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Abstract We describe a hybrid and adaptive coevolu-

tionary optimization method that can efficiently solve

a wide range of multi-objective optimization problems

(MOOPs) as it successfully combines positive traits from

three main classes of multi-objective evolutionary algo-

rithms (MOEAs): classical approaches that use Pareto-

based selection for survival criteria, approaches that

rely on differential evolution, and decomposition-based

strategies. A key part of our hybrid evolutionary ap-

proach lies in the proposed fitness sharing mechanism

that is able to smoothly transfer information between

the coevolved subpopulations without negatively im-

pacting the specific evolutionary process behavior that

characterizes each subpopulation. The proposed MOEA

also features an adaptive allocation of fitness evalua-

tions between the coevolved populations in order to
increase robustness and favor the evolutionary search

strategy that proves more successful for solving the

MOOP at hand. Apart from the new evolutionary algo-

rithm, this paper also contains the description of a new

hypervolume and racing-based methodology aimed at

providing practitioners from the field of multi-objective

optimization with a simple means of analyzing/reporting

the general comparative run-time performance of multi-

objective optimization algorithms over large problem

sets.
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1 Introduction

A multi-objective optimization problem (MOOP) can

be defined as:

minimize O(x) = (o1(x), . . . , om(x))T , (1)

where x ∈ D, D is called the decision (variable) space,

O : D → Rm consists of m single-objective functions

that need to be minimized andRm is called the objective
space. In many cases the decision space of the MOOP

is itself multidimensional, e.g., D = Rn.

Usually, MOOPs do not have a single solution. This

is because the objectives to be minimized (o1 . . . om
from (1)) are often conflicting in nature (e.g., cost vs.

quality, risk vs. return on investment) and no x ∈ D is

able to simultaneously minimize all of them. In order to

define a complete solution for a MOOP, we must first

introduce the notions of Pareto dominance and Pareto

optimality. When considering two solution candidates

x, y ∈ D, solution x is said to Pareto-dominate solu-

tion y (notation: x � y) if and only if oi(x) ≤ oi(y)

for every i ∈ {1, . . . ,m} and oj(x) < oj(y) for at least

one j ∈ {1, . . . ,m} (i.e., x is better than y with regard

to at least one objective and isn’t worse than y with

regard to any objective). A solution candidate x∗ ∈ D
with the property that there exists no y ∈ D such that

y � x∗ is called a Pareto optimal solution to (1). The set

that reunites all the Pareto optimal solutions is called

the Pareto-optimal set (PS) and this set is the complete
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solution of the MOOP. The projection of the Pareto set

on the objective space is called the Pareto front (PF).

Since for many problems, the PS is unknown and

may contain an infinity of solutions, in real-life ap-

plications, decision makers often use the Pareto non-

dominated set (PN) which contains a fixed number of

solution candidates that are able to offer a good ap-

proximation of the PS. Therefore, finding high-quality

Pareto non-dominated sets is the goal of most multi-

objective optimization algorithms (MOOAs). Section 4

contains a detailed discussion regarding quality assess-

ment in the case of PNs.

General research tasks in industrial environments

often deal with highly dimensional (6 ≤ n ≤ 60) multiple-

objective (2 ≤ m ≤ 6) optimization problems (MOOPs)

that also may display very lengthy optimization run-

times. This is because these industrial optimization sce-

narios require fitness evaluation functions that are ex-

tremely computationally intensive. For instance, in Yagoubi

et al (2011) MOOAs are used for the optimization of

combustion in a diesel engine and the fitness evalua-

tions require the usage of software emulators. In Jannot

et al (2011), finite element simulations are used dur-

ing the fitness evaluation of an industrial MOOP from

the field of electrical drive design. In these cases, de-

spite using modern solving techniques from the field of

soft computing like response surface methods, particle

swarm optimization, and evolutionary algorithms, for

many real-life MOOPs, a single optimization run can

take several days, even when distributing the computa-

tions over a computer cluster.

As we strive to significantly reduce the run-times

required to solve industrial MOOPs, our experience is

grounded in three research lines:

– applying non-linear surrogate modeling techniques

on-the fly in order to significantly reduce the de-

pendency on computationally intensive fitness eval-

uations (Zăvoianu et al (2013a));

– deciding what type of parallelization/distribution

method is more likely to deliver the best results tak-

ing into consideration the MOOAs that are used and

the particularities of the hardware and software ar-

chitecture (Zăvoianu et al (2013c));

– trying to develop a new MOOA that generally re-

quires fewer fitness evaluations in order to reach an

acceptable solution, regardless of the specific MOOP

considered, and that is robust with regard to its pa-

rameterization (Zăvoianu et al (2013b));

While the third research direction is quite general

and thus appeals to a considerable larger audience than

the former two, it is also, by far, the most challenging.

In the present article, building on past findings, we de-

scribe the results of our latest efforts directed towards

developing an efficient and robust multi-objective op-

timization algorithm based on a hybrid and adaptive

evolutionary model.

The remainder of this paper is organized as follows:

Section 2 contains a short review on multi-objective

evolutionary algorithms, Section 3 contains the detailed

description of DECMO2, Section 4 presents our ideas

on how to perform a general comparison of run-time

MOOA performance over large problem sets and a for-

mal description of what we understand by the syntagm

“robust and efficient” in the context of MOOAs, Section

5 contains a comparative analysis of the performance

of DECMO2 versus four other MOOAs when consid-

ering a wide range of artificial and real-life MOOPs,

and Section 6 concludes the paper with a summary of

achievements and some perspectives for future work.

2 Multi-objective evolutionary algorithms

Because of their inherent ability to produce complete

Pareto non-dominated sets over single runs, multi-objective

evolutionary algorithms (MOEAs) are a particular type

of MOOAs that have emerged as one of the most suc-

cessful soft computing models for solving MOOPs (Coello

et al (2007)).

Among the early (by now, classical) MOEAs, NSGA-

II (Deb et al (2002a)) and SPEA2 (Zitzler et al (2002))

proved to be quite effective and are still widely used in

various application domains. At a high level of abstrac-

tion, both algorithms can be seen as MOOP orientated

implementations of the same paradigm: the (µ+λ) evo-

lutionary strategy. Moreover, both algorithms are highly

elitist and make use of similar, two-tier, selection for

survival operators that combine Pareto ranking (pri-

mary quality measure) and crowding indices (equality

discriminant). The names of these Pareto-based selec-

tion for survival operators are: non-dominated sorting

(for NSGA-II) and environmental selection (for SPEA2).

Canonically, both NSGA-II and SPEA2 also use the

same genetic operators: simulated binary crossover -

SBX (Deb and Agrawal (1995)) and polynomial mu-

tation - PM (Deb and Goyal (1996)).

More modern MOEAs, like DEMO (Robič and Fil-

ipič (2005)) and GDE3 (Kukkonen and Lampinen (2005))

intend to exploit the very good performance exhibited

by differential evolution (DE) operators (see Price et al

(1997)) and replaced the SBX and polynomial mutation

operators with various DE variants but maintained the

elitist Pareto-based selection for survival mechanisms

introduced by NSGA-II and SPEA2. Convergence bench-

mark tests (Robič and Filipič (2005); Kukkonen and

Lampinen (2009)) show that differential evolution can



DECMO2 - A Robust Hybrid and Adaptive MOEA 3

help MOEAs to explore the decision space far more ef-

ficiently for several classes of MOOPs.

