
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Framework for Assessing Object-Oriented Analysis
Methods
Thesis
How to cite:

Liang, Ying (1996). A Framework for Assessing Object-Oriented Analysis Methods. PhD thesis. The Open
University.

For guidance on citations see FAQs.

c© 1995 Ying Liang

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Ying Liang BSc., MSc.

A Framework for A$sessing
Object-Oriented Analysis Methods

Submitted for Ph.D. in Computer Science

The Open University

October 1995

ProQuest Number: C507877

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest C507877

Published by ProQuest LLO (2019). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

Abstract

Research into the literature of object-oriented analysis methods finds no evidence of any

framework available which might provide a basis for understanding individual object-

oriented analysis methods. In order to overcome this deficiency, we establish a framework

which focuses on the analysis features of object-oriented methods as well as the logical

connections among these features and which enables people to understand object-oriented

analysis methods individually by assessing these methods in an objective and systematic

way.

The definition of the framework is based upon the study of object-oriented analysis

methods available in a wide range. Four representative object-oriented analysis methods

are in particular used in a specific application in the study in order to identify the generic

features of object-oriented analysis methods. Two aspects (i.e., 'what' and 'how' aspects)

of analysis methods are found to be fundamental in the methods and they are emphasised

by this fi-amework. The essential features of the methods are therefore identified and

assessed upon the two aspects, by means of the framework. Furthermore a process

including the approach and criteria is provided for managing the assessment of the

methods.^
/

Ten object-oriented analysis methods available have been assessed individually

using this framework. The processes of assessing five of the methods are shown in the

thesis in detail, as the examples of applying the framework. In addition, the assessment of

the other five methods is also outlined and included as it may be useful for people to

understand these methods fi'om different perspectives.

Acknowledgements

I am very thankful to

• Mike Newton and Hugh Robinson, my supervisors, for their guidance and discussion

on the work in this thesis and for their patience during the write-up,

• the Faculty of Mathematics and Computing at the Open University for offering me a

studentship for this study,

• my husband, Yi Fan Xu, for his love, encouragement, and support throughout the

study, and

• my parents for their understanding and supporting during the study.

Contents

1. Introduction 7

1.1 Object-Oriented Analysis Methods 8

1.1.1 Promotion of Object-Oriented Analysis 8

1.1.2 The Role of Object-Oriented Analysis in System Development 10

1.1.3 Object-Oriented Methods 11

1.2 Comparative Studies of Object-Oriented Analysis Methods 12

1.3 Limitations of the Comparative Studies 15

1.3 .1 No Separation of Analysis Features and Design Features 15

1.3.2 No Assumption of Logical Connections between Comparative

Features 16

1.3.3 No Emphasis on the Understanding of Object-Oriented Analysis
/

Methods 16

1.4 Aims of Our Research Work 17

1.4.1 A Framework for Assessing Object-Oriented Analysis Methods 18

1.4.2 A Study of Object-Oriented Analysis Methods 19

1.4.3 Applications of the framework 20

1.5 The Structure of the Thesis 21

2. A Study of Four Analysis Methods 22

2.1 A Book Trader Scenario 22

2.2 The Study of Four Analysis Methods 24

2.2.1 The Study of the OOA Method (Coad and Yourdon) 24

2.2.1.1 Claims of the OOA Method 24

2.2.1.2 Inputs Required 25

2.2.1.3 Analysis Addressed 25

2.2.1.4 Products Generated 37

2.2.2 The Study of the OMT Method (Rumbaugh et al.) 37

2.2.2.1 Claims of the OMT Method 37

2.2.2 2 Inputs Required 38

2.2.2 3 Analysis Addressed 38

2.2.2 4 Products Generated 52

2.2.3 The Study of the Booch Method 52

2.2.3.1 Claims of the Booch Method 52

2.2.3.2 Inputs Required 53

2.2.3.3 Analysis Addressed 53

2.2.3 4 Products Generated 58

2.2.4 The Study of the Wirfs-Brock Method (Wirfs-Brock et al.) 59

2.2.4.1 Claims of the Method 59

2.2.4 2 Inputs Required 59

2.2.4 3 Analysis Addressed 59

2.2.4 4 Products Generated 72

2.3 Assumptions about Analysis 72

2.3.1 Assumptions in the OOA Method 73

2.3.2 Assumptions in the OMT Method 74

2.3.3 Assumptions in the Booch Method 75

2.3 .4 Assumptions in the Wirfs-Brock Method 76

3. The Framework 77

3.1 Essential Features of Object-Oriented Methods 77

3.1.1 Basic Assumptions about Object-Oriented Analysis 77

3.1.2 Essential Features of Analysis Methods 78

3.2 Definition of the Framework 80

3.2.1 What' and "How" Aspects of Analysis Methods 80

3.2.2 The Definition of the Framework 80

3.3 The Principle Part 84

3.3.1 Fundamental Principle 84

3.3.2 Fundamental Concept 86

3.3.3 Model 87

3.3.3.1 Type of Model 88

3.3.3.2 Elements in a Model 88

3.4 The Practice Part 90

3.4.1 Notation 90

3.4.2 Tactic of Analysis 91

3.4.3 Input of Analysis 92

3.4.4 Process of Analysis 92

3.4.4.1 Step or Activity 92

3.4.4.2 Substep or Action ° ’ 92

3.4.4.3 Guideline and Criteria 93

3.4.5 Product of Analysis 93

3.5 The Process of Using the Framework to Assess an Object-Oriented

Analysis Method 94

3.5.1 Stage 1: Analyse the Method 95

3 .5 .1.1 Activity 1.1: Analyse the 'What' Aspect of the Method 95

3 .5 .1.2 Activity 1.2: Analyse the 'How' Aspect of the Method 100

3.5.2 Stage 2: Assess the Method 103

3 .5 .2.1 Activity 2.1: Assess the 'What' Aspect of the Method 104

3.5.2.2 Activity 2.2: Assess the 'How' Aspect of the Method 108

3.5.2.3 Activity 2.3: Assess the Relationships between the

Two Aspects of the Method 111

3.6 Glossary 116

4. Analysis ofFive Analysis Methods Using the Framework 119

4.1 Stage 1 ; Analyse the OOA Method (Coad and Yourdon) 120

4.1.1 Acti\dty 1.1: Analyse the 'What' Aspect of the OOA Method 120

4.1.2 Activity 1.2: Analyse the 'How' Aspect of the OOA Method 123

4.2 Stage 1 : Analysis of the OMT Method (Rumbaugh et al.) 130

4.2.1 Activity 1.1: Analyse the 'What' Aspect of the OMT Method 130

4.2.2 Activity 1.2: Analyse the 'How' Aspect of the OMT Method 135

4.3 Stage 1 : Analyse the Booch Method 145

4.3.1 Activity 1.1: Analyse the 'What' Aspect of the Booch Method 145

4.3.2 Activity 1.2: Analyse the 'How' Aspect of the Booch Method 148

4.4 Stage 1 : Analyse the Wirfs-Brock Method (Wirfs-Brock et al.) 153

4.4.1 Activity 1.1: Analyse the 'What' Aspect of the Wirfs-Brock Method 153

4.4.2 Activity 1.2: Analyse the 'How' Aspect of the Wirfs-Brock Method 156

4.5 Stage 1: Analyse the Syntropy Method (Cook and Daniels) 163

4.5.1 Activity 1.1: Analyse the 'What' Aspect of the Syntropy Method 163

4.5.2 Activity 1.2: Analyse the 'How' Aspect of the Syntropy Method 170

5. Assessment of Five Analysis Methods Using the Framework 177

5.1 Stage 2: Assess the OOA Method (Coad and Yourdon) 178

5.1.1 Activity 2.1: Assess the 'What' Aspect of the OOA method 178

5.1.2 Activity 2.2: Assess the 'How' Aspect of the OOA method 181

5.1.3 Activity 2.3: Assess the Relationship between Two Aspects

of the OOA Method 183

5.2 Stage 2: Assess the OMT Method (Rumbaugh et al.) 186

5.2.1 Activity 2.1 : Assess the 'What' Aspect of the OMT Method 186

5.2.2 Activity 2.2: Assess the 'How' Aspect of the OMT Method 189

5.2.3 Activity 2.3: Assess the Relationships between Two Aspects

of the OMT Method 191

5.3 Stage 2; Assess the Booch Method 194

5.3.1 Activity 2.1: Assess the 'What' Aspect of the Booch Method 194

5.3.2 Activity 2.2: Assess the 'How' Aspect of the Booch Method 197

5.3.3 Activity 2.3: Assess the Relationship between Two Aspects

of the Booch Method 198

5.4 Stage 2: Assess the Wirfs-Brock Method (Wirfs-Brock et al.) 201

5.4.1 Activity 2.1: Assess the 'What' Aspect of the Wirfs-Brock Method 201

5.4.2 Activity 2.2: Assess the 'How' Aspect of the Wirfs-Brock Method 204

5.4.3 Activity 2.3: Assess the Relationship between Two Aspects

of the Wirfs-Brock Method 206

5.5 Stage 2: Assess the Syntropy Method (Cook and Daniels) 207

5 .5 .1 Activity 2 .1: Assess the What' Aspect of the Syntropy Method 207

5.5.2 Activity 2.2: Assess the 'How' Aspect of the Syntropy Method 210

5.5.3 Activity 2.3: Assess the Relationship between Two Aspects

of the Syntropy Method 211

5.6 Understanding of the Five Analysis methods 221

5.6.1 Understanding the 'What' Aspects of the Methods 221

5.6.2 Understanding the 'How' Aspects of the Methods 226

5.6.3 Conclusions from the above Understanding 229

6. Conclusions and Future Work 231

6.1 Conclusions 231

6.1.1 The Problems of the Current Research of Object-Oriented

Analysis Methods 232

6.1.2 The Framework: a Solution to the Problems 234

6.1.3 Contributions 236

6.2 Other Potential Use of the Framework and Future Work 248

6.2.1 Establishment of Evaluation Criteria 249

6.2.2 Development of Generic CASE Tools for Object-Oriented Analysis 250

Appendix: An Outline of the Assessment ofFive Other Analysis

Methods Using the Framework 251

1. The Shlaer/Mellor Method 251

1.1 The What* Aspect of the Shlaer/Mellor Method 252

1.2 The 'How' Aspect of the Shlaer/Mellor Method 254

1.3 The Relationship between Two Aspects of the Shlaer/Mellor Method 256

2. COSE (Jacobson et al.) 257

2.1 The 'What' Aspect of DOSE 258

. 2.2 The 'How' Aspect of DOSE 260

2.3 The Relationship between Two Aspects of COSE 262

3. OSA (Embley et ai.) 263

3.1 The 'What' Aspect of OSA 264

3.2 The 'How' Aspect of OSA 266

3.3 The Relationship between Two Aspects of OSA 268

4. Ptech (Martin and Odell) 271

4.1 The "What' Aspect of Ptech 271

4.2 The *How' Aspect of Ptech 273

4.3 The Relationship between Two Aspects of Ptech 275

5. HOOD 276

5.1 The 'What' Aspect of HOOD 276

5.2 The 'How' Aspect of HOOD 278

5.3 The Relationship between Two Aspects of HOOD 280

References 281

Chapter 1: Introduction

Chapter 1

Introduction

A variety and range of object-oriented analysis methods are currently available for use in

the construction of software systems utilising object-oriented technology. It is important

to gain both a comprehension and a deeper understanding of the nature of these individual

methods in order to interpret them precisely and correctly. For example, we need to

understand why they take the form that they do, what fundamental assumptions they make

about object-oriented analysis, to what extent the similarities and differences between

object-oriented analysis methods are real rather than merely apparent, and so on. A

comprehensive basis that includes the essential aspects of these analysis methods needs to

be provided in order to answer such questions. Such a basis would enable individual

object-oriented analysis methods to be analysed and assessed. Unfortunately, very little

effort has been made so far on the creation of such a basis, as will be demonstrated

through our research. Although many comparative studies of current object-oriented

analysis methods have been carried out in recent years they can hardly be used as such a

basis since they only concentrated on the (comparatively superficial) features that

distinguish one analysis method from another, failing to address the deeper and significant

fundamental constructs of the methods. Further research into object-oriented analysis

methods has to be done in order to provide a basis for genuine comprehension and

understanding, without which little real progress will be made in either applying the

methods or in enhancing existing methods and in developing new methods.

Historically, a similar change of emphasis — from a comparative study to a more

fundamental study — can be found in the research on traditional development methods.

7

Chapter 1: IntrodticHon

For example, in the early 1980s, a series of comparative reviews of infomnation system

analysis and design methods (CRIS) were undertaken by IFÏP Working Group 8.1, to

obtain the comparative information concerning a range of development methods [OUe82

and 83]. Although many interesting results were produced from these comparative studies

that might be helpful in choosing an appropriate method for a desired application

[Verrijn82], these studies did not really provide a basis for an understanding of individual

information system development methods. To overcome this limitation, a framework (that

is, a more fundamental basis) was established by the group in the late 1980s [OUe88]

which focused on some essential features of these methods.

Our research work aims to establish a similar framework that provides a

comprehensive basis for understanding individual object-oriented analysis methods in an

objective and systematic way. In this chapter, the background of our research work is

briefly given in Section 1.1. The comparative studies of object oriented analysis methods

are outlined in Section 1.2 and their limitations are discussed in Sections 1.3. The aims of

our research work are stated in Section 1.4 and, finally, the structure of the thesis is

presented in Section 1.5.

1.1 Object-Oriented Analysis Methods
Object-oriented analysis, its role in system development, and object-oriented analysis

methods are discussed in this section as the necessary background knowledge to this

thesis.

1.1.1 Promotion of Object-Oriented Analysis

Analysing system requirements is a stage in system development in which analysts need to

determine what a software system needs to do, according to the system requirements,

without concern for implementation details. Analysis can be carried out by using various

analysis skills and methods, such as entity-relationship modelling [Chen80 and 83, for

Chapter 1: Introduction

example], structured analysis [DeMarco78, Gane79, Yourdon89, for example] and now

object-oriented analysis [Coad91a, Rumbaugh91, for example].

Historically, although it is claimed that rudimentary 'object-oriented* techniques

had been even used by the designers of the Minuteman missile as early as 1957 [Ten89], it

is commonly accepted that the object idea was introduced in the computer field in 1967

when a discrete event simulation language, Simula-67, was created by Kristen Nygaard

and Ole-Johan Dahl in Norway [Dahl78, Salmons93]. The term ‘object-oriented* initially

appeared when the language Smalltalk [Byte81] was developed in the 1970s [Graham94].

Since then more and more programming languages that lay claim to be ‘object-oriented*,

such as C++ [Stroustrup86, Wiener88] and Eiffel [Meyer88], have been promoted by

academics and companies in the last few years.

In order to produce a large and complicated software system with object-

orientation, since the late 1980*s the 0 -0 industry has started to shift its focus, from its

former preoccupation with programming languages and issues, to more general concerns

about architectural issues including the more elusive continuum involving analysis and

design [de Champeaux91, Wiener91]. As Cook [Cook93] states, the development of

object-oriented systems as a discipline has been marked by conferences that have taken

place since 1986, and object-oriented design appeared initially in 1986 when Grady Booch

introduced the concept of object-oriented design to the Ada community. This design

approach has been used on a significant percentage of Ada development efforts

[Booch86]. More object notation and object-oriented design methods (e.g.,

[Wasserman89, Ince91, Capretz93]) were developed subsequently [Walker92]. Object-

oriented analysis has only been emphasised in recent years [Coad91a, Rumbaugh91, for

example]. Prior to the development of object-oriented analysis methods, system

requirements were analysed by using conventional analysis methods before designing this

system in terms of object-oriented design methods [Jamsa84, Alabiso88, Kennedy88,

Ward89, Constantine89, Sully90, Lee91, de Champeaux91, Eckert94],

Chapter 1: Introduction

1.1.2 The Role of Object-Oriented Analysis in System Development

A majority of authors of books and papers indicate that object-oriented analysis and

object-oriented design have different concerns and strategies in systems development,

object-oriented analysis having, in particular, a distinct content and a distinct role. For

example, Coad and Yourdon [Coad91b] state that analysis is the process of extracting the

‘needs’ of a system—what the system must do to satisfy the client, not how the system

would be implemented. A further distinction was made in [Coad91c]: “OOA identifies ^ d

defines classes and objects that directly reflect the problem domain and the system’s

responsibilities within it. OOD identifies and defines additional classes and objects,

reflecting an implementation of the requirements. OOA and OOD are distinct disciplines—

whether applied in sequence or in some intertwined fashion.”

Rumbaugh [Rumbaugh94] distinguishes between analysis and design in the

following fashion: “analysis is understanding a problem; design is devising a strategy to

solve the problem; implementation is building the solution in a particular medium. This

does not mean that these stages are rigidly defined, but I think that they are useful mile

posts along the way, just as we distinguish between an outline and a book, although some

of the intermediate steps may overlap.”

Shlaer and Mellor [Shlaer92] suggest that object-oriented analysis is for identifying

the significant entities in a real-world problem and for understanding and explaining how

they interact with one another.

Jacobson et al [Jacobson92] defined object-oriented analysis as ‘in analysis, an

application-oriented specification is developed to specify what the system offers its users.’

Henderson-Sellers [Henderson92] differentiates between object-oriented analysis

and object-oriented design thus: “the analysis-level model is then primarily concerned with

providing an accurate picture of the real-world situation, and an OOA model must have

this as its primary objective. The object-oriented design (OOD) model’s major objective is

to support ‘good’ software engineering design in terms of correctness, modularity,

reusability, and abstraction (Meyer (1988)). ... This separation of analysis and design, and

the explicit recognition of language constructs and analysis constructions, are fleeted in,

10

Ompter 1: Introduction

and supported by, currently emerging analysis and design methodologies, e.g., Coad and

Yourdon (1991), Wirfs-Brock et al (1990), Booch (1991), Henderson-Sellers and

Edwards (1990), and Rumbaugh et al (1991).”

According to these authors’ points of view, object-oriented analysis and design

have different strategies and heuristics — as well as content — in system development,

because of their different concerns in system development. Object-oriented analysis

emphasises what a software system needs to take into account in accordance with system

requirements and creates a specification of a system; whilst object-oriented design

concentrates on how to realise this system in a computer environment and how to

construct the architecture of this system. In this respect, our distinction between analysis

and design is in sympathy with that of Embley, Jackson and Woodfield [Embley95]. These

differences are essential in system development, even if some methods may use similar

notations to represent both object-oriented analysis results and object-oriented design

results.

1.1.3 Object-Oriented Methods

Various object-oriented techniques and methods relevant to object-oriented analysis have

been reported on in conferences or published in the literature in the last few years (e.g.,

[Booch86 & 91, Shlaer88 & 92, Bailin89, Bear90, Helm90, Gibson90, Kirk90, Wirfs89

and 90, Freitas90, Ackroyd91, Coad91a, Lee91, Rumbaugh91, Embley92, Henderson92,

Martin92a and 92b, Nerson92, Drake92, Sully93, Honiden93, Coleman94]). Because

object-orientation makes it possible to develop and evolve an object-oriented system from

the analysis stage to the design stages without any sudden discontinuity [Rumbaugh94],

some methods carry out system development without a clear separation between analysis

and design (e.g., [Wirfs91]), whilst other methods may separate analysis and design into

two clear stages (e.g., [Coad91a and 91b]). For the latter, the first stage of a method is

usually described as an “object-oriented analysis method” as only object-oriented analysis

11

Chapter 1; Introduction

is supported, whilst for the former, a method is usually simply called an “object-oriented

design method” even though it also covers the analysis stage of system development.

In different studies, the object-oriented methods that play a dual role in system

development (i.e., doing both analysis and design) may be regarded as object-oriented

analysis methods (e.g., [de Champeaux92]), or as object-oriented design methods (e.g.,

[Fowler91]), or as object-oriented analysis-and-design methods (e.g., [Monarchi92,

Amold91]) because of the different emphases of these studies. Our research focuses on

object-oriented analysis but not object-oriented design and therefore, for the further

purposes of the work, we view them to be object-oriented analysis methods. That is, we

call all such methods “object-oriented analysis methods” (or, where the context is clear,

simply “analysis methods”) in this thesis as long as they support object-oriented analysis

in system development.

1.2 Comparative Studies Of Object-Oriented Analysis
Methods

Some comparative studies of object-oriented methods have been carried out,

concentrating mainly on superficial similarities and differences between methods. The

studies examined in our research included [Amold91], [de Champeaux92], [Fowler91] and

[Monarch i92]. They are briefly described as follows.

(Vt The Comparative Studv of Arnold [Amold91]

— Objective

To highlight the similarities and differences between analysis and design methods in

order to assist the practitioner in deciding on an appropriate method for their

applications.

— Focus

Object-oriented analysis and design.

— Comparative features

12

Chapter 1: Introduction

The comparison is carried out by scoring methods against a set of possible features

that cover four main aspects of OOA and design methods:

• concepts that the methods may use,
• models that the methods may provide,
• processes that the methods may offer for building the models, and
• pragmatics that the methods may address as non-technical features.

These features are emphasised in the study since the authors assume that (a) a

disciplined software, process is the essential factor determining success [Coleman91],

(b) a method should support the representation of the concepts that assume the most

prominent role in object-oriented systems, (c) a method proceeds by developing

models of systems under analysis or design, and (d) other factors that may influence a

method’s usage in the software engineering community.

(2) The Comparative Studv of Fowler [Fowler91j

— Objective

To provide a way of looking at what is available for analysis and design, and what

are the similarities and differences between methods. ^

—Focus

Object-oriented analysis and design.

—Comparative features

This comparison is only concerned with one feature that object-oriented methods are

likely to have; i.e., object-oriented modelling, with three different views of systems:

• data view,
• behavioural view, or
• architectural view.

This feature is focused on since the author supposes that (a) the view of systems

addressed by a method implies a way to model applications, and (b) different analysis

and design methods may analyse the same application in terms of different views.

13

Chapter 1; Introduction

(3) The Comparative Studv of de Champeaux Tde Champeaux92]

— Objective

To describe what analysis methods have in common and where they differ.

— Focus

Object-oriented analysis.

— Comparative features

The comparison is concerned with the following features:

• Purpose of the methods,
• Models offered by the methods,
• Boundary of analysis and design,
• Graphic notations,
• Relationships among objects and classes,

• Object creation and destruction, and
• Process of analysis.

These comparative features are selected since the authors assume that these features

are shared by a majority of object-oriented analysis methods.

141 The Comparative Studv of Monarchi [Monarchi92]

— Objective

To provide a framework for comparing and evaluating current analysis and design

methods.

—Focus

Object-oriented analysis and design.

—Comparative features

Three critical features are included in this framework:

• Representation offered by the methods,
• Process of analysis or design supported by the methods, and
• Complexity management.

These features are selected from the analysis and design characteristics described by

Colter [Colter84] and Pressman [Pressman87].

14

Chapter 1: Introduction

1.3 Limitations of the Comparative Studies
The comparative studies introduced in the previous section focus on different object-

oriented methods that support either object-oriented analysis or object-oriented analysis-

and-design in system development. The studies produced a list of the (mainly superficial)

similarities and differences between the methods. However very little exploration of the

extent to which these similarities' and differences were real rather than apparent was made

in these studies since their objectives did not address such issues. In particular, the major

limitations of these studies to an understanding of object-oriented analysis methods are as

follows.

1.3.1 No Separation of Analysis Features and Design Features

These comparative studies did not emphasise the distinction between analysis features and

design features. Extra efforts have therefore to be made in order to explore the analysis

features and the foundations of object-oriented analysis methods.

Section 1.1.2 has shown that object-oriented analysis is fundamentally different

from object-oriented design since they have different strategies, heuristics and concerns in

system development. Consequently, the features and contents of analysis and design are

also different. For example, all analysis methods (e.g., [Coad91a] and [Rumbaugh91])—

but not object-oriented design methods (e.g., [Coad91b]) — have a feature that identifies

objects from the system requirements, as analysis is concerned with problem domains

rather than computer domains [Booch91]. A clear separation of analysis features from

design features is essential in order to analyse the strategies, heuristics and concerns of

individual analysis methods in system development, to reveal the particular and

fundamental characteristics of those methods, and to understand them more objectively,

precisely and correctly.

15

Chapter 1; Introduction

1.3.2 No Assumption of Logical Connections between Comparative
Features

The features of an analysis method may have an impact on one another to some extent

because of the inherent logical connections between them in the method. One typical

example is the impact of an analysis model on the analysis process in a method. The

analysis process ought to cover the definition of each element in an analysis model since

the process must satisfy the detail of constructing the object models. The OOA method

[Coad91a], for instance, defines an object model as five-layer model and therefore it

provides five analysis activities in its analysis process; while the OMT method

[Rumbaugh91] creates three different models in analysis and therefore three major steps

are included in its analysis process, each step being responsible for constructing one

model.

A consideration of the logical connections between the features of an analysis

method is essential in order to understand the method fi’om different viewpoints and to

explore the details and motivations behind the features (for instance, why a method has

particular features and to what extent these features are supportive of each other).

Comparative studies, by their nature, do not emphasise the logeai connections between

the comparative features.

1.3.3 No Emphasis on the Understanding of Object-Oriented Analysis
Methods

In view of the objectives of these comparative studies, they do not address any

understanding or comprehension of individual analysis methods; i.e., issues such as why

these methods take the form that they do, what the fundamental constructs of the methods

are, why methods make different assumptions about both the process of analysis and the

nature of object-oriented technology, and so on. The studies are therefore not appropriate

as a comprehensive basis for understanding any individual analysis method. Although the

studies bring out the (superficial) similarities and differences between analysis methods,

16

Chapter 1: Introduction '

they do not clarify to what extent these similarities and differences are real rather than

apparent. For example, the term ‘object’ has different meanings in the OOA method

[Coad91a] from that of the Wirfs-Brock method [Wirfs90]: the former assumes that an

object is an encapsulation of attribute values and their exclusive services that act on the

attributes; while the latter supposes that an object encapsulates both functions and data

that are included in the functions. Thus these two methods seem to have the apparently

similar feature ‘object’, but this is not true in terms of the real content of each one. The

comparative studies do not focus on and explore such detail, in particular, they do not

explain why the same term has different meanings in two, or more, methods.

1.4 Aims of Our Research Work
At the beginning of Chapter 1, we mentioned that, for understanding traditional

development methods, a framework had been established by IFIP Working Group 8.1

[011e88], based upon the comparative study and feature analysis of the methods [OUe82

and 83]. To understand traditional analysis, the framework covered the features which

were regarded as fundamental in the methods: modelling concept, model with different

perspectives o f a system, and deliverable to design. We, however, do not think that it is

appropriate to use Olle’s framework as a comprehensive basis for understanding object-

oriented analysis methods because of the following reasons:

(i) Olle’s framework is not concerned with object-orientation and thus it does not

emphasise object concepts and models.

(ii) There is a debate as to the compatibility of object-oriented development with

traditional analysis [Firesmith91, Shumate91]. The concepts of traditional analysis

may not be appropriate for adoption in object-oriented analysis.

(iii) The study of current object-oriented analysis methods shows that some concepts

such as ‘inheritance relationship’ and ‘object behaviour’ are new to system analysis

17

Chapter 1: Introduction

and modelling. This means, it is impossible to use Olle’s framework for assessing

and understanding such concepts in object-oriented analysis methods.

A new framework that focuses on object concepts and which supports

understanding of object-oriented analysis methods has, therefore, to be established.

Although Olle’s framework cannot be used to understand object-oriented analysis

methods, the process of developing the framework, as illustrated in [011e82, 83, 88],

provides a useful experience for establishing a similar framework. That is, to build a

framework for understanding object-oriented analysis methods, the first step is to study

existing object-oriented analysis methods, e.g., by using the methods in applications or by

textbook research, so that the essential features of the methods are explored naturally;

and the second step is to identify and capture the essential features of the methods

discovered in the first step and then define them in the framework. Our research aims to

establish the required framework in a similar process, including a rectification of the

limitations in the comparative studies of object-oriented analysis methods.

1.4.1 A Framework for Assessing Object-Oriented Analysis Methods

As a basis for understanding the nature of individual object-oriented analysis methods, the

proposed framework covers a set of basic features which a majority of these analysis

methods have. This framework however never assumes which method is best, instead it

aims to clarify the meanings and the contents of these features in an individual analysis

method. Unlike Olle’s framework, which reflects the standards of traditional modelling

(e.g., ‘dataflow’, ‘process’, ‘entity’, ‘entity relationship’, ‘event’, ‘state’, and so on), our

framework does not emphasise any standards in object modelling, since object-oriented

analysis methods are still immature and it is difficult to choose and decide on standards at

present.

This framework enables a method to be ‘disassembled’ into small (and fundamental)

parts so that it can be analysed and assessed more easily. The logical connections between

features are also emphasised and expressed in terms of the framework, to provide a deeper

18

Chapter 1: Introduction

understanding of a method. Another expected contribution of the framework is that it

supports a broader, objective appreciation of what an object-oriented analysis method

ought to contribute to system development. In general, this framework can be regarded as

a vehicle for understanding, innovating, improving, comparing and evaluating analysis

methods.

In order to use the framework to assess an analysis method, a process of

assessment is provided in section 3.5. In the process, an approach to (and relevant criteria

for) using the framework to assess an analysis method are given, so that an assessment of

a method can be carried out step by step, ensuring that the features identified are

consistent with the components in the framework. The criteria are specified in a

questionnaire form so that the features — and the relationships between the features —

are identified by answering the questions.

1.4.2 A Study of Object-Oriented Analysis Methods

As stated above, in a similar fashion to that of pile’s framework, our framework is built

upon a wide study of many existing object-oriented analysis methods. The first step in our

study is to focus on obtaining both theoretical knowledge and practical experience about

the methods. The theoretical knowledge about the methods comes from reading the text

books which introduce and interpret the methods; while the practice experience is gained

by using typical analysis methods in a specific application so that it can be found whether

or not the essential characteristics of object-oriented analysis methods, claimed in the text

books, are really supported by — and useful to — their application.

In this study, four representative methods [Coad91a, Rumbaugh91, Booch91,

Wirfs90] are particularly investigated both by reading the text books to see what the

methods promise to do, and by using them to analyse a specific problem — a book trader

scenario— in order to explore the extent to which these promises are realised in practice.

The use of the methods may provide more details behind the textual description. The study

focuses on the following aspects:

19

Chapter 2; Introduction

• what each method promises to do for analysis,

• how each method carries out analysis,

• what (and why) assumptions are made by each method for analysis, and

• what (and how) analysis product is generated by each method.

This study enables us to recognise the fundamental assumptions about object-oriented

analysis in general, providing a basis for identifying and determining the essential features

in analysis methods. These essential features are incorporated into the framework, since

they are considered significant in the understanding the nature of object-oriented analysis

methods.

1.4.3 Applications of the Framework

The fi-amework established by this study enables us to assess any method individually,

using the process of assessment provided in section 3.5. Ten methods have been assessed

by using the framework in our research. Because of the size limitation, however, this

thesis only presents the assessment process and the results for five representative object-

oriented analysis methods (i.e., the OOA method [Coad91a], the OMT method

[Rumbaugh91], the Booch method [Booch91], the Wirfs-Brock method[Wirfs90], and

Syntropy [Cook94a]) in detail (in Chapter 4 and 5). In addition, the assessment results of

another five methods (i.e., the Shlaer and Mellor method [ShlaerSS], OOSE [Jacobson92],

OSA [Embley92], Ptech [Martin92a] and HOOD [Robinson92]) are outlined in the

Appendix A. Nevertheless, these applications of the framework provide useful examples

and, in particular, demonstrate the process of using the framework in the assessment of

any other object-oriented analysis method.

It should be noted that we have so far already published two papers, [Liang93 and

94], which show the work completed in the early stage of our research. These two papers

have also provided a basis for establishing the fi*amework presented in this thesis.

20

Chapter 1: Introdiatim

1.5 The Structure of the Thesis
As Stated in thé previous section, our research work includes three major parts: a study of

a number of methods — in particular, four methods which were used for a specific

application; the establishment of the required fi-amework (based on the study of the

methods); and the applications of this firamework. The presentation structure of this thesis

is thus as follows: the study of four representative methods and the conclusions of the

study are discussed in Chapter 2; the required framework is defined and interpreted in

Chapter 3; and the application of this firamework to the five methods (the four

representative methods plus Syntropy) are demonstrated in Chapter 4 and 5. The

conclusions of our research work, the other potential use of the fi-amework, and fiiture

work are discussed and indicated in Chapter 6. Finally, the Appendix outlines another five

methods assessed by means of the fi-amework.

21

Chapter 2; A Study of Four Analysis Methods

Chapter 2

A Study of Four Analysis Methods

This chapter describes a study of four analysis methods, i.e., the OOA method [Coad91a],

the OMT method [Rumbaugh91], the Booch method [Booch9I] and the Wirfs-Brock

method [Wirfs90]. These methods are commonly considered as representative methods

which are used in many academic and industrial applications [Glykas93], and are also

taught as typical object-oriented methods in education [Lovegrove92]. For this study,

first we reviewed the text book describing each method and established the claims made

by the method, and second we analysed each method in detail, i.e., what the method

assumes about analysis, by applying each one to analyse the book trader scenario

described in Section 2.1. The detail of the study is given in Section 2.2. Based on the

results fi'om the study, the basic assumptions of these methods about analysis are

summarised in Section 2.3.

2.1 A Book Trader Scenario
An International Standard, [IS087], has used an example in a similar way, and

recommends that such a Universe of Discourse should be sufficiently small so that a large

description is not required, but sufficiently complex to exhibit the essential differences

among the various methods. Consistent with this recommendation, we selected a book

trader scenario as an example application that is small but adequately complex to exhibit

the details such as objects and classes and their attributes and operations, etc. that appear

22

Chapter 2-. A Study of Four Analysis Methods

in many object-oriented methods [Synder93]. In particular, this scenario represents

requirements typical of information systems. This enabled us to establish more precisely

the assumptions of analysis methods, since it is considered that there are many similarities

between object modelling and information modelling. For instance, D. Coleman and F.

Hayes said in their paper [Coleman91] that 'the information modelling ideas are especially

useful in determining an appropriate class structure*. The OOA method [Coad91a] is even

claimed as an integration of object concepts and information modelling concepts. The

book trader scenario we used is as follows:

The company is concerned with selling books by advertising in magazines. Each

advertisement is placed in one magazine on a given date, and includes a number of books described

by their titles, authors and publisher, together with the price at which the company is offering each

book; a book may have a different price in different advertisements.

A potential customer can buy one or more of the advertised books by mailing the company

an order form, which is included as part of each advert, giving details of their name and address,

the title and the price as specified in the advertisement of each of the books they require and the

total cost. Payment is required, either by including a cheque for the total amount due or by giving

a credit card number. An alternative way of buying books is to telephone the company and give

the same order details, but in this case a credit card number is the only way of paying. The

company then either waits for a cheque to jb̂ cleared by its bank or, for a credit card where the

amount due is more than its floor limit, gets authorisation from the card company. Once payment

for an order is approved, a receipt is produced, the ordered books are taken from stock and sent to

the customer with the receipt.

This business is supported by an information system in which the unique ISBN for each

book is recorded, together with its title, the names of its authors, the name of its publisher, its cost

price and its current stock level (i.e., the number of copies of the book in the company’s

warehouse). For each advertisement, the name of the magazine in which it appears and the date of

the issue is recorded, as well as the list of books and their price given in the advertisement. Each

order is assigned a distinguishing order number and details are recorded of the customer, the date,

the books required, the total cost and a credit card number if that is the chosen method of payment.

23

Chapter!: A Study of Four Analysis Methods'

Customer details include their name and address, but they are only relevant to a specific order (i.e.,

there is no requirement to associate a customer with all orders they may have placed).

The information system is required to support the above business activities, together with

two kinds of enquiries. One enquiry requests the number of orders resulting from a given

advertisement. The other enquiry requests details of the progress of a specific order (e.g.. Are the

books available? Have they been sent? etc.), identifying the order by giving either an order number

or the details of the customer and the advert to which they responded.

2.2 The Study of Four Analysis Methods
This section presents the study of the four selected analysis methods by describing the use

of each of them to analyse the book trader scenario given above. The following issues in

particular were addressed by this study;

(1) what each method claims about object-oriented analysis;

(2) how each method analyses the book trader scenario; and

(3) what assumptions each method makes about analysis.

The study therefore focuses on the following aspects of each method:

(1) claims o f the method,

(2) required inputs to the analysis,

(3) analysis addressed, and

(4) products generated from the analysis.

2.2.1 The Study of the OOA Method (Goad and Yourdon)

2.2.1.1 Claims of the OOA Method

The OOA (Object-Oriented Analysis) method [Coad91a] is claimed as an object-oriented

analysis method that merges the best concepts from information modelling, object-oriented

programming languages and knowledge-based systems. It is based on the assumption that

'object-oriented* means 'classes and objects, inheritance and communication with

24

Chapter 2: A Study of Four Analysis Methods

message*. In particular it focuses on the principles: abstraction, encapsulation (also

information hiding), inheritance, communication with messages, pervading methods o f

organisation, and scale. An OOA model is defined by this method in order to specify the

results of analysis. Underlying these principles, an OOA model consists of five layers:

class-&-objects layer, structure layer, subject layer, attribute layer, and service layer. To

build an OOA model, a data-driven analysis process is provided that includes five

activities:

* Finding class-&-objects, identifying structures, identifying subjects, defining
attributes, cmd defining services.

These activities can be carried out in any order. The analysis supported by this method is

supposed to focus on the problem domain and the system*s responsibilities.
)

2.2.1.2 Inputs Required

The required input to analysis is a description of a problem domain given by users and

representing requirements for a system.

2.2.1.3 Analysis Addressed

The claims of the OOA method above show that this method is considered to support

analysis of a problem domain (the book trader scenario here) by carrying out the five

activities. Our use of this method to analyse the given book trader scenario is as follows.

Activity 1: Finding Class-&-Objects

This activity builds a class-&-objects layer for a book trader system.

Object—An abstraction of something in a problem domain, reflecting the capabilities of a .
system to keep information about it, interact with it, or both; an encapsulation of
attribute values and their exclusive services, (synonym: an Instance)

Class—A description of one or more objects with a uniform set of attribute and services,
including a description of how to create new objects in the class.

Class-&-objects—A term meaning 'a class and the objects in that class'.

25

Chapter 2; A Study of Four Analysis Methods

(1) Where to Look

To identify candidate class-&-objects from the book trader scenario, the method

advises us to investigate the relevant problem domain by observing first-hand, listening to

problem d o m ^ experts, checking previous analysis results and other systems, repeatedly

reading description, and prototyping the analysis.

(2 ̂What to Look for

We are advised to look for structures, other systems, devices, things or events

remembered, roles played, operational procedures, sites, and organisational units from the

book trader scenario and then to select class-&-objects that should be significant in the

book trader system according to the criteria given by the method.

(3) What to Consider and Challenge

The given criteria that determine the significant class-&-objects are that there

should be a) needed remembrance, b) needed behaviour, c) with multiple attributes, d)

with more than one object instance, e) with always-applicable attributes, Q with always-

applicable services, g) from domain-based requirements, and h) not merely derived

results.

From this activity, five class-&-objects— Book, Advert, Mailorder, PhoneOrder

and Customer— vtext defined in the class-&-objects layer, as shown in Figure 2.1, since

they are needed to be remembered or to play a role in a book trader system. The

classification of class-&-objects Mailorder and PhoneOrder was however found difficult

since it was not quite appropriate to consider them as things. The names were given based

on the name rule of OOA: the name of a class-&-objects should be a word in the standard

vocabulary of the problem domain.

Things remembered:

Role played:

^ M aiinrd ^ ^ ^ fhoifflgPirder ^

Customer

Figure 2.1 The Class-&-Objects Layer of the System

26

Chapter 2: A Study of Four Amlysis Methods

Activity 2: Identifying Structures

This activity identifies généralisation-spécialisation and whole-part structures.

Structure—Structure is an expression of problem-domain complexity, pertinent to
the system's responsibilities. The term 'structure' is used as an overall term, describing
both généralisation-spécialisation (Gen-Spec) Structure and whole-part structure.

Généralisation-spécialisation (Gen-Spec) structure is considered as a *is a kind o f

structure among classes: a specialisation class is a kind of generalisation class and it

inherits the definition of the latter. Whole-part structure is considered as a ''has a'

structure among class-&-objects: a whole class-&-objects has a part class-&-objects. A

structure is supposed to help to understand the system's responsibilities and to identify

missed objects and classes.

(1) Identifying Généralisation-Spécialisation Structures

In this activity, we are advised to consider each identified class-&-objects as either

a generalisation or a specialisation, and ask the questions: “Is it in the problem domain? Is

it within the system’s responsibilities? Will there be inheritance? Will the specialisation’s or

generalisations meet the ‘what to consider and challenge' criteria given in activity 1 for

class?”. Under this guidance, one generalisation class Order was defined on the classes

Mailorder and PhoneOrder. Order is a class rather than a class-&-objects, since it is not

a description for which there will be objects. This généralisation-spécialisation structure is

represented by Figure 2.2(a).

Order

ailOrder honeOrder

Figure 2.2(a) The Gen-Spec Structure of the System

(2) Identifying Whole-Part Structures

a) What to look fo r

A potential whole-part structure may be one of the structures: assembly-parts (e.g., an

aircraft and engine(s)), container-contents (e.g., an aircraft and pilots), or collection-

27

Chapter 2: A Study of Four Analysis Methods

members (e.g., an organisation and clerks). One container-contents structure, Order-

Customer, was defined for the book trader system and is shown in Figure 2.2(b). This

choice was based on the guidance that if the problem domain and system

responsibilities include a qualified content class-&-objects to a specific container object,

a container-contents structure is needed.

^ a i lO r d e r ^ ^ h o n e O r d ^ ^

Figure 2.2(b) The Structure Layer of Book Trader System

b) What to Consider and Challenge

In a container-contents structure, each class-&-objects satisfies the criteria given, i.e., it

a) is in the problem domain, b) is within the system's responsibilities, c) captures more

than just a status value, and d) provides a useful abstraction in dealing with the

problem. The container-contents structure Order-Customer satisfies these criteria.

Activity 3: Identifying Subjects
This activity builds a subject layer for a system.

Subject—A subject is a mechanism for guiding a reader through a large, complex
model. Subjects are also helpful for organising work packages on larger
projects, based upon initial OOA investigations.

(1) How to Select

In order to build a subject layer, uppermost class-&-objects or classes in structures

are promoted as subjects, each of which covers a sub-domain of the problem domain. The

class-&-objects Advertisement and the class Order, in the structure layer of the book

trader system were thus promoted.

(2 ̂How to Refine

A subject is refined according to sub-domain, with minimal inter-dependencies (i.e.,

structures, instance connections) and minimal interactions (i.e., message connections)

between it and other subjects. Three subjects were thereby defined for the book trader

28

Chapter 2: A Study of Four Analysis Methods

system: a) ‘advertisement* subject with Advertisement, b) ‘order’ subject with Order,

Mailorder, PhoneOrder, and Customer, and c) ‘book’ subject with Book, as shown in

Figure 2.3.

/Advertisement ̂ Order

honeOrder

Figure 2.3 The Subject Layer of the System

Activity 4: Defining Attributes

This activity defines an attribute layer for a system.

Attribute—An attribute is some data (state information) for which each object in a
class has its own value.

An attribute layer contains the attributes in, and instance connection between, objects.

InstanceConnection—An instance connection is a model o f problem domain
mapping(s) that one object needs with other objects, in order to fulfil its
responsibilities.

(1) Identifying Attributes

The method advises that attributes are identified by asking the questions for a single

object: “How is the object described in general? How is the object described in this

problem domain? How is the object described in the context of this system’s

responsibilities (i.e., what does the system need to know about the object)? What does the

object need to know? What state information does the object need to remember over

time?” Each attribute ought to represent a single value or tightly-related grouping of

values. Normalisation and identification mechanisms (i.e., visible identifier) are deferred to

design. Each selected attribute is assigned to the class-&-objects or class that it best

describes.

Under these guidelines, the following potential attributes were identified and put in

the class-&-objects in the book trader system:

Book—ISBN, Title, Author, Publisher, Price, StockLevel

29

Chapter 2: A Study of Four Analysis Methods

Advertisement—MagazineName, IssueDate
Order—OrderNo, OrderDate, OrderState
M ailorder—PaymentDetail
PhoneOrder—CreditCardDetail
Customer—Name, Address.

Defining Instance Connections

The following guidelines are given to identify and define the instance connections

among objects within a system:

a) for each object within the system, connection lines are added between it and other objects if

they reflect mappings within the problem domain and the system’s responsibilities;

b) for a Gen-Spec structure, the connection line is connected with the uppermost applicable level

of the structure;

c) the amount or range of the connections, such as one-to-one, is defined for each connection in

form of lower bound-to-upper bound;

d) if an upper bound is more than one, check whether connected objects have special constraints

(e.g., the most recent time). If so, additional attributes (e.g., DateTime) need to be added to

the corresponding class-&-objects; and

e) if a constraint is across more than one instance connection, it can be specified within

a connected class-&-objects specification template as ‘additional constraint’.

Under these guidelines, three instance connections were identified and defined in

the book trader system, as shown in Figure 2.4(a).

Advertisement
MagazineName
IssueDate ilm.

Ojn

Ijn

ÇnsU
Con}

Book
ISBN
Title
Author
Publisher
Price
RtnrlfT

0,m

3
ce
ction)

l,m

^ Order
OrderNo
OrderDate
OrderState

I
laiiO rdei. PhoneOrder

^ ^reditCardPetail ^

ustomer
Name
Address I —

Figure 2.4(a) The Initial Attribute Layer of the System

30

Chapter 2: A Study of Four Analysis Methods

(3) Checking Special Cases

In this action, the initial attribute layer of the book trader system is validated and

revised if needed. A check-list for attributes and instance connections is as follows;

• For the attributes identified, the following aspects need to be considered:

a) for each attribute, if one of its values is not applicable or it does not apply here, to

consider whether another Gen-Spec structure is defined;

b) if a class or a class-&-objects only has one attribute, to consider whether or not it is

important to the system. If not, it might be defined as an attribute of another class-

&-objects; and

c) if an attribute has repeating values, it may be defined as a new class-&-objects.

