
MORENO-GARCÍA, C.F. and SERRATOSA, F. 2017. Correspondence consensus of two sets of correspondences through 
optimisation functions. Pattern analysis and applications [online], 20(1), pages 201-213. Available from:  

https://doi.org/10.1007/s10044-015-0486-y 

Correspondence consensus of two sets of 
correspondences through optimisation functions. 

MORENO-GARCÍA, C.F. and SERRATOSA, F. 

2017 

This document was downloaded from 
https://openair.rgu.ac.uk 

This is a post-peer-review, pre-copyedit version of an article published in Pattern analysis and applications. 
The final authenticated version is available online at: https://doi.org/10.1007/s10044-015-0486-y. 

https://doi.org/10.1007/s10044-015-0486-y
https://doi.org/10.1007/s10044-015-0486-y.)


 

- 1 - 

Correspondence Consensus of Two Sets of Correspondences through Optimisation Functions1 

Carlos Francisco Moreno-García & Francesc Serratosa 

carlosfrancisco.moreno@estudiants.urv.cat 
francesc.serratosa@urv.cat 

Universitat Rovira i Virgili, Spain 
 

Abstract: We present a consensus method which, given two correspondences between sets of 
elements generated by separate entities, enounces a final correspondence consensus considering 
the existence of outliers. Our method is based on an optimisation technique that minimises the 
cost of the correspondence while forcing (to the most) to be the mean correspondence of the two 
original ones. The method decides the mapping of the elements for which the original 
correspondences disagree and returns the same element mapping when both correspondences 
agree. We first show the validity of the method through an experiment in ideal conditions based 
on palmprint identification and subsequently, present two practical experiments based on image 
retrieval. 

Keywords: Assignment Problem, Consensus strategy, Weighted Mean, Hamming 
Distance, Optimisation. 

1. Introduction 
 
When two different strategies decide to solve the assignment problem (finding the correspondence or 
mapping between two sets of elements), differences on the elements’ mapping may occur. These 
differences appear due to several factors. Between them, we could cite the following. a) One of the 
strategies gives more importance to some of the element’s attributes, and the other strategy believes other 
ones are more important. If our scenario is based on an automatic method, these differences are gauged by 
the features or the weights on these features. Contrarily, if the scenario is based on a human-machine 
interaction (for instance, semi-automatic medical image recognition), the strategy is based on the 
experience of a human specialist. For instance, if such elements represent regions of segmented images, 
one subject may think the area is more important than the colour, and the other one may think the 
opposite. b) Another factor that influences the elements’ mapping could be that the elements’ assignment 
problem is computed with a suboptimal algorithm, and different non-exact assignments can appear.  
Some examples of state of the art of correspondence methods are the classical ones such as [1], the ones 
that discard outlier elements [2], [3] or the ones that characterise the set of elements into an attributed 
graph [4], [5]. Although some manual methods [6] have been presented to improve the correspondences 
made by a single matching algorithm, for these three scenarios, a consensus system could intervene as a 
third party to decide the final elements’ assignment when discrepancies appear, especially as the number 
of involved elements increase. 

The most practical form to understand the advantages of our approach is through an image recognition 
scenario. We define salient points as image locations that can be robustly detected among different 
instances of the same scene, with varying imaging conditions. Salient points play the role of parts of the 
image that result in the elements to be matched. These points can be corners (intersection of two edges) 
[7] maximum curvature points [8] or isolated points of maximum or minimum local intensity [9]. There is 
an evaluation of the most competent approaches in [10]. Figure 1 shows an image with the salient points 
detected by SIFT [11] and SURF [12] methods, and the correspondences deducted by the FastBipartite 
algorithm [13] [14] and the matching function MatchFeatures contained in Matlab. We only show the 
mapped points (usually called inliers), excluding the non-matched points (outliers). Based on a previously 
established ground truth, we depict green lines representing correctly detected correspondences, and red 
lines representing correspondences that are different from the ground truth. Since the salient point extractor 
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is different, between figures 1(a) and 1(b) not only salient points are located in different positions but also 
different features are extracted. For this reason, the obtained correspondences are clearly different. If we 
compare figures 1(b) and 1(c), even if the initially extracted salient points have the same location and 
feature values, different correspondences are obtained since different matching algorithms were used. 
Therefore, some of the mapped points are different. 
 

 
(a) Points detected by SURF method and matched by FastBipartite algorithm 

 

 
(b) Points detected by SIFT method and matched by FastBipartite algorithm 

 

 
(c) Points detected by SIFT method and matched by MatchFeatures Matlab function 
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Figure 1. Correspondences deducted by different feature extractors and matching algorithms. Green lines 
are correct correspondences and red ones are incorrect ones. 

 
Our method is intended to be applied on two scenarios. The first one, when either two human specialists 
or two suboptimal algorithms seek for salient points or parts of an object and also their correspondences 
(or in an interactive way [15], []), (figure 1a and 1b). The second one, when the salient points have been 
previously computed, and both specialists receive the same input (figure 1b and 1c). The main difference 
resides in the fact that some points can only be considered by one of the specialists and so, cannot be 
mapped by the other specialist. Consider the example presented above. The aim of our method is to deduct 
a set of points on both images, and a correspondence between them such that the number of correct 
correspondences is greater than any of both methods. Figure 2 shows the result of applying our consensus 
method to examples of Figures 1(b) and 1(c) (second scenario). Our method must be able to deal with 
points that appear in both original correspondences and points that only appear in one of the 
correspondences. The number of correct correspondences (green lines) has increased with respect to the 
ones in figures 1(b) and 1(c) and the number of incorrect correspondences (red lines) has decreased. 
 

 
Figure 2. Consensus of examples on Figures 1(b) and 1(c). Green lines: correct correspondences. Red 
lines: incorrect ones. 
 