Decomposition is the basic strategy behind many

traditional mathematical programming methods for solv-

ing MOOPs. The idea is to transform the MOOP (as

defined in (1)) into a number of single-objective opti-

mization problems, in each of which the objective is an

aggregation of all the oi(x), i ∈ {1, . . . ,m} , x ∈ D. Pro-

vided that the aggregation function is well defined, by

combining the solutions of these single-objective opti-

mization problems, one obtains a Pareto non-dominated

set that approximates the solution of the initial MOOP.

Miettinen (1999) provides a valuable review of several

methods for constructing suitable aggregation functions.

However, solving a different single-objective optimiza-

tion problem for each solution in the PN is quite in-

efficient. A major breakthrough was achieved with the

introduction of MOEA/D in Zhang and Li (2007) and

its DE-based variant (MOEA/D-DE) in Li and Zhang

(2009). This evolutionary algorithm decomposes a multi-

objective optimization problem into a number of single-

objective optimization subproblems that are then si-

multaneously optimized. Each subproblem is optimized

through means of (restricted) evolutionary computa-

tion by only using information from several of its neigh-

boring subproblems. It is noteworthy that MOEA/D

proposes a different paradigm to multi-objective opti-

mization than most of the previous MOEAs, and that

this approach has proven quite successful, especially

when dealing with problems with complicated Pareto-

optimal sets. A version of MOEA/D (see Zhang et al

(2009)) won the CEC2009 Competition dedicated to

multi-objective optimization. As such, MOEA/D is con-

sidered state-of-the-art by many researchers in the field.

In Zăvoianu et al (2013b), we described DECMO - a

hybrid multi-objective evolutionary algorithm based on

cooperative coevolution that was able to effectively in-

corporate the pros of both individual search strategies

upon which it was constructed. The idea was to simul-

taneously evolve two different subpopulations of equal

size: subpopulation P was evolved using the SPEA2

evolutionary model, while subpopulation Q was evolved

using DEMO/GDE3 principles. After various experi-

ments, we discovered that a dual fitness sharing mech-

anism is able to induce the most stable behavior and to

achieve competitive results. The DECMO fitness shar-

ing mechanism consists of:

– generational weak sharing stages (i.e. trying to in-

sert in each subpopulation one random offspring

generated in the complementary subpopulation);

– fixed interval strong sharing stages (i.e. constructing

an elite subset of individuals from A = P ∪ Q and

reinserting this subset in P and Q with the intent

of spreading the best performing individuals across

both subpopulations);

The aforementioned elite subset construction and

the insertion and reinsertion operations are all performed

by applying Pareto-based selection for survival oper-

ators (non-dominated sorting or environmental selec-

tion).

DECMO can be considered as a successful proof

of concept as it displayed a good performance on a

benchmark composed of several artificial test problems

(the coevolutionary algorithm was consistently able to

replicate the behavior of the best performing individual

strategy and, for some problems, even surpassed it).

3 Our proposal: DECMO2

In this section, we describe DECMO2, a new and signif-

icantly improved variant of our coevolutionary MOEA .

Apart from Pareto-based elitism, differential evolution

and coevolution, DECMO2 has two more key build-

ing blocks (integration of a decomposition strategy and

search adaptation) and initial results show that it is

able to compete with, and sometimes outperform, state-

of-the-art approaches like MOEA/D and GDE3 over a

wide range of multi-objective optimization problems.

Like its predecessor, DECMO2 is a hybrid method

that uses two coevolved subpopulations of equal and

fixed size. The first one, P (|P | = Psize), is evolved

using the standard SPEA2 evolutionary model. The

second subpopulation, Q (|Q| = Qsize), is evolved us-

ing differential evolution principles. Apart from these,

DECMO2 also makes use of an external archive, A,

maintained according to a decomposition-based strat-

egy. The coevolutionary mechanism is redesigned in or-

der to allow for an effective combination of all three

search strategies and of a search adaptation mechanism.

We now proceed to describe the five building blocks

of the DECMO2 multi-objective optimization algorithm

and, finally, in Section 3.6 we present the algorithmic

description of our hybrid evolutionary approach.

3.1 Pareto-based elitism

The cornerstone of the SPEA2 model (used in DECMO2

to evolve subpopulation P ) is the environmental selec-

tion (for survival) operator introduced in Zitzler et al

(2002). Because we make extensive reference to it, we

shall mark it with Esel(Pop, count), with the under-

standing that we refer to the procedure through which

we select a subset of maximum count individuals from

an original set Pop. The first step is to assign a gen-

eral rank to each individual x, x ∈ Pop. A lower value
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of this general rank indicates a higher quality individ-

ual. This general rank is the sum of two metrics, the

raw rank r(x) (2) and the density d(x) (3). In order to

compute the raw rank, each individual x, x ∈ Pop is

initially assigned a strength value s(x) representing the

number of solutions it Pareto-dominates in Pop. The

raw rank assigned to x is computed by summing the

strengths of all the individuals in the population that

Pareto-dominate individual x, i.e.,

r(x) =
∑

y∈Pop : y�x

s(y). (2)

The density d(x) of individual x is computed as the

inverse of the distance to the k-th nearest neighbor,

i.e.,

d(x) =
1

distE(x, k) + 2
(3)

where distE(x, k) is the Euclidean distance in objective

space between individual x and its k-th nearest neigh-

bor with k =
√
|Pop|. After each individual in Pop has

been ranked, we simply select the first count individuals

with lowest general rank values. The only noteworthy

detail is that the Esel(Pop, count) variant we use across

DECMO2 first removes all duplicate values from Pop

and then begins the ranking process.

In DECMO2, at each generation t, t ≥ 1, from the

current subpopulation P , we use binary tournament

selection, SBX and polynomial mutation to create a

new offspring population P ′. We then proceed to con-

struct the union of the parent and offspring popula-

tions: P ′ = P ′ ∪ P . Finally, the population of the next

generation is obtained after applying the elitist environ-

mental selection operator to extract the best individuals

from this union: P = Esel(P
′, Psize)

3.2 Differential evolution

Differential evolution is a global, population-based, stochas-

tic optimization method introduced in Storn and Price

(1997). By design, DE is especially suitable for continu-

ous optimization problems that have real-valued objec-

tive functions. Like most evolutionary techniques, DE

starts with a random initial population that is then

gradually improved by means of selection, mutation and

crossover operations.

In the case of DECMO2, at each generation t, t ≥ 1,

subpopulationQ will be evolved using the DE/rand/1/bin

strategy according to an evolutionary model that is

very similar to the ones proposed in DEMO (Robič and

Filipič (2005)) and GDE3 (Kukkonen and Lampinen

(2005)).

At first we perform the initialization: Q′ = Φ and

Q′′ = Q. Afterwards, as long as Q′′ 6= Φ, we randomly

select x ∈ Q′′ and:

– firstly, we construct the mutant vector v using the

rand/1 part of the DE strategy by randomly se-

lecting three individuals z1, z2, z3 ∈ Q such that

z1 6= z2 6= z3 6= x and then computing:

v = z1 + F (z2 − z3) (4)

where F > 0 is a control parameter.

