n + 1] |n +  l ) .

where a |0) — 0 and (m|n) =  Smn-

The deformation scheme of Daskaloyannis and Bonatsos manages to ac

commodate, in an elegant framework, the previous attem pts to unify the 
deformed boson algebras such as those of Beckers and Debergh [BeD:91], 

Odaka, Kishi and Kamefuchi [0KK:91], Brodimas et al[BJ:92). It also al
lows the consideration of other deformations of the commutation relations 

such as the trilinear relations of the parafermions and parabosons. For 
example, the unification scheme of Beckers and Debergh has as its main 

reordering relation

aa^ +  g(q) a^a =  |[jV4-1]| +  y(g)|[iV]| (6.20)

which is equivalent to the formalism given above with the structure function

$(x) =  |[x)| . (6.21)

while the Odaka-Kishi-Kamefuchi scheme uses the relations

[a, N] = a , [Â , a^] =  (6 .22 )

=  a^a 4- aaa^ =  G(N)  (6.23)

where
iV|7i) =  (n +  no)|n) (6.24)

It can be shown [BD:93b| that

$(%) =  Ê  (6.25)
m=0
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where Gn ~  G{n 4- ?%o).

If we have two sets of boson operators {ai, yV} and {ag, described
by structure functions and $g (and so with spectra [nJi and (njg), one 
can define a transformation between them

V |iv j, ’ "  V

In particular, if the second set is tha t of the conventional bose oscillator 

for which [n] =  n,  we see that (6.26) gives an expression for the deformed 
oscillator in terms of ordinary Heisenberg-Weyl bosons, {6, 6 }̂

“  =  5 y ^ .  =  (6.27)

The above equation has the advantage that the a and a^ are hermitian con
jugates but there are also other non-unitary realisations of the conventional 

boson algebra. For example, T ' and T'^ defined by

T' = a ,  T+ =  j ^ a t  (6.28)

satisfy [T^T+I =  / .  Since a has a realisation as the g-derivative, in which 
representation the Number operator N  is given by the 1st order Euler op

erator ( x ^ ) ,  equation (6.28) gives a realisation of the operator which is 

canonically conjugate to the g-derivative. This is the operator Xx given by

X x  =  X  (6.29)

where 7- ^  is to be understood operationally as the operator with action

x" = ^ x "  (6.30)
W

Then
U D x , X x \ = I  (6.31)

This mapping (6.27) of deformed bose-operators into conventional bose- 

operators means tha t we use such boson techniques as the Jordan-Schwinger
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mapping and its non-compact variants to realise representations of the clas

sical Lie algebras in terms of arbitrarily deformed bosons, e.g. a  represen
tation of the generators of 1) is given by

Ao =  +  (6.32)

K -  =  (A'+)f (6.34)

The mapping (6.26) also generalises the transformation (3.54) between the 

algebras Àq and Bq. For the first algebra,

=  W =  ~ T Y  (6 35)

whereas for the second

$ B ,(n ) =  H  =  \ / 2 z I - i / 2  (8 3 6 )
qn/2 _  q-n/2

Hence the ratio ____

^  =  5' ' ' ' - " ' “ . (6.37)

which is essentially the same function that appears in (3.54).

6.3 T he Deform ed D erivative Operator

If we consider a positive analytic structure function $(x) =  [x], we can 

define an operator Dx such that

d 1 
^ d x

(6.38)

This acts on monomials, x", as a generalised derivative operator,

D x x ^  = [n]x^-^ (6.39)

Clearly, in the limit /(x )  —> 1, 0 (x ) —> x, we have Dx —̂
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This procedure considers the form of the derivative as arising from that of 
the structure function. We can also go in the reverse direction and consider 
the properties of the derivative as determining the structure function. Given 
a deformed derivative D ;, we can ask that it obey a deformed Leibniz rule 
such as

D z{f(z)C (z)}  =  {DzFiz)}QG{z)  + PF{z){DzG{z)}  (6.40)

where Q  and P  are operators with the property

Q{xy) = Q{x) Q{y) (6.41)

The form such operators take will also determine the properties of the deriva

tive which in turn will determine the properties of the structure function. 
Given the commutivity of the functions, a second equation is implied:

Dz{F{z)G{z)} = QF{z){DzG(z)}  +  {DzF{z)}PG(z)  (6.42)

If we assume tha t DzZ = I then we can write the operational form of the 
generalised derivative as

For example, if one of the operators, P  say, is the identity operator and the 
other takes the form of a displacement operator

Q =  exp (6.44)

so th a t .
Q{z) = z + h (6.45)

then the deformed derivative is the finite difference operator, A

A / ( . )  =  +  (6.46)

while if Q takes the form of the dilation operator we obtain the Jackson 

g-defivative. Alternatively, if instead of P  being the identity in the previ
ous two examples, it is given by Q~^, we then obtain the symmetric finite
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difference operator and symmetric g-derivative respectively. It is interesting 

that these generalisations of the derivative, based as they are on the action 
of two fundamental arithmetic operations of addition and multiplication, 
have led to the most widespread extensions of deformed calculus, namely 

finite difference methods in the first case and the g-calculus in the second. 
More general affine transformations have been tried [Kèh:93| in the context 

of a more generally deformed Leibniz rule and are linked to the Stochastic 
calculus [DiM:93].

If we are to use the deformed derivative to give a differential realisation of 
the annihilation operator, the fundamental commutation relation for the de
formed boson should not be changed by hermitian conjugation. This implies 

tha t the operator R  = Q -  P  should be some operator-valued function of 
the Euler operator, In this case, ïî R  = ,

dz

Clearly

so

=  - A.
dz

_  1 E nL o’’» I,

which means th a t the deformed number function is given by

(fc] =

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)
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6.4 G eneralised Deform ed Coherent States

The eigenfunction of the generalised derivative operator is given by

=  (6.53)

Applying the ratio test to the series, we see that it converges provided

|x| < [n] as n  -+ 00 (6.54)

Using (6.17), we see that, in terms of the deformation function, if / ( n )  > 1 
as n  —» 0 0 , then E(x)  converges for all real values of x. If / (n )  <  1 as
n  oo, then convergence is ensured only for a range of x  dependent on
the functional nature of / .  The function B(x)  is a generalisation of the 
exponential function for deformed structure/num ber functions We will 
therefore denote it as the /^-exponential

As in the g-deformed case, we can show that the action of the D~ 

exponentiated deformed creation operator on the vacuum state is to produce 
an eigenstate of the deformed annihilation operator.

a(a*)*+ '|0) =  [AT +  l](at)*"*|0) (6.55)

=  (o*)'=-‘ [iV +  fc]|0) (6.56)

=  [*;](ot)‘ - ‘ |0) (6.57)

SO
o£(Aa*)|0) =  AÊ(Aat)lO) (6.58)

We can therefore define generalised coherent states, |A), as normalised eigen- 
states of the annihilation operator

|A) =  {Ê(lA |)}-îB(A at)|0) (6.59)

One can calculate the overlap between two such states

(n|A) =  (0 |£;(|np)5£(Pa)Ê(|A p)ï£;(A ot)|0) (6.60)

v/B(|n|2)£;(|Ar^)

which clearly goes over to the conventional formula in the undeformed limit.
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6.5 N oise R eduction Properties 6 f the D eform ed  
Coherent States

The deformation of the mathematical structure of the boson algebra should 
manifest itself in terms of a change in the physical properties of the quanta 

tha t such a deformed bose field produces. The most obvious boson field to 
examine is tha t of the photon. It would therefore be useful to examine the 
quantum optical properties of these generalised coherent states, in particu
lar, their quantum noise properties.

Given the deformed creation and annihilation operators, there is an obvious 
difficulty in choosing the correct definition of the field components. In the 

undeformed limit, the X  and P  variables are the real and imaginary parts 
of the canonical boson operators and, most importantly, they obey the same 
commutation relations. Transformation from boson operators to field oper
ators is therefore just a linear change of basis. Deformation of the algebra 

changes this simple arrangement and a choice has to be made concerning 
which of the relevant properties to keep. In what follows, we have decided 
to retain the hermiticity condition on X  and P.  While this means tha t the 
set of field operators is closed under hermitian conjugation, it also has the 

unfortunate effect that they no longer obey the same commutation relations 
as the g-boson creation and annihilation operators.

We form the field components X  and P

X  =  and P  — — û^) (6.62)

and define the variances (AX)^ and ( A f  )  ̂ in the usual way

(AX)2 =  (%2) -  { X Ÿ  and (AP)2 =  (p2) _  (p)2 (6.63)

If we consider the Heisenberg Uncertainty Product, A X A P ,  we find tha t in 

the vacuum state

(AA-)o(AP)o =  ^ (6.64)
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Moreover, just as in the conventional case, the vacuum uncertainty product 
is a lower bound for all number states if $  is an increasing function.

However, unlike the conventional case, it is not a global lower bound.

Consider the quadrature values in eigenstates, |A), of the generalised anni
hilation operator. Then

{^ )x  = (6 65)

and

(X^)a =  (A| +  a^a +  aa^) |A) (6.66)

=  ^{(^ -I- A)  ̂+  1 -  (6.67)

where

^ / ,A  =  l - ( / ( W  +  l ) > A .  ( 6 . 6 8 )

The function { f { N  + l))x can be evaluated by writing |A) in a number state 

basis
oo Tm \n

</OV +  l)>A =  { £ ( |A |2 ) } - i ^ ( m | - ^ / ( i V  +  l ) - ^ | n )  (6.69)
m,n ^ [ m ] !  ^ [ n ] !

=

If for all n  G N, 0 < / ( n )  < 1, then £/,a|A|^ G (0,1) for A within the radius

of convergence of the generalized exponential. Hence

(A A f)i=  i{ l- j ; ,A |A |2 } . (6.71)

Evaluating the variance for the other component, we find tha t {A P ) \  =  
(AX)2. The covariance of X  and P  is zero, so

(A X )a (A P )a =  i{ l - £ / ,A |A H  < \ -  (6.72)
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However,

^KIA'.PDaI =  ^|i(A|ao» -  ata|A)| (6.73)

=  ^|(A|1 + /(iV)a^a -  a^a|A)| (6.74)

=  i | l - |A |2  + A(Al/(iV +  l)|A)A| (6.75)

= (6.76)

SO

(AX)A(AP)A = i|([Af,P])A| (6.77)

Thus we see that these generalised q-coherent states satisfy a restricted 
form of the Heisenberg Minimum Uncertainty Property of conventional co

herent states. Additionally we see that there is a general noise reduction 
in both quadratures compared to their vacuum value. In conventional co
herent states there is no noise reduction relative to the vacuum value. In 

conventional squeezed states, there is noise reduction in only one compo
nent. We note that the results given above have recently been reformulated 
by Santilli [San:94j in terms of his theory of Lie-admissible structures. In 
terms of this formalism, the deformed boson relation (6.2) is a special case 

of a non-canonical boson system with non-unitary time-evolution. Similar 
work on the ^-product formulation [BFFLS:78J of deformed oscillators has 
also been done by Ellinas [Ell:93b].

6.5.1 E xam ples

This formalism may be applied to all types of deformed oscillator systems 

modelled by the algebra A d  to find the uncertainty product. As an exam
ple, we will compute the quantum noise product for the deformed bosons 

belonging to the algebras Aq  and Bq.

1. T he A q - t y p e  oscillator
The Jackson g-exponential Eq{x)  converges absolutely for any x if g >  1 so 
the coherent state is normalisable. Under these circumstances, (and writing
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eg =  £"/,a) the function 1 -cg|A |2 is greater than one and so the uncertainty 

is greater than in the conventional case. For q G (0,1), the g-exponential 
Eg(|A|2) conveges provided

f,|A|2 =  ( l - « ) | A p < l  (6.78)

Given this condition on A, the function 1 -  Sg|A|2 clearly lies in the range 
(0,1) and so we have

{AX) l  = (AP) l  =  ( A X h ( A P h  =  i { l  -£ ,|A p }  < |  (6.79)

Hence for this type of g-boson, we do obtain noise reduction in both field 
components with respect to the vacuum value.

It is notable that one multimode extension of the Aq algebra, i.e. the 
5C/g(iV)-covariant g-boson system [Kem:93] has recently considered in a* 

similar context. Using the P -m atrix  formalism, Kempf (Kem:94a, Kem:94b] 
has shown tha t if g >  1, the Bargmann-Fock representation allows the devel
opment of a consistent field theory that is not only covariant under quantum 
group symmetry but allows the régularisation of some of the ultraviolet in

finities that plague conventional theories. There is, however, a price that 
has to be paid for such an improvement. Because of the non-trivial braid
ing between the elements of the SC/g(iV)-spinor, not only do the conjugate 

field operators not commute, neither do the components of the same field 
operator in different directions.

2. T h e  B g -ty p e  o sc illa to r

We consider now the Macfarlane-Biedenharn g-oscillator with algebra Bq. 
The deformed exponential expg(x) is a monotonicaliy increasing function for 
X > 0 and converges for all real values of g and x.

The deformation function for this oscillator is
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and /(O) =  112| > 1 for all positive q. If we consider the deformation 
functional at real values of g, we see that the ratio of successive terms is 
always greater than unity. Therefore f { n +  1) >  f {n )  > 1. Consequently, 
we have tha t for any normalised state l-^),

{-il;\f{N + l ) - I \ i , ) > 0  (6.81)

In particular, for the coherent state |A),

( A |/ ( iV - f l ) - / |A )  > 0  (6.82)

and so £f^\ < 0, i.e. the uncertainty is greater than the conventional case. 
This is in agreement with (CGN:92j.

