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Abstract: When several subjects solve the assignment problem of two sets, differences on the 

correspondences computed by these subjects may occur. These differences appear due to several factors. 

For example, one of the subjects may give more importance to some of the elements’ attributes than another 

subject. Another factor could be that the assignment problem is computed through a suboptimal algorithm 

and different non-optimal correspondences can appear. In this paper, we present a consensus methodology 

to deduct the consensus of several correspondences between two sets. Moreover, we also present an online 

learning algorithm to deduct some weights that gauge the impact of each initial correspondence on the 

consensus. In the experimental section, we show the evolution of these parameters together with the 

evolution of the consensus accuracy. We observe that there is a clear dependence of the learned weights with 

respect to the quality of the initial correspondences. Moreover, we also observe that in the first iterations of 

the learning algorithm, the consensus accuracy drastically increases and then stabilises. 

Keywords: Consensus, learning weights, correspondence between sets, linear solver, Hamming 

distance. 

1. Introduction

Suppose we have several correspondences between sets and there is some level of intersection between 

them (figure 1 left). The aim of this paper is twofold. On the one hand, we define a method that enounces 

a consensus correspondence between these sets (figure 1 right). On the other hand, we present an online 

learning algorithm to set the meta-parameters needed to find this consensus correspondence. We face two 

main problems while seeking the consensus correspondence. First, there are discrepancies between the 

elements’ mappings. Second, the intersection between sets is not null, although some elements may belong 

to only one or few sets. Figure 1 schematically shows the consensus method. In this case, we suppose there 

are three different correspondences 𝑓1, 𝑓2 and 𝑓3 that map their pairs of sets, and the intersection of sets

is not null. Our method deducts 𝐴 and 𝐴′, as well as the consensus correspondence 𝑓. 

Figure 1. Input of our problem: Some correspondences between partially disjoin sets. Output: Only one 

correspondence between two sets. 

In a real application, discrepancies between correspondences appear due to several factors. For example, 

one of the strategies may give more importance to some of the element’s attributes, while the other strategy 

may believe another attribute is more important. If our scenario is based on an automatic method, these 

differences are gauged by the features or the weights of these features. Contrarily, if the scenario is based 

on a human-machine interaction (for example, semi-automatic medical image recognition), the strategy is 

based on the experience of a human specialist. If such elements in the sets represent regions of segmented 

images, one subject may think the area is more important than the colour, and the other one may think the 

opposite. Another factor that influences the elements’ mapping happens when the assignment problem is 

computed with a suboptimal algorithm, and different non-optimal correspondences appear. 

Some examples of methods that automatically solve the linear assignment problem are [1] or [2].  These 

methods return a bijective correspondence and the sets to be mapped have to be of the same order. There 



are other methods that this restriction is not needed and are the ones that discard outlier elements [3]. 

Finally, there are the ones that characterise the set of elements into an attributed graph [4], [5], [6], [7] or 

[8]. Although some manual methods [9] have been presented to improve the correspondences made by a 

single matching algorithm, for these three scenarios, a consensus system could intervene as a third party to 

decide the final elements’ correspondence when discrepancies appear, especially as the number of involved 

elements increase. 

The rest of the paper is as follows. In section 2, we review the methods related on finding a correspondence 

consensus. In section 3, we present the basic definitions. In section 4 and 5, we explain the multiple-

correspondence consensus method and we show the algorithm to learn the meta-parameters of the 

consensus method. In section 6, we show the experimental validation and in section 7, we conclude the 

paper. 

Note that in the experimental section of this paper, we apply our method to deduct a final correspondence 

such that its accuracy is better than the original correspondences between salient points extracted from 

images. Nevertheless, the method we present does not have to be seen solely as an image registration 

method, but as a method to deduct a new correspondence with better quality than the initial 

correspondences, given some sets of elements and such initial correspondences between them. Since the 

used databases are composed of images and the homographies between them, we can easily deduct the 

correct position of the salient points in the transformed image and create a ground truth correspondence.  

2. Literature Review

To the best of our knowledge, we are the first ones to tackle the problem of finding a consensus 

correspondence given a set of correspondences. We first analysed this problem considering only two 

correspondences in [10] (there is a preliminary version in [11]). Thus, we defined the consensus as the 

mean correspondence between both correspondences. The concept of mean was established through the 

Hamming distance between correspondences. The consensus correspondence is the one that obtains the 

same Hamming distance between it and both input correspondences. But at that point, we realised that the 

definition of the mean is an ill posed problem since there are several correspondences that hold this 

condition. We decided to return as the consensus the mean correspondence with the minimum cost since 

we assume the input correspondences tend to minimise some cost function. In [12], we formulated the 

methodology in [10] to be used on correspondences between attributed graphs. The main difference was 

the introduction of the second order costs defined on the graph edges. These costs influence on the cost 

function given a correspondence between two attributed graphs. 