– secondly, we generate the trial vector y using the

binomial crossover part of the DE strategy:

yi =

{
vi if U i < CR or i = j

xi if U i ≥ CR and i 6= j
, (5)

where j is a randomly chosen integer from {1, . . . , n},
U1, . . . , Un are independent random variable uni-

formly distributed in [0, 1], and CR ∈ [0, 1] is a

control parameter. n is the dimensionality of the

decision space (D) of the MOOP we wish to solve.

– thirdly, we remove x from the list of individuals that

we must evolve in the current generation (i.e., Q′′ =

Q′′ \ {x} ) and update Q′:

Q′ =


Q′ ∪ {x} if x � y
Q′ ∪ {y} if y � x
Q′ ∪ {x} ∪ {y} if x 6� y and y 6� x

(6)

At the end of the previously described cycle, it is highly

likely that |Q′| > Qsize because when x and y are not

dominating each other, both individuals are added toQ′

(i.e., the third case from (6)). In order to obey the fixed

subpopulation size design principle, when computing

the population of the next generation, we apply the en-

vironmental selection operator (i.e.Q = Esel(Q
′, Qsize)).

3.3 Decomposition-based archive

Apart from the two coevolved populations, DECMO2

also uses an archive population, A, that is maintained

according to a decomposition approach that is based on

the Chebyshev distance.

Let us mark with:

– z∗ = (z∗1 , . . . , z
∗
m) the current optimal reference point

of (1). More formally, z∗i = min
{
oi(x)|x ∈ DE

}
for

each i ∈ {1, . . . ,m} when DE ⊂ D is the set con-

taining all the individuals that have been evaluated

during the evolutionary search till the current mo-

ment.
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– λi = (λi1, . . . , λ
i
m), λij ≥ 0 for all j ∈ {1, . . . ,m}

and
m∑
j=1

λij = 1 and i ∈ {1, . . . , |A|} an arbitrary

objective weight vector;

– dCheb(x, λ
i) = max

1≤j≤m

{
λij |oi(x)− z∗i |

}
, x ∈ D the

weighted Chebyshev distance between an individual

x ∈ D and the current optimal reference point;

For any MOOP we wish to solve, we consider a to-

tal of |A| uniformly spread weight vectors: λ1, . . . , λ|A|.

These vectors are generated before the beginning of

the evolutionary process and remain constant through-

out the entire optimization run. When using them in

the dCheb distance, these weight vectors are the means

through which we define the decomposition of the origi-

nal MOOP problem into a number of |A| single-objective

optimization problems. As such, at any given moment

during the optimization, archive A is organized as a

set of pairs (2-tuples) 〈λi, yi〉, yi ∈ D, where λi is fixed

and yi ∈ DE has the property that it tries to minimize

dCheb(y
i, λi).

Given a current individual x that has just been gen-

erated during the optimization run, after performing

the standard fitness evaluation:

– we update the reference point z∗;

– we construct A′ - the improvable subset of the cur-

rent archive set:

A′ =
{
yi|∃〈λi, yi〉 ∈ A : dCheb(x, λ

i) < dCheb(y
i, λi)

}
(7)

– if A′ 6= Φ, we:

– mark with y∗ that individual in A′ that has the

property that δCheb = dCheb(y
∗, λ∗)−dCheb(x, λ

∗)

is maximal (i.e., we apply a greedy selection prin-

ciple);

– update the archive by replacing the most im-

provable individual (i.e., A = A \ 〈λ∗, y∗〉) with

the current individual: A = A ∪ 〈λ∗, x〉;

It is worthy to note that the working principles

behind the decomposition-based archive are inspired

and fairly similar to those proposed by MOGLS (see

Jaszkiewicz (2002)) and especially MOEA/D.

3.4 Search Adaptation

By design, nearly all evolutionary models are adap-

tive in the sense that, by promoting “a survival of the

fittest” strategy, these algorithms are forcing the evolved

population to “adapt” with each passing generation

(i.e., retain the genetic features that are beneficial for

solving the current problem).

The central idea of the DECMO algorithm (Zăvoianu

et al (2013b)) was to combine the different search be-

haviors of classical MOEAs that rely on SBX and PM

with that of newer approaches that use DE operators.

This was done in light of strong empirical evidence that

one evolutionary model was by far better than the other

one (when using standard parameterization) on sev-

eral well-known problems (i.e., an occurrence subject to

the No Free Lunch Theorem by Wolpert and Macready

(1997)). By effectively incorporating both search strate-

gies, DECMO displayed a good average performance

and proved its ability to adapt on a meta level (i.e., to

mimic the best strategy for the problem at hand).

In order to improve the aforementioned results, for

DECMO2 we designed a mechanism that is aimed to di-

rectly bias the coevolutionary process towards the par-

ticular search strategy that is more successful during

the current part of the run. This is implemented by

dynamically allocating at each odd generation t, t ≥
1 and t ∈ {2k + 1 : k ∈ Z} an extra number (Bsize) of

bonus individuals that are to be created and evalu-

ated by the search strategy that was able to achieve

the highest ratio of archive insertions in the previous

(even-numbered) generation. Therefore, at each even

generation, we are computing:

– φP - the archive insertion ratio achieved by the Psize

offspring generated in subpopulation P via tourna-

ment selection, SBX and PM;

– φQ - the archive insertion ratio achieved by the

Qsize offspring generated in subpopulation Q via

DE/rand/1/bin;

– φA - the archive insertion ratio achieved when creat-

ing Bsize offspring by applying DE/rand/1/bin on

individuals selected directly from A. When creating

offspring directly from A, the parent individuals re-

quired by the DE/rand/1/bin strategy are selected

such as to correspond to the Bsize single-objective

optimization problems (i.e., 2-tuples) that have not

been updated for the longest periods.

Taking into account previous notation and descriptions,

if, at an arbitrary even generation t, φP > φQ and

φP > φA, at generation t + 1, the size of the offspring

population (i.e., P ′) will be set to Psize + Bsize. Like-

wise, if, at an arbitrary even generation t, φQ > φP

and φQ > φA, at generation t + 1, after the stopping

criterion is initially met (i.e., Q′′ = Φ), Q′′ will be re-

initialized with a (smaller) set containing Bsize indi-

viduals randomly extracted from Qt and the offspring

generation process will resume until Q′′ becomes void

again. If neither of the previous two success conditions

are met, then the Bsize bonus offspring of generation

t + 1 will be created by applying DE/rand/1/bin on

individuals selected directly from A.
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As we have defined all the individual population

subdivision in DECMO2, now, we can also give all the

formulae that describe the relation between the size of

the archive and the sizes of the two coevolved popula-

tions:


|A| = Psize +Qsize +Bsize

Psize = Qsize

Bsize = |A|
10

(8)

3.5 Cooperative coevolution

Coevolution is a concept inspired from biological sys-

tems where two or more species (that are in a symbi-

otic, parasitic or predatory relationship) gradually force

each other to adapt (evolve) in order to either increase

the efficiency of their symbiotic relationship or survive.

For a valuable overview please see Chapter 6 from Luke

(2013).

In the field of soft computing, coevolution is usually

applied to population-based optimization methods and

is implemented using subpopulations that are evolved

simultaneously. N -population cooperative coevolution is

a particular type of coevolutionary process that is mod-

eled according to symbiotic relationships occurring in

nature. The central idea is to break up complicated

high-dimensional search spaces into N , much simpler,

subspaces that are to be explored by independent (sub)populations.