A key factor of our method resides in modelling the consensus correspondence as a weighted mean of the 
two initial ones. That is because the aim of consensus methodologies is to find an assignment that is as 
close as possible to both initial ones, but that minimises the final assignment’s cost as well. Thus, our 
methodology is inspired in the one presented in [16], which obtains a weighted mean clustering consensus 
given a pair of clusterings. Our method, and also [16], does not restrict the correspondence consensus to be 
a strict mean but a weighted mean. Other methods to perform clustering consensus are [17], where a final 
cluster is obtained based on a similarity graph and [18], where the least square algorithm are used. 
Moreover, in [19] consensus clustering is used to classify genetic diseases. All of the aforementioned 
methods are closely related to unsupervised machine learning methods [20]. 
The main drawback of intending to find a weighted mean assignment resides in the large number of 
possible solutions. One of the most well-known and practical options to reduce the complexity of a 
combinatorial calculation is combinatorial optimisation. The concept of optimisation is related to the 
selection of the “best” configuration or set of parameters to achieve a certain goal [21]. Functions 
involved in an optimisation problem can be either conformed by continuous values or discrete values, 
often called as combinatorial scenarios. These second scenarios have been largely studied and applied for 
matching problems, particularly the case of the Hungarian Algorithm [1]. This method converts a 
combinatorial problem into a correspondence problem, which will eventually derive in an optimal 
configuration for a cost-based correspondence. 
Recently, some collaborative methods have been proposed that given a set of classifiers; return the most 
promising class [22]. These methods learn some weights that gauge the importance of each classifier and 
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also the sample through several techniques such as voting [23]. Nevertheless, they cannot be directly 
adapted to our problem, since their output is a class index and our output must be a whole correspondence 
between two sets of points. The method we propose could be applied to obtain a common correspondence 
between sets [22], [23] or to define a median that represents different sets in only one structure [24], [25]. 
In the application domain, this method cold be used to latent palmprint matching [30] or hand-written 
electronic schemes [35]. 
The rest of the paper is organised as follows. In section 2, we present the basic definitions and we propose 
a practical example. In section 3, we define our method to obtain a correspondence consensus given two 
different correspondences calculated from two sets of points. In section 4, we present the experimental 
validation, which is split in three main experiments. We conclude the paper and propose the future work 
in section 5. An initial study of these problems has been submitted [28]. In this paper, we have added 
much more experiments and the possibility of having outliers in both sets of elements; therefore, we have 
modelled more real sets of applications. 

 
2. Basic Definitions 
 
Given two sets of elements and a correspondence between them, we define inlier elements as the elements 
that are mapped by the correspondence and outlier elements as the ones that are not. In the case we have 
two correspondences between the same set of elements, the number of inliers and outliers that generated 
both correspondences in these sets can be different. To formalise this situation, it is usual to consider 
some extra elements in both sets (usually called null elements) to discern between inliers and outliers. 
Thus, the elements in the domain set have to be considered outliers if mapped to null elements in the 
codomain set. In the same way, the elements in the codomain set have to be considered outliers if their 
argument value is a null element. More formally, given a set of elements 𝐺! = {𝑔!!,𝑔!!,… ,𝑔!!

! } where the 
elements 𝑔!! = (𝑚!

!  , 𝑎!!  ), being 𝑚!
! ∈   𝛴! (where 𝛴! denotes a set of indices) and 𝑎!! ∈   𝛵 (where Τ is the 

domain of the attribute of the elements), a correspondence 𝑓 can be established between 𝐺! and another 
set of elements 𝐺!, with similar domain 𝛵. It is usual to consider that 𝐺! and 𝐺! have been previously 
enlarged with an enough number of null elements such that all combinations of mappings between inliers 
and outliers are possible. Therefore, if the initial cardinalities were µμ! and µμ!, after the enlargement both 
sets have µμ = µμ! + µμ! elements. This correspondence 𝑓 is understood as a mapping that proposes a match 
𝑓:  𝛴! →   𝛴! from elements of 𝐺! to elements of 𝐺!. 𝑓 can be defined through a so called correspondence 
matrix 𝐹, where 𝐹 𝑖, 𝑗 = 1 when 𝑓 𝑚!

! = 𝑚!
! and 𝐹 𝑖, 𝑗 = 0 otherwise. 

We define the cost of a correspondence 𝐶𝑜𝑠𝑡(𝐺!,𝐺!, 𝑓) as the addition of individual element costs in a 
similar way as in the Graph Edit Distance [29], 
 

𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓 =    𝑐 𝑚!
!  , 𝑓 𝑚!

!

!

!!!

 

    (1) 
 

where 𝑐 is defined as a distance function over the domain of attributes Τ. Distance c is application 
dependent [29] and it has to consider both the case where two original elements are mapped, and the one 
where one of them is a null element (c = 0 if the mapped elements are null elements). We suppose that 
c ∈ [0,1] since it makes easier the setting of some weights of our method. 
The distance between sets 𝑑!(·,·), which also delivers the minimum cost of all the correspondences, is a 
function defined as 
 

𝑑!(𝐺!,𝐺!) = 𝑚𝑖𝑛 𝐶𝑜𝑠𝑡(𝐺!,𝐺!, 𝑓)   ∀  𝑓:  𝛴! →   𝛴!   (2) 
 
The correspondence that obtains this distance is known as the optimal correspondence 𝑓∗, and is defined 
as 
 

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀!:  !!→  !!   {𝐶𝑜𝑠𝑡(𝐺!,𝐺!, 𝑓)}    (3) 



 

- 5 - 

 
We convert this linear minimisation problem into an assignment problem [1] in which any 
correspondence 𝑓 is related with a combination. With the calculation of a cost matrix 𝑪 𝑖, 𝑗 =
𝑐(𝑚!

!,𝑚!
!), we can convert equation 3 into 

 
𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀!:  !!→  !!   {𝐂!}    (4) 

 
where 𝐂! is the cost of the combination 𝑓 (or correspondence in the set domain) applied to matrix 𝑪. That 
is 
 

𝐂! = 𝑪 𝑖, 𝑘
!

!!!

𝑤ℎ𝑒𝑟𝑒  𝑓 𝑚!
! = 𝑚!

! 

𝑠. 𝑡.∀𝑖   ≠ 𝑗, 𝑓(𝑚!
!) ≠ 𝑓(𝑚!

!)    (5) 
 
Assume 𝑓! and 𝑓! are two correspondence functions between sets 𝐺! = {𝑔!!,𝑔!!,… ,𝑔!!} and 𝐺! =
{𝑔!!,𝑔!!,… ,𝑔!!}. We define the Hamming Distance  𝑑!(·) between the correspondences 𝑓! and 𝑓! as 
 

𝑑! 𝑓!  , 𝑓! =    1 − 𝛿 𝑓! 𝑚!
!   , 𝑓! 𝑚!

!

!

!!!

 

    (6) 
 
where function 𝛿 is the well-known Kronecker Delta. 