In [13], we generalise the problem and we presented two methods to deduct a correspondence consensus 

given several correspondences. The fact of increasing the number of correspondences involved in the 

process not only derives in an increase of the computational demand, but also an increase of the complexity 

of the problem at hand. In that paper, we proposed two different alternatives. 

The first one is based on a voting process using the same technique such as [14]. In this case, each vote is 

an element-to-element mapping given a specific correspondence. The consensus correspondence is 

generated as follows. First, each possible element-to-element mapping accumulates all possible votes of 

the whole correspondences. Second, the element-to-element mappings are ordered given their votes. Third, 

the consensus correspondence is composed of the element-to-element mappings with the most votes that 

are congruent (they generate a bijective function). The second one is an incremental method. The algorithm 

sequentially executes the two-correspondence method presented in [11] and [10]. 

The contribution of the current paper with respect to [13] is twofold. First, we propose a general method to 

find the consensus given several correspondences based on a minimisation of an energy function, which is 

not based on the aforementioned voting method or iterative method. The main difference is that the function 

to be minimised considers the whole correspondences at the same time. Second, we define an algorithm to 

learn the contribution of each correspondence, that is, how much we believe on each correspondence.  

Note that the algorithm we present and the ones in [13] (voting and iterative) obtain a consensus 

correspondence in a sub-optimal way. This is because the computational cost of an optimal algorithm is 

exponential with respect to the number and also order of sets, and therefore, seeking the optimal consensus 

is too computationally demanding in a real application. 

Finally, in [15], authors deduct a consensus distance given several distances obtained from the same two 

images but using different features.  Although the solution is applied for fingerprint matching, authors claim 

it can be easily extended to other type of images and features. The most important difference of this method 

and ours is that the inputs are some initial global distances and not some initial correspondences. Other 

interesting papers have been published related on the idea of generating a consensus given several data. For 

instance, in [17], a trust consensus is achieved given some social network analysis. In [16] and [18], a 



consensus decision is taken given some decisions of a set of people. In the second reference, authors apply 

fuzzy techniques. 

3. Basic definitions and methods

In this section, we present three basic definitions. 1) The mean of a set of elements given any domain of 

the involved elements, 2) the distance between two sets considering outlier rejection and 3) the mean 

correspondence given a set of correspondences. 

3.1 Set of elements and mean of a set of elements 

Suppose we have a set of elements A = {𝑎1, … , 𝑎𝑛 , }  on the domain 𝑎𝑖 ∈  Τ . The mean �̅� ∈ Τ  of the

elements in A is defined as, 

�̅� = argmin
∀𝑎∈ Τ

{∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑎𝑖)

𝑛

𝑖=1

} (1) 

being 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 any distance measure defined on the domain Τ of these elements. This function can be 

minimised using optimal or sub-optimal minimisation methods depending on several features, such as the 

definition of the distance function or the dimension of the problem. 

3.2 Distance between sets and correspondence between elements 

Given two sets of elements and a correspondence between them, we say that the inlier elements are the 

elements on both sets that are mapped by the correspondence, and the outlier elements are the elements that 

are not. Since both sets can have different cardinality, the number of inliers and outliers in both sets can be 

different. To formalise this situation, it is usual to consider some extra elements in both sets, which are 

usually called null elements. Thus, the elements in the set have to be considered outliers if are mapped to 

null elements in the codomain set. In the same way, the elements in the codomain set have to be considered 

outliers if their argument value is a null element. From now on, we consider that given two sets and a 

correspondence between them, both sets have the same order and the correspondence is bijective. 

More formally, if we have two sets of elements A = {𝑎1, … , 𝑎𝑛 , 𝑎𝑛+1, … , 𝑎𝑛+𝑚} and A′ = 
{𝑎′

1, … , 𝑎′
𝑚, 𝑎′𝑚+1, … , 𝑎′𝑛+𝑚} with order 𝑛 + 𝑚, the first 𝑛 elements of A are original elements and the 𝑚 

remaining elements are null elements. The attribute of null elements is not in Τ, and it is represented by 

symbol 𝜀 . Then, 𝑎𝑛+1 ∈ 𝜀, … , 𝑎𝑛+𝑚 ∈ 𝜀 . Similarly, this holds for the first 𝑚 elements in A′ and the 𝑛 
remaining elements of A′ . Therefore, 𝑎𝑚+1 ∈ 𝜀, … , 𝑎𝑛+𝑚 ∈ 𝜀 . Moreover, there is a bijective 
correspondence 𝑓(𝑎𝑖) = 𝑎′𝑗 that maps elements of both sets. We define the cost of this correspondence 
𝐶𝑜𝑠𝑡(𝐴, 𝐴′, 𝑓) as the addition of individual element costs in a similar way as in the Graph Edit Distance 

[19], 

𝐶𝑜𝑠𝑡(𝐴, 𝐴′, 𝑓) =  ∑ 𝑐(𝑎𝑖  , 𝑎′𝑗)

𝑛+𝑚

𝑖=1

(2) 

where 𝑓(𝑎𝑖) = 𝑎′𝑗 and c is defined as a distance function over the domain of attributes Τ ∪ {𝜀}. Distance c

is application dependent and it has to cope with the case that two original elements are mapped. Then, it is 

defined as 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑖  , 𝑎′𝑗) (both in domain Τ), and for the case that one of them is a null element (one

of them in domain Τ and the other has value 𝜀) it takes a constant value. If both mapped elements are null 

elements, then c(𝜀, 𝜀) = 0. 