In order to discover high-quality solutions, it is neces-

sary to (occasionally) share information regarding fit-

ness between the different populations.

In DECMO2, the particular way in which we apply

cooperative coevolution does not implement the previ-

ously described search space partitioning concept. In

our case, both P and Q explore the same search space,

i.e., D. Instead, our approach makes takes full advan-

tage of two general (complementary) characteristics of

the coevolutionary concept:

– it helps to maintain diversity in the evolutionary

system;

– it enables the rapid dissemination of elite solutions;

According to the descriptions from the previous four

subsections, at the end of every generation t, t ≥ 1, the

subpopulations P and Q that will be involved in the

next evolutionary cycle (i.e., that of generation t + 1)

have been computed and archive A is in an up-to-date

state. The very last step before starting the computa-

tion cycles of generation t+1 consists of a fitness sharing

stage between the three main population subdivisions:

P , Q, and A. The purpose of this stage is to make sure

that the best global solutions found till now are given

the chance to be present in both coevolved populations.

The first step is to generate C - an elite subset with

the property: |C| = Bsize, where Bsize has been defined

in the previous subsection. This elite subset is easily

constructed by first performing the union C = P∪Q∪A
and then applying the environmental selection opera-

tor: C = Esel(C,Bsize). The second step of the fitness

sharing stage is to try to introduce the individuals of

this elite subset into the subpopulations P and Q of

the next generation. This is also done through the us-

age of the environmental selection operator (as defined

in Section 3.1):

– P = P ∪ C and P = Esel(P, Psize);

– Q = Q ∪ C and Q = Esel(Q,Qsize);

3.6 The main DECMO2 loop

The initialization stage (i.e., “generation 0”) and the

main computational loop of our hybrid MOEA are pre-

sented in Algorithm 1. There are three input param-

eters: MOOP - the definition of the problem to be

solved, archS - the size of the archive A (i.e., |A|),
and maxT - the maximum number of generations to be

evolved. The algorithm returns a Pareto non-dominated

set (PN) of size archS.

There are seven auxiliary methods that we use across

Algorithm 1:

– ExtractSizes(archS) - this function computes Psize,

Qsize, andBsize from the call argument archS (which

equals |A|), by solving (8);

– InitializeArchive(MOOP , archS) - considering

the notations from Section 3.3, this function first

creates a total of archS uniformly spread weight

vectors (i.e., λ1, . . . , λarchS) with the dimensionality

required by the given MOOP . It then proceeds to

create and return an incomplete archive of the form:

A =
{
〈λ1, 〉, . . . , 〈λarchS , 〉

}
;

– CreateIndividual(MOOP ) - this function returns

a randomly created individual that encodes a pos-

sible solution for the given MOOP ;

– InsertIntoArchive(A, x) - this procedure looks

if there are any incomplete pairs (i.e., of the form

〈λi, 〉 with i ∈ {1, . . . , |A|}) in archive A, and, if such

a pair is found, it updates the archive: A = A\〈λi, 〉
and A = A ∪ 〈λi, x〉;

– EvolveNextGenSPEA2(P, Psize) - this function

uses the SPEA2 evolutionary model described in

Section 3.1 in order to evolve the solution set passed

as the first call argument (i.e., P ) for one generation.

It returns two entities: i) a new, evolved, population

of size |P | and ii) the archive insertion ratio achieved
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Algorithm 1 Description of the DECMO2 hybrid

multi-objective evolutionary algorithm

1: function DECMO2(MOOP, archS, maxT )
2: P,Q← Φ
3: 〈Psize, Qsize, Bsize〉 ← ExtractSizes(archS)
4: A← InitializeArchive(MOOP, archS)
5: i← 1
6: while i ≤ archS do
7: x← CreateIndividual(MOOP )
8: InsertIntoArchive(A, x)
9: if i ≤ Psize then

10: P ← P ∪ {x}
11: else
12: if i ≤ Psize +Qsize and i > Psize then
13: Q← Q ∪ {x}
14: end if
15: end if
16: i← i+ 1
17: end while
18: φP , φQ, φA ← 1
19: t← 1
20: while t 6= maxT do
21: if t ∈ {2k + 1 : k ∈ Z} then
22: if φP > φQ and φP > φA then
23: Psize = |P |+Bsize

24: end if
25: if φQ > φP and φQ > φA then
26: Qsize = |Q|+Bsize

27: end if
28: end if
29: Asize ← archS − Psize −Qsize

30: 〈P, φP 〉 ← EvolveNextGenSPEA2(P, Psize)
31: 〈Q,φQ〉 ← EvolveNextGenDE(Q, Qsize)
32: φA ← EvolveArchiveInd(A, Asize)
33: Psize = |P |
34: Qsize = |Q|
35: C ← P ∪Q ∪A
36: C ← Esel(C,Bsize)
37: P ← P ∪ C
38: P ← Esel(P, Psize)
39: Q← Q ∪ C
40: Q← Esel(Q,Qsize)
41: t← t+ 1
42: end while
43: C ← P ∪Q ∪A
44: C ← Esel(C, archS)
45: return C
46: end function

by the Psize offspring that were created during the

evolutionary process.

– EvolveNextGenDE(Q, Qsize) - this function uses

the DE-based evolutionary cycle described in Sec-

tion 3.2 in order to evolve the set passed as the first

call argument (i.e., Q) for one generation. It also re-

turns two entities: i) a new, evolved, population of

size |Q| and ii) the archive insertion ratio achieved

by the Qsize offspring that were created during the

evolutionary cycle.

– EvolveArchiveInd(A, Asize) - this function uses

the DE/rand/1/bin strategy (i.e., the combination

of (4) and (5)) to create a number of Asize off-

spring using only individuals directly selected from

the pairs that make up archive A. Each offspring

individual created at this step is considered for the

archive update procedure described in Section 3.3.

The archive insertion ratio achieved when consider-

ing the Asize generated offspring is the only entity

returned by this function. If Asize = 0, the function

returns the value 0.

When considering the above description, one of the

major shortcomings of our proposed multi-objective op-

timization method is evident: high structural and com-

putational complexity. As we strived to create an effi-

cient hybrid starting from three different evolutionary

approaches for solving MOOPs, ending up with a fairly

complex optimization procedure was something to be

expected. However, it should be noted that, apart from

the parameterizations required by the genetic opera-

tors we rely on (i.e., SBX, PM and DE), our approach

remains quite robust, as it does not require any extra

parameters. In Section 5 we present solid evidence that

DECMO2 displays a very good average performance on

a wide range of MOOPs and we think that this more

than compensates for the complexity of our method.

4 Comparing the performance of MOOAs

As with most (meta)heuristic approaches, when talking

about the performance of a multi-objective evolution-

ary algorithm, three criteria are primarily considered

and usually need to be balanced:

– the quality of the generated solution, i.e., how well

does the PN returned at the end of the optimization

run approximate the PF of the MOOP to be solved?

– the convergence speed, i.e., what is the number of fit-

ness evaluations (notation: nfe) that must be per-

formed during the optimization run in order to reach

a PN of acceptable quality?

– the generality of the algorithm, i.e., is the proposed

method able to display the previous two criteria on

a wide range of problems?

It should be noted that the above three criteria can

be applied to evaluate any multi-objective optimization

algorithm. For example, very fine-grained grid searches

over the entire decision space will likely produce the

best results with regard to the quality and generality

criteria, but such approaches display excessively poor

convergence speeds, which render them useless in most

cases.