 

𝛿(𝑎, 𝑏) =   
0    𝑖𝑓  𝑎 ≠ 𝑏
1  𝑖𝑓  𝑎 = 𝑏      (7) 

 
In its more general form, the mean of two elements 𝑒! and 𝑒! has been defined as an element 𝑒 such that 
𝑑 𝑒! , 𝑒 = 𝑑 𝑒! , 𝑒  and 𝑑 𝑒! , 𝑒! = 𝑑 𝑒! , 𝑒 +   𝑑 𝑒, 𝑒! , being 𝑑 any distance measure defined on the 
domain of these elements. Moreover, the concept of weighted mean is used to gauge the importance or 
the contribution of the involved elements. In this case, the most general definition is 𝑑 𝑒! , 𝑒 = 𝛼 and 
𝑑 𝑒! , 𝑒! = 𝛼 +   𝑑 𝑒, 𝑒! , where 𝛼 is a constant that controls the contribution of the elements and it 
holds 0 ≤ 𝛼 ≤ 𝑑 𝑒! , 𝑒! . Finally, if we do not need to introduce the weighting factor 𝛼 in our model, any 
element 𝑒 is a weighted mean of two elements 𝑒! and 𝑒! if it holds 𝑑 𝑒! , 𝑒! = 𝑑 𝑒! , 𝑒 +   𝑑 𝑒, 𝑒! . 
Note that elements 𝑒! and 𝑒! hold this condition so, they also are weighted means. 
One of the most appropriate form to model a consensus scenario given two different proposals is the one 
done by [16], which defined the consensus as the weighted mean of these two proposals. The aim of [14] 
is to find the consensus clustering of a set of elements given two different clustering proposals applied to 
this set of elements. If we want to translate this model to our problem, we should find the weighted mean 
correspondences 𝑓 given two different correspondences 𝑓! and 𝑓!. As commented in the previous 
paragraph, if we want 𝑓 to be defined as a weighted mean correspondence of 𝑓! and 𝑓! the following 
restriction has to hold, 
 

𝑑! 𝑓!  , 𝑓! =   𝑑! 𝑓!  , 𝑓 +      𝑑! 𝑓  , 𝑓!     (8) 
 
As stated before, several correspondences 𝑓 hold this condition, including 𝑓! and 𝑓!. To select one of the 
options, one choice would be a brute force method that obtains all possible combinations and selects the 
best one from the application point of view. A more optimal choice is a standard minimisation approach, 
to reduce the computational time. Standard minimisation approaches aim to find an optimal element 𝑒∗ 
that globally minimises a specific function. Usually, this function is composed of an empirical risk 𝛻 𝑒  
plus a regularization term 𝛺 𝑒  weighted by a parameter λ [27]. The empirical risk is the function to be 
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minimised per se, and the regularisation term is a mathematical mechanism to impose some restrictions. 
Parameter λ weights how much these restrictions have to be imposed. 

 
𝑒∗     = 𝑎𝑟𝑔𝑚𝑖𝑛∀!   {𝛻 𝑒 +   𝜆 ∙ 𝛺 𝑒 }    (9) 

 
The aim of this paper is to present a method to find an approximation of the weighted mean 
correspondence given two correspondences. Therefore, we want to find 𝑓∗ such that the following 
equation holds, 

 
𝑓∗       = 𝑎𝑟𝑔𝑚𝑖𝑛∀!:  !!→  !!   {  𝜆! ∙ 𝛻 𝑓 +      𝜆! ∙ 𝛺 𝑓 }   (10) 

 
Although not strictly necessary, we present this equation with parameters  𝜆!  and   𝜆! instead of only one 
parameter 𝜆 as in equation 9 to simplify some explanations and examples. In the next sub-section, we 
present a practical example. Afterwards, we explain functions 𝛻 𝑓  and 𝛺 𝑓 .  
 
2.1 Practical Example 
 
To facilitate the understanding of our method, we propose the following example which we will comment 
throughout the paper. Suppose two sets 𝐺! and 𝐺! of 7 elements have attributes represented by Natural 
numbers (Table 1). Additionally, two correspondences 𝑓! and 𝑓! have been defined between these two 
sets (Figure 3). Note that only the first mapping is common to both correspondences with 𝑓! 𝑚!

! =
𝑓! 𝑚!

! . Moreover, elements 𝑚!
!, 𝑚!

! and 𝑚!
! (𝑚!

!, 𝑚!
! and 𝑚!

!) are outliers of 𝐺! (𝐺!) with respect to 𝑓!. 
Elements 𝑚!

! and 𝑚!
! (𝑚!

! and 𝑚!
!) are outliers of 𝐺! (𝐺!) with respect to 𝑓!. The Hamming distance 

is  𝑑! 𝑓! , 𝑓! = 7 − 1 = 6. If we define the cost between elements 𝑔!! and 𝑔!! of both sets as 𝑐 𝑎!!  , 𝑎!! =
𝑎!! − 𝑎!! /𝑚𝑎𝑥 𝑎!!  , 𝑎!! , then the costs (equation 1) of these correspondences are 𝐶𝑜𝑠𝑡 𝑓! = 1.4 and 
𝐶𝑜𝑠𝑡 𝑓! = 2.7. 
 

Table 1. Attributes of sets 𝐺!and 𝐺!. 
s = {1,2} a!!  a!!  a!!  a!!  a!!  a!!  a!!  

G! 1 4 7 5 3 2 2 
G! 2 5 6 8 4 3 2 

 

  
Figure 3. Example correspondences 𝑓! and 𝑓! between sets 𝐺!and 𝐺!. 

 
3. Method 
 
Our method defines the optimal correspondence 𝑓∗ through equation 10 in which the Loss function and 
the Regularisation term are 
 

𝛻 𝑓 = 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓  and 𝛺 𝑓 =   𝑑! 𝑓! , 𝑓 +   𝑑! 𝑓, 𝑓! − 𝑑! 𝑓! , 𝑓!     (11) 
 
With this equation we intend to minimise the obtained correspondence’s cost (equation 1) while 
restricting it to be a weighted mean (equation 8). The degree of restriction depends on weights   𝜆!  and 
  𝜆!. Note that by definition of a distance,   𝑑! 𝑓! , 𝑓 +   𝑑! 𝑓, 𝑓! − 𝑑! 𝑓! , 𝑓! ≥ 0. 
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Since the aim of our method is to decide the correspondence closer to both human’s correspondences (or 
automatically obtained correspondences), our strategy only seeks for the partial correspondence where 
both of the specialists disagree. The other partial correspondence in which both specialist decided the 
same point mapping is directly assigned as the final result. Understanding 𝑓! and 𝑓! as sets of element’s 
mappings, we split them in two disjoint subsets such that 𝑓! = 𝑓!! ∪ 𝑓!!! and 𝑓! = 𝑓!! ∪ 𝑓!!!. Subsets 
𝑓′! and 𝑓′! are related with the partial correspondences where 𝑓! 𝑚!