According to these criteria, the attributes in Figure 2.4(a) were checked as follows:

— According to the book trader scenario, the value of attribute ‘PaymentDetail’ is either

cheque detail or credit card detail, namely there always is one value that is not

applicable. According to a), an additional Gen-Spec structure was added to the

structure layer of the system in Figure 2.4(a)(see Figure 2.4(b)).

— According to b), there are two class-&-objects. Mailorder and PhoneOrder, that have

only one attribute. They however should be kept since they are important to the book

trader system.

— According to the book trader scenario, the price of a book may be different in different

advertisements, that is, the value of the attribute ‘price’ in the class-&-objects Book has

repeating values with costing price and selling price. According to c), an additional

class-&-objects SellingPrice was defined with an attribute ‘Amount’. This class-&-

objects is related to both Advertisement and Book.

• For instance connections between objects, the following aspects need to be validated:

a) for each many-to-many instance collection, in order to describe the connection some

attributes might be defined by introducing another class-&-objects;

b) if there exists an instance collection between objects of the same class, it should be

reviewed;

31

Chapter 2: A Study of Four Amdysis Methods

c) for multiple instance connections between same two objects, it should be reviewed to

determine if an additional class-&-objects may be added between them;

d) for each pair of objects, check the existing instance connections to see if additional

ones may need to be added; and

e) if one connecting object has a special meaning, an attribute may be needed to add to

the affected class-&-objects.

According to these criteria for instance connections, there was no need to change

the book trader system.

The changes to attributes are given in a second version of the attribute layer of the

book trader system in Figure 2.4(b). In this version, it was considered that one of the

class-&-objects PhoneOrder and CreditCardOrder should be deleted as their attributes

are the same. As a possible solution, we deleted the class-&-objects PhoneOrder and

added an attribute *OrderType* in the class-&-objects Order to distinguish between mail

orders and phone orders. The third version of the attribute layer is shown in Figure 2.4(c).

OrderAdvertisement
OrderNo
OrderDate
OrderState

MagazineName
IssueDate ce

sUssl Lm

C /SeMingPrice^^
Amount 1

^
PhnncOrder"N

CreditCardDetail

irhcqueOrder CreditCardOrder
ISBN
Title
Author
Publisher
CostPrice
StockLevel

ChequeDetail CreditCardDetail

Customer
Name
Address

Figure 2.4(b) The Second Version of the Attribute Layer of the System

32

Q uêter 2'. A Study 0/ Four Amdysis Methods

ÉAdvertisement
MagazineName
TSiSiieDaffi____

%:
t

^ellingPricc \
I Amount |

'y Ijnl
O ' Book

ISBN
Title
Author
Publisher
CostPrice
StockLevel

(Instc
Com Ijn

r O rder \
OrderNo
OrderXype
OrderDate
OrderState

Ji,m N- -y

I I
^CheqeOrder M /CreditCardOrder^ |
^ChequeDetail ^ ^CreditCardPetaü J j

^Customer
Name
Address

Figure 2.4(c) The Third Version Of the Attribute Layer of the System

Activity 5: Defining Services

This activity describes the ser^dces in objects and classes.

Service—A service is a specific behaviour that an object is responsible for exhibiting.

The services in an object are identified by considering its states, required services on it,

and the message connection between it and other objects.

f n Identifying Object States

Object states imply the behaviour of an object from creation to deletion and they

are based on the values of the attributes of the object. The states are identified by

examining the potential attribute values and then checking whether or not the system’s

responsibilities include different behaviour for these values. The states and state changes

of an object are illustrated by an object state diagram.

In the book trader system, CheckOrder and CreditCardOrder have different states

depending on the value of the attribute * OrderState’; their object state diagrams are drawn

in Figure 2.5.

33

Chapter 1. A Study o/Four Analysis Methods

State= received

State= dispatch booksState= dispatch book

State= wait for
clearing cheque

State=wait for
clearing credit card

ChequeOrder

State= received |

CreditCardOrder

Figure 2.5 Object State Diagrams within the System

(D Identifinng Required Services

Two kinds of services are identified for the OOA method: algorithmically-simple

services and algorithmically-complex services.

a) Identify Algorithmically^Simple Services

Usually, four algorithmically-simple services need to be defined for each class-&-

objects:

•Create, a service to create and initiate a new object in the class,

•Connect, a service to establish a mapping between an object with another,

•Access, a service to get or set the attribute values of an object, and

•Release, a service to disconnect and delete an object.

However, these services do not need to be exhibited in the service layer as every class-&-

objects in a system always implies them.

b) Identify Algorithmically-Complex Services

These services are either calculation services or monitoring services:

• Calculate, a service to calculate a result fi’om the attribute values of an object, and

• Monitor, a service to receive inputs from and send outputs to outside of the system, or to

deal with device data acquisition and control.

In order to identify these services, the method advises consideration of: "What calculations

need to perform on the attribute values of an object? What monitoring needs to be carried

out by the object?” The following algorithmically-complex services were thus identified

and put in the class-&-objects and class in the book trader system:

34

Chapter 2: A Study o/Four Atudyas Methods

Advertisement—CalculateTotalOrders, TellTotalOrders
Book—ModifyStockLevel
Order—CalculateTotalCost, TellOrderState, ProduceReceipt
ChequeOrder—ClearCheque
CreditCardOrder—ClearCreditCard.

Identifying Message Connections

Identifying message connections is based on the processing dependencies between

objects in a system.

Message Connection—A message connection models the processing dependency of an

object, indicating a need for services in order to fulfil its responsibilities.

In a message connection, a 'sender* sends a message to a 'receiver*. The required

processing is named in the sender’s service specification and it is defined by the receiver’s

service specification. A message connection combines the event-response and data flow

perspectives together since each message connection represents the values sent to the

'receiver* and a response received by the ‘sender*.

For each object, the method suggests thinking about: “What other objects need the

services defined by this object (draw an arrow to each of these objects)? What other

objects define the services needed by this object (draw an arrow from each of these objects

to this object)?** More message connections may be identified by tracing each message

connection defined to the next object.

Following these guidelines, four message connections from Order to other objects

were identified for the book trader system, as shown in Figure 2.6: a message to

Advertisement to get the number of orders, a message to Book to modify the stock level in

it, and the messages to SellingPrice and Customer to access the information recorded in

them.

(4 ̂Specifying Services

Services are specified by service charts that define the algorithms of the services.

Figure 2.7 shows an example of a service chart that specifies the service 'ClearCheque*

within the class-&-objects ChequeOrder.

35

Chapter 2: A Study of Four Analysis Methods

Advertisement
CalculateïotalOrder

ellTotalOrder
ffl.

^éïTinePrice ^

Com

y Book ■■
^^^odifvStockLevel

\ge
ction)

Order

CalculateTotalCost
TellOrderState

V ProduceReceipt

■

l^^heqeOrder ^ ^redi
(^ClearCheque ^ ^ C le a

XreditCardOrder
ClearCreditCard

Figure 2.6 The Service Layer of the System

Recondition: OrderStat is deceived* return to the sender

yes
calculate total cost of the order

< TotalCost= Amount of cheque?
I yes

> no

change the value of OrderState into "wait for
clearing cheque*_______ _____________

wait for the answer from bank

clearing is OK? jao_
yes

change the value of OrderState
into 'dispatch books'

send error message to the sender

Figure 2.7 A Service Chart for the Service ‘ClearCheque’

The full details of each class-&-objects, like ChequeOrder, are specified by filling a

template as follows:

Specification ChequeOrder
attribute ChequeDetail: cheque number, branch code, etc.
attribute OrderState: received, wait for clearing cheque, dispatch books
extemallnput

ChequeDetail: cheque number, branch code, etc.
extemalOutput

Progress of the cheque order: the current state of the order
ObJectStateDiagram in Figure 2.5
additionalConstraints

The cheque order cannot be provided by telephone.
service ClearCheque (out: result)

see the Service Chart in Figure 2.7
service TellOrderState (out: result)

36

Chapter 2: A Study o/Four Amlysis Methods

2.2.1.4 Products Generated

The products from the analysis of the book trader system is an OOA model that consists

of five layers together with class-&-objects specifications and two object state diagrams

and service charts.

2.2.2 The Study of the OMT Method (Rumbaugh et al.)

2.2.2.1 Claims of the OMT Method

The OMT (Object Modelling Technique) method includes both analysis and design. The

term ^object-oriented^ used in this method means that object-oriented software is a

collection of discrete objects that incorporate both data structure and behaviour. In

analysis, this method aims to address the themes; abstraction, encapsulation (also

information hiding), combining data and behaviour, inheritance, and emphasis on object

structure but not procedure structure. Underlying these themes, in order to specify a

system, three kinds of model are built: object model, dynamic model, and functional

model, describing application-domain objects rather than computer-domain objects. These

three models aim to provide three cross-referenced views of a system: the object model

shows the objects and their relationships in the system and it is the fundamental model; the

dynamic model describes the behaviour of objects; and the functional model specifies the

data transformations in the system. These models are assumed to provide a basis for an

agreement between users and developers, and to make the specification of the system

feasible for later design. The method states that a successful analysis model should be a

concise, precise and understandable abstraction of what a system must to do rather than

how it is done.

To build these models, an iterative process of analysis is provided by the method,

based on a series of steps as follows:

• Constructing the object model, constructing the ciynamic model, constructing the

functional model, adding operations, iterating the analysis.

37

Chapter 2: A Study of Four Analysis Methods

During analysis, analysts are required to communicate with users to avoid ambiguities and

misconceptions.

1.2.2.2 Inputs Required

The inputs to analysis required by this method include the problem statement that

describes an application scenario and gives a conceptual survey of the desired system, the

dialogues with users, and the knowledge from the real world. The latter two inputs are

needed when the initial problem statements are not complete or correct.

2.2.2.3 Analysis Addressed

From the claims of the OMT method above, we see that this method does analysis by an

iterative process to build three models. In this section, we describe how we used this

method to analyse the given book trader scenario, as in Section 2.2.1.

Step 1: Constructing an Object Model

This step includes eight substeps to build an object model. The method supposes that the

order of these substeps could be interchanged or combined, if necessary.

(1) Identifying Objects and Classes

Objects and classes are identified from the problem statement, for which we used

the given book trader scenario.

Object—An object is a concept, abstraction, or thing with crisp boundaries and
meanings for the problem. It is an mstance of a class.

Class—A class is a description of a group of objects with similar properties, common
behaviour, common relationships and common semantics.

The method assumes that objects and classes often correspond to nouns in the problem

statement, therefore this step firstly lists all nouns found from the scenario and then selects

the significant classes according the criteria given by the method: they should not be a)

redundant, b) irrelevant, c) vague, e.g., too broad in scope, d) attributes, i.e., they do not

primarily describe individual objects, e) operations (i.e., they should be manipulated in

their own right), and f) implementation constructs, such as a linked list. Additionally, not

38

Chapter 2: A Study of Four Analysis Methods

aU objects appear explicitly in the problem statements and some extra objects may be

added in the model later.

Using these guidelines, the nouns were abstracted from the book trader

scenario(see Figure 2.8), and then selected by the criteria above. Figure 2.9 shows the four

classes that are left as the significant classes for the book trader system.

(2) Preparing a Data Dictionary

A data dictionary keeps a record of all modelling entities. For each class, a precise

description is written, and example data dictionary entries for the significant classes of the

book trader system are given in Figure 2.10.

1 ««OK 1 |ISBN 1 Advertisement 1 1 Order | Advert | Author j

Publisher Title 1 Magazine J [Order number j [Order date || Date |

[Price II Stock level 1 Name | | Customer 1 1 Total cost 1 1 Cheque I

1 Company |" Bank 1 Stock 1 1 Address 11 Payment [| Receipt]

Customer detail 1 Card company 1 1 Order form [j Order detail

Business I Enquiry~j Information system I Credit card number |

Figure 2.8 Nouns Abstracted from the Book Trader Scenario

vague
Information svstem I
1 Business I {Company

Unneccessary and Incorrect Classes
irrelevant

I Card company
I Cheque

I Bank I
Order form
I Stock

\ operation /

redundant
Advert

Customer detail

attribute
|ÏSB?n lÂiîthSn
I Date I [Publisher I | Magazine |

Total cost i [â s Ê k B Z Z] 1 Pr4fir 1

c
Book

Name j j Order number I Payment {

I Address ~ l I Receipt ~|l Credit card number

Neccessary Class
Advertisement Order Customer

Figure 2.9 Significant Classes in the Book Trader System

39

Chapter 2: A Study of Four Analysis Methods

Book—a book that will be advertised in magazines and ordered by customers. A book may be
ordered by more than one order form. A book is describ^ by the unique ISBN, its title,
publisher and cost price. A book may have more than one selling price.

Advertisement—a description of books in a magazine on a given date: their titles, authors,
publishers, selling prices. A book may have different selling prices in different
advertisments. The number of the orders corresponding an advertisement needs to be
recorded in order to reply to the enquiries about it.

Order—a request from a customer for buying one or more books. It includes the name and
address of the customer, the title and selling price of each book, total cost of the
ordered books and the method of payment, i.e., either a cheque or a credit card.

Customer—the buyer of books who is recorded with the name and the address. A customer
knows about the books by reading the advertisements published. Then he/she can
either post a filled order form or telephone the company to buy books.

Figure 2.10 A Data Dictionary of the Classes in the System

(3) Identifinng Associations

Any dependency between two (or more) objects is represented as a link. A

reference from one class to another is an association.
Link—A link represents a physical or conceptual connection between objects, that is, a

relationship between two (or more) objects.
Association—An association is a group of links with common structure and

semantics.

An association is inherently bi-directional although the name of an association is usually

read from left-to-iight in a diagram. The name of an association can be omitted if a pair of

classes has a single association whose meaning is obvious. In addition, the OMT method

supposes that a particular kind of association, aggregation, is an association with some

extra semantics, unless two objects are tightly bound in a whole-part relationship. The

distinction can be made by thinking about “Would you use the phrase part of? Are the

operations on the whole automatically applied to its part? Are some attribute values

propagated from the whole to all or some parts?".

Potential associations are first identified by abstracting the verb phrases from the

scenario. Figure 2.11 lists the verb phrases that were abstracted from the book trader

scenario.

40

Chapter 2; A Study of Four Analysis Methods

Verb Phrases
selling books by advertising in magazines
book may have a different price in different advertisements
customer can buy one or more of the advertised books
mailing the company an order form
payment is required
telephone the company
a receipt is produced
taken from stock and sent to the customer
the bussiness is supported by an information system
requests the number of orders
requests details of the progress of a specific order
customer is only relevant to a specific order
identi^ing the order_____________________________

Figure 2.11 Verb Phrases from the Book Trader Scenario

Associations are then selected if they are not: a) associations between eliminated classes,

b) irrelevant or implementation associations, c) actions or events, d) ternary associations

(that is, they need to be decomposed into binary associations), and e) derived associations

(i.e., redundant associations). The multiplicity of an association also needs to be specified

in a model, such as one-to-many or many-to-many.

These criteria were applied to the verb phrases in Figure 2.11, and the rejected ones

were as follows:

• irrelevant or implementation association—taken from stock and sent to the customer, the
business is supported by an information system, identifying the order

• action—payment is required, a receipt is produced, request the number of orders, requests
details of the progress of a specific order

• derived association—customer can buy one or more of the advertised books.

The remaining verb phrases represent the useful associations between the classes,

described as follows and represented by an object diagram shown in Figure 2.12:
• Order-Book association—An order must be for one or more books, and a book may never be

ordered or may be ordered many times.
• Order-Customer association—A customer should be only relevant to a specific order.
• Order-Advertisement association—An order corresponds to only one advertisement.
• Book-Advertisement association—A book may never be advertised or may be advertised

many times, and an advertisement must contain one or more books.

41

Chapter 2: A Study o/Four Analysis Methods

I Order l>" Book

corresponds
Customer

1+
advertised by

Advertisement

Figure 2.12 Initial Object Diagram for the Book Trader System

(4) Identifying Attributes of Classes and Links

This substep identifies the attributes of classes.

Attribute—An attribute is a named property of a class describing a data value held by the
objects in a class.

The method’s instructions are to first identify the attributes that directly relate to a

particular requirement in the scenario, and to add more details later. According to the

method, a significant attribute should not be: a) an object (i.e., it should not have its own

features), b) a qualifier (i.e., the values of it do not depend on a particular context), c) a

name that depends on the context, d) an identifier^ e) a link attribute (or object) that

depends on the presence of a link, f) an attribute for which the values are invisible to the

outside, g) an attribute that is unlikely to affect most operations, and h) a discordant

attribute that seems completely different fi'om and unrelated to all other attributes in the

same class (i.e., this class should be split into two distinct classes). In the object model,

one-to-many and many-to-many associations may be qualified with a qualifier.

Using the initial guidelines, the candidate attributes of each class in the book trader

system were identified and put in the object model as shown in Figure 2.13(a).

Name
Address

Customer

MagazineName
IssueDate

Advertisement

OrderNo
OrderType
OrderDate
OrderState
TotalCost
Payment

Order
ISBN
Title
Author
Publisher
CostPrice
SellingPrice
StockLevel

Book

corresponds advertised by

Figure 2.13(a) Attributes of the Objects and Classes in the System

Each attribute was then checked by the criteria above:

42

Chapter 2: A Study of Four Amdysis Methods

• the independent existence of attribute 'Payment' within Order is important because it has its

own features 'payment type’ (either a cheque or a credit card) and 'payment detail’ (either

cheque detail or credit card detail). It is thus promoted as a part class Payment. The whole

class of it is Order.

• attribute 'ISBN’ of Book is a quîdifier: an advertisement plus an ISBN yields a unique book.

The many-to-many association 'advertised by* is therefore changed into a many-to-one

association with this qualifier.

• attribute 'SellingPrice’ within Book is a link object since the value of it depends on the link

'advertised by’.

A revised object model is shown in Figure 2.13(b) so far.

Order 1+ Book
urderNo
OrderType
OrderDate
OrderState
TotaKÿst - .

•------------

Customer
Tiüe
Author
Publisher
CostPrice
StockLevel

Name
Address

corresponds

Payment
Payment'fype
Paymenfl3etail

Advertisement
MagazineName

JssuePate_____

SellingPrice
i Amount

advertised by

Figure 2.13(b) A Revised Object Model of the Book Trader System

(5 ̂Identifying Inheritance

An OMT inheritance structure has generalisation and specialisation that are found by

searching for classes with similar attributes, associations and operations.
Inheritance—An inheritance is a mechanism that permits classes to share attributes

and operations based on a relationship, usually generalisation.
Generalisation—A generalisation is the relationship between a class and one or more

refined versions of it.
Specialisation—A specialisation is the creation of subclasses from a superclass by

refining the superclass.
Superclass—A superclass is the class that is refined.
Subclass—A subclass is the refined version of a superclass.

Multiple inheritance possibly increases sharing but it also increases the complexity of both

concepts and implementation. Attributes and associations should be assigned to the most

43

Chapter 2: A Study of Four Analysis Methods

general class for which it is appropriate. No inheritance structure was built in the book

trader system by this substep.

(6) Testing Access Paths

In order to check that the required results can be obtained, access paths through

the object model should be traced. The object model in Figure 2.13(b) was checked that

the associations provided appropriate access paths.

(7) Iterating Object Modelling

This substep checks the overall consistency of an object model. This includes

identifying possible missing objects and associations, deleting unnecessary classes and

associations, and checking if there is incorrect placement of associations or attributes. The

object model in Figure 2.13(b) was checked and it was found that classes Order and

Payment play two roles respectively: mail and phone orders and cheque and credit card

payments. The class Payment is thus replaced by new classes ChequeOrder and

CreditCardOrder that are the subclasses of Order so that each class plays one role in the

object model, as shown in Figure 2.13(c).

Order
OrderNo
OrderType
OrderDate
OrderState
TotalCost

14-

ChequeOrder CreditCardOrd er
ChequeDetail CreditCardDetail

Customer
Name
Address

Advertisement

Title
Author
Publisher
CostPrice
StockLevel

NfogazineName
advertised by

ount
ma.

Figure 2.13(c) A Further Revised Object Model of the System

rsl Grouping Classes into Modules

For a large problem, it may be necessary to divide the object model diagram into

sheets of uniform size for convenience in drawing, printing and viewing. To aid this,

tightly-coupled classes should be grouped together in a module.
Module—A module is a set of classes (one or more sheets) that captures some logical

subset of the entire model.

44

Chapter 2: A Study o/Four Analysis Methods

The object model of the book trader system is drawn on one sheet and so there is
only one module in this system.

Step 2: Constructing a Dynamic Model

The dynamic model is represented by state diagrams that show the behaviour of the

objects of each class by representing the events relating to it.

(11 Preparing a Scenario of Tvpical Interaction Sequences

This substep looks for events—extemally-visible stimuli and responses. A scenario

is analysed here since it shows the major interactions, external display formats and

information exchanges.
Scenario—A scenario is a sequence of events.
Event—An event is a signal, input, decision, interrupt, transaction, or action.

The normal cases are first identified for a normal scenario, and then the special cases,

such as maximum or minimum values and error cases, are analysed as a scenario of

exceptions. Other cases may be added in these two kinds of scenario. A normal scenario

developed for the book trader is listed in Figure 2.14, and a special scenario is given in

Figure 2.15 .

Advertisements tell the details of the books in stock.
A customer buys the advertised books by mailing an order.
A customer buys the advertised books by phoning an order.
The detail of the order is recorded.
The detail of order is checked.
The payment is valid.
The order produces a receipt.

Figure 2.14 A Normal Scenario of the Book Trader

Advertisements tell the details of the books in stock.
A customer buys the advertised books by mailing an order.
A customer buys the advertised books by phoning an order.
The detail of the order is recorded.
The details of the order are found incorrect, or the payment is invalid.
This order is rejected.

Figure 2.15 A Special Scenario with Exceptions

(21 Identifying Events between Objects

From the scenarios of the previous step, normal events, error conditions and

unusual events are identified. An event trace list is used here to show an ordered list of

45

Chapter 2: A Sttidy o/Four Analysis Methods

events between objects. An event flow diagram is then drawn to show the events between

objects of classes. Figure 2.16 and Figure 2.17 show, respectively, an event trace list and

an event flow diagram developed for the scenario of the book trader.

Customer
^record new customer

ChequeOrder
CreditCardOrder

record finished

Book

check book detail^
detail OK

Advertisement

count new order
count fin ishsd

Figure 2.16 An Event Trace List for the Normal Scenario

ChequeOrder
C r^itC ydOrder

•\ check book details ^
L z i — » Book

record
OK

bad detail

Customer

count finishei

record new
customer

count new order

Advertisement

Figure 2,17 An Event Flow Diagram for the Book Trader System

(3) Drawing a State Diagram for Objects of Each Class

OMT uses a state diagram to specify the behaviour of the objects of a class. Every

event trace corresponds to a path in a state diagram. The interval between any two events

is a state of an object. From the event trace list above, a trace is flrst picked showing a

typical interaction for an object. The event is then connected with a path in the state

diagram, to show the sequence of events and states in an object class. If the objects of a

class does not have any significant state transition there is no need for a state diagram.

For the book trader system, a state diagram was produced for the class

ChequeOrder, and is given in Figure 2.18 . The ‘initial’ state is entered when an order is

created, and an object is be deleted when one of the final states shown by a bull’s eye is

entered. The actions such as ‘produce a receipt’ follow the sign ‘do:’.

46

Chapter 2: A Study of Four Analysis Methods

CheaueOrder

e
Ç order arrives
Initial

do: assign deceived' to state
record new customer
check book details

bad details/
I show error message►€>

Ïvalid details [OrderType is mail]
check total cost

^ Clear Cheque
do: clear cheque

assign ̂ waiting for
^ payment' to state

^ valid payment
) bad payment/

show error message

c Finish
produce a receipt > order finished

enquiry an order
[in Clear Payment]

Order Enquiry
do: tell current state

of the order

current state of an
order

Figure 2.18 A State Diagram for the Class ChequeOrder

(4 ̂Match Events between Objects to Verify Consistency

State diagrams must satisfy the criteria: a) every event should have a sender and a

receiver; b) states without predecessors or successors should represent starting or

terminating points of the interaction sequence; c) events through the system should match

the scenarios; d) corresponding events on different state diagrams should be consistent;

and e) synchronisation errors where an input occurs at an awkward time should be

prevented since objects are inherently concurrent. The state diagram shown in Figure 2.18

satisfies these criteria.

Step 3: Constructing a Functional Model

A functional model shows the transitions of values fi*om inputs to outputs. It is

represented by data flow diagrams that illustrate the functional dependencies in a system.

The method supposes that the processes in a data flow diagram correspond to the

activities or actions in a state diagram, and the data flows in it correspond to the attribute

values for objects defined in an object diagram.

f 11 Identifying Input and Output Values

Input values firom outside and output values from inside system should be identified

first fi’om the scenario to decide the boundary of the system. Input values are the

parameters of input events that affect the control flow in a system. Output values are the

47

Chapter 2; A Study of Four Analysis Methods

results from the system. Figure 2.19 shows the input and output values of the book trader

system.

customer name, address,
book title, price, total cost,
cheque or credit card,
orderNo,
magazine name, issue date
receipt,
error message,
current state of an order,
sum of orders to an advert

Book Trader
System

system boundary

Figure 2.19 Input and Output Values of the Book Trader System

121 Building Data Flow Diagrams Showing Functional Dependencies

A data flow diagram shows how input values are transformed into output values by

a process without sequencing the functions. Data flow analysis is a process of fimctional

decomposition; a top data flow diagram is drawn first, then a complex process within it is

decomposed to produce a lower level diagram. This analysis continues until every process

in the diagram performs a simple function. Figure 2.20 shows a data flow diagram

developed for the book trader system, in which 'user’ is drawn as a terminator and the

classes ChequeOrder and Advertisement are the actors that produce or consume values.

The classes Book, Customer, and SellingPrice are data stores that store values for access

during processing.

receipt

Clear
paymenta receipt

payment,
otalcost

reduce
copies

error mes

customer name, address,
book title, price,
orderNo

sum of 9^ies
customer name.

ChequeOrdercurrent state

sunrar orders orderNo
check

total cost
update

umoforde

m%azine name,
issue date

address ^ Customer

Advertisement SellingPrice

Figure 2.20 A Data Flow Diagram of the Book Trader System

48

Chapter 2: A Study of Four Attalysis Methods

(3) Describing Functions

Each function can be specified in a declarative or procedural form. A declarative

specification shows the relationships between input and output values or between the

output values; while a procedural specification gives an algorithm for the function. This

description specifies what the function does but not how it is implemented. Figure 2.21

shows a description of the function clear payment.

clear paymmt (payment, total cost) ->order detail, error message
S' payment is accepted

send order detail to the process ̂ produce receipt'
______ else print'invalid payment*__________________

Figure 2.21 A Description of the Function clear payment

(41 Identifying Constraints between Objects

Constraints between objects are functional dependencies but not input-output

dependencies. They are specified as pre/postconditions on operations. A constraint in the

book trader system, for example, is ‘the value of stock level of book is never negative*.

(5) Specifying Optimisation Criteria

This step is concerned with the implementation of functions rather than their

specification, and so we do not consider it in this study.

Step 4: Adding Operations

This step adds operations to the classes in an object model.
Operation—An operation is a function or transformation that may be applied to or by

objects in a class.

Operations can be abstracted from the attributes and associations in an object model, or

firom the events in a dynamic model, or the processes in a functional model.

(11 Operations from the Object Model

The operations that change attribute values or associations are implied by the

existence of attributes and associations in the object model. These operations are thus not

explicitly defined in the object model.

49

Chapter 2; A Study of Four Analysis Methods

(21 Operations from Events

Each event relating to a class may imply an operation.

(31 Operations from State Actions and Activities

Associated with events in a state diagram are actions and activities, and if they have

significant computational structure they should be considered as operations for classes.

Some operations were thus added to the object model of the book trader system, as

follows:

Order—check total cost, check book detail, record new customer, produce

receipt, tell current state,

ChequeOrder—check order type, clear cheque,

CreditCardOrder—clear credit card.

(41 Operations from Functions

Each frmction in a functional model should be an operation for some class in the

object model. Extra operations were therefore added to the classes Order, Book and

Advertisement follows:

update order state,

BooA:—update stock level.

Advertisement—update sum of orders, tell sum of orders.

(51 Defining Shopping List Operations

Shopping list operations are the operations that are not dependent on a particular

application; that is, they are defined for potential development in the future. This substep

is ignored here since the study does not take this into account.

(61 Simplifying Operations

The operations on the object model may be simplified by a) introducing new

superclasses if needed to reduce the number of distinct operations, and b) locating

operations at the correct levels with the class hierarchy. On examination of the specified

50

Chapter 2; A Study of Four Analysis Methods

operations for the book trader system using these guidelines, no operations were

simplified.

The operations for a class are put in the bottom part of the box representing the

class in an object model. The model for the book trader system is shown in Figure 2.22

Order
OrderNo
Ordeiiype
OrderDate
OrderState
TotalCost-
check total cost
update order state
check book detail
record new customer
produce receipt
tell current state

14-

Customer
Name
Address

Book
Title
Author
Publisher
CostPrice
StockLevel
update stock level

corresponds

Advertisement
MagazineName
IssueDate

update sum of order
tell sum of order

ChequeOrder CreditCardOrder
ChequePetail.- CreditCardDetail
check order type
clear cheque

clear credit card

SellingPricec Amount

advertised by

Figure 2.22 The Object Model with Operations for the System

Step 5: Iterating the Analysis

All three models are checked in this step, and confirmed by the requester and

application domain experts. The models may be modified or refined by iterating the

process of analysis, if necessary.

In checking the completeness and consistency of the three models for the book

trader system built above, it was found that the object model is inconsistent with the

behavioural model for ‘sum of orders*. The object model allows the operation ‘sum of

orders* in the object chss Advertisement to be calculated at any time, assuming the objects

of the classes ChequeOrder and CreditCardOrder are persistent, while the behavioural

model performs the ‘sum of orders* instantly since objects of the classes ChequeOrder or

CreditCardOrder are assumed to be deleted at some stage. A new attribute ‘SumOfDrder*

51

Chapter 2: A Study of Four Analysis Methods

is added in the class Advertisement in this case, in order to eliminate this inconsistency, as

shown in Figure 2.23.

advertised by

Customer
Name
Address

ChequeOrder
ChequePetail
check order type
clear cheque

CreditCardOrder
CreditCardDetail
clear credit card

Advertisement
MagazineName
IssueDate
jgumQK>rder . _update sum of order
tell sum of order

Title
Author
Publisher
CostPrice
StockLevel
update stock level

Book

check total cost
update order state
check book detail
record new customer
produce receipt
tell current state

OrderNo
OrderType
OrderDate
OrderState
TotalCost

Order

Figure 2.23 The Revised Version of the Object Model

2.2.2.4 Products Generated

The products generated from the analysis include the object, behavioural and functional

models of the book trader system, expressed by (a) a data dictionary, (b) an object

diagram, (c) state diagrams, and (d) a data flow diagram.

2.2.3 The Study of the Booch Method

2.2.3.1 Claims of the Booch Method

The Booch method claims to provide a path through requirement analysis to system design

[Booch91]. The term ^object-oriented means, in this method, objects, classes^

inheritance plus aggregation since the author thinks they are fundamental in object-

oriented languages. The principles of abstraction, encapsulation (also information

hiding), modularity, and hierarchy, are used by this method. Based on these principles,

the Booch method builds an object model that describes what a system does. To build

such an object model, the Booch method provides a ^round-trip gestalf process, i.e..

52

Chapter 2: A Study of Four Analysis Methods

analyse a little, design a little, for identifying objects and classes from a problem domain.

This process includes four steps;

• identifying classes and objects, identifying the semantics o f classes and objects, identifying

the relationships among classes and objects, and implementing classes and objects.

2.2.3.2 Inputs Required

The inputs of analysis required by the Booch method is a problem domain when starting

analysis or an incomplete model during analysis.

2 2.3.3 Analysis Addressed

From the claims of the Booch method given above, we know that this method promises to

do analysis and design by providing a ^round-trip gestalf process: analyse a little, design

a little. An object model is built through this process. In this section, we use the Booch

method to analyse the book trader scenario, as we did for the OOA method and the OMT

method.

Step 1: Identifying Classes and Objects

This step identifies candidate classes and objects from a problem domain.
Object—An object has state, behaviour and identity (synonym: an Instance).
Class—A class is a set of objects that share the structure and behaviour.
Property—An inherent or distinctive characteristic, trait, quality, or feature that

contributes to making an object unique. All properties have some values. Such a
value might be a simple quantity, or it might denote another object.

Slate^A state encompasses all of the (usually static) properties of the object plus the
current (usually dynamic) values of each of these properties.

Field—A repository for part of the state of an object; collectively, the fields of an
object constitute its structure.

Identity—An identity is the nature of an object that distinguishes it from all other
objects.

The Booch method identifies the candidate classes and objects by focusing on the

tangible things, the roles and the events that are assumed essential to the problem domain.

The method does not give a specific strategy and skill to do such identification. Instead it

53

Chapter 2: A Study of Four Analysis Methods

suggests using other existing analysis methods to do that, such as structured analysis

methods (e.g., [Ward85]) or object-oriented analysis methods (e.g., [ShlaerSS] and

[Coad91a]). Problem domain experts may be involved in this step to help understand the

vocabulary in the scenario. Therefore, for the book trader scenario, we took the same five

initial classes that were identified by using the OOA method in Section 2.2.1 as the

candidate classes and objects to be used for this method:

• Things remembered—Book, Mailorder, PhoneOrder, Advertisement

• Role—Customer.

Step 2: Identifying the Semantics of the Classes and Objects

This step describes the semantics of the classes and objects identified in step 1.
Behaviour—Behaviour is how an object acts and reacts, in terms of its state changes

and message passing.
Method—A method is an operation upon an object, defined as part of the declaration

of a class; all methods are operations, but not all operations are methods because
some operations may be expressed as firee subprograms.

Operation—An operation is an action that one object performs upon another in order
to elicit a reaction (synonym: a message).

To identify the semantics of these candidate classes and objects, the method provides a

strategy: first, write a script for each class and object, in order to identify the functional

semantics (i.e., operations); then define the semantics of its interface; and finally define the

time and space semantics of the object (i.e., the behaviour of the object) by specifying the

sequence of its operations and states. On the one hand, this may involve going back to the

previous step to shift the meanings or boundaries of existing candidate classes and objects.

On the other hand, new classes and objects may be defined in this step.

(1) Write a Script for Each Class and Object

The script for candidate classes and objects can be produced by focusing on the

information that needs to be stored and transformed in a system. The script produced for

each class and object of the book trader scenario is shown as follows:

a) Customer needs to keep track of the name and address of a customer:

• Customer name. Customer address

54

Chapter 2: A Study of Four Analysis Methods

b) Book needs to keep track of the following information for a book:

• ISBN, Title, Author, Publisher, Cost price. Selling price. Stock level

It is advertised for sale by the company and it can be bought by customers.

c) Advertisement needs to keep track of the following information for advertisements:

• Magazine name. Issue date

It advertises the books sold by the company.

d) Mail Order or Phone Order needs to keep track of a distinguishing order number,

the date of order and payment detail such as a credit card number:

• OrderNo, Current state. Payment Detail

However, different constraints on payment are given for a mail order and a phone

order: for a order, the ordered book(s) might be paid by a check or a credit card;

but for a phone order, it is only allowed to pay by a credit card. The different kinds

of information would be kept for them separately as follows:

—in a mail order, the following information is required:

• Payment method. Payment Detail

—in a phone order, the following information is required:

• Credit Card Detail.

(2 ̂Defining Operations For Each Class and Object

From the above scripts, the operations for each class and object in the book trader

system can be derived by considering the processing of the information it requires. The

Booch method, however, does not give guidelines and criteria for the definition of the

operations. We defined the operations for the classes and objects in the book trader

system as follows, in order to reflect the semantics of these classes and objects:

a) Customer

• Access customer information

h) M ail Order

• Check order information. Calculate total cost. Clear payment

55

Chapter 2: A Study of Four Analysis Methods

c) Phone Order

• Check order information. Calculate total cost. Clear credit card payment

d) Book

• Access book information. Update selling price. Update stock level

e) Advertisement

• Calculate total number of orders. Access advertisement information.

Step 3: Identifying the Relationships among the Classes and Objects

This step identifies the relationships among the classes or the objects. New classes and

objects may be identified or invented, depending on the definitions of the relationships.

Four kinds of relationships may exist between classes;
Using relationship—A using relationship is a relationship that refers to the outside

view of an abstraction: a class can use another class.
Inheritance relationship—An inheritance relationship is a relationship among classes

in which one class shares the structure or behaviour of other class(es), that is, a

subclass inherits the structure or behaviour o f its superclass(es).
Instantiation relationship—An instantiation relationship implies a process o f filling

in the template of a generic class to produce a class from which one can create

instances.
Metaclass relationship—A metaclass relationship is a relationship between a

metaclass and other classes (where a metaclass is a class whose instances are

classes).

One kind of relationships may exist between objects:
Use Relationship—A use relationship implies the ability to send messages along the

path between two objects.

(1) Drawing Class Diagrams

A class diagram for the Booch method represents the classes and their relationships

in a system. The following diagrams show how the relationships among the classes for the

book trader system were defined. Note that, because some operations are the same in

classes M ail order and Phone order, we created a superclass Order that includes the

common operations, using Booch notation as follows:

56

Ompter 2: A Study of Four Analysis Methods i

Name: Order
Documentation: The order from a customer for buying one or more books
Cardinality: 1/1/n
Hierarchy:

Superclasses: None
Metaclass: None

Operations: Check order information. Calculate total cost.

Two inheritance relationships were thus defined among these classes, as in Figure 2.24

below. Three use relationships were defined between the class Order and the classes

Advertisement (l:n), Customer(l:l), Book (n:n), as also illustrated in Figure 2.24.

ÇAdvertisement^

IPhone Oider^^ Mail Ordi

Figure 2.24 The Class Diagram of a Book Trader System

To describe the behaviour of a class, a state transition diagram is used by the Booch

method to specify the state changes resulting from events and the actions causing these

changes. For the class Order, its state is different before and after clearing a payment; the

state changes for this class are described by a class diagram shown in Figure 2.25.

\̂order is correct^
(Order payment^

clear payment

payment cleared V ^er

Figure 2.25 The State Transition Diagram for the Class Order

(2) Drawing Object Diagrams

An object diagram shows the objects and the relationships between objects. An

object B may be visible to another object A in the following forms:

• Same lexical scope: B is within the scope o f A; thus A can explicitly name B.

• Parameter: B is passed as a parameter to some operation applicable to A.

• Field: B is a field o f A.

57

Chapter 2; A Study of Four Analysis Methods

The Booch method requires that the operations appearing in an object diagram must be

consistent with the operations defined in the associated classes.

To draw the object diagram of the book trader system, three message connections

between the object anOrder and the other objects aBook, aCustomer and

anAdvertisement were identified, as drawn in Figure 2.26, as well as three field visibilities

in which the object anOrder is visible to the other objects.

___ anOrd^P—_^
--------—

^_anAdvertisememt^ sL-^aBooky-'
^LaCustomg>^

Figure 2.26 The Object Diagram of the Book Trader System

In addition to the class and object diagrams for a system, the detail of a class is

given by filling in a template. For example, a more complete template for the class Order

is given as follows:

Name: Order
Documentation : The order firom a customer for buying one or more books
Visibility: Private
Cardinality: 1/1/n
Hierarchy:

Superclasses: None
Metaclass: None

Implementation:
Fields: Current state, theCustomer, theBook, theAdvertisement
Operations: Check order information

Calculate total cost
State transition diagram: Figure 2.25.

Step 4: Implementing the Classes and Objects

This step allocates the classes and objects defined in the above steps into the

modules that describe how these objects and classes are implemented by object-oriented

design. We do not take this into account in this study.

2.2.S.4 Products Generated

The analysis supported by the Booch method produces (a) an object diagram, (b) a class

diagram, and (c) a state transition diagram.

58

Chapter 2: A Study of Four Analysis Methods

2.2.4 The Study of the Wirfs-Brock Method (Wirfs-Brock et al.)

2.2.4.1 Claims of the Method

The authors of the Wirfs-Brock method [Wirfs90] claim that this method addresses the

issues, abstraction, encapsulation, information hiding, inheritance and message-sending,

in analysing and designing object-oriented systems. Underlying these issues, it views the

real world as a system of operating and collaborating computational objects. A scenario

from the real world is thus a system in which there are many objects and an object may

send a request to another object in order to perform an operation (i.e., responsibility) or to

reveal some of its information, or both. This method also emphasises the functional

collaborations among classes in a system; the responsibilities of a class, the client-server

relationships and the contracts among the classes in the system.

To find classes and their collaborations from a system specification, this method

provides a process based upon the responsibility-driven tactic of analysis that includes an

exploratory phase and an analysis phase. The exploratory phase includes the steps:

• Finding classes, finding responsibilities o f classes, finding collaborations among

classes.

The analysis phase includes the steps:

• identifying hierarchies fo r classes, identifying subsystems, and constructing the

protocols fo r each class.

A set of graphs and cards are produced by these two phases.

2.2.4.2 Inputs Required

This method assumes that the input of analysis is a specification of system requirements

that reflects the real world and that is written in a natural language.

2.2.4.3 Analysis Addressed

The claims of the Wirfs-Brock method show that this method addresses the analysis of

object-oriented systems through two phases. To find how this method does analysis, we

59

Chapter 2; A Study of Four Analysis Methods

took the book trader scenario as a specification of a system and used this method to model

a book trader system, as for the other three methods.

Step 1: Finding Classes

This step abstracts classes fi’om a system using the vocabulary of the system specification.
Object—An object encapsulates both fimctions and data. That is, it retains

information, and knows how to perform certain operations.
Class—A class is a generic specification for an arbitrary number of similar objects

which share the same behaviour. Objects in a class are called instances of that
class.

(1) Looking for Noun Phrases

All noun phases were first extracted from the book trader scenario, as listed in

Figure 2.27.

customer company credit card number
selling book unique ÎSBN for each book credit card
advertised book order details cheque
cost price price of book order number
order form advert order date
advertisement name of customer receipt
magazine address of customer way of paying
payment method of payment authorization
author of book total amount ordered book
publisher of book title of book stock level of book
order total cost customer detail
information system order detail bank
name of magazine card company stock
date of issue business activity enquiry
floor limit

Figure 2.27 The Noun Phrases in the Book Trader Scenario

(2 ̂Choosing Meaningful Candidate Classes

Only the meaningful classes are put into a system. They are determined by the

criteria: a) keep physical objects, b) keep conceptual entities, c) one word for one concept,

d) if the meaning of adjectives for the same noun implies different objects, they are defined

as different classes, e) if the missing subject for a sentence is a potential object, a new class

may be defined, f) if a noun phrase seems outside the system, do not include it as a class,

and g) values of attributes may be defined as classes.

60

Chapter 2: A Study of Four Analysis Methods

For the book trader system, the meaningful classes from the list in Figure 2.27 were

selected by first discarding the obviously irrelevant ones, as shown in Figure 2.28.

bank
stock
floor Umit
order form

NotReleavant
card company
information system
business activity
credit card

company
cheque
authorization
magazine

Possible Meaningful Classes
customer order credit card number
selling book unique ISBN for each book order number
advertised book price of book order date
advertisement advert receipt
payment name of customer method of payment
author of book address of customer stock level of book
publisher of book title of book enquiry
name of magazine total cost way of paying
date of issue total amount ordered book
TOSt price
difl^ent price

order detail customer detail

Figure 2.28 Two Categories of Noun Phrases

Candidate classes are then identified according to the criteria above:

aj Physical objects

— * selling book', * advertised book', 'ordered book', 'advert' and 'advertisement'.

b) Conceptual entities

— 'customer', 'order', and 'enquiry'.

c) One word for one concept

— 'book' instead o f ‘selling book', 'advertised book', and 'ordered book*;

— 'advertisement* instead of'advert';

— 'customer detail* and 'order detail* are overlapped by other noun phrases such as

'name of customer* and 'order number';

— 'total cost* instead of'total amount';

— 'cost price* instead of'price of book';

— 'method of payment* instead o f‘way of paying*.

d) Different adjectives fo r different classes

—The ‘cost price* means the original cost of a book.

61

Chapter 2: A Study of Four Amlysis Methods

—The ‘different price* means the selling price of a book, i.e., a book may have

different selling prices. Therefore, it is more appropriate to use the phrase ‘selling

price* instead o f‘different price* to name the class.

e) Missing subjects that may not appear in the specification explicitly but they may have

to be defined as new classes because o f the needs o f the system

—For the sentence ‘each advertisement is placed in one magazine on a given date’, the

system is not concerned with who is responsible for placing an advertisement in a

magazine. So no new class is needed here.

—For the sentence ‘Payment is required’, the missing subject is ‘Order*.

—For the sentence ‘Once payment for an order is approved, a receipt is produced, the

ordered books are taken from the stock and sent to the customer with the receipt’,

‘Order* can be considered as the missing subject.

—For the sentence ‘the unique ISBN for each book is recorded, together with its title,

the names of its authors, the name of its publisher, its cost price and its current stock

level (i.e., the number of the copies of the book in the company’s warehouse)*,

‘Book* can be considered as the missing subject.

—For the sentence ‘for each advertisement^ the name of the magazine in which it

appears and the date of the issue is recorded, as well as the list of books and their

price given in the advertisement, ‘Advertisement* can be considered as the missing

subject.

—For ‘Each order is assigned a distinguishing order number and details are recorded

of the customer, the date, the books required, the total cost and a credit card number

if that is the chosen method of payment*, ‘Order* and ‘Customer* can be considered

as the missing subjects.

Thus no more new candidate classes are needed.

f) Unnecessary classes

—As required by the requirements, the ‘total cost* and ‘cost price* are attributes of the

class ‘Order*.

62

Chapter 2\ A Study of Four Amlysis Methods

g) Attributes and values

The attributes for each meaningful candidate class are listed as follows:

Book—ISBN, title, author, publisher, cost price, stock level

Advertisement—name of magazine, date of issue

Customer—name, address

Order—order number, type, date, total cost, payment, receipt

Enquiry—time, type

SellingPrice—amount.