The distance between sets 𝑑𝑆(𝐴, 𝐴′), which delivers the minimum cost of all the correspondences, is defined

as 

𝑑𝑆(𝐴, 𝐴′) = 𝑚𝑖𝑛∀𝑓: 𝐴𝑥𝐴′ {𝐶𝑜𝑠𝑡(𝐴, 𝐴′, 𝑓)}   (3) 

The correspondence that obtains this distance is known as the optimal correspondence 𝑓∗, and it is defined

as 

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀𝑓: 𝐴𝑥𝐴′ {𝐶𝑜𝑠𝑡(𝐴, 𝐴′, 𝑓)} (4)



Bipartite algorithm [4] is currently the most used method to solve the error-tolerant graph-matching 

problem. Although our framework is centred on correspondences between sets instead of between graphs, 

our approach to solve the consensus correspondence is based on this algorithm due to its flexibility to cope 

with null elements. The algorithm converts this linear minimisation problem into an assignment problem 

[1] in which any correspondence 𝑓 is related with a combination. They define matrix F such that F[𝑖, 𝑗] =

1 if 𝑓(𝑎𝑖) = 𝑎′𝑗  and F[𝑖, 𝑗] = 0 otherwise. With the calculation of a cost matrix 𝑪[𝑖, 𝑗] = 𝑐(𝑎𝑖  , 𝑎′𝑗), they

convert equation 4 into

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀𝑓: 𝐴𝑥𝐴′ {𝑪 ∘ F}   (5) 

where ∘ represents the Hadamard product. Then the cost of the correspondence can be obtained through, 

𝐶𝑜𝑠𝑡(𝐴, 𝐴′, 𝑓) =  ∑ (𝑪 ∘ F)[𝑖, 𝑗]

𝑛+𝑚

𝑖,𝑗=1

 
(6) 

The Bipartite algorithm is composed of two main steps. The first step defines the (𝑛 + 𝑚) × (𝑛 + 𝑚) 

cost matrix 𝑪 and the second step applies a linear solver such as the Hungarian method [1] or the Jonker-

Volgenant method [2] to this matrix and obtains matrix F. Figure 2 shows the cost matrix 𝑪 of Bipartite 

algorithm. 

Figure 2. Cost matrix of the Bipartite algorithm. 

Quadrant Q1 denotes the combination of substituting costs 𝐶𝑖,𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑖  , 𝑎′𝑗 ) between non-null 
elements. The diagonal of quadrant Q2 denotes the costs 𝐶𝑖,𝜀  of mapping non-null elements to null 
elements. Similarly, the diagonal of quadrant Q3 denotes the costs 𝐶𝜀,𝑗 of mapping null elements to non-

null elements. Q4 quadrant is filled with zero values since the substitution between null elements has a zero 

cost. Recently, other matrices have been defined [5], [6], [20] and [21], with the aim of reducing the 

computational cost. 

3.3  Mean correspondence of a set of correspondences 

Suppose we have two sets �̂� and �̂�′ and also 𝑁 bijective correspondences between these sets 𝑓1, … , 𝑓𝑁,

similarly to equation 1, the mean correspondence 𝑓 ̅between sets �̂� and �̂�′  is defined as, 

𝑓̅ = argmin
∀𝑓∈ 𝐴x𝐴′

{∑ 𝑑𝐻(𝑓 , 𝑓𝑘)

𝑁

𝑘=1

} 
(7) 

where 𝑑𝐻 is the Hamming distance between correspondences. If we try to minimise this function using sub-

optimal methods, we encounter that the Hamming distance takes discrete values and so, the derivative 

function is not defined in the whole domain. This property denies the use of classical optimisation methods 

based on the gradient [22]. One choice would be a brute force method that obtains all possible combinations 

and selects the correspondence that minimises the summation. Nevertheless, the number of combinations 

is so large that it could not be solved in most of the usual applications. 