Over the years, several metrics for assessing the PN

quality criterion have been proposed. A comprehensive
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analysis and review of most of these metrics can be

found in Zitzler et al (2003). Some of the more pop-

ular metrics are: the generational distance (GD) and

the inverted generational distance (IGD) proposed in

Van Veldhuizen and Lamont (1998) and the hypervol-

ume metric (H) proposed in Zitzler (1999). The latter

has the added advantage that it is the only PN qual-

ity comparison metric for which we have theoretical

proof of a monotonic behavior (see Fleischer (2003)). As

such, by design, the PF of any MOOP has the highest

achievable H value. The monotonic property of H can

be understood in the sense that, given two Pareto non-

dominates sets, PNA and PNB , ifH(PNA) > H(PNB),

we can be certain that PNA “is not worse than” PNB

(see Zitzler et al (2003) for details). Furthermore, when

comparing with GD and IGD, the hypervolume is eas-

ier to compute when the PF of the MOOP is unknown

(as it is the case with most real-life problems).

Measuring the convergence speed is a truly trivial

task once one has a clear idea of how to define acceptable

quality in the case of Pareto non-dominated sets. Unfor-

tunately this definition is highly domain-dependent and

sometimes it also depends on the experience (or even

subjective opinions) of the decision maker. For example,

in many publication from the field of multi-objective op-

timization, acceptable quality means a (nearly) perfect

approximation of the PF of a given benchmark MOOP.

When considering real-life applications of multi-objective

optimization, a PN may be deemed of having an accept-

able quality if it “is not worse than” any other PN ever

discovered for the considered MOOP (even though it is

actually a rather poor approximation of the PF).

In light of the very computationally intensive na-

ture of the fitness functions required by the industrial

MOOPs we aim to solve, our idea of how to best bal-

ance quality, convergence speed and generality in order

to assess the performance of a MOOA is that: given

an arbitrary MOOP and a maximal number of fitness

evaluations (nfemax) that we are willing to execute,

the analyzed MOEA displays the best possible perfor-

mance if, for any nfe ≤ nfemax, the PN obtained after

performing nfe fitness evaluations “is not worse than”

the PN that might have been obtained by any another

available method after also performing nfe fitness eval-

uations.

Although quite vague at a first glance, the previ-

ous statement is the base from which we developed a

practical ranking framework for multi-objective opti-

mization algorithms. This framework is described in the

next subsection and it can offer practitioners valuable

insight regarding the relative performance of different:

– multi-objective optimization algorithms;

– parameterization settings for a given MOOA;

4.1 A racing-based ranking of performance in the

context of MOOPs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350  400  450  500T
ru

e 
hy

pe
rv

ol
. (

av
g.

 o
ve

r 
4 

M
O

O
P

s)
 [%

]
nfe [in hundreds]

Averaged run-time hypervolume performance

Alg-A
Alg-B
Alg-C
Alg-D

Fig. 2 Averaged run-time H-measured performance over the
entire toy test set

Let us consider a toy example in which we wish

to compare the performance of four different multi-

objective optimization algorithms (Alg-A, Alg-B, Alg-

C, and Alg-D) on a limited test set that consists of four

benchmark MOOPs (P1, P2, P3, and P4) with known

PFs. For each optimization run we perform 50000 fit-

ness evaluations. A more or less standard approach would

be to perform several independent runs for each MOOA-

MOOP pair and assess the quality and convergence be-

havior by computing some metric over averaged results.

For example, the plots from Figure 1 display the aver-

age run-time H-measured performance of the four algo-

rithms when considering 25 independent runs for each

test. For every run, the data points were obtained by

calculating the H of the current MOOA population af-

ter every 100 fitness evaluations and afterwards com-

puting the percentage ratio (notation: H −% − ratio)
obtained when comparing these values against H(PF ),

where PF denotes the Pareto front of the MOOP that

is solved. As a side note, we shall write “fully” (with

quotes) when referring to a MOOA that is able to solve

a MOOP (i.e., H−%− ratio ≈ 100%) in order to em-

phasize the fact that, in most cases (e.g., all continuous

MOOPs), a PN cannot be (by definition) more than a

near perfect approximation of the PF.

In order to quickly assess the general performance

of the four tested MOOAs (w.r.t. the example test set),

it is very intuitive to plot the H−%− ratio-measured

performance, averaged over the entire problem set(e.g.,

Figure 2). Such a chart is very useful as it clearly shows:

– which algorithm generally starts to converge faster

(e.g., Alg-D in the case of our example);
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Fig. 3 HRPCs obtained when applying the racing-based ranking methodology on the toy test set

– which algorithm has the best average performance

at the end of the runs (e.g., Alg-C);

– which algorithms seem to have a somewhat simi-

lar convergence behavior during (a certain part of)

the optimization run. For example, Alg-D and Alg-B

converge quite fast (averageH−%−ratio ≥ 70% af-

ter 15000 fitness evaluations) while Alg-A and Alg-

C converge slower, but reach slightly better average

results at the end of the experiment (after 50000 fit-

ness evaluations). Knowing this and assuming that

the used MOOP test set is relevant for real-life sit-

uations, in practice, we would prefer Alg-D or even

Alg-B over Alg-C/Alg-A when faced with a limited

number of fitness evaluations and we would use Alg-

C or Alg-A if there would be no such limitation.

Nevertheless, the average H plot from Figure 2 is

also misleading because, through averaging, it helps to

mask very bad performance. As all four algorithms dis-
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Table 1 Ranks corresponding to the run-time H plots presented in Figure 1. For each algorithms, the highlighted values are
used to create the left-side plot from Figure 3.

Rank computation stages based on H−%− ratios
Problem 0 1 2 3 4 5 6 7 8 9 10 µP

Ranks achieved by Alg-A
P1 5 5 5 5 4 4 3 3 3 2 2 3.73
P2 5 1 1 1 1 1 1 1 1 1 0 1.27
P3 5 2 1 1 1 1 1 1 1 2 2 1.64
P4 5 5 5 5 4 4 4 4 4 4 4 4.36
µS 5.00 3.25 3.00 3.00 2.50 2.50 2.25 2.25 2.25 2.25 2.00

µA = 2.75, µF = 2.00

Ranks achieved by Alg-B
P1 5 5 5 2 2 2 2 2 2 3 3 3.00
P2 5 4 4 4 4 4 4 4 4 4 4 4.09
P3 5 5 4 4 4 4 4 4 4 4 4 4.18
P4 5 1 0 0 0 0 0 0 0 0 0 0.55
µS 5.00 3.75 3.25 2.50 2.50 2.50 2.50 2.50 2.50 2.75 2.75

µA = 2.95, µF = 2.75

Ranks achieved by Alg-C
P1 5 1 1 3 3 3 4 4 4 4 4 3.27
P2 5 5 3 3 3 3 3 2 2 2 2 2.82
P3 5 5 3 3 3 3 3 3 3 1 1 3.00
P4 5 5 3 3 3 3 3 0 0 0 0 2.27
µS 5.00 3.50 2.50 3.00 3.00 3.00 3.25 2.25 2.25 1.75 1.75