No value of these attributes would be defined as a class.

At this point, six candidate classes were selected for the book trader system: Book,

Advertisement, Customer, Order, Enquiry ztné Selling Price.

(3) Finding Missing Classes

Some missing classes (i.e., superclasses and abstraction classes) are identified in this

substep.
Superclass—A superclass is a class fi’om which specific behaviour is inherited.

Abstract class—An abstract class is a superclass that is not intended to produce

instances of itself. It specifies common behaviour for a variety of classes and then

these classes can inherit the common behaviour.

Subclass—A subclass is a class that inherits behaviour from another class, i.e.,
abstract class or its superclass. A class might have several abstract classes or

superclasses. A subclass usually has its own behaviour as well as the inherited

behaviour.

An abstract class or superclass is identified by grouping the classes that share their

behaviour. For the book trader system, the above candidate classes do not share common

behaviour and so no abstract or superclass was defined.

Each class is now recorded by a class card, as listed for the book trader system in

Figure 2.29.

63

Chapter 2: A Study of Four Analysis Methods

Class: Book
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs:
Description: This class represents the books that are

advertised in magazines and ordered by
customers.

Class: Customer
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs:
Description: This class represents the buyers Wio

order the advertised books.

Class: Advertisement
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs:
Description: This class represents the advertisements

that show the sale details of books.

Class: Order
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaboration Graphs:
Description: This class represents the orders of books

that are provided by customers.

Class: Enquiry
Superclasses: none
Subclass^: none
Hierarchy Graphs: none
Collaborations Graphs:
Description: This class represents the enquiries about

the number of die Orders responding to
an advertisement or about die progress
ofa specific order.

Class: Selling price
Superclasses: none
Subclass^: none
Hierarchy Graphs: none
Collaborations Graphs:
Description: This class reprerents the selling prices

that arc published for advertised books.

Figure 2.29 Initial Class Cards in the Book Trader System

Step 2: Defining Responsibilities

This step defines the responsibilities of each class through three substeps.
Responsibility—A responsibility is the knowledge an object maintains, and the actions

an object can perform.

64

Chapter 2: A Study of Four Analysis Methods

f D Finding Responsibilities from the Purpose of Each Class

The role of a class in a system is supposed to imply its responsibilities in the system.

The following shows some responsibilities identified for the classes in the book trader

system according to their roles in the system:

Book—Record and access book information
Customer—Record customer information
Advertisement—Access advertisement information
Order—Record order information
Enquiry—Answer an enquiry
Selling price—Access the amount.

(1) Extracting Responsibilities from the Specification

The specification of a system includes the actions that must be performed. The

actions can be abstracted from the verb phrases in the specification. Figure 2.30 lists the

verb phrases taken from the specification of the book trader system.

selling books by advertising them in magazines
book may have a difTerent price in different advertisements
customer can buy one or more advertised books
mailing an order form to the company
payment is required
telephone the company
a receipt is produced
taken firom stock and sent to the customer
the bussiness is supported by an information system
requests the number of orders
requests details of the progress of a specific order
customer is only relevant to a specific order
identifying the order

Figure 2.30 The Verb Phrases from the Book Trader Scenario

Each action can be assigned as a responsibility of the class to which it logically

belongs by the follovnng guidelines: a) decide how much a class knows or can do for a

system, and how many objects it can affect, b) assign the common behaviour to the

superclass at the highest level, c) keep behaviour with related information, d) keep

information about one thing in one place, and e) split shared responsibilities among related

objects into several smaller and more specific responsibilities and assign them separately to

the most appropriate classes.

65

Chapter 2: A Study of Four Armlysà Methods

The responsibilities for the book trader system were identified from the verb

phrases listed in Figure 2.30 and assigned to classes by following the given guidelines:

Book—Record book information. Access book information. Update stock level
Customer—Record customer information

Advertisement—Record advertisement information. Access advertisement information.

Calculate sum of response orders
Order—Record order information. Access order information, Update order state.

Access order state. Clear payment. Produce receipt
Enquiry—Accept enquiry. Answer enquiry

Selling price—Access the amount.

(3) Identifying Responsibilities from the Relationships between Classes

Some responsibilities may be implied in the relationships, ‘is-kind-of, ‘is-

analogous-to* and ‘is-part-of, between classes. N o more responsibilities o f the classes in

the book trader system were identified at this step since there are no such relationships

among the classes.

Step 3: Defining Collaborations

A class may process a responsibility itself or may require another class to do the

processing for it. This step is concerned with the latter co-operation between classes:

Collaboration—A collaboration is a request from a client to a server in order to

perform a client responsibility, that is, it implies a contract between a client and a
server.

Contract—A contract is a list of requests, i.e., services, that a client can make of a
server.

Service—A service is a responsibility of a server for a contract within a class that can

be requested by other objects.

To find collaborations and contacts between classes, the responsibilities with dependencies

need to be identified by analysing the interactions between the classes.

f n Identifying Collaborations by Responsibilities

Examine each responsibility by considering ‘Is the class capable to fiilfilling this

responsibility itself? If not, what does it need? From what other class can it acquire what it

needs?*. A shared responsibility often implies a collaboration between the classes.

66

Chapter 2: A StJtdy t f Four Analysis Methods

(2) Identifinng Collaboration by Classes

For each class, consider the questions ‘What does this class do or know? What

other classes need the result or information from this class?*. If no interaction exists

between a class and any other class, this class should be discarded.

(3) Identifinng Collaborations bv Relationships

In addition, examine three specific relationships, ‘is-part-oF and ‘has-knowledge-

about* and ‘depends-upon*, to identify possible collaborations, since these relationships

often imply the interactions among classes.

The following collaborations between classes in the book trader system were thus

identified by this substep:

—Order (client) with Customer, Book and Advertisement (servers),

—Enquiry (client) with Order and Advertisement (servers), and

—Advertisement (client) with Order and Selling price (servers).

Step 4: Defining Hierarchies

The hierarchy of classes is defined in this step.

(1) Building Good Hierarchies

A class hierarchy and a contract of shared responsibilities are defined by the

guidelines: a) model a kind-of hierarchy, b) put common responsibilities as high as

possible, and c) make sure that abstract classes do not inherit fi*om concrete classes. ^

No hierarchy was built for the book trader system by this substep.

(2) Identifinng Contracts

The contracts between classes and services in the classes are defined here.
Private Responsibility—A private responsibility is the behaviour that a class

must have, but cannot be requested by other objects.

The guidelines given to define contracts are: a) group responsibilities used by the same

clients, i.e., they belong to one contract, b) maximise the cohesiveness of classes, and c)

minimise the number of contracts since the fewer contracts that exist the more

comprehensible a system.

67

Chapter 2: A Study of Four Analysis Methods

Under these guidelines, the contracts between the classes in the book trader system

were defined as listed in Table 2.1.

contract number contract server client

1. Access order state Order Enquiry
2. Rœord customs information Customer Order
3. Access book information Book Order
4. Update stock level Book Order
5. Access ords information Order Advertisement

6. Calculate sum of response orders Advertisement Enquiry
7. Access the amount Selling price Advertisement

Table 2.1 A List of Contacts between the Classes in the Book Trader System

Step 5: Defining Subsystems and Protocols

If a system is large, in this step it can be partitioned into a set of smaller subsystems to

simplify the interactions between classes and to make the system understandable.
Subsystem—A subsystem is a group of classes or a group of classes and other

subsystems that collaborate to support a set of contracts. The classes in a
subsystem work closely together to provide a clear unit of functionality.

Protocol—A protocol is a set of signatures to which a class respond to.
Signature—A signature is the name of a method, the types of its parameters,

and the type of the object which the method returns.

(i) Defining Subsvstems

Subsystems are defined by decomposing an application domain into smaller sub-

domains. In particular subsystems can be identified by first drawing a collaboration graph

of the system that shows a web of the many collaborations between classes, and then

considering the questions “What is the purpose of that web? Does it show these classes

work together to implement a unit of functionality? Does it make sense to abstract the

group of classes out as a single entity? Can a subsystem be built in order to subsume these

classes?**. One way to determine whether a group of classes is a subsystem is to name it.

If it can be named, it is likely a subsystem.

68

Chapter 2: A Study of Four Analysis Meüiods

Using these guidelines, the collaboration graph of the book trader system was

drawn as in Figure 2.31. No subsystem was defined since the interactions between the

classes in the system are not complex.

Order

Customer
3'̂ ' ^ 4

Enquiry

Book Advertisement
17 Selling

price

Figure 2.31 The Collaborations Graph of the Book Trader System

(2̂1 Constructing Protocols for Each Class

From a collaboration graph, the protocols of each class can be defined based upon

the contracts in this graph, using the folloi^ng guidelines; a) use a single name for each

conceptual operation, b) associate a single conceptual operation with each method name,

and c) if classes fulfil the same specific responsibility, define it explicitly in an inheritance

hierarchy.

The protocols of the classes in the book trader system were defined as listed in

Table 2.2.

contracts protocols
Access order state orderStateO returns current state

Record customer information recordCustomer(name, address) returns OK

Access book information sendBookDetailO returns book information

Update stock level update(stock level) returns new value of stock level

Calculate sum of response orders sumOrder() returns number of orders

Access order information sendOrderDetailO returiK order information

Access the amount amountPriceO returns current value of amount

Table 2.2 The Protocols of the Classes in the Book Trader System

(3 Writing a Design Specification for Each Class and Subsystem

The specification for each class and subsystem is recorded on a class card or a

subsystem card, based on the guidelines: a) redraw the graphs on pages, one page per

graph, b) number the pages so they can be referred to, and c) order the collaboration

69

Chapter 2: A Study of Four Analysis Methods

graphs from the most global to the most specific. By following these guidelines for the

book trader system, the initial class cards shown in Figure 2.29 were revised as shown in

Figure 2.32, each card describes a class.

Class: Book (concrete)
Superclasses: none
Subclasses: none.
Hierarchy Graphs: none
Collaborations Graphs: Figure 2.31
Description: This class represents the books that are advertised

in magaanes and ordered by customer.
Contracts
3. Access book information

Know the book detail
sendBookDetailO returns book information

4. Update stock level
update(stock level) returns new value of stock level

Private Responsibilities
Record book information
Access book information

Class: Customer (Concrete)
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs: Figure 2.31
Description: This class represents the buyers ̂ o order the

advertised books.
Contracts
2. Record customer information

Know the customer detail
 ______ recordCustomerfname. address) returns OK________

Class: Advertisement (Concrete)
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collahorations Graphs: Figure 2.31
Description: This class represents the advertisements

that show the sale details of books.
Contracts
6. Calculate sum of response orders

sumOrderf) returns number of orders
Private Responsibilities

Record advertisement information
uses Selling price (7)

Access advertisement information
use Order (S)

70

Chapter 2: A Study of Four Analysis Methods

Class: Enquiry (Concrete)
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs: Figure 2.31
Description: This class represents the enquiries about the

number of orders responding to an advertisement
or about the progress of a specific order.

Private Responsibilities
Accept enquiry
Answer enquiry

uses Order (1)
 uses Advertisement (6)____________________

Class: Order (Concrete)
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collahorations Graphs: Figure 2.31
Description: This class represents the orders of books that are

provided by customers.
Contracts
1. Access order state

Know the order state
orderStateO returns current state

S. Access order information
Know the order ii^ormation

SendOrderDetailO returns order information
Private Responsibilities

Record order information
uses Customer (2)
uses Book (3)

Produce receipt
uses Book (4)

Update order state
Clear payment__________________________________

Class: Selling price (Concrete)
Superclasses: none
Subclasses: none
Hierarchy Graphs: none
Collaborations Graphs: Figure 2.31
Description: This class represents the selling prices that are

published for advertised books.
Contracts
7. Access the amount

amountPriceO returns current value of amount

Figure 2.32 Revised Class Cards for the Book Trader System

(3) Writing a Design Specification for Each Contract

A contract is recorded in a contract card. Seven contract cards that record the

contracts defined in the book trader system are listed in Figure 2.33.

71

Chapter 2: A Siitdy of Four Analysis Methods

Contract 1: Access order state
Server: Order
Clients: Enquiry
Description: This contract allows clients to access

the current state of an order

Contract 2: Record customer information
Server: Customer
Clients: Order
Description: This contract allows clients to record

the details of a customer.

Contract 3: Access book information
Server: Book
Clients: Order
Description: This contract allows clients to

access the details of a book.

Contract 4: Update stock level
Server: Book
Clients: Order .
Description: This contract allows clients to update

the number of the copies of a book.
Contract S: Access order information
Server: Order
Clients: Advertisement
Description: This contract allows clients to access

the details of an order.

Contract 6: Calculate sum of response orders
Server; Advertisement
Clients: Enquiry
Description: This contract allows clients

to calculate the number of orders
responding to an advertisement.

Contract 7: Access the amount
Server: Selling price
Clients: Advertisement
Description: This contrct allows clients to access

the value of amount.

Figure 2.33 The Contract Cards for the Book Trader System

1.2.4.4 Products Generated

The products of the book trader system produced by the Wirfs-Brock method consist of

(a) class cards, (b) a collaboration graph, and (c) contract cards.

2.3 Assumptions about analysis
Based on the distinction drawn between object-oriented analysis and design described in

Section 1.1.2, these four methods can be viewed as analysis methods since the above study

72

Chapter 2: A Study of Four Analysis Methods

shows that they all do analysis during system development. Even though the Booch

method and the Wirfs-Brock method do not give a clear milestone between analysis and

design, they still analyse a problem domain or an application scenario in order to produce

an analysis model that is deliverable to design. By studying these methods, the

assumptions of the methods about analysis can be explored. These assumptions show what

a method is basically supposed to do for analysis, which is useful for us in establishing the

required framework in the next chapter.

2.3.1 Assumptions in the OOA Method

The claims of the OOA method indicate that it is an analysis method that aims to build an

object model of a system using the principles that are supposed to be significant to

analysis. This object model consists of five layers each of which emphasises the concepts

such as 'object* and 'structure* and includes the elements such as 'class-&-objects* and

‘attribute*. A process of analysis, composed of five activities, is provided by this method in

order to build an object model. The use of this method to analyse the book trader scenario

shows that each activity includes several actions, such as 'where to look*, during analysis.

It also shows that the method gives guidelines (e.g., 'where and what to look for*) to

assist each action and the criteria (e.g., 'needed remembrance*) to help in the

determination of the significant elements in an object model.

This study finds that the inputs of analysis may be a description of a problem

domain or may be a specific scenario, and the products of analysis include a five-layer

object model and the specifications of objects and classes. It also reveals that the process

of analysis is data-driven since the operations are primarily defined upon the attributes

(i.e., data) in the class-&-objects, when we built the object model for the book trader

system. The object model is represented by the OOA notation, object state diagrams and

service charts.

73

Chapter 2: A Study of Four Analysis Methods

2.3.2 Assumptions in the OMT Method

As shown in Section 2.2.2, the OMT method includes the analysis stage of system

development. This method addresses five themes that it claims are significant and

important in object orientation. The method builds three kinds of model during analysis;

the object model, the dynamic model and the functional model. An iterative process is

provided in order to construct these models.

The study of this method shows that the main input of analysis is the description of

a problem, such as the book trader scenario, and the three models are built by analysing

this input using this method. These.three models emphasise the concepts such as 'object

structure’ and 'object behaviour’, and they consist of a set of elements, e.g., 'association’

and 'event’. In particular, an object model describes the structure of a system (such as

Figure 2.23), a dynamic model specifies the behaviour of an object in the system (such as

Figure 2.18); and a functional model represents the transitions of values from input to

output in the system (such as Figure 2.20).

The study also shows that the process of analysis provided by this method consists

of five steps such as 'constructing the object model’. Each step includes a sequence of

substeps such as 'identifying objects and classes’. In this method, the data structure is

emphasised more than the process structure since the method assumes that the former is

more stable than the latter. An object model is thus the basic model and the other two

models are built upon it. The study also reveals that the process of analysis in this method

is data-driven since it specifies the objects, classes, their attributes and their structures in

an object model first and the behaviour and functions of objects and classes are then

specified in terms of the object model.

Additionally, a set of guidelines and criteria is used when using this method to carry

out the steps and substeps in the process of building the three kinds of model. For

example, one guideline proposes looking for the nouns and noun phrases from a given

scenario, and the criteria such as 'the significant class should not be redundant in the

object model’ are used to choose the significant classes in the construction of an object

model.

74

Chapter 2: A Study of Four Analysis Methods

The products of analysis generated by the OMT method include three different

models that are represented by the extended entity relationship diagrams and a data

dictionary, statecharts and event flow diagrams, and data flow diagrams.

2.3.3 Assumptions in the Booch Method

Booch claims that his method supports the development of systems from analysis through

design to implementation, and it emphasises the discovery of objects and classes from a

problem domain and the invention of objects and classes on a computer domain

[Booch91], Four principles are used by this method, as addressed by most object-oriented

programming languages. To specify objects and classes, the method aims to construct an

object model by analysis based upon the four principles. A 'round-trip gestalt’ process,

i.e., analyse a little, design a little, is proposed for building this object model, and it

includes four steps.

The Booch method requires the identification of objects and classes from a problem

domain using any technique, which may be derived from some other analysis method. For

example, we used the OOA method. Then it identifies the semantics of these objects and

classes, such as their operations and relationships, from the problem domain in the 'round-

trip’ process. This shows that the Booch method should be considered as an analysis

method since it is concerned with the analysis of a problem domain as part of system

development.

The study of the Booch method shows that the process of analysis in this method

emphasises the identification and specification of the operations for the objects and

classes, since they have strong impact on the identification and specification of other

elements such as the relationships between objects or classes in an object model. However,

no detailed guidelines and criteria are given to assist the steps of this process, leading to

difGculties in the selection of the significant elements in an object model using this method.

An object model for this system is mainly represented by a class diagram, state transition

diagrams and an object diagram.

75

Chapter 2: A Study of Four Analysis Methods

2.3.4 Assumptions in the Wirfs-Brock Method

From the claims given in Section 2.2.4, the Wirfs-Brock method basically aims to design

object-oriented systems. The study, however, shows that this method also does analysis in

order to identify objects and classes and their responsibilities from a complete specification

of system requirements. In fact its authors regard the real word as a system and so an

application scenario could be used as a specification of system requirements in this

method. Consequently, this method is also an analysis method. Five issues in particular are

addressed by this method. Based upon these issues, an object-oriented system is modelled

and specified. The object model of the system focuses strongly on the description of the

responsibilities of classes and the collaborations between the classes or the subsystems in

the system. A process of analysis is provided by this method to construct an object model

for an application, involving two phases with five steps.

The study of this method in Section 2.2.4 shows that a specification of system

requirements or an application scenario is the input of analysis. A model is produced by a

process that consists of five steps such as 'finding classes’. Each step also includes a set

of substeps such as 'looking for noun phrases’. Guidelines and criteria are given to assist

these steps and substeps. For example, classes can be abstracted and selected from noun

phrases by following criteria such as 'keep physical objects’.

This study shows that the process in this method is responsibility-driven, or

process-driven, and the responsibilities of classes for a system have impact on identifying

and defining other elements in the model, such as 'contract’ and 'collaboration’ between

the classes. Attributes of the classes are not explicitly represented in the model of the

system. The products of analysis are represented by a collaboration graph, class cards, and

contract cards.

76

Chapters: TheFranteioork

Chapter 3

The Framework

This chapter defines a framework for assessing object-oriented analysis methods and

shows how such a fi-amework may be used as a comprehensive basis for understanding

object-oriented analysis methods. In this chapter, Section 3.1 discusses the essential

features of object-oriented analysis methods. Section 3.2 defines the framework. Section

3.3 and 3.4 present more detail and examples of each component in the framework, and

finally Section 3.5 describes the process of assessing an analysis method in terms of the

fi-amework defined.

3.1 Essential Features of Object-Oriented Methods

3.1.1 Basic Assumptions about Object-Oriented Analysis

Four representative analysis methods [Coad91a, Rumbaugh9I, Booch91, Wirfs90] were

applied and discussed in the previous chapter. That chapter discussed the assumptions

made about object-oriented analysis by each method, as described in Section 2.3. The

study also showed that some of the assumptions are common and basic to object-oriented

analysis, being crucial to the success of such analysis. These basic assumptions include:

(1) the inputs required for analysis, such as a problem domain,

(2) the models aimed to be built during analysis, specifying what a system should do,

(3) the notations used for representing these models,

(4) the process of analysis provided for building the required models, and

77

Chapters: The Framework

(5) the products generated from analysis.

A study and examination of other analysis methods (e.g.. Synthesis [Page89], OOA

[Shlaer88 and 92], OOSE [Jocobson92], Ptech [Martin92a], OBA [Rubin92], OOSA

[Embley92], BON [Nerson92], HOOD [Robinson93], MOOD [Capretz93], Fusion

[CoIeman94], and Syntropy [Cook94a]) reveals similar basic assumptions. For example,

OOA [Shlaer88 and 92] can be said to have the following assumptions: input (i.e., a

problem domain), analysis models (an information model, a state model, and a process

model), notations (domain chart, information structure diagram, state transition diagram,

and action data flow diagram), a process o f analysis (step 1 : develop the information

model, step 2: develop the state model, step 3: develop the process model, etc.), and

products o f analysis (the three above models, supporting tables, descriptions, and lists).

These basic assumptions that can be said to exist in analysis methods represent the

essential features of the methods, according to our research, and the particular nature of

these features determine the similarity and/or difference between methods. Analysing and

assessing these features of an analysis method would be a useful way of acquiring an

understanding of the nature of a method.

3.1.2 Essential Features of Analysis Methods

Except for the assumptions shown above, we also found that the models produced by the

four methods were different even though they described the same problem scenario used

in the study. A further examination of the methods shows that the object concepts — such

as 'object’ and 'inheritance relationship’ and ‘object behaviour’—emphasised by the

methods have strong impact on the configuration of the models. That is, different

concepts, or even the concepts that look similar to one another, may make the content of

the models different. For instance, the concept ‘message’ is emphasised in the OOA

method and so its model includes an element 'message connection’; while the concept

'client-server’ is emphasised in the Wirfs-Brock method and thus 'client-server contract’ is

provided as an element in the model. More examples of such impact can be found in the

applications shown in the previous chapter. On the other hand, the same concept may be

78

Chapter 3: The Framework

implemented in different ways by different analysis methods. For example, the concepts

‘object’ and ‘class’ are implemented by the elements ‘class-&-object’, ‘attributes’ and

‘service* in the OOA method, and by the elements ‘object’, ‘class’, ‘object state’ and

‘operation’ in the object model in the Booch method. According to the definitions of the

elements in both methods, they have different meanings and play different roles in analysis

[Liang94].

In addition, further examination shows also that the principles, such as ‘abstraction’

and ‘encapsulation’, used by an analysis method often make the method distinctive and

different. Distinguishing the various meanings of such principles will be helpful in

explaining why some analysis methods focus on similar or different concepts within

analysis. For example, the OOA method claims that the principle ‘abstraction’ particularly

refers to ‘data abstraction’ and therefore the concept ‘object’ is a notion of something in a

problem domain that is specified as an encapsulation of attribute values and their exclusive

services acting on the attributes. In contrast, the Wirfs-Brock method regards this

principle as ‘one of process abstraction’ so that the concept ‘object’ is a notion of a

conceptual entity in the real world that is an encapsulation of functions and data which are

maintdned by the functions. Different interpretations of the principle ‘abstraction* in these

two methods make the meaning of the concept ‘object’ different between the two

methods. These principles and concepts are the basis for object modelling and are

fundamental to analysis. As well as these underlying principles and concepts, an essential

feature of an analysis method is the general approach taken during analysis to the

construction of object models. We term this general approach the ‘tactic of analysis’. For

example, the tactic of analysis in the OOA method is ‘data-driven’, whilst the tactic of

analysis in the Wirfs-Brock method is ‘responsibility-driven’.

To summarise, the extra features below are also essential in an analysis method and

will be important and useful in the understanding of a method.

(6) the fundamental concepts underlying the various models, such as object;

(7) the fundamental principles informing these concepts, such as encapsulation; and

(8) the tactic o f analysis, such as data-driven.

79

Chapters'. The Framework

3.2 Definition of the Framework
This section defines a framework, based on the essential features identified above, for

assessing individual analysis methods. Such a framework will form a comprehensive basis

for understanding and comprehending individual analysis methods.

3.2.1 Whaf and How ̂Aspects of Analysis Methods

Booch [Booch 91] emphasises that object-oriented analysis includes the process of

identifying and modelling the essential objects and classes and their logical relationships

and interactions. Furthermore, he states that, no matter which analysis method is

employed, the important factor is that the products of analysis provide us with a complete

enough model of the problem from which we may begin to design a solution. This

distinction between ‘model’ and ‘process of analysis’ is important since generally the

model represents what the method aims to do and the process shows how the method can

reach its aim. Accordingly, all the essential features of an analysis method are catalogued

into two basic aspects as follows;

(1) the ‘what’ aspect, i.e., what the method intends to do in analysis, and

(2) ‘how’ aspect, namely, how the method does what it intends to do in analysis.

In general, the essential features model and fundamental principle and fundamental

concept are included under the ‘what’ aspect of the method, as a model is concerned with

what analysis specifies as being required and fundamental principle and fundamental

concept are a basis of model. The essential features notation, tactic o f analysis, input,

process, and product of analysis are classified into the ‘how’ aspect of the method

according to their major roles in analysis. The framework is defined below by focusing on

these two aspects o f analysis methods.

3.2.2 The Definition of the Framework

A framework for assessing object-oriented analysis methods is defined as follows:

80

Chapters: The Framework

Framework

The framework for assessing an analysis method consists of two parts that correspond to

the two aspects of the method;

(1) the principle part, which focuses on the ‘what’ aspect of an analysis method. This part

includes the following components: ‘fundamental principle’, ‘fundamental concept’, and

‘model’, including type and element. These components are used to assess the essential

features in the ‘what’ aspect of the method.

(2) the practice part, that emphasises the ‘how’ aspect of an analysis method. This part

includes the following components: ‘notation’, ‘tactic of analysis’, ‘input of analysis’,

‘process of analysis’, with steps, guidelines and criteria, and ‘product of analysis’.

These components are used to assess the essential features in the ‘how’ aspect of the

method.

This framework can be represented graphically in a summary fashion by a hierarchical

table (see Table 3.1). In the table, each column at the first (highest) header level contains

each part of the framework (principle or practice), each column at the second header level

has one component in a part, and each column at the third level includes a subset of a

component, where appropriate. In terms of the framework, the features identified by

assessing an analysis method will be represented in cell rows under the columns of Table

3.1 (for example, see Table 3.2 (a) and (b)). However, it must be emphasised that this

table is just a convenient graphical representation of the framework. The framework itself

is a detailed approach including the interpretations of its parts and components and a

process of using it to assess analysis methods, as is now described.

81

Chapters: TheFrameioork

3B

II

H <

82

Chapters'. TheFramemork

II II

as

2

.S Q .5

U)

83

Chapters: The Framework

''principle

S ta g e r s ,

Fundamental
Principle

Fundamental
Concept

Model
Type Element

Analysis

• Abstraction

• Encapsulation

• Object

• Relationship

• Object Model
• Object
• Class
• Attribute
• Association

• Behavioural
Model

• State
•Event
• Action

• Functional
Model

•Process
• Data flow
• Data store

Table 3.2(b) Examples of the Principle Part

3.3 The Principle Part
3.3.1 Fundamental Principle

The word "principle’ is defined as follows in the dictionary [Oxford88];

Principle; 1) basic truth or general law of cause and effect; 2) guiding rule for
behaviour; 3) general law shown or used in the working of a machine.

The fundamental principles of an analysis method are the basic "laws’ of analysis for the

method and underpin the concepts and the construction of models within a method. When

assessing an analysis method, we need to understand the content and meaning of these

principles in order to understand why the principles are emphasised and how they may

effect other features. However, it should be noted that the fundamental principles may not

be explicit in a method (for example, this is the case with [Shlaer88 and 92]) and they may

need to be abstracted fi’om other features, such fundamental concepts. The following are

examples of part of the fundamental principles used in the OOA method [Coad91a] and

the OMT method [Rumbaugh91]:

• Abstraction
Abstraction is a principle that can help to choose certain things over others [Coad91a].

Data abstraction is in particular used in this method.

• Enccpsulation

Encapsulation (also known as information hiding) is a principle that separates the

external aspects of an object from the internal ones, such that only the external aspects

can be seen and be accessed by other objects [Rumbaugh91].

84

Chapter 3: The Framework

• Communication with messages

This is a notable principle for interactions between objects.

With traditional methods, the principle "abstraction’ is classified into three categories,

according to Olle’s work [011e88], corresponding to the three common aspects of a

system: (a) data abstraction (that is, a data oriented perspective) which enables methods

to emphasise and specify the data structure of a system; (b) process abstraction (that is, a

process oriented perspective) by which methods can focus on and specify the supposed

functions of a system without temporal concerns; and (c) behaviour abstraction which

enforces methods to focus on and specify the time dependent (or temporal) processes of a

system.

With object-oriented analysis methods, our research has shown that the principle

‘abstraction’ can also be used to focus on one or more aspects (i.e., data, process, and/or

behaviour) of a system by specifying the static structure, operations and collaboration, and

dynamic behaviour of objects within a system.^ The principle "abstraction’ as used in

object-oriented methods, therefore, is classified as follows:

(a) abstraction with data, by which an analysis method focuses on and specifies the

static structure of objects within a system. Such abstraction is concerned with the

attributes of objects and the relationships between objects.

(b) abstraction with process, by which an analysis method emphasises object

behaviour within a system without temporal concerns. Such abstraction is

concerned with the operations of objects and the functional collaboration between

objects.

(c) abstraction with behaviour, by which an analysis method focuses on and specifies

object behaviour within a system with temporal concerns. Such abstraction is

concerned with the sequence of states and operations of objects over time.

 ̂ More detail of the discussion on this issue was shown and discussed in our two published
papers [Liang93 and 94], for instance, the comparison of OOA methods and traditional
analysis methods such as ^A D M [Ashworth90] and the impact of these three perspectives
on object modelling.

85

Chapters: The Framework

According to this classification, for example, the abstraction in the OOA method can be

regarded as abstraction with data and behaviour, while the abstraction in the OMT method

can be regarded as abstraction with data, process and behaviour (see Chapter 5). Other

published work also shows how different types of abstraction may be used to emphasise

different perspectives within a system using object-oriented methods. For example, Fowler

[Fowler91], compares object-oriented methods by examining the abstraction in terms of a

data view, a behavioural view and an architectural view (i.e., process view) of a system in

object modelling.

3.3.2 Fundamental Concept

The word ‘concept’ is defined generally by the dictionary [Oxford88] as follows:

Concept: idea underlying a class of things; general notion.

The fiindamental concepts are the basic ideas behind the business of analysis in a method,

and are underpinned by the fundamental principles used in a method. A fundamental

concept may be explicitly declared or be implicit within a method (usually within the

models built). A typical example of a fundamental concept is ‘object’:

• Object

— An object is an abstraction of something in a problem domain, reflecting the

capabilities of a system to keep information about it, interact with it, or both

[Coad91a].

— An object combines both data structure and behaviour in a single entity. It is a

concept, abstraction, or thing with crisp boundaries and meanings for the problem at

hand [Rumbaugh91].

— Object is the concept that means an entity that encapsulates both functions and data

and that has a public interface and a private representation in order to make the

internal details invisible to other entities [Wirfs90].

86

Chapters: The Frameioork

Other examples are as follows;

• Class

— Class is the concept that means a generic specification for a set of similar objects

which share the same behaviour [Wirfs90].

— A class often is a description of one or more objects with similar properties

[Coad91a].

• Object behaviour

— Object behaviour is a concept that means that an object has its own behaviour

[Rumbaugh91].

— Object behaviour is the concept that expresses the interactions between objects, i.e.,

how an object acts and reacts in a system [Booch91].

• Object structure

Object structure is a notion to illustrate how different objects collaborate with each

other in terms of the outside views of the objects [Booch91].

• Aggregation

An aggregation is a union of several objects [Jacobson92].

• Grouping

Grouping is a notion of collecting the objects which are tightly related to one another

within a system [Coad91a].

• Partitioning

Partitioning is a notion of decomposing a large system into smaller parts

[Rumbaugh91].

3.3.3 Model

In order to describe what a system needs to do to meet the requirements of an application

scenario or a problem domain, a method must build (at least) an object model. In order to

understand the detail of the individual models built by various methods, we need examine

the various types of model employed and their constituent elements.

87

Chapters: The Framework

3.3.3.1 Type of Model

An analysis method may or may not aim to build more than one model in analysis. For

example, as shown in Chapter 2, the OMT method [Rumbaugh91] builds three models of

a system during analysis to correspond to each of three aspects of the system; the object

model, the dynamic model and the functional model. In contrast, the OOA method

[Coad91a] only builds one object model for a system, combining data and behaviour

aspects into the one model. It is thus important to clarify the type of model in a method in

order to understand its role and significance in the method. For example, the three types of

model that are defined by the OMT method are:

The Object Model

An object model describes the data aspect of a system; objects, classes, their

attributes, their relationships, and so on.

(2 ̂The Dvnamic Model

A dynamic model represents the behaviour aspect of a system; states of objects,

events, actions over time, interactions between objects, and so on.

(3̂ 1 The Functional Model

A functional model describes the process aspect of a problem; inputs, outputs,

processes, data flows, and so on,

3.3 3.2 Elements in a Model

A model consists of a set of elements each of which represents a part of a system.

Different types of model normally include different kinds of elements, and more

importantly, different methods may give different definitions of an element (for example,

‘object’). So, in a method such as the OMT method, which emphasises the data aspect of

a system, the element ‘object’ is typically defined with the attributes and the operations

that act on the attributes; whereas a method such as the Wirfs-Brock’ method, which

88

QiapterS: TheFramaaark

emphasises the process aspect of a system, this ‘object’ element is typically defined with

the operations that imply the data accessed by those operations. A model therefore has to

be understood and assessed by analysing the individual elements within it.

The following are examples of elements that come firom the models in the OMT

method [Rumbaugh91]:

f n Elements in Object Models

The object model includes elements such as objects, classes, attributes and links

between objects as follows.

a) Object

An object (or object instance) has attributes, states, and operations. All objects are

distinguishable by their identities.

b) Class

A class is a group of objects which have common attributes and operations. A class

represents the common definition of the objects. In addition, a class that has no object is

called an ‘abstract’ class.

c) Attribute

An attribute is a data value, not an object, held by the objects in a class.

d) Link

A link is a physical or conceptual relationship between objects.

(2 ̂Elements in Behaviour Models

The behaviour model includes elements such as events, states and activities as

follows:

a) Event

An event is something that happens at a point in time.

b) Activity

An activity is associated with a state and it is an operation that takes time to complete.

c) State

An object state is an abstraction of the attribute values and links held by an object.

89

Chapter 3: The Framework

(3) Elements in Process Models

The process model includes elements such as ‘process’ and ‘data flow’ as follows:

a) Process

A process is an operation which transforms data values.

h) D ataflow

A data flow connects the output of an actor or process to the input of another actor or

process.

3.4 The Practice Part
In the practice part of the framework, five components—notation, tactic of analysis, input

of analysis, process of analysis, and product of analysis—are included, as shown in Table

3.1.

3.4.1 Notation

The models in the principle part are represented by notations in the practice part. A

method may create its own notation or use some existing notation for this purpose. A

notation may be graphical or textual or a mixture of them. For example, extended entity-

relationship diagrams are used to represent the object model in the OMT method

[Rumbaugh91] and object state diagrams are used to express the states of objects in the

object model in the OOA method [Coad91a].

In an analysis method, it is the model rather than the notation that reflects the

fundamental concepts that are addressed by a method. This means the same model could

be represented by different notations. However, because a model is often introduced

together with the notation in some methods, the notation may be perceived to be equal to

the model. This may lead to a misunderstanding of the roles of both model and notation in

a method, causing people who do not like the notation to reject the use of the model even

if they may think that the fundamental concepts in the method are highly desirable for

object-oriented analysis. The framework therefore distinguishes between ‘model’ and

90

Chapters. The Frameioork

‘notation’ in order to avoid confusion in the understanding of a method. The examples of

the notations used by analysis methods are shown in Table 3.3, by referring to the models

which they may represent.

N o ta tio n s ^ '
Object Model

Behaviour
Model Process Model

Diagrams

Extended
Entity-Relationship
Diagram
Object Diagram
Class Diagram

State Transition
Diagram

Event Trace Diagram

Data Flow Diagram

Texts

Data Dictionary

Class Card
Specification Template

Process Description
Language

Table 3.3 Examples of Notations

3.4.2 Tactic of Analysis

A tactic of analysis in a method is the general approach to the process of analysis and it

provides the basis for determining the process of analysis and, in particular, the sequence

of the steps and substeps. For example, two differing tactics of analysis are illustrated by

the OOA method and the Wirfs-Brock method, as follows:

(1) Data-Driven

The OOA method uses a ‘data-driven’ tactic of analysis, as claimed by its authors.

With this tactic, the attributes in objects and classes are identified prior to the operations

performed on these attributes.

(D Responsibilitv-Driven

The Wirfs-Brock method uses a responsibility-driven tactic of analysis. Attributes

are not specified explicitly in the model of the system in the process of analysis.

91

Chapters: The Framework

3.4.3 Input of Analysis

The input of analysis required by an analysis method could be any form of system

requirements. For example, the OOA method [Coad91a] allows an incomplete input (i.e.,

incomplete system requirements) at the beginning of analysis and then a complete one will

be obtained gradually by interviewing users during analysis. In contrast, the Wirfs-Brock

method requires a complete input (i.e., complete system requirements) before starting

analysis.

3.4.4 Process of Analysis

The process of analysis in a method commonly consists of a set of steps/substeps or

activities/actions, containing guidelines and criteria for analysis. In order to understand the

process of analysis, the steps (or activities) and substeps (or actions) as well as the

guidelines and criteria should be analysed and assessed.

3.4.4.1 Step or Activity

A step or an activity usually covers an independent part of analysis in the process of

analysis. For example, the process of analysis in the OMT method [Rumbaugh91] consists

of three steps as follows:

Step 1. constructing the object model
Step 2. constructing the (fynamic model
Step 3. constructing the functional model.

3.4.4.2 Substep or Action

A step or an activity may be partitioned into several substeps or actions each of which

defines part of a model. Furthermore, if a substep or an action is still too complex to carry

out, a further partition of this substep or action is done until the final substep or action is

simple enough to carry out. The step "constructing an object modeV above, for example,

is partitioned into the substeps in the OMT method as follows:

Substep 1. identify objects and classes
Substep 2. prepare a data dictionary

92

OiapterS: The Framework

Substep 3. identify associations
Substep 4. identify attributes
Substep 5. identify inheritance, etc.

The correspondence between this step and its substeps is shown in a hierarchical form in

Table 3.4.

step Substep

Step 1.
Constiucting
the object model

Substep 1. Identifying objects and classes

Substep 2. Prepare a data dictionary

Substep 3. Identify associations

Substep 4. Identify attributes

Substep S. Identify inheritance

etc.

Table 3.4 Example of a Step and Its Substeps

3.4.4 3 Guidelines and Criteria

Guidelines enable the analyst to carry out a step/substep or an activity/action with

confidence. In the OMT method, for example, the objects and classes are identified using

the guideline of abstracting the nouns in the problem statements. Criteria are the rules or

heuristics provided by an analysis method for selecting and specifying the correct elements

in the models of a system. For instance, the OOA method provides as the criteria for

selecting the significant class-&-objects in the activity ‘finding class-&-objects’: the

significant class-&-objects should be a) needed remembrance (the authors’ term) b)

needed behaviour, c) multiple attributes, d) more than one object in a class, e) always

applicable attributes, Q always-applicable services, g) domain based requirements, and h)

not merely derived results. Generally, guidelines show the right way to do analysis and

criteria define the right things for a system.

3.4.5 Product of Analysis

The product of analysis is the deliverable from analysis to design in an analysis method.

The previous chapter showed that the products of analysis often include the models built

93

Chapters: The Frameioork

through analysis and the specification documents of individual objects and classes. For

example, the following products of analysis are produced by the process of analysis in the

OMT method:

• an object model —• object diagrams
• a dynamic model — state diagrams
• a functional model — data flow diagrams.

The previous chapter showed that different analysis methods may produce different

products fi-om analysis, in particular, when they define different models, or use different

notations, or provide different guidelines and criteria for analysis.

3.5 The Process of Using the Framework to Assess an
Object-Oriented Analysis Method

The assessment of an analysis method using the fi*amework needs to focus not only on the

clarification of the content of the two aspects (the principle part and the practice part) but

also on the co-operation between the two aspects, in order to gain a comprehensive and

deeper understanding of the nature of the method and to interpret the features in the two

aspects accurately. The process of using the above framework in the assessment of an

OOA method is shown in Figure 3.1.

OOA method
analysis of OOA method y .

 — ^

i
Explicit
features

framework
understanding of
OOA method OOA method

Implicit features
&

Relationships
between features

Figure 3.1 Process of Using the Framework to Assess an Analysis Method

94

Chapter 3: The Frameioork

There are two stages in the process: (1) analyse the method by identifying the explicit

features of the method, and (2) assess the method through clarifying the content of the

features identified and considering the relationships between them. The implicit features in

the method may be identified using the relationships considered at the second stage. Each

stage consists of a collection of activities (with actions) and includes criteria for analysis

and assessment, represented as a series of questions. The features of the method and their

relationships are assessed against the criteria offered and the results are recorded in Table

3.1. Table 3.5 shows the detail of the process in a hierarchical tabular form.

3.5.1 Stage 1: Analyse the Method

At this stage, a method is analysed by focusing on its ‘what’ and ‘how’ aspects in terms of

the firamework, and the essential features that reflect the two aspects of the method are

identified, corresponding to the components in the principle and practice parts of the

framework and are then recorded in the Table 3.1. Our experience shows that some

features (e.g., ‘model’, ‘notation’ and ‘process of analysis’) of an analysis method are

often explicit while others (for instance, ‘fundamental principle’ and ‘fundamental

concept’ and ‘tactic of analysis’) may be implied in the text of the method. Those essential

features which are explicit in the method are identified directly from the text of the

method. However, the implicit features may not be recognised until assessing the features

identified and their dependencies and relationships at the next stage. The activities

included in this stage are as follows.

3.5.1.1 Activity 1.1: Analyse the ‘What’ Aspect of the Method

The first activity at this stage is to analyse the ‘what’ aspect of the method, i.e., what the

method intends to do for object-oriented analysis, in terms of the principle part of the

framework in sections 3.2 and 3.3. Three actions are used to identify the three essential

features—’fundamental principle’, ‘fiindamental concept’, and ‘model’— of the method,

corresponding to the three components in the principle part of the framework.

95

Chapters-. TheFranteioork

Stage Activity Action Criterion

Stage 1:
Analyse
the method

Activity 1.1:
Analyse *what' aspect

Action 1.1.1: Identity fundamental principles
Action 1.1.2: List fiuidamental concents

(a),(b),(c),(d)
(a).(b),(c)

Action 1.1.3: Analyse models (a).(b).(c).(d),(e).(f)

Activity 1.2:
Analyse liow* asp%t

Action 1.2.1: Illustrate the notation (a), (b), (c), (d)
Action 1.2.2: Identity the tactic of analysis (a),(b)
Action 1.2.3: List the innut of analysis
Action 1.2.4: Desmbe the prrcess of tmalysis

— identity steps/substeps or activities/actions
— collect guidelines and criteria

(a),(b)
(a),(b),(c)
(a).(b)_

Action 1.2.5: Identify the product of analysis (a),{b).(c).(d)

Stage 2:
Assess
the method

Activity 2.1:
Assess *what* aspect

Action 2.1.1: Assess the relationship between
the features in the "what" aspect

— Assess the relationship between
'fundamental concq)t' and "model'

— Assess the relationship between principle'
and 'concept'

— Classity the principle 'abstraction'
— Check the "pyramid" construction of the

features described in the table

(a),(b)

(a)

(a), (b). (c)
(a).(b),(c)

Action 2.1.2: Assess the content of the "what"
aspect

(a),(b)

Activity 2.2:
Assess how* aspect

Action 2.2.1: Assess the relationship between
the features in the "how" aspect

— Assess relationship between "notation" and
"process of analysis'

— Assess relationship between "input" and
"process of analysis"

— Assess relationship between tactic" and
"process of analysis"

— Assess relationship between "product" and
"process of analysis"

(a), (b). (c)

(a).(b).(c)

(a).(b).(c)

(a).(b).(c)

Action 2.2.2: Assess the content of the "how*
aspect

(a), (b)

Activity 2.3:
Assess relationship
between two aspects

Action 2.3.1'Assess relationship between
"model" and "notation"

(a).(b),(c),(d)

Action 2.3.2 Assess relationship between
"model" and "tactic of analysis"

(a), (b). (c)

Action 2.3.3 Assess relationship between
tnodel" and "process of analysis"

— assess the relationship between "model" and
"step/substep"

— assess the relationship between "model" and
"guideline and criteria"

(a),(b),(c),(d),(e)

(a),(b).(c),(d)

Action 2.3.4Assess relationship between
"model" and "product"

(a),(b),(c),(d)

Table 3.5 The Process and Criteria for Assessing an Object-Oriented Method

Action 1.1.1: Identify fundamental principles

Based on the account of the fundamental principles in section 3.3.1, the following

criteria may be used to identify the fiindamental principles used in an analysis method:

fa) Are the principles usually employed hy most analysis methods also used in this

method? And how are they defined in the method?

96

Chapters: The Framework

This criterion provides a way of detecting the principles used in the method, based

upon experience and knowledge of the typical principles which are often used in

many analysis methods. Our experience and knowledge shows that the terms, such

as ‘abstraction’, ‘encapsulation’, ‘information hiding’, ‘inheritance’, and ‘scale’,

appearing in a description of an analysis method, often represent the potentially

fundamental principles of the method.

(b) Is there any other law which is particularly regarded as fundamental to object-

oriented analysis in the method? And what does it mean in the method?

This criterion focuses on finding the principles which may be used only in this

method. These principles may be claimed explicitly and defined in the text of a

description of the method. For example, ‘communication with messages’ is claimed

as a principles of analysis in the 0 0 A method [Coad91a] (See section 4.1.1).