We propose a standard minimisation approach that aims to find an optimal element 𝑒∗  that globally

minimises a specific function. This function is composed of an empirical risk ∇(e) plus a regularization 



term Ω(e) [23]. The empirical risk is the function to be minimised per se, and the regularisation term is a 

mathematical mechanism to impose some restrictions. If ∇(𝑒) ∈ ℝ𝑁 and Ω(𝑒) ∈ ℝ𝑁, some weights α ∈
ℝ𝑁  and β ∈ ℝ𝑁 are considered to gauge how much these restrictions have to be imposed. The final

functional becomes, 

𝑒∗   = argmin∀𝑒  {〈α, ∇(𝑒)〉 + 〈β, Ω(𝑒)〉} (8) 

In this paper, we present a method to find an approximation of the mean correspondence given a set of 

correspondences between two sets �̂� and �̂�′. Therefore, we want to find 𝑓̅∗ such that the following equation

holds, 

𝑓̅∗    = argmin∀𝑓: 𝐴𝑥𝐴′ {〈α, ∇(𝑓)〉 + 〈β, Ω(𝑓)〉} (9) 

We suppose 𝑓̅∗ approximates the mean correspondence 𝑓̅ and it has some specific features. From now on, 
we will refer to it as “consensus correspondence” instead of “mean correspondence”. This is because we 

cannot define it anymore as a mean due to the sub-optimality of the method, and also because of the 

definition of the regularisation term. Nevertheless, we always intend to approximate the consensus 

correspondence as much as possible to the mean value, since we assume the noise randomly appears and it 

has a non-repetitive behaviour. Thus, the mean value of the consensus correspondence tends to reduce the 

impact of this noise. 

In the next section, we present a method that obtains the consensus correspondence through an optimisation 

process given the whole set of correspondences at a time. Then in section 4, we explain the learning 

algorithm to automatically set parameters 𝛼 and 𝛽 which will establish the weights.  

4. Consensus correspondence of multiple correspondences

Suppose we have two sets {𝐴1, … , 𝐴𝑁} and {𝐴′1, … , 𝐴′𝑁}  composed of sets 𝐴𝑘 and 𝐴′𝑘. Each individual set

is composed of 𝐴𝑘 = {𝑎1
𝑘 , 𝑎2

𝑘, … , 𝑎
𝑛𝑘
𝑘 } and 𝐴′𝑘 = {𝑎′1

𝑘 , 𝑎′2
𝑘 , … , 𝑎′

𝑛𝑘
𝑘 }. Moreover, there is a set of bijective 

correspondences {𝑓1, … , 𝑓𝑁} where 𝑓𝑘: 𝐴𝑘 𝑥 𝐴′𝑘. The paired sets 𝐴𝑘 and 𝐴′𝑘 have the same order 𝑛𝑘 (this 
is required for 𝑓𝑘  to be bijective) but in general, non-paired sets have different orders. Moreover, the 
domain of elements in the paired sets 𝐴𝑘 and 𝐴′𝑘 are the same, but they can be different from the other sets. 
Thus, a distance function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑖

𝑘  , 𝑎′𝑗
𝑘) between elements’ sets 𝐴𝑘  and 𝐴′𝑘 can be defined. In our 

framework, an element can be represented by different features and so it can be included in different sets 
{A1, ...,AN} at the same time. For this reason, we can define the union set  Â, Â = UN   Ak. This condition
holds equivalently for sets in {A'1,..., A'N} and the union set Â', where Â' = U       Ak'. Set Â is represented
by = { �̂�1, … , �̂�𝑛} and the domain ̂of each element  �̂�𝑖 is a vector of 𝑁 elements  [�̂�𝑖

1, … 𝑎𝑖
𝑁]. Element �̂�𝑖

𝑘 

takes value 𝑎𝑠
𝑘 if the 𝑖𝑡ℎ element in  is considered to be the 𝑠𝑡ℎ element in 𝐴𝑘 or takes the special value 𝛷 

representing this element does not exist in 𝐴𝑘. The same holds for �̂�′ and 𝐴𝑘′.
Figure 3 shows an example of the proposed framework. It is composed of sets 𝐴1, 𝐴2 and 𝐴3 and also of 
sets 𝐴1′, 𝐴2′ and 𝐴3′. The three bijective functions 𝑓1, 𝑓2 and 𝑓3 between these sets are also shown. The 
order of these sets is 𝑛1 =2, 𝑛2 =2 and 𝑛3 =1. Columns represent different sets and rows represent 
elements between different sets, but that have to be considered the same element in the union set.  

k=1
𝑁
𝑘=1



Figure 3. Input of our problem composed of three pairs of sets and three correspondences between them. 

Figure 4 shows the resulting union sets �̂� and �̂�′ and the value of the elements’ attributes 

Figure 4. Sets and correspondences shown in figure 3 is converted into only a pair of sets and three 

correspondences between these sets. The domain of the elements in the new sets is composed of a vector 

of three attributes, one for each set. 

The Loss function, which has the aim of approaching the solution to the mean correspondence, is defined 

as the 𝑁 Hamming distances between the whole correspondences 𝑓𝑘 proposed by the different entities and

the current consensus correspondence, 

∇(𝑓) = [ 𝑑𝐻(𝑓1, 𝑓), … ,  𝑑𝐻(𝑓𝑁 , 𝑓)]   (10) 

Conversely, the Regularisation term is defined as, 

Ω(𝑓) = [𝐶𝑜𝑠𝑡1(�̂�, �̂�′, 𝑓), … , 𝐶𝑜𝑠𝑡𝑁(�̂�, �̂�′, 𝑓)] (11) 

𝑛
𝑘

𝑛
𝑘

Function 𝐶𝑜𝑠𝑡𝑘 computes the cost between sets �̂� and �̂�′ given correspondence 𝑓 (equation 6) but only

considering the kth attribute in the elements of these sets, �̂�1
𝑘 , … �̂�  and �̂�1

𝑘′, … �̂� ′ . The aim of the 
Regularisation term is to reduce the cost of the consensus. Given different solutions, the best one is the 

correspondence that has the minimum cost. 