µA = 2.84, µF = 1.75

Ranks achieved by Alg-D
P1 5 5 2 1 1 1 1 1 1 1 1 1.82
P2 5 2 2 2 2 2 2 3 3 3 3 2.64
P3 5 1 2 2 2 2 2 2 2 3 3 2.36
P4 5 2 0 0 0 0 0 0 0 0 0 0.64
µS 5.00 2.5 1.5 1.25 1.25 1.25 1.25 1.5 1.5 1.75 1.75

µA = 1.86, µF = 1.75

play average H − % − ratio values between 85% and

95% after 40000 fitness evaluations, we might believe

that their general performance is largely similar when

it comes to the solutions discovered towards the end of

each run. In fact, the very good performance of Alg-B

on P1, P2 and P4 helps to cover up the very poor be-

havior on problem P3. Similarly, the fact that all four

algorithms are (sooner or later) each able to fully con-

verge on one MOOP is also concealed. Although in our

very simple example, both problems can be solved by

independently consulting the relative performance of

the four MOOAs on each MOOP via numerical/visual

inspection ofH-related performance, in rigorous perfor-

mance comparison contexts, involving tens of MOOPs

and several MOOAs, such a case-by-case approach is

very tedious, and, in the late stages of convergence

(where most good algorithms find PNs of roughly sim-

ilar quality), it can also become useless.

Our idea for simplifying the comparison process is

to interpret the run-time hypervolume plot for each

MOOP as if it depicts the results of a multi-stage race

between the four MOOAs. The goal is to reach a H −
%−ratio ≈ 100 as fast as possible (i.e., “fully” converge

after the lowest possible nfe). The secondary goals are

to have the highestH−%−ratio at the end of each stage

in the race. Therefore, it makes sense to imagine a basic

ranking schema where, at the end of each stage, the an-

alyzed MOOAs are ranked in ascending order of their

H−%−ratio starting with the worst performer. In our

toy example, 4 is assigned for the smallest H−%−ratio
value and 1 for the highest. There are two exceptions

from this rule:

– if the H−%−ratio at a certain stage is higher than

99% (i.e. the obtained PN dominates more than 99%

of the objective space that is dominated by the PF),

the analyzed algorithm is assigned the rank 0. This

is how we mark (reward) “full” convergence.

– if the H − % − ratio at a certain stage is lower

than 1%, the analyzed algorithm is assigned a rank

which equals one plus the total number of analyzed

MOOAs (i.e., 5 in our case). This is how we mark

(penalize) a MOOA that has not yet produced a

relevant PN, i.e., a MOOA that has not started to

converge.
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In the toy example, the comparison stages are equidis-

tant (i.e., they are set after every 5000 fitness evalua-

tions) and, in Figure 1, each stage of the race is marked

with a vertical solid grey line . The rank information

we obtained is presented in Table 1. For each MOOA,

the table also presents four average ranks:

– µP - the average rank achieved by the MOOA on

an individual problem. A value closer to 0 indicates

that the algorithm displays a good performance on

the problem . µP can be used to rapidly/automatically

identify those problems on which a MOOA performs

very well (i.e., “fully” converges very fast) or poorly

(i.e., does not “fully” converge, converges very slowly,

etc.).

– µS - is the average rank across the entire test set

at a given stage (i.e., after a fixed number of nfes).

These are useful as we shall combine them in or-

der to display the dynamics of the relative MOOA

performance over time.

– µF - is the average rank across the entire test in the

final stage (i.e., close to the end of the optimization).

The MOOA that has the smallest value of µF was

able to “fully” converge or discover higher quality

PNs on more problems than its competitors.

– µA - is the overall average rank achieved by the

MOOA during the comparison. The value of µA can

be used to single out the MOOAs that tend to gen-

erally outperform their counterparts.

In the left-side plot from Figure 3 we use the µS

values to plot hypervolume-ranked performance curves

(HRPCs). We feel that by introducing HRPCs, we are

providing practitioners in the field of multi-objective

optimization with an extremely useful tool for helping
to rapidly assess the general comparative performance

of MOEAs (especially over test sets containing many

MOOPs). The basic ranking schema ignores the mag-

nitudes of the differences in performance and favors the

algorithm that is able to perform very well on the high-

est number of MOOPs from the considered test set.

When considering the HRPCs computed for the toy

comparison context (left-side plot from Figure 3), the

data points corresponding to the last 2 ranking stages

indicate that:

– there is a good balance between the number of MOOPs

on which Alg-D and Alg-C perform well by the end

of the optimization runs;

– Alg-A has managed to converge on at least one MOOP

right before the final stage as passing from a rank

of 1 to a rank of 0 is the only explanation for a drop

of average rank between the two stages that does

not influence the average ranks of the other three

MOOAs;

The main advantage of HRPCs is that they can

be easily adjusted in order to outline certain MOOA

performance characteristics by making small changes

in the required ranking procedure. For example, us-

ing the same run-time information that was plotted

in Figure 1, we could focus our MOOA comparison on

analyzing if there are large differences in performance

between the tested algorithms by imposing that: at a

given stage, the difference between two H−%− ratios
must be higher than 10% in order to justify a rank im-

provement, i.e., we impose a H− ranking threshold of

10% According to the this modification, if at a cer-

tain stage the four MOOAs have the H − % − ratios
(64%, 78%, 84%, 99.5%), they will be assigned the ranks

(4, 3, 3, 0). The HRPCs obtained when applying this,

very pessimistic, ranking schema are presented in the

right-side plot from Figure 3 and:

– the data points corresponding to the last 3 ranking

stages confirm that Alg-D and Alg-C have an aver-

age similar convergence behavior towards the end of

the runs;

– the data points corresponding to the last ranking

stage indicate that Alg-A seems to perform much

worse (i.e., difference in H−%− ratio > 10%) than

the other 3 MOOAs on at least one extra MOOP;

We have devised this racing and hypervolume-based

ranking methodology that may combine information

from:

– several HRPC plots (computed using different rank-

ing schemata);

– associated µP , µF , µA values;

– the plot of the averaged H-measured performance

over the entire problem test

in order to easily observe/report the general perfor-

mance characteristics of the MOOAs we wish to analyze

over large problem sets.

4.2 On robustness and efficiency in MOEAs

As mentioned in the introductory part, our main in-

terests with regard to multi-objective optimization al-

gorithms are related to enhancing these methods in or-

der to improve the run-times of industrial optimizations

that rely on very computationally intensive fitness eval-

uation functions. In the particular case of MOOAs that

can be parameterized (e.g., most MOEAs), the pro-

hibitive optimization run-times that occur when solv-

ing industrial MOOPs usually make systematic param-

eter tuning approaches virtually impossible. This means

that we strongly prefer to rely on MOEAs that are very
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robust with regard to their control parameters, mean-

ing that they generally perform well on a wide range

of problems when using the parameterization settings

recommended in literature.

The second important characteristic that we demand

from a MOEA is efficiency. In non-academic terms, the

idiom “bang for the buck” encapsulates very well the

essence of this characteristic and, in light of the con-

cepts presented till this point, we consider that “H for

nfe” is a good equivalent, especially when dealing with

very lengthy run-times induced by computationally in-

tensive fitness evaluation functions. The only condition

is that, in the case of MOEAs, efficiency must be sta-

ble (i.e., displayed throughout the duration of the opti-

mization run), general (i.e., displayed on a wide range

of MOOPs), and, because of the stochastic nature of

evolutionary methods, must be supported by averaged

results over many independent runs.

