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Predicting the speed of epidemics spreading on networks

Sam Moore∗ and Tim Rogers†

Centre for Networks and Collective Behaviour, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

Global transport and communication networks enable information, ideas and infectious diseases
now to spread at speeds far beyond what has historically been possible. To effectively monitor,
design, or intervene in such epidemic-like processes, there is a need to predict the speed of a particular
contagion in a particular network, and to distinguish between nodes that are more likely to become
infected sooner or later during an outbreak. Here, we study these quantities using a message-passing
approach to derive simple and effective predictions which are validated against epidemic simulations
on a variety of real-world networks with good agreement. In addition to individualized predictions
for different nodes, we find an overall sudden transition from low density to almost full network
saturation as the contagion develops in time. Our theory is developed and explained in the setting
of simple contagions on tree-like networks, but we are also able to show how the method extends
remarkably well to complex contagions and highly clustered networks.

It took more than nine years for the Black Death to
spread across Europe. Progress of this devastating out-
break of bubonic plague was limited by 14th century
travel networks to an average daily dispersion of approxi-
mately 1.5km [1]. In frightening contrast, the recent Zika
outbreak in South America was found to spread with an
average daily dispersion of 42km, rising as high as 634km
in the most densely populated parts of Brazil [2]. This
extraordinary difference is indicative of a mobile society
that is no longer rigidly bound by spatial structure, mak-
ing the relevant notion of distance network-based rather
than geographic. Similarly, in the highly connected do-
main of social media, the spread of concepts, memes and
hashtags can be explosive. One recent empirical study of
the dynamics of online rumour cascades — often reaching
tens of thousands of users in a matter of days — made
the worrying finding that false information spreads faster
then true [3]. It takes little imagination to see how an
understanding of propagation speeds in modern networks
would have, in the digital case, great commercial and po-
litical benefit, and in the physical case be invaluable in
planning outbreak prevention, monitoring and response.

The field of network epidemiology [4–7] has developed
a wide spectrum of techniques for the analysis of spread-
ing processes. One approach to the problem of spread-
ing speed is through numerical simulations (see e.g. [8]),
which yield useful results on small scales, but for increas-
ingly large complex networks may prove slow and im-
practical. Alternative approximations have been made
by considering only the most probable path between a
given target node and the source [9]. It is known that this
shortest-path approach can significantly overestimate the
infection arrival times [10], but to take into account all
possible paths would soon be infeasible as their number
typically grows exponentially with the number of vertices
in the network. One promising idea is a conjectured con-
nection between centrality measures and infection arrival
time [11], which so far has only been tested numerically.

While global networks of interest are highly connected,
they are also typically sparse in the sense that individu-

als usually interact with a number of others that is very
small relative to the total population size. Exploitation of
this sparse network structure has been a key tool in net-
work epidemiology, in particular via the message-passing
approach pioneered in [12]. This technique has allowed
for efficient characterization of the epidemic (percolation)
threshold [13, 14], and gave rise to the new notion of non-
backtracking centrality [15]. In [16, 17] a message-passing
approach was used to make individualized predictions for
node responses to spreading processes, giving a physi-
cal interpretation of non-backtracking centrality as the
probability for a node to appear in the percolating clus-
ter. None of these works has yet addressed the important
questions of how fast an epidemic will spread in a given
network, and which nodes may fall victim first.

Here, we seek to assess the full time-dependence of an
epidemic outbreak in order to characterize the speed of
spread in a given network by calculating the mean delay
in infection between nodes at different graph distances
from the source. Technically, we achieve this through a
saddle-point analysis of the left tail of the distribution
of time to infection, expressed via the message-passing
equations. This method enables us to find the overall
speed of an infection in a network, and to show that
the arrival time at a node is accurately predicted by the
logarithm of its non-backtracking centrality.

Our theoretical predictions for both spreading speed
and arrival times show excellent agreement with numeri-
cal simulations performed on real-world networks, even in
the case of highly clustered contact networks with heavy
tailed degree distributions. Remarkably, we show that
the method can also be extended to complex threshold
models of contagions in which a node must be exposed to
multiple infective neighbours before acquiring the conta-
gion itself. We finish by observing that the time for the
infection to spread through the bulk of the network is
independent of network size, implying an almost instan-
taneous jump from low to high density of infection when
time is properly scaled; a propoerty which we show to be
common to time-ordered percolation in general.
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Speed of spread. We begin by considering a simple
SI infection spreading on a sparse network starting from
a single infected node (details on the extension to other
models, inlcuding SIR and complex contagions, are found
in the supplement). When node i becomes infectious, it
transmits the infection to a neighbour j after a delay
Xi→j ; a random variable drawn from a distribution with
density f(x), independently from any other event. The
choice of an exponential distribution for f would corre-
spond to Markov disease dynamics, although it has been
shown that real-world contagion dynamics differ substan-
tially from this simple case [18–21], and hence we study
general distributions of transmission time.

Write Tn
i for the length of the shortest (temporal) path

to a node at distance n from i, and Tn
i→j for the shortest

such path whose first step is to node j. It follows that
Tn
i = minj∈∂i T

n
i→j , where ∂i denotes the set of neigh-

bours of i. More generally, Tn
i→j decomposes as

Tn
i→j = Xi→j + min

k∈∂j\i
Tn−1
j→k . (1)

Writing Fn
i→j(t) for the probability that Tn

i→j is less than
t, we arrive at the message passing equation

Fn
i→j(t) =

∫ t

0

f(x)

(
1−

∏
k∈∂j\i

[
1− Fn−1

j→k(t− x)
])

dx .