! = 𝑓!(𝑚!
!) and subsets 𝑓′′! and 

𝑓!!! are related with the other partial ones where 𝑓! 𝑚!
! ≠ 𝑓!(𝑚!

!). This also means that the cost of 
both correspondences is 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓! = 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!! + 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!′!  and 
𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓! = 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!! + 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!′! . Additionally, we define 𝛴 = 𝛴′ ∪ 𝛴!!. The 
set of elements 𝛴′ in 𝐺! is composed of the elements such that 𝑓! 𝑚!

! = 𝑓!(𝑚!
!) and the set of elements 

𝛴′′ in 𝐺! is composed of the elements such that 𝑓! 𝑚!
! ≠ 𝑓!(𝑚!

!).  
Thus, the obtained consensus correspondence 𝑓∗ is a union of two partial correspondences, 𝑓∗ = 𝑓′∗ ∪
𝑓!!∗ where 𝑓′∗ = 𝑓!! = 𝑓!! and 𝑓!!∗ that is the one defined by the following equation: 
 

𝑓!!!!,!!
∗   = 𝑎𝑟𝑔𝑚𝑖𝑛∀!!!:  !!!"→  !!!"

  𝜆! · 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!! +
  𝜆! ∙   𝑑! 𝑓!!! , 𝑓′′ + 𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓′′! , 𝑓′′!

 (12) 

 
Weights  λ! and   λ! gauge how much the method trusts either the cost or the initial correspondences. If 
  λ! = 0 and   λ! > 0, we force the correspondence to be a union of both correspondences (incongruences 
are solved by selecting one of the mappings arbitrarily). Conversely, if   λ! > 0 and   λ! = 0, the method 
tends to minimize the cost without taking into account the initial proposals. In fact, in the experimental 
section, we show the that best combinations are not these extreme cases. To solve equation 12, we 
translate the linear minimisation problem to an assignment problem [29] as shown in equation 4 but, 
instead of the cost matrix 𝑪, our method minimises expression 𝐻!!,!! defined as 
 

𝐻!!,!! = 𝜆! ∙ 𝑪′′!!! +   𝜆! ∙ [1 − 𝐹!!!,!]!!!           (13) 
 
where expression [∙]!!! is the cost of the correspondence 𝑓!! applied on matrix [∙] (equation 5). 𝑪′′ 𝑖, 𝑗 =
𝑐(𝑚!

!,𝑚!
!) with 𝑚!

! ∈ 𝛴!!" and 𝑚!
! ∈ 𝛴!!". Besides, 𝐹′′!,! = 𝐹!!! + 𝐹!!!, where 𝐹!!! and 𝐹!!! are the 

correspondence matrices (as defined at the beginning of section 2) corresponding to 𝑓!!! and 𝑓!!! 
respectively. 1 represents a matrix of all ones. Note that the number of rows and columns of matrices 𝑪′′, 
𝐹!!! and 𝐹!!! is lower or equal than 𝑪. As node mappings of 𝑓! and 𝑓! are more similar, the smaller the 
number nodes in 𝛴!!" and 𝛴!!" is, and so, the dimensions of 𝑪′′, 𝐹!!! and 𝐹!!!. This fact affects directly on 
the computational cost. Notice that we could define 𝜆! = 1 − 𝜆! or viceversa, however, we decide to 
present both parameters separately to standardise some aspects of the experimental explanations. 
Considering equation 13, we obtain the following expression, 
 

𝑓!!!!,!!
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀!!! 𝐻!!,!! !!!

    (14) 
 
Figure 4 shows values of matrices 𝐹!, 𝐹!, 𝑪′′,𝐹′′!,! and 𝐻!!,!! (using 𝜆! = 1 and 𝜆! = 1) on our 
practical example. All matrices are squared given the need of the consensus correspondence to be 
bijective, however they have different dimensions. This is because the union of elements in the domain 
and codomain is 7, but elements 𝑚!

! and 𝑚!
! have not been taken into consideration since 𝑓! 𝑚!

! =
𝑓!(𝑚!

!). Note that outliers in 𝐺! (and 𝐺!) generate null rows (and null columns) in 𝐹! and 𝐹!. 
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Figure 4. Matrices 𝐹! and 𝐹! obtained from correspondences 𝑓! and 𝑓! between sets 𝐺! and 𝐺! and the 

obtained 𝑪′′,𝐹′′!,! and 𝐻!!,!!(𝜆! = 1 and 𝜆! = 1). 
 
Several algorithms can be used to minimise equation 14, for instance the Hungarian algorithm [1]. As a 
result, the cost of the obtained consensus becomes, 
 

𝑪!!!,!!
∗ = 𝑪′′!!!!!,!!

∗ + 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓!!       (15) 

 
In the next sub-section we demonstrate equations 12 and 14 minimise the same approximation of the 
consensus correspondence 𝑓!!!!,!!

∗
 for all weights 𝜆!  and 𝜆! and pairs of graphs 𝐺! and 𝐺!. Additionally, 

we specify the cases in which the obtained correspondence is a weighted mean correspondence and not an 
approximated weighted mean correspondence. 
 
3.1 Reasoning about Optimality and Accuracy 
 
If we want to use equation 14 to solve our problem instead of equation 12, we must now demonstrate that 
function   𝜆! · 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓′′ +      𝜆! ∙   𝑑! 𝑓!!! , 𝑓′′ +   𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓′′! , 𝑓′′!  extracted from 
equation 12 minimises the same partial correspondence than 𝜆! ∙ 𝑪′′!!! +   𝜆! ∙ [1 − 𝐹!!!,!] !!!  
extracted from equation 14. Notice that by definition, 𝐶𝑜𝑠𝑡 𝐺!,𝐺!, 𝑓′′ = 𝑪′′!!! therefore, we have to 
demonstrate the following equation, 
 

[1 − 𝐹!!!,!]!!! =   𝑑! 𝑓!!! , 𝑓′′ +   𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓′′! , 𝑓′′!       (16) 
 
If equation 16 holds, then we can confirm that it is valid to use equation 14 to solve our problem. Suppose 
the cardinality of 𝛴!!" and 𝛴!!" is n. Since we have defined these sets such that they do not have any 
element in common, then, by definition of these sets, 𝑑! 𝑓′′! , 𝑓′′! = 𝑛. Given the involved 
correspondences 𝑓′′, 𝑓′′! and 𝑓′′!, we can define the three following natural numbers: 𝑛!, 𝑛! and 𝑛!. 
 