(c) Why does the method regarded these principles, rather than others which you may

know from another analysis method, as fundamental to object-oriented analysis?

The author of an analysis method often explains the reasons why it is necessary and

important for the method to use these principles. This may be helpful to consider the

significance of the principles used in the method and to understand the meaning of

the principles accurately.

(d) For each principle identified, is it fundamental and necessary to the success o f

object-oriented analysis per se?

Our experience shows that an analysis method may use object-oriented analysis

principles and object-oriented design principles without distinguishing between the

two. Disentangling the analysis principles from the design principles then becomes

important and useful. Of course, this may be particularly the case where the method

also supports object-oriented design. For example, ‘polymorphism’ is used as a

fundamental principle in the Wirfs-Brock method in order to support the design of a

generic structure in a system. This principle, therefore, is not an analysis principle

according to the criteria here. It is ignored in the assessment of this method (see

section 4.4.1).

97

Chapter 3: The Framework

The principles identified in this action and their definition or descriptions should be

recorded in the first column in the principle part of Table 3.1.

Action 1.1.2: Identify fundamental concepts

Fundamental concepts are discussed in section 3.3.2. In this action the fundamental

concepts defined in the text of a description of a method are identified according to the

following criteria:

(a) Which o f the concepts commonly defined in object-oriented methods are also used

in this method?

Through the study of a large number of current object-oriented analysis methods,, it

is found that some concepts such as ‘object’, ‘class’, ‘object structure’,

‘aggregation’, ‘inheritance relationship’, ‘association’, ‘object behaviour (or object

life cycle)’, ‘message’, and ‘partition/grouping’ appear in the methods quite

fi'equently. This criterion enables to consider whether or not the method assessed

also refers to or defines similar concepts.

(b) Is there any specific concept which is also regarded as fundamental to object-

oriented analysis in the method and, i f so, what is its definition?

In a similar fashion as a particular fundamental principle, the author of an object-

oriented analysis method may define specific concepts which he or she considers

fundamental to analysis. For example, the responsibility of an object is regarded as a

fundamental concept in analysis in the Wirfs-Brock method, the term ‘object

responsibility’ is found fi-om, and defined in, the text describing this method and it

represents the above concept (See section 4.4.1). The terms which are particularly

defined and explained (in texts describing the method) as important concepts should

be considered in this action, since they may be the concepts regarded as fundamental

to analysis by the method.

(c) Why does the method regard these concepts as fundamental to object-oriented

analysis?

98

Chapter 3: The Frameioork

This criterion is helpful to understand the content of these concepts and how they

are utilised by the method.

All concepts identified in this action and their definitions should be recorded in the

second column of the principle part in Table 3.1.

Action 1.1.3: Analyse models

The role of models in an analysis method has been discussed and elaborated in

section 3.3.3. This action is to identify and analyse the models which will be built by the

method. The following criteria may be used:

(a) How many different types o f model are constructed in analysis by the method?

(b) Which aspect o f a system (i.e., data, process, or behaviour) is emphasised and

specified by each model upon objects?

(c) What is the relationship between identified models and how do they refer to one

another, i f there is more than one model in the method?

(d) What elements are included in each model to specify what a system needs to do

without implementation detail? And which part o f the system does each element

represent?

(e) How is each element defined by the method and how is it connected with other

elements in the same model?

(f) Is there any constraint or condition on the use o f each element in each model?

The first three criteria emphasise the recognition of multiple models built by analysis and,

in particular, which of these models is given any primacy by the method, as well as their

roles and references to one another in the specification of a system. The last three criteria

focus on the identification of the elements in each model and clarify their contexts, roles

and constraints in the model.

In addition, the (linguistic) terms used to refer to elements should be examined

carefully, as a term that refers to an element in several models (in different methods)

sometimes may represent a dilemma in a method due to the lack of standards in object-

oriented methods. This may lead to an incorrect interpretation and misunderstanding of

99

Chapter 3; The Framework

the elements in object-oriented methods; that is, elements with the same meaning may be

Refer to by different terms or elements with different meanings may be Refer to by the

same term in different methods. For instance, the element ‘object* is represented by the

same term object in both the OMT method [Rumbaugh91] and the Booch method

[Booch91], but they actually have different declarations and meanings (see Chapter 2),

although this element with different meanings supports and implements the same concept

‘object* in these two methods. This example shows that it is important to assess the

relationships between the fundamental concepts and the elements in models so that the

nature of an analysis method can be recognised (see action 2.1.1). The definition of each

term should be listed in a glossary as a reference for the method.

3.5.1.2 Activity 1.2: Analyse the How* Aspect of the Method

The second activity of the first stage focuses on the analysis of the ‘how* aspect of the

method (i.e., how the method carries out analysis) in terms of the practice part of the

framework, discussed in sections 3.2 and 3.4. This activity includes five actions in which

five essential features (‘notation’, ‘tactic of analysis’, ‘input of analysis’, ‘process’, and

‘product of analysis’) of the method are identified, corresponding to the components in the

practice part of the framework.

Action 1.2.1: Illustrate the notation

Section 3.4.1 analyses the role of notation in an analysis method. The notation is

normally presented and described in detail in the text describing the method. In other

words, the notation can often be directly obtained by reading through a description of the

method, as shown in Chapter 4. The following criteria may be useful for this purpose:

(a) What symbol is used for representing each element in each above model?

(b) Is there any constraint or condition on the use o f a symbol?

(c) Haw many sorts o f (textual or graphical) notation are used in the presentation o f

models in the method and what is the speciality o f each sort o f notation?

(d) why does the method choose to use such notation?

100

Chapter 3: The FrameiDork

The various kinds of notation identified are recorded in the first column of the practice

part in Table 3.1. Separate diagrams and description may be drawn and written as the

documentation of the symbols, using all sorts of notation.

Action 1.2.2: Identify the tactic of analysis

The meaning of the tactic of analysis is explained in section 3.4.2. The tactic of

analysis used in an analysis method is identified in this action by using the criteria as

follows:

(a) Does the author o f the method claim, or state something about, the tactic o f

analysis (e.g., data-driven or process-driven)?

(b) What does the tactic shown actually mean in the method?

If no claim about the tactic of analysis is directly found from the text describing the

method, the identification of such a tactic could be delayed until the action 2.3.2 in section

3.5.2.3, where the tactic can be explicated using the relationship between models and the

tactic of analysis. The tactic of analysis identified is documented in the second column of

the practice part in Table 3.1.

Action 1.2.3: List the input of analysis

The textual description of an analysis method often shows the information about the

input needed for analysis, as stated in section 3.4.3. To recognise the input of analysis in

the method, the following criteria may be used:

(a) what kind o f information (e.g., a problem situation or a problem domain) does the

method regard as the input o f analysis?

(b) where does the required information come from (for instance, from problem

statements or from dialogue with users)?

(c) Must the input information be complete before starting analysis or, alternatively, is

it allowed to he incomplete at the beginning o f analysis?

101

Chapter 3: The Framework

These criteria enforce a consideration of the content of the input of analysis and the

sources of the input. They also show the way a method collects the input information. The

input information found is listed in the third column of the practice part in Table 3.1.

Action 1.2.4: Describe the process of analysis

The process of analysis is often demonstrated in the description of an analysis

method by various application examples. Section 3.4.4 states that such a process usually

consists of steps/substeps or activities/actions, as found in the study of Chapter 2. The

process of analysis in a method may be identified according to the following criteria:

(a) How does the method do analysis in practice?

(b) Does the method provide a specific process fo r carrying out analysis?

The process identified should be further analysed in this action, in order to find the detail

of the steps/substeps (or activities/actions) contained and guidelines and criteria involved

in the process.

— Identify steps/suhsteps or activities/actions in the process

The criteria used here may be as follows:

(a) How many pieces o f work needed to he completed by analysis are covered by the

process in the method?

(b) Is the process decomposed into individual steps or activities such that each o f them

covers a piece o f the work?

(c) Does the method further partition a step or an activity into substeps or actions so

that each o f them only covers a piece o f the part o f the work?

The steps/substeps or activities/actions identified are recorded in the colunm ‘step or

activity’ in Table 3.1.

— Collect guidelines and criteria provided in a step/substep or an activity/action

To identify guidelines and criteria involved in the process, the following criteria

may be used:

102

Chapter 3: The Framework

(a) Does the method give the guidelines that show the way o f carrying out each

step/substep or activity/action? And how they are described?

(b) Does the method offer criteria fo r choosing the right information fo r object

modelling in each step/suhstep or activity/action? And what are their definitions?

The guidelines and criteria and their details identified are listed in the column ‘guideline &

criteria’ in Table 3.1.

Action 1.2.5: Identify the product of analysis

Section 3.4.5 states that the product of analysis (i.e., the outcome of analysis) is the

deliverable from analysis to design in system development. The following are the criteria

of identifying such product in an object-oriented analysis method:

(a) Does the method indicate the product o f analysis?

(b) Which result o f analysis could be the deliverable to design according to the

method?

(c) What does the deliverable consist of?

(d) Is there any constraint or condition on the product o f analysis?

The product and detail identified are documented in the last column of the practice part in

Table 3.1.

3.5.2 Stage 2: Assess the Method

Based upon the framework, the explicit features of an analysis method are identified in

terms of the criteria provided in the previous stage and the details of them are recorded in

Table 3.1. At this stage, the method is assessed by examining the content of its essential

features and assessing the relationships between the features. The assessment of the

relationships between the features, in addition, may explore the implicit features of the

method, because of the dependency of one feature on another, as stated below.

103

Chapters: The Framework

3.5.2.1 Activity 2.1: Assess the ‘What’ Aspect of the Method

By analysing a method in terms of the framework, three kinds of essential features (i.e.,

'Amdamental principle*, "fundamental concept* and "model*) that reflect the "what* aspect

of the method are identified in the previous stage. However, the content of these features

needs to be hirther clarified by examining their meanings and their relationships in order to

avoid misunderstanding the method. The study of analysis methods shows that there exist

dependencies between these three features. For example, the definition of an element such

as ‘cIass-&-objects* (see [Coad91a], for example) in a model is normally defined

according to the definition of a fundamental concept such as "object* and "class* in the

method, and this fundamental concept also refers to a fundamental principle such as

"abstraction* and "encapsulation* in the method. This means that a chain of dependency

exists between the features in the "what* aspect of a method; "model* depends on

"fundamental concept* and "fundamental concept* depends on "fundamental principle*.

Such a chain can be represented by a "pyramid* construction shown in Figure 3.2.

Model

Fundam ental
C oncept

Fundam ental
Principle

Figure 3.2 The "Pyramid* Construction of Three Kinds of Essential Feature

In this activity the dependency between the features in the "what* aspect of the method is

considered and examined in order to understand the meanings of the features correctly.

Action 2.1.1: Assess the relationship between the features in the "what* aspect

The relationship between the features recorded in the principle part of Table 3.1 is

determined and assessed according to the "pyramid* construction. The implicit features in

the "what* aspect of a method are also identified and described using the relationship

identified.

104

Chapters: The Framework

— Assess the relationship between 'fundamental concept ' and 'model*

The assessment of such relationships is also important to the reuse of the objects

defined in different analysis methods. For instance, the study in Chapter 2 showed that the

object Book was identified and defined by all four methods used since the methods all

emphasise the fiindamental concept "object*, but the elements "Book* in their models had

different declarations and meanings. When considering to reuse the object Book defined in

the OMT model, we might discover that the object Book could not be directly reused by

the Wirfs-Brock model without change because of its different definitions in the two

models. Namely, these two methods use different elements in their models to represent

and implement the similar fundamental concept "object*. Whether or not an object could

be reused in a model (in a different analysis method from its origin) depends on the nature

of both the fundamental concepts and the elements in the models built by the two

methods. The following criteria may be used for such assessment:

(a) For each element in the 'model* column, which concept in the 'fundamental

concept * column does it represent and depend on?

According to the "pyramid* construction, each element in a model may support and

implement one or more fundamental concepts in the method. Usually the element is

defined according to both the role which it plays in the model and the fundamental

concepts which it supports and implements. For example, to support and implement

the fundamental concept "object* (meaning here the things important in a problem

domain), the element "object* is defined as "an encapsulation of attribute values and

their exclusive services* in the OOA model [Coad91a], or as "an object has state,

behaviour and identity* in the object model of the Booch method [Booch91].

(b) For an element which seems not to depend on any explicit concept in Table 3,1,

does there exist an implicit concept which is supported and implemented by this

element?

This criterion is very useful to identify the implicit concepts which are actually used

but not declared in any description of the method. The implicit concept identified

here is named with a term which gives the meaning of the concept (some useful

105

Chapter 3: The Framework

terms have been listed in the glossary as standard in the use of the framework in

section 3.6), and then recorded with a parentheses in the column "fundamental

concept* in the principle part of the table.

— Assess the relationship between 'fundamentalprinciple * and 'fundamental concept'

The following criteria may be used for such assessment:

(a) For each concept in the 'fundamental concept’ column, which principle does it

support and depend on?

— Classify the principle 'abstraction’

The study of object-oriented methods available shows that the principle

"abstraction* is used in almost every method but with different emphases on the aspects

(i.e., data, process, or behaviour) of a system, as stated in Section 3.3.1. The types of

abstraction in the method should be classified by examining the corresponding

fundamental concepts and models, so that the emphasis of object modelling can be

recognised and understood. The following criteria may be used in this case:

(a) Does the model include the elements (e.g., 'attribute 'association ’, etc.) that are

often, in particular, used to specify the static structure o f objects or is there a

concept that also means the data dependency o f objects?

If yes, "abstraction* in the method refers to the "abstraction with data*.

(b) Does the model include the elements (e.g., ‘operation’, 'collaboration*, etc.) that

are often used to specify the behaviour o f objects without temporal concerns or is

there a concept that also means the functional dependency o f objects?

If yes, "abstraction* in the method refers to the "abstraction with process*.

(c) Does the model include elements (e.g., 'state*, 'event*, etc.) that are usually used

to specify the behaviour o f objects over time or is there a concept that means the

dynamic behaviour o f objects?

If yes, "abstraction* in the method refers to the "abstraction with behaviour*.

106

Chapter 3: The Framework '

The features dependent on each other are catalogued and recorded in the same row,

see Table 3.6. Such a table provides an overview of the features and their dependencies,

included in the "what* aspect of the method: the vertical columns show individual features

in the "what* aspect of the method, while the horizontal rows illustrate the chain of

dependency of one feature on another.

Fundamental
Principle

Fundamental
Concept

Model
Element Type

Abstraction
(data)

Object
Class

Object
Class Object Model

Encapsulation Attribute
Abstraction Object behaviour Operation
(behaviour) Object state
Inheritance Inheritance

relationship
Gen-Spec relationship

Table 3.6 Dependency of the Essential Features in the "What* Aspect

— Check the 'pyramid* construction o f the features described in the table

By focusing on each row in the table, the fblloA^ng criteria may be used to check

the dependencies between features:

(a) Are the definitions and meanings o f the features in the same row consistent with

and complete, one to another, according to the method?

(b) Does there exist any other implicit principle or concept which is fundamental to

object-oriented analysis and is Refer to by an element in the models in the method?

(c) Could be this implicit principle or concept replaced by an existing explicit

principle or concept in Table 3.1?

Action 2.1.2: Assess the content of the "what* aspect

Based on the "pyramid* construction of the features in the "what* aspect of a

method, the content of the "what* aspect of the method is assessed so that the content of

the features can be understood more accurately. The criteria as follows may be helpful to

the assessment:

(a) Is there any new or extra information about the features in this aspect according to

their 'pyramid* construction?

107

Chapter 3: The Framework

(b) What knowledge about the features can be learnt from, and derived from, the

assessment o f the relationship in action 2.1.1?

This action helps to further consider and understand the features in the "what-

aspect of a method. It may also show that different concepts in different methods may be

defined upon the "same* principle and the same concept may be supported by different

elements in the models in different methods (See Chapter 5).

3.S.2.2 Activity 2.2: Assess the ‘How’ Aspect of the Method

In terms of the practice part of the framework, the five kinds of essential features (i.e.,

notation, tactic o f analysis, input o f analysis, process o f analysis, and product o f

analysis) that reflect the "how* aspect of an analysis method were identified in the

previous stage. These features are further assessed in this activity by examining the role of

each feature in the method, in order to understand how they support analysis in practice.

Additionally, the dependencies and relationships between the features is also considered

and assessed here, as some features may have an impact, one on another, in the method.

Our study of object-oriented analysis methods makes it clear that the essential features

"notation*, "tactic of analysis* ̂ "input of analysis* and "products of analysis* usually have

impact on the feature "process of analysis* in a method. Because of a data-driven tactic of

analysis, for example, the process of analysis in the method often focuses on identifying

and specifying the static structure of objects including "attributes* of objects and

associations between objects. Whereas, with a process-driven tactic of analysis, the

process of analysis usually emphasises the identification and specification of the behaviour

of objects without temporal concerns, including the operations of and the collaborations

between objects. Figure 3.3 illustrates the general relationships between the feature

"process of analysis* and other features in the "how* aspect of an analysis method. The

interview with the user as one potential source of input of analysis is also considered in

this diagram, as the method may require the analyst to do so. The assessment of such

relationships will help to understand the "how* aspect of a method in a wider and deeper

level.

108

Chapters: TheFrameioork

User S System
requirements

interviews analyses

Process of Analysis
Step or Activity Guidelinegiven with

Substep or Action
Criteria

driven by producesreceives uses

Tactic of
analysisNotation ProductInput

Figure 3.3 Relationships between the Essential Features in the ‘How’ Aspect

Action 2.2.1; Assess the relationships between the features in the ‘how’ aspect

— Assess the relationship between 'notation ’ and 'process o f analysis *

The following criteria are used in the assessment of the relationship between

‘notation’ and ‘process of analysis’:

(a) Which notation is used, fo r each step or activity in the process?

(b) Which symbol in the notation is used, fo r each step/substep or activity/action in the

process?

(c) Is there cmy instruction o f using a symbol in the notation?

If some symbol is not used in any step/substep or activity/action, it is possible that the

process of analysis is not complete, or that only a subset of the notation is used by this

method.

— Assess the relationship between ‘input ' and 'process o f analysis '

Different inputs have different impacts on the process of analysis. An incomplete

input needs a process that enables the analyst obtain a complete input during analysis such

as by a dialogue with users (e.g., the OMT method) or through prototyping a supposed

system (e.g., the Booch method). It is therefore significant to understand the relationship

between ‘input’ and ‘process of analysis’ in an analysis method. The assessment of the

relationship between ‘input’ and ‘process of analysis’ is determined using the following

criteria:

109

Chapter 3: The Frameioork

(q) which step/suhstep or activity/action in the process accesses the input o f analysis?

(b) what kind o f information is this step/substep or activity/action responsible fo r

finding from the input and how does it do it? \

(c) where does the required information in the input come from (e.g., problem

statements or dialogue with users), according to the step/substep or activity/action?

If the input of analysis is implicit in the description of the method, it will gradually become

explicit using the assessment in this action. The input of analysis identified here is then

recorded in the corresponding column in the practice part in Table 3.1.

— Assess the relationship between 'tactic o f analysis' and 'process o f analysis*

To assess the relationship between ‘tactic of analysis’ and ‘process of analysis’, the

following criteria may be used;

(a) Do the process o f analysis and the tactic o f analysis emphasise the same aspect o f

a system?

(b) How does this tactic impact on the process o f analysis, e.g., priority o f

steps/substeps or activities/actions?

(c) According to the priority o f steps/substeps or activities/actions in the process o f

analysis, which aspect o f a system is emphasised? And what kind o f tactic o f

analysis should be used to drive this process in the method?

The first two criteria are used when the tactic of analysis is known from the description of

a method. Otherwise the last criterion should be used to find the implicit tactic of analysis

in a method.

— Assess the relationship between 'product ’ and 'process o f analysis '

The relationship between ‘product’ and ‘process of analysis’ is assessed by using

the following criteria;

(a) What is the outcome o f each step/substep or activity/action in the process o f

analysis?

(b) How is the outcome o f each step/substep or activity/action related to the outcome

o f another? And how is the whole product o f analysis generated step/substep by

step/substep or activity/action by activity/action in the process o f analysis?

110

Chapters: TheFramojoork

(c) Does the process cover all parts o f the product required according to the method?

Action 2.2.2: Assess the content of the ‘how’ aspect

Based on the above assessment of the features in the ‘how’ aspect of an analysis

method, the content of the ‘how’ aspect of the method is assessed here so that the content

of these features can be understood more accurately. The following criteria may be helpful

to the assessment:

(a) Is there any new or extra information about the features in this aspect according to

the relationships identified?

(b) What knowledge about these features can be learnt from, and derived from, the

assessment o f the relationships in action 2.2. J?

3.S.2.3 Activity 2.3: Assess the Relationships between the Two Aspects of the
Method

As discussed in Section 3.2.1, the ‘what’ aspect of a method usually has impact on the

‘how’ aspect of the method as the latter aims to support the former in analysis. Methods

normally carry out analysis through a process that transforms the input of analysis (e.g., an

application scenario) into the product of analysis (e.g., an object model), as shown in

Figure 3.4. The other essential features of the method can be illustrated around the

process of analysis (see Figure 3.5), according to the roles of, and the relationships

between, these features in object-oriented analysis.

Based on Figure 3.5, the relationships between the ‘what’ and ‘how’ aspects of a

method are assessed by examining how the former has impact on the latter and how the

latter supports the former, as illustrated in Figure 3.6. The major aim of such an

assessment is to understand how the method combines these two aspects together to

realise object-oriented analysis. This will be useful for people in understanding the method

more widely and deeply. Figure 3.6 shows that only the feature ‘model’ in the ‘what’

aspect is directly related to the features in the ‘how’ aspect. The assessment of the

relationships between the two aspects, therefore, is in fact the assessment of the

111

Chapters: The Framework

relationships between the feature *moder in the 'what* aspect and the features in the

‘how* aspect.

Process of Analysis

Product of Analysis

Figure 3.4 Object-Oriented Analysis

Products

Models

Inputs

— e.g. functional model (Elements)
— e g. dynamic model (Elements)
— e.g.object model (Elements)

Fundamental
Principles

&
Concepts

Notations
Tactic of Analysis

T SubsteplStep 1 • step2
with Guidelines & Criteria

Process
of Analysis

Figure 3.5 Roles of the Essential Features in Object-Oriented Analysis

'How* Aspect
System
requirementsUser

analysesinterviews

built by
implemented by

producesdriven bysented uses receivesrep]
impacts

included by

Element

InputNotation Tactic of Product

Substep or Action

Guideline

Criteria

Fundamental
Principle

Fundamental
Concept

Step or Activity

Model
I includes Process of Analysis

given with

Figure 3.6 The Relationships between the ‘What’ Aspect and the ‘How* Aspect

112

Chapters: The Framework

Action 2.3.1: Assess the relationship between ‘model’ and ‘notation’

In an analysis method, a model of a system has to be represented by a notation that

may be either graphical or textual or mixture of both. In particular, the aspect of the

system emphasised by the model must be specified explicitly by the notation. That is, if a

model focuses on the data aspect of a system using objects, the notation used to represent

this model should include the symbols that can represent the static structure of objects for

the model. For example, the OOA model [Coad91a] focuses on the data aspect of a

system, so the OOA method notation includes the symbols (see Figure 4.1) which

represent the static structure of objects (i.e., ‘attribute’, ‘instance connection’, ‘Gen-Spec

structure’ and ‘whoie-part structure’) in the system. To assess the relationship between

‘model’ and ‘notation’ finds the correspondence between a specific symbol in the notation

and an element in the model. On the other hand, a model can be represented by different

types of notation. The assessment of the relationship between ‘model’ and ‘notation’ also

helps to select an appropriate notation for a specific model. The criteria for the assessment

are as follows:

(q) Which symbol in the notation corresponds to which element in the model?

(b) Haw does this symbol represent that element? And is there any constraint or

condition on the use o f the symbol?

(c) Is there an alternative symbol in the notation that also represents the same

element?

(d) Is there any element in the model which is not covered by the notation and, i f so,

why?

Action 2.3.2: Assess the relationship between ‘model’ and ‘tactic of analysis’

The study of object-oriented methods shows that, in general, if an analysis method

focuses on the data aspect of a system, this method usually provides special elements such

as ‘attribute’ and ‘association’ in a model to specify this aspect. Corresponding to the

model, the tactic of analysis in the method is often data-driven. Similarly, if the method

focuses on the process aspect of the system, the above elements may not be included in

113

Chapters: The Framework

the model and the tactic of analysis now is often process-driven. The tactic of analysis

therefore can be recognised by checking the elements in the models and exploring the

aspect emphasised by the method, in terms of following criteria;

(a) Which aspect o f a system is emphasised according to the focus o f the primary

model in the method?

(b) Which tactic o f analysis should be provided in order to enforce the process o f

analysis to build the primary model first?

(c) Is this tactic same as the tactic o f analysis claimed in the method?

Action 2.3.3: Assess the relationship between ‘model’ and ‘process of analysis’

In a method, the contents of the models have strong impact on the content of the

process of analysis. The assessment of the relationships between these two features is

useful in understanding the dependency between the features, and additionally, the

differences between the process of analysis in a method and the process of analysis in

other methods. This is also helpful in recognising the primary model in the method.

— Assess the relationship between 'model * and 'step or activity ’

To assess such a relationship, the following criteria may be helpful:

(a) How many steps/substeps or activities/actions are provided to build a model?

(b) Does the process o f analysis cover all models which the method aims to build ?

(c) What is the priority o f building models according to the process o f analysis?

The model built first should be the primary model and other models are built upon it.

(d) In which step/substep or activity/action is an element in each model defined?

(e) Does the process o f analysis cover every element in each model?

— Assess the relationship between 'model ’ and 'guideline and criterion '

The correspondence between ‘model’ and ‘guideline and criterion’ should be

considered in order to understand the detail of the model and, in particular, the content of

each element in the model. For example, the OMT method provides these criteria in the

substep “identify objects and classes”: the significant object classes should not be

114

Chapters: The Frameioork

redundant, irrelevant, vague, attributes, operations, or implementation constructs. These

criteria included in the substep reveal more information about the element ‘object* in the

object model and make the meaning of this element more comprehensible. To assess the

relationship between ‘model* and ‘guideline and criterion*, the following criteria are used:

(a) Does the process contain the guidelines and criteria fo r building each model?

(b) Do the guidelines and criteria reveal more about the model and its elements than

their definitions identified and described in a previous stage?

(c) Are the guidelines and criteria consistent with the meanings o f the model and its

elements?

(d) I f they are not consistent, which o f them is more appropriate and acceptable

according to the context o f the method?

Action 2.3.4: Assess the relationship between ‘model* and ‘product of analysis’

Models are the main components of the product of analysis, as delivered to design,

since they specify what an object-oriented system should do according to the requirements

of the system. The model therefore has impact on the product of analysis in the method.

For instance, the product of analysis in the OMT method contains three types of model;

that is, the object model, the dynamic model and the functional model; while the product

of analysis in the Booch method only has one model; that is, the object model. The

assessment of the relationships between ‘model’ and ‘product of analysis’ clarifies the

content of the product of analysis in the method and gives an understanding of how the

models affect the outcomes of analysis. The following criteria are useful in the assessment:

(a) Does the product o f analysis contain the model?

(b) Does the product o f analysis also include extra documents?

(c) What is the standard ofproduct o f analysis according to the method?

(d) Is there any constraint or condition on the product o f analysis, according to the

model, such as a specific standard?

115

Chapters: The Framework

3.6 Glossary
The terms defined and used in the above framework are summarised below, so that they

can be easily referred to when and where they are used. Additionally the glossary includes

the terms that represent the essential features, such as ‘fundamental principle’,

‘fundamental concept’ and ‘tactic of analysis’, that may not be explicitly defined in the text

of an object-oriented method but that are implicitly used together with other features of

the method. These additional terms are referred to only when a method does not define the

features with a term.

Abstraction: the principle of analysing a system by focusing on some aspect of a system

in analysis. This aspect may be a data aspect, a process aspect, or a behaviour aspect.

(Refer to Section 3.3.1)

Abstraction with behaviour: abstraction of object behaviour within a system with time

dependency. Such abstraction is concerned with the sequence of states and operations of

objects over time. (Refer to Section 3.3.1)

Abstraction with data: abstraction of the static structure of objects within a system. Such

abstraction is concerned with the attributes of objects and the relationships between

objects. (Refer to Section 3.3.1)

Abstraction with process: abstraction of object behaviour within a system without time

dependence. Such abstraction is concerned with the operations of objects and the

functional collaboration between objects. (Refer to Section 3.3.1)

Aggregation: a notion of connecting an aggregate object and its part objects. (Refer to

Section 3.3.2)

Criterion: a rule for selecting and specifying the correct elements for the model(s) of a

system. (Refer to Section 3.4.4.3)

Communication with message: the interaction between objects by sending messages to

one another. (Refer to Section 3.3 .1)

Data-driven tactic of analysis: a strategy of analysing a system by focusing on the static

structure of objects within the system, i.e., the attributes of objects and the static

relationships between objects within a system. (Refer to Section 3.4.2)

116

Outpter 3-. TheFrianework

Encapsulation: a principle of combining data and processes into objects and hiding the

internal details of an object behind its external aspects. (Refer to Section 3.3.1)

Framework: a configuration of an analysis method in which the method is viewed by

focusing on its ‘what’ aspect and its ‘how’ aspect (i.e., what it intends to do and how it

does object-oriented analysis), and each aspect refers to a set of essential features of the

method. (Refer to Section 3.2)

Fundamental concept: the general idea or notion of objects in a system underlying the

models in an analysis method. (Refer to Section 3.3.2)

Fundamental principle: the basic law of object-oriented analysis underpinning the object

concepts in an analysis method. (Refer to Section 3.3.1)

Grouping: a notion of collecting the objects which are tightly related to one another

within a system. (Refer to Section 3.3.2)

Guideline: the detail of a step/substep or an activity/action in the process of analysis

which enables the analyst to carry out the corresponding task of analysis with confidence.

(Refer to Section 3.4.4.3)

Inheritance: a principle in object-orientation, behind the concept ‘inheritance

relationship’, that means one class may share the properties and behaviour of other

classes. (Refer to Section 3.3.1)

Input of analysis: the user’s requirements which may be a problem domain, a dialogue

between the user and the analyst, or a problem statement. (Refer to Section 3.4.3)

Object interaction: the functional dependency between two objects, i.e., one object

performs its operation upon another. (Refer to Section 3.3.2)

Model: the description or specification of a system based upon the user’s requirements. A

model consists a set of elements each of which shows a piece of the system. (Refer to

Section 3.3.3)

Notation: the symbolism used to represent a model. (Refer to Section 3.4.1)

Object behaviour: a notion of a sequence of the operations (or history) of an object over

time in connection with the states of the object. (Refer to Section 3.3.2)

117

Chapters: The Frameioork

Object life cycle: a notion that describes the transformation of the states of an object from

its creation to its deletion. (Refer to Section 3.3.2)

Object structure: a notion that describes the dependency between objects within a

system. (Refer to Section 3.3.2)

Partitioning: a notion of decomposing a large system into smaller parts. (Refer to Section

3.3.2)

Process of analysis: a set of activities, or a sequence of steps, by which the input of

analysis is analysed in order to build the model(s) of a system, resulting in the product of

analysis. (Refer to Section 3.4.4)

Process-driven tactic of analysis: a strategy of analysing a system by focusing on the

objects and their operations and collaborations within the system. (Refer to Section 3.4.2)

Product of analysis: the deliverable from analysis to design which may be a model and

documents (and so on) giving the specification of a system. (Refer to Section 3.4.5)

Scale: a notion of partition of a system or a grouping of objects. (Refer to Section 3.3.1)

Subsystem: a notion of a part of a system that consists of a set of the objects which are

tightly related to each other within the system. (Refer to Section 3.3.2)

System function: a notion of a collection of the operations of objects that describe what a

system may do according to the requirements of a system. (Refer to Section 3.3.2)

Tactic of analysis: the strategy of analysing a system which enforces the analysis to focus

on some specific aspect of the system. (Refer to Section 3.4.2)

118

Chapter 4; Analysis of Five Analysis Methods Using the Framework

Chapter 4

Analysis of Five Analysis Methods Using
the Framework

To understand the four object-oriented analysis methods [Coad91a, Rumbaugh91,

Booch91, Wirfs90] that were used in the study in Chapter 2 in an objective and systematic

way, they are assessed here by using the framework defined in Chapter 3. In addition, this

chapter provides examples of applications of the framework. Another (new) object-

oriented analysis method, Syntropy [Cook94a], which is claimed as a second-generation

object-oriented analysis method, is also assessed in terms of the framework. The results of

the assessment of Syntropy will be helpful in exploring the essential features of a second-

generation object-oriented analysis method. By the process provided in Section 3.5 — in

particular, the criteria included in each activity/action — each method is analysed by the

first stage by means of the components of the two parts of the framework, so that the

explicitly essential features that reflect the ‘what’ and ‘how’ aspects of the method can be

identified and described. The method is then assessed by the second stage by assessing the

content of the features identified and the relationships between the features. In addition,

any implicitly essential features of the method are identified and determined at this stage.

This chapter carries out the first stage of the assessment of these five analysis

methods. The definition or meaning of each feature in each of the methods is shown here

in detail, providing the documentation of the features for the assessment of the method in

the next chapter.

119

Chapter 4; Analysis of Five Analysis Methods Using the Framework

4.1 Stage 1: Analyse the OOA Method (Goad and
Yourdon)

The OOA method [Coad91a] focuses on object-oriented analysis but not object-oriented

design. In terms of the components of the two parts in the framework of Table 3.1, the

OOA method is analysed in this section and its essential features are identified focusing on

the ‘what’ and ‘how’ aspects of the method.

4.1.1 Activity 1.1: Analyse the ‘What’ Aspect of the OOA Method

Action 1.1.1; Identify Fundamental Principles

By using the criteria of this action, the following principles are used by this method,

being useful in managing the complexity of a problem domain and the system’s

responsibilities within it:

a) Abstraction

The OOA method considers that abstraction can help an analyst to choose certain things

over others even if he/she is very familiar with a problem domain. Data abstraction is

regarded as the basic abstraction in this method.

b) Encapsulation (also information hiding)

Encapsulation is a principle that the interface to each object is defined in such a way as

to reveal as little as possible about its internal details.

c) Inheritance

Inheritance is a mechanism for expressing similarity among classes, simplifying the

definitions of classes similar to those previously defined.

d) Association

Association is used for relating together things in object modelling that occur at the

same point in time or under similar circumstance. (It seems more appropriate to treat

this as a concept rather than as a principle according to the framework, since it is not a

basic law of analysis.)

e) Communication with messages

This is a basic principle for interactions between objects.

120

Chapter 4; Analysis of Five Analysis Methods Using the Framework

f) Pervading methods o f organisation

This is a principle that is used within the method to help to think about ‘objects and

attributes’, ‘whole and parts’, and ‘classes, members, and distinguishing between them’

in analysis.

g) Scale

Scale is a principle that guides a reader through a large model by partitioning it into

smaller parts.

h) Categories o f behaviour

This principle focuses on three common types of behaviour of objects: event-response,

. change over time, and similarity of functions.

Action 1.1.2: List Fundamental Concepts

The OOA method claims that it addresses the following equation to realise object-

oriented analysis:

Object-oriented = Classes and Objects + Inheritance + Communication with messages.

Four fundamental concepts are identified by this equation, according to the criteria of the

action:

a) Object

An object is an abstraction of something in a problem domain, reflecting the capabilities

of a system to keep information about it, interact with it, or both.

b) Class

A class is a description of one or more objects with similar properties.

c) Inheritance relationship

An inheritance relationship is a notion to represent explicitly the commonality of classes.

d) Message

A message means any communication, written or oral, sent between objects.

Action 1.1.3: Analyse Models

An object model is built by this method. By using the criteria of the action, the

detail of the model is explored as follows. This model focuses on the data aspect of a

121

Chapter 4: Atudysis o/Five Analysis Methods Using the Frameioork

system by means of five layers: class-&-objects layer, structure layer, attribute layer,

subject layer and service layer. The behaviour aspect of the system is also described by

the model although it receives less emphasis than the data aspect. The elements included in

the object model are as follows:

a) Class-&-objects, class

A class-&-objects is an encapsulation of attribute values and their exclusive services.

Class-&>objects’ means “a class and the objects in that class’ and it is a description of

one or more objects in the class. If there is no object in the class, the encapsulation is

decribed by a ‘class’,

b) Attribute

An attribute is some data (that is, state information) for which each object in a class has

its own value,

c) Service

A service is a specific behaviour that an object is responsible for exhibiting.

d) Object state

An object state describes the current values of the attributes in an object.

e) Gen-Spec structure

A Gen-Spec (that is, généralisation-spécialisation) structure represents the "is a* or "is a

kind o f relationships among classes: a specialisation class is a kind of generalisation

class and it inherits the definition of the latter. In addition, multiple Gen-Spec structures

(that is, a lattice inheritance) are allowed by the method.

f) Whole-Part structure

A whole-part structure represents a ‘has’ relationship among class-&-objects: a ‘whole’

class-&-objects has one or more ‘part’ class-&-objects.

g) Instance connection

An instance connection represents a dependency between two objects one of which

needs another object to help to fulfill its responsibilities.

122

Chapter 4: Analysis ofFive Analysis Methods Using the Framework

h) Message connection

A message connection models the functional dependency of one object on another

object, and indicates a need for services to fulfill its responsibilities.

i) Subject

A subject is a mechanism for simplifying a large, complex model by partitioning the

model into small pieces.

As the results of this activity, the essential features identified are recorded in Table

4.1 in connection with their definitions above.

„^rinciple

S ta e e ^ ^
Fundamental
Principle

Fundamental
Concept

Model
Type Element

•Abstraction •Object •OOA model •Class-&-Objects
(data) •Class •Class (i.e.without

•Encapsulation •Inheritance instance)
(also relationship •Attribute
information •Message •Service
hiding) •Association •Object state

Analysis •Inheritance •Gen-Spec structure
•Communication (single, multiple)
with messages •Whole-part
•Pervading structure
methods of •Instance
organisation connection
•Scale •Message
•Categories of connection
behaviour •Subject

Table 4.1 The Essential Features in the ‘What* Aspect of the 0 0 A Method

4.1,2 Activity 1.2: Analyse the ‘How’ Aspect of the OOA Method

In this activity, the essential features that reflect the ‘how* aspect of the OOA method are

identified by analysing the method, in terms of the practice part of the framework.

Action 1.2.1; Illustrate the Notation

On the basis of the criteria of the action, the notation (and associated symbols) used

to represent the object model and its elements are identified and illustrated in Figure 4.1.

Additional notations. Object State Diagrams and Service Charts, are also identified. The

symbols used in these notations are shown in Figure 4.2 and 4.3, respectively. The former

123

Chapter Attalysis of Fioe Analysis Methods Using the Framework

describes the states of a class-&-objects and the latter specifies an algorithm of a service in

a class-&-objects.

Class-& -Objects C lass

Attributel
Attribute2

v:
Servicel
Service2vs

Name (top section)

Attributes (middle section)

Services (bottom section)

Class \
Attributel
Attribute2
Servicel
Service2 /

G en-Spec S truc tu re

^ Generalization

^single

W hole Part S truc tu re

Specialization ̂ ^ Parti ^ P a r^^ ^ ^

multiple
Subject

1 1

1 I

^Class-A ^ftl^l Instance Connection

Message Connection

Figure 4.1 OOA Notation

Transition

Figure 4.2 The Symbols in Object State Diagrams

c
) Condition (if; pre-condition; trigger, terminate)

I Text block

^ Loop (while; do; repeat; trigger, terminate)
Connector (connected to the top of the next symbol)

Figure 4.3 The Symbols in Service Charts

124

Chapter 4: Analysis ofFive Analysis Methods Using the Framework

In order to describe the detail of a class-&-objects, the class-&-objects

specification template is used as follows;

Specification
attribute
extemallnput (i.e., the data from outside)
externalOutput (i.e., the data to outside)
objectStateDiagram
a^itionalConstraints (e.g., timing and sizing)
notes
service<name & Service Charf>

and, as needed,
traceabilityCodes
applicableStateCodes
timeRequirements
memoryRequirements.

Action 1.2.2; Identify the Tactic of Analysis

No tactic of analysis is found in the text of the OOA method, and so the

identification of the tactic has to be delayed until the second stage of the assessment.

Action 1.2.3; List the Input of Analysis

The input of analysis in the OOA method, i.e., the system requirements, is any

stylised problem domain which comes from the problem statements or the dialogue with

users. The input is allowed to be incomplete at the beginning of analysis, according to the

method.

Action 1.2.4; Describe the Process of Analysis

The process of analysis of the OOA method comprises five activities. They are

activities but not steps, since no sequence is assumed upon them. Each activity is also

partitioned into a collection of actions each of which performs a piece of work in the

activity such as where, what, why and how a system does it. In addition, guidelines are

given for each action, as well as the criteria for determining the significant elements in a

model of a system.

125

Oiapter4: Analysis o/Five Analysis Methods Using the Framework

Activity 1; Finding Class-&-Objects (for the class-&-objects layer)

— Where to look

Guidelines: Observe first-hand; listen actively; check previous results from the method;

reuse the class-&-objects defined in other systems.

— What to look fo r

Guidelines: Identify potential class-&-objects by looking for structures, other systems,

devices, things or events that ‘remember’, roles played, operational procedures, sites,

and organisational units from the problem domain.

— What to consider and challenge

Criteria: Determine the significant class-&-objects on the basis of ‘needed

remembrance’, ‘needed behaviour’, (usually) multiple attributes (i.e., ‘If an Object has

just one Attribute, get suspicious ...), (usually) more than one object in a class, always

applicable attributes (otherwise, explore a Gen-Spec structure), always-applicable

services, domain based requirements, and avoiding derived results.

Activity 2: Identifying Structures (for the structure layer)
— What to look fo r

Guidelines: Consider each class as a generalisation or specialisation to identify Gen-Spec

structures; consider all objects with three variations—assembly-parts, container-

contents, and collection-members—to identify whole-part structures.

— What to consider and challenge

Criteria: Determine the significant structures by checking if each is within the system’s

responsibilities, if there is inheritance between classes, if the specialisation is a significant

class-&-objects, or if a whole-part structure provides a useful abstraction in dealing with

the problem domain.

Activity 3: Identifying Subjects (for the subject layer)
— Select subjects

Guidelines: Promote the uppermost class in each structure upwards to a subject. Then

promote each class-&-objects that is not in a structure upwards to a subject.

126

Chapter 4: Ajtalysis ofFive Analysis Methods Using the Framework

— Refine subjects

Guidelines: Subjects are refined by using problem sub-domains and considering minimal

dependencies (instance collections) and minimal interactions (message connections)

between the subjects.

— Construct subject layers

Guidelines: Group the class-&-objects into a subject. A class-&-objects may be in more

than one subject. A subject may contain other subjects in a multi-level map to guide a

reader through a larger model.

Activity 4: Defining Attributes (for the attribute layer)
— Identify the attributes

Guidelines: Look for candidate attributes for each class-&-objectsby asking the

questions such as “what do I need to know?” and “what state information do I need to

remember over time?”. Make each attribute capture an ‘atomic concept’ (i.e., a single

value, or a tightly-related grouping of values).

— Position the attributes

Guidelines: Put each attribute into the class-&-objects that it best describes, i.e., it may

be necessary to apply inheritance in Gen-Spec structures: position the general attributes

higher and the specialised attributes lower.

— Identify instance connections

Guidelines: Identify the connections between objects. Each connection shows that one

object may need another in order to fulfill its responsibilities. For each object, add

connection lines and define the range with each line (e.g., one-to-one, one-to-many,

etc.). The following special cases should be checked: many-to-many (that is, if a new

object is needed to add), connections between objects of the same class (that is, if it is

significant), and those with special constraints (that is, if a new attribute should be added

to an object).

127

Chapter 4: Analysis of Five Analysis Methods Using the Framework

Activity 5: Defining Services (for the service layer)

— Identify object states

Guidelines: As a service is a specific behaviour that an object may perform, it is related

to some state of the object. This task identifies the states, of an object through examining

the potential values for the attributes and determining if the system’s responsibilities

include different behaviours for these values. The states and transitions in an object are

described by an object state diagram.

— Identify the required services

Guidelines: Identify algorithmically-complex services rather than algorithmically-simple

services (i.e., create, connect, access and release) that are not explicitly specified in a

model. The services are identified by looking for the calculations that calculate results

fi-om the values of attributes.

— Identify message connections

Guidelines: Identify the message connections for each object: (1) by drawing an arrow

fi’om this object to another that needs a service fi*om this object; and (2) by drawing an

arrow fi'om another object to this object, where the other object provides a sersdce to

this object.

— Specify the services

Guidelines: Specify each service in a class-&-objects by filling a class-&-objects

template and drawing a service chart.

Action 1.2.5: Identify the Products of Analysis

By using the criteria in the action, the products of analysis from the OOA method

are a documentation set that includes:

— a five layer OOA model,

— class-&-objects specifications, and

— other documentation, as needed.

The explicit essential features that reflect the ‘how’ aspect of the OOA method

have been identified above. They are recorded in Table 4.2.

128

Chapter 4: Anabfsis ofFive Analysis Methods Using the Framework

I

l l l l

a
N

I S *
0 0 ?C ja

: § É
» o

!lII
I I

I

II
Ï I „
5 S 3»
% « g[g ^

S'
I

III
I

Î

;
i f-

ill
s

I
00

â

II
I

5 g.a

IIU 4>S €

II
it
l i

.1
illsl
ÎÎÎIÎ

1

I
I
.S

I

I
f§
9

I
t r I* j

1 * ^ 1 1 S

I Î

i
•s
I
o

I
I

f l
III

I

129

Chapter 4: Analystë ofFive Analysis Methods Using the Framework

4.2 Stage 1: Analyse the OMT Method (Rumbaugh et
al.)

The essential features of the OMT method [Rumbaugh91] are identified in terms of the

firamework by following the process of assessment of section 3.5, including the use of the

criteria ofifered. The features show that, in general, this method does object-oriented

analysis by analysing the problem statements and then constructing three kinds of model

for the (object-oriented) system. The analyst is encouraged to work with the requester,

since the initial problem statements are rarely complete and correct. The essential features

identified are shown as follows.