The new MOOA racing-based ranking comparison

framework, which we introduced in the previous sub-

section, is able to offer insights with regard to both the

efficiency and robustness of a given MOEA provided

that we construct comparison contexts where:

– we compare the given MOEA against MOOAs that

are themselves regarded as being generally success-

ful (i.e., they are state-of-the-art);

– we maintain a fixed parameterization of the tested

algorithms;

– the test sets contain a sufficient number of MOOPs

with different characteristics;

– we apply appropriate ranking schemata;

In the next section, we obey these rules in order to con-

struct comparison contexts that help to tune MOEA/D-

DE and to evaluate the robustness and efficiency of

DECMO2.

5 Tests regarding the performance of DECMO2

In order to evaluate the performance of DECMO2, we

consider two types of comparisons:

– the first one aims to estimate the robustness and effi-

ciency of our hybrid and adaptive MOEA by apply-

ing the new comparison methodology we proposed

in Section 4 on a test set consisting of 20 artificial

benchmark problems;

– the second comparison is a case study regarding

the convergence behavior of DECMO2 and SPEA2

on two industrial MOOPs from the field of elec-

trical drive design optimization. Both problems re-

quire very computationally intensive fitness evalua-

tion functions.

The 20 artificial benchmark problems we aggregated

in our test set are:

– DTLZ1, DTLZ2, DTLZ4, DTLZ6, and DTLZ7 from

the problem set proposed in Deb et al (2002b);

– KSW10 - a classic optimization problem with 10

variables and two objectives based on Kursawe’s

function described in Kursawe (1991);

– all nine problems from the LZ09 problem set de-

scribed in Li and Zhang (2009);

– WFG1, WFG4 and WFG8 from the problem set

proposed in Huband et al (2005);

– ZDT3 and ZDT6 from the problem set described in

Zitzler et al (2000);

When applying the race-based ranking methodol-

ogy, we defined ranking stages after every 1000 fitness

evaluations with the first ranking evaluation taking place

at “generation 0” (i.e., we evaluated the randomly gen-

erated initial population of the MOEAs). We performed

50 independent runs for each MOEA-MOOP pair in or-

der to obtain the hypervolume information based on

which the rankings were computed. We applied two

types of ranking schemata:

– the basic ranking schema which is identical to the

one described in Section 4.1;

– the pess-Thr ranking schema which has the same

working principles as the pessimistic ranking schema

presented in Section 4.1. Thr is the H − ranking

threshold. For example, a pess-5 ranking schema

uses a H− ranking threshold of 5%.

The algorithms we compared DECMO2 against (us-

ing the race-based ranking methodology) are SPEA2,

GDE3, MOEA/D-DE (the Zhang et al (2009) version)

, and DECMO. In the case of the first three algorithms

we relied on implementations available in the jMetal

package (see Durillo and Nebro (2011)). We fixed the

number of fitness evaluations to 50000. Across all runs

we used MOEA parameterizations that are in accor-

dance with those recommended in literature. For SPEA2,

we used a population and archive size of 200, 0.9 for the

crossover probability and 20 for the crossover distribu-

tion index of SBX, 1/n for the mutation probability

(where n is the number of variables of the MOOP to be

solved) and 20 for the mutation distribution index of

PM. For GDE3, we used a population size of 200 and

the settings CR=0.3 and F=0.5 for the DE/rand/1/bin

strategy. For MOEA/D-DE, we used a population size

of 500 and all other parameters were set as described in

Zhang et al (2009). For DECMO we used a size of 100

for each coevolved subpopulation, the same SBX and

PM parameterizations used for SPEA2 and the settings

CR=0.2 and F=0.5 for the DE/rand/1/bin strategy. In

the case of DECMO2 we used an archive size of 200 and
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Fig. 4 HRPCs obtained when testing the impact of various archive sizes on MOEA/D-DE

– in the case of subpopulation P : 1.0 for the crossover

probability and 20 for the crossover distribution in-

dex of SBX, 1/n for the mutation probability and

20 for the mutation distribution index of PM;

– in the case of subpopulation Q: the settings CR=0.2

and F=0.5 for the DE/rand/1/bin strategy;

– in case of (the bonus) individuals evolved directly

from A: the settings CR=1.0 and F=0.5 for the

DE/rand/1/bin strategy;

In the case of DECMO and DECMO2, the con-

trol parameters for the DE/rand/1/bin strategy used in

subpopulation Q are chosen such as to maintain a good

trade between exploration and intensification (F=0.5)

and, as shown in Zaharie (2009), stimulate a minor in-

crease in population diversity (CR=0.2). When evolv-

ing bonus individuals from A, CR is set to 1.0 in order

to stimulate population diversity to the maximum in-

side the highly elitist archive.
While it is fair that all MOEAs except MOEAD/D-

DE should use the same population size since they are

all constructed around the Pareto-based elitism paradigm,

in the case of MOEAD/D-DE, the size of the archive

was set at 500 after using the race-based ranking method-

ology to estimate the relative performance achieved by

nine different archive sizes (from 100 to 900). We ap-

plied the basic ranking schema and obtained the HRPCs

that are presented in the left-side plot from Figure 4.

These HRPCs indicate that, on average, over the 20

considered benchmark MOOPs:

– when using an archive size of 500, MOEAD/D-DE

is able to achieve the best results towards the end

of the optimization run ((i.e., between the ranking

stages 31 and 50));

– when using an archive size of 400, MOEAD/D-DE

is able to achieve the best results during the middle

of the run (i.e., between the ranking stages 8 and

30);

Having two strong candidates, we applied again the

race-based ranking methodology (this time using a pess-

5 ranking schema) on only MOEAD/D-DE-400 and

MOEAD/D-DE-500. The obtained HRPCs are presented

in the right-side plot from Figure 4 and they indicate

that, on average, differences between the two methods

are greater during the end of the run than during the

middle part of the run. As such, we decided that, when

keeping every other parameter fixed, an archive size

of 500 would enable MOEA/D-DE to achieve the best

overall performance on our benchmark problem set.

5.1 Results on artificial benchmark problems
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Because in several future statements we shall use the

phrase “on average” to refer to conclusions drawn from

various results we present, it is important to clearly

state what we mean by this. Considering that we have

experimented with 5 different MOEAs over 20 differ-

ent MOOPs and that we made 50 independent runs for
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Fig. 6 HRPCs obtained when comparing DECMO2 with four other MOEAs over 20 artificial benchmark MOOPs

each MOEA-MOOP combination, at every stage of our

race-based ranking procedure we have assigned ranks

based on 2000 (when comparing only two MOEAs) to

5000 (when comparing all five) hypervolume measure-

ments. Since the HRPCs are based on 51 ranking stages,
each of them aggregates information from 102000 (plots

with two RHPCs) to 255000 independent hypervolume

measurements. In order to construct the plot of the av-

eraged H-measured performance of all five algorithms

over the entire benchmark problem set (i.e., the plot

from Figure 5), we sampled H values after 1000 fitness

evaluations on each independent run. Therefore, this

plot is based on 2500000 independent data points.

Table 2 The average ranks achieved by the five tested
MOEAs over the benchmark problem set when applying a
pess-1 ranking schema. The best values are highlighted.