1) 𝑛!: number of nodes in 𝛴!!" that hold 𝑓!! 𝑚!

! ≠ 𝑓!!! 𝑚!
!  and 𝑓!! 𝑚!

! ≠ 𝑓!!! 𝑚!
! . 

2) 𝑛!: number of nodes in 𝛴!!" that hold 𝑓!! 𝑚!
! = 𝑓!!! 𝑚!

!  and 𝑓!! 𝑚!
! ≠ 𝑓!!! 𝑚!

! . 
3) 𝑛!: number of nodes in 𝛴!!" that hold 𝑓!! 𝑚!

! ≠ 𝑓!!! 𝑚!
!  and 𝑓!! 𝑚!

! = 𝑓!!! 𝑚!
! . 

 
Likewise, by definition of these sets there is no m!

! such that 𝑓!! 𝑚!
! = 𝑓!!! 𝑚!

!  and 𝑓!! 𝑚!
! =

𝑓!!! 𝑚!
! . Therefore, 𝑛 =   𝑛! +   𝑛! +   𝑛!. For simplicity, we order the nodes in 𝛴!!" such that 𝑚!

! to 𝑚  !!
!  

hold the first condition, 𝑚  !!!!
!  to 𝑚  !!!  !!

!  hold the second condition and 𝑚  !!!  !!!!
!  to 𝑚!

!  hold the third 
condition. 
For equation 16 to hold, we first demonstrate that [1 − 𝐹!!!,!]!!! =   𝑛! and afterwards that 
  𝑑! 𝑓!!! , 𝑓′′ +   𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓!!! , 𝑓!!! = 𝑛!. 
 
 

1) Demonstration of [1 − 𝐹!!!,!]!!! =   𝑛!: 
Suppose that 𝑓!! 𝑚!

! = 𝑚!
! then 
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1 − 𝐹!!!,! !!! = 1 − 𝐹!!!,! 𝑖, 𝑘
!

!!!

=    1

  !!

!!!

+ 0
!

!!  !!!!

=   𝑛! 

 
2) Demonstration of  𝑑! 𝑓!!! , 𝑓′′ +   𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓!!! , 𝑓!!! =   𝑛!: 

 
  𝑑! 𝑓!!! , 𝑓!! +   𝑑! 𝑓!!, 𝑓!!! − 𝑛

= 2 − 𝛿 𝑓!!! 𝑚!
! , 𝑓!! 𝑚!

! − 𝛿 𝑓!! 𝑚!
! , 𝑓!!! 𝑚!

!
!

!!!

− 𝑛

=    2

  !!

!!!

+ 1

  !!!  !!

!!  !!!!

+ 1
!

!!  !!!  !!!!

− 𝑛 = 2𝑛! +   𝑛! +   𝑛! − 𝑛 =   𝑛! 

∎  
 
In some cases, it is interesting to know if we have obtained a weighted mean correspondence or an 
approximated one. First, we have to realise that if both 𝑓′ and 𝑓′′ are partial weighted mean 
correspondences, then the union 𝑓 = 𝑓′ ∪ 𝑓′′ is a weighted mean correspondence, since by definition 
𝑓! ∩ 𝑓!! = 0. It is clear that if equation 8 holds for both partial correspondences, then it holds for the 
complete one. Moreover, by definition of our partial correspondence 𝑓′, it is always defined as weighted 
mean correspondence. Therefore, we conclude that the obtained correspondence 𝑓∗ is a weighted mean 
correspondence when 𝑓!!∗ is also a weighted mean correspondence. These cases are the ones where 𝑓!!∗ 
holds equation 8. Since we have demonstrated that  𝑑! 𝑓!!! , 𝑓′′ +   𝑑! 𝑓′′, 𝑓′′! − 𝑑! 𝑓!!! , 𝑓!!! =   𝑛!, 
then   𝑛! must be 0. By definition of   𝑛!, these correspondence are the ones where 𝑓!!∗ 𝑚!

! = 𝑓!!! 𝑚!
!  

or 𝑓!!∗ 𝑚!
! = 𝑓!!! 𝑚!

! . Therefore, we conclude that 
 

𝑓!!,!!
∗  is a weighted mean correspondence if: 

𝑓!!!!,!!
∗ 𝑚!

! =
𝑓!!! 𝑚!

! 𝑜𝑟
𝑓!!! 𝑚!

! ∀𝑚!
! ∈ 𝛴!!"

    (17) 

 
The cost of testing if the correspondence obtained is a weighted mean is linear with respect to the number 
of discrepancies between correspondences 𝑓! and 𝑓!. 
Note that if 𝜆! = 0 and 𝜆! > 0 and if we use the Hungarian method [1] to solve equation 14, our method 
always obtains a weighted mean correspondence. Indeed, in this case, solving equation 14 reduces to 
minimise [1 − 𝐹!!!,!]!!! (equation 16), which is equal to zero if and only if the associated correspondence 
is a weighted one (equation 17, and above discussion). The Hungarian algorithm, being optimal, reaches 
this minimal value and the associated correspondence is a weighted mean. 
 
4. Experimentation 
 
We have split the experimental section into four sub-sections. First, we introduce the databases used for 
our experimentation. Then, we describe the first experiment, which aims confirm the theoretical 
background and validating parameters 𝜆!  and 𝜆!. This way, we want to check how close the obtained 
consensus correspondence is to the mean correspondence (“correspondence” means correspondence). 
Also, we want to know how low the obtained cost is.  
The aim of the following two experiments described on the third and fourth subsections respectively, is to 
show our method in two practical scenarios (the ones commented in the introduction). In the first one, 
there are no outliers, that is, the two proposed correspondences relate the whole points of both sets and so, 
the correspondences are bijective functions and both sets have the same cardinality. We call it a 
correspondence-oriented scenario. In the second one, the sets of points that relate both correspondences 
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are not exactly the same and so, some points are considered inliers in one of the correspondences but 
outliers in the other one.  We call it a feature-oriented scenario.  
 