4.2.1 Activity 1.1: Analyse the ‘What’ Aspect of the OMT Method

Action 1.1.1; Identify Fundamental Principles

By using the criteria of the section, the fundamental principles (which are claimed

as the themes of object-oriented analysis) used in this method are identified below.

aj Abstraction

In the OMT method, abstraction enables an analyst to focus on the essential and inherent

aspects of an entity and to ignore others.

h) Encapsulation (also information hiding)

Encapsulation is a principle which separates the external aspects of an object fi'om the

internal ones so that only the external aspects can be seen by other objects.

c) Combining Data and Behaviour

This is a principle that means an object is an entity comprising both data structure and

behaviour.

d) Inheritance

Inheritance is a principle that enables classes to share similar data structure and

behaviour.

130

Chapter 4: Analysis of Five Analysis Methods Using the Framework

e) Emphasis on Object Structure, not Procedure Structure

This method assumes that the object structure is more stable than the behaviour. This

principle is thus used by this method.

Action 1.1.2; List Fundamental Concepts

In the OMT method, the term ‘object-oriented’ means that software is organised as

a collection of discrete objects that incorporate both data structure and behaviour. Thus

the following object concepts are regarded as significant by the method:

a) Object

An object describes a concept, abstraction, or thing with crisp boundaries and meanings

for the problem at hand. It combines both data structure and behaviour in a single entity.

b) Identity

Identity is a concept that means the data is quantified into discrete, distinguishable

objects such that an object must have its own inherent identity to avoid ambiguity.

c) Classification

Classification is a concept that means objects having the same properties ought to be

grouped together.

d) Polymorphism

Polymorphism is a concept that means an operation may behave differently in different

classes. (However, it is a notion concerned with the implementation of operations and so

it should not be regarded as fundamental to analysis, according to the criteria of action

1. 1.2 .)

e) Inheritance relationship

An inheritance relationship is a notion that means that the definition of a class can be

shared by another, if needed.

J) Object behaviour

Object behaviour is a concept which means that an object has its own behaviour, i.e., its

states and operations performed to make state changes.

131

Chapter 4: Analysis ofFive Analysis Methods Using the Frammork

g) Object Structure

Object structure is a concept that means the properties of objects and links between

objects.

Action 1.1.3; Analyse Models

The OMT method emphasises that the models built by object-oriented analysis

should not contain computer (that is, implementation) constructs. Instead they should

capture the structures of objects from the real world that are important to the application.

• Types of Model

It is found that three types of analysis models are provided by the OMT method;

object model, dynamic model, and functional model. The object model emphasises the

structure of objects in a system — objects identities, the relationships between objects, the

attributes and operations of objects. It is the primary model in the OMT method. The

dynamic model specifies the behaviour of objects in the object model — that is, the states

of the objects and the interactions between the objects — by showing the event traces and

event flows between objects. The functional model focuses on the data value

transformations within the system. This model specifies the meanings of operations, as

well as any constraints, in the object model and the actions in the dynamic model.

Generally these models refer to each other by sharing the same objects and classes.

• Elements in Each Model

Different elements are included in the three kinds of model as follows.

— Object Model

The elements in the object model are identified as follows, by means of the criteria

of this action.

a) Object

An object has attributes, state, and operations. All objects are distinguishable in terms of

their identities.

132

Chapter 4; Arudysis of Five Analysis Methods Using the Framework

b) Class

A class is a group of objects that have common attributes and operations. A class

represents the objects that have a common definition. In addition, the class that has no

objects is called an ‘abstract’ class.

c) Attribute

An attribute is a data value, not an object, held by the objects in a class. For example,

‘name’ and ‘age* may be the attributes within a class ‘Person’.

d) Operation

An operation is a function or transformation that may be applied to the objects in a class.

For example, ‘hire’ and ‘fire’ may be the operations in a class ‘Company’. All objects in

a class share the same operations.

e) Link, association

A link is a physical or conceptual relationship between objects. An association describes

a group of links with common structures and common semantics. In addition, other

specific elements are also pro^nded to describe the links and associations: link

constraints, link attributes, role names and qualified links.

f) Aggregation

If two objects are tightly bound by a whole-part relationship, it is an aggregation. An

aggregation object consists of the ‘part’ objects. However, aggregation is regarded as a

special form of association in the OMT method.

g) Generalisation

A generalisation is a relationship between a class and one or more refined versions of it.

The class being refined is call the superclass, and each refined version is called a

subclass.

h) Constraint

A constraint represents a condition on, or a functional relationship between, components

such as objects, classes, attributes, links or associations in the object model. It restricts

the values that the components can assume in a system.

133

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

i) Module

A module is a logical construct for grouping classes, associations, and generalisations.

— Dynamic Model

The following elements in the dynamic model are identified by this action:

a) Event

An event is something that happens at a point in time. It may be a signal, input, decision,

interrupt, transaction, or action that is an individual stimulus from one state to another

within an object or from one object to another.

h) Object state

An object state is an abstraction of the attribute values and links held by an object. The

values in a state affect the behaviour of an object. This state specifies the response of the

object to input events, and it is often associated with the value of an object satisfying

some condition.

c) Activity

An activity is associated with a state and it is an operation that takes time to complete.

d) Action

An action is associated with an event and it is an instantaneous operation that is

performed in response to the corresponding state or event.

— Functional Model

The following is a list of the elements in the functional model:

a) Process

A process is an operation that transforms data values.

b) Data Flaw

A data flow connects the output of an actor or process to the input of another actor or

process.

c) Actor

An actor is an active object that produces or consumes values.

134

Chapter 4: Analysis of Five Analysis Methods Using the Framework

d) Data Store

A data store is a passive object that stores data for later access.

All the explicit features identified above reflect the ‘what’ aspect of the OMT

method. They are recorded in Table 4.3.

principle
.Part

Stage

Fundamental
Principle

Fundamental
Concept

Model

Type Element

Analysis

•Abstraction •Object

•Encapsulation •Identity
(also
information •Classification
hiding)

•Inheritance
•Combining relationship
data and
behaviour •Object

behaviour
•Inheritance

•Object
•Emphasis on structure
object
structure not
procedure
structure

•Object
Model

•Object
•Class
•Abstract class
•Attribute
•Operation
•Association,
link
•Constraint
•Aggregation
•Generalisation
(single,
multiple)

•Module
•Dynamic
Model

•Event
•Object state
•Activity
•Action

•Functiona
Model

•Process
•Data flow
•Actor
•Data store

Table 4,3 The Essential Features in the ‘What’ Aspect of the OMT Method

4,2,2 Activity 1,2: Analyse the ‘How’ Aspect of the OMT method

Action 1.2.1: Illustrate the Notation

By means of the criteria of this action, three kinds of notation are used in this method:

object diagrams, state diagrams and data flaw diagrams, representing the object model,

the dynamic model and the functional model, respectively. Additionally, event trace

diagrams and event flaw diagrams are used to assist in the creation of state diagrams.

a) Object Diagram

Object diagrams are a graphic notation that describe objects, classes and their

relationships. The symbols included in this notation are shown in Figure 4.4

135

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

Class: Association:
Association Name

role-1 role-2
Class-2Class-1Class Name

attributes
operation

Generalization:
Superclass

T

Qualified Association:

Q ualifier t Asspc^^t^pR
role-1 role-2Class-1 Class-2

|Subclass-l Subclass-2

Aggregation:
AssemMy Class

I Part-l^lass~~| | Part-2^CÏâw

Ternary Association:

I I role-1

Multiplicity of Associations:

Exactly oneClass

^ Class I

« Class
J±

role-2
role-3

Class-2 1-2-4
Class

Class

Many (zero or more)

Optional (zero or one)

One or more

Numerically specified

Class-3

Object
Instance:; ^ClassName)A

Attribute valuej/

Ordering:

{ordered}* Class

Instantiation Relationship:
(^ lass Name^----

Link Attribute:
----------1 Association Name
Class-1 r ^ - ^ Class-2

Class Name link attributes

Figure 4.4 The Symbols in Object Diagrams

àj State Diagrams

A state diagram is used to describe the behaviour of a single class of objects that have

the same behaviour and share the same class features. The symbols included in state

diagrams are shown in Figure 4.5.

136

O uster 4: Analysis o/Five Analysis Methods Using the Framework

Event causes transaction
between states:

Initial and final states:
^ ^ te r m e d ia ^ _ ^ 0

Event with attribute:

(̂ SIiŜ event(attribut|̂ rstate-2 ̂

Action on a transition:
— w event/action

C sta te -O --------- »Cstate-23

Guarded transition:

Actions and activity In a state:

state name
entry/entry action
do: activity-A
eventl/actionl

Output event on a transition:

Output event on a transition:
eventlC state-1^

Ievent2

class-3

^exit/exit action

State generalization (nesting):

eventl

Concurrent subdiagrams:

^ superstate ^
" L ^ (^bstate^^-^^ b s ta te -^

^events ^event2^

eventl
superstate ^

t|^j(^bstate-^

^ (^bstate-^

(|ubstate-3^.^

^ubstate-4) j

Splitting of control:

^vent2

Synchronization of control:

f =
eventO

superstate

Figure 4.5 The Symbols in State Diagrams

cj Data Flaw Diagrams

A data flow diagram describes the transformations from inputs to outputs within a

system. The symbols included in data flow diagrams are given in Figure 4.6.

137

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

Process:
process
jiame

Data flow between processes:

process-1) name W process-2

Data store or file object:
Name of data store

Data flow that results in a data store:
Name of data store

Actor objects:
dl

Control flow:

actorl procès
ame actoi2 [process-1 boolean result process-2

Access of data store value:
data store

Update of data store value:
data store

process process

Access and update of
data store value:

data store

process

Composition of data store:

composite ^

Duplication of data value:

dl< Decomposition of data value:
composite

d 2 ^

Figure 4.6 The Symbols in Data Flow Diagrams

Action 1.2.2: Identify the Tactic of Analysis

No tactic of analysis is found in the text of the OMT method, similar to the

situation with the OOA method above. The tactic cannot be decided until the next stage of

assessment, i.e., the assessment of the relationship between 'model’ and 'tactic of

analysis’.

Action 1.2.3; List the Input of Analysis

The initial input of the analysis required by the OMT method is found to be the

problem statements. The analysis is started even if such an input is not yet complete. A

dialogue with users may be needed since the experience of software development shows

that initial statements are rarely complete and correct.

138

Chapter 4'. Aruüysis of Five Analysis Methods Using the Framework

Action 1.2.4; Describe the Process of Analysis

The process of the analysis in this method is identified and described below, by

means of the criteria of section 1.2.4. This process consists of five steps. Each step also

includes a sequence of substeps together with the guidelines and criteria for carrying out

each substep and for determining the significant components in each model.

Step 1: Constructing the Object Model

— Identify objects and classes

Guidelines: Identify relevant objects and classes from the problem statements by

considering the nouns in the statements that describe physical entities and concepts in

the problem domain.

Criteria: The significant objects and classes should not be redundant, irrelevant, vague,

attributes, operations, or implementation constructs.

— Prepare a data dictionary

Guidelines: In order to describe precisely each object and class, create a data dictionary

for containing definitions of all objects and classes.

— Identify associations between objects

Guidelines: Identify the associations between objects by considering the verbs and verb

phrases in the problem statements.

Criteria: A significant association should not be an association between eliminated

classes, an irrelevant or implementation association, an action or event, a ternary

association, or a derived association.

— Identify attributes o f objects and links

Guidelines: Identify attributes by considering the nouns followed by possessive phrases,

or adjectives in the problem statements.

Criteria: An attribute of an object should not be an object, a qualifier, a name which

depends on the context, an identifier, a link attribute that depends on the presence of a

link, an attribute of which the values are invisible externally, an attribute that is unlikely

139

Chapter 4: Analysis of Five Analysis Methods Using the Framework

to affect most operations, and a discordant attribute that seems completely different

from and unrelated to all other attributes in the class.

— Identify inheritance between classes

Guidelines: Organise the classes that share common structures by using inheritance

relationships: to generalise common aspects of existing classes into a superclass (bottom

up) or to refine existing classes into specialised subclasses (top down); in an inheritance

structure, attributes and associations should be assigned to the most general class that it

is appropriate to.

— Test access paths

Guidelines: To find the missing information, such as constraints on the use of the data or

an object in the object model, the access paths in the model is tested according to the

problem statements.

— Iterate and refine the model

Guidelines: Iterate and refine the model by checking if there are missing objects or

unnecessary object classes, missing associations or unnecessary associations, or

incorrect placement of associations or attributes.

—Group classes into modules

Guidelines: Group the objects and classes that describe a logical subset of the object

model into a module.

Step 2: Constructing the Dynamic Model

— Prepare a scenario o f typical interaction sequences

Guidelines: First prepare a scenario for the ‘normal* cases (i.e., the interactions without

any unusual inputs or error conditions); then consider the ‘special* cases (e.g., omitted

input sequences, maximum and minimum values, or repeated values); finally consider

user error cases (e.g., invalid values and failures to respond).

— Identify events between objects

Guidelines: Identify all external events by examining the scenario: all signals, inputs,

decisions, interrupts, transitions, and actions to or from users or external devices. Then

140

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

allocate each event to the objects and classes that send it and receive it. Draw an event

flow diagram to show possible control flows between objects.

— Draw a state diagram fo r each object

Guidelines: The behaviour of each object is described here by a state diagram in which

events are received or sent by the object. However, not all objects need to be described

by state diagrams. If an object receives and sends events without any further state

transition within it, it is not described by a state diagram.

— Match events between objects to verify consistency

Criteria: Check the completeness and consistency of the dynamic model according to

these criteria: every event should have a sender and a receiver; states without

predecessors or successors should represent starting or terminating points of the

interaction sequence; events through the system should match the scenarios;

corresponding events on different state diagrams should be consistent; and

synchronisation errors where an input occurs at an awkward time should be prevented

since objects are inherently concurrent.

Step 3: Constructing the Functional Model

— Identify input and output values

Guidelines: Begin by listing input and output values that are parameters of events

between a system and the outside world, and then find the input or output values missed

by analysing the problem statements.

— Draw data flow diagrams showing functional dependencies

Guidelines: Show how each output value is produced from the input values by drawing a

data flow diagram using functional decomposition.

— Describe functions

Guidelines: Each function is specified in an appropriate form such as a natural language

that focuses on what the function does rather than how it achieves it.

141

Chapter 4; Analysis of Five Analysis Methods Using the Framework

— Identify constrains between objects

Guidelines: Here constrains mean the functional dependencies, but not the input-output

dependencies between objects.

— Specify optimisation criteria

Guidelines: Give the criteria to optimise the function such as maximised or minimised

values.

Step 4: Adding Operations .

— Operations from the object model

Guidelines: The OMT method assumes that attribute values must be accessible to

operations. These operations however may not to be shown explicitly in the object

model. Instead they may be implied by the attributes.

— Operations from events

Guidelines: During analysis, events should not be explicitly listed in the object model and

they are best represented as labels on state transitions in the dynamic model. The

operations corresponding to events are implied by the events.

— Operations from state actions and activities

Guidelines: In the dynamic model, actions and activities may correspond to operations if

they have significant computational structures. These operations should be put in the

object model.

— Operation from Junctions

Guidelines: In the functional model, each process that has significant computational

structure corresponds to an operation A^thin one or more objects. These operations

should be put in the object model.

— Consider shopping list operations

Guidelines: Sometimes the operations that are not dependent on a particular application

but meaningful to the fiiture possible needs are implied by the real-word behaviour of

objects and classes. These operations are called ‘shopping list* operations. They may b e .

put in the object model, if necessary.

142

Chapter 4: Analysis of Five Analysis Methods Using the Framework

— Simplify operations

Guidelines: The operations that are put in the object model should be simplified under

these guidelines: use inheritance where possible to reduce the number of distinct

operations; introduce new superclasses as needed to simplify the operations; locate each

operation at the correct level in the class hierarchy.

Step 5: Iterating the Analysis

— Refine the analysis model

Guidelines: Refine object definitions to increase sharing and improve structure; add

details that were glossed over during the first analysis.

— Restate the requirements

Guidelines: Check and confirm the system requirements and verify the models against

the requirements.

Action 1.2,5: Identify the Products of Analysis

It is found that the products of the analysis generated by the OMT method for a

system are as follows:

— A data dictionary that defines (using natural language) every class within a

system,

— An object model that shows the objects, classes, their attributes and operations,

and their relationships in a system,

— A dynamic model that shows the behaviours of objects in the system, and

— A fimctional model that shows the transformations from input to output in the

system.

The above are the description of the essential features that reflect the ‘how* aspect

of the OMT method. As a graphical representation, they are recorded in Table 4.4.

143

Chapter 4: Atudysis ofFive Analysis Methods Using the Framework

I
S'
g
•1 E

•ë
< "S

— »
E

I
<

u u

o ^ ;
k l |

III
I II

1 ̂^ l|

"ill
C 2 , _S

<2 c QDS'S

il
I 1 1 1

1 1

l i

I I

ill
i l l 2 u

I If
I I IH À

1ÎV cn

f

i.i
S.1 0J "O

§<ë" g I „

MI I i j j

!î
II

il
IIII II

i l

II!
m ilII

O O K
&

ilIf
II

I II 11 i!i l Il§1 II
l
î 1 1

I II I :
II

I!
I Q

î I
I

l i
II

I
144

Chapter 4; Amdyms ofFive Analysis Methods Using the Framework

4.3 Stage 1: Analyse the Booch Method
By following the process of assessment, the essential features that reflect the ‘what* and

‘how* aspects of the Booch method [Booch91] are identified as follows, in terms of the

framework.

4.3.1 Activity 1.1; Analyse the ‘What’ Aspect of the Booch Method

Action 1.1.1; Identify Fundamental Principles

Four principles are identified from the Booch method by means of the criteria of

this action:

a) Abstraction

Abstraction is a principle to denote the essential characteristics of an object that

distinguish it from other objects.

b) Encapsulation (also information hiding)

Encapsulation is a principle concerned with hiding all of the implementation details of an

object that do not contribute to the essential characteristics of the object. Encapsulation

hides the internal view of the object.

c) System decomposition

System decomposition is a principle that decomposes a system into a set of cohesive and

loose subsystems. In accordance with this principle, objects and classes are packaged

into subsystems in a way that makes their reuse convenient.

d) Hierarchy

Hierarchy is used by the Booch method to rank or order objects and classes by

considering the sharing or structuring of the objects and classes. The principle provides a

rule to organise the objects and classes in a system.

Action 1.1.2; List Fundamental Concents

It is found that the following concepts are regarded as frmdamental in the Booch

method:

145

Chapter 4: Analysis ofFive Analysis Methods Using the Framework

a) Object

An object is an abstraction of something that is an individual, identifiable item, or entity,

either real or abstract, with a well-defined role in the problem domain.

b) Class

Class is the concept that captures the structure and behaviour common to all related

objects.

c) Object structure

Object structure is a notion used to clarify the collaborations between objects by means

of the external view of the objects.

d) Class structure

Class structure is a notion used to highlight the objects that share the same behaviour in

a system.

e) Subsystem

Subsystem is a notion used to describe a building block for the physical structure of a

system.

Action 1.1.3: Analyse Models

Only one object model is built by the Booch method, specifying the logical aspect

of a system. This model describes both data and behaviour aspects of the system. The

following elements are found in this model:

a) Object

An object has state, behaviour and identity. An identity is the name of the object that

distinguishes the object from all other objects.

b) Class

A class is a set of similar objects that share the same structure and behaviour. An object

in a class is an instance of the class. A class may not have any instances and such a class

is termed an abstract class.

c) Object state

An object state encompasses all of the (usually static) properties of the object plus the

current (usually dynamic) values of each of these properties.

146

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

d) Field

A field of an object is a repository for part of the state of an object. It is either persistent

data within the object or a reference to another object. The referred object sends the

value to the referring object and it must appear in the interface of the referring object as

part of message passing. Thus the fields of an object constitute its structure.

e) Operation (also message)

An operation is an action in an object by which the object reacts to other objects.

Object relationship

A relationship between two objects simply means that the objects can send messages to

one another.

g) Using relationships

A using relationship is a relationship that refers to the external view of an object and

class: an object and class can use another via an interface (i.e., the used class must be

visible to any clients). This relationship describes the client/server contract between

classes.

h) Inheritance relationship

An inheritance relationship is a relationship among classes that share a similar structure

or beha^nour. This relationship may be single or multiple, i.e., one class only has one

superclass or has more than one superclass.

i) Instantiation relationship

An instantiation relationship implies a process of producing a new class firom a generic

class. (It is an element which describes the implementation , of generic classes, so it

should not be used in analysis, according to the criteria of section 1.1.3.)

j) Module

A module is a container in which the logically related objects and classes are collected.

The explicit features that are identified above and that reflect the 'what* aspect of

the Booch method are now recorded in Table 4.5.

147

Clapter 4: Analysis o/Five Analysis Methods Using the Framework

Principle Fundamental
Principle

Fundamental
Concept

Model
Type Element

Analysis

•Abstraction

•Encapsulation
(also information
hiding)

•Hierarchy
(with inheritance
& structuring)

•System
decomposition

•Object

•Class

•Object structure

•Class structure

•Subsystem

•Object
Model

•Object
•Class
•Abstract class
•Object state
•Field
•Operation
(also message)

•Object
relationship
•Using,
Inheritance
relationships
•Module

Table 4.5 The Essential Features in the ‘What* Aspect of the Booch Method

4.3.2 Activity 1.2: Analyse the ‘How’ Aspect of the Booch
Method

Action 1.2.1; Illustrate the Notation

Two kinds of diagrams, class diagrams and object diagrams^ are used to describe

the logical aspect of a system, e.g., objects and classes, their states, and their relationships.

The symbols used in the diagrams are shown in Figure 4.7 and 4.8. In addition, state

transition diagrams (see the symbols in Figure 4.9) are used to specify object behaviour,

i.e., the interactions between objects, and describe the events occurring over time. It is

found that some symbols in the diagrams may not be necessary strictly for analysis as the

notations are used for both analysis and design in the Booch method and some of the

symbols are provided to describe the implementation detail of a system, such as the

symbol ‘parameter* in object diagrams.

148

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

Cardinality ^
0 zero
1 one \
* zero or more 1
+ one or more I
? zero or one I
n n j

«inClass relationship
uses (for interface)
uses (for implementation)
instantiates (compatible type)
instantiation (new type)
inherits (compatible type)
inherits (new type)
metaclass
undefined

Class template
Name: identifier
Documentation: text
Visibility: exported/private/imported
Cardinality: 0/1/n
Hierarchy:

Superclasses: name
Metaclass: name

Generic parameters:
Merface|hnplementation:

Uses: class name
Fields:
Operations:.

State transition diagram!
Concurrency:
Space complexity:
Persistence:

Operation template
Name:
Documentation:
Category:
Qualification:
Formal parameters:
Result:

. Preconditions:
Action: i
Postconditions: J
Exceptions:
Concurrency:
Time complexity:
Space complexity:

object
diagram

Figure 4.7 The Symbols in Class Diagrams

Object

name

Object template
Name:
Documantation:
Class:
Persistence:

concurrency sequential /blocking/active
persisitence persistent /static/dynamic

f
Object relationship.

list of messages inside the system

— outside the ̂ stem

Synchronization symbol
---------------------► simple

label

V ^ibility symbol
0 same lexical scope
Ü] same lexical scope (shared)
0 parameter
1^ parameter (shared)
1 ^Gld
ig field (shared)

synchronous
balking
timeout
asynchrouous

Message template
Operation:
Documentation:
Frequency:
Synchronization:

Figure 4.8 The Symbols in Object Diagrams

149

Chapter 4: Analysis of Five Analysis Methods Using the Framework

State

I name j

State transition
events_____
actions

start state stop stateo
State transition
template

Event:
Documentation:
Actions: PDL/object diagram

Figure 4.9 The Symbols in State Transition Diagrams

Action 1.2.2; Identify the Tactic of Analysis

No tactic of analysis is claimed in the text of this method, a situation similar to that

for the OOA method and the OMT method, as described above. The tactic supported by

this method, however, will be decided in action 2.3.1 in the next chapter, in the assessment

of the relationship between ‘model* and ‘tactic of analysis*.

Action 1.2.3; List the Input of Analysis

A problem domain is the initial input of analysis for the Booch method. During

analysis, an updated object model is also used as another input to the analysis when

iterating.

Action 1.2.4; Describe the Process of Analysis

Booch states in his book [Booch91] that analysis in his method is part of the

process of a round-trip gestalt design which discovers and defines the objects and classes

in a problem domain. According to the criteria of action 1.2.4, this process is found to

consist of four steps. The detail of the process and steps are described as follows.

Step 1: Identify the Classes and Objects

Guidelines: To discover essential classes and objects from the vocabulary of the problem

domain by using another object-oriented analysis method or a domain analysis method.

The classification approaches may be as follows:

a) classical categorisation that abstracts objects according to the similar properties

among objects;

150

Ouster 4: Analysis of Five Analysis Methods Using the Framework

b) conceptual clustering that emphasises concepts more than properties: abstract a

concept first and then decide which category it belongs to; and

c) prototype theory, i.e., if a class is not clearly bounded with properties or concepts, it

is abstracted as a prototypical object.

Step 2: Identifying the Semantics of Classes and Objects

Guidelines: Identifies the behaviour and operations of the classes and objects. In this step,

analysts need to identify the things that each class and object can do for themselves and to

others. This can be done by writing a script for each object to define its life cycle and

including its characteristic behaviour.

Step 3: Identifying the Relationships among Classes and Objects

— Discover the relationships between classes and objects

Guidelines: Identify the using and inheritance relationships between classes and the

collaborations between objects.

— Decide the visibilities between classes and objects

Guidelines: Decide how objects or classes see each other from externally. This decision

is helpful to package the classes and objects into modules.

Step 4: Implementing Classes and Objects

This step makes design decisions on objects and classes in the object model that is

built by the above steps, allocates them into modules, and implements them, and so, it

should not be included in the process of analysis.

Action 1.2.S: Identify the Products of Analysis

The product of analysis produced by the Booch method is an object model that

shows what an object-oriented system needs to do, according to a problem domain.

The essential features identified above that reflect the ‘how* aspect of the Booch

method are recorded in Table 4.6.

151

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

If

o.

I

II
A

oo 00
ep

3

itCL

•tJI
I
I
I
I
.3

I

i
I
5

i

152

Chapter 4: Analysis o/Five Analysis Methods Using the Frameioork

4.4 Stage 1: Analyse the Wirfs-Brock Method (Wirfs-
Brock et al.)

The account of the Wirfs-Brock method [Wirfs90] first describes the principles behind the

method, followed by a definition of the concepts fundamental to the method. The

modelling elements are then provided and defined, and finally, the process of object-

oriented analysis is described. The essential features that reflect the 'what’ and 'how’

aspects of this method are identified and described below by means of the process of

assessment in section 3.5.

4.4.1 Activity 1.1: Analyse the ‘What’ Aspect of the Wirfs-Brock
Method

Action 1.1,1: Identify Fundamental Principles

The following principles are explicitly claimed in the text of the Wirfs-Brock

method [Wirfs90]:

aj Abstraction

Abstraction is regarded as the key to good software design, since it emphasises some

aspect of a system and ignores others. It makes the specification of the system simple as

at the abstract level the components in the system can be specified without concern for

implementation details.

h) Encapsulation

This is a principle concerned with the combination in objects of the data and the

operations that affect data.

c) Information hiding

This is a principle that hides the internal detail of an object from other objects.

d) Inheritance

Inheritance is a principle supporting the sharing of similarities among classes. It is

regarded as fiindamental by the Wirfs-Brock method since it provides a powerful way to

produce reusable classes.

153

Chapter 4'. Analysis of Five Analysis Methods Using the Frametoork

ej Message-sending

Message-sending makes it possible for one object to access another by sending it a

message that includes its name and arguments.

f) Polymorphism

Polymorphism is a principle that allows two or more objects to respond to the same

message, each in its own way. (According to the criteria of action 1.1.1, this principle

focuses on design rather than analysis since it indicates how the objects are implemented

in a system. It should not be regarded as fundamental in analysis.)

Action 1.1.2: List Fundamental Concepts

By using the criteria in the action, the concepts regarded as fundamental in the

method are as follows.

a) Object

An object refers to a conceptual entity in the real world.

b) Class

A class is a generic specification for a set of objects that share the same behaviour.

c) Object responsibility

The object responsibility concept is a notion which specifies what an object maintains

and performs in an object-oriented system.

d) Inheritance relationship

The inheritance relationship concept addresses the sharing of related classes: a new class

is defined by abstracting out the similarities of existing classes (i.e., it is a superclass of

existing classes), or by inheriting the behaviour from another class with something extra

(i.e., it is a subclass of that class).

e) Client-server

The client-server concept is used to model the interactions between objects by

considering one object (client) requests a service of another (server),

154

Chapter 4\ Analysis of Five Analysis Methods Using the Frameioork

f) Subsystem

The subsystem concept is used to describe a group of classes that closely work together

in order to simplify the patterns of communication between objects and to streamline the

flow of control and information in a system.

Action 1.1.3; Analyse Models

Although the Wirfs-Brock method does not use a term like 'object model’, the

following elements are found to be provided for modelling an object-oriented system. An

object model containing all of these elements can be said to be effectively built by the

method.

a) Class

A class is a collection of objects that share the same behaviour. An object is the

encapsulation of functions and data, and it has a public interface and a private

representation to make the internal details invisible to other objects.

b) Responsibility

A responsibility describes some knowledge that an object maintains and an action that

the object performs.

c) Inheritance hierarchy

An inheritance hierarchy represents the inheritance relationships between the classes in a

hierarchical structure. In a particular case, a superclass may not have any object. This

kind of superclass is called an abstract class.

d) Collaboration

A collaboration represents a request from a client class to a server class by sending a

message to the server, in order to fulfill a client responsibility.

e) Client-server contract

A client-server contract represents an interaction between a client class and a server

class. This contract only specifies what is needed to done rather then how it is done.

155

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

j) Subsystem

A subsystem is a group of classes, or a group of classes and other subsystems, that

collaborate with one another.

The essential features, as described above, that reflect the 'what' aspect of the

Wirfs-Brock method are recorded in Table 4.7.

'sAinciple

S ta g e ^ \
Fundamental
Principle

Fundamental
Concept

Model
Type Element

Analysis

•Abstraction
•Encapsulation
•Information
hiding
•Inheritance
•Message-sending

•Object
•Class
•Object
responsibility
•Inheritance
relationship
•Client-server
•Subsystem

{•Object
model)

•Class
•Abstract class
•Responsibility
•Inheritance
hierarchy
•Collaboration
•Client-server
contract
•Subsystem

Table 4.7 The Essential Features in the 'What' Aspect of the Wirfs-Brock Method

4.4.2 Activity 1.2: Analyse the ‘How’ Aspect of the Wirfs-Brock
Method

Action 1.2.1; Illustrate the Notation

The following notations are found to be used in the Wirfs-Brock method:

a) Class Card and Subsystem Card

Class cards and subsystem cards describe the information about classes and subsystems,

respectively. The formats of the cards are shown in Figure 4.10.

Class: name o f class (Abstract or Concrete)
list o f suoerclasses
list o f subclasses
responsibilities collaborations

y

Subsystem: name of subsystem
delegationcontract

Figure 4.10 A Class Card and a Subsystem Card

b) Hierarchy Graph

This shows the inheritance relationships between classes, as shown in Figure 4.11.

156

Chapter 4: Analysis o/Five AmUysK Methods Using theFrameivork

abstract
superclass

concrete
subclass

concrete
subclass

concrete
superclass

Figure 4.11 A Hierarchy Graph

c) Collaboration Graph and Contract Card

A collaboration graph, as shown in Figure 4.12, describes the classes and subsystems

within a system and the paths from one to another.

Gtameof
sub^stem I1 (Contract)

name of
class

name o f superclass
name of name of
subclass subclass

Contract No.: name of contract
Server:
Clients:
Description:

Figure 4.12 A Collaboration Graph and a Contract Card

d)Venn Diagram

A Venn diagram shows the common responsibilities between classes (as shown, in

Figure 4.13) and indicates where abstract superclasses should be created.

responsibilities
of class A

mmoh
responsibilities
responsibilities
of class B

Figure 4.13 A Venn Diagram

Action 1.2.2; Identify the Tactic of Analysis

A responsibility-driven tactic is claimed by the Wirfs-Brock method. That is, a class

is defined by focusing on its responsibilities and an inheritance relationship is defined by

considering the common responsibilities between classes.

157

Chapter 4: Analysis o/Five Analysis Methods Using the Framework

Action 1.2.3: List the Input of Analysis

A complete natural language specification of the system requirements is required as

the input of analysis. Thus, no new input is assumed during analysis.

Action 1.2.4: Describe the Process of Analysis

There are five steps in the process of analysis for this method. Each step also

consists of a series of substeps as follows.

Step 1: Finding Classes

— Looking fo r noun phrases

Guideline: All noun phases are listed by extracting them from the specification of the

system requirements.

— Choosing meaningful candidate classes

Criteria: Meaningful classes should model the domain of the application; they should be

physical objects or conceptual entities; one word for one concept; if the meaning of

adjectives for the same noun imply different objects, then they are defined as different

classes; if the missing subject for a sentence has the potential to be an object, a new class

may be defined; if a noun phrase seems external to the system, do not define it as a class;

and values of attributes may be defined as classes.

— Finding missing classes

Guidelines: Identify missing classes which are not explicitly described in the specification

of the system. For example, an abstract superclass can be identified by grouping related

classes. In addition, if similar behaviour is shared by several classes, an abstract

superclass can be defined for these classes.

Step 2: Defining Responsibilities

— Finding responsibilities from the purpose o f each class

Guidelines: The role of a class in the system is the responsibilities that it should have.

158

Chapter 4: Analysis of Five Analysis Methods Using the Framework

— Extracting responsibilities from the specification

Guidelines: The specification of a system usually gives the actions and information that a

class must perform and maintain. The actions are identified by considering the verb

phrases in the specification and are stated as generally as possible; keep behaviour with

related information; keep information about one thing in one place; and split shared

responsibilities among related objects into several smaller and more specific

responsibilities and assign them separately to the most appropriate classes. If a class has

no responsibility, it will be nearly always be discarded later.

— Identifying responsibilities from the relationships between classes

. Guidelines: The relationships between classes often imply the responsibilities of the

classes. In particular, the consideration of three relationships, *is-kind-of\ *is~

analogous-to ' and *is-part~of\ is usefiil to identify the responsibilities of classes.

Step 3: Defining Collaborations

— Identifying collaborations by responsibilities

Guidelines: In order to identify collaborations, questions such as these can be asked: Is

the class capable to fulfilling this responsibility itself? If not, what does it need? From

what other class can it acquire what it needs? In addition, each responsibility shared by

classes also implies a collaboration between the classes.

— Identifying collaboration by classes

Guidelines: For each class, such questions as the following are asked in order to identify

its responsibilities: What does this class not know? What other classes need some result

or information fi*om this class? This class should be discarded if no interaction exists

between it and other classes.

— Identifying collaborations by relationships

Guidelines: Three relationships are useful to identify collaborations: a) *is-part-of, such

as the phrase 'are composed o f in a specification; b) 'has-knowledge-upon% such as the

phrase 'which it gets fi-om* in a specification, and c) 'depends-upon', such as the phrase

159

Chapter 4: Analysis ofFive Analysa Methods Using the Framework

'change with* in a specification. A collaboration graph will be developed later after the

contracts between classes are defined.

Step 4: Defining Hierarchies

— Building good hierarchies

Guidelines: In order to define each class as an abstract class or a concrete class, Venn

diagrams are drawn to represent the responsibilities shared between classes. Then class

hierarchies and contracts are constructed by following the guidelines: to model a ‘kind-

o f hierarchy; to put common responsibilities as high as possible; and to make sure that

abstract classes do not inherit from concrete classes.

— Identifying contracts

Guidelines: The contracts are identified by following guidelines such as the following, in

order to determine which responsibilities belong to which contracts: to group

responsibilities used by the same clients, i.e., they all belong to one contract; to maximise

the cohesiveness of classes; and to minimise the number of contracts. The fewer

contracts exist, the more comprehensible a system becomes.

Step 5: Defining Subsystems

— Defining subsystems

Guidelines: Subsystems can help to simplify a large system. They can be identified by

firstly drawing a collaboration graph for the system that shows all collaborations among

classes.

Criteria: Determine the significant subsystems by asking: What is the purpose of that

web? Does it show that these classes work together to implement a unit of functionality?

Does it make sense to abstract the group of classes out as a single entity? Can a

subsystem be built in order to subsume these classes? In addition, another way to decide

whether a group is a subsystem or not is to name it. If it can be named, it is likely to be a

subsystem.

160

Chapter 4: Analysis of Five Analysis Methods Using the Framework

— Writing a design specification fo r each class and subsystem

Guidelines: The specification for each class and subsystem is recorded by a class card

and a subsystem card separately: redraw the graphs on pages, one page per graph;

number the pages so that they can be referred to; and order the collaboration graphs

from the most global to the most specific.

— Writing a design specification fo r each contract

Guidelines: The contracts between classes and subsystems are recorded by contract

cards.

Action 1.2.5; Identify the Products of Analysis

The products of analysis in the Wirfs-Brock method contain the following:

— Class, subsystem and contract cards that record each class, subsystem and contract,

— Hierarchy graphs and Venn diagrams that show the inheritance relationships

between classes (both abstract and concrete classes), and

— Collaboration graphs that show the contract links among the classes within a

subsystem or a system.

The essential features identified and described above reflect the 'how* aspect of the

Wirfs-Brock method. They are recorded in Table 4.8.

161

Chapter 4: Analysis of Five Analysis Methods Using the Frameivork

1
a

I

g a

f
§
•S 1

I

I
*o

I

i l U

1 1

l l
f2 |2

cu

o) on I I
III

I
I

I l | l | l flfif
'I

il f i ’s l

II I
sp a

u
a J
1 I
2 1
w g)

(a ts
9

I i s ^.S

I!

I U

I

1
3 ÎI 1 1

9 V 9 lî
1

162

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

4.5 Stage 1: Analyse the Syntropy Method (Cook and
Daniels)

The Syntropy method [Cook94a] is an object-oriented analysis and design method

developed by S. Cook and J. Daniels of Object Designers Ltd. in the United Kingdom.

The authors claim in their book that this method is a second-generation object-oriented

method and that it is defined upon the first-generation object-oriented methods, in

particular, the OMT method [Rumbaugh91] and the Booch method [Booch91], but that

Syntropy gives them a more formal interpretation. The method adopts the mathematical

notation given in [Hayes87] and the basic notations of Z [AbriaSO] for a formal

description of a system. The Syntropy method is analysed and its essential features are

shown in this section by viewing the ‘what’ and ‘how’ aspects of this method in terms of

the fi’amework.

4.5.1 Activity 1.1: Analyse the ‘What’ Aspect of the Syntropy Method

Action 1.1.1: Identify Fundamental Principles

The following principles are regarded as fundamental in the Syntropy method:

a) Abstraction

In the Syntropy method, abstraction refers to the process of focusing on and

understanding the essential and inherent facts in a situation in the world, in the context

of objects. A situation is a set of things and occurrences which describes some kind of

activity in the world.

b) Encapsulation (also information hiding

Encapsulation is a principle of hiding the internal detail of an object fi’om other objects.

c) Inheritance

Inheritance is a principle that enables classes to share a description.

d) Domain

Domain means a way of dividing a system description, not of system execution, into

smaller parts, i.e., subsystem descriptions.

163

Chapter 4\ Analysis o/Five Analysis Methods Using theFrameivork

Action 1.1.2; List Fundamental Concepts

One stated goal of the Syntropy method is to use the concepts of object technology to

describe situations in the world [Cook94a]. For the purposes of object-oriented analysis,

the authors consider the real world to be usefully seen to consist of components such as

objects, values and events. The follovnng fundamental concepts identified from the

method are found to reflect these things in the world.

aJ Object

An object is an abstraction of concrete or abstract things in a situation in the world. The

properties of an object may change over time.

b) Object type

An object type is a collection of objects with the same description. It is the same as the

concept ‘object class’ of the OMT method.

c) Identity

Identity is a concept that means an object can always be distinguished from another

object.

d) Value

Value is a concept that represents a problem-domain concept like ‘number’ or ‘string’ in

a situation in the world. Values are constant and they do not change in a situation.

e) Object structure

Object structure is a concept used to define the static description of a system in terms of

object types and their relationships. In such a structure, a set of object types may

together constitute a coherent sub-system which can meaningfully be considered as a

group. Dependency between two sub-systems is a consequence of relationships between

types in the sub-systems. Typical causes of dependency are visible associations and sub

type/super-type relationships.

164

Chapter 4: Analysis of Five Analysis Methods Using theFrameivork

f) Sub-typing

Sub-typing is a concept that implies object conformance: an object conforming to the

sub-type also always conforms to the super-type. The description of sub-type inherits

some or all of the description of the super-type, possibly with additions or modifications.

g) Object behaviour

Object behaviour is a concept to define the life history of objects in terms of events,

object states and activities.

h) Event broadcast

The Syntropy method uses two basic concepts to model the world: objects and events.

Objects represent things and events describe occurrences (that is, happenings or

episodes rather than object occurrences). The occurrences represented by events imply

also the changes of state of the things in a situation. The event broadcast concept

considers that the events in modelling may be detected simultaneously by different

objects.

Action 1.1.3; Analyse Models

The Syntropy method focuses on modelling aspects of a system (e.g., objects,

values and sequences of events in a situation in the world) by building two sequential

models: one is called an essential model and the other is called a specification model.

• Type of Model

— Essential Model and Specification Model

An essential model describes the things and concepts in a situation in the world.

The purpose of an essential model is to understand a situation, real or imaginary. The

building-blocks of an essential model are objects and events, and its interpretation is as a

set of facts.

The specification model states what the software will do, according to the essential

model, without concern for implementation details. The model specifies the states which

the software can be in and the way that the software responds to stimuli (events) by

165

Chapter 4: Analysis o/Five Analysis Methods Using the Frameioork

changing state and by generating responses (also events). The specification model is a

refinement of the essential model. It is built in terms of events and states, like the essential

model. However, it differs fi*om the essential model. In particular, it can generate events

itself because of software needs and can leave the response to an event undefined in the

essential model.

— Models with Type View and State View

In this method, a situation in the world is regarded as a set of things and

occurrences; that is, it consists of objects, values and events. Each of the essential and

specification models are represented by two distinct views: a static view (also type view)

and a state view (also dynamic view). The static view models the static structure in the

situation; while the state view models the behaviour in the same situation. These two

views are consistently interrelated, and the whole thing comprises a multi-dimensional

model.

* Elements in the Models

The essential model and specification model consist of the same elements which are

used to describe a system in both type view and state view, as shown below.

— Type view

a) Object and object type

An object consists of property values and responsibilities. An object type is a description

of the property values and responsibilities that a collection of objects share. Such objects

are said to be instances of the object type. Syntropy’s object type element is analogous

to the element ‘object class’ in the OMT method.

b) Property and association

A property is something that can be observed of an object in some way. For each

property, an object always has its own value. A property of one objects may be another

object and such a property is an association between these two objects.

166

Chapter 4: Analysis of Five Analysis Methods Using the Framework

c) Value type

A value type is a constraint on properties, i.e., property type. The usual syntax is:

propertyName: propertyType.

The value types used in the Syntropy method are Number, Integer, String, Date, Time

and Symbol,

d) Association

An association represents a possible link between objects,

g) Aggregation

Aggregation is often referred to as a ‘whole-part’ or ‘is-part-of relationship, where the

whole, the aggregate, is made up of its parts. In this method, aggregation implies life

time dependency, i.e., the life-time of the ‘parts’ is contained within the life-time of the

‘whole’. The ‘parts’ are permanently attached to the ‘whole’, and cannot be removed

from it without being destroyed. Conversely, destroying the ‘whole’ destroys the ‘parts’.

However, unless we can come up with some concrete semantics for whole-part

relationships which go beyond those defined for associations, this element has no place

in the modelling discipline in the Syntropy method.

J) Type extension (i.e., inheritance o f type)

A type extension is a sub-type of another type (i.e., super-type). This is often called an

‘is-kind-of relationship. A sub-type ‘inherits* all the properties, constraints and

associations of its super-type. Broadly, the sub-type can extend the capabilities of the

super-type but not restrict them.

g) Abstract type

An object type is an abstract type if it does not have any instance.

h) Constraints and Invariant

A constraint represents a condition on or a functional relationship between components

such as objects, object types, properties or links in the essential model. An invariant may

be a logical expression that will be always true for every object conforming to the type, a

simple restriction on the range of property values, or a specific constraint on a property

whose values remain fixed during the lifetime of its owning object.

167

Chapter 4: Amüysis ofFive Analysis Methods Using the Framework

i) Navigation eyq>ression

A navigation expression is an expression that includes a navigation through the essential

model, and is a logical type constraint that will be always be true for every object

conforming to the type.

j) Domain

A domain is a set of object types that together constitute a coherent sub-system which

can meaningfully be considered as a group.

k) Domain dependency

Domain dependency between two domains is a consequence of relationships between

types in the two domain.

— State view

a) Object state and state type

An object state is an abstraction of the property values and links held by an object. In

principle, every different set of property values taken by an object represents a different

state. The values in a state affect the behaviour of an object type. A state type is a

specific sub-type of another that describes a state of its super-type.

b) State invariant

A state invariant is a condition on a state that always prevails when the object is in that

state.

c) Event

An event is something that causes a situation to change from one state to another.

Events are not objects but they may be operations. An object can change its state in

response to any event; sometimes several objects may change their state in response to a

single event. Events have no duration: either they have not yet happened or they have

already happened; they can never be in the process of happening. Every event carries

some information. An event may have parameters that can be object types and value

types, pre-conditions that must hold for the event to occur, and sequence that lists the

changes resulted from itself.