Note these two functions are clearly non-continuous since a simple swap of a pair of node mappings would 

cause an abrupt change on the Hamming distance and also on the correspondence cost. This is the reason 

why applying methods such as [22] would not converge. Moreover, these methods do not guarantee the 

correspondence to be bijective while minimising this function. We decided to solve this optimisation 

problem through the Bipartite graph matching framework [1], [4], [5]. First of all, we need to define the 

enlarged correspondence matrix 𝐹𝑘 and the enlarged cost matrix 𝐶𝑘 (figure 5). Both matrices are composed 
of four quadrants. The left upper quadrant represents the set of combinations between elements in �̂� that 

belong to 𝐴𝑘 and elements in �̂�′ that belong to 𝐴′𝑘 . The second quadrant represents the combinations 
between elements in �̂� that are in 𝐴𝑘 and elements in �̂�′ that are not in 𝐴′𝑘. Similarly, the third quadrant 
represents the combinations between elements in �̂� that are not in 𝐴𝑘 and elements in �̂�′ that are in 𝐴′𝑘. 
These two last quadrants are used to allow elements to be considered outliers. The fourth quadrant is 

composed of correspondences between null elements. 

The first quadrant in 𝐹𝑘 represents the correspondence 𝑓𝑘. Thus, we define 𝐹𝑘[𝑖, 𝑗] = 1 if 𝑓𝑘(𝑎𝑖) = 𝑎′𝑗 
and 𝐹𝑘[𝑖, 𝑗] = 0 otherwise (similarly to the Bipartite algorithm [4]). The whole cells in the rest of quadrants 
are 0 since there are not any mappings between these elements. If an element belongs to the original set 𝐴𝑘, 
then the sum of the column or row in 𝐹𝑘 that represents this element is 1. Otherwise, the whole column or 
row in 𝐹𝑘 is 0.

We distinguish four different types of cells in the first quadrant of matrix 𝐶𝑘. The ones that both elements 
belong to 𝐴𝑘 and 𝐴′𝑘, then the cost 𝐶𝑖

𝑘
,𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑖

𝑘 , 𝑎′𝑗
𝑘) of mapping these elements are considered. If 

the elements do not belong to the sets 𝐴𝑘 or 𝐴′𝑘, then the cost of assigning it to a null element is considered,

𝐶𝜀,𝑗
𝑘 or 𝐶𝑖,𝜀

𝑘 . Finally, the ones where both elements do not belong to 𝐴𝑘 or 𝐴′𝑘 have a cost of 0. The other

quadrants have been defined as the original Bipartite algorithm (figure 2). Nevertheless, note there are some 

cells in the diagonals of the second and third quadrant that have a 0 value. These are the cases where the 

element does not belong to 𝐴𝑘 (in the second quadrant) or does not belong to 𝐴′𝑘 (in the third quadrant).



Figure 5. Correspondence matrix 𝐹𝑘 and Cost matrix 𝐶𝑘.

The consensus correspondence is achieved through the following expression 

𝑓̅∗ = argmin
∀𝑓: 𝐴𝑥𝐴′

{[− ∑ 𝛼𝑘 ∙ 𝐹𝑘

𝑁

𝑘=1

+ 𝛽𝑘 · ∑ 𝐶𝑘

𝑁

𝑘=1

] ∘ F} 
(12) 

Algorithm 1 computes the agglomerative consensus. It is composed of three main steps. First, the weights 

𝛼 and 𝛽 are normalised. Then, matrices 𝐹1, … , 𝐹𝑁 and 𝐶1, … , 𝐶𝑁 are computed such that all of them have 
the same number of columns and rows (figure 5). Finally, a linear solver such as [1] or [2] is applied on the 

resulting matrix 𝐻. 