 
 
4.1 Point Set Databases with an oracle’s correspondence 
 
In this section we introduce the two datasets used for the experimentation process. Given two images sets, 
our purpose is to generate datasets containing correspondences to consider as oracle. An oracle is a 
correspondence between elements of two sets that we consider as ideal. 
 
“Tarragona Palmprint” database 
This database is composed of 640 triplets of two minutiae sets 𝐺!! and 𝐺!!, and a correspondence 𝑓! 
between them. The database was created as follows. First, we used images contained in the Tsinghua 500 
PPI Palmprint Database [30]. This is a public high-resolution palmprint database composed of 500 
palmprint images of a resolution of 2040 x 2040 pixels. Eight different palmprint inks are enrolled from 
each person. We used only the first 10 subjects of the database, therefore making our initial dataset 
composed of 80 palmprints from which we extracted 80 minutiae sets using the algorithm presented in 
[31], [32] and [33]. The average number of extracted minutiae is 1000 per palmprint. Given each subject, 
we computed the minutiae correspondences between its 8 sets of minutiae through the Hungarian method 
[1], plus a greedy algorithm to select the matches from the resulting matrix of the previous step. Thus, we 
generate a total of 64 oracles per subject and so, a total of 640 triplets composed of two sets of minutiae 
from the same subject and the corresponding correspondence, 𝐺!!,𝐺!!, 𝑓! , where 𝑖 ∈ [1. .640]. The 
information of each minutia is the 2D position, angle and type of minutia (Terminal or Bifurcation) 
 
“Tarragona Exteriors” database 
This database is composed of 5 sequences ×5 feature extractors ×10 pairs of images ×2 matching 
algorithms = 500 quartets of two point sets and two correspondences between them. The first 
correspondence has been obtained by one of two experimented matching algorithms, and the second one 
is the correct correspondence. To compose this database, we used the 11 image samples from 5 public 
image databases called “BOAT”, “EAST_PARK”, “EAST_SOUTH”, “RESIDENCE” and “ENSIMAG” 
[35], [36]. These databases are composed of a sequence of images taken of the same object, but with 
different points of views and scales. Together with the images, the homography estimations that convert 
the first image (img00) of the set into the other ones (img01 through img10) is provided. From each of the 
images, we extracted the 50 most reliable salient points using 5 methodologies: FAST, HARRIS, 
MINEIGEN, SURF (native Matlab 2013b libraries) and SIFT (own library). Moreover, we computed the 
10 correspondences between the first image of the sequence and the other ten ones using 2 algorithms: the 
Matlab function MatchFeatures and the FastBipartite method [13] [14] (note that FastBipartite is usually 
applied to match graphs [31]). Finally, we defined the oracle using the homography provided by the 
original image databases. Thus, the database has a total of 500 quartets composed of two sets of features 
and two correspondences  𝐺!!,𝐺!!, 𝑓! , ℎ! , where 𝑖 ∈ [1. .500]. The features in the feature set are the ones 
extracted using one of the 5 methodologies. 
 
4.2   Evaluation in Ideal Conditions and Parameter Validation 
 
The aim of our method is to deduct a consensus correspondence that has the minimum possible cost and 
that is a weighted mean of both correspondences proposed by human experts or automatic systems. We 
have performed tests in the first database for this purpose. We evaluated three different aspects of our 
method. First, we analysed how minimum the cost of the obtained consensus is. To that aim, we used the 
cost function (equation 1), where 𝑐 considers the distance between the angle and position of the minutiae. 
Second, we analysed if our method is minimising the Regularization term defined in equation 12. We 
propose the following metric for this purpose, 
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𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓! , 𝑓! , 𝑓!!,!!
∗ =

!! !!  ,!!!,!!
∗ !!! !!  ,!!!,!!

∗

!! !!  ,!!
   (18) 

 
As the value of 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 approaches to 1, the closer a consensus is to be a weighted mean. Third, 
we checked if the obtained consensus 𝑓!!,!!

∗  is indeed a weighted mean correspondence. In this case, we 
simply validated that equation 8 holds. 
Given each correspondence 𝑓! in the 640 triplets that compose the “Tarragona Palmprint” database [37], 
we randomly generated 212 pairs of correspondences 𝑓! and 𝑓!. Therefore, we tested a total of 
640x212 = 135680 pairs of correspondences: 𝑓!!

! , 𝑓!!
! , where i ∈ [1. .640] and 𝛼 ∈ [1. .212]. Index 𝑖 

represents the original triplet, and index 𝛼 represents the level of noise added to the original 
correspondence in the ith triplet. The noise is set such that 𝑑! 𝑓!!

! , 𝑓!!
! = 𝛼. Thus, 𝑓!!

! is first randomly 
generated. Then we randomly generate 𝑓!!

! such that 𝑑! 𝑓!!
!  , 𝑓! = 𝛼 − 𝛽 , where 0 ≤ 𝛽 ≤ 𝛼 and 

𝛽 = 𝑑! 𝑓!!
!  , 𝑓! . We have applied this method to avoid 𝑑! 𝑓!!

! , 𝑓! = 𝑑! 𝑓! , 𝑓!!
!  for every case. 

Figures 5 to 8 show the obtained results in this section. We chose three different configurations for   𝜆!  
and 𝜆!: a) The first one: 𝜆! = 1 and  𝜆! = 0. This configuration reproduces a classical minimum-cost 
method (red lines) since the specialist correspondences are not considered. b) The second one:  𝜆! = 1 and 
𝜆! = 1. There is a contribution on the consensus cost and the specialist correspondences, keeping in mind 
that the features’ cost has been normalised to 1(green lines). c) The third one:  𝜆! = 0 and 𝜆! = 1. The 
cost of the consensus correspondence is not minimised. Therefore, this approach would be considered a 
pure consensus of the correspondences done by 𝑓!!

! and 𝑓!!
! (violet lines). The horizontal axis in figures 

5 to 7 represents the noise α and the vertical axis represents the average of the quality measures computed 
for each of the 640 triplets. 
Figure 5 shows the average cost of 𝑓!!,!!!

∗ with respect to 𝛼. It is clearly noticeable that, the larger the 

distance between the specialists (𝑑! 𝑓!!
! , 𝑓!!