168

Chapter 4‘. Analysis o/Five Analysis Methods Using the Framework

d) Event scenario

An event scenario is a sequence of specific event instances; it shows just one of the many

possible sequences of events that could occur in the duration fi'om creation to

destruction of objects.

e) Creation operation

Object are dynamically created and destroyed during the life-time of a situation. A

creation operation must be defined as an operation in the behaviour of objects.

f) Generation

A generation is an action that is a result fi'om an event and attached to the transition

firom one state to another.

The essential features above reflect the ‘what’ aspect of the Syntropy method,

according to the fi'amework. They are recorded in Table 4.9.

nnciple Fundamental
Principle

Fundamental
Concept

Model
Type Element

Analysis

•Abstraction

•Encapsulatior
(also
information
hiding)

•Inheritance

•Domain

•object

•Object tpye

•Identity

•Event

•Value

•Object
structure

•Sub-typing

•Object
behaviour

•Event
broadcast

•Essential
Model

•Specifica
tion Model

—Type view
•Object
•Object type
•Abstract type
•Property
•Value type
•Association
•Aggregation
•Type extension
(single,
multiple)

•Constraint
•Invariant
•Navigation
expression

•Domain
•Domain
dependency

—State view
•Object state
•State type
•State invariant
•Event
•Event scenario
•Creation
operation
•Generation

Table 4.9 The Essential Features in the ‘What’ Aspect of the Syntropy Method

169

Chapter 4: Attalysis o/Five Analysis Methods Using the Frameioork

4.5.2 Activity 1.2: Analyse the ‘How’ Aspect of the Syntropy Method

Action 1.2.1; Illustrate the Notation

It is claimed that the Syntropy method introduces the minimum of new notations

and it adopts existing notations to represent the essential model and specification model,

for instance, OMT notation to represent the type view of a system, Harel’s Statechart

[Harel87] to describe the state view of the same system, and the mathematics notation

given in [Hayes87] to describe the constraints and invariants in both essential model and

specification model. The notations used in this method are shown in Figure 4.14-16.

Type: Association:
Class Name
atbibutes
invariants

Type-1 Association Name
role-1 role-2 Type-2

Qualified Association:
Super/subtype:

"Superclass ~| Type-1 Züâilfiën Association ^ame
J ----------1 —I. 1 role-2role-1

Type-2

[Subclass-f
-I

Subclass-2 Multiplicity of Associations:

I Exactly one
Aggregation:

AssemMy TypeDiyy -
^ Type

-4 Type

I Part-1-Type~| | Part^TYpe I

Ternary Association:
Association Name

i ±

1-2.4
Type

Type

Type
P— —-, Associa^n iName r— — i
I ^ I role-1 role-2 Ordering:

Many (zero or more)

Optional (zero or one)

One or more

Numerically specified

One to many (one
direction)

role-3 I Type-3 I {ordered} * Type

Association Attribute:

Object
Instance:. ^Object Name)\

V t̂tribute value^

Constraint between
association:

Type Name J Type Name

Association Name
L J Type-2Type-1

State Type:

K State-2State-1

Type

Association
attributes

Figure 4.14 The Type View: OMT Notation

170

Chapter 4: Aruûym of Fioe Analysis Methods Using the Framework

Event causes transaction
between states:

event state-2
state name ^

Event with attribute:

(^ ta te -l^G v en tÇ a ttn b u tg A ta t e - Z ^

Initial and final states: Action on a transition:

Guarded transition: Output event on a transition:
 -------^ event[condition] _

(^state-1^)— --------- iLT state-2

Actions and activity in a state:

state name
entzy/entiy action
do: activity-A
eventl/actionl

exit/exit action

eventl/event2 .(state-2^

Output event on a transition:
eventl
- I — '

jevent2

class-3

» ^state-2^

State generalization (nesting):

eventl

Concurrent subdiagrams:

superstate ^

^̂►̂ bstate-l^.̂ ^bstate-2^

^events ^event2^

eventl
^ s u p e r s t a t e ^

^ b s l a t e - p

^ (^ b s t a t e - ^

^ u b s t a t e - 3 ^ ^ ^

^ u b s t a t e - ^ j

event2

Splitting of control:

eventO

Synchronization of controi:
superstate

substate substate-3

^ u b s ta te -2 ^ event2 ^ ^ ubstate-4

Figure 4.15 The State View: Statecharts

event3

event4

Notation of logic, sets and other mathematics;

— Definitions and declarations
Meaning

LHS = RHS Definition of LHS as syntactically equivalent to RHS.
X : T Declaration of identifier x to stand for a member of the set T

(which may be a type name or any expression yielding a set).

171

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

X, y : T s x : T , y : T
0 Groups terms in expressions

— Logic
Meaning

true, false Logical constants
not P Negation: ‘not P*
P A Q Conjection: P and Q*
P V Q Disjunction: P or Q*
P ^ Q Implication: ‘P implies Q' or ‘if P then Q’
P o Q Equivalence: ‘P is logically equivalent to Q’ or ‘P if and only if Q*
P -> Q, R Conditional: ‘if P then Q else R’

(P -> Q, R) o ((P => Q) A (not P => R))
Vx: S • P Universal quantification: ‘for all x in set S, P holds’.
Bx: S * P Existential quantification: ‘there exists a x in S such that P holds’.
3! X : S • P Unique existence: ‘there exists a unique x in S such that P holds’.
t i = t2 Equality between terms
t i ^ t 2 = not (ti = t2)

— Sets
Meaning

t e S Set membership: ‘t is a member of S’,
t S s not (t e S)
T 3 S Set inclusion: ‘every member of S is also in T’.
{ } The empty set.
{ t l, t2 ,..., tn} The set containing the terms ti through tn
#S Size of the set S
set of S Powerset: set of all subsets of S.
{ X : S IP} The set containing exactly those x in S for which P holds.
{ D I P*t} Given declarations D, the set of t ’s for which P holds.
{ D • t} Given declarations D, the set of t’s.

s { D I true f t}
(t l , t 2 t n) Ordered tuple of ti, t2 ..., and tn
S u T Set union.
S - T Set difference.
S n T Set intersection
w SS Distributed set union. Given SS is a set of sets with members taken

from S, ‘the union of all the members of all the members of all the sets’
={x: S I (3 s: SS • X e s) }

172

Chapter 4: Analysis Five Analysis Methods Using the Frameioork

S x T

sum S

min S
max S

Cartesian product: The set of all 2-tuples such that the first component
is a member of S and the second a member of T
The numerical sum all of the elements of the set S.
sum { } = 0.
sum ({t} u S) = t + sum S.
Also defined over sequences and bags.
Minimum of a set (or sequence or bag).
Maximum of a set (or sequence or bag).

— Functions

S - > T
Meaning
The set of total functions from S to T

— Bags
Mathematically, a bag is treated as a function mapping elements of the bag to positive

integers, representing the number of times the element appears in the bag.

Meaning
bag of T The set of bags whose elements are drawn fi'om set T.
#X The number of elements in bag X
[] The empty bag
[xi, X2 ..., XiJ The bag containing xi, x2 ..., xn with the fi'equency in which they occur

in the list.
members X The set formed from the elements of bag X.

— Sequences
Mathematically, a sequence is treated as a function mapping positive integers,

representing position in the sequence, to elements of the sequence.

Meaning
seq of T The set of sequences whose elements are drawn from set T.
#A The length of sequence A

[] The empty sequence
[ai ,a 2 ..., an] The sequence containing a i , a2 and an
A ^B The sequence formed by concatenating the sequence A with the

sequence B.
A(n) The nth element of sequence A.
members A The set formed from the elements of A.
items A The bag of items contained in the sequence A.
head A The first element of a sequence or nil if the sequence is empty.

173

Chapter 4: Analysis of Five Arudysis Methods Using the Frameioork

A ̂ [] -> A(l), nil
last A The last element of a sequence or nil if the sequence is empty.

A ;± []^A (# A),n il
tail A All but the head of a sequence,
front A All but the last of a sequence.

— Sorted sequences
Meaning

S ^ e The sorted sequence formed by inserting element e into the sorted
sequence S, follovnng the sort rule for S.

— Objects
Meaning

a in Q True if the object a is in state Q, false otherwise.

Figure 4.16 The Mathematics Notation for Constraints and Invariants

Action 1.2.2; Identify the Tactic of Analysis

The Syntropy method suggests that a situation in the real world can be analysed by

starting by either identifying object types or identifying events in the situation. In the first

case, the type view is first used in order to identify objects and values and then events in

the same situation are identified and modelled upon the objects and values. The type view

is a basis for applying the state view. A data-driven tactic of analysis is utilised by the

Syntropy method in this case. In the second case, the state view is used first and the type

view is then used. Once a list of events is identified, the parameters to each event must be

established and the information which the event must carry is identified. Such information

leads directly to the identification of the important object types in a situation in the world.

An event-driven tactic of analysis is addressed in the second case by this method.

Therefore there are two alternative tactics of analysis which are addressed by the Syntropy

method in analysis.

Action 1.2.3: List the Input of Analysis

According to the criteria in action 1.2.3, the input to the Syntropy method is the

problem statement that describes a situation in the real world.

174

Chapter 4: Analysis of Five Analysis Methods Using the Frameioork

Action 1.2.4; Describe the Process of Analysis

It can be seen in the text of the method that the process of analysis in this method

should include two steps by which an essential model and a specification model are built.

Each of the steps also consists of two substeps, in respect with the type view and the state

view of a system. However, no further detail of the process of analysis is shown in the text

of the method [Cook94a]. The identification of the process however can be delayed to the

next chapter of the assessment, when the relationship between ‘model’ and ‘process of

analysis’ is examined.

Action 1.2.5: Identify the Products of Analysis

The products of analysis by using the Syntropy method are identified as below:

— an essential model, and

— a specification model.

The essential features identified above reflect the ‘how’ aspect of the Syntropy

method. They are recorded in Table 4.10.

175

Chapter 4’. Analysis ofFive Analysis Methods Using the Framework

■cc

I
I
I
I
I
.s

I

I

176

C3tapter 5: Assessment ofFive Analysis Methods Using the Framework

Chapter 5

Assessment of Five Analysis Methods
Using the Framework

The features, in particular the explicit features, that reflect the ‘what* and ‘how* aspects of

five object-oriented methods [Coad91a, Rumbaugh91, Booch91, Wirfs90, Cook94a] were

identified and described in the previous chapter, by using the framework defined in

Chapter 3. They are also recorded in a tabular form as given in Table 3.1. Based upon the

features identified in Chapter 4, this chapter assesses these methods according to the

process of assessment provided in section 3.5. The meanings and roles of the essential

features as well as the relationships between them are taken into account in the

assessment, in order to clarify and understand these methods precisely and correctly. In

addition, the implicit features of the methods may be recognised through this assessment.

The assessment of each of the methods is shown separately in Section 5.1 to 5.5.

Following this assessment, the methods are further discussed in Section 5.6, as a general

review of the nature of analysis methods.

177

O uster 5: Assessment o f Five Anaiysis MeAods Using the Framework

5.1 Stage 2: Assess the OOA Method (Coad and
Yourdon)

This assessment stage is based on the essential features of the OOA method that were

identified during the first stage in section 4.1.

5.1.1 Activity 2,1: Assess the ‘What’ Aspect of the OOA Method

The essential features recorded in Table 4.1 reflect the ‘what* aspect of the OOA method.

They show that the aim of this method is to build a five-layer OOA model of a system.

Action 2.1.1: Assess the Relationship between the Features in the ‘What* Aspect

According to the criteria included in this action, the dependencies of the essential

features in this part of the OOA method are determined by their meanings and roles, as

shown in Table 5.1. The features recorded in the same row (expressed by dotted lines)

means that they depend on one another. The implicit features recorded in the table are

identified as follows.

— Assess the relationship between *fundamentdlconcept’ and ’model’

By assessing the relationship between ‘fundamental concept* and ‘model*, it is

found that the features ‘whole-part structure*, ‘object state* and ‘subject* in the colunm

‘model* seem not to really rely on the features in the column ‘fundamental concept*. This

means, some extra concepts should be implicitly regarded as fundamental by this method,

and they could be the concepts ‘aggregation*, ‘object lifecycle* and ‘partitioning* (see

section 3.6).

— Assess the relationship between ’fundamentalprinciple ’ and ’fundamentalconcept’

The fundamental principles behind the above implicit concepts are ‘pervading

methods of organisation*, ‘categories of behaviour* and ‘scale* recorded in Table 4.1.

178

Chapter 5: Assessment of Five Analysis Methods Using the Framework

— Classify the principle ’abstraction ’

The principle ‘abstraction’ also implies the behaviour abstraction that relates to the

behaviour aspect of a system, as the concept ‘object lifecycle’ is supported in the method.

..Ainciple

s t a g e d
Fundamental Fundamental Model
Principle Concept Element Type

•Abstraction
(data,
behaviour)

•Object
•Class

•Class-&-0bjects
•Class

•OOA model

Analysis

•Encapsulation
(information
hiding)

•Pervading
methods of
organisation
•Categories of
behaviour

•Association

• (Aggregation)

•(Object
lifecycle)

•Attribute
•Service
•Instance
connection
•Whole-part
structure
•Object state

•Inheritance •Inheritance
relationship

•Gen-Spec structure
(single, multiple)

•Communication
with messages

•Message •Message connection

•Scale •(Partitioning) •Subject
Table 5.1 The Dependency of the Essential Features in the ‘What’ Aspect

of the OOA Method

Action 2.1.2: Assess the Content of the ‘What* Aspect

By considering the meanings and relationships of the essential features that reflect

the ‘what’ aspect of the OOA method, the content of this aspect can be clarified as

follows.

• Fundamental Principles

— Principles on object orientation

In the OOA method, the general idea of analysis is to encapsulate data and processes

into objects and to share similarities of objects. The principles ‘abstraction’ (data and

behaviour), ‘encapsulation’, ‘pervading methods of organisation* and ‘communication

179

Chapter 5: Assessment of Five Analysis Methods Using the Framework

with message* are in particular regarded as fundamental by the method in order to

identify and specify objects and classes, their structures and their interactions. The

principle ‘inheritance* enables the analyst to abstract the similarities of objects. The

principle ‘scale* enables the analyst to cope with the complexity of a system.

— Abstraction on data and behaviour

In view of the row containing ‘abstraction* and so on, the data and behaviour aspects

of systems are emphasised by this method.

• Fundamental Concepts

— Concepts around objects

All fimdamental concepts in the OOA method are defined around objects.

— Concern with object relationship

The concept ‘association* is addressed by this method, focusing on the description of

the relationships between objects.

— Message as basic to object interaction

The concept ‘message* is important for the method in order to express the interactions

between objects.

* Object Model

A single object model is defined by the OOA method to specify an object-oriented

system. This model consists of five layers each of which describes one aspect of the

system.

— Emphasis on data abstraction

The model strongly emphasises the abstraction of the data aspect of systems. In

particular, the element ‘attribute* is provided to specify the data aspect of a system

180

Chapter S: Assessment ofFive Anafy^ Methods Using die Framework

explicitly. The element ‘service* represents the actions performed on ‘attribute* and the

element ‘object state* in the model represents the changes of attribute values over time.

— Emphasis on data structure rather than process structure

The concept ‘object* is built upon the data abstraction of the OOA method. The

concept ‘association* is also used by the method to represent the relationships between

objects. The specific element ‘instance connection* is provided to represent such a

structure.

— A specific structure ’subject layer ’

In order to realise the principle ‘scale*, the OOA model includes the element ‘subject*

to give an overview of a part of an object-oriented system, so that a large and complex

system is readable.

— No event or action specified for object state

The OOA model only includes the element ‘object state* to describe the states and state

transitions in an object, since the model only focuses on the classification ‘change over

time* but not ‘event-response* in the concept ‘categories of behaviour*.

— Algorithm specified for each service

The algorithm for each service in an object is required in an OOA model. This may be

considered as violating the distinction between analysis and design considered in

Chapter 1: analysis is only concerned with ‘what* a system is to do but not ‘how* to do

it.

5.1.2 Activity 2.2: Assess the ‘How ‘Aspect of the OOA Method

The essential features that reflect the ‘how* aspect of the OOA method were identified in

activity 1.2, as recorded in Table 4.2. These features are assessed below in detail.

181

Chapter S: Assessmeiü o f Five Analysis Methods Using the Framework

Action 2.2.1; Assess the Relationship between the Features in the ‘How’ Aspect

To understand the ‘how’ aspect of the OOA method, the relationship between the

features should be considered and assessed, using the criteria given in this action. Figure

5.1 shows an overview of the relationships between the features in the ‘how’ aspect of the

OOA method, taken from Table 4.2.

Five Activities
1 Action

A problem
domain

analysesinterviews
Process of Analysis

given with Guideline & Criteria
for each action

uses driven by

A problem
domain
(all activities)

OOA notation (activity 1-4)
Object state diagram (activity S)
Service chart (activity 5)

rijen

□
produces

A five layer model (all activities)
Object specifications (all activities)
Other documents (all activities)

Figure 5.1 The Relationships between the Features in the ‘How’ Aspect
of the OOA method

Action 2.2.2; Assess the Content of the ‘How* Aspect

The content of the ‘how’ aspect of the OOA method is clarified as follows by

considering the roles of the features and their relationships.

• Notation

A specific OOA notation is provided by the method to represent the OOA model. In

addition, object state diagrams and service charts are also used to specify the services

that act on the attributes of objects and classes.

• Process of Analvsis

— Activities rather than steps

The process consists of five activities rather than steps since no priority is assumed on

the construction of five layers in the OOA model.

182

Chapter 5: Assessment o f Five Analysis Methods Using the Framework

— Detailed guidelines and criteria

The OOA method provides detailed guidelines and criteria for assistance with the

process of analysis.

— Encourage analysts to communicate with users

This process encourages analysts to contact the users during analysis.

— Emphasis on data specification

The process of analysis in the OOA method defines the services in terms of the

attributes of objects and classes.

5.1.3 Activity 2.3: Assess the Relationship between Two Aspects of the
OOA method

This assessment focuses on the relationships between ‘model’ in the ‘what’ aspect and the

features in the ‘how’ aspect of the OOA method.

Action 2.3.1: Assess the Relationship between ‘Model* and ^Notation*

In order to represent the five-layer model, the notation provided by the OOA

method looks like an extension of entity-relationship diagrams. Other notations, object

state diagrams and service charts, are also used. Specific symbols are included in this

notation to specify the elements, such as ‘class-&-objects’, ‘subject’ and ‘service’, as

shown in Figure 4.1-4.3.

Action 2.3.2; Assess the Relationship between 'Model' and ‘Tactic of Analvsis*

The OOA model emphasises the static structure of objects within a system.

Therefore a data-driven tactic o f analysis^ as an implicit feature, is appropriate for this

method, since the process of analysis identifies and specifies the attributes of class-&-

183

Chapter 5.* Assessment ofFive Antdysis Methods Using the Framework

objects first and then the services are defined to mampulate those attributes. This tactic of

analysis is added in Table 4.2, and the new version of the table is given in Table 5.2.

Action 2.3.3; Assess the Relationship between ‘Model* and ‘Process of Analysis'

— Five layers with five activities

An OOA model consists of five layers, and the process of analysis in this method

includes five activities that build these layers. Activity 1, however, should be carried out

first in analysis since the class-&-object layer is the basis of other layers. Actions and

associated guidelines and criteria are provided to specify the elements in these five

layers.

— Limitation o f the element ’class-&-objects*

According to the guidelines and criteria given by this method, a ‘concept’ in a problem

domain is not abstracted as a class-&-objects. This may miss some meaningful class-&-

objects for an OOA model or cause difficulties in defining useful and intuitive class-&-

objects. For example, ‘order’ in the book trader scenario may be regarded by different

analysts as either a physical thing or a concept. In the latter case, it is difficult to

abstract ‘order’ as a class-&-objects from the scenario, if the guidelines are followed

strictly.

Action 2.3.4; Assess the Relationship between ‘Model’ and ‘Product of Analysis'

The OOA model is the major product that is produced by the OOA method through

OOA

184

Oiapter 5: Assessment of Five Analysis Methods Using the Fremework

TJ

fli
00

o o

U BD T3O.

II
V M

Ï Î !00a a

(% (ÿ u

op 00 00 op
00

III

CO

CD

(A

185

Chapter 5: Assessment o f Five Analysis Methods Using the Framework

5.2 Stage 2: Assess the OMT Method (Rumbaugh
et al.)

This assessment stage is based on the essential features of the OMT method that were

identified during the first stage in section 4.2.

5.2.1 Activity 2.1: Assess the ‘What’ Aspect of the OMT method

The essential features that reflect the ‘what’ aspect of the OMT method were recorded in

Table 4.3. They show that this method aims to build three kinds of model during analysis

(i.e., object model, dynamic model and functional model).

Action 2.1.1: Assess the Relationship between the Features in the ‘W hat’ Aspect

The dependencies of the features in the ‘what’ aspect of the OMT method are

decided by their roles and meanings, according to the criteria for this action.

— Assess the relationship between ^fundamental concept*and *modeV

In Table 4.3, the elements in the functional model represent the functions of a

system. However, no concept in the colunm ‘fundamental concept’ of Table 4.3

emphasises the functions of system. This means that there is an implicit concept, which we

call ‘system function’, that should be regarded as fundamental for the OMT method.

— Assess the relationship between fundamental principle * and fundamental concept*

See Table 5.3.

— Classify the principle *abstraction *

The fundamental principle ‘abstraction* recorded in the first column of Table 5.3 in

fact implies data, process and behaviour abstraction, although data abstraction is most

dominant in the OMT method, with dynamic and functional models being defined for the

object model.

186

Chapter 5: A ssessm ^ ofFive Anafysis Methods Using the Framework

Based upon this assessment, the relationships between the features in the ‘what’

aspect of the OMT method are shown in Table 5.3.

*rinciple
,Pai«

Stage

Fundamental
Principle

Fundamental
Concept

Model

Element Type
•Abstraction
(data)

•Object
•Classification

•Object
•Class
•Abstract class

•Object
Model

Analysis

•Encapsulation
(also
information
hiding)
•Combining data
and behaviour
•Emphasis on
object
structure
not procedure
structure

►Object.
structure

•Attribute
•Operation

•Association,
link

•Aggregation

•Constraint

•Module
•Inheritance •Inheritance

relationship
•Generalisation
(single,
multiple)_____

•Abstraction
(behaviour)

•Object
behaviour

•Event
•Object state
•Activity
•Action

•Dynamic
Model

•Abstraction
(process)

(System
function)

•Process
•Data flow
•Actor
•Data store

•Functional
Model

Table 5.3 The Dependency of the Essential Features in the ‘What* Aspect of the OMT
Method

Action 2,1.2: Assess the Content of the *What’ Aspect

By considering the meanings and roles of the essential features that reflect the

‘what* aspect of the OMT method, the content of this aspect is clarified further as follows.

• Fundamental Principles

— Principles o f object orientation

The OMT method regards the principles (i.e., ‘abstraction* (data, process and

behaviour), ‘encapsulation’ (also information hiding) and ‘combine data and

187

Oiapter 5: Assessment o f Five Anafysis Methods Using the Framework

behaviour’) as fundamental. With these principles, the method can define objects and

classes, model the data, process and behaviour aspects of an object-oriented system,

hide the inside of objects from outside and combine data and behaviour into objects.

The principle ‘inheritance* is also used for sharing the commonalty of objects and

classes.

— Data abstraction as primary abstraction

Data abstraction is the primary abstraction in the OMT method and other abstractions

are used in connection with this abstraction.

— Object structure as basic structure o f a system

Object structure is regarded essential to modelling a system with the OMT method, to

make the system stable.

• Fundamental Concepts

— Concepts around objects

AH frmdamental concepts in the OMT method are defined around objects.

— Object structure on object relationships

The concept ‘object structure’ is considered by the method to be focused on the

relationships between objects and the constraints on them.

— Concern with association but not aggregation

The concept ‘object structure’ emphasises the association rather than the aggregation

of objects in this method; in most cases an aggregation is just considered as an

association with extra properties.

— Concern with object behaviour

The behaviour of objects is regarded as important to OMT; with the particular concept

‘object behaviour’ being addressed by the method.

188

O uster 5: Assessment ofFive Anafysis Meûtods Using the Framework

— Concern with system function

The fiinctions of a system are also specified by the method.

• Models

— Three kinds o f model

The OMT method defines three kinds of model to describe object structure, object

behaviour and system function, respectively. The object model is basic for defining

objects and classes and their attributes and relationships in a system. The other models

are built upon it.

5.2.2 Activity 2.2: Assess the ‘How’ Aspect of the OMT Method

The essential features listed in Table 4.4 reflect the ‘how’ aspect of the OMT method.

They show that, in order to build the three kinds of model, the method provides a process

of analysis composed of five steps, each with a sequence of substeps that include the

guidelines and criteria for transforming the problem statements into the products of

analysis.

Action 2.2.1; Assess the Relationship between the Features in the 'How* Aspect

The relationships among the essential features for the ‘how* aspect of the OMT

method can be derived fi*om the meanings and roles of the features of the method. They

are illustrated in Figure 5.2.

189

Chapter S: AssessmetU of Five Aitafysis Methods Using the Framework

Problem
statements

analysesinterviews

Five Steps given with Guideline & Criteria
for each substep1 Substeps

receives uses driven by produees

Problem
statements
(Step 1-3,5)

Object diagram (step 1)
State digram (step 2)
Data flow diagram (step 3) □An object model (step 1,4,5)

A dynamic model (step 2,5)
A functional model (step 3,5)
A data dictionary (step 1, S)

Figure 5.2 Relationships between the Features in the ‘How* Aspect of the OMT method

Action 2.2.2; Assess the Content of the *How* Aspect

The content of the ‘how* aspect of the OMT method is clarified as follows by

examining the meanings and relationships, according to the criteria given for this action.

* Notation

The major notations that represent the three kinds of models include object diagrams,

which are an extension of entity-relationship diagrams, state diagrams and data flow

diagrams.

• Process of Analvsis

— Steps and substeps

The process of analysis consists of a collection of steps and substeps.

— Detailed criteria and guidelines fo r identifying attributes

Very detailed criteria and guidelines are given to define the attributes of objects

precisely and correctly. For example, an attribute of an object should be considered as a

pure data value, not an object.

190

Chapter. 5: Assessmeta o f Five Antdysis Methods Using die Framework

— Weak guidelines and criteria fo r identifying other elements

No detailed guidelines and criteria are given to help to determine the meaningful objects

and classes, nor to identify the significant operations for objects and classes. In

addition, it does not show how to group classes into modules.

— Iterating analysis and refining the object model

After an initial version of an object model is constructed, the process encourages

iteration to refine the model.

— Encourage talk with users

This process requires talking with users during analysis in order to complete the

problem statements.

5.2.3 Activity 2.3: Assess the Relationship between Two Aspects of the
OMT Method

This assessment focuses on the relationships between ‘model* in the ‘what* aspect and the

features in the ‘how* aspect of the OMT method.

Action 2.3.1; Assess the Relationship between ‘Model* and ‘Notation*

Three types of notation, i.e., object diagram, state diagram and data flow diagram,

are used in the OMT method to represent three kinds of model.

Action 2.3.2: Assess the Relationship between ‘Model* and ‘Tactic of Analvsis*

During analysis, the OMT method defines three separate models to specify different

aspects of a system. The dynamic model and the functional model are defined in terms of

the object model. A data-driven tactic of analysis is therefore undertaken to support the

emphasis of this approach. Table 4.4 can be updated by adding this tactic, giving Table

5.4.

191

Oiapter 5: Assessment of Five Analysis Methods Using the Framework

Action 2.3.3; Assess the Relationship between ‘Model* and ‘Process of Analvsis*

— Three steps fo r constructing the three models

Three steps are included in the process of analysis for each of the three models in the

OMT method. Individual elements in each model are specified in separate substeps in

the step.

— Emphasis on object model

The object model is regarded as basic to analysis in this method. The first step of this

process is thus to build the object model. The dynamic and functional models are then

constructed, based upon the object model.

— Operations upon three kinds o f models

The operations specified in the object model correspond to the queries about attributes

or association in the object model, the events in the dynamic model, and the functions

in the functional model. Thus, a specific step ‘adding operations* is included in the

process to specify the operations of classes and objects by the cross-references between

these three models.

Action 2.3.4: Assess the Relationship between 'Model' and ‘Product of Analysis'

Since the method aims to build three kinds of model for a system, these models

represents the products of OMT analysis.

192

Chapter 5: Assessment of Five Analysis Methods Using the Framework

1 1 1O
•1
1 4

1
I

J .-2 2

U U O

M &

I I i .1

I
I

II

s M a

ill

s i

II
I I

2

i j
9 9

l i^
ÎÎ

!
L .

i l ill
I
I

i l

Î1
II

II

I
i

I
I

I

I
2
I

Î
I
s
Ia II

it f i!
< I i i

1 Q
I

l §
I I

I

193

Chapter 5: Assessment o f Five Antdysis Methods Using the Framework

5.3 Stage 2: Assess the Booch Method

This assessment stage is based on the essential features of the Booch method that were

identified during the first stage in section 4.3.

5.3.1 Activity 2.1: Assess the ‘What’ Aspect of the Booch Method

The assessment of the ‘what* aspect of the Booch method focuses on the assessment of

the features recorded in Table 4.5, and their relationships.

Action 2.1.1; Assess the Relationship between the Features in the 'What* Aspect

The dependencies of the essential features in the ‘what* aspect of the Booch

method are considered here, according to the criteria given in section 3.5.2.1.

— Assess the relationship between 'fundamentalconcept* and 'model*

Elements in models and fundamental concepts in the Booch method are classified

according to their correspondence, as shown in different rows of Table 5.5.

— Assess the relationship between 'fundamentalprinciple * and 'fundamental concept*

From these relationships we can see that the concept ‘object structure* also

involves objects collaborating by sending messages to one another. Therefore, another

principle, namely ‘communicate with messages*, should be an implicit principle of the

Booch method. This principle is added in the same row with ‘object structure* of Table

5.5.

— Classify the principle 'abstraction ’

In the Booch method the principle ‘abstraction* is used to emphasise the operations

of objects and their classes, based on the processing and behavioural aspects of systems.

This implies that both process abstraction and behaviour abstraction are important in the

Booch method, as shown in Table 5.5.

194

Chapter 5: Assessment of Five Anafysis Medutds Using the Framework

Principle
_ Fai Stage

Fundamental
Principle

Fundamental
Concept

Model
Element Type

•Abstraction
(process,
behaviour)

•Object
•Class

•Object
•Class
•Abstract class

•Object
Model

Analysis

•Encapsulation
(also informatior
hiding)

•(Communication
with messages)

•Hierarchy
(with inheritance
& structuring)

•System
decomposition

•Object structure

•Class structure

Subsystem

•Object state
•Operation
(also message)

•Object
relationship
•Field
•Using
relationship
•Inheritance
relationship
(single.
Multiple)

•Module

Table 5.5 Relationship between The Features in the ‘What* Aspect of the Booch Method

Action 2.1.2; Assess the Content of the ‘What* Aspect

The content of this aspect is assessed by considering the meanings and roles of the

essential features of the ‘what* aspect of the Booch method, together with the above

relationships.

• Fundamental Principles

— Principles o f object orientation

The Booch method uses the principle ‘abstraction* for describing objects and classes,

the principle ‘encapsulation* (also information hiding) for determining the visibility of

objects, the principle ‘hierarchy* for sharing the similarities of objects and classes, the

principle ‘communication with message* for interacting between objects, and the

principle ‘system decomposition* for modelling a logical structure of a system.

— Emphasis on process and behaviour

The process and behaviour aspects of a system are derived by the principle ‘abstraction*

(process and behaviour).

195

Chapter 5: Assessment o f Five Anaiyds Methods Using the Frtmework

• Fundamental Concepts

— Concepts around objects

All fundamental concepts in the Booch method are based on objects.

— Considering objects and classes in different structures

The concepts ‘object structure* and ‘class structure* are considered separately in the

Booch method.

— Object structure on object collaboration

The concept ‘object structure* in this method focuses on the collaborations rather than

the relationships between objects.

— Emphasis on behaviour sharing

The concepts ‘object structure* and ‘class structure* focus on the connection of objects

or classes through sharing of behaviour.

• Object Model

This method builds one object model for a system.

— Separate description o f objects and classes

In an object model, objects and classes are described separately by different elements,

using the concepts ‘object structure* and ‘class structure* respectively. Objects are

connected by messages; classes are connected by relationships.

— Emphasis on operations

The sharing of behaviour of objects is based on the operations of an object and class.

The other elements in a model are defined as part of these operations; the data aspect

of a system is not emphasised in a model.

196

Chapter S: Assessme/a of Five Anafysis Methods Using the Framework

— No element to represent associations between objects

No specific element is included in the model for specifying associations between

objects. Instead, the element 'using relationship’ is provided to describe collaborations

between objects.

5.3.2 Activity 2.2: Assess the *How ‘Aspect of the Booch Method

The 'how’ aspect of the Booch method provides a process of analysis to build an object

model of a system. The object model is represented by object diagrams, class diagrams and

state transition diagrams.

Action 2.2.1: Assess the Relationship between the Features in the 'How* Aspect

The relationships among the essential features in the 'how’ aspect of the Booch

method are illustrated in Figure 5.3, determined using the criteria for this assessment.

Expert $
consulted

Problem
domain

analyses

Step 1
Step 2
Step 3 - substep

Process of Analysis
given with Guideline & Criteria

for step 1 and 2

receives uses driA
A Problem
domain
(Step 1-3)

Object diagram (step 1,2,3)
Class diagram (step 1,2,3)
State trasition diagram (step 2)

en by

□
produces

An object model (step 1,2,3)

Figure 5.3 The Relationships between the Features in the 'How’ Aspect
of the Booch method

Action 2.2.2; Assess the Content of the 'How’ Aspect

In addition to the description of 'process of analysis’ in section 4.3.2, the extra

interpretation of these features of the Booch method is as follows, in terms of the given

criteria of assessment.

197

Chapter 5: Assesmens o f Five Anafysis Methods Using the Framework

• Process of analysis

— Analyse a little, design a little

The fourth step of the process of analysis overlaps with the process of design. It

enables prototyping of objects and classes specified in the previous steps.

— No substeps provided

This process of analysis includes three analysis steps; however no substeps are included

for these steps.

— No detailed guidelines and criteria given

The feature 'process of analysis’ described in Section 4.3.2 shows that the Booch

method does not ^ve any detailed guidelines and criteria to assist with the steps of the

analysis stage. The resultant model may be subjective in this situation.

— Domain experts as consultants

This process regards domain experts as consultants during analysis, in order to identify

the objects that are general and important in a problem domain.

5.3.3 Activity 2.3: Assess the Relationship between Two Aspects of The
Booch Method

This assessment focuses on the relationships between ‘model’ in the ‘what’ aspect and the

features in the 'how’ aspect of the Booch method.

Action 2.3.1: Assess the Relationship between ‘Model* and ‘Notation’

An object model specifies the object structure and the class structure separately,

using notations for object diagrams, class diagrams and state transition diagrams.

198

Chapter 5: Assessment o f Five Anafysis Methods Using the Framework

Action 2.3.2; Assess the Relationship between *ModeP and ‘Tactic of Analysis’

An object model in the Booch method describes problem-domain objects that play

roles in the application, and the interaction between these objects, by focusing on the

functions performed by or on the objects. This means that the tactic of analysis in the

Booch method is process-driven. Table 5.6 contain this tactic of analysis so that the

features in the 'how’ aspect of the method is completed now.

Action 2.3.3; Assess the Relationship between ‘Model* and 'Process of Analysis*

— Emphasis on object structure and class structure

An object model consists of an object (structure) diagram and a class (structure)

diagram for a system. The process of analysis gives three steps to identify objects and

classes, to specify their semantics in the system, and to decide the relationships between

classes and collaborations between objects.

— Emphasis on process abstraction

Since most elements in the object model are related to the specification of operations

for objects and classes, the steps of analysis focus on the process abstraction. In

particular, the semantics of and the relationships between objects and classes are

concerned with the operations and behaviour of the objects and classes.

Action 2.3.4; Assess the Relationship between *Model* and ^Product of Analysis*

The method builds one object model for a system, and it is thus the product of

analysis.

199

Chapter S: Assessment o f Five Anafysis Methods Using the Framework

H
111

I

6*

op

op

3

tiL

1
I
I
I
I
.s

I

I
I
5

I

200

Chapter S: Assessment o f Five Anafysis Methods Using the Framework

5.4 Stage 2: Assess the Wirfs-Brock Method (Wirfs-
Brock et al.)

This assessment stage is based on the essential features of the Wirfs-Brock method that

were identified during the first stage in section 4.4.

5.4.1 Activity 2.1: Assess the ‘What’ Aspect of the Wirfs-Brock
Method

The essential features recorded in Table 4.7 show that the Wirfs-Brock method aims to

specify an object-oriented system by building an object model.

Action 2.1.1: Assess the Relationship between the Features in the ‘What* Aspect

The dependencies of the essential features in the ‘what’ aspect are determined by

their roles and meanings in this method, using the given criteria.

— Assess the relationship between ^fundamental concept ’ and 'model ’

In terms of the criteria of assessment, the relationship between these two kinds of

features are determined as shown in Table 5.7.

— Assess the relationship between 'fundamentalprinciple ’ and 'fundamental concept*

The feature ‘subsystem’ in the column ‘fundamental concept* does not depend on

any feature in the column ‘fundamental principle’, according to its meaning and role in this

method. An implicit principle should therefore be introduced for this method. We name it

‘scale’, that means to partition or group logically related things.

— Classify the principle 'abstraction '

The operations (i.e., responsibilities) of objects and classes are particularly

emphasised by the fundamental concepts and the object model, according to the meanings

of the features described in the first stage of assessment. The principle ‘abstraction’ in the

201

Chapter S: Assessment o f Five Anafysis Methods Using the Framework

Wirfs-Brock method should reefer to the process abstraction on which the above concepts

and model can rely.

The dependency of these features on one another in the ‘what’ aspect of the Wirfs-

Brock method is shown in Table 5.7.

s^ in c ip le

S tag eX ^
Fundamental Fundamental Model
Principle Concept Element Type

•Abstraction
(Process)

•Object
•Class

•Class
•Abstract class

(•Object
model)

Analysis
•Encapsulation
•Information
hiding

•Object
responsibility

•Responsibility

•Inheritance •Inheritance
relationship

•Inheritance
hierarchy

•Message-sending •Client-server •Client-server
contract

•(Scale) •Subsystem •Collaboration
•Subsystem

Table 5.7 The Relationship between the Features in the ‘What’ Aspect
of the Wirfs-Brock Method

Action 2.1.2: Assess the Content of the *What* Aspect

By considering the meanings and relationships of the essential features that reflect

the ‘what’ aspect of the Wirfs-Brock method, the content of this aspect can be clarified as

follows.

• Fundamental Principles

— Principles on object orientation

The Wirfs-Brock method uses the principle ‘abstraction’ for finding objects and classes;

the principles ‘encapsulation* and ‘information hiding’ for integrating data and process

into objects and hiding the internal detail of objects from outside; the principle

‘inheritance’ for sharing the similarities of classes; the principle ‘message-sending’ for

202

Chapter 5: Assessmera o f Five Anafysis Meüiods Using the Framework

collaborating objects; and the principle ‘scale’ for grouping the logically related classes

together.

— Emphasis on process

The process aspect of an object-oriented system is focused by analysis, according to the

principle ‘abstraction’ (process).

— Separation o f encapsulation and information hiding

The ^rfs-Brock method regards the principles ‘encapsulation’ and ‘information

hiding’ as two different principles.

• Fundamental Concepts

— Concepts around objects

All fundamental concepts in the Wirfs-Brock method are defined in terms of objects.

— Not concerned with object relationship

No concept that emphasises the relationships between objects is considered by the

Wirfs-Brock method.

— Emphasis on the client-servers

The concept ‘client-server’ is regarded as fundamental in the Wirfs-Brock method, in

order to emphasise the collaborations between objects.

— Object responsibility

The concept ‘object responsibility’ is a particular feature of the Wirfs-Brock method.

This concept supports the principle ‘abstraction’ (process).

* Object Model

This method builds one object model for a system.

203

Oiapter S: Assessment of Five Analysis Meûtods Using the Framework

— Emphasis on responsibilities o f objects

This method focuses on object responsibilities. An object model thus includes a specific

element ‘responsibility’ to specify the responsibilities of objects.

— Not explicitly specify objects

A model does not explicitly consider objects. Objects are implied as instances of the

classes that they belong to.

— Not define associations between objects

The associations between objects are not specified for a model.

— Not specify object states

Object states are not specified for a model. The responsibilities of classes over time are

not specified.

5.4.2 Activity 2.2: Assess the ‘How’ Aspect of the Wirfs-Brock
Method

The essential features that reflect the ‘how’ aspect of the Wirfs-Brock method were

recorded in Table 4.8. These features are assessed below in detail.

Action 2.2.1; Assess the Relationship between the Features in the *How* Aspect

The relationships among the essential features in the ‘how’ aspect of the Wirfs-

Brock method are based upon the interpretation of the features in section 4.4. An

overview of the relationship is shown in Figure 5.4.

204

Oiapter S: Assessment o f Five Analysis Meûwds Using the Framework

 ̂A complete
Ifspecification of
system requirement^

^analyses
Process of Analysis

Five Steps given with Guideline & Criteria
Substeps for each substep

receives uses

A complete
specification
(Step 1,2,3)

Class card (step 1-4)
Subsystem card (step S)
Contract card (step 3,5)
Hierarchy graph (step 4)
Venn diagrams (step S)
Collaboration graph (step 3-5)

drî en by

Responsibility-
driven

produces

An object model
(all steps)

Figure 5.4 The Relationships among the Essential Features in the ‘How’ Aspect
of the Wirfs-Brock method

Action 2.2.2: Assess the Content of the *How* Aspect

The content of the ‘how’ aspect of the Wirfs-Brock method is considered again,

based upon these relationships between the features.

• Input of Analysis

The Wirfs-Brock method does not encourage analysts to interview users or experts

during analysis, as a complete specification of the system requirements has to have been

provided before using the method.

• Process of Analysis

— Emphasis on collaborations among objects and classes

There are five steps for the process of analysis. However, three steps are closely related

to the identification and definition of collaborations between classes.

— Detailed guidelines and criteria fo r defining responsibilities

With the responsibilities of objects being emphasised by this method, detailed guidelines

and criteria are given to define these responsibilities.

205

Chapter 5: Assessment o f Five Analysis Methods Using the Framework

5.4.3 Activity 2.3: Assess the Relationship between Two Aspects of the
Wirfs-Brock Method

This assessment focuses on the relationships between ‘model’ in the ‘what’ aspect and the

features in the ‘how’ aspect of the Wirfs-Brock method.

Action 2.3.1; Assess the Relationship between ^ModeF and ‘Notation*

To represent the elements ‘class’, ‘inheritance hierarchy’, ‘collaboration’ and

‘subsystem’ in the object model, the notation given in this method includes class card,

contract card, venn diagrams, hierarchy graphs, collaboration graphs, and subsystem card

respectively.

Action 2.3.2; Assess the Relationship between *Moder and ‘Tactic of Analysis*

An object model focuses on the responsibilities of objects, and so the tactic of

analysis in this method is responsibility-driven.

Action 2.3.3; Assess the Relationship between ‘Model’ and ^Process of Analysis*

— One object model required

The steps of the process of analysis define the elements of a single object model.

— Emphasis on process abstraction

Since an object model focuses on the responsibilities of objects, the process of analysis

in the method emphasises the identification and specification of these responsibilities.

The collaborations between classes or subsystems in a model are specified in terms of

these responsibilities.

206

Chapter S: Assessment of Five Anafysis Methods Using the Framework

Action 2.3.4: Assess the Relationship between *Model* and ^Product of Analysis*

An object model should be the product of analysis generated by the Wirfs-Brock

method.

5.5 Stage 2: Assess the Syntropy Method (Cook and
Daniels)

This assessment stage is based on the essential features of the Syntropy method that were

identified during the first stage in section 4.5.

5.5,1 Activity 2.1: Assess the ‘What’ Aspect of the Syntropy Method

The features recorded in Table 4.9 show that the Syntropy method aims to build an

essential model and specification model. The first model describes what is involved in a

situation in the real world and the second model specifies what the software will do,

according to the essential model.

Action 2.1.1; Assess the Relationship between the Features in the ‘What* Aspect

— Assess the relationship between fundamental concept* and 'model*

Table 5.8 shows the relationship between the concepts and the models, using

different rows to represent the dependency.

— Assess the relationship between 'fundamentalprinciple * and 'fundamental concept*

Table 5.8 shows the dependencies of the concepts on the principles, according to

the meanings of the principles and concepts given in Table 4.9.

— Classify the principle 'abstraction *

The Syntropy method regards the principle ‘abstraction’ as data abstraction and

behaviour abstraction, so that the data and behaviour aspects of software can be identified

207

Chapur 5: ̂ e ssm eta o f Five Anafysis Methods Using the Framework

and specified, firom which the concepts ‘object’, ‘object type’, ‘object structure’, ‘object

behaviour’, etc. are defined. The implication of the principle ‘abstraction’ in the Syntropy

method is shown in Table 5.8.

N.^mciple
^ X P a i l

S t a g e \
Fundamental Fundamental Model
Principle Concept Element Type

•Abstraction
(data)

•Object

•Object tpye

—Type view
•Object
•Object type
•Abstract type

•Essential
Model

1 "SDecifica—

Analysis

•Encapsulatior
(also
information
hiding)

•Domain

•Identity

•Value

•Object
structure

•Property
•Value type
•Association
•Aggregation
•Constraint
•Invariant
•Navigation
expression
•Domain
•Domain
dependency

tion Model

•Inheritance •Sub-typing
•Type extension
(single,
multiple)

•Abstraction
(behaviour)

•Object
behaviour

•Event
broadcast

—State view
•Object state
•State type
•State invariant
•Event
•Event scenario
•Creation
operation
•Generation

Table 5.8 The Relationships between Features in the ‘What’ Aspect
of the Syntropy Method

Action 2.1.2; Assess the Content of The * What’ Aspect

By considering the meanings and relationships of the essential features that reflect

the ‘what’ aspect of the Syntropy method, the content of this aspect can be clarified as

follows.

208

Chapter 5: Assessment o f Five Analysis Methods Using the Framework

• Fundamental Principles

— Principles on object orientation

In order to model a problem situation with object orientation in both type and state

views, the principle ‘abstraction’ with data and behaviour is adopted, focusing on the

information about objects, values and events involved in the situation. Additionally, the

principles ‘encapsulation’, ‘domain’, ‘inheritance’, and ‘event broadcast’ are also

regarded as fundamental to object modelling.

— Abstraction with data and behaviour

The principle ‘abstraction’ is used by emphasising the data and behaviour aspects of the

objects which describe a problem situation.

• Fundamental Concepts

— Concepts around objects

All fiindamental concepts addressed by the Syntropy method are related to and defined

upon objects.

— Concern with object structure and object behaviour

The concepts ‘object structure’ and ‘object behaviour’ are addressed by this method as

they are regarded as the notions to capture objects, values and events, of which any

problem situation in the world consists, according to this method.

— Value as basic notion to show the states o f objects

The concept ‘value’ is addressed by this method to relate to the state of objects in the

real world.

— Concern with event broadcast

The concept ‘event broadcast’ emphasises the communication between objects with

events.

209

Chapter S: Assessment o f Five Anafysis Methods Using the Framework

• Object Model

In the Syntropy method, two models are built in terms of objects: an essential

model and a specification model. An essential model describes a situation in the world

with both type and state views; a specification model describes what a software system

should do.

— Essential model and specification model

These two models describe the data and behaviour aspects of a problem situation and a

software system, respectively. A specification model is the refinement of the essential

model for the same situation. The elements ‘properties’, ‘invariants’, ‘constraints’,

‘event’, ‘states’ (i.e., values of the properties), ‘creation operation’ and ‘generation’ are

used to specify the details of these two aspects of objects.

— Emphasis on both data structure and event scenario

The two models focus on the object structure and the object behaviour. Object

structure describes objects and object types, their properties with constraints or

invariants, and their relationships, in terms of the elements ‘object’, ‘object type’,

‘property’, ‘value type’, ‘association’, ‘type extension’, etc. An event scenario

describes the interactions between objects with event triggering. It also shows how

objects change their state and how they respond to different events.

— Description o f invariants

The element ‘invariant’ is used to describe constraints on the range of values for both

kinds of model .

5.5.2 Activity 2.2: Assess the ‘How’ Aspect of the Syntropy Method

The essential features that reflect the ‘how’ aspect of the Syntropy method are recorded in

Table 4.10. It shows that the process of analysis supported by this method could be either

210

Oiapter 5: Assessment o f Five Amlyds Methods Using the Framework

data-driven or event-driven. In addition, this method uses the OMT graphic notation,

statecharts and formal notation to represent an essential model and specification model.

Action 2.2.1: Assess the Relationship between the Features in the 'How* Aspect

The assessment of the relationships between the features in the ‘how’ aspect is

mainly concerned with the relationship between ‘process of analysis’ and other features in

the aspect. This assessment of the Syntropy method is delayed until after the assessment of

‘model’ and ‘process of analysis’ (i.e., in action 2.3.3 below), since the authors of the

method do not make this process explicit in their book [Cook94a].

5.5.3 Activity 2.3: Assess the Relationship between Two Aspects of the
Syntropy Method

This assessment focuses on the relationships between ‘model’ in the ‘what’ aspect and the

features in the ‘how’ aspect of the Syntropy method. In particular, the implicit process of

analysis in this method can be decided by this activity.

Action 2.3.1: Assess the Relationship between ‘Model* and ‘Notation’

An essential and a specification model contain the structure of the objects and the

behaviour of the objects for a system. To represent these two aspects of a system, the

method adopts OMT notation [Rumbaugh91] and statecharts [Harel87]. The semantics of

the models, in particular the properties and their values within objects in the models, is

defined by ‘invariants’ and ‘constraints’ in a mathematical notation[Hayes87].

211

Oiapter 5: Assessment o f Five Anafysis Methods Using the Framework

Action 2.3.2; Assess the Relationship between *Model* and *Tactic of Analysis*

Essential and specification models have both data and behaviour aspects that can be

decried individually, so two sorts of tactic of analysis are supported by this method, i.e.,

data-driven and event-driven; thus the two aspects can be specified concurrently.

Action 2.3.3; Assess the Relationship between 'Model* and 'Process of Analysis*

The process of analysis in the Syntropy method can be inferred according to the

content of the models, and is specified below.

— Two models built by two steps

Since the Syntropy method needs to build one essential model and one specification

model, the process of analysis must includes two steps to construct each of the two

models, respectively.

— Two views o f models and two actions

Both essential models and specification models support two views: a type view and a

state view. These two views need to be determined by two actions in each step of the

process of analysis: describing object structure in a type view and object behaviour in a

state view for an essential model; specifying a system in a type view and in a state view

for a specification model.

The further detail of the process of analysis in this method can be described as

follows, based upon the relationship between ‘model’ and ‘process of analysis’.

Step 1: Building an Essential Model

Guidelines: Building an essential model aims to establish the facts about a pre-existing

situation, or to describe a situation to be constructed. The essential model represents the

following details about a situation:

212

Chapter 5: Assessment of Five Anafysis Methods Using the Framework

* the possible states for a given situation;

* the set of events which cause changes between one state and another; and

* the possible sequences of events which can occur.

The states of a situation are described in terms of objects, which have properties, and their

relationships. In using the Syntropy method, any particular state consists of a set of

objects, each with specific properties, participating in particular relationships. Two major

actions are included in this step, as follows; either of them can be carried out first:

Action 1: Describing Object Structure in a Type View

In this action, the following elements of the essential model are used to describe the type

view.

— Finding objects and object types (a textual analysis)

Guidelines: Candidate object types are identified from the problem statement by a textual

analysis, i.e., by considering the nouns and noun phrases in the textual description.

Criteria: A ‘good’ object should not be redundant, an attribute of another object, an

operation, or implementation construct. This view should cover all those things

considered to be separate and interchangeable. Operations such as complex

parameterised algorithms should be modelled as object types.

— Identifying properties and value types

Guidelines: The properties of an object type need to be identified by considering the

information which each object type knows about. A property of an object can be

observed by another object that relates to this object.

— Identifying associations between objects

Guidelines: This substep identifies associations between objects. An association should

not be a connection of anything with access paths or implementation visibilities.

213

O uster 5: Assessment o f Five Anafysis Methods Using the Framework

— Identifying type extensions

This substep defines the sub-types by extending the capabilities of the super-type,

according to the description of the given situation.

— Defining constraints and invariants

Guidelines: In order to model a real-world situation precisely, and allow a common

understanding by a group of analysts and designers, the formal precision of mathematics,

in the form of set theory and logic, is used in conjunction with a model to specify logical

type constraints on associations and invariants on object properties.

— Defining state types

State types are identified in this substep, to provide a direct link between the type view

and the state view of a model.

Guidelines: (a) A state type must always be a sub-type of a normal type because it

represents one possible state for objects confirming to the normal type, (b) Objects

cannot be created to conform to a single state type; conformance with state types will

change as the object changes state, (c) Not all the possible states need to be included in

the type view, but each state type in the type view should correspond to exactly one

state on a statechart in the state view.

Criteria: A state type can have sub-types in a nested state structure if needed; if an object

is in a state represented by a state type that has sub-types, it must also be in a state

represented by one of the sub-types.

Action 2; Modelling object behaviour in State View

Cook and Daniels state in[Cook94a] that the purpose of the essential model is to

describe the possible states of the system, the possible sequences of events and how states

change when events occur. This substep therefore describes all the ways in which a

214

Chapter 5: Assessmeta o f Five ̂ tafysis Methods Using the Framework

situation can change, by defining all the possible sequences of events. That is, if a

sequence of events can be observed for a situation, the essential model must indicate that

the sequence is valid.

— Discovering events

Guidelines: Events can be identified by: (a) systematically considering the object types

and their associations; and (b) producing event scenarios, each of which is a sequence of

specific event instances showing just one of many possible sequences of events that

could occur in a situation. In the first way, for each type, consider how an instance of

the type is created, and how it is destroyed. For each association, consider (1) how an

instance of it is created; (2) how an instance of it is destroyed; and (3) in the case of an

ordered association, how its order is established or changed. An event table which

consists of its name, parameters, pre-conditions and sequence can be used to bring

together definitions of events.

— Drawing statecharts

The state view of each object type is described by a separate statechart which supports

nested states and orthogonal states. The state view of a situation is the combination of

the separate statecharts.

Guidelines: Statecharts capture the information: (a) events of interest to an object type;

(b) a finite state machine with states, state transitions and state invariants; (c) details of

object creation; (d) constraints on the validity of events; and (e) descriptions of event

consequences. Each state type in the type view must correspond directly to a state in a

statechart. State invariants are specified inside states in a statechart. They are logical

expressions which are always true when the object is in a particular state. A statechart

215

Oiapter 5: Assessment o f Five Arudysis Methods Using the Framework

may include two or more concurrent state machines which describe the concurrent states

of an object type.

Step 2: Building a Specification Model

An essential model is built in the case where the software boundary is not well-

understood, in order to provide a systematic way of making decisions about that

boundary. The specification model is then built by extending the essential model, using the

same notation, by considering what the software will do. Three actions are included in this

step.

Action 1: Drawing a System Boundary

In the specification model, the boundary of a system is decided by specifying incoming

events in terms of the changes of state which they cause, and outgoing events generated as

a result. A specification model is thus a stimulus-respohse model.

Guidelines: The first way to determine the boundary is to decide whether each event in the

essential model is detected or generated by the software, or is irrelevant to the operation

of the software. The second way is to consider untimely occurrences such as exception

occurrences and then define detected events representing these occurrences in the

specification model. The third way is to consider the interface between the software and

its environment in terms of agents that are outside the software itself, who may be people

or other systems which interact with the software.

Action 2: Specifying the System in a Type View

Guidelines: The specification model of the system needs be specified in this action, which

describes object types in the software rather than in the situation. In order to distinguish

216

Oiapter S: Assessmera o f Five Anafysis Methods Using the Framework

between object types in the essential model and specification model, the symbol ‘-S’ is

appended to the type-names in the specification model.

Action 3; Specifying the System in a State View

Every object type in the specification model has a state view which defines how instances

of the type respond to events. The syntax for events in this model is the same as that in the

essential model. The events in the specification model are instantaneous and broadcast, as

in the essential model. In addition, the specification model specifies ‘generated events’, as

follows,

— Specifying generated events

Guidelines: Generated events are the events which are produced fi’om specific

transitions, or fî om event list entries. Generated events are the actions in

Statecharts[Harel97].

— Specifying entry and exit generations

Guidelines: Entry and exit generation is triggered on any entry and exit from the state,

including transitions which explicitly begin and end with the same state. Allowed events

which do not cause a state transition, however, do not trigger entry or exit generation.

Event generations are specified in the event list of the statechart, meaning that the

generation occurs whenever the event occurs.

— Specify internal events

Guidelines: Internal events are the events for a state view of an object type, generated

and detected by the software. Their consequences should be established before any

further external events occur.

217

Oiapter 5: Assessment o f Five Analysis Methods Using the Framework

— Ordering events

Guidelines: The states and events in a state view are specified in the order: (1) establish

all of the post-conditions for an event to exit and enter the target state; (2) trigger exit

generations on the source state; (3) trigger generations defined in the event list; (4)

trigger generations on the transitions; (5) trigger entry generations on the target state. If

an event is allowed and has no transition defined for the current state, it proceeds by

defining the post-conditions and then triggering in order any generations defined in the

event list. The object is already in its new state when any generation in it occurs. Any

exit generation happens after the object is in its target state.

— Specifying object responsibilities

The responsibilities for overall system behaviour are allocated to individual objects in

this substep.

Guidelines: To specify object responsibilities, an object can be thought of as having the

responsibilities: (a) knowing (i.e., remembering or calculating) a value; (b) listening for

an event; (c) telling other objects about an event; (d) creating new objects. In the

specification model, these responsibilities correspond to properties, event list entries,

generations and object creations.

The detail of the ‘how* aspect of the method is now shown in Table 5.9 to replace

Table 4.10. In addition, the relationship between the features in the ‘how* aspect can be

determined, as shown in Figure 5.5.

218

Chapter 5: Assessment o f Five Analysis Meàiods Using the Framework

I I1 I

l l

no eo
g "

IIg,

II
60

l l

ill
I

ea

n-MU H

I

I

1
I IV S jS

III
’«S'S* «S'
m i l

s s
« g>
f t

Î
f l
II

Ies
II

I
es

I
i
i

i l

1
- I '«

II
II
® < itL 1J

c ?
ë s o

S» ■c së •o .3 E
g 1■f 1 1

I
219

Chapter 5.* Assessment o f Five Analysis Methods Using the Framework

^ Problem statemoi^

^analyses

Two Steps given with Guideline & Criteria
for each actionActions

receives uses driv

A problem
statement
(step 1)

OMT notation (step 1,2)
Statechart (step 1,2)
Mathematics notation

(step 1,2)

ïnby produces

Data or event
An essential model

(step 1)
A specification model

(step 2)

Figure 5.5 The Relationship between the Features in the ‘How’ Aspect
of the Syntropy method

Assess the Content of the *How* Aspect (i.e.. Action 2.2.2)

We can now return to the assessment of the ‘how’ aspect of the Syntropy method,

based on the relationships shown in Figure 5.5

• Process of Analysis

— Two steps to build two models in sequence

The process consists of two steps which construct an essential model and a

specification model in sequence.

— Some guidelines and criteria

The Syntropy method provides some guidelines and criteria to assist with the

construction of two models.

— Not force the analyst to communicate with the user

This process does not require a dialogue with the user during analysis.

220

Chapter S; Assessment o f Five Antdysis Methods Using the Framework

— Support fo r two views

The process of analysis in the Syntropy method supports two views to model a problem

situation and specify a software system; a type view and a state view.

Action 2.3.4; Assess the Relationship between ‘Model* and ^Product of Analysis’

It can be seen that the product of analysis delivered by the Syntropy method

comprises an essential model and a specification model.

5.6 Understanding of the Five Analysis Methods
In the above sections, five analysis methods are assessed in terms of the framework

defined in Chapter 3. This section discusses general features of these five methods based

on the results of above assessment.

5.6.1 Understanding of the ‘What’ Aspects of the Methods

(1) Fundamental Principles

— Abstraction

The five methods all regard the principle ‘abstraction’ as fundamental, but they each

use it with a different emphasis: data and behaviour abstraction in the OOA method and

Syntropy methods; data, process and behaviour abstraction in the OMT method; the

process and beha^dour abstraction in the Booch method; and the process abstraction in

the Wirfs-Brock method.

— Encapsulation and Information Hiding

These methods use the principles ‘encapsulation’ and ‘information hiding’ in different

ways: the methods, with the exception of the Wirfs-Brock method, use them

221

Chapter 5: Assessmaa of Five Analysis Methods Using the Framework

interchangeably; that is, to hide the internal detail of an object from other objects. The

Wirfs-Brock method uses the two terms differently; that is, ‘information hiding* has the

same meaning as for other methods, whereas ‘encapsulation* means to combine data

and process into objects.

— Inheritance

The principle ‘inheritance* is used by these methods for analysing the similarities of

classes in a system.

— System decomposition

The methods use this principle such as ‘scale* in the 0 0 A method and ‘domain* in the

Syntropy method to partition, or group together, the objects and classes that are

logically related to one another.

— Communication with messages

The OOA method, the Booch method and the Wirfs-Brock method consider the

principle ‘communication with message* as fundamental for analysis.

(2^Fundamental Concepts

— Concepts around objects

All fundamental concepts in these methods are defined around objects, since the

fundamental principles are used to support object orientation.

— Object and Class

The concepts ‘object* and ‘class* (also ‘classification* in the OMT method and ‘object

type* in the Syntropy method) are addressed by these methods: in general, ‘object*

means a thing, a concept, or an entity in a problem domain or an application scenario;

‘class* means a set of objects that have common properties and behaviour.

222

O uster 5: Assessment o f Five Analysis Methods Using the Framework

— Inheritance relationship

These methods regard the concept ‘inheritance relationship’ between classes as

fundamental.

— Object structure

All the methods except the Wirfs-Brock method regard ‘object structure’ as

fundamental. However, the meaning and the role of this concept in the Booch method

are different from the OOA method, the OMT method and the Syntropy method.

— Subsystem

‘Subsystem’ (or ‘partitioning’ in the OOA method, or as implied in ‘object structure* in

the OMT method) is regarded as significant for analysis.

— Object behaviour

‘Object behaviour* is addressed by all the methods except the Wirfs-Brock method.

— Association

The concept ‘association* (also implied in ‘object structure* in the OMT method) is

addressed by the OOA method, the OMT method and the Syntropy method. This

concept expresses the relationships between objects.

— Aggregation

Only the OOA method regards the concept ‘aggregation*, specifying the whole-part

structure of objects, as fundamental.

— Message

The concept ‘message* (implied in ‘object structure* in the Booch method and ‘client-

server* in the Wirfs-Brock method) is used by the OOA method, the Booch method and

the Wirfs-Brock method.

223

Chapters.’ Assessment o f Five Analysis Meüiods Using the Framework

— Class Structure

‘Class structure* is regarded as a fundamental concept in the Booch method, since it

considers object structure and class structure separately.

(3)Model

— Object model

These methods all aim to build an object model of a system. The model, however, is

defined differently in each method since they focus on the different aspects of object-

oriented systems.

— Essential model and specification model

The Syntropy method builds two different level models: an essential model and a

specification model. The former describes the things and concepts in a situation in the

world; the latter states what the software will do according to the essential model.

— Dynamic model and functional model

The OMT method aims to build another two kinds of model (i.e., a dynamic model and

a functional model) of a system; each model is responsible for representing one aspect

of the system. The OOA method and the Booch method represent the behaviour aspect

of a system by an object model.

The Syntropy method specifies a system in two views: a type view and a state

view. In a state view, object behaviour in a system is modelled and specified, which is

the same as the dynamic model in the OMT method.

— Objects and classes

These methods all define the elements ‘object* and ‘class* in their model. However,

‘object* has different meanings in these methods since the methods focus on and model

224

Quipter 5: Assessment o f Five Analysis Methods Using the Framework

different aspects of an object-oriented system. In particular, the OMT method even

defines an object without attributes or operations.

— Abstract classes

All models in these methods include the element ‘abstract class* (or ‘class* in OOA and

‘abstract type* in Syntropy).

— Operations o f objects and classes

These methods provide the element ‘operation* (or ‘service* in OOA, ‘responsibility* in

the Wirfs-Brock method) in their model to specify the operations of objects and classes.

explicitly.

— Attributes o f objects and classes

The attributes of objects and classes are explicitly specified in the object models of the

OOA method, the OMT method and the Syntropy method.

— Object behaviour 1

The behaviour of objects is not explicitly specified by the Wirfs-Brock method as it

does not support the description of the state of objects and the sequencing of

responsibilities (i.e., operations) in objects.

— Relationships between objects

The elements ‘instance connection* in the OOA method and ‘link* in the OMT method

and the Syntropy method are provided to specify the relationships between objects.

— Inheritance relationships between classes (single, multiple)

These methods include the element ‘inheritance relationship* (single and multiple),

expressed as ‘Gen-Spec structure* in the OOA method, ‘generalisation* in the OMT

method, ‘inheritance hierarchy* in the Wirfs-Brock method, and ‘type extension* in the

Syntropy method'

225

Chapter S: Assessment o f Five ̂ afysis Mediods Using the Framework

— Communication between objects

The communications between objects are explicitly specified by the elements ‘message

connection* in the OOA method, ‘event* in the OMT method and the Syntropy method,

‘message* in the Booch method and ‘client-server contract* in the Wirfs-Brock method.

— Subsystem

The element ‘subsystem*, expressed as ‘subject* in the OOA method, ‘module* in the

OMT method and the Booch method, and ‘domain* in the Syntropy method, is used in

these methods.

— Using relationship in the Booch method

An element ‘using relationship* is provided by the Booch method to represent a

collaboration between two objects, together with the degree of the collaboration (e.g.,

one-to-one, one-to-many).

— Invariant in the Syntropy method

An element ‘invariant* is used by the Syntropy method to represent constraints on data,

using a mathematical notion.

5.6.2 Understanding of the ‘How’ Aspects of the Methods

(l INotation

Different notations are used by these methods because of the different needs of the

models in the methods. Graphical notations are commonly used by these methods. Some

notations are the same, or extensions of, conventional notations; this is the case for the

notation for object diagrams in the OOA, OMT and Syntropy methods, and the data flow

diagram in the OMT method and the state transition diagram in the Booch method. In

226

Chapter S: Assessment o f Five Analysis Methods Using die Framework

addition, the Syntropy method focuses strongly on the constraints on data values and

object structure, and uses mathematics notation to represent these constraints.

fẐ Tactic of Analvsis

Generally, a data-driven tactic of analysis is used by the OOA method, the OMT

method and the Syntropy method; the Syntropy method also allows an event-driven tactic.

A process-driven tactic is used by the Booch method and the Wirfs-Brock method.

(31 Input of Analvsis

For the input of analysis, the OOA method and the Booch method require a

problem domain; the OMT method and the Syntropy method assume a problem statement;

and the Wirfs-Brock method needs a complete specification of system requirements. In

addition, except the Wirfs-Brock method, the methods advise communication with users

or domain experts during analysis in order to complete the input of analysis.

(4^Process of Analysis

— Common roles

All five object-oriented methods have a generally similar process of analysis, as

follows;

— identify objects and classes

— identify operations o f objects and classes,

— identify inheritance relationships between classes.

— Iterative process

The OMT method and the Booch method recommend an iterative process.

— Activities or steps o f the process

The OOA method specifies its process as a group of activities that can be carried out in

any order; while the other methods emphasise a sequential process with a collection of

227

Oiapter 5.* Assessn^u o f Five Analysis Medtods Using die Framework

steps. Substeps (actions in the OOA method and the Syntropy method) are also

provided by the OMT method and the Wirfs-Brock method to reduce the complexity of

the analysis.

— Guidelines and criteria

Guidelines and criteria are given by these methods (even though there are very few in

the Booch method), to assist in building the models. For example, the OOA method has

the guideline ‘where to look objects and classes* and the criteria ‘needed remembrance*

of objects. However, the guidelines and criteria given in these methods are different

because of the differences between models in the methods. For example, the OOA

method basically identified objects and classes by considering the entities in a problem

domain, but the OMT method, the Wirfs-Brock method and the Syntropy method

basically identified them by looking for the nouns or noun phrases from the problem

statements.

— Check o f specifications

Cross-references between different models is recommended for checking the

consistency of three models in the OMT method. Prototyping is required in the Booch

method to check an object model. In the Wirfs-Brock method, an object model is

checked by a walk-through.

— Two-level analysis model

Two-level analysis model is built around objects by the Syntropy method: essential

model at top-level and specification model at second level.

(Ŝ Products of Analvsis

Different products are produced by the five methods as the models are different.

228

Chapter 5: Assesanent o f Five Analysis Methods Using the Framework

5.6.3 Conclusions from the above Understanding

The above discussion shows that object-oriented analysis methods carry out analysis in

different ways. The conclusions that may be derived from the above understanding of the

five methods are as follows:

— Different *what ’ and ‘how ’ aspects

In general, the contents of ‘what* and ‘how’ aspects of the five methods are different.

In particular, although they are all object-oriented they aim to do different things during

analysis.

— Emphasis on analysis or design

The OOA method, the OMT method and the Syntropy method clearly separate analysis

and design, while the other two methods are more focused on object-oriented design

and they do analysis and design without an obvious separation.

— Same terms with different meanings, or vice versa

The methods use some terms, such as ‘object*, with different meanings, and use

different terms with the same meaning (e.g., ‘generalisation* in the OMT method, ‘type

extension* in the Syntropy method and ‘inheritance relationship* in the Booch method).

— Impacts o f the methods on applications

The ‘what* and ‘how* aspects of a method have impact on the kinds of application for

which the method is used. The results given by the above assessment of these methods

enable us to conclude that (1) the OOA method, the OMT method and the Syntropy

method are appropriate for modelling information systems since they focus more on

data than process in a system; (2) the OMT method, the Syntropy method and the

Booch method are appropriate for modelling real-time systems because of their

emphasis on the process and behaviour aspects of systems; and (3) the Wirfs-Brock

229

Chapter 5: Assessnuat o f Five Analysis Methods Using the Framework

method is suitable to analyse and model the systems that focus on processes and the

collaborations of the processes.

— First generation and second generation method

S. Cook and J. Daniels indicate in their book and paper [Cook94a and b] that the

Syntropy method is a second generation object-oriented method that was developed by

combining the techniques used in first generation object-oriented methods: the OMT

method and the Booch method. By assessing this method in terms of our framework, it

is seen that this method extends part of OMT techniques (i.e., object modelling and

dynamic modelling) giving a type view and state view of a system by adding more

elements to the models. It is however not obvious that it also uses the object techniques

in the Booch method as claimed in their book [Cook94a].

230

Oiapter 6: Conclusions and Fioure Work

Chapter 6

Conclusions and Future Work

This chapter includes two sections. The first section initially summarises the work which

we have achieved in our research and presented in this thesis; it then identifies the specific

contributions of this work to the subject of object-oriented analysis methods. The second

section proposes other potential uses of the framework presented in this thesis, as well as

indicating possible future research based on this work.

6.1 Conclusions

As discussed in Chapter 1, because of different concerns about specification and

construction of computer systems, object-oriented analysis and design must be

distinguished by different strategies and heuristics during system development. As we

identified in the first chapter, object-oriented analysis is normally concerned with

specifying what a system needs to do by focusing on problem domains or users*

requirements, whereas object-oriented design emphasises the construction of systems,

based on specifications generated by object-oriented analysis. Object-oriented analysis

identifies objects fi*om a problem domain or users* requirements, but object-oriented

231

Chapter 6: Concluions and Future Work

design develops those objects for a computerised system. An object analysis model (i.e.,

specification of a system) produced by a method has to be deliverable to design in order to

build an object design model (i.e., architecture of the system) [Rumbaugh94]. Because of

the differences between object-oriented analysis and design, we must consider and assess a

method by separating the aspect of object-oriented analysis from the aspect of design, in

order to understand the method precisely. To distinguish between object-oriented analysis

and design methods, any method that takes object-oriented analysis into account during

system development is referred to as an object-oriented analysis method in this thesis, no

matter how it is named in the publication. For example, the Wirfs-Brock method is

referred to as an object-oriented analysis method in the thesis, even though it was

published as a design method [Wirfs90], since it also covers object-oriented analysis in
!

view of its scope.

Thus the work presented in this thesis focuses on research into object-oriented

analysis methods but not design methods. We consider that our study of the general

characteristics of object-oriented methods should target analysis, since analysis is

independent of implementation and so details of the various programming languages that

might be used do not have the impact they do on design. Another reason is that analysis

must be carried out prior to design in software lifecycle and therefore the output fi-om the

research on object-oriented analysis methods can then be beneficial to the research into

design methods.

6,1.1 The Problems of Current Research of Object-Oriented Analysis
Methods

Our research found that in the area of object oriented methods, at present there is lack of

a framework that can solve problems of understanding individual object-oriented analysis

232

Chapter 6: Conclusions and Future Work

methods objectively and systematically. As shown in Section 1.3, current research is

limited to comparative studies of object-oriented analysis methods. These comparative

studies cannot be regarded as such a framework, since they have many limitations relating

to the understanding of object-oriented analysis methods, as discussed in Section 1.3. For

example, the comparative study by Monarchi and Puhr [Monarchi92] (see Section 1.2)

regards the following three features as critical to comparing and evaluating object-oriented

methods: representation of systems (i.e., notation), analysis and design process, and

mechanism for managing the complexity of systems (i.e., hierarchical construct). Even if

these features are truly critical to analysis methods, such a study cannot be regarded as a

basis for understanding methods since the study did not cover all the essential features of

object-oriented analysis methods which were found by our research. In a summary, all

present comparative studies have similar limitations and problems as follows:

(1) The comparative studies do not identify the emphasis and specific roles appropriate

to distinguishing between object-oriented analysis and design.

(2) The comparative studies do not support the logical relationships among the features

being compared, that is, how a feature such as ‘modeV has impact on another feature

such as ‘process*.

(3) The comparative studies do not include consideration o f the underlying principles

thatform the basis o f a method.

These limitations and problems mean that the approach of the comparative studies

could be inappropriate, superficial and incomplete for understanding a method. Because of

the need and importance of understanding methods, we have to overcome the above

limitations and problems and establish an approach that can support such understanding.

233

Oiapter 6: Conclusions and Future Work

This is the major motivation and goal of our research; that is, why we were initially

interested in the work presented in this thesis and why we established the approach—the

framework—defined in Chapter 3. This framework provides a vehicle for understanding

an object-oriented analysis method in an objective and systematic way.

Another reason for developing our own framework for object-oriented methods is

that, as indicated in the first chapter, we cannot directly reuse the frameworks that were

built for understanding traditional methods in the past, such as the Olle’s framework

[OUe88] (detailed comments on Olle’s framework were made in Section 1.4). This is

because such a framework does not cover the fundamental issues and concepts of object-

oriented analysis such as ‘object*, ‘inheritance relationship* and ‘encapsulation*. This

means that we have to build a new framework which focuses particularly on the issues and

concepts addressed and defined by object-oriented analysis methods.

6.1.2 The Framework: a Solution to the Problems

As a solution to the given problems for object-oriented analysis methods, the framework

defined in Chapter 3, provides a comprehensive basis for understanding object-oriented

analysis methods in an objective and systematic way. The framework was based upon the

study of a number of object-oriented analysis methods that were available at the time of

our research; in particular, the use of four representative object-oriented analysis methods

[Coad91a, Rumbaugh91, Booch91, Wirfs90] is described in Chapter 2. Our study

identified the essential features of these object-oriented analysis methods, as they reflect

the fundamental assumptions about object-oriented analysis and the nature of the methods,

and they then formed the components of the framework. The ‘what* aspect includes the

features ‘fundamental principle* and ‘fundamental concept* and ‘model*; and the ‘how*

234

Chapter 6: ConcUtsions and Future WoHc

aspect contains the features ‘notation’, ‘tactic of analysis’, ‘input of analysis’, ‘process of

analysis’ and ‘product of analysis’. The ‘what’ aspect of an object-oriented analysis

method shows what the method involves, and the ‘how’ aspect represents how the method

performs analysis. The classification of these aspects and the features not only represents

the essential constructs of an object-oriented analysis method, but also means that an

object-oriented analysis method can be partitioned into smaller parts in order to limit the

complexity of understanding it. To support use of our framework for analysing a given

method, a multi-level process is provided in Section 3.5, consisting of stages (top level),

activities (middle level) and actions (low level). In addition, the criteria for using the

framework are given at each level of this process; they are critical to identifying and

assessing any feature of a method, or the relationship between two features.

During our research, we have successfiilly used this framework, following the

above process, to assess a large number of object oriented analysis methods. Chapters 4

and 5 showed the details of assessment of five typical object-oriented analysis methods

(i.e., the OOA method [Coad91a], the OMT method [Rumbaugh91], the Booch method

[Booch91], the Wirfs-Brock method[Wirfs90], and the Syntropy method [Cook94a]).

Additionally, the Appendix shows an outline assessment of another five object-oriented

analysis methods (i.e., the SMaer and Mellor method[ShlaerSS], OOSE [Jacobson92],

OSA [Embley92], Ptech [Martin92a] and HOOD[Robinson92]). These assessments

provide examples, and also demonstrate the process, of using the framework to assess any

object-oriented analysis method, for the purpose of understanding the method. The results

of the assessments show that, by using our framework, the content and context of the

essential features of each method can be identified and clarified clearly and efficiently; a

complete picture of the method can then be drawn accurately based upon the relationships

235

Chapter 6: Conclusions and Future Work

among the features. This demonstrates that our framework is very useful and effective in

understanding object-oriented analysis methods. Further, the framework can be also

regarded as providing an infrastructure for object-oriented analysis methods, enabling any

object-oriented analysis method to be evaluated either for procurement or for further

development.

6.1.3 Contributions

The contributions of the work described in this thesis are presented below by considering:

(i) general contributions of the work to the area of object oriented analysis methods, and

(ii) specific contributions of the framework to the understanding of analysis methods.

(1) General Contributions of Our Research Work

The contributions of our research work to the area of object-oriented analysis methods are

outlined as follows:

Contribution 1.1: Identification o f problems o f current research into object-oriented

analysis methods

The first contribution of our work is discovery of some problems of current research

into object-oriented analysis methods; specifically, the limitations of present

comparative studies of the methods. As discussed in the first chapter of this thesis, the

major limitations of the studies are (i) no separation of analysis features and design

features, (ii) no assumption of logical connections between comparative features, and

(iii) no emphasis on the understanding of object-oriented analysis methods. To our best

knowledge, no other work has considered and solved these limitations, although they

are serious and fundamental problems in the study of object-oriented methods. Our

discovery can draw researchers’ attention to these problems, and let people recognise

236

Oiapter 6: Conclusions and Future Work

that it is worthwhile providing a good approach to support the study and understanding

of the methods, in particular at a time when the methods are so varied and still

evolving.

Contribution 1.2 Establishment o f a framework fo r assessing object-oriented analysis

methods

The second contribution of our work is the establishment of a framework, as defined in

Chapter 3, to address these problems. This framework provides a much better way of

understanding the methods in comparison with the current comparative studies. As

discussed in the previous section, and Chapter 1, these comparative studies do not

provide a fi-amework like ours and do not cover all essential features found by us when

using the methods. In addition, the studies described in Section 1.2 are not based upon

experience of using the methods in analysing an application. Instead, the selection of

comparative features is based upon the description of the methods, and particularly the

favourite of the authors. There is no evidence that these features are helpfiil in the

understanding of object-oriented analysis methods. Therefore, it is dangerous for

people to rely on such comparative features for understanding a method. In contrast,

our framework was built upon a series of studies and research on a large number of

object-oriented methods, including the application of four representative methods as

described in Chapter 2. The parts and components of this framework are based upon

their roles and relationships in the methods. Details of the contributions of this

framework will be described in (2) below.

Contribution 1.3 Provision o f the process and criteria o f using the framework

The third contribution of our work is the provision of the process and criteria (as

specified in section 3.5) to be used with our framework in helping assess an object-

237

Chapter 6: Conclusions and Future Work

oriented analysis method. Given this process and criteria, any person can use the

framework correctly to identify the essential features of an object-oriented analysis

method, and clarify and assess the method to provide a better understanding. Any

object-oriented analysis method can be analysed and examined by following the steps of

the process and using the criteria provided for each action. We consider that the

process and criteria are very useful in the study of object-oriented analysis methods,

since they provide a detailed mechanism for using the framework and so make

assessment easy and manageable. Unfortunately, current comparative studies do not

offer a similar process, and so people are likely to have a problem in using their

approaches for similar assessments, particularly when a method is big and complicated.

We think that our provision of the process and criteria makes a fundamental

improvement in this area.

Contribution 1.4 Discovery o f fundamental assumptions and features about object-

oriented analysis

The fourth contribution of our work is the discovery of a set of generic and basic

assumptions about object-oriented analysis, and the essential features that occur in the

majority of methods, as listed in Table 3.1. We consider that this discovery is new to

this area because no other work claimed and showed similar assumptions and features

in their publication. For example, the work presented in [Manarchi92] emphasises the

importance of using essential features to compare and evaluate a method. However, it

does not show which features must be the essential features of object-oriented

methods; instead it simply uses the features of traditional methods discovered by Colter

[Colter84] and Pressman [PressmanS?]. The assumptions and features discovered by us

should contribute more to the understanding of object-oriented analysis methods than

238

Oiapter 6: Conclusions and Future Work

the above work, because the assumptions and features of our framework are all

abstracted from object-oriented methods rather than traditional methods and so they

should reflect better the nature of these methods. We think that this discovery is

significant for research into object-oriented methods, since understanding these

fimdamental assumptions and features means that the nature of individual methods (i.e.,

what and how each method contributes to object-oriented analysis and so which basic

constructs should be included in the method) is understood better. Based on the

features, the foundations of an object-oriented analysis method can be appreciated and

understood correctly and precisely, as shown by our assessments given by Chapter 4

and 5 and the Appendix. In addition, this discovery can also benefit other research

projects, since it provides important information about the foundations of object-

oriented analysis methods. Any project can utilise our discovery and reuse these

features in their own approaches, if the project relates to the foundations of object-

oriented analysis methods and has to cover similar assumptions and features. This reuse

of the essential features found can reduce both time and cost of a project.

Contribution 1.5 Provision o f useful experience and results

The fifth contribution of our work is the provision of rich experience of using object-

oriented analysis methods (i.e., the methods of [CoadPla, Rumbaugh91, Booch91,

Wirfs90]) applied to the same example scenario [Liang93 and 94], and assessing the

methods such as Syntropy [Cook94a] in terms of the framework. Such experience and

results is usefiil in observing these methods fi"om different perspectives, for instance,

what happens when using different methods for the same application and what methods

look similar behind the stated claims. Therefore, such an observation can enhance

fundamentally the understanding of the methods.

239

Chapter 6: Conclusions 'and Future WoHc

(2) Specific Contributions of the Framework

Ten object-oriented analysis methods have been assessed as applications of the

framework defined in Chapter 3, as described in Chapters 4 and 5 and the Appendix.

These assessments show that the content and foundation of a method becomes more and

more clear when the essential features are identified from the method and the meanings of

these features are clarified by use of the framework. These results also show that the

assessment of an object-oriented analysis method by means of the framework is objective

in the sense that the account for a given method can always be justified in terms of either

what the method claims, or what is actually involved in using the method. This means the

method almost writes its own account, if the process and criteria for the framework are

followed. In the absence of such a process, other work in this area does not appear to

achieve the same objectivity as our work. Specific contributions of the framework, in

particular for understanding object-oriented analysis methods, are summarised below.

Major Contributions of the Framework

Contribution 2.1: Overcome the limitations o f current research on object-oriented

analysis methods

As noted before, current comparative studies have failed in helping understand an

object-oriented analysis method because of the limitations discussed above. To solve

this problem, our framework provides an approach to help understanding by focusing

on the essential features of a method, such as ‘fundamental concepts’ and ‘process of

analysis’. The framework also emphasises the logical connections between these

features (e.g., the relationship between ‘fundamental concept’ and ‘model’). To support

better understanding of an object-oriented analysis method, the framework provides a

240

Oiapter 6: Conclusiems and Future Work

way to identify and analyse essential features and, more importantly, to examine and

clarify the meaning of each feature as it relates to what the method aims to do and how

the method supports analysis. We consider that this framework is the first framework

that overcomes the above limitations and provides an approach to focusing on

understanding rather than only comparing methods.

Contribution 2.2: Emphasis and assessment o f the essential features o f object-oriented

analysis methods

As discussed in Chapter 2 and 3, the essential features of the framework actually

correspond to fundamental assumptions about object-oriented analysis. The assessment

of these features in terms of the framework can be used to explore the fundamental

assumptions which are the foundations of object-oriented analysis methods.

Understanding the nature of object-oriented analysis methods can be based on this

fi-amework. We believe that this is a new contribution to research on object-oriented

methods, since the works of other people (such as the comparative studies described in

Section 1.2) do not consider what the foundations of methods should be, nor their

importance in the methods. In addition, the features considered by other work do not

include all the features of our framework, particularly those which we found to be

fundamental to analysis in both our use and assessment of methods. For example,

Arnold’s work [Amold91] does not consider the feature ‘fundamental principle’;

Fowler’s work [Fowler91] does not consider the feature ‘process’; Champeau’s work

[de Champeau92] does not include the feature ‘fundamental concept’; and Monarchi’s

work [Monarchi92] did not include the feature ‘notation’. These methods cannot help

people to discover and understand the foundations of a method. This means that our

241

Chapter 6: Conclusions and Future Work

framework is unique, in that it provides the foundations of object-oriented analysis

methods, and can help to understand the nature of the methods.

Contribution 2.3: Provision o f a comprehensive basis fo r understanding object-oriented

analysis methods

Using the process and criteria provided by section 3.5., the framework enables people

to decompose a method into smaller parts, represented as the features illustrated in

Table 3.1. For example, the assessments described in Chapter 4 and 5 decomposed five

methods into constituent parts, such that the understanding of each method was the

aggregate of the understanding of individual parts combined with their relationships in

the method. Our experience of using the framework in understanding five methods

shows that the process and criteria provide a comprehensive basis for decomposing a

method into the constructs and for identifying features. Such a basis makes a method

easy to learn and understand.

Contribution 2.4: Provision o f an objective and systematic way to understand object-

oriented analysis methods

There are two disadvantages in the comparative studies described in Section 1.2. The

first disadvantage is that they do not establish the extent to which a feature of a method

may be apparent but not real. Therefore, assessment of a feature based upon such a

study could be subjective rather than objective. The second disadvantage is that they do

not provide any process to support the identification of the features of a method. The

lack of a process may cause problems, particularly in studying a big and complicated

method. However, our framework can establish the essential features of a method, and

then find to what extent these features are real rather than apparent by assessing the

content and meaning of each feature. To support this. Section 3.5 specifies a well-

242

Chapter 6: Conclusions and Future Work

defined process of identifying and assessing features, including criteria for each action

in the process. Therefore, we consider that our framework provides an objective and

systematic way to understand methods, as shown in Chapters 4 and 5. Thus the

fi-amework improves the understanding of methods and, more importantly, supports an

assessment of what these methods actually take into account during object-oriented

analysis, based upon a common infrastructure of the methods.

Contribution 2.5: A mechanism o f assessing the terms and their exact meanings in object-

oriented analysis methods

Researchers have found that many object-oriented analysis methods often use multiple

terms for the same concept, or the same term with different meanings may be used in

different methods[Synder93]. However, present comparative studies (e.g., the studies

shown in Section 1.2) do not provide a mechanism for clarifying terminology

definitions, nor the concept which each term represents in a method. In contrast to the

comparative studies, our framework provides a mechanism for identifying the definition

of terminologies (see Section 3.5.1.1), and then assessing which component each term

stands for in this method (e.g., it means a principle, or a concept, or an element of a

model) and what is its actual meaning in the method (e.g., data abstraction, or physical

entity in the real word, or an encapsulation of data and processes in a system) (see

Section 3.5.2.1). This mechanism enables people to consider and distinguish between

the defined terms and to find their actual meanings in the method. For instance, in

terms of this mechanism. Chapter 4 and 5 showed that the OOA method [Coad91a] and

the Booch method [Booch91] define the same term ‘object’ with different meanings in

their object models, and different terms ‘encapsulation’ and ‘information hiding’ have

the same meaning in the OMT method [Rumbaugh91], the OOA method [Coad91a]

243

Chapter 6: Conclusions and Future Work

but not in the Wirfs-Brock method [Wirfs90]. Thus this mechanism enables us to

recognise and comprehend the actual meaning of terms in a method.

Contribution 2.6: Identification and Understanding o f Implicit Features in object-

oriented analysis methods

Our experience of studying and using object-oriented methods showed that some

essential features might not be specified explicitly in a method. For example, the

Syntropy method [Cook94a] does not state explicitly the process of analysis in the

textbook. Instead the process is implied in the description of ‘conceptual model’ and

‘specification model’. People may not be able to recognise or know how to use implicit

features when they are not familiar with a method. In such a situation, the method

cannot be understood fully. In order to overcome this shortcoming of the description of

a method, a way must be provided to help people recognise and capture implicit

features. Unfortunately, no comparative studies of methods had provided such support

before our fi-amework was built, since other approaches did not address this issue at all.

Only our framework provides support to identify such implicit features, by assessing

the logical relationships among explicit features (see Section 3.5.2). For example,

Chapters 4 and 5 showed that the implicit process of analysis in the Syntropy method

can be identified and determined in terms of the framework, based upon the relationship

between the process and the models (i.e., conceptual model and specification model)

according to the structure shown by Figure 3.6 and Activity 2.3 described in Section

3.5.23.

Contribution 2.7: Support o f understanding strengths and weaknesses o f object-oriented

analysis methods

244

Chapter 6: Conclusions and Future Work

Compared with the other studies described in Section 1.2, our framework is better at

identifying and evaluating the strengths and weaknesses of object-oriented analysis

methods, because it covers essential features more than other studies do and, more

importantly, it also examines the relationships among the features. Thus the features of

a method are understood and evaluated individually and in groups according to their

relationships. The strengths and weaknesses of methods identified by using the

framework should be more objective and accurate than by using other forms of

assessment. A proper evaluation of the strengths and weaknesses of object-oriented

analysis methods is very important in order to determine which method is the most

appropriate one for a specific application.

(b1 Other Contributions of the Framework

Apart fi*om the above contributions, we consider that our fi-amework can also

contribute to the following areas of object-oriented analysis methods:

(i) Comparison o f different object-oriented analysis methods.

Similar to the comparative studies, our framework can also support comparison of

different object-oriented analysis methods, based on the information about the methods

expressed in terms of the fi-amework. For example, by comparing the results shown by

Chapter 4 and 5, we can find that the type of model is different in the OOA method

[Coad91a] and the OMT method [Rumbaugh91]: one type of model is built by the

former, and three types of models are constructed by the latter. Therefore, at least there

is one significant difference between these two methods. A comparison using the

fi-amework can be more objective and accurate than the comparison made by other

comparative studies, since the framework can help to obtain extra information (e.g.

245

Chapter 6: Conclusions and Future Work

relationships between features, extra implicit features) from methods and then takes

them into account in the comparison.

(u) Comparison o f object-oriented analysis methods and traditional methods

The framework can be used to distinguish between the features of object-oriented

analysis methods and the features of traditional methods, where the features are

comparable. For example, we can see that the features ‘model’ and ‘process of analysis’

also exist in traditional methods, such as ‘object model’ in the OOA method [Coad91a]

and ‘data model’ in SSADM [Ashworth90]. We can find the difference and similarity

between these two models, based upon the contents of the object model identified by

using the framework and content of the data model given in the textbook

[Ashworth90].

(iii) Improvement o f the existing, or invention o f new, object-oriented analysis methods.