Algorithm µF µA

SPEA2 3.6500 3.8265
GDE3 3.5000 3.7490

MOEA/D-DE 2.6500 3.4775
DECMO 2.9000 2.8902
DECMO2 2.1500 2.3294

Figure 6 contains four subplots with the HRPCs ob-

tained by the five algorithms we tested with over the en-

tire artificial problem set. In addition, Table 2 presents

the µF and µA values achieved by each tested MOEA

when applying the pess-1 ranking schema. With regard
to “full” convergence (i.e., reaching H − % − ratio >
99%), SPEA2 was able to achieve it on 3 problems,

GDE3 on 4 problems, MOEA/D-DE and DECMO on 5

problems, and DECMO2 on 7 problems. LZ09-F1 is the

only MOOP on which DECMO2 was unable to achieve

“full” convergence, but another algorithm, namely MOEA/D-

DE, managed to do so.

Taking into account the setup of our tests and the

arguments from Section 4.2, all the previously men-

tioned results allow us to conclude that DECMO2 is

an efficient and robust MOEA.

Although all the HRPCs from Figure 6 and all the

hypervolume average values plotted in Figure 5 show

that, on average (and at every stage of the run), our

method produces better hypervolumes than the other

MOEAs we have compared against, it is extremely im-

portant to interpret this information in combination

with the implications of the monotonicity of the H met-

ric mentioned in the introduction of Section 4. As such,
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Fig. 7 HRPCs obtained when comparing DECMO2 with MOEA/D-DE over 20 artificial benchmark MOOPs

the strongest statement that we can make based on the

obtained results is that: on average, DECMO2 is not

worst than any of the other four MOEAs during any

stage of the optimization run. But, based on the pre-

sented results, the same statement cannot be made for

any of the other four algorithms. In light of this, (for the

considered comparison context/test settings) we can we

can weakly argue that, on average, DECMO2 is the best

choice among the five tested MOEAs.

In accordance with the previous line of arguments,

and taking into account the HRPCs obtained with the

pess-5 and pess-10 ranking schemata, we can also con-

clude that, on average, especially in the initial phases

of the optimization runs, DECMO2 displays a conver-

gence speed that is not outperformed by any of the

other MOEAs. We believe that this feature makes our

hybrid algorithm a very strong candidate for MOOPs

where the solver is limited in the number of fitness eval-

uations that it can perform per optimization run.

In Figure 7 we plot the HRPCs obtained when only

comparing DECMO2 to MOEA/D-DE. They indicate

clearly that, on average, our hybrid and adaptive MOEA

displays a better convergence behavior during the early

part of the run and that MOEA/D-DE is, more or less,

able to generally match the performance of DECMO2

towards the end of the run.

In Figure 8 we plot the HRPCs obtained when only

comparing DECMO2 to DECMO. The HRPCs corre-

sponding to the basic and pess-1 ranking schemata in-

dicate that, in comparison with its predecessor, on av-

erage, DECMO2 displays at least some small improve-

ments throughout the entire optimization run. When

applying the pess-5 and pess-10 ranking schemata, DECMO2

only shows an improved average performance during

the early part of the run and a slightly better average

performance towards the end of the run. Nevertheless,

the general idea is that by adding a decomposition-

based strategy and an adaptive allocation of fitness

evaluations, we were able to increase the overall perfor-

mance of our initial coevolutionary method and enable

it to successfully compete with a very well known and

successful multi-objective optimizer like MOEA/D-DE

over a wide range of artificial MOOPs.

5.2 Case study: electrical drive design

Although extremely valuable for the algorithm design,

prototyping and parameter tuning stages, as we are
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Fig. 8 HRPCs obtained when comparing DECMO2 with DECMO over 20 artificial benchmark MOOPs

primarily motivated by practical applications of multi-

objective optimization, we generally regard the assess-

ment of MOOA performance on artificial MOOPs as

a mere means to an end. The final objective is to ob-

tain a robust MOOA that is able to successfully tackle
real-life MOOPs.

Using the same parameterizations we experimented

with on the artificial problem set, we applied DECMO2

on two fairly complicated MOOPs from the field of elec-

trical drive design, allowing for 10000 fitness evaluations

per run. In both problems, the goal is to configure 22

real-valued parameters in order to simultaneously op-

timize 4 objectives regarding cost and efficiency. For

each problem, in order to evaluate the quality of a sin-

gle design, we must perform a series of computation-

ally intensive operations consisting of a meshing stage

and one or more finite element simulations. The overall

impact of these required simulations is that, even when

distributing the fitness evaluations over a high through-

put cluster computing environment, performing 10000

fitness evaluations takes between 6 and 7 days to com-

plete.

Because of the extremely long run-times, we only

performed two independent runs with DECMO2 for

each problem and saved information regarding the best

found solutions after every 100 fitness evaluations. For

both industrial MOOPs we also have (historical) run-

time quality information from optimizations conducted

with SPEA2 (two independent runs for each MOOP).

Using as reference the best known sets of solutions for

both problems, in Figure 9 we present the run-time

H-measured performance of DECMO2 and SPEA2 on

the two industrial problems. The results indicate that

DECMO2 is able to converge faster. In this particular

case, the faster convergence of DECMO2 roughly trans-

lates into finding PNs that have the same H values as

those that were discovered one day later when using

SPEA2.

6 Conclusion

In this paper, we have described DECMO2, a hybrid

multi-objective optimization algorithm that uses co-

evolution to successfully combine three different princi-

ples for solving MOOPs: Pareto-based dominance, dif-

ferential evolution and decomposition-based strategies.

DECMO2 also incorporates an adaptive allocation of

fitness evaluations in order to accelerate convergence
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Fig. 9 Run-time H-measured performance of DECMO2 and
SPEA2 on two industrial MOOPs

by rewarding the incorporated evolutionary model that

is able to deliver the best performance during a given

part of the optimization run.

A considerable part of the present paper (Section

4.1) is dedicated to introducing a new methodology

aimed at providing practitioners from the field of multi-

objective optimization with a simple means of analyz-

ing/reporting the general comparative run-time perfor-

mance of MOOAs over large problem sets. This method-

ology is largely based on a racing perspective over aver-

aged hypervolume measures and can be used either to

fine tune algorithms over given problem sets or to an-

alyze the relative robustness and efficiency of MOOAs

(see the discussion from Section 4.2).

In Section 5 we present results using the newly intro-

duced MOOA comparison methodology that substan-

tiates the claim that DECMO2 displays both robust-

ness and efficiency when comparing against four other

MOEAs (SPEA2, GDE3, MOEA/D-DE and DECMO)

over a challenging benchmark of 20 artificial MOOPs

from different well known problem sets. The results

section also contains a small case study regarding the

comparative performance of DECMO2 and SPEA2 on

two real-life industrial MOOPs that feature computa-

tionally intensive fitness evaluation functions. The re-

sults of this study confirm the general characteristic of

DECMO2 to converge fast.

In light of all the presented results, we finally ar-

gue that DECMO2 is a valuable addition to the ever-

growing set of MOEAs and that, despite its structural

complexity, this hybrid evolutionary algorithm is very

robust with regard to its parameterization and, there-

fore, especially suited for solving real-life MOOPs that

have computationally intensive fitness evaluation func-

tions.

With regard to DECMO2, future work will revolve

around developing a steady-state asynchronous version

of the algorithm and around testing and analyzing the

comparative performance on more industrial MOOPs.

We also plan to extend our racing-based MOOA com-

parison methodology by designing a ranking schema

that uses statistical significance testing.
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