(2)
In writing the above we have assumed independence be-
tween the variables {Tn−1

j→k}; although this technically
only holds for tree graphs, we will see that the approxima-
tion is effective for a broad class of real-world networks.

Equation (2) represents a nested hierarchy of expres-
sions which could in principle be solved numerically for a
given network, infection and source node. However, this
process is computationally intensive and the results are
not generalisable. We will pursue a different path and
investigate the structure of the dynamics described by
(2) to reveal useful general insights.

At first glance, it appears that the spreading process
depends in a complicated way on the precise layout of
the network, however, we find that the system possesses
a regularity which emerges after a few iterations. In a
network of N � 1 nodes, for 1� n� N we observe the
convergence Tn

i /n → τ for some constant τ , describing
the delay between spreading n− 1 steps from the source
to n. In this sense 1/τ can be interpreted as the speed
of spreading in the network. This effect is illustrated in
the left panels of Fig. 1, showing the convergence and
reduction of variance in simulated histograms of Tn

i /n
for different source nodes i as n grows.

To compute the characteristic delay τ , we examine the
left tails of Fn

i→j for large n. Our rationale for this ap-
proach is that, as illustrated in Fig. 1, the offset is the
same across the whole distribution, and we will show
that the left tails are amenable to a linear analysis. For
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FIG. 1. Left panels: simulation of the distribution of the
scaled time Tn

i /n for an epidemic to reach distance n from
a source node i chosen to have degree 1 (dark) or degree 3
(pale); as n → ∞ these distributions will converge to delta
functions at some value τ . Right: simulation of the CDF
Fn
i (t) for time to reach distance n from a source node i chosen

to have degree 1, showing convergence to a standard form with
a fixed offset τ . In both cases node-to-node transmission times
are standard exponentials and the network is an Erdős-Rényi
graph with mean degree 3 on N = 104 nodes.

t� nτ , we linearize (2) to obtain

Fn
i→j(t) ≈

∫ t

0

f(x)
∑

k∈∂j\i

Fn−1
j→k(t− x) dx . (3)

This problem is mathematically analogous to that of
front propagation and we therefore follow the standard
method described in [22]. The trivial solution F 0(t) ≡ 0
is linearly unstable with increasing n, and the dominant
rate of growth will determine τ . The two sided Laplace
transform of Eq. (3) reads

F̃n
i→j(k) = f̃(k)

∑
k∈∂j\i

F̃n−1
j→k(k) , (4)

where f̃(k) =
∫
e−kxf(x)dx is the Laplace transform of

f . Viewing F̃ as a vector with entries indexed by directed
edges, Eq. (4) describes an iterative process of multiply-
ing by a matrix that encodes the entries of the sum, and
then by the scalar f̃(k). Thus, for large n we can expect

F̃n
i→j(k) ∝ vi→j e

−ω(k)n, (5)

where the coefficient vi→j contains the edge-specific in-
formation, and the function ω(k) determines the overall
exponential growth rate. Substituting this ansatz into
(4), we find v = f̃(k)eω(k)Bv, where B is the non-
backtracking matrix [15]. This is an eigenvalue equa-
tion for B with a non-negative eigenvector v; according
to the Perron-Frobenius theorem, for a connected net-
work there is a unique maximum eigenvalue λ, which
is real and positive. Thus the growth rate is found as
ω(k) = − log(λf̃(k)) . Note that 1/λ = ρc is the percola-
tion threshold of the network [13, 16, 17].
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FIG. 2. Predicted and observed values of the spreading delay
τ for a unit rate exponential infection spreading on a variety
of social and communication networks [23–30] with different
percolation thresholds ρc. Predicted values (red circles) are
calculated using Eq. (6). Observed values (blue dots) show
the average over 103 simulations with random source nodes.
Stars show results for Watts-Strogatz random graphs on 104

nodes with degree 30 and rewiring probabilities of 0.1, 0.5 and
1. Full details of all simulations are given in the suplement.

Examining the inverse transform at time t + nτ , one
finds (full details are in the supplement) physically mean-
ingful results in the limit of large n only when

τ = max
k

{
1

k

(
log ρc − log f̃(k)

)}
. (6)

This is our first main result, showing how the speed of
spread is determined by the network via its percolation
threshold ρc, and by the infection itself via the Laplace
transform of its transmission time distribution. It is im-
portant to note that this result is derived from making a
tree-like assumption for the underlying network, and our
calculation holds in the limit of large distance from the
source. In this sense it describes the fastest spreading
regime; the mid-outbreak phase of exponential growth.

In practical applications, however, most networks of
interest are not tree-like, and finite size effects mean the
infection is unlikely to be able fully accelerate to the sta-
ble regime we have calculated. Nonetheless, our result
still provides high-quality predictions. Fig. 2 demon-
strates the effectiveness of this measure on a variety of
real world networks from the Stanford Large Network
Dataset Collection (SNAP) [31], many with heavy-tailed
degree distributions and high clustering; Table S.I in the
suplement gives full details. To further test the reliance
of our method on the tree-like assumption made in writ-
ing (2), we have simulated spreading processes in Watts-
Strogatz random graphs with varying rewiring probabil-
ities. Included in Fig. 2, the results for these networks
show that our method performs better for higher rewiring
probability, but is still very successful for highly clustered
networks with low rewiring.

As well as the network, our measure of speed also de-
pends on properties of the infection. One might expect
the time delay τ to be scaled by the mean delay time,
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FIG. 3. Simulated (blue marked line) and predicted (red
dashed line) spreading delay τ for infections with Weibull de-
lay times with varying shape parameter κ and fixed mean 1
(example delay distributions shown in insets). Simulations
follow the same method as Fig. 2