! = 𝛼), the higher the cost of the resulting consensus 
correspondence. This relation appears because when the specialists’ correspondences were generated 
from the original oracle in the “Tarragona Palmprint” database, we introduced some random 
modifications that made the correspondence “worse” than the original one, that is, their cost tends to 
increase. We also notice that the correspondence’s cost is lower when the optimisation method considers 
the cost variable (𝜆! = 1) and so, we deduct that this term must be always considered in the optimisation 
function. Moreover, the cost of configuration   𝜆! = 1 and  𝜆! = 1 (green line) is slightly higher than 
configuration   𝜆! = 1 and  𝜆! = 0 (red line). This happens because forcing the consensus to be a weighted 
mean increases slightly the correspondence’s cost. 
 

 
Figure 5.Cost of the consensus correspondence w.r.t. the Hamming distance between the original 

correspondences 
 

Figure 6 shows the behaviour of the Regularisation term (equation 18) as 𝛼 is increased. We can 
appreciate that, since the   𝜆! = 1 and   𝜆! = 0 configuration (violet line) always selected a weighted mean 
consensus, the value of 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 remains 1. Nevertheless, the   𝜆! = 0  and 𝜆! = 1 configuration 
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(red line), which resembles a classical minimisation solution, is less likely to obtain a weighted mean 
correspondence than the   𝜆! = 1 and  𝜆! = 1 (green line) which represents our proposal.  
 

 
Figure 6. Regularisation term minimisation for the correspondence w.r.t. the hamming distance between 

the original correspondences 
 
This aspect is further supported by Figure 7, where we show the percentage of experiments in which 
𝑓!!,!!!
∗  is really a weighted mean of 𝑓!!

! and𝑓!!
!. First of all, as we deducted from equation 17, the 

configuration   𝜆! = 0 and  𝜆! = 1 (violet line) always results in weighted mean consensus. For 
configuration 𝜆! = 0 and 𝜆! = 1 (red line), we realise that not every consensus correspondence is a 
weighted mean since 𝑓!!

! and𝑓!!
! are not considered. Finally, only in some cases that 𝛼 is sufficiently 

large, configuration 𝜆! = 1 and 𝜆! = 1 (green line) fails to obtain a weighted mean. 
 

 
Figure 7. Percentage of tests that the consensus correspondence becomes a weighted mean w.r.t. the 

hamming distance between the original correspondences 
 

Figure 8 shows the cost of the obtained consensus 𝑓!!,!!
∗ with respect to the mean cost of the original 

correspondences 𝑓! and 𝑓! in all configurations of 𝛼. When the cost is considered using 𝜆! = 1 (figures 
8a and b), the consensus always obtains a lower cost than the average of the original correspondences but 
this is not the case when 𝜆! = 0 (figure 8c). When comparing figures 8a and b, we realise results are 
almost similar. From these first experiments, we conclude that when both parameters are taken into 
consideration, the method obtains consensus correspondences that are closer to the mean and whose costs 
are close to the minima. 
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Figure 8. Cost of the obtained correspondence w.r.t. the mean cost of the original correspondences. 

(a):𝜆! = 0 and 𝜆! = 1. (b): 𝜆! = 1 and 𝜆! = 1. (c): 𝜆! = 1 and 𝜆! = 0. 
 
 
4.3  Practical Application in Correspondence-oriented Scenario 
 
From the “Tarragona Exteriors” database [36] (figure 1 shows some examples), we selected the cases 
such that correspondences were obtained by the MatchFeatures function (250 quartets). We applied our 
consensus methodology using the configurations of parameters 𝜆! = 1 and 𝜆! = 1, and we checked the 
correct element mappings through the validation correspondence in the database. The cost function 
between elements was the Euclidean distance between the two sets of features. Since the features in this 
database are normalised, we assume it is fair to compare data from different extractors. We compared our 
method with a simpler one that we called “No Discrepancies”. This method selects the mappings where 
no discrepancies are found. That is, the union of mappings that appear in both methods and the 
correspondences that appear in one of the methods, but not in the other. The “No Discrepancies” method 
can be seen as a simplification of voting methods [28], when only two voting entities are involved. Note 
that this is a correspondence-oriented application, therefore the salient points that are not mapped by the 
method are not used. That is, we select only the salient points that have been mapped and, for this reason, 
the number of point mappings is not always 50. 
Figure 9 shows a graphical representation of the correct correspondences of an item in the “Tarragona 
Exteriors” database obtained by the feature extraction methods FAST and HARRIS using the 
MatchFeatures function. Although the matching algorithm is the same, the extracted points are different, 
and so, the obtained correspondences are different. In red we show the salient points and correspondences 
made exclusively by FAST, and in yellow we show the salient points extracted and the correspondences 
made by HARRIS. Finally, in green, we depict the extracted points that appear in both methods (two 
points are considered the same if they are located within a radius of 6 pixels or less) and also the common 
correspondences. We realise that FAST has achieved 6 correct correspondences (3 red lines plus 3 green 
ones) and HARRIS has achieved 7 correct correspondences (4 yellow lines plus 3 green ones). In this 
case, the “No Discrepancies” method obtains 10 correct correspondences (the addition of red, green and 
yellow) since there are not any discrepancies between red and yellow lines. 
Assuming we are in a correspondence-oriented scenario, the non-mapped points by any correspondence 
are not considered anymore. Therefore, correspondences 𝑓′′!! and 𝑓!!!! are composed of red and yellow 
lines and correspondences 𝑓′!! and 𝑓!!! are represented by the green lines. Note that in each experiment, 
the cardinality of the sets does not depend on the original sets, but rather on the matching processes. 
Moreover, given the correspondences 𝑓′!!! and 𝑓!!!!, there are two types of points in both sets. The ones 
that contribute in both correspondences and the ones that only appear in one of them. 
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Figure 9. Red (yellow) points extracted by FAST (HARRIS). Green points extracted by both methods. 

Lines are mapped points deducted by MatchFeatures Matlab function. 
 
Figure 10 shows the consensus correspondence obtained by our method with parameters 𝜆! = 1 and 
𝜆! = 1. Only the correct mappings with respect to the oracle in the database are depicted. For this pair of 
images, we also achieve 10 correct point mappings. 
 

 
Figure 10. Consensus correspondence obtained by our method given the initial correspondences in figure 

9. 
 
Table 2 shows the average number of correct correspondences obtained by our consensus method 
compared to the “No Discrepancies” method, given the 5 sequences. 𝑪!,! represents the combination of 
extractor methods 𝑀! and 𝑀!, where  𝑀!: FAST, 𝑀!: HARRIS, 𝑀!: MINEIGEN, 𝑀!: SURF and 𝑀!: 
SIFT. We realise that the consensus method obtains a greater number of correct correspondences with 
respect to the “No Discrepancies” method for all combinations and datasets. 
 