Algorithm 1. Consensus 

Input: {𝑓1, … , 𝑓𝑁}, {𝐴1, … , 𝐴𝑁}, {𝐴′1, … , 𝐴′𝑁}
Output: 𝑓̅∗, 𝐴, 𝐴′
Begin 

𝛼′𝑘 , 𝛽′𝑘 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒(𝛼𝑘, 𝛽𝑘)

For all 𝑖, 𝑗, 𝑘: 𝐹𝑘[𝑖, 𝑗] = 1  𝑖𝑓 if 𝑓𝑘(𝑎𝑖
𝑘) = 𝑎′𝑗

𝑘  and  𝐹𝑘[𝑖, 𝑗] = 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      // Figure 5.a 

For all 𝑘: 𝐶𝑘    = 𝐶𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝐴𝑘, 𝐴𝑘′)        // Figure 5.b 

𝐻 = 𝛽′𝑘 · ∑ 𝐶𝑘𝑁
𝑘=1 − ∑ 𝛼′𝑘 ∙ 𝐹𝑘𝑁

𝑘=1      // equation 12 

𝑓̅∗ = 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑜𝑙𝑣𝑒𝑟(𝐻)   // A linear solver such as [1] or [2] 

End algorithm 

5. Online Learning Function

In this section, we describe how we learn parameters 𝛼 = (𝛼1, … , 𝛼𝑘, … , 𝛼𝑁) and 𝛽 = (𝛽1, … , 𝛽𝑘 , … , 𝛽𝑁) 
used in equations 11 and 14. These weights represent the level of confidence we have on the initial 

correspondence 𝐹𝑘 and the matrix costs 𝐶𝑘 . Notice 𝛽𝑘 affects positively while 𝛼𝑘 affects negatively in 
equation 14. Parameters 𝛼𝑘 and β𝑘 have to be high if we believe matrices 𝐹𝑘 and 𝐶𝑘 are properly defined. 
That is, 𝑓𝑘 represents a correct correspondence and the distance between features 𝐶𝑖

𝑘
,𝑗 really represents the 

dissimilarity between 𝑎𝑖
𝑘 and 𝑎′𝑗

𝑘 elements. The online learning algorithm does not force the user to impose 
the N correspondences simultaneously, thus the algorithm is more applicable in fields where this data is not 

available at the same time and each of the 𝑘𝑡ℎ elements of α𝑘 and 𝛽𝑘 are updated separately.

The learning set is composed of several registers and each one is a quartet with this structure, 

{𝐴𝑘 , 𝐴′𝑘, 𝑓𝑘 , 𝑓𝑘}. As mentioned before, 𝐴𝑘 and 𝐴′𝑘 are sets of element that have the 𝑘𝑡ℎ feature, 𝑓𝑘 is a 
correspondence either manually deducted or automatically computed given an error-tolerant graph 

matching algorithm. Finally, 𝑓𝑘 is a ground truth correspondence between these sets. Several registers can 
have sets of some specific feature 𝑘.  

Weights 𝛼𝑘 gauge the quality of the correspondence. They are calculated as a similarity function between 
the correspondence 𝑓𝑘 and the ground truth correspondence 𝑓𝑘. The similarity is calculated as the inverse 
of the Hamming distance. Note the obtained value does not depend on the sets 𝐴𝑘 and 𝐴′𝑘, but only on the 
correspondences. Meanwhile, weights 𝛽𝑘 gauge the quality of the features. They consider the costs

between elements 𝐶𝑖,𝑗
𝑘 and the ground truth 𝑓𝑘 , but the computed correspondence 𝑓𝑘  is not used. We

consider the genuine cells in 𝐶𝑖,𝑗
𝑘 the ones such that 𝑓𝑘(𝑎𝑖

𝑘) = 𝑎′𝑗
𝑘 and the impostor cells the other ones,

𝑓𝑘(𝑎𝑖
𝑘) ≠ 𝑎′𝑗

𝑘. Then, we construct two histograms 𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒
𝑘 and 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟

𝑘  with the genuine and impostor 



cells. As more distant are both histograms, the better these features are represented on the ground truth 

correspondence. Therefore, 𝛽𝑘 is obtained as the distance between these two histograms, and this distance

is computed as the Earth Movers’ Distance between histograms [19]. We decided to use this distance 

instead of the typical Mahalanobis’ distance between probability density functions because in the first 

samples, the approximation error was very high [20]. 

The following online learning function computes weights 𝛼𝑘 and 𝛽𝑘. The first time it is called, the meta-

parameters for all k are: 𝑆𝑘 = 0, 𝑀𝑘 = 0, 𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒
𝑘 = 0 and 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟

𝑘 = 0

Function Online Learning 

Input: 𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒
𝑘 , 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟

𝑘 , 𝑆𝑘 , 𝑀𝑘, 𝐴𝑘, 𝐴′𝑘, 𝑓𝑘, 𝑓𝑘

Output: 𝛼𝑘, 𝛽𝑘, 𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒
𝑘 , 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟

𝑘 , 𝑆𝑘, 𝑀𝑘

Begin 

𝑀𝑘 + +
𝐶 = 𝐶𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝐴𝑘 , 𝐴′𝑘)

𝑆𝑘 = 𝑆𝑘 +
1

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓𝑘, 𝑓𝑘) + 1

𝛼𝑘 =
𝑆𝑘

𝑀𝑘

𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒
𝑘 = 𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒

𝑘 + ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑔𝑒𝑛𝑢𝑖𝑛𝑒(𝐶)

𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟
𝑘 = 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟

𝑘 + ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟(𝐶)

β𝑘 =
𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑣𝑒𝑟𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻𝑔𝑒𝑛𝑢𝑖𝑛𝑒