6.6 A n O vercom pleteness R elation  for the Co
herent States

In the classical study of undeformed coherent states outlined in chapter 3, 
the resolution of unity played a central role and the formation of an overcom
pleteness relation was a major advance in the study of g-deformed coherent 
states. Another interesting feature of these states is that they allow a per- 
turbative expansion in terms of the coherent states of the corresponding 
iindeformed Lie group. In chapter 5, we briefly described some work by 
Ellinas [Ell:93a] on the geometric meaning of g-deformation which showed 

tha t for the pases of the deformed boson algebra Bq, as well as the quantised 

universal enveloping algebras suq(2) and sitg(l, 1) (where the resolutions of 
unity are well-known), g-deformation induces curvature in the phase-space. 

The three key ingredients of this procedure were the resolution of unity of 
the coherent states, the equivalence between the action of the relevant D -  
exponentiated raising operator on the lowest weight state and the (conven
tional) exponential action of some more complicated operator on the same 
lowest weight state, and the perturbative expansion of the structure function 
about its undeformed value. Given the generality of the DB-deformation 

scheme, it might be argued that it would be difficult to construct an ana

logue of the simple g-overcompleteness relation for the algebra A q  since it
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would depend on the existence of an g-integration procedure. However, an 
alternative method does exist and has been detailed by Fan [Fan:94]. He was 

able to construct a (non-standard) resolution of unity for the Jlg-type alge
bra using non-hermitian conjugate states and the technique of integration 
within an ordered product (IWOP) [FK:88]. This overcompleteness relation 
does not actually depend on the specific form of the g-deformation and so 
can be extended to a non-standard resolution for the deformed oscillator 

algebra

6.6.1 The Resolution of Unity.

The transformation between deformed bosons with the same generic struc
ture but different structure functions means that it is possible to write the 

coherent states in a number of different forms. As an example, we consider 

the operators

=  (8.83)

which were briefly described in connection with the deformed algebra real
isations of the Heisenberg-Weyl Lie algebra (6.28). We see that they have 
quite complicated commutation relations with each other

but much simpler commutation relations with the original boson operators.

[a,T+l =  /  =  [T -,a t]  (6.85)

The action of the T * on the vacuum vectors is straightforward

T - |0 )  =  o |0 ) = 0  (6.86)

(0|T+ =  (0|at =  0 (6.87)

Moreover we have the result that

T+a =  a^T" =  iV (6.88)
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If we calculate the 6 -th  power of

(888)

=  ■ (8.90,

we obtain

(T+)‘ |0) =  |jT (a^)‘ |0) (6.91)

We may therefore rewrite the completeness relation for the Fock space as
oo

f  =  (6.92)
n=0  
oo 1

=  E  m T(“ ') ’‘I“>(8|“ ’‘ (6 93)
n=0 1 1 '

=  E  A (T + )''|0 )(0 |o '' (6.94)
n=0

Following Fan et al, we may use the fact that a and T"^ obey the conventional 
Heisenberg-Weyl Lie algebra relations to define a Normal ordering in which 
the T'^- operators are placed to the left of the annihilation operators. If P

denotes the vacuum projector |0)(0| and the normal form of P  is denoted
by :P :, we can write (6.94) as

oo
I  =  ^ l ( T + ) " : P : a "  (6.95)

=  (6.96)
n=0 " •

=  :exp(T+o)P: (6.97)

which implies that
|0)(0| =  :P :  =  :exp(—T'^a): (6.98)

Another consequence of (6.91) is that the D -exponentiated action of a^ on 
the vacuum is the same as the conventionally exponentiated action of T"*" 
on the vacuum, i.e.

B(Aa*)|0) =  exp(AT+)|0) =  |A) (6.99)
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where |A) indicates the unnormalised coherent state. If we also define a dual 
(but not hermitian conjugate) set of states (A|| by

(A|| =  (Oj exp(Aa) (6.100)

then because T'^ and a realise the Heisenberg-Weyl algebra, we have the 
overcompleteness relation

j \ X ) ( \ W { , \ )  = I- (6.101)

where the integral is the standard integral and

d^(A) =  exp(-|A p) (6.102)

There is also a second resolution in terms of the hermition conjugate states 
of those appearing in (6.101).

Given these resolutions of unity, it may be possible to use Ellinas’ 
method [Ell:93b) to investigate the effects of general deformation. Work 
of this type is in progress. It has also recently been brought to our attention 

[DY:92] tha t if one postulates a measure dii{z,z) with the property tha t

j  d l i ( z , z ) ^ z " ' =  S n ,m H  (6.103)

where the symbol Jp indicates the antiderivative operation, then the over
completeness relation between coherent states and their hermitian conjugate 
follows. This may also provide a way of using the deformed coherent states 
in the path-integral method.

6.7 T he Physical Status o f th e Deform ed B osons

One point which should be considered when dealing with these generalised 
deformed bosons is their physical status. There are several approaches which 
can be taken.
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Firstly, one can consider the primary objects under discussion to be the 

usual bosons of conventional quantum field theory. The deformed bosons, 
formed by the nonlinear mapping (6.27), can be considered instrumentally, 
simply as calculâtional devices which, under certain circumstances, will al

low a better or more concise formulation of the problem. They show tha t 
the mathematical structure of different problems can be unified and so tech
niques used to solve one can be used to investigate another. An example of 

this approach is the study of two-dimensional quantum superintegrable sys

tems by Bonatsos et al [BDK:93]. This uses the structure function formalism 
to give a unified description of a number of different oscillator systems.

Secondly, the deformed bosons can be considered as phenomenological de
vices, i.e. in certain situations, due to processes not directly amenable to 
investigation, conventional bosons behave like deformed bosons. One exam
ple of this is the use of quantum algebras to describe transitions in atomic 

nuclei where the use of the g-param eter allows a better fit to be made from 
the phenomenological theory to the experimental data  curve. The physical 

effects which might cause the deformed bosons to describe the data better 
than the conventional ones may include things like thermodynamic averag
ing over some set of states or some set of unknown variables. The former has 
been proposed by Park et al, using an Inverse Schwinger Method in connec
tion with g-deformed bosons as a model of dressed photons [Pai:9i, ChP:94]. 
It is interesting in this context that Katriel and Solomon [KS:94a] have re
cently shown that, for low intensities at least, the photon number count of 
the conventional laser is better described by the coherent state of an Jlg-type 
g-boson which can give non-Poissonian statistics, rather than the coherent 

state of an ordinary Heisenberg-Weyl boson which necessarily gives Pois- 

sonian statistics. Another example is the use of deformed bosons in lattice 
approximations of quantum field theory. [DiM:92, DMT:93]

A third possibility is that deformed bosons such as the g-bosons really do 
describe the physical field under investigation. Thus, the electromagnetic
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field should not really be considered as a bose-field but a  deformed bose- 
field. For example, if we consider the multimode g-boson [Kem:93), it is this 

rather than the conventional object that is covariant under quantum group 

transformations. If quantum group space-time symmetries really are extant 
in nature, it would be surprising if the field theoretic modifications required 
were not reflected in a change in the physical structure of the field exci
tations. g-Bosons would therefore be the quanta associated with physical 
fields. The new physical phenomena which would result from using quan

tum  group theoretical constructions means tha t it should be possible to use 

experiments to put a range on the deformation parameters and so on the 

type of symmetries allowed by the theory. The prediction of deviations from 
conventional physical theory have been made for fields symmetric under the 
«-Poincaré group [Bac:93a, Bac:93b] or the g-Minkowski Space [Mey:94]. 
So far however, no experiments have been carried out to investigate these 
matters.
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C hapter 7

The q—Analogue o f the U nitary  
D isplacem ent Operator

7.1 T he Com plex Q uantum  P lane

The coherent states studied so far preserve the classical commutative man
ifold structure of their label space. For example, the g-boson coherent 
states are labelled by eleriients of the complex plane and so the states in 
the Bargmann-Fock realisation are represented by analytic functions of 
commuting variables. There are however other generalisations of coher

ent states, notably the fermionic coherent states associated with Grass- 
mann variables [OK:78], for which this is not the case. Grassmann-valued 

functions do not commute because of the anticommutivity of the variables 
themselves. Such anticommutivity induces nilpotence in the variables which 

makes the functions particularly easy to deal with since, at worst, they 
are linear. However in searching for a quantum generalisation of these 

states for the g-oscillator this will not be the case since q is not gener
ally a power of unity. Indeed, if we restrict ourselves to the algebra A, 

the quantum  plane variables or g-numbers, which in some sense, can be 
thought of as extensions of the Grassmann variables, form functions which 

have power series expansions of arbitrary length. This makes the manipu
lation of such functions much more difficult. A large part of the formalism 

needed for solving this problem was devised by Rembielinski and his co
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workers [BDR:92, BR;92, KR:93). In order to construct a Bargmann-Fock 
representation of the coherent states, a geometric approach was adopted, 
i.e. the emphasis was on setting up a differential calculus on the quantum 
plane. In what follows, we give a brief exposition of the work together with a 

description of the coherent states that were constructed. We then show that 

this formalism may be extended to allow the construction of a g-number 
valued operator which, in the undeformed limit, is the analogue of the uni

tary displacement operator. This gives rise to a new set of coherent states. 

The use of quantum plane variables is not restricted to the work mentioned 
above. We note that the paper [GF:91] also uses noncommutative variables 
to develop a g-analogue of the algebra of Weyl-Symmetrised Polynomials. 
In various limits, this may be considered as a deformation of such structures 
as the Moyal Bracket algebra, the Poisson bracket algebra or a Vertex Op

erator algebra. The use of C^-valued functions also considerably simplifies 
the normal ordering problem for g-bosons. In conventional quantum optics 
(e.g. chapter 3 of [Lou:73]), the calculation of the action of functions of 

creation and annihilation operators is facilitated by considering a map from 
the Boson algebra, Ti, to the algebra of complex numbers, C. It has been 
shown by Solomon [Sol:93] that a similar map from Tiq to Cg gives rise to a 
definition of normal order for Aq-type g-bosons resulting in g-analogues of 

the ordered product formulas of [Lou:73].

7.2 T he T w o-D im ensional Q uantum  Plane and  
its D ifferential Calculi.

We recall from chapter 2 tha t the two-dimensional Manin or Quantum Plane 

is the complex algebra A, ° generated by two elements x  and y  with the 

relation
xy  = q yx  (7.1)

Noncommutative elements such as x  and y will be termed q-numbers. This 
algebra is a comodule for the action of the quantum  matrix group GLq{ 2)  

which is the same as saying that the coaction Af, from Àq^  to GLq(2)® Aq °
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given by equation (2.52) preserves the defining relations. There is also an 
associated Grassmann plane Aq  ̂ generated by nilpotent elements r) and ^ 
such that

= 0 (7.2)

As previously mentioned, the Manin plane is invariant under a larger sym

metry quantum group than GLq(2), namely the multiparameter quantum 

general linear group GLq,&(2). However, this extra parameter does not man
ifest itself in the purely algebraic structure of Aq

The algebra Aq  ̂ has a bialgebra structure given by the relations [CFFS:89]

^ { x )  = x ® x  , A(î/) =  3/® 1 +  X ® 3/ (7.3)

e(.t) =  1 , €{y) =  0 (7.4)

The problem of developing a differential calculus on the Manin Plane has 
has been addressed by a number of authors using techniques derived from
the study of differential calculi on quantum groups. Such calculi are explicit
realisations of noncommutative geometry. In what follows, we will use the 

procedures developed by Rembielinski et al.

The basic object of study in a diflferential calculus is the operator d. This is 
a linear, nilpotent differential operator obeying the graded Leibniz rule. It 
allows us to define right partial derivatives di =  dj.i by

d f { x \ x ^ )  =  da;  ̂ di f (x^ ,x^ )  + dx^  82 / (x^,x^)  (7.5)

where we have set x  = x^, y = x^. Then we have

d i X ^ ^ S i  (7.6)

Higher order partial derivatives are defined in the obvious way by iteration

{dirf{x\x^) =  di(dir-^f{x\x^) (7.7)

where f {x^ ,x^)  is analytic in x^ and x^.
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If we write (æi,X2)^ as the vector x, the commutation relations for the 
generators can be written as

. x ® x  = B x 0 x  (7.8)

Here B  is an element of End{C^®C^).  Similarly, the commutation relations 

between the differentials da;‘ and the elements of Àq^  can be written as

X (R) dx = C dx (% X (7.9)

where ^  =  (da;\da;^)^ and C  € End{C ® C).

The differential algebra that is generated by these relations is an associative 

graded algebra F =  @ © Â

=  .4jl° A  ̂ A  ̂ (7.10)

where A \ A  ̂ are modules over A° and x^,x^  G A°, d z i ,d z 2 G A \  and. 

da;idrc2 G A  ̂ (we assume d;ci A d.Ti and dxi A.drci are zero).

The consistency of the calculus together with associativity requirements 
imply the Wess-Zumino conditions [WZ:90] on the matrices B  and C.

^12^23^12 = ^23^12^23 (7.11)

{ B n - I ) { C i 2 + I )  =  0 (7.12)

l̂2C'23C'i2 =  C23C12B23 (7.13)

C'i2C'23G'i2 = C'23Ci2C'23 (7.14)

where the usual quantum group notation applies, i.e. B{j acts as B in the 

i - th  and j - t h  space of End{C^ ®C^) and as the identity in the remain

ing space.

For Aq the most general form of the matrix B  is

B  =

(  1 0 0 0 )

0 1 -  s~^ qs~^ 0

0 0 0

I  0 0 0 1 )
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while the matrix C  has one of two generic forms

0 0 \ 
q  0

Cl =

/  p 0 

0 0 
0 q 

VO 0

- ^ 0  0 
O r /

where p  and r  are free parameters, or

Cii =

0 0 0 \ 
Q 0 
0 0 

O s /

(7.16)

(7.17)

/  s  

0 s 
0 sq~^

V 0 0

There is also a third form of the matrix but this leads to a calculus that is 
isomorphic to tha t of C u

lt  was found by Brzezinski et al[BDR:92] tha t these matrices gave rise to 
two families of differential calculi. These have commutation relations 

F am ily  I

where

x y - q y x  
x d x  = p d x x  

y d x  =  q~^dxy  

dx A dy + qdy A dx =  0 
dxX = I +  p x d x  

dyX = qxdy

d x d y  =  q d y d x

x d y  =  q d y  X 

y d y  =  r d y y

dyV = l - ^ p y d y

dxy  = q~^ydx

d . n ^ , y )  =
X p  — 1

y  r  — 1

(7.18)

(7.19)

(7.20)
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Family II

x y ^ q y  x

X cix =  s d.T X x d y  = {s — l ) d y x  + qdy X
y do; =  sq~^dx y y d y  = s d y y

da; A dy  +  qs~ ̂  dp A dre =  0 (7.21)

dxX = 1 + s x d x  + { s -  \ ) y d y  dyy = \  + s yd y

dyX = q X dy dxV = sq~^y dx

d x d y  =  q s ~ ^ d y d x

where

(7.22)

9 y f ( . , y )  =  (7.23)

The second of these families is essentially the same as tha t found by Wess 
and Zumino. It is invariant under the coaction of GLq s(2 ). The first family 

is not invariant under the full GLg^s(^) coaction. Ifp  =  r  =  1, the differential 
structure coincides with the s =  1 subset of Family II, and so is invariant 
with respect to GLq,i(2). If p ^  r , then the differential structure is only
invariant under the diagonal sub-quantum -group of GLq(2). This means
that the calculus is only scale m vom nt [BR-.92].

7.2.1 The Complex Differential Structure of the Quantum  
Plane

There exists several possibilities for introducing a complex structure onto 
Aq°. One method would be to make all parameters real and put z = x  + iy ,  
z = x  — iy .  However, in this case, the quantum analogues of the Cauchy- 

Riemann equations have solutions tha t are not (quantum) holomorphic, i.e. 
cannot be represented as a formal power series in z only.

Another possibility, for g € R, is to set the antilinear *-involution to be

x * = y  (7.24)
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In this case, the graded differential algebra T becomes a complex *-algebra, 
defined by the calculus of Family I, with p G R and rp  =  1. If we now 

denote the algebra Aq ° by Cq with generators x  = z and y = z*, then the 
structure of F is given by

zz* ~  q z*z

z dz =  p dz z z d z * = g d z * z  dz A dz* = -gdz*  A dz 

dzZ = \ + p zdz  dzZ* =  q~^z*dz dzdz* — qdz'dz  (7.25)
dzdz =  p“ Mz dz c>:dz* =  q~^dz* dz

(z)* = z* (dz)' =  dz* (dz)* = -p-^dz^

The imposition of such a differential ^-structure has the effect of destroying 
the coalgebra structure of the quantum plane. Nevertheless, the set of q-  

holomorphic functions form an algebra and they can be written as a formal 
power series in one variable. Moreover, it is possible to define integration 
procedures for such functions and prove g-analogues of Cauchy’s and Stokes’ 

theorems [BR:92J.

7.3 T he q—Boson Algebra and th e Com plex  
Q uantum  Plane

In this section we review the Cq~deformed Hilbert space formalism of Kowal

ski and Rembielinski [KR:93). In their original presentation, these authors 
considered a two-param eter deformation of the Hilbert space of the conven
tional bosonic oscillator. This was done by associating the algebra Cq with 
a deformed boson algebra with relation aa^ — p~^a^a =  / ,  i.e. the algebra 

A p-i. In addition, they considered a one parameter limit in which'p =  g as 
well as specific examples such as p =  g =  ±1. For the purposes of chapter 7, 
we only need the one-param eter case but it will be necessary to reformulate 

their results so tha t the algebra Cq is associated with the g-boson algebra 
Aq. This is obtained from the p =  g limit of the original formalism by the 
transformation z «-> z* in the appropriate definitions of the Cq-valued func

tions.
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We recall that the oscillator with algebra Aq acts on a Hilbert space H  which 

has a basis { |n )} ^o  of eigenstates of the Number operator N  where

(7.26)

This means tha t when we study the generators of the algebra in a Fock 
space representation, we need only consider the creation and annihilation 

operators since, in principle, the formula above will allow us to calculate any 
action on the Number operator.

If we consider the action of elements of the algebra Aq on the Hilbert 
space module H,  we see that it can be thought of in terms of a map 

Aq ® H  — *■ C ® H.  The canonical isomorphism C ®  H  =  H , then al
lows us to interpret the result as an element of the original Hilbert space. 
We note tha t the trivial braiding relations between elements of H  and the 
algebra C allow us to consider the Hilbert space as either a left or right 
C-module. In this circumstance, a Hilbert space eigenvalue equation can be 
thought of"as expressing a coaction from H  to C ® H  ov H  ® C.

We can generalise the concept of H  as a left or right C-module to the 
Hilbert space Hq which is a left and right Cq-module. For this construction, 
we slightly enlarge the algebra previously denoted Cq adding an identity 
element, 7 as a trivial central extension. (This is needed to express the 

unitary operation of chapter 4 as a coaction.) Thus Cq is now the quotient 
of the complex algebra freely generated by z  and z* modulo the two sided 

ideal Bq, determined by the relations

zz* = qz*z,  z /  =  / z  =  2 , z*I = Iz*  = z* (7.27)

(We note that this algebra, which is now technically the Quantum Inhomo- 

geneous Complex Plane, still has a quantum group coaction. The relevant 
quantum  group is a deformation of the group of Euclidean motions associ

ated with the complex plane, namely /SOq(2) [Rem:92|. However, this does 
not alter the basic analysis given above.)
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Hq is therefore the free Cq-module generated by |n)

l/> =  E  A ( z \z ) |n )  (7.28)
n

where

{z*)^Z^ (7.29)
k,l

and Cnki E C We can similarly define a right Cq-module structure. We
demand a trivial braiding between elements of Cq and Hq and tha t the left 
and right module structures be consistent i.e.

I/) = H  M f n { z \ z )  (7.30)
n n

The “inner product” on Hq can be stated as

(/l!?) =  ^ ( A ( z \ z ) } 'g , , ( z ' , z )  (7.31).

if we identify Hq with the tensor product Cq®H, H®Cq  or even Cq®H®Cq.  

As  a result, we have

</l9> =  ( ( s l /» ‘ (7.32)

(iPlhlf) =  / i M / )  (7.33)

where |/ ) ,  \g) G Hq, {if) G H  and h =  h(z*,z).

7 .3 .1  L eft E ig en v a lu e  S ta te s  o f  th e  A n n ih ila t io n  O p era to r

Given the annihilation operator a, one possiblity for the definition of a 
coherent state is the (normalised) state satisfying

a\z,z*) = z\z,z*)  (7.34)

where we use a round-bracket to distinguish the state from others introduced 
later. Projecting onto the basis of number states, we obtain

(?i|z,z*) = - ^ = A ( z * ,z )  (7.35)
V M r
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where the normalisation A{z*z) can be expressed as

A (z ',z ) =  (0 |z ,z ') -2  (7.36)

Explicit calculation shows that the function A{z,z*)  is given by

A{z*,z)  = Eq- i{ -z*z)^  (7.37)

and so

U'.-*) =  E  -^ = B q - i { - z * z ) 2 \n) (7.38)
n=0 \ / W q !

=  Eq{za^)Eq-i{-z*z)^\0)  (7.39)

Kowalski and Rembielinski were able to construct a Bargmann-Fock rep
resentation of the operators in terms of g-deformed differential operators 
on the space of analytic functions in z*. From this it is possible to define 
an inner product, reproducing kernel and g-generalisation of the Gaussian 
integral (KR:93]. These constructions, although of considerable importance 

to further extensions of the formalism, will not be detailed here as we wish 
to concentrate on another aspect, namely the connection between the states 

defined in (7.39) and states produced by a a g-analogue of the unitary dis
placement operator for the boson algebra.

7.4 T he U nitary q—D isplacem ent Operator

The formalism described above provides a useful basis for the discussion 

of the g-deformed oscillator algebra over a noncommutative base algebra. 

However it is quite difficult to calculate the expectation value of interesting 
quantities in the coherent state |z, z*) because the evaluation procedure may 

actually change the state which is being used in the calculation. Clearly, this 
is due to the fact that the left eigenvalue eigenstates of the annihilation op
erator and the right eigenvalue eigenstates are not the same. This, in turn, 
is due to the noncommutivity of the coherent state with the eigenvalues. 

It is possible to calculate the right eigenstates of the annihilation operator
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by the means discussed in section (7.3) but a more interesting derivation 
has been found [MS:94b| by considering a deformed analogue of the unitary 
Displacement operator.

A naive approach to the problem of constructing a g-displacement operator 

(and the associated coherent states) would consider the g-analogue of the ex
ponentiated action of an operator such as (za^ — z*a). However, because the 
reciprocal of Eq[x) is not Eq{—x) but (—x), the operator, Eq{za^ ~z*a),  
is not unitary. Moreover, in the g =  1 case, this action of the operator on the 
vacuum state would be calculated using the Baker-Campbell-Hausdorff the
orem which provides a resolution of the exponentiated operator in terms of 
the exponentials of the generators of the algebra. It would then be a simple 
m atter to construct coherent states by calculating the action on the vac
uum. In the case of the g-exponentials associated with the deformed boson 
algebras, no analogue of the BCH-theorem has been found (KS:91b, KS:94b] 

and so the action of an operator such as Eq{za^ — z*a) cannot be readily 
calculated. This implies that a more sophisticated approach to the problem 
is needed. The analysis developed in the following sections leads to the con
struction of an operator which is unitary and gives the correct g =  1 limit. 
This is used to form the appropriate coherent states which are shown to be 
right-eigenvalued eigenstates of the annihilation operator. The properties 

of these states are then discussed.

7 .4 .1  q -E x p o n e n t ia l D ise n ta n g lin g  R e la t io n s

There is a well-known lemma used in the proof of the Baker-Campbell- 
Hausdorff theorem which states tha t for any two operators A  and B,

exp(A) B ex p (-A ) =  exp(ad,4 )B (7.40)

=  (7.41)

=  B +  [4 ,B ] +  ilA ,[A ,B ]l +  . . .  (7.42)
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. . .  H— : [A[A . . .  [A, B ] ...]] +  . . .  (7.43) 

n times

where acI^B =  [A, B].

This has an analogue for g-exponentials, namely that for any two operators 
A and B (AKM:87j,

E , { A ) B E , - , { - A )  = (7.44)
fc=o

=  B +  (A, B] +  i ^ | A ,  [A, BJ]^ +  . . .  (7.45)

1 -
d" j ['^{-  ̂• * • (•'̂ [■‘̂ 1 B]]g . . «Iqn-îlqn-l +  . . .

where [A,B]^ =  AB — gBA, [A, B)q =  B and

[A, =  A(A, B]^”  ̂ -  q^lA, B|^^^4 (7.46)

If we take the g-boson algebra Aq given by (3.22) in chapter 3

ûa^ — g a^a =  I  (3.22)

together with the algebra Cp with relations

zz* =  p z*z (7.47)

where the elements of Aq and Cp commute with each other, then we may 

calculate the expression

Er{za^)z*aEr-i{~za^)  =  z*a-|-(za\z*a]4-T^[zn^, .. (7.48)

We see that

[za^ z*a\ =  zz*o/a — z 'z  ao/ (7.49)

=  -z*z{aa^ — pa^a}  (7.50)

=  - z ' z { / 4 -(g -  p)a^a} • (7.51)
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So if g =  p,

[za^,z*a] =  —z*z (7.52)

where we have omitted the explicit expression of the unit operator since this 
is central and has the trivial action of multiplication by unity.

Similarly

[za^ [za^ z*a)]^ =  [za^,-z*z]^ (7.53)

=  —{z2 * —rz*z}za^  (7.54)

=  0 if r  =  p =  g (7.55)

The series (7.48) therefore terminates with the second term to give

Eq{za^) z*a É ç- i ( - za^ )  =  z*a — z*z (7.56)

This in turn implies that

Eq(za^)Eq(z*a)Eq-i (—za^) =  Eq(z*a -  z*z) (7.57)

where we have used the fact that

=  £ ,(æ )- ‘ (7.58)

From this we can obtain

Eq{za^)Eq(z*a) — Eq{z*a — z*z)Eq(za^)  (7.59)

By taking the herniitian conjugate of equation (7.55), we see tha t z*a q-

commutes with z*z, so that we may use the additive property of the g-
exponential to rewrite the above equation as a reordering equation

Eq{za/)Eq{z*a)  — Eq{z*a)Eq(~z*z)Eq{za^)  (7.60)

which is a g-analogue of the Weyl relation for the Heisenberg group.

Taking the inverse of (7.60) and letting z —» —z, and z* ^  —z*, we obtain 

a second reordering equation

.Eq- i{z*a)Eq-i {za^)  =  Eq-i{ za^)E q-i {z *z )Eq- \ { z*a )  (7.61)
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from which one can show a third relation

Eq{za^)Eq-\ {z*a) =  E q - \ { - z *  z )Eq-i {z*a)Eq{za^)  (7.62)

Using equation (7.60) and the properties of the g-exponential, it is possible 
to prove formulae such as

E q - i { - z a ^ ) E q { z * a ) E q i - z * z ) E q { z a ^ ) E q - i { - z * a )  = 1 (7.63)

This motivates the definition of an operator U{z, z*)

a ( z . z ')  =  E ^ ( - z ' z ) ^ E , ( z a ‘>)E^-v(-z'a)  (7.64)

The hermitian conjugate of this is

U(,z,z 'Ÿ  = E ^ - , { - z a ^ ) E ^ i z ' a ) E , ( - z ' z ) î  (7.65)

If one now calculates the product of these two operators (see appendix), one 

finds tha t
U ( z , z ' ) U { z , z 'Ÿ  = U {z , z ' 'Ÿ U iz , z ' )  = l  ■ (7.66)

which means that

U [ z , z * )  — E q { - z* z ) '^E q {za / )E q - \ {—z*a) (7.67)

is unitary , i.e.

U (z. z"Ÿ  = U { z , z T ^  (7.68)

7 .4 .2  P r o p e r t ie s  o f  th e  q -D isp la c e m e n t  O p era to r

In the limit g —> 1 , it can be seen that U{z,z*)  —* D{z,z*)  =  D{z), where 
D(z)  is the Weyl Displacement Operator of conventional quantum mechan

ics, (c.f. chapter 3),

D(z,  z*) =  exp(i|zl^) exp(z&f) exp (-z* 6) =  exp(z6  ̂ -  z*b) (7.69)

with [6, 6̂ 1 =  1 .
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We will now show how the properties of the undeformed displacement oper

ator generalise to this new g-analogue object. We make use of the following 

result:
a (o ')"  -  =  N ,( a t ) » - ‘ (7.70)

which, since [n|„-i =  leads to the formula (see appendix)

F , - i ( —̂ a^)o — a £ , - i ( —2Ç” *a*) =  zq~^ E ^ - i ( - za ^ )  (7.71)

Now consider the operator product U{z,z' ‘Ÿa.

U { z , z 'Ÿ a  ■ (7.72)

=  £ ,- i ( —ca^)Ê ,(s 'a)£ ,(—a*2)îa (7.73)

=  { o f ; ,- i( -c « -V )  + î9 - 'f ; , - i (-cat)}  £ ,( j 'a )£ ;,(-a * j) î (7.74) 

=  {o£:,-.(-cî-*ot)£;,(cat) + cî-t}c/(c,c*)t (7.75)

= {o£,(cot)£;,(c9-tat)-i + ^ç-i} [ / ( . , . *)t (7.76)

Consequently, the product U (z , z ' ) ^aU {z , z ' ‘) is given by

U { z , z - Ÿ a U ( z , z ' )  (7.77)

=  {o £ ,(ca* )B ,(cq -‘a t ) - t  +  c9 - ‘} i / ( c , 2*)t£/(c,c*) (7.78)

=  a£ ,(co* )f;,(c9 -* a t) " ‘ +  (7.79)

From (5.78), it can be seen that

Eq{za^)Eg{zq~^a^)~^ =  1 +  (g -  l)g “ ^za^ (7.80)

so
U{z, c*)*a U{z, z ' )  = a{ l + { q -  l)?-*cat}  +  ^ ,-1  (7.81)

Assuming we are in Fock space, we have the result that

aat = \N + 1], =  2------ —  (7.82)

which follows from the definition of the algebra Aq in equation (3 .22 ), and

SO
U { z , z 'Ÿ a U { z , z ' )  = a + zq‘'' (7.83)
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Since =  [a, a^), we can also write this as

U[z, z*)^a U{z, z*) =  a +  z [a, a ]̂ (7.84)

We therefore have an analogue of the conventional (g =  1) Heisenberg-Weyl 
shift automorphism,

D{z , z* ) H D { z , z*) =  6 + z [6,6̂ 1 (7.85)

=  5 +  z l (7.86)

with D{z,z*)  defined as in (7.69).

The exact meaning of this formula requires some consideration. In the un
deformed (g =  1) coherent state theory, (7.86) is a statement of the fact that 
the unitary displacement operator D(z) implements an automorphism of the 
boson algebra. A similar interpretation in the case of the g-deformed uni
tary operator £/(z, z*) is not possible because the element a + z q ^  no longer 
lies in the algebra. Instead, we must think of U[z,z*)  as implementing an 

algebra coaction of Cq on A q

A q  ---- *■ Cq © A q

a •—> a' =  I ® a  +  z ® q ‘̂  (7.87)

af' =  /  © +  z* © ĝ ^

which, as the elements of Cq have trivial braiding with those of Aq, is equiv
alent to a coaction Aq — > Aq ® Cq.

The fact tha t the inverse of exp(z) is exp(—x) means that, in the undeformed 
theory, the inverse (and hermitian conjugate) of the operator D{z,z*)  is 
given by D ( - z ,  -z* ). The inverse of Eq(x) is not Bq(-.T) but E q - i { —x)  so 

tha t
t / ( z , z * ) U ( - z , - z ' ) ^ l  (7.88)

Consequently we can construct a second unitary operator V’(z,z*)

y ( z ,z ')  =  [ / ( - z , - z ' )  (7.89)
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which (co)acts on the generators of Aq to give

K(z, z ')  a V(z, z*)^ =  a — (7.90)

and the hermitian conjugate relation.

7.5 q -A nalogue D isplaced Vacuum  States

As has already been pointed out, the Displacement operator is used in quan

tum  mechanics to generate coherent states from the vacuum state. We can 
do exactly the same for the g-analogue operator constructed above.

We define a set of displaced vacuum states by

|c) =  t/(c,c*)10> ■ (7.91)

Then due to the unitarity oi.U and (7.83), we have

aC7(2,c‘ ) =  C7(c,c*){a +  c«'''} (7.92)

Therefore

o y (c ,c ') |0 )  =  i/(c,c*){a +  C9''}|0) (7.93)

=  C7(c;c*)c|0) (7.94)

= U(z ,z ' ) \0)z  (7.95)

So |z, z*) is an eigenstate of the annihilation operator a, with right eigenvalue

z,
a|z, z*) =  |z,z*)z ■ (7.96)

In the g — 1 limit, where z, z* commute and have realisation as elements of

C and a and —* b and 6 ,̂ the usual boson operators, equation (7.96) just

states the familiar result that the displaced vacuum states are eigenstates of 

the annihilation operator
6|z) =  z|z) (7.97)
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The displaced vacuum states can be expressed in terms of the usual g-boson 
number states

\z,z*) = U{z,z*)\0) '  (7.98)

— E q { - z *  z)"2 Eq{zd^)Eq-i { -z *a ) \0 )  (7.99)

=  ^  1 ^ 1 0 )  (7.100)
n=0

=  Eq{-z*zŸ2 ^  - 7= | n )  (7.101)
n=0 Y M q -

So
{n\z, z*) =  E q { - z * z ) 2  (7.102)

y w , !

7 .5 .1  T h e  R e la t io n sh ip  b e tw een  L eft and  R ig h t E ig en v a lu ed  

E ig e n s ta te s

In the previous section, we defined, after Kowalski and Rembielinski, another 
set of normalised states |z, z ')  by

\z, z ' )  =  £ ,(c o t)£ ,(-c * c ) |0 )  (7.103)

which have the property tha t |z, z*) are eigenstates of the annihilation op

erator with left eigenvalue z,

n|z, z*) =  z|z, z*) (7.104)

These eigenstates of the annihilation operator are related to the displaced 
vacuum states |z, z ')  by the transformation

|z,z') =  Eq(z'z)5|z,z')Eq(-z'z)5 (7.105)

This illustrates tha t if g 9  ̂ 1, the two conventional definitions of coherent 
states as either left eigenstates of the annihilation operator or displaced vac

uum states are not equivalent for the type of g-deformed system constructed 

here.
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7 .5 .2  Q u a n tu m  N o ise  P r o p e r tie s

To consider the quantum noise dispersion value in the displaced vacuum 
states, we use the (deformed) field components X  and P  defined by

X  — —̂ ( a  +  ft )̂ and P  — —^(& — ft^). (7.106)
\/2  i\/2 '

If we formally evaluate the product of the variances of these operators in 
the vacuum state we obtain

(A A ')§(A P)§ =  j  (7.107)

In the displaced vacuum state, the same result occurs

(A..Y)?(AP)2 = i  (7.108)

Moreover, the covariance of A' and P  is identically zero in both cases. There-, 
fore, just as in the conventional case, both the undisplaced and displaced 
vacuum states have the same value for the quantum noise dispersion. How
ever, if one calculates the theoretical lower bound for the dispersion using 
the Heisenberg Uncertainty Relation, one finds that

j(z ,c * |(A ,P l|c ,,- -)  =  j(c ,z* |[a ,a t] |c ,c* ) (7.109)

=  i ( c ,  c*|l -  (1 -  4 )a’a|c, c*) (7.110)

=  (7.111)

Thus if z and z* commute, the uncertainty relation gives the same result as 
in the classical case. If not. the conventional result is multiplied by an extra 
algebraic term 1 — [z*, z) .

7 .5 .3  O th er  S ta te s  A sso c ia te d  w ith  th e  U n ita r y  q -

D isp la c e m e n t O p era to r

Using similar techniques to the conventional case, one can also form other 
states from the g-displacement operator. For example, if this acts not on
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the vacuum ket but on some number state, q-displaced number states are 
produced.

|z,7i) =  f/(z, z ') |n )  (7.112)

If we use the fact thatlo = t
we see that

|z ,« ) =  (7.114)
y w , !

where the function J5[a, 6;n] is defined by

In the g —*• 1 limit we recover the standard formula

|z ,n ) =  exp(-^z*z 4- za^)-°'^7"  ̂ |0) (7.116)
VM,!

7.6 A ppendix

7 .6 .1  O th er  g -a n a lo g u e  U n ita r y  D isp la c e m e n t O p era to rs

It is worth noting tha t the g-displacement operator presented above is not 
the only generalisation of the conventional formula that has appeared in 
the literature. Indeed it has been claimed (in [Zhe:93]) that an operator 
parameterised by c-numbers was discovered by Jannussis [Jan;83] as far back 

as 1983. There is also a remarkable generalisation of Jannussis’ result due 
to Zhedanov in the context of his (u, v)-algebra formalism [Zhe:93]. We give 
a brief description of the pertinent aspects of Zhedanov’s work, indicating 

the difficulties with his approach. For convenience, his notation has been 
changed to conform with that already in use in this work.
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T he (u ,v )-a lg eb ra

Zhedanov defined a deformation of a two-parameter family of algebras in
terpolating between sw(2), sw(l, 1) and the bosonic oscillator algebra 7f(4). 

It is generated by three elements Aq, A+ and A_ with defining relations

[Ao, A±1 =  A± , |A_, A+J =  ««-■'<> +  (7.117)

where q =  exp(-2w ) G R, is a deformation parameter (w > 0), and u and v 
are arbitrary real parameters. Aq is assumed to be hermitian whereas A± 
are hermitian conjugates. Various special cases of the algebra are

SUq{2)

S U q { l , l )

A q

5 ,

u =  —V =  —̂  cosechcj ;
li = -V =  scosechcj ;

2 (7.118)
u = 0, V = 1 ;
u = V — ^

The (ii,‘y)-algebras have an interesting “co-additive” structure. If A{ and 
Bi, {i =  0, ± ), are oscillators of type {u,v) and {-v,-w) respectively, then 

the elements Q  given by

Co =  Aq +  Bo , C± = A±  exp(wBo) 4- B±  exp(-wAo) (7.119)

generate an algebra of type {u,w). P u t symbolically, there exist maps, #,

for. which

(u, v ) a  • ( - V ,  w ) b  =  (%t, w )c (7.120)

If the reparametrisation

„ = £ ± ^ ,  (7.121)

is made and the w —> 0 limit taken, one obtains

[A_, A+] =  g +  2/iAo (7.122)

which clearly shows the relation with su(2), sw (l,l)  and 7f(4).
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In the usual way one may define representations of the positive discrete 
series of the deformed algebras by considering the action of the generators 
on some canonical basis |n) ^

Ao|n) =  (a +  7i)|n) (7.123)

A_|7i) =  r n |7 i - l )  (7.124)

A+|7i) =  7n+i|n +  l) (7.125)

where rn 6 C, the constant a may be used to characterise the representation
and |0) is annihilated by A_.

T h e  M a ster  R e la tio n  and  C oh eren t S ta te s

The (u,7/)-algebra formalism is especially useful for constructing unitary 
operators because of the so-called Zhedanov Master Relation which is an 
analogue of the Generalised Weyl formula for the undeformed Lie algebras. 

The main relation is

Eq{sA-)Eq{-us tq~ ‘̂ '^)Eq{tA.^) = Eq(tA.^)Eq(vstq^°)Eq(sA-)  (7.126)

where .4q, A±  generate a (%,7/)-algebra and s, t are arbitrary complex num
bers. Apparently, the relevant result for the algebra Aq was known to Jan

nussis.

Using (7.126) it is possible to prove that 

Uz{a- ,q)  =

(7.127)

is unitary. If one considers the various special cases of the algebra (7.118) 
and then takes the g =  1 limit, it can be shown, using the properties of 
the Jackson g-exponential (5.80), that Uz[oc\q — 1) is the displacement 
operator for the group corresponding to the undeformed Lie algebra. For 
example, the algebra Aq (with generators Aq = N,  A -  = a, A+ =  a^), gives 
the operator

Uz{a-,q) = E , -^ ( - \a \^q '^ )^Eq- i{ -aa^)E ,{aa)  (7.128)
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To make a comparison with the approach in section 7.4 using noncommuting 

variables, it is more convenient to consider the unitary operator Vz{a,q) 
given by Vz{a;q) =  a; g)^. This operator my be used to form coherent 
states from the vacuum vector

lev) =  Vz{a\q)\0) (7.129)

=  Bq(cva^)Bq-i(-(va)Eq-i(-|cv|^g'^)^|0) (7.130)

=  £ ,- ,( -H 2 ) j£ ',( a ( i t ) |0 >  (7.131)

Thus we see that [cv) coincides with the definition of the coherent state as 
the normalised vector formed by the action of the g-exponentiated creation 
operator on the vacuum and hence it is an eigenstate of the annihilation 
operator with eigenvalue cv. (This contradicts the claim tha t the states are 
different, found in [Zhe:93] and due to an error in the calculations.)

Unfortunately the analogue of the Heisenberg-Weyl displacement formula, 

(7.86), using the operator Uz{oi]q) (or indeed V^(cv;g)) is far from trivial 

and in the case of the unitary operator for the general (%,i/)-algebra (7.127) 
the calculation is even more complicated with the formula depending on 
the Casimir operator value, i.e. it is representation dependent. The use of 
such an operator to calculate uncertainties is therefore very difficult and can 
proceed only by numerical methods.

7.6.2 Proof of some results

In this section we prove some of the results tha t were stated in the text.

Unitarity of the q-analogue displacement operator

We show th a t the operator products U W  and U W  are equal to one, i.e. 

that U (z,z*Ÿ  is a left- and right-inverse for U(z,z*).

U ( z , z ‘ )U {z , z*Ÿ

=  E q { - z ' z ) i E q { z a ^ ) E . - , ( - z ‘a ) E . - , ( - z a ^ ) E , ( z ' a ) E g ( - z * z ) i
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= E g { - z * z ) 2  Eg{za^)Eg~i{~za^) Eq- i {z *z )  E q - i { - z * a ) E g { z * a )  E g { - z * z ) ^
 ̂ V /  ̂ I -iy /

=  1 =1

= E g { ~ z * z )^ E q - . { z * z )E g { - z * z ) ^

=  1 .

In the above calculation, the underlined product is reordered using equation 

(7.61).

We can also calculate the opposite product 

U ( z , z ' Ÿ U { z , z ’ )

= .  E „ - i ( , - z a ^ ) E q{z ’ a ) E q { - z ' z ) i E q ( - z ' z ) - 2 E q { z a < ) E q - i { - z * a )  

— Eq-t{-za^)Eq{za*) Eq{z 'a)Eq-i{-z*a)
'  ■ V  " V

=  1 = 1

=  1

where we use (7.60) to reorder the underlined product.

Hence U{z,z*) is a unitary operator.

Proof of equation (7.71)

Simple induction on
— q a^a — 1 (7.132)

yields the result that

a(at)" -  ï"(a<)"a =  [nk(of)’- i  (7.133)

so
(at)"o  =  g - '  {«(«f)" -  M , (7-134)
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Therefore

Ea- i { ~z a^)  a

n=0 N i  

%  ( - : ) "
n=0

^  «•’•H, (-zr-Xat)"-' 
= M ,- .  I " - H i !

Thus, using the fact that

” [n]_ =  [n] Ijq I Jq

we obtain

B q-i(—za^) a = a Eq-i{—zq~^a^) 4- zg“ ^Bq-i(—za^) (7.135)

as required.
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C hapter 8

Squeezed and Correlated Coherent 
States

The Uncertainty Relations place limits on the accuracy of the simultaneous 
measurement of the field components. However, the lower bound refers to 
the product of the dispersions rather than the individual dispersion values 

themselves. This observation is the basis of the study of so-called Squeezed 
[LK:87] and Correlated Coherent [DM:94] in which the disper

sion of one field component is reduced below its value in the vacuum state, 
with a corresponding increase in the other dispersion. These states are non- 
classical in the sense that their eflPects are purely quantum mechanical with 
no classical analogue. In this chapter we review the theory of conventional 

squeezed arid correlated states as preparation for the next chapter in which 
similar constructions for ^-deformed squeezed states are discussed.

8.1 T he U ncertainty R elations

We briefly recall the uncertainty relations discussed in chapter 3. For 
two operators X  and Y,  the Robertson-Schrodinger Uncertainty Rela

tion [Schr:30, Rob:30] is -

y'(AA-)2(Ay)2 -  (AXy)2 > i|{[X,y))| (8.1)

where the field operator variances are given by

(AX)^ =  (X^ -  { X f )  (8.2)
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(A y)2 =  (y2 -  (k )2) ' ' (8.3)

and the field operator covariance is

A A 'y =  h x v  +  Y X )  -  {X){Y)  (8.4)

If the square of the covariance is neglected (since it is positive or zero) or the 

variables are uncorrelated, we obtain the Heisenberg Uncertainty Relation

A X A y  > i |( ( X ,y ] ) |  (8.5)

If we consider either the vacuum state or a coherent state of the electro
magnetic field, it is known that the uncertainties in the field components X
and P  are equal to Following Loudon and Knight [LK:87j, we rescale

the field components, A' and P ,'b y  a factor of \/2 to give the quadrature 
operators X '  and P \  where

X -  =  ^ X  = 1(5 +  5*) (8.6)

which have the commutation relation, .

(A",P') =  2/2 (8.8)

Since the amplitude of the coherent state is given by the eigenvalue of the 
annihilation operator, the quadrature operators can be considered to be the 

real and imaginary parts of the complex-amplitude operator.

If we consider the uncertainties of these quadrature operators in the coherent 

state |a ), we find

" { X %  =  Re(û) (8.9)

(P %  =  Im (a) (8.10)

Therefore, since
(A-' +  iP %  =  a (8.11)
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we can describe this graphically by a circular uncertainty contour centred 
on the tip of the complex amplitude vector whose length is given by the 
eigenvalue label A. The diameter of the circle then corresponds to the size 
of the quadrature operator uncertainty. This is illustrated in Figure 1:

Im (a) - -

F ig u re  1: T h e  U n cer ta in ty  C ircle  for th e  coh eren t s ta te

The Heisenberg-Weyl displacement operator, described in chapter 4, can be 
w ritten as

D{q)  =  exp(a6^ -  o.b) =  exp(2i{Im (û)X ' -  R e(a)P '}) (8.12)

which implies that D{ol) acts to displace the quadrature operators

X '  D(aS^X'D{(x) =  X ' +  Re A 

P'  —> D{olŸ P 'D{cx) = P' + Im A

(8.13)

(8.14)
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i.e. D{a)  translates the vacuum error contour from being centred a t the 
origin to being centred at (Re(a), Im (a))j without changing its shape, the 
diameter remaining equal to AA'' — A P ' =  ^.

8.2 The Squeezing o f Photon  States

.The Photon coherent states described in chapter 4 are minimum uncertainty 

states for which both field uncertainties are equal to A natural question 
is whether there exist states which have an uncertainty product that satis
fies the lower bound of the uncertainty relation but have unequal quadrature 

variances. This has been the subject of a great deal of recent research. On 
the theoretical side, a number of new techniques have been developed to 
investigate such novel objects as squeezed states (see [LK:87] and references 
therein), correlated coherent states [DKM:80, DM:94) and generalised intel
ligent states [Tri:93, Tri:94], while experimentalists have had great success 
both in actually producing the optical states and also observing the pre
dicted non-classical effects [SHYMV:85, SLPDW:86, WKHW:86).

Generalisations of the minimum uncertainty states, for which the quadra
ture values were unequal, arose in the work of several authors in the 1970’s 
although the earliest reference is probably Takahasi [Tak:65j and Robin
son [Robi:65j. Just as Glauber had derived the properties of coherent states 
by considering the photon field correlation function, so this approach lead 
Stoler [Sto:71] to other non-classical states of light which were obtained 
from the ordinary coherent states through the action of a further unitary 

transformation. This formalism was later taken up by Hollenhorst (Hol:79| 
who coined the term squeezed state. The work of Yuen [Yue:76a, Yue:76b] 
on quantum  communication theory was the first to systematically consider 
production of these states and used the Bogoliubov automorphism of the 
boson algebra to describe states which had a minimum uncertainty prod

uct but with unequal quadrature variances. An equivalent formalism was 

used by Caves [Cav:81] in his analysis of interferometry-based gravitational
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wave detectors. Squeezed states were first realised experimentally in the 

work of Blusher et al using four-wave mixing in Sodium atoms, where the 
optical noise was reduced below the vacuum fluctuation by 7 to 10 per 

cent [SHYMV;85). Some experiments have reported squeezing by as much 
as 63 per cent below tha t of the vacuum [WKHW:86].

In the approach of Yuen, squeezed states are the coherent states of quasiex

citations formed from automorphisms of the boson algebra. It has long been 
known from condensed m atter physics that the algebra of creation and anni
hilation operators has a linear automorphism called the Bogoliubov canon
ical transformation [Bog:47]. This is the mapping

b b' = Xb + iib^

frt _  6'f =  Â6f + M6

where the complex numbers A and n satisfy

|A|2 -  =  1 (8.16)

This means tha t the matrix

(  Â '  )
is an element of the Lie group Sp{2, R) =  SC/(1,1). By Von Neumann’s theo
rem [Neu:31j, this automorphism can be realised as a unitary transformation 
in the boson Hilbert space. The automorphism is accomplished by factoring 

out the isotropy subgroup from S t/(1 ,1), taking a representative of the coset 
and using it to implement its adjoint action on the generators of the boson 

algebra. From chapter 3, the required coset element is exp{^K+—^ K - ) .  The 
one-mode oscillator considered in (8.15) has an stt(l, 1) realisation given by 
(4.94). This means tha t the unitary operator is

C^s(?) =  e x p ( i{ Ç 6 t^ -Ç V } )  - (8.18)

and the Bogoliubov transforniation is implemented by

^  I  -  % ( ( ) *  [  *  I U siO  (8.19)
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In some senses, therefore, the action of the squeezing operator is to produce 

states similar to the 5 t / ( l ,  l)-coherent states described in chapter 3.

If [0)s is the vacuum in the new Fock space, we can form the coherent states 
of the transformed boson operators in the standard way by applying the 
displacement operator, i.e.,

|a )s =  exp(a6'^ -  â6')|0)s ' (8.20)

The operator (8.18) clearly involves the creation and annihilation of pairs 

of photons and the displacement operator (8.20) simply creates a coherent 
state in the transformed Fock space. Yuen therefore called such states two- 
photon coherent states.

The equivalent formulation of Caves is given in terms of the original boson 

operators. The first step is the production of the squeezed vacuum state 
through the action of a unitary squeezing operator S{^) on the groundstate 
|0). This squeezed vacuum is then displaced by the action of the conven
tional displacement operator.

8.2.1 Phase Space Description of Squeezing

If we consider states where the values of the quadrature variances are un
equal but still give the minimum value on multiplication, this corresponds to 
deforming the uncertainty circle into an uncertainty ellipse which has major 

and minor axes parallel to the X '  and P'  axes. This transformation is given 

by

( A X ' f  = iexp(-2s) . (8.21).

(A P')^ =  jexp(2s) (8.22)

and is equivalent to

X ' — X ' =  X '  e x p (-s )  , P ' ^  P ; =  P ' exp(s) (8.23)



Forming the creation and annihilation operators, for which the new oper
ators Xg and Pg are the real and imaginary parts, we obtain the Squeeze 
Transformation

bs = 6coshs -  6^sinhs 
oj =  pT cosh s — 6sinh s 

A more general area-preserving transformation is obtained by allowing the 

uncertainty circle to undergo a phase space rotation through an arbitrary 
angle, say prior to squeezing by (8.24), The rotated quadrature variables 
X "  and P"  are related to the old ones by

A " +  iP"  =  (%' + iP*) exp(z0/2) (8.25)

Equation (8.24) then gives

=  b cosh s -  6̂  exp(i0) sinh s
! ♦ (8.26) 

=  b' cosh s -  bexp(- i 6 ) sinh s

which we will call the General Squeezing Transformation and is implemented 
by the unitary operator

5 ( 0  =  exp -  0 ^ } )  (8.27)

where
^ =  sexp(i^) , 0 < s < o o ,  O < 0 < 2 7 r  (8.28)

The action of this operator on the quadrature variables is given by

. S(0^(Af" +  » P ")5 (0  =  X "  e x p (- r )  +  iP"  exp(r) (8.29)

so we see tha t in the rotated frame, the squeezing transformation does 
squeeze the quantum noise in one phase space direction with a consequent 
amplification in the other.

In terms of the displacement and squeezing operators, the squeezed state in 

the Stoler/Caves formalism can be written as

|(,A> =  D{a)S{O\0)  (8.30)

=  exp -  q6) exp |0) (8.31)
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The equivalent formalism of Yuen gives

\P \ H. i ^ ) =ULDmO)  (8.32)

where Ul is the squeeze operator equivalent to 5 ( 0  and the different pa
rameters are related by

Ç =  r  exp(f^)

^  (8.33)
p = .cosh r

u = exp(f^)sinhr

The name squeezed state was originally used to describe those states for 
which the noise fluctuations were less than those of the coherent state (and 

hence the vacuum state). It is known that in the coherent state, the quadra

tures are uncorreiated so the appropriate uncertainty relation is tha t of 
Heisenberg. In terms of the Bogoliubov transformation (8.15), this means 
tha t the phases of the parameters must coincide, and in terms of the gen

eralised Squeezing transformation, (8.26), the 9 variable must be zero. For 
9 0, the covariance is non-zero and so the Robertson-Schrodinger rela
tion is applicable. Consequently, for some values of 9 close to tt/2, both 
variances can be much greater than the corresponding fluctuations in the 
Glauber coherent state. For this reason, Dodonov and M an’ko [DM:94] have 
suggested that the states with non-zero covariance between the quadrature 
operators be called Correlated Coherent States to emphasise this statistical 
dependence. While this is a useful distinction to be made, it has not as yet 

become the general terminology of the quantum optics community. Conse
quently, in what follows, we use the term squeezed state to refer to both 

squeezed and correlated coherent states unless we wish to draw attention to 
their differences.
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8.3 The Squeezed Vacuum State

8 .3 .1  T h e  sta n d a rd  o n e -m o d e  rea lisa tio n

If we reorder the unitary Squeezing operator (8.27) using the Baker- 
Campbell-Hausdorff theorem, we find that

S ( 0  =  exp -^6 ^ )^  (8.34)

=  ex p ^ -i^ 6 ^ 2 ^  A (iV )e x p ^ -if6 2 ^  (8.35)

where A(N)  is some function of the Number operator. It clear tha t the 
action on the vacuum of any exponentiated integer-power of the annihilation 
operator is trivial. The action of the middle term on the ground state is 
also easily calculated, and is equal to the normalisation function A (^,f). 

Consequently, the states
5(O |0) (8.36)

and

.4 ((,()ex p  (- |& ^ ^ )  |0) (8.37)

are the same even though the operators that act on the vacuum are not. 
This gives us a way of explicitly constructing the squeezed vacuum state 
that does not rely on knowledge of the exact form of the Squeezing opera
tor.

Let us consider the state |^) given by

10 =  .4 ((,() exp |0) (8.38)

where A(^,^) is a normalisation function and ^ is not a phase. From the 
above considerations, it is clear that this state is the squeezed vacuum state. 
Direct calculation of the normalisation function shows that the explicit form 

of the squeezed vacuum is
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The action of the annihilation operator on [^) is

6 |0  =  -(6*10 (8.40)

This allows the calculation of the field variances in this state which gives

In addition, the covariance can be calculated to be 

and so is non-zero only if (  is real.

Calculation of the expectation value of the field component commutator 

shows tha t the Robertson-Schrodinger Uncertainty Relation is verified:

( A X ) j (A P ){ - (A X F ) | =  i ( - i (X ,P l ) ç  (8.44)

If one now acts on the squeezed vacuum state with the displacement oper
ator, general squeezed or correlated states are obtained.

8 .3 .2  T h e  H o ls te in —P rim a k o ff rea lisa tio n s

As well as the bosonic realisation of the su(1,1) algebra given above, there 
is also another common realisation, namely the Holstein-Primakoff realisa

tion [HP :4Q]. This is given by

K+ = y '( 2 ( 7 - l  +  iV)fflt (8.45)

K .  = a s J ( 2 ( j - l  + N )  (8.46)

Ka =  N  + (j (8.47)

T h e s e  form  an  in fin ite -d im e n s io n a l u n ita r y  irred u cib le  re p r esen ta tio n  w ith  

Casim ir v a lu e
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There is also a similar realisation of sw(2)

=  ^(2<r +  1 -  TV) (8.48)

J_  =  a y J { 2 a - h l - N )  (8.49)

Jo =  N  — <7 (8.50)

The states spanning the basis for the (2(t +  l)-dimensional representation of 
su(2) are the ordinary boson number states |n) where 0 < n < 2o- with the 
Jo-eigenvalue ranging from —a to a. The group coherent states constructed 
from this representation also exhibit squeezing.

It has been shown by Katriel et al[KSDR:86] that the multiboson gen
eralisation of this realisation can be used to generate squeezed states. 
The realisation makes use of the Brandt-Greenberg multiphoton opera- 

iors[BrG:69, Ras:72, Kat:79], ^Ik) defined by

(8.51)
where fc is a positive integer and the function X(u) is defined as the greatest 
integer less than or equal to u. It can be shown that

=  /  (8.52)

i.e. the multiphoton operators realise the Heisenberg-Weyl algebra. Con
sequently, the group-theoretic coherent state constructions using boson re
alisations of the Lie. algebras can be applied. For the multiboson s u ( l , l ) -  
realisation, it was shown [KSDR:86] that in various limits, the state repro
duced the behaviour of both the generalised boson coherent state of D’Ariano 
et al[DRV:85], and also the standard su (l, 1) realisation (4.94) using gener
ators tha t are bilinear in the creation and annihilation operators.

I t was also shown by Katriel et al [KRS:87] tha t the semigroup of nonlinear 

transformations from the boson operator 6, to the multiboson operator jB(fe), 

can be extended to an Abelian group if k is allowed to take positive rational
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values. This allows the definition of fractional bosons. These can then
be used to give Holstein-Primakoff realisations of s? t(l,l)  and .su(2), the
coherent states of which again show squeezing.

8.4 H igher Order Squeezing

The Displacement Operator

D{a)  =  exp(a6^ -  o:*6) (8.53)

and the Squeezing Operator

5 ( 0  =  exp (8.54)

suggest tha t it would be worthwhile considering higher-order operators of 
the form

Ukix) = exp (xk  (6^)* -  Xkb^) (8.55)

Unfortunately, it has been shown by Fisher et al[FNS:84] that this naive 
generalisation does not work because the vacuum expectation value of the 

operator Uk{x) diverges for fc > 2. This may seem strange since the operator 

is apparently unitary. However, while the operator Ok = Xk{^^)^ — Xkb^ is 
antihermitian (i.e. iOk is hermitian), it is not self-adjoint with respect to 

the Gaussian measure, and consequently cannot be exponentiated to give a 
unitary operator.

There are, however; other definitions which has been proposed to extend 
the concept of squeezing to higher order moments of the field quadratures. 
Hong and Mandel [HM:85] considered the nth-order moments of the real 

part of the quadrature, where squeezing was said to take place if the rele
vant value was less than that in the corresponding coherent state [GR:87]. 

Alternatively, Hillary [Hil:87] showed tha t squeezing of the square of the field 
amplitude was also a non-classical effect which was not equivalent to that 
described in [HM:85]. Multiphoton state n th-order squeezing was shown 
was to occur in [KSDR:86] while amplitude squeezing was predicted for 

fractional photons by D’Ariano [D’Ar:90).
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C hapter 9

q—Deform ed Squeezed and Correlated  
States

9.1 A n O verview o f q—Squeezed States

As is often the case with ç-deformations, consideration of the different ap
proaches to conventional squeezed states leads to different algebraic objects 

in the deformed theory. One must therefore pay close attention to the defi
nition that is used.

9 .1 .1  U n d efo r m ed  sq u eezed  s ta te s  g en era te d  b y  q -d e fo r m e d  

b o so n s

It was pointed out by Celeghini et al[CDDRV:93) that, in some sense, the 
g-boson algebra Aq is already known to be associated with the generation 

of conventional squeezed states. If we consider the following differential 
realisation of a conventional set of boson operators (6,6^, iV) in the oscillator 

Hilbert space

this implies tha t

2 ^ ^ /(2 i)  =  (6  ̂ -  -  f{ z )  (9.2)
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One generator of conventional squeezed states is the element

S(C) =  exp ^^(6^ -  6^2)^ (9.3)

and so

exp ^ |(6 ^  -  6^^)j ^ (z) =  exp ^ (z) (9.4)

However, there is a realisation of the deformed algebra Aq in which a =  z, 
=  qDs and N  = z-^.  Therefore

\a,a']i>(z) = q^ii{z)  =  exp ( c - ^ )  =  ^ « x p  -  6*^)) V(z)

(9.5)
where q =  exp((). Thus (  =  log g plays the role of the squeezing parameter 
and, up to a factor of yg, the commutator (a, a^] is the squeezing generator 
with respect to the operators b , b̂ '

y?[a, =  5(C) =  exp ^^(6^ -  b^^)^ (9.6).

While such an approach may lead to interesting applications in such areas as 
the study of dissipative systems and thermal field theory [IV:93|, it will not 
be pursued here since we wish to use the formalism to describe new states 
with a genuine g-deformation.

9 .1 .2  T h e  q -a n a lo g u e  B o g o liu b o v  T ran sfo rm a tio n

The conventional squeezing transforms studied in the preceeding chapter 
are essentially based on the Bogoliubov automorphism [Bog:47] of the boson 

algebra. The formation of the squeezed state from the coherent state (or 
vacuum state) can be understood in terms of diagonalisation of the matrix 
associated with this transformation. It is fairly easy to show that, for the 

g-boson algebras Aq or Bq, there is no complex-linear canonical autornor- 

phism. There is, however, a quantum group analogue of the automorphism, 
namely the 5C/^(1,1) coaction described in chapter 3. Unfortunately, the 
use of this mapping is problematic since the elements of the matrix are no 
longer complex numbers but non-commuting variables. This makes diago

nalisation impossible by the usual means.
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Another possibility is the use of some kind of non-linear automorphism 
of the “Bogoliubov type" which mixes g-boson creation and annihilation 
operators. This problem was considered by Fillipov et al [FGI:91] for the 

algebra Aq an d  by Van der Jeugt [Van:92] for Bq. In the former case, an 
automorphism of the type

a! =  au(iV) 4-?;(yV) (9.7)

o)' — u{N)*a^ av{N)* (9.8)

was proposed. This has general solution

u{N)  =  (9.9)

v{N)  =  «'''W '‘/^|t*(iV)|e'^<"''') (9.10)

with

W ^ ) l  =  •! V  (9.11)TV)(1 -  g 2^+ W )

and a(iV, g), /3(Af, g) are arbitrary operator-valued phase factors and W  =  
W(g) is some function of g only. In the g —> 1 limit, taken so that the 
functions u(iV), v{N)  are independent of iV, we see that

•  ■  ( n w ) } * ' " " ' "

” -  (i^wm)*
which can be related to the coefficients of the Bogoliubov transformation.

While this procedure does indeed provide an automorphism of the algebra, 
the complicated nature of the function |u(iV)| means tha t it is extremely 

difficult to calculate the properties of those transformed states that would 
be the g-analogue of the Yuen two-photon coherent states. Consequently, 

this definition of squeezed states will not be pursued.
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The Van der Jeugt automorphism of the algebra Bq

c =  +  (8.14)

c =  .-VW a -  (9.15)

where =  1 and 7 (t) is some arbitrary function in < — g^ , is
non-unitary and has no analogue in the conventional (g —» 1) case.

9 .1 .3  s u ç ( l , l )  an d  s u ,(2 ) -S q u e e z e d  S ta te s  u s in g  q -B o s o n  R e 
a lisa tio n s

Given the existence [KD:90] of a quadratic Sg-type g-boson realisation of 
the algebra sug(l, 1), we can form squeezed states by g-exponentiating the 

relevant raising operator. The properties of such states were analysed by 
Solomon and Katriel in [SK:90] and found to exhibit squeezing for all real 
values of g. In addition to this, the dynamics of such states have been ex

amined by several authors [CRV:91, Buz:91] and squeezing has been found.

We can also look for g-analogues of squeezed states which use the g-

deformed Holstein-Primakoff realisation. Such states have been extensively 
investigated for the algebra Bq by Chaichian et al[CEK:90], Katriel and 

Solomon [KS:91a| and others [BN:94]. The Holstein-Primakoff realisations 
for the algebra suq{l, 1), using the bosons of the Bq algebra, is

K+ = ^[2<t -  1 +  iV] 4 , )  (9.16)

K -  = a ( ,)^ |1 2 < r-l +  JV]| (9.17)

. K q =  N  -\-(T (9.18)

while the realisation for suq{2) is

J+ =  yJ[2<j + l + N \  4 , )  (9.19)

J .  =  0(,)^I2(7 +  1 +  jyl (9.20)

Jq = N  — a  (9.21)
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M ulti-photon realisations of these relations also occur. Although analysis 
of the optical behaviour has to proceed by numerical rather than algebraic 

means, the results show tha t squeezing does occur for this type of deformed 
system. There are also g-analogue fractional boson Holstein-Primakoff re
alisations which, again, exhibit squeezing [SK:93].

9.2 Squeezed States using q—Num bers

The squeezed states described above are characterised by the fact that the 
label space is classical, i.e. it is parameterised by c-numbers. Given the 
success in constructing a unitary g-displacement operator for the algebra 
Aq by use of g-numbers, it is interesting to discover whether a similar pro
cedure can be used to give a squeezing operator.

If we consider the simplest conventional, one-mode unitary squeezing oper
ator, (8.27), we see that the operator which is exponentiated is essentially 
bilinear in creation and annihilation operators. Following the theory of 
chapter 7, this suggests tha t in the deformed case we should consider the 

commutation relations between and

As pointed out in chapter 3, it is possible to form the two param eter quantum 
group deformation of the su (l, 1) algebra which has a realisation in terms 
of the (g,p)-bosons of Chakrabarti and Jagannathan[CJ;91). This has an 

obvious specialisation (g — g^,p —» 1, say) in terms of v4g-type g-bosons and 
the resulting sUg4 i( l ,  1) quantum algebra^ is characterised by the relations

[/Co,A±] = ± K ±

K - K + - q ^ K + K .  = I2XoJ,4,, =  [2Xo1,2 (9.22)

where the generators are given by

Ko = \ ( N  + i / 2 ) ,  7C+ =  (K . )» =  [217,*a*2 (9 .2 3 )

^The notation here is somewhat unfortunate. In order to keep the mapping from Bq 
to Aq as simple as possible, the two “boxes” [•], and [J, are defined using different bases
so that Hqz.i = [ ' ] , -
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The g^-commutation relation between the A'+ and A'_ can therefore be 
written as

=  +  (9,24)
J 2 l g 2  [ 2 ] g 2  ( 2 l g 2  [ 2 ]

Equation (9.22) is formally similar to the defining relation of the Aq algebra

aa^ -  qa^a — I  (= [7)^) (3.22)

There is, however, one im portant difference. The Identity operator / ,  being 
central, commutes with every other operator and so behaves like a c-number. 

This has a number of consequences which are crucial to the success of the 
procedure which led to the construction of the unitary operator in chapter 7.

Firstly, we recall tha t equation (3.22) was iterated to obtain

a(o*)" -  ?"(a*)"a =  (7.70)

Iteration of (9.24) leads to the relation

^2 r ^^2 *9 \  71 9 /  *0  ̂ n —1
,2n

|2|., 1 [2|„. J " I [2],. J |2]., I [2]„ j ^
(9.25) 

which implies

X _ X Î - î 2 ”A -;X_ =  H ,,X Î-* (2 X o  +  ( n - 1)1,2 (9.26)

The operator [2ATo +  (n -  1)]^2 is neither central nor independent of (what 
would have been the summation index) n. Consequently, we are not able 
to form the g-exponential in the same way as was done in chapter 7. This 

implies tha t the expansion of the product

Eq2(K + )K ^ B ,- 2( -K + )  (9.27)

does not term inate after a finite number of terms. Unfortunately, the devel
opment of the reordering relations (7.60, 7.61, 7.62) which are a t the heart 

of the technique is dependent upon the termination of the series of nested 
g-commutators. It therefore seems likely tha t the construction of a uni

tary squeezing operator by these means is not possible. It remains an open
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question, however, whether the quadratic Hopf-algebraic deformations of 
sl(2 ) such as those given by Woronowicz [Wor;87a], W itten [Wit:90] or Fair- 
lie[Fai:90], or even more general quantum deformations [FZ:91, FN:94] can 
be used to make any progress in this area.

If we set aside the search for a squeezing operator, we can nevertheless still 
look for a construction of the squeezed state in the same way that coherent 

states can be formed without the explicit knowledge of the displacement 
operator. One very useful result that gives a clue to the form of the such a 
state is due to Solomon [Sol:92]. He considered the defining relation of the 

squeezed state to be given by

(a +  pa^)\(T; p) =  t \(t\ p) (9.28)

where r  is some quantity related to p and a. This is a direct analogue of the* 
conventional case. From (8.37) the conventional one-mode squeezed state 

may be written

I A; y) =  A{v\ A) exp^-^i/6^^^ exp(A6^)|0) (9.29)

where A, i/ 6 C. This gives the eigenvalue equation

(a -I- i/Ĝ )|A; y) =  A|A; !/) (9.30)

For the g-case, Solomon showed that the unnormalised state

|A; u) =  £,2 B,(Aa*)|0> (9.31)

satisfied (9.28) provided A and u are g-numbers rather than c-numbers. The 

quantities now have to obey

Xu = g^i/A (9.32)

The form of (9.31) may require some explanation. For example, it might 

have been thought tha t the correct expression should have involved only 

g-exponentials rather than the g^-exponential that does appear. However,
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by use of the standard differential realisation of the algebra Aq (a — qDx, 
—*■ x) and the g-deformed Leibniz and Chain rules for the g-derivative 

[Sol:92, FZ;91J, it can be seen that (9.31) does indeed give a sensible defini
tion.

As it stands, the state |A;i/) given by (9.31) is somewhat problematic. By 
setting the g-number y to zero, it can be clearly seen that the state is a 

squeezed form of the g-coherent states of Kowalski and Rembielinski, not 

those found in [MS:94b]. As noted there, this means that evaluation of ex
pectation values is extremely difficult. Instead of using the state defined by 

(9.31) in tha t form, we will proceed by an indirect method. We will first cal
culate the squeezed vacuum state and then use the unitary operator defined 

in chapter 7 to generate a set of states by displacing the squeezed vacuum. 
These will then be shown to have the required eigenvalue properties.

9.3 T he q-Squeezed  Vacuum  State

The form of the squeezed state proposed by Solomon suggests tha t we con
sider as a candidate for the q-squeezed vacuum^ the vector (v) given by

\v) =  £ ,2  A ((,C)|0> (9.33)

where are formally conjugate variables. By explicit calculation the
following result can be seen to hold (see appendix)

a\v) =  (9.34)

If

K ,r i  =  0 (9.35)

the left and right eigenvalue eigenstates are identical and we can extend 
(9.34) to

a|v) = -CaV) = 4
—  — (u|^*
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We can also rewrite |i;) as

|v) =  .4(C, r  |0)

where normalisation of the squeezed-vacuum

{v|t/) =  1

implies tha t the normalisation constant is given by

(9.37)

(9.38)

A ( ( , r )  =  A ( c n  =  l E
(((*)" (9.39)

S  |2 i r  (W ,:!)

9 .3 .1  N o ise  P r o p e r tie s  o f  th e  q -S q u e e z e d  V a cu u m  S ta te

In what follows we use the following two lemmas proved in the appendix: 

Lemma 1:

Lemma 2:

Then

(0|a”*a*"|0) =

(O k" f { N )  o*"|0) =  N ,!5 „ ,„7 (n )

(9.40)

(9.41)

r  (Z É ÎZ :.= ..a a-(v|a|v) =  A(((*)(0| <

=  0

since (v|a^”^a(o^)^” lv) =  0 for m ,n  G N. Similarly

(v|a^|v) =  0

W«2! (a^)2n M 0)A (a*)

(9.42)

(9.43)

Since the phase space picture of the squeezing process is problematic, there 

is no advantage to be gained in using the quadrature operators rather than
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the field components. We therefore use the conventional definition of the 
field components. For the %-component, we obtain

{X) ,  =  {v\X\v) (9.44)

=  (vl2-'''^(o +  a*)k> (9.45)

=  0 (9.46)

Using the property (9.36), the quadratic operator averages can be calculated.

(a^)v ■ =  (■y|û |̂'y) (9.47)

=  -(v |aa^ |i;) (  (9.48)

=  -^(aa^)v (9.49)

(a^^)v =  -^*(aa^)„ (9.50)
and

Then

= jy = (a  4- a )̂ j  (9.51)

=   ̂ |a “ H - 4 - 4 - a^aj (9.52)

=  i  4 - 4 - (g“  ̂4 -l)aa^ -  g~^| (9.53)

(9.54)

We will use another lemma, (proved in the appendix)

Lemma 3:
(8.55)

Therefore we have that

{x^)v  =  Y

1 f i - c - e + c r i
2 1 i - 9 ^ r  J
1 (1 -  0 ( f  ~  o
2 1 -
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Then the variance of the A'-component of the field in the squeezed vacuum 
is given by

( A X ) l  = {X^)„ -  (X>; =  9 , ( 4 '  (9.57)

If we now calculate the variance in the P-com ponent, we find that

(P)„ =  ( i ; | - ^ ( a  -  a^)|i;) =  0 (9.58)

and

{P^)v — (9.59)

=  —-  — (1 +  g ^}{cta^)v +  (9.60)

=  - ^ { r / - ' - { ( l + 9 - ' ) + ( + r } ( a & 4 . }  (9.61)

So the variance of the P-com ponent of the field in the squeezed vacuum is
given by

We also calculate the covariance of A’ and P.

{ A X P )  = {^^{XP + P X ) ) - { X ) { P )  . (9.65)

which implies that, in the squeezed vacuum |v),

( A X P ) ,  = ( i ( X P  +  P X )  )„ (9.66)

i( .V P  +  P X )  = - i  -  a*') (9.67)

(AXP) „  = i ( v |( o ^ - ( i* ^ )k )  (9.68)

=  (8.69)

=  &(Æ̂)

Now

So
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Then -

(A.Y)2 (AP)2 -  ( A X P ) ^  (9.71)

_ 1 f(i-f)(i-r)(i+()(i+r)i ! / ( ' - (  Y
-  n  ( T Z ^  (8.'2)

*\21 ( i - « * ) (9.73)

Now

and since

we have

4 ( 1 -»(( ') :

■  (Kff#)}'
(A”. P] =  i[a,a^] =  (9.75)

+ 1 _  1
aa^ =  [N +  l)g =  ^  ̂ (9.76)

( g ' \  =  g - 4 ( g - l ) ( a a t ) „  +  l} (9.77)
1 -  £f*

= r z # ;

Therefore the field observables in the squeezed-vacuum state, jv), satisfy

( AX ) ^  (A P ); -  (A X P)5 =  i (  - i l X , P j  )„ (9.79)

which is the lower bound for the Robertson-Schrodinger Uncertainty Prin

ciple.

9.4 T he D isplaced q-Squeezed Vacuum  State.

In the conventional theory, the squeezed states of the electromagnetic field 
are produced by applying the unitary displacement operator to the squeezed 
vacuum state. For example, if 5(£) is the operator which, when applied to 

the vacuum, produces the squeezed vacuum, and V(z )  is the displacement 
operator, then the most general squeezed state would be

| ( , 4  =  D (z )S (()  |0) (9.80)
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Ideally, when looking for a g-deformed version of this, we would like the 
analogues of D{z)  and 5 ( 0  to be unitary operators. A unitary g-analogue 

of the displacement operator was given in chapter 7. Unfortunately, the 
unitary analogue of the squeezing operator 5 ( 0  has not yet been found. 

Nevertheless, we can produce a g-analogue of the general squeezed state, 
even if the general form of the q-squeezing operator is not known. This is 
done by applying the g-displacement operator to the g-squeezed vacuum 
state detailed in the previous section.

We recall that the g-analogue of the displacement operator is the operator 

U{z,z*)  where

(9,81)

where

and

So

and

U ( z , z ' Ÿ U ( z , z ' )  = U(z , z ' )U( z , z ' ) ^  =  I  (9.82)

U^qU  =  a + zq’̂  (9.83)

C /V t/ =  é  + z*q^ , (9.84)

U ^ X U  =  y* * (a +  a t)£ / (9.85)

=  — 4- a* 4- (z 4- (9.86)

=  X  +  ^ ^ ( z  +  z*)q^ • (9.87)

(9.88)

U ^ P U  =  £ t _ L ( a - a t ) £ /  (9.89)
zv2

=  4- (z — z*) g^^} (9.90)

=  P 4 - - ^ ( z - z O /  . (9.91)
%v2
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We consider the state js) given by

|s) =  U{z,z*)\v) (9.92)

Then clearly, since |y) is normalised and U is unitary, we have

(sjs) =  (î;| U^U |i;) =  =  1 (9.94)

i.e. |s) is normalised.

If we calculate the expectation values of the creation and annihilation oper

ators in this state, we obtain

(a)^ =  (.s|a|s) =  .{v\U^aU\v) (9.95)

=  {v\a + z q ‘̂ \v) (9.96)

=  (v|a |u) +  {v\z (9.97)

=  ('ü|2Ç^^|v) (9.98)

where we have used the fact, (9.42), that the expectation value of the anni

hilation operator in the squeezed vacuum is zero. Similarly we find tha t

{a^)s =  {v\z*q‘'^\v) (9.99)

Then the expectation values of the field quadratures A' and P  are

{X) ,  =  M a *  ( ^ ( a  +  « ' ) ) a w  (9 .100)

=  +  o*) +  ( j  +  (9.101)
v2

=  ̂ ( « | ( z +  ; ' ) , % >  (9.102)

and

( f ) .  =  ( « i a » ( ^ ( a - o t ) ) a M  (9.103)

=  - ^ ( v | ( a - a * )  + (2 -3 * )9 '^ |i;)  (9.104)
i \ j 2

=  T 4 (« l(z  -  z ' ) 4 " w  (9.105)
i\J2
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To evaluate these expectations, it is necessary to calculate the action of 
objects such as z*q‘̂  on the squeezed vacuum. This is done in the appendix. 
The main result we use is that if

and

then

and

so

and

.(z  (9.106)

^z: = q^z*^ (9.107)

{^*q^)v =  =  2* (9.108)

=  z (9.109)

(A)s =  ^ ( z  +  z*) (9.110)

=  (9.111)

Hence {x f s  =  ^(z +  z*f  and {pf l  =  - \ ( z  -  z*f.

To calculate expectation values of the operators and we use the 
result that, for any function /  of z and z*,

{v\ f{z , z*)aq‘̂ \v) = 0  (9.112)

This can be proved using lemma 2 of the previous section. Then

{x^)s  =  (s |x 2 |s) (9.113)

=  (v\U^X'^U\v) (9.114)

=  (w| | x  +  ^ ( 2  +  2*)ç^I  |v) (9.115)

,=  (t;|X2M  +  i ( « | ( 2  +  2*){A-?'^ +  «'''X}|i-) (9.116)

+  5<1'1(  ̂+  ^ * ) '9 '" |w> (9.117)

=  {A-'>. +  5(«I(^ +  ^*)V '''|«>  (9.118)
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where equation (9.112) and its conjugate has been used in the last line.

The result

has corollaries

z |u) =  |f) z

('ü| =  z^

(i;| =  z*^

(t;| z z*Q̂ ^̂ |"u) =  zz*

(v.;| =  z * z

(9.119)

(9.120)

(9.121)

(9.122)

(9.123)

Therefore

i(x;|(z +  ^*)'f/-’̂ '|d') .=  +  zz* +  (9.124)

(9.125)

and so, from (9.118), we see that

 ̂ ~ (9.126)

If we now calculate the variance of the field component A', we find that

(A A -L  =  -  <A)

Using equations (9.110) and (9.126) we obtain

= (A'-)u

= (AA'-)u

tha t is, using (9.56),

(A A ^), =  <A')u =  :
2 1 -

(9.127)

(9.128)

(9.129)

(9.130)

(9.131)
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We can calculate the variance in the P-component in a similar manner. We 

find that

{P)s = r ^ { z - z ' f  (9,132)

(P^)s =  ( P ^ ) . - i ( . - - 2*)  ̂ (9.133)

{A P %  =  (P ’ )„ -  5 (2  -  2 ' ) ' +  ^ (2  -  .-*)■' (9.134)

=  { P \  (9.135)

SO

^ A P \  = (9.136)

=  { A P \  (9.137)

We can also calculate the covariance (A A P)

[ A X P ) ,  =  (i(A 'P  +  PA ) >, -  I i  ((A ),(P ), +  (P ),(A ),) I (9.138)

where the noncommutivity of the expectation values, {X)s  and (P)g, neces
sitates the symmetrisation procedure in the last term.

From (9.67), we have that

( i ( A P  +  P A ) ) ,  =  ( - 1 ( 0 ^ - a * 2 ) ) .  (9.139)

=  —i {(û^)s — (o^^)s} (9.140)

=  —« I (9.141)

=  - i  {c? -  a}^)v - i { z ^  — z*^) (9.142)

Also, from (9.110) and (9.111),

i  {{X)s{P)s + (P ) .(A ),)  =  - i  -  2*2) (9.143)

so

(A A P)s — —î(a2 — a*2)y —  ̂(s^ — .2*2) +  2 (2  ̂ — 2*2) (9.144)

=  -2 (o2 -a*2 )„  (9.145)

=  ( AX P ) y  (9.146)
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Thus, from equations (9.130), (9.137) and (9.146)

(AA')2 (AP)2 -  (AA'P)2 (9.147)

=  (AA')2 (A P)J -  (A AP)2 (9.148)

-  (i(ffë)r <•■“ •>

The Robertson-Schrodinger uncertainty term for both the squeezed-vacuum 

state and the general squeezed state is therefore

l/ (A A ) | (A P ) | -  (A A P )I =  i / ( A A ) î ( A P ) 2 - ( A A P ) 2 ( 9 . 1 5 0 )

The definition given above allows the same distinction, as in the conven
tional theory, to be drawn between squeezed states and correlated coherent 
states [DM:94). We may consistently take the variable (  to be stable un
der the ♦-involution (corresponding to a real value in the q = I case) which 

makes the covariance between the components vanish and the states obey the 
Heisenberg Relation. Alternatively, as we have seen above, the *-structure 
on the ^ variable may be such that ^ ^  in which case the states may be 
termed q~Correlated Coherent States.

9 .4 .1  E ig en v a lu e  P r o p e r tie s  o f  th e  q -S q u e e z e d  S ta te s

The properties of the ^-displacement operator mean that

aU  = U a + Uzq^^  (9.152)

and
a* a  =  C/o* +' £/ (9.153)

Taken with the eigenvalue properties (9.36) of the squeezed vacuum state, 

this allows us to calculate the eigenvalue properties of the general g-squeezed 

state.

a|s) =  aU\v)  (9.154)

■= a o | « )  +  a2?-^ |t)) (9.155)

145



=  C/(-ft^|ü) ^) +  C/z (9.156)

= -  +  U z*q^ ’̂ j  ju) ^ + U z f/' '̂lu) (9.157)

=  -ft^[s) ^ -  U z*q‘̂ \v) Ç -j- U z q̂ "̂  \v) (9.158)

Using (9.119) and its conjugate to move z*q^ and z q ‘'̂  through |y) and 
tidying up the equation, we obtain

a |s ) - f  a^|s)^ =  |s) (z -  z*0 (9.159)

which in the r/ —> 1 limit becomes the familiar eigenvalue equation for the 
squeezed state

(a +  ^a^)|5) =  (z -  z*()|s> . . (9.-160)

The form of (9.159) explains why it was not possible to form the squeezed 
state using the SUq{l, l)-coaction on the ç-boson algebra. Multiplying the 
equation on the left by (s|, we see that

(s|a|s) t  («(a^is) (  =  (s|s) (z -  (9.161)

This suggests that any transformation of Bogoliubov-type will be between 
squeezed expectation values rather than the g-boson operators themselves.

9 .4 .2  O th er  D e fin it io n s  o f  th e  q -S q u e e z e d  S ta te

If we simply consider the ^-squeezed vacuum state, |u), we see that since ^ 

and commute with each other, there is a realisation of the state in which 

they are conjugate complex numbers. Obviously the procedure detailed 
above to produce the full g-squeezed state would not be applicable to this 
realisation since € C would commute with the noncommuting variables 

z and z*. However, the state l'y) with € C (which we will henceforth 
denote as jr)) is still of some interest. For example, equation (9.79) indicates 

tha t the Robertson-Schrodinger lower bound, Br s , is attained numerically 
rather than just algebraically. Moreover, we now have the numerical lower 

bound
(AP)2 -  (A AP)2 =  I  (9.162)
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where p is the ratio

If we calculate the bound in the (unsqueezed) vacuum |0),

■ \J {A X )l {AP) l  -  ( A X P ) l  = 1 (9.164)

Thus we see that for q G (0,1), the squeezed state has a lower value for 

B rs  than the vacuum value. Convergence requirements on ^ for the q^-  

exponential means that p cannot be negative.

The state |?') was formed without an explicit knowledge of the unitary q-  
analogue of the squeezing operator, simply by g^-exponentially acting with 

the square of the creation operator on the vacuum state and then normal
ising. In essence, this is the method used by most authors to construct 

quantum  group coherent states. One could extend this procedure to give an 
analogue of the full squeezed state by exponentially acting with the creation 
operator on the g-squeezed vacuum |r). Such a state would have the advan
tage that the parameters are ordinary c-numbers and not non-commuting 

variables.

If we define a new state

k i)  =  |A,Oi =  N(A,^)Eg(An^)|r) (9.165)

where iV(A,^) is the normalisation, then using (7.70), we see tha t

a |s i)  =  iV(A,^)aPg(Ao^)|r) (9.166)

=  A r(A ,0{s,(?A a*)a |r) +  A£,(Aa*)|r>} (9.167)

=. £J,(?Aa*){£;,(Aa*)}-‘o |si) +  A|«i> (9.168)

SO tha t we may use (5.78) to obtain

û |si) =  {1 -I-(g — l)a^}(—̂ a^)|si) +  A|si) (9.169)

I.e.
| a  + + ^(g -  l)a^ ^ | |s i) =  A|si) (9.170)
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The deformation induces an term which goes to zero in the g 1 limit.
Unfortunately this means that the algebraic method to find the variances, 
which was detailed above, no longer works and the uncertainty product has 
to be calculated numerically. Work on this problem is in progress.

9.5 Appendix: P roof o f R esults 

P r o o f  o f  E q u a tio n  (9 .36 )

We wish to prove that

a|y) =  — =  —a^jv) ^ (9.171)

Firstly, we note that

a(Ça*2)"|0) =  {^"î2’*(at)2™a +  ç'*(2n|-(at)2"-‘}|0> (9.172)'

= . Ça*[2n|„Ç"-'(a*)2("-‘)|0) (9.173)

Therefore

Consequently

a E ,2  f j  |0) =  (9-176)

and the first part of equation (9.36) follows. Since ^ commutes with all the 

other elements tha t make up |y), the second part also follows. The result 

for is obtained simply by taking the hermitian conjugate.

P r o o f  o f  L em m a s 1 and  2
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Clearly, lemma 1 is a special case of lemma 2 with a trivial function f(N).

We will therefore only prove Lemma 2.

(0|o”* /(iV) a*"|0) =  / ( n )  (9.177)

We make use of the completeness property of the Fock space basis

In) =  - l ^ j O )  (9.178)
V N ,*

to see that

(0 |a - /( iV )  a+-tO) =  (9.179)

=  (m|y[mlg![nl^! f {n)  |n) (9.180)

=  (m|n> y/[m]^\[n]^\ f {n)  (9.181)

=  àm,n W_! / ( n )  (9.182)

P r o o f  o f  L em m a  3

We wish to prove the lemma that

We first note the following preliminary results.

! • )

so tha t

II.)

III.)

I H  =  H,2(21, (9-184)

=  [2n -  IL  (9.185)
|2n -  l|,|2n],[2n], _

H , 4"],2(21,[21,

[2n +  l] ,  =  9[2n], +  l  (9.186)

(l)[-y) =  1 (9.187)
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(I) and (II) are clear from the definition of the basic number. (Ill) can be 
proved by direct calculation.

(“I®’’

=  <0|d
M .2!

(9.188)

' |0) (9.189)

( - T ^ (
" '  (0|o2”  (a*)2'*|0) '  ’

tn H 02!

00

=  E ( « ' ) "
„tS (2]f (N,̂ !)2 

* \ - 2

* (9.190)

(9.191)

(9.192)• =  - m * r

where we have made use of Lemma 1 in line 3 of the above equation. Hence

■’ 'V  K

IV.) We next prove the relation

it is clear that |u) =  A{^^*)Eq2 ( 1 |0) is normalised.

(9.193)

This is again done by explicit calculation

’ V  \  |2 ] f  /
(9.194)

-  1)14 
-  11. 2 ')^

12"-11, (9.195)

(9.196)
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)2

f
}

(9.197)

= « (« • )

* «n.«o>ç{|£fgÿ (9.198)

=  1

Thus we obtain the relation

5 ( f n = î ( « * ) 5 ( « n + ( ç r )

which clearly proves (9.193)

(9.199)

r  1 |2)f (N,2!)̂  J ! -« « •
(9.200)

We are now In a position to prove the lemma. 

(ao*)« =  .4 ((( ')^  (0| <

=  E
m,n W , 2 l  ■ H , , !

(%')" [2n +  l |,l  ■

5(dC )

► |0)

(9.201)

(9.202)

where in the last line, we have use equations (9.193), (9.196) and (9.199). 
The lemma

1 -
(9.203)

is therefore proved.

P r o o f  o f  E q u a tio n s  (9 .1 0 8 ) an d  (9 .1 0 9 )
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We consider the action of z*q’̂  on the squeezed vacuum | y).

(9.204)

=  E

=  E

=  E

M«2*

N,

HO) /!(& (*) (9.205)

Ho) A((,r% 9.206)

If

then

~ w ]

Wgz'

^z* = q^z*i

=  q ^ ^ z * C

|0> A ( ( ,C )  (9.207)

(9.208)

(9.209)

so given this constraint upon the noncommutative variable ^ and z*, (with 

an associated constraint upon z and by conjugation), we have

Ï - T - f
i o ) . 4 ( ? , r )

= £,J-p-Ço*2j|0)r*.4(ï,r)

Hence

{v\z*q^\v) = (nil/) A ( ( , r ) - '2 : 'A ( ( , r )

A { i ,c r ^ z * A { ^ , c )

(9.210)

(9.211)
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Now so that we can commute the z* through the normal
isation function provided

Cz* = g " " z T  (9.212)

i.e.
( r  =  (9.213)

This explains the choice of commutation relations in (9.106) and (9.107).

Given the above conditions, we obtain the result (9.108) that

(y|z*g^^'|u) =  z* (9.214)

Equation (9.109) is obtained by taking the hermitian conjugate.
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Chapter 10

T he U se o f Noncom m uting Variables in 
Quantum  M echanical States

The use of noncommuting variables in the formalism outlined in chapters 7 
and 9 clearly raises some im portant conceptual problems. The coherent 

states of the conventional boson algebra are defined in terms of commuting 
objects, i.e. complex numbers. These numbers have relatively straightfor
ward interpretations in terms of distances in phase space and the associated 
uncertainties of the physical field. This situation changes dramatically with 
the introduction of the g-commuting variables of the Manin plane. The 
phase space description is no longer available and new intuititive pictures 
are needed to describe the situation. Indeed the conventional probabilistic 
quantum  mechanical interpretation breaks down because square amplitudes 
no longer represent probabilities.

In some ways this problem is similar to that of the interpretation of an- 
ticommuting Grassmann variables that appear in many areas of modern 
physics, most notably in supersyihmetric field theories. At the present time 
there has been little discussion [DH:87, Nie:92), and almost no consensus, 
on the physical meaning of such anticommuting terms. Nevertheless, if the 

present study of swper-physics is to succeed at all, it must make contact with 

the measurable physical quantities (i.e. real numbers) that experimentalists 
obtain in the laboratory. While there is some slight evidence for super
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symmetry, it has come from the study of areas such as nuclear [Iac:81] and 
atomic systems (KNT:88J and is indirect and inconclusive. However, this has 

not stopped the application of supergroup and superalgebra techniques to 
a whole host of problems from condensed m atter physics (see (DRS:94) and 

references therein) to quantum optics [Nie:93]. W hat has motivated the large 
number of researchers is the fact that there exists an extension of the con

ventional formalism which has been found to be mathematically consistent. 
The fact that physicists feel able to proceed without a direct understanding 
of all the terms in their equations simply shows tha t the physical interpre
tation of a theory does not always precede its mathematical development. 

This in turn is reminiscent of the early days of quantum mechanics when, for 
example, discussion was aroused by the physical interpretation of imaginary 
numbers in the wavefunction.

Unfortunately, the problem with g-commuting terms is more complicated 

than tha t of Grassmann variables. The nilpotency of the latter objects sim

plifies the structure of their functions. It is also possible to define some kind 
of topology on the Grassmann plane, turning it into a Grassmann manifold. 
As yet, no such construction has appeared for the Manin plane. However, 

as stated in chapter 7, there have been attem pts to use g-numbers (e.g. 
[GF:91]) in place of the usual field of complex numbers and even attem pts to 

construct a topology by considering the elements of the quantum plane to be 

noncommuting coordinate functions on the space [ShM:94j. This suggests 
that the problem needs to be addressed in the wider context of noncommu
tative geometry. Here, there is at least some understanding of the problems 
tha t spaces of noncommutative variables would solve, such as giving a sound 
basis to field theoretic renormalisation schemes, alleviating the need for a 
space-time manifold structure, etc. Recently, Schirrmacher [Schi:94] con
structed another deformation of the exponential function which is related 

to orthogonal quantum  symmetries and used it to construct plane-wave so
lutions with noncommuting variables. It is hoped that further investigation 

of the noncommutative differential geometry of quantum groups will allow
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a clarification of the issues involved and eventually lead to a resolution of 

the problem. Nevertheless,, the existence of a formal noncommutative q- 
deformed extension of the coherent and squeezed states of bosonic operators 

suggests that it may be profitable to examine further systems which admit 

simple g-deformation.
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