Table 2. Average number of correct correspondences obtained by our consensus method and the “No 
Discrepancies” method. 

	  

Correct	  
correspondences	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   C!,!	   Average	  

Boat	   Consensus	   14	   16	   70	   53	   14	   69	   54	   73	   59	   95	   51.7	  
	  	   No	  Discrepancies	   12	   14	   65	   46	   13	   64	   45	   67	   49	   79	   45.4	  

East	  	   Consensus	   4	   4	   150	   79	   2	   147	   76	   144	   91	   270	   96.7	  

Park	   No	  Discrepancies	   3	   3	   67	   74	   1	   68	   61	   70	   63	   213	   62.3	  

East	  	   Consensus	   1	   1	   48	   6	   1	   48	   5	   48	   5	   50	   21.3	  

	  South	   No	  Discrepancies	   1	   1	   43	   3	   1	   43	   2	   43	   2	   43	   18.2	  
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Resid	   Consensus	   2	   3	   106	   4	   3	   108	   5	   104	   4	   110	   44.9	  

	  	   No	  Discrepancies	   1	   1	   68	   4	   2	   63	   6	   65	   4	   73	   28.7	  

Ensimag	   Consensus	   1	   2	   112	   54	   1	   111	   53	   111	   75	   153	   67.3	  
	  	   No	  Discrepancies	   1	   2	   75	   34	   1	   73	   39	   73	   67	   113	   47.8	  

Average	   Consensus	   4.4	   5.2	   97.2	   39.2	   4.2	   96.6	   38.6	   96	   46.8	   135.6	   	  	  

	  
No	  Discrepancies	   3.6	   4.2	   63.6	   32.2	   3.6	   62.2	   30.6	   63.6	   37	   104.2	   	  	  

4.4  Practical Application in Feature-oriented Scenario 
 
For this experiment, we also used the “Tarragona Exterior” database. We selected the two most frequently 
used feature extractors in the consulted literature: SIFT and SURF. Moreover, we used both matching 
algorithms MatchFeatures and FastBipartite. We have considered the whole 50 points in the point sets, 
independently if they were outliers or not. Recall that the outlier points are the ones that are not mapped 
by the correspondence function. Thus, when we computed the consensus correspondence given two 
oracles, it could happen that a point mapped by the consensus correspondence would not have been 
mapped by any of the two oracles. Table 3 shows the average number of discrepancies and the percentage 
that these discrepancies represent (the number of points in the set is 50) between both algorithms. A 
discrepancy appears when the point mapping of both matching algorithms is different. We show this table 
since our algorithm can only increase the accuracy when the number of discrepancies is considerable. If 
there are no discrepancies, the algorithm imposes the mapping decided by both oracles. 
 

Table 3. Average number of discrepancies between MatchFeatures and FastBipartite 
	  	   SIFT	   SURF	   SIFT	  (%)	   SURF	  (%)	  

Boat	   17.1	   39.7	   34.2	   79.4	  

East	  Park	   16	   44.8	   32	   89.6	  

East	  South	   17	   40.8	   34	   81.6	  

Resid	   19.7	   44.3	   39.4	   88.6	  

Ensimag	   18.5	   43.3	   37	   86.6	  

Average:	   17.6	   42.5	   35.3	   85.1	  

 
Table 4 shows the average accuracy of the mappings calculated by our consensus method. This value is 
computed as the average accuracy of the 10 correspondences and the 5 image sequences. The overall 
accuracy (column) of a correspondence is the number of correct node mappings (validated using the 
oracle included in the dataset) divided by the 50 possible node mappings. When the correspondences are 
considered in the optimisation function, 𝜆! = 1, the consensus method obtains slightly better accuracy 
than both of the initial matching methods. These accuracy is increased when the cost is also considered, 
𝜆! = 1. As commented above, our algorithm can only increase the accuracy in the discrepancy cases. For 
this reason, we added the accuracy on the discrepancies (Discrepancies Accuracy % column). This value 
represents the percentage of mappings that are properly correctly found given that a discrepancy between 
the original methods existed. We realise that the consensus method obtains an important increase of the 
accuracy with respect to the initial methods. We observe that our consensus model obtains an accuracy of 
85% (SURF) and 47% (SIFT) for the mappings with discrepancies between the original methods. 
 
 

Table 4. Accuracy comparison between methods MatchFeatures and FastBipartite and features SURF 
and SIFT. 

	  
Method	   Parameters	   Accuracy	  (%)	  

Discrepancies	  
Accuracy	  (%)	  

	  	   MatchFeatures	   	  	   29.56	   	  

	  	   FastBipartite	   	  	   24.32	   	  
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SURF	   	  	   λ! = 1&λ! = 1	  	   30.28	   85.73	  

	  	   Consensus	   λ! = 0&λ! = 1	  	   29.84	   84.48	  

	  	   	  	   	  λ! = 1&λ! = 0	  	   28.04	   79.38	  

	  	   MatchFeatures	   	  	   39.56	   	  

	  	   FastBipartite	   	  	   25.6	   	  

SIFT	   	  	   λ! = 1&λ! = 1	   40.12	   47.11	  

	  	   Consensus	   	  λ! = 0&λ! = 1	  	   39.72	   46.64	  

	  	   	  	   	  λ! = 1&λ! = 0	  	   32.68	   38.37	  
 
5. Conclusions and Further Work 
 
We have presented a consensus method that obtains a correspondence between two sets of elements given 
two initial correspondences between these sets of elements generated by separate entities. The method is 
based on a classical optimisation scheme. The Loss function is defined as the cost of the correspondence 
and the Regularisation term gauges how near the correspondence is to the mean of the correspondences. 
We have shown in the experimental section the validity of our method. As a future work, we propose to 
extend this method such that the consensus can be applied to several correspondences and not only on a 
pair of them. To do so, we are investigating on weighting and voting consensus methods. Nevertheless, 
the method we present is the first step for the several-correspondences case. Since we have defined the 
basic mechanism of the method, a several-correspondences method could be applied simply by using the 
2-correspondence method iteratively. As we have seen, our method achieves a good accuracy when there 
are discrepancies between both correspondences. Moreover, we believe that in the several 
correspondences case, the number of discrepancies would increase. Therefore, our first intuition is that 
our methodology would obtain a good consensus correspondence in this scenario. 
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