𝑘 , 𝐻𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟
𝑘 )

𝑀𝑘

End function 

6. Experimental Validation

The experimental validation has been performed using two databases.  DB 1 is composed of 5 sequences 

called “BOAT”, “EAST_PARK”, “EAST_SOUTH”, “RESIDENCE” and “ENSIMAG” [24], and DB 2 is 

composed of 7 sequences called “BARK” “BIKES”, “GRAF”, “LEUVEN”, “TREES”, “UBC” and 

“WALL” [25]. These sequences are composed of 11 (DB 1) and 6 (DB 2) pictures taken from the same 

object, but from different points of views and scales. From each picture, we extract the 50 most reliable 

salient points and their features using 5 feature extractors:  

 FAST [26]: It is composed of a vector of features obtained from an algorithm that the authors call

the accelerated segment test algorithm. This algorithm uses an approximation metric to determine

the corners of an image.

 HARRIS [27]: It is composed of a vector of features obtained from the Harris Stephens algorithm.

It is able to find corners and edges based on a local auto-correlation function.

 MINEIGEN [28]: It is composed of a vector of features obtained from the minimum eigenvalue

algorithm. This algorithm determines the location of the corners based on the eigenvector and

eigenvalue domain. It is originally designed for tracking purposes and it is able to detect some

occlusions in the image.

 SURF [29]: It is composed of a vector of features obtained from the Speeded-up robust features

algorithm. It is able to detect multiscale objects (known as blobs) as well as scale and rotation

changes.

 SIFT [30]: It is composed of a vector of features obtained from the Scale-invariant feature

transform algorithm. It applies the Gaussian difference given several regions of the image in order

to find scale and rotation features.
We matched every image of the sequence to the rest of images using two matching algorithms: the 

Matlab function MatchFeatures (MF) [31] and the BP algorithm [4], [5] (a Matlab code is public in [32]). 

Using the homographies in the original databases, we generated the ground truth correspondences. To 

summarise, our experimental scenario has a total of 5000 quartets from the first database and 4200 quartets 

from the second database (available in [33]) composed of two sets of points, the deducted correspondence 

and the ground truth correspondence. In figure 6, we show the first image of each of the sequences contained 

in DB 1 and DB 2. 

DB 1 

BOAT EAST_PARK EAST_SOUTH 



RESIDENCE ENSIMAG 

DB 2 

BARK BIKES GRAF 

LEUVEN TREES 

UBC WALL 

Figure 6. The first image of each sequence of DB 1 and DB 2. 

In the first experiments, we want to show the relation between the quality of each feature and the matching 

algorithm with respect to the evolution of weights 𝛼𝑘 and 𝛽𝑘. To that aim, we initially show in Table 1 the

classification ratio in % of the 10 combinations (5 features and 2 matching algorithms) given the two 

databases. Note, in general the whole classification ratios are very low. The final aim of these experiments 

is to obtain a consensus correspondence such that the resulting classification ratio is higher. 

DB FAST 
MF 

HARRIS 
MF 

MINEIGEN 
MF 

SIFT 
MF 

SURF 
MF 

FAST 
BP 

HARRIS 
BP 

MINEIGEN 
BP 

SIFT 
BP 

SURF 
BP 

1 15 15 14 1 17 17 20 20 2 22 

2 5 5 5 1 10 14 13 14 2 15 



Table 1. Recognition ratio in % of each combination (feature x matching algorithm) given the two 

databases. In green the highest values and in red the lowest ones. 

Figure 7 shows the evolution of the 10 parameters 𝛼1, 𝛼2, … 𝛼10 through the five first iterations (iteration 0

means without learning). Note combination FAST and MF is represented by 𝑘 = 1, combination HARRIS 

and MF is represented by 𝑘 = 2 and so on. In each iteration, the whole parameters are updated. We realise 

there is a clear relation between the classification ratio shown in table 1 and the evolution of these 

parameters. For instance, SURF and BP is the combination with the largest classification ratio (table 1) and 

it is the combination that obtains the highest weight (figure 8). This means that our method properly learns 

the quality of each combination. 

Figure 7. Evolution of weights 𝛼 in database 1(left) and database 2 (right). 

Similarly, figure 8 shows the evolution of the 10 parameters 𝛽1, 𝛽2, … 𝛽10 through the five first iterations. 
As commented in section 4, weights 𝛽𝑘 do not depend on the matching algorithm. For this reason, in this 
case, we have that 𝛽1 = 𝛽6, 𝛽2 = 𝛽7 and so on. SURF is the feature extractor that obtains the highest 
accuracy when it is combined with MF and also with BP (table 1) and this fact is reflected in the weights 

𝛽5 and 𝛽10.

Figure 8. Evolution of weights 𝛽 in database 1 (left) and database 2 (right). 