We consider that our framework can be used to develop an object-oriented analysis

method. Any existing object-oriented analysis method can be revised and improved

based upon the results from an assessment of the method using the framework. Thus a

method can be revised by making apparent features real, changing implicit essential

features into explicit features, and providing new mechanisms to overcome its

weaknesses. For example. Section 5.3.2 showed that few guidelines and criteria were

given for the process of analysis in the Booch method [Booch91]. We consider it

would be beneficial if more information about this process was provided by a new

version of the method. In addition, a new object-oriented analysis method can be

created based upon the components and parts of the framework; it requires that

246

Chapter 6: Conclusions and Future Work

fundamental principles, concepts, models, and so on, must be clearly defined by a new

object-oriented method.

(iv) Education and training o f object-oriented analysis methods

Shelton indicated in his paper[Shelton93] that learning the concepts first is the way to

start learning a new object-oriented analysis method. Since no one of the major object-

oriented methods is regarded as a standard at present, education and training must

show and interpret the detail and nature, in particular fundamental concepts, of every

method individually [Fowler93]. We consider that our fi'amework can be used as a

reference or training tool for teaching object-oriented analysis methods, since it

provides an infi-astructure of such methods and it can examine and clarify the meanings

and content of the essential features of the methods including fundamental principles

and concepts. As a tool, the framework can be used for both training course and self-

study:

(a) In a training course, the constructs and structure of a method can be illustrated and

interpreted according to the framework, so that students can get a whole picture of

the foundation of the method in the end of the course. Based upon this foundation,

other aspects of the method, such as a CASE tool, can be further demonstrated and

taught.

(b) In a self-study style, people can learn object-oriented analysis methods in terms of

the fi'amework. By following the process provided by Section 3.5, people can (i)

identify and understand explicit features of the methods according to the framework,

and understand the 'what* aspect and 'how* aspect of the method, and (ii) assess the

relationships among the features, understand the impact of one feature on another

247

Chapter 6: Conclusions and Future Work

feature, and identify implicit features. All constructs and structure of methods will

become evident through this process.

(v) Development o f computer-assisted learning software fo r object-oriented analysis

methods

Computer-Assisted Leaming(CAL) is a new approach to education and training, in

particular for self-study or distance learning. Currently, teaching and training for object-

oriented methods is almost always taught in a classroom context. If we want to teach

the methods by computer, we need some form of CAL software for this purpose. We

consider that our framework provides a common basis for developing such software,

since it provides a generic pattern of the essential features (or constructs) of object-

oriented analysis methods, and illustrates the dependency between the features. The

framework can be regarded as an infrastructure that can be used for CAL software for

teaching and demonstrating various object-oriented analysis methods, and possibly

comparing and evaluating the methods. The other works noted in Section 1.2 cannot be

used in this way, since they do not cover all essential features included in our

framework and, more importantly, do not provide a generic pattern to analyse and

organise the features for the methods in a hierarchical structure. Therefore, they cannot

play the same role as our framework in the development of CAL software.

6.2 Other Potential Use of the Framework and Future
Work

Since our framework includes the essential features of object-oriented analysis methods

and also focuses on the impact of one feature on another feature, we consider that the

248

Chapter 6: Conctusions and FuUtre Work

framework can be regarded as a vehicle for establishing evaluation criteria of the methods,

and for developing CASE tools to support computer-assisted object-oriented analysis.

6.2.1 Establishment of Evaluation Criteria

Our framework contains the essential features which a majority of object-oriented analysis

methods must support, even though the contents of features may vary for different

methods. Thus methods can be compared and evaluated based upon these critical features;

in addition, the relationships between the features are emphasised by the framework, and

so the framework provides a sound basis for evaluating the features of the methods.

Generic evaluation criteria can be established based upon the framework for evaluating the

methods accurately. For example, the following evaluation criteria may be considered in

the evaluation of methods:

— the definition of each fundamental concept should be consistent with at least one

fundamental principle;

— a fundamental concept must be supported by at least one element in a model;

— the notation used by a method must represents all elements in the model(s) clearly,

precisely and simply;

— each step/activity of the process of analysis should include detailed guidelines and

criteria;

— the products of analysis must be complete and consistent with the system

requirements.

249

Chapter 6: ConeUtdorts and Future Work

6.2.2 Development of Generic CASE Tools for Object-Oriented
Analysis

A CASE tool for object-oriented analysis is considered useful in reducing the effort

required for, and improving the quality of, the end-product in system development

[Sully93]. Although some tools like ‘StP/OMT* [IDE93] are now available for a specific

method, it would be beneficial to develop generic object-oriented analysis tools for use

with different object-oriented analysis methods. For this purpose, the framework can be

regarded as a basis for developing such a CASE tool since it shows the common features

of object-oriented analysis methods, so that the CASE tool can support object-oriented

analysis for a number of the methods.

250

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

Appendix

An Outline of the Assessment of Five
Other Analysis Methods Using the
Framework

In addition to the five methods assessed in Chapter 4 and 5, we have also used the

fi'amework for the assessment of five another methods; i.e., the Shlaer and Mellor method

[ShlaerSS and 91], COSE [Jacobson92], OSA [Embley92], Ptech [Martin92a] and HOOD

[Robinson92]. This appendix outlines the assessment of these methods, using the

fi'amework.

1. The Shlaer/Mellor Method
It has been argued that the early version of the Shlaer and Mellor method [ShlaerSS] was

not really object-oriented, for reasons such as the lack of provision of a notion of

inheritance [Graham94]. However, its later version [Shlaer91] includes inheritance, as well

as operations (of objects) by modelling the lifecycles of objects with state transition

diagrams. By the method, various analysis models are built, such as the information model,

the state model, and so on. The 'what* and 'how* aspects, with the essential features, of

251

Appendix: Art Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

the later version of the method (i.e., [Shlaer91]) are identified and assessed in terms of the

framework, as follows.

1.1 The ^What’ Aspect of the Shlaer/Mellor Method

The essential features of the Shlaer/Mellor method — and their relationships — are shown

in Table 1.1. The assessment shows that the principle 'abstraction* in the method refers to

all data abstraction, process abstraction and behaviour abstraction. The fundamental

concepts 'object structure*, 'inheritance relationship* and 'system frmction* are found to

be implicitly used in the method by examining the meaning of the elements in the 'model*

column of the table. The implicit fundamental principles 'information hiding’ and 'scale*

are also used (implicitly) in the method. The underlying concepts 'object structure* and

'domain* also hold.

By considering the meanings and roles of the essential features that reflect the

'what* aspect of the Shlaer/Mellor method and their relationships, the content of this

aspect are — in outline — as follows:

• Fundamental Principles

— Principles on object orientation

— Abstraction on data, process and behaviour

— Inheritance ’ and ^information hiding* are used.

• Fundamental Concepts

— Concepts around objects

252

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

>^jnciplc

S t a g e \

Fundamental Fundamental Model
Principle Concept Element Type

•Abstraction
(data)

•Object
•Instance

•Object
•Instance

• (Information
hiding)

•(Object
structure)

■Attribute
•Relationship •Information

Model

Analysis

•Inheritance •(Inheritance
relationship)

•Sub/supertype
(Single/
multiple)

•Abstraction
(behaviour)

•Lifecycle of
object

•Object state
•Event
•Transition rule
•Action
•Timer
•Lifecycle of
relationship
•Object
interaction

•State
Model

•Object
Communication
Model

•Abstraction
(process)

•(System
function)

•Process
•Data store
•Data flow
•Control flow

•Process
Model

•(Scale) •Domain •Subsystem •Domain-
level Models

Table 1.1 The Relationship between the Features in the ‘What* Aspect of the
Shlaer/Mellor. Method

— The concept ‘object’ means a single typical but unspecified instance o f something

in the real world

— Focus on object structure and object life cycle

—The concept ‘inheritance relationship ’ is implicitly supported

— Aggregation ’ is not emphasized in particular, instead the object structure is more

concerned with the concept ‘association ’ between objects.

Object Model

— The element ‘object* includes attributes, state (values o f the attributes), and actions

(processes).

253

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

— Emphasis on data abstraction by regarding the object structure as a basis o f other

models

— Four specific object-oriented models are built by this method

— Strong focus o f subsystem modelling in analysis

— Aggregation is not emphasized

— The life cycle o f relationships is also modelled

— The element ‘timer ’ is a mechanism that can be used by an action to generate an

event at some time in future

— The processes in the process model depend on the actions in the state models

— Focus on the relationships, communications and accesses between subsystems.

1.2 The ‘How’ Aspect of the Shlaer/Mellor Method

The essential features that reflect the 'how* aspect of the Shlaer/Mellor method are

identified and listed in Table 1.2, in terms of the practice part of the framework. The

relationship between the features in the ‘how* aspect of the method is described in Figure

1 . 1.

User $

interviews

problem
descnption

analyses

Process of Analysis
Four steps Guidelines &

Substeps
given with Criteria

for each substeo

f e e lives d iven by

A problem
description
(step 1-3)

Information structure diagram (step 1)
State transition diagram (step 2)
Thread of control chart (step 3)
Data flow diagram (step 4)
Domain chart (step S)

produces

Data

An information models
State models (step 2)
Object communication model (step 3)
Process models (step 4)
Domain-level model (step S)
Various descriptions (step 1.2,4)

Figure 1.1 The Relationship between the Features in the ‘How’ Aspect of the
Shlaer/Mellor method

254

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

l l
1 1 1

< < U U

t
I

iL

I I II
I

u
■B00■S §
0

1 1*3§y .5 E Î Î 1i t f l

i
&

I

a i

I!11
Il l.a «
I

ll
I
I
a g

ii III

V :S E

S §'«

II4) ca e T3
ill

1Î1ÎI 1 1 I I 19 9 E 9 8 9

j i i

I
I

I
I

I
I
M

I

1
<S

2I i l |{
it I

ttî* II

I
1.̂

§

II l l 01ll l l
I I

!

I1

255

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

1.3 The Relationships between the Two Aspects of the Shlaer/Mellor
Method

f n Analysis Models and Tactic of Analysis

The information model is the basic model built by this method. A data-driven process of

analysis is therefore provided by the method.

Analysis Models and Process of Analysis

— Five major models built by four steps with five substeps

— Each element in each model defined by the substeps o f a step

— An information model is always constructed first since it is a basic model

(3 ̂Analysis Models and Notation

In order to represent five models, five notations are used in the Shlaer/Mellor

method. The symbols used to represent an information model and a domain-level models

are illustrated in Figure 1.2. The symbols used to represent a state model and an object

communication model are shown in Figure 1.3. The process model is represented by data

flow diagrams, in the same fashion as shown in Fijgure 4.6 given in Chapter 4.

(4) Analysis Models and Products of Analysis

The products of analysis in the Shlaer/Mellor method consists principally of five

models, as shown in Table 1.2.

256

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

Object: Unconditional association:

Object Name
attributes

. . . . Association Name I» Object"2

Super/subtype:
Conditional association:

C Association Name
Supertype

Object-1 r Object-2

|Subtype-l~ |Sub^)e-2~

Multiplicity of Associations:
< ---------------> one to one

- » many to many

S ubitem :

^ Subsystem-1 Subsystem-2 ^

Figure 1.2 Notation of Information Model and Domain-Level Model

Notation for state model

State, Event, Condition, Action:
event[condition]

Final state:

state-1 state-2 state-1 state-2
action

Notation for object communication model

Object, Event, State model:

object-1 eventl _ event2
►Qtate model^ ------► object-2

^tate model-1 ̂ event
(state model-2^

Figure 1.3 Notation of State Model and Object Communication Model

2. OOSE (Jacobson et a l)

OOSE (Object-Oriented Software Engineering) [Jacobson92] is an object-oriented

method for analysis, construction (including design and implementation), and testing in

software development. OOSE is derived fi-om Jacobson’s Objectory (the Object Factory

for Software Development) [Jacobson87] and it is a simplified version of Objectory. It in

257

Appendix: An Outline ofthe Assessment o f Five Other Anatysis Methods Using the framework

particular emphasises and provides a use case driven process of analysing and designing

software systems. A use case model is included in the requirement model to describe the

things (actors) existing outside a system and the processes (use cases) performed by the

system. The ‘what* and ‘how* aspects with the essential features of OOSE are identified

and assessed by means of the fi'amework.

2.1 The ‘What’ Aspect of OOSE

The essential features of OOSE and their relationships are shown in Table 2.1. The

principle ‘abstraction* of OOSE refers to ‘data abstraction* and ‘process abstraction* as

OOSE focuses on analysing and modelling the data and process aspects of a system.

^frinciple
Pazt

Stage

Fundamental
Principle

Fundamental
Concept

Model
Element Type

•Abstraction
(data)

•Object
•Class

•Object
•Class

Analysis

•Encapsulation

•Information
hiding

•Abstraction
(process)

•Object
structure

•Attribute
•Operation
•Actor
•Use case

•Requirement
Model
—Problem
domain model

—Use case
model

•Entity object
•Interface
object
•Control object
•Association___

•Inheritance •Inheritance
relationship

•Gen-Spec
Relationship
(Single/
multiple)

•Analysis
Model

Scale Grouping •Subsystem
•DependsOn
relationship

Table 2.1 Relationship between the Essential Features in the ‘What’ Aspect of OOSE

The content of this aspect is outlined below, after considering the meanings and

roles of the essential features and their dependency in OOSE for analysis:

258

Appendix: An Outline ofthe Assessment of Five Other Analysis Methods Using the framework

• Fundamental Principles

— Principles o f object orientation

— Abstraction with data and process

Support o f ‘inheritance ’ and ‘encapsulation ’ and ‘information hiding*. In particular,

‘encapsulation* and ‘information hiding’ are emphasised separately, as in the Wirfs-

Brock method

— Support o f the scale o f systems

• Fundamental Concepts

— Concepts around objects

— The concept ‘object ’ means people and entities in the real world

— Focus on object structure but not object behaviour

— Modelling ‘use connection * between objects by ‘object structure

• Models

— Two models are built: a requirement model that captures the functionality

requirements, and an analysis model that specifies all the logical objects to be

included in a system and their relationships and subsystems. The analysis model

forms a basis fo r the system *s structure.

— The requirement model helps to keep track o f the requirements o f a system right

through its whole life cycle. The analysis model supports inheritance relationships

and associations between objects including the description o f aggregation.

— The element ‘object* is characterised by a number o f operations and a state which

remembers the effect o f these operations on the object.

259

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

— Objects are classified into three types o f objects in the analysis model: entity

objects capturing the information in a problem domain which is stable within a

syfstem; interface objects modelling behaviour and information dependent on the

interface to the system; and control objects specifying behaviour which operates on

several different entity objects, returning the result to interface objects.

— Support fo r data abstraction and process abstraction by modelling object structure

with attributes, operations, and use cases.

— Description o f interactions between users and a system in terms o f the elements

‘actor ’ and ‘use case The actors represent what interacts with a system. A use

case is a sequence o f transactions in a dialogue between a user and the system.

— Objects are grouped into subsystems in an analysis model.

— The state changes inside an object are not particularly described. "

2.2 The ‘How’ Aspect of OOSE

The essential features that reflect the ‘how’ aspect of OOSE are identified by using the

framework and illustrated in Table 2.2. The features show that OOSE supports a use case

driven (i.e., process-driven) tactic of analysis, by which the process of analysis constructs

a requirement model and an analysis model sequentially. The relationships between the

features in the ‘how’ aspect of the method are further considered as shown in Figure 2.1.

260

Appendix: An Outline o f the Assessment o f Five Other Analysis Methods Using the framework

■o A

"9

ill
es a

i î pIIÎÎ
1.1

III u y O

tl
op op oo

00
00

o. 00

o<

C9 g
III

CO

I

261

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

analysesinterviews

A requirements
specification

Two steps
Actions

Process of Analysis

given with
Guideline &
Criteria
for some actions

receives uses

A requirements
specification
(step 1,2)

OOSE notation
(step 1,2)

driven by

Use case

produces
A requirement model

(step 1)
An analysis model (step 2)

Figure 2.1 The Relationship between the Features in the ‘How’ Aspect of OOSE

2.3 The Relationships between the Two Aspects of OOSE

(1) Models and Tactic of Analysis

All the requirement and analysis models describe objects and their structures by

focusing on the use cases between objects. A use case driven tactic of analysis is thus

offered by OOSE to support such emphasis.

(2) Models and Process of Analysis

— The requirement and analysis models built by two steps including eight actions,

— Actions in the process o f analysis support the specification o f a system by means o f

various elements in these two models.

— The process o f analysis includes the guidelines and criteria which help to build the

two models precisely and correctly.

Models and OOSE Notation

OOSE uses an OOSE notation (see Figure 2.2) which specifically represents a

requirement model and an analysis model.

262

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

Entity Object:

O
Object name

Interface Object:

C h
Object name

Control Object:

O
Object name

Subsystem:

DependsOn relationship

Subsystem 1

Association (use case):
Operation name

Object-1 Object-2

Attribute nameOObject-1 Type of attribute

Gen-Spec relationship:

Object-1

Object-2 Object-3

tioi name <ZZ)
Subsystem 2

Figure 2.2 OOSE Notation

(4 ̂Models and Products of Analysis

The products of analysis from OOSE include a requirement model and an analysis

model, as well as the description of each object in these two models.

3. OSA (Embley et al.)

OSA (Object-Oriented System Analysis) [Embley92] is an object-oriented method

which was developed at Hewlett-Packard. OSA focuses on the conventional tripartite

division of analysis into three separated but related activities with a specific notation for

each. The "what* and 'how* aspects with the essential features of OSA are identified and

then assessed in terms of the framework.

263

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

3.1 The ‘What’ Aspect of OSA

In OSA, a system is defined as a group of objects. The analysis thus focuses on the study

o f a specific domain of interacting objects for the purpose of understanding and

documenting their essential characteristics, as understanding a system before design is

critical to the success of creating a complex software system. Such a understanding is

achieved by building a concept model of the system. The essential features of OSA, and

their dependencies, are shown in Table 3.1. In the table, the concepts 'object*, 'object

relationship* and 'object behaviour* emphasise the static structure and dynamic behaviour

of objects within a system. These concepts refer to the principle ‘abstraction*, being

abstraction of data and behaviour. Another two implicit principles — 'encapsulation* and

'information hiding* — are derived from the meanings of the fundamental concepts

'object* (consisting of characteristics and behaviour) and ‘view of system* (hiding different

levels details) addressed by OSA.

According to the meanings and roles of the essential features in the 'what* aspect of

OSA, as well as the relationships shown in Table 3.1, the content of this aspect are

outlined as follows:

• Fundamental Principles

— Principles o f object orientation

— Abstraction with data and behaviour

— ^Encapsulation inheritance ’ and information hiding’ are used.

264

Appendix: An Outline cfthe Assessment o f Five Other Analysis Methods Using the framework

princip le

S t a g e d
Fundamental
Principle

Fundamental
Concept

Model
Element Type

Analysis

•Abstraction
(data)

•object
•Classification

•Object
•Object class

•Object-
relationship
Model

•(Encapsulation) •Object
relationship

•Relationship
•Association
•Aggregation
•Constraint

•Inheritance •Inheritance
relationship

•Genernation-
Specification
(Single/
multiple)

•Abstraction
(behaviour)

•object
behaviour

•Object state
•Event
•Action
•Transition
•Constraint
•Object
interaction

•Object-
behaviour
Model

•Object-
interaction
Model

•(Information
hiding)

•View of
system

•High-level view
•Exploded view
•Imploded view

Table 3.1 Relationship between the Features in the 'What' Aspect of OSA

Fundamental Concepts

— Concepts around objects.
\

— The concept *object* means a person, place, or thing in reality.

— Focus o f object relationships and object behaviour.

—The concept inheritance relationship ' is supported.

— A concept *view o f system * is used to manage the complexity o f a system.

Models

— The element ’object’ includes states and actions (operations).

— ’Relationship ’ means a logical connection among objects; ’association ’ means a

member o f a relationship; and ’aggregation ’ means being part o f a relationship.

265

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

— Emphasis on the object relationships by modelling various object relationships and

on the object behaviour by modelling object states, state transitions and

interactions.

— Does not explicitly represent the attributes o f each object class (i.e., class and its

objects) in a system.

— Object-behaviour model describes the behaviour o f each object in a system by

representing its perceived states, conditions and the events affecting it, and the

actions performed by or on it.

— Events can be modelled as objects.

— Three specific types o f model are built by OSA.

— Provision o f different level views o f a system.

3.2 The ‘How’ Aspect of OSA

The essential features that reflect the ‘how’ aspect of OSA are listed in Table 3.2. It shows

that this method supports a model-driven tactic of analysis and the process of analysis

aims to build three different types of model in high-level views of a system. The

relationship between the features in this aspect of the method is shown in Figure 3.1.

A problem
description

^ analyses

Four aetivities
Actions

Process of Analysis

given with
Guideline &
Criteria
for each action

recc ives uses drive n by

A problem
description OSA Notations
(activity 1-3) (activity 1- 4)

produces

Model

Object-relationship model (activity I)
Object-behaviour model (activity 2)
Object-interaction model (activity 3)
High level view (activity 4)
Various descriptions___________

Figure 3.1 The Relationship between the Features in the ‘How’ Aspect of OSA

266

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

«r «
l l

I I ÎI1

T»8 f

tfil tl
i f i î i

lîiîJ •o §:
Bp

i l l55>y y V

Q .S

o.

î |eo B

xi
oo

op u

II O ^

IID.

I i l i i f

267

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

3.3 The Relationships between the Two Aspects of OSA

f l) Models and Tactic of Analysis

Three models are built by a model-driven process of analysis in OSA. These models are

constructed in any sequence in GOA.

(2) Models and Process of Analysis

— Three types o f model are built in four activities with a set o f actions.

— Each element in each model is defined in individual actions.

—High-level views o f a system are constructed by a specific activity.

(3 ̂Models and OS A Notation

The three object models in OSA are represented by three specific notations, as

shown in Figures 3.2-4. Another notation (see Figure 3.5) is also used in order to illustrate

the different levels of viewing these three models.

Models and Products of Analysis

The products of analysis from OSA comprises three types of object model as well

as the descriptions of object classes and interactions among them, as shown in Table 3.2.

268

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

Object:
- e

Relationship:

N-aiy
relationship:

Aggr^ation:

Object class:

C Z D
Relationship set

I |PC-r— pc

Relational object class:

N-aiy relationship set:

r
Association:

Aggregate

Sub-part l | I Sub-part n

Member
Ipc

A el
Set class

C Z I
[lonsnip set: Object-class

cardinality constraint

L Z]
Role:

d Role name
Co-occurrence constraint:

 CO

Generalization-
specification:

I Gen. class union
I Gen. classT

>v mutual
‘exclusion

Spec, class 1 Spec.class 2] partition

pc: participation
CO: co-occurrence constraint
occ: object-class cardinality constraint

51 I Gen.

Spec, class

Gen.class 2

Intersection
Spec, class

General constraint
roman text

Note
italic text

Figure 3.2 Notation for the Object Relationship Model

Object interaction:

P . □ ------zr action ^J~~|
 □ ------y (object list)
I I— y action (object list^^J |
To/From clause:
r~ l----- yTo: destination p~]

From: orgin
Multiple destinations: ^ , ,

Multiple origins:

Interaction sequence:

Internal connection:

j O s
l O H z-
□ -

h " * —
Bi-directional interaction:
□ — * -----------
Interaction with
object external to model:

Continuous interaction:
C T
Real-time constraint:

> □{rtc)
Path real-time constraint:
n - j — ► • - I —

{pml} {pml -pm2 rtc} {pm2}

Figure 3.3 Notation for the Object Interaction Model

269

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

State:

C 3
State-transition:

Transition:
[identifier]
trigger
action

trigger
action

CZ> _

Initial transition/initial state:

I K Z 3
Final state/final transition

CZD H
Return to prior state:

Remain to prior state:

0 3 —
trigger Multi prior state required:

Entry into multiple subsequent stetes:

Choice of prior state:

13-

Choice of subsequent state:
 ------¥< Z

- # c
State exception:

CT
Transition exception:

State real-time
constraint:

Path real-time constraint:
{pml} JmU.

(pml - pm2 rtc}
Transition real-time constraint:(rtcl

rtc: real-time constraint
pm: path marker

Figure 3.4 Notation for the Object Behaviour Model

High-level views
High-level object class:

r - n
expioaea view

imploded view
High-level state:

view

High-level
relationship set:

exploded view

^ — □
imploded view

High-level transition:

view

imploded view '
High-level interaction:

imploded view
High-level
multiple interaction:

explodedview expioaèdview
^ imj^odedview |

— 1imploded view

Figure 3.5 Notation for Levelling in OSA

270

Appendix: An Outline ofthe Assessment ofFive Other Analysis Methods Using the framework

4. Ptech (Martin and Odell)

Ptech is described in the book by Martin and Odell [Martin92a]. It is claimed that this

method supports object-oriented analysis and design. The assessment of Ptech in outline is

as follows.

4.1 The ‘What’ Aspect of Ptech
In Ptech, object-oriented analysis is regarded as a process of modelling the world in terms

of objects (which have properties and states) and events triggering operations (which

change the state of objects). Thus, the essential features in the 'what* aspect of Ptech

emphasise the modelling of objects, object behaviour, etc. as shown in Table 4.1. The

principle 'abstraction* is regarded as the abstraction of data, behaviour and process. In

addition, the principle 'communication with message* is also implicit in Ptech, with the

concept 'message* as a notion of object communication. The element 'composition* in an

object structure model should be defined as being underpinned by the implicit concept

‘aggregation*.

By examining the meanings and roles of the essential features in the 'what* aspect

of Ptech and the relationships between the features, the content of this aspect is, in outline,

as follows:

* Fundamental Principles

— Principles o f object orientation

— Abstraction with data and behaviour and process

— Encapsulation* also means ^information hiding*. The principles inheritance* and

^hierarchy * are regarded as fundamental in this method.

271

Appendix: An Outline o f the Assessment o f Five Other Analysis Methods Using the framework

s^inciplc

S ta g e d

Fundamental Fundamental Model
Principle Concept Element Type

•Abstraction
(data)

•Object
•Obiect tvoe

•Object
•Class

•Encapsulatior
(Information
hidina)

•Relationship
•(Aggregation)

•Data(Property)
•Association
•Composition

•Object
structure
Model

•Inheritance •Generalisatior • sub/supertype
(Single/multiple)

knalysis
•Hierarchy •Partition •Subset of objects

•Abstraction
(behaviour)

•Lifecycle of
object

•Object state
•Event
•Control condition
•Operation

•Object
behaviour

•(Message
coomunication)

•Message •Message passing Model

•Abstraction
(process)

•System
function

•Activity
•Product
•Object flow

Table 4.1 The relationship between the Essential Features in the 'What’ Aspect
ofPtech

Fundamental Concepts

— Concepts around objects.

— The concept ‘object* means any real or abstract thing about which we store data

and the methods which manipulate the data.

— Focus o f object structure and object life cycle and system function.

— The concept ‘generalisation ’ is defined to mean an inheritance relationship.

— Support fo r ‘aggregation

Models

— The element ‘object* includes properties (data types) and the permissible operations

acting on the properties. An object may be composed o f other objects.

— Emphasis on object structure modelling which forms a basis fo r object behaviour

modelling.

I l l

Appendix: An Outline o f the Assessment o f Five Other Analysis Methods Using the framework

— Modelling object behaviour including drawing object-flow diagrams that provide

high-level views ofprocesses in a system and indicate the objects flawing among the

processes.

— Construction o f two specific models.

— Different levels o f object structure and behaviour are represented by subsets o f

objects and states.

— Support fo r modelling object interactions by ‘message passing

4.2 The Aspect of Ptech
The essential features in the 'how’ aspect of Ptech are recorded in Table 4.2. The

relationships between these features are shown in Figure 4.1.

Ç A business area or an ^
Z entire enterprise ^ ---- '

__________ ^ analyses_____

Two steps Guideline &
Substeps

given with Criteria
for each substep

receives uses

A business area or
an entire enterprise
(step 1,2)

Object-relationship diagram (step 1)
Object flow diagram (step!)
Event diagram (step 2)
State transition diagram (step 2)

dri' en 1^ produces

Data

Object structure model
(step 1)

Object behaviour model
(step 2)___________

Figure 4.1 The Relationship between the Features in the ‘How’ Aspect of Ptech

273

Appendix: An Outiine ofthe Assessment o f Five Other Analysis Methods Using the framework

II

î i 113

o. c I Ji
u a

Q. 2

II

3

H <

00

274

Appendix: An Outline o f the Assessment o f Five Other Analysis Methods Using the framework

4.3 The Relationships between the Two Aspects of Ptech

f n Models and Tactic of Analysis

An object structure model is the basic model in Ptech. A data-driven tactic of analysis is

therefore used by the method.

(2̂1 Models and Process of Analysis

— Two type o f object model built by two steps including a set o f substeps

— The object behaviour model that is built includes the process view o f a system (i.e.,

object-flow diagram)

— Each element in a model is described by an individual substep.

(3 ̂Models and Notation

In order to represent an object structure model and an object behaviour model, a

notation (e.g., object-relationship diagram) is offered by Ptech, as shown in Figures 4.2-4.

Models and Products of Analysis ^

The products of analysis produced by Ptech compnse an object structure model and

an object behaviour model.

Object type:

Composition:

Association:

Sub/supertype;

Multiplicity of
Associations:

one to one
-h< one to many
-o< zero to many
-oj* zero to one

Figure 4.2 Symbols in Object-Relationship Diagram

275

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

State:

operation

Message passing:

□ request
< ---------

Event: Clock event:c

Control condition:

— ^OC 3

Levelling of events:

Figure 4.3 Symbols in Event Diagram

Activity:
operation

Object flow:

TrSSuc? Object:

a

Figure 4.4 Symbols in Object-Flow Diagram

5. HOOD
HOOD (Hierarchical Object-Oriented Design) [Robinson92] is an object-oriented method

that was specially developed for designing software to be written in Ada. Although

HOOD focuses on architectural design in software development, it also does object-

oriented analysis for identifying objects from system requirements which describe a

problem. HOOD can therefore be used as an object-oriented analysis method.

5.1 The ‘What’ Aspect of HOOD
The essential features and their relationships in the *what’ aspect of HOOD are shown in

Table 5.1. The assessment of this aspect shows that the fundamental principle 'abstraction'

is regarded as process abstraction in HOOD. A fundamental concept 'aggregation' is

implicitly used by this method, according to the meanings and roles of the elements

'included relationship' and 'implemented-by relationship' in an object model.

276

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

«Aincipic

S taee^^

Fundamental
Principle

Fundamental
Concept

Model
Element Type

Analysis

•Abstraction
(process)

•Object
•Class

•Object (active,
passive)
•Class object

•Object
model

•Information
hiding
(encapsulation)

•Modularity

•Object control
structure

•(Aggregation)

•Operation
•Data flow
•Exception flow
•use relationship
•Parent/child object
•Included
relationship
•Implemented-by link

Table 5.1 Relationship between the Essential Features in the ‘What* Aspect of HOOD

The main characteristics of these fundamental principles and concepts and the

object model recorded in Table 5.1 are outlined as follows:

• Fundamental Principles

— Principles o f object orientation

— Abstraction with process

— Information hiding* (also encapsulation) isfundamental in HOOD.

— Hierarchy * is strongly supported by HOOD in modelling.

• Fundamental Concepts

— Concepts around objects

— The concept ^object ’ means a model o f a real-world entity

— Focus on an object control structure that is a notion o f co-operations between

objects.

— Aggregation * is emphasised in particular as a notion o f object assembly.

277

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

• Object Model

— The element 'object' combines data and operations in such a way that data is

implied in the definition o f an object and accessed through the operations o f the

object. An object may have a state. An object may be an attribute o f another object,

i.e., it is a child object o f that object (its parent).

— Emphasis on process abstraction by modelling object operations and their 'use

relationships '.

— One object model is built by this method.

— Modelling the inclusion relationships between objects (parent/child objects) in a

hierarchical structure.

— Inheritance relationship is not modelled by HOOD.

5.2 The ‘How’ Aspect of HOOD
The essential features in the ‘how’ aspect of HOOD are recorded in Table 5.2, and the

relationships between these features are shown in Figure 5.1.

A problem
domain

A problem
statement

analyses

Process of Analysis
Three steps Guideline &

Substeps
given with Criteria

for each substeo
receives

A problem
statement
(step 1-3)

uses
HOOD diagram
(step 1-3)

driven by
Process

produces

An object model
(step 1-3)

Figure 5.1 The Relationship between the Features in the ‘How* Aspect of HOOD

278

Appendix: An Outline ofthe Assessment o f Five Other Analysis Methods Using the framework

S.

I®O A•o
•o —' u

I
CL

CL

{liîilîll
•o

CO
CO

s

II
IÎ

279

Appendix: An Outline ofthe Assessment o f five Other Analysis Methods Using the framework

5.3 The Relationships between the Two Aspects of HOOD
(1) Object Model and Tactic of Analysis

An object model is built by HOOD through analysis. Since this model focuses on

specifying the operations within objects and the control structure of objects, a process-

driven tactic of analysis is thus used in HOOD.

(2) Object Model and Process of Analysis

— Three steps csre included for building an object model

— Each element in a model is described by a substep in the steps.

(Vi Object Model and HOOD Diagram

A HOOD diagram is used by HOOD to represent an object model. The symbols in

the diagram are illustrated in Figure 5.2.

(4 ̂Object Model and Products of Analysis

The product of analysis from HOOD is an object model of a system.

mmmm
Passive class object:

operationon

Active class object:
^ Name

Included relationship: £ Parent

(operation

Use relationship:
tame

operation

Name

Implementated-by link:

_ £
Parent

opei^on

^^^x^atiion
Child A

ion I

Exception flow:
^an i^ ^^am^

operation

Data flow:
o-Jrn—^

Figure 5.2 Symbols in HOOD Diagrams

280

References

[AbriaSO] Abria JR., Schuman S. and Meyer B., A specification language. On the

Construction o f Programs^ McNaughten R. and McKeag R. (eds.), Cambridge

University Press.

[Ackroyd91] Ackroyd M. and Daum D., Graphical notation for object-oriented design and

programming. Journal Object-Oriented Programming, 18-28.

[Alabiso88] Alabiso B., Transformation of data flow analysis models to object-oriented

design. In Proceedings o f OOPSLA '88 Conference, California, 335-353.

[Amold91] Arnold P., Bodoff, S., Coleman, D., Gilchrist, H. and Hayes, P., Evaluation of

five object-oriented development methods. JOOP (Focus on analysis and design), 101-

121 .

[Ashworth90] Ashworth C , SSADM: A Practical Approach, McGraw-Hill, London.

[Bailin89] Bailin S.C., An object-oriented requirements specification method.

Communication o f the ACM, 32(5), 608-623.

[Bear90] Bear S., Allen P., Coleman D. and Hayes P., Graphical specification of object

oriented systems. In Proceedings o f ECOOP/OOPSLA 90 Conference, 28-37.

[Booch86] Booch G , Object-oriented development, in IEEE Transaction on software

engineering, 12(2), 21L221

[Booch91] Booch G., Object-Oriented Design with Applications, The Benjamin

Cummings Publishing Company, CA.

[Byte81] Byte Special Issue: the Smalltalk-80 system, Byte, 6(8).

281

Rtferences

[Capretz93] Capretz, L.F. and Lee, P.A., Object-oriented design; guidelines and

Information and Software Technology, 35(4), 195-206.

[ChenSO] Chen P. (ed), Entity-Relationship Approach to Systems Analysis and Design,

North-Holland.

[Chen83] Chen P. (ed.), Entity-Relationship Approach to Information Modelling and

Analysis, North-Holland.

[Coad91a] Coad P. and Yourdon E., Object-Oriented Analysis, Prentice Hall.

[Coad91b] Coad P. and Yourdon E., Object-Oriented Design, Prentice Hall.

[Coad91c] Coad P., OOA & OOD: a continuum of representation. JOOP , February, 55-

56.

[Coleman91] Coleman D. and Hayes F. Lessons from Hewlett-Packard's experience of

using object-oriented technology. TOOLS 4, Paris, 327-333.

[Coleman94] Coleman D., Arnold, P., Bodoff, S., Dollin, C , Gilchrist, H., Hayes, F., and

Jeremaes, P., Object-Oriented Development: The Fusion method, Prentice Hall.

[Colter84] Colter M.A., A comparative examination of systems analysis techniques, MIS

Q. March, 51-66.

[Constantine89] Constantine L., Object-oriented and structured methods: towards

integration, American Programmer, 2(7), 34-40.

[Cook93] Cook S., Editorial—object-oriented systems. The Computer Journal, 32(4),

289.

[Cook94a] Cook S. and Daniels J., Designing Object Systems: Object-Oriented

Modelling with Syntropy, Prentice Hall.

[Cook94b] Cook S. and Daniels J., Object-oriented methods and the great object myth.

Objects in Europe, 1(4), Autumn, 13-18.

[Coutta87] Coutts, G , SSADM—Structured Systems Analysis and Design Methodology,

Paradigm Publishing Ltd., London.

282

[Dahl78] Dahl OJ. and Nygaard K., Simular, an Algol-based simulation language,

Communication o f ACM, 9(9), 671-678.

[de Champeaux91] de Champeaux D., Object-oriented analysis and top-down software

development. LNCS 512 ECOOP 91, 360-376.

[de Champeaux92] de Champeaux D. and Faure P., A comparative study of object-

oriented analysis methods. Journal Object-OrietnedProgramming, 5(1), 21-33.

[DeMarco78] DeMarco T., Structured Analysis and System Specification, Yourdon Press,

New York.

[Drake92] Drake J.M., Xie W and Tsai W.T., Document-driven analysis: description and

formalization. Journal o f Object-Oriented Programming, November/December, 33-50.

[Eckert94] Eckert G. and Golder P., Improving object-oriented analysis. Information and

Software Technology, 36(2), 67-86.

[Embley92] Embley D.W., Kurtz, B.D. and Woodfield, S.N., Object-Oriented Systems

Analysis: a Model-Driven Approach, Prentice Hall.

[Embley95] Embley D.W., Jackson R.B. and Woodfield, S.N., 0 0 systems an^ysis: is it

or \stIX 111, lEXlE Software, July, 19-33.

[Firesmith91] Firesmith, D , Structural analysis and object-oriented development are not

compatible, Ada Letters, 11(6), 56-66.

[Fowler91] Fowler M., Choosing an object-oriented design method, ECOOP 1991,

October, Seminar Notes.

[Fowler93] Fowler M., Object-oriented methods: a comparative overview, SIGS

Publication,, 2-4.

[Freitas90] Freitas M.M., Moreira A. and Guerreiro P., Object-oriented requirements

analysis in an Ada project, Ada Letters, Vol. 10, 97-109.

[Gane79] Gane C. and Sarson T., Structured System Analysis: tools & techniques,

Prentice Hall.

283

[Gibson90] Gibson E., Objects—bom and bred. BYTE, October, 245-254.

[Glykas93] Glykas, M., Whilhemij, P. and Holden, T., Object orientation in enterprise

modelling and information system design. Object-Oriented Development, Colloquium

organized by the British Computer Society Specialist Group on OOPS, January, 8/1-

19.

[Graham91] Graham I., Object-Oriented Methods,, Addison-Wesley.

[Harel87] Harel D., Statecharts: a visual formalism for complex systems. Science o f

Computer Programming, 8/231-274.

[Hayes87] Hayes I. (ed.), Specification Case Studies, Prentice Hall.

[Helm90] Helm, R., Holland, I.M. and Gangopadhyay, D., Contracts: specifying

behavioral compositions in object-oriented systems, ECOOP/OOPSLA '90

Proceedings, 169-180.

[Henderson90] Henderson-Seller B. and Edwards J.M., The object-oriented systems life

cycle. Communication o f ACM, 33(5), 142-159.

[Henderson92] Henderson-Seller B., A Book o f Object-Oriented Knowledge—Object-

Oriented Analysis, Design and Implementation: A New Approach to Software

Engineering, Prentice Hall.

[Honiden93] Honiden S, Kotaka N. and Kishimoto Y., Formalising specification

modelling in OOA, IEEE Software, January, 54-66.

[IDE93] Interactive Development Environment Ltd. New IDE StP/MOT tools support

entire software development processes. Ref: IDE.025, UK.

[Ince91] Ince D C., Object-Oriented Software Engineering with C++, McGraw-Hill.

[IS087] International Organisation for Standardisation, Concepts and terminology for the

conceptual schema and the information base. R ef No. ISO/TR 9007: 1987 (E),

Switzerland, July.

284

[Jacobson87]] Jacobson L, Object-oriented development in an industrial environment,

Proceedings o f OOPSLA '87, SIGPLAN Notices, 22(12), 183-191.

[Jacobson92] Jacobson B., Object-Oriented Software Engineering—A Use Case Driven

Approach, Addison-Wesley.

[Jamsa84] Jamsa K.A., Object oriented design vs structured design—a student's

perspective, SIGSOFTSoftware Engineering Notes, 9(1), 43-49.

[Kennedy88] Kennedy A.S. and Carter C.B., Structured analysis and structured design

with Ada—a pragmatic object-oriented approach, Ada User, December.

pCirk90] Kirk B.R., Designing Systems with Objects, Processes and Modules,

Proceedings o f SE90 (Hall P. Ed), Cambridge, 387-404.

[Lee91] Lee S. and Carver D.L., Object-oriented analysis and specification; A knowledge

base approach. Journal Object-Oriented Programming, January, 35-43.

[Liang93] Liang, Y., Newton, M. A. and Robinson, H.M., Analysis of information systems

using object-oriented methodologies. Proceedings o f 1st BCS & BSS Joint Conference

on Theory, Use, and Integrative Aspects o f IS Methodologies, 57-70.

[Liang94] Liang, Y , Newton, M A. and Robinson, H.M., The use of object models for

information systems analysis, ISD’94, Bled, September.

[Lovegrove92] Lovegrove, G., Teaching an object-oriented design method, Strfibrdshire

University. ^

[Martin92a] Martin J. and Odell J.J., Object-Oriented Analysis and Design, Prentice Hall.

[Martin92b] Martin J., Principles o f Object-Oriented Analysis and Design, Published by

Savant Institute, June.

[Meyer88] Meyer B., Object-Oriented Software Construction, Prentice Hall.

[Monarchi92] Monarchi, D.E. and Puhr, G.I., A research typology for object-oriented

analysis and design. Communication o f ACM, 35(9), 35-47.

285

References

[Nerson92] Nerson J., Applying object-oriented analysis and design, Communication o f

ACM, 35(9), 63-74.

[OUe82] OUe, T.W., Sol, H.G. and Verrijn-Stuart, A.A. (eds), Information Systems

Design Methodologies: A Comparative Review, North-Holland.

[OUe83] Olle, T.W., Sol, H.G. and Tully, C.J. (eds). Information Systems Design

Methodologies: A Feature Analysis, North-Holland.

[OUe88] Olle, T.W. Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.H., Van Assche,

F.J.M. and Verrijn-Stuart, A.A,, Information Systems Methodologies—A Framework

fo r Understanding, Addison-Wesley.

[Oxford88] Hornby A. S., Oxford Advanced Learner's Dictionary o f Current English

(fourth impression), Oxford University Press.

[Page89] Page-Jones, M. and Weiss, S., Synthesis: an object-oriented analysis and design

method, American Programmer, 2(8), 64-67.

[Pressman87] Pressman R.S., Software Engineering: A Practioner's Approach (second

ed), McGraw-Hill.

[Robinson93] Robinson P.J., Hierarchical Object-Oriented Design, Prentice Hall.

[Rubin92] Rubin, K.S. and Goldberg, A., Object Behaviour Analysis, Communication o f

the ACM , 48-62.

[Rumbaugh91] Rumbaugh, J., Premerlani, J., Eddy, M. and Lorensen, W , Object-

Oriented Modeling and Design, Prentice Hall.

[Rumbaugh94] Rumbaugh J., The life of an object model— how the object model changes

during development. Journal o f Object-Oriented Programming, 1.7(1), 24-33.

[Salmons93] Salmons J. and Babistky T., The computing world after objects. The

International OOP Directory.

[Shelton93] Shelton R., Object-oriented analysis and design, SIGS Publication, 1.

286

References

[Shlaer88] Shlaer S. and Mellor S.J., Object-Oriented System Analysis: Modelling the

World in Data, Prentice Hail.

[Shlaer92] Shlaer S. and Mellor S.J., Object Lifecycles: Modelling the World in States,

Prentice Hall.

[Shumate91] Shumate, K., Structural analysis and object-oriented design are compatible,

Ada Letters, 11(6), 78-90.

[Stroustrup86] Stroustrup B., The C++ Programming Languages, Addison-Wesley.

[Sully90] Sully P.D., and Ince D.C., The synthesis of object-oriented designs from the

products of structured analysis, SE90.

[SuUy93] Sully P., Modelling the World in Objects, Prentice Hall.

[Synder93] Synder A., The essence of objects: concepts and terms, /£ £ £ Software,

January, 31-42.

[Ten89] Ten Dyke R.P. and Kunz D.Q., Object-oriented programming, IBM systems

Journal, 28(3).

[Verrijn82] Verrijn-Stuart A., CRIS: an introduction, [also OUe82].

[Walker92] Walker. I.J., Requirements of an object-oriented design method, Software

Engineering Journal, March, 102-113.

[Ward85] Ward P. and Mellor S., Structured Development fo r Real-Time Systems, Vol.l-

3, Yourdon Press.

[Ward89] Ward P.T., How to integrate object orientation with structured analysis and

design, lEEIE Software, March, 74-82.

[Wasserman89] Wasserman A.I., Pircher P.A. and Muller R.J., The object-oriented

structured design notation for software design representation, IEEE Computer, March,

50-62.

[Wiener88] Wiener R.S. and Pinson L.J., An Introduction to Object-Oriented

Programming and C++, Addition-Wesley.

287

References

[Wiener91] Wiener R.S. and Friedman R.P., Foreward. JOOP (Focus on analysis and

design), 4-5.

[Wirfs89] Wirfs-Brock, R. and Wilkerson, B., Object-oriented design; a responsibility-

driven approach. ECOOP/OOPSLA *89 Proceedings, 71-75.

[Wirfs90] Wirfs-Brock, R.J., Wilkerson, B. and Wiener, L., Designing Object-Oriented

Software, Prentice Hall.

[Yourdon89] Yourdon E., Structured Analysis, Prentice Hall.

288