Once the correct learning of 𝛼 and 𝛽 has been validated, we show how this knowledge is transmitted to the 

consensus algorithm. Table 2 shows how these new weights influences on the recognition ratio. For each 

database, we present four results: without learning (the whole weights take the same value), learning only 

𝛼, learning only 𝛽 and learning both weights. These results are obtained at the fifth iteration. There is an 

important increase in the classification rate when both weights are learned with respect to when weights 

are not learned. Note that learning 𝛼  makes the ratio increase but this is not the case for weight 𝛽 . 

Nevertheless, the classification ratio when both weights are learned is higher than when only 𝛼 is learned. 

Database No learning Learning 𝛼 Learning 𝛽 Learning 𝛼 and 𝛽 

1 25 45 23 53 



2 21 25 19 31 

Table 2. Recognition ratio in % considering four learning options. 

The aim of some applications is not to classify a new object but simply to find a good correspondence 

between two sets of elements. For instance, if some specialists decide a mapping between minutiae of two 

fingerprints, some discrepancies may appear. In this case, an interesting metric is the number of minutiae 

that have been mapped. To that aim, table 3 shows the average number of detected inliers in both databases 

given the 10 combinations. 

DB FAST 
MF 

HARRIS 
MF 

MINEIGEN 
MF 

SIFT 
MF 

SURF 
MF 

FAST 
BP 

HARRIS 
BP 

MINEIGEN 
BP 

SIFT 
BP 

SURF 
BP 

1 2625 2657 2644 1836 2776 4963 4936 4978 5374 5365 

2 567 618 616 583 729 1042 1118 1123 1290 1230 

Table 3. Average number of detected inliers given the 10 combinations and both databases. 

Table 4 shows the detected inliers without learning and at the fifth iteration. We also add the MAX, MIN 

and MEAN of the individual inliers (table 3). We realise that there is slight increase on the number of inliers 

in the fifth iteration with respect to the consensus without learning. We assume this is due to a lot of inliers 

have been detected in the non-learning consensus method. Note the maximum and the mean number of 

detected inliers in the individual methods is really much smaller. 

DB No learning Learning MAX MIN MEAN 

1 13750 15200 5364 1836 3815 

2 1525 1600 1290 583 891 

Table 4. Average number of detected inliers of the consensus methods (non-learning and learning) and the 

max, min and mean number of inliers detected by the individual methods. 

Finally, we show in figure 9 the average runtime (in seconds) for the method to compute one consensus 

correspondence given our database. It considers the time to calculate 𝛼𝑘 and 𝛽𝑘 according to each iteration, 
plus the time of computation of the consensus itself. Tests were performed using a PC with Intel 3.4 GHz 

CPU and Windows 7 operating system. 

Figure 9. Evolution of the average runtime (in seconds) to compute a consensus in database 1 (left) and 

database 2 (right). 

The most relevant observation is that the time consumption does not increase when the number of iterations 

increases. In fact, it is interesting to point out that, on average, and in the first database, the first iteration is 

the one that delays the most. This happens due to the fact that in some cases, the following iterations obtain 

same values 𝛼𝑘  equal to 0. As a consequence, the time to compute the linear solver that leads to the 
consensus is reduced. 

7. Conclusions and Further Work

We have presented a method to obtain the consensus correspondence between several correspondences and 

also an online algorithm to deduct how much we believe on each correspondence and each specific feature. 

To obtain a consensus correspondence is a problem that arises in several applications. For instance, when 

several fingerprint experts deduct the correspondence between two fingerprints or when several automatic 

image retrieval methods compute the correspondence between two images. The method is based on well-

known algorithms such as the Bipartite graph matching algorithm or the Earth movers distance. 



In the experimental section, we have shown that there is a clear dependency between the quality of the 

correspondence and the learned weights. The better the original correspondence is, the higher the weights 

are. This means that the model has been properly formulated and it is applicable. Moreover, we have seen 

that the classification ratio is much better when the weights have been learned than keeping the weights 

uniform. In the applications that the aim is not to classify the sets but only to find a good correspondence, 

we have seen that the consensus method deducts really much more elements in the sets and therefore it 

finds more correspondences. Finally, we have seen that, in each iteration, the runtime keeps constant or 

slightly decreases. This is an important fact since it means the online algorithm can continue learning the 

weights each time more data is available without more computational demand. 

As a future work, we intend to add more weights such as expertise in the field of the human that has 

presented the correspondence, or the antiquity of the correspondence in the dataset. Thus, the system takes 

more into consideration the correspondences imposed by the people with the most expertise. Moreover, we 

also could consider decreasing the weight of a correspondence when new ones appear. The newer, the more 

considered in the system. 

Note that weights of this nature do not directly depend on the data, but on other external information. 

Therefore, a form to learn these weights must be defined first. To that aim, it is worth to mention the 

methods presented in [34] and [35]. Although they are different consensus scenarios, we could apply their 

techniques to weight the different correspondences. In the first one, they propose nonlinear preference 

consensus costs and the input of a moderator. In the second one, they introduce the idea of clustering data 

to weigh the different proposal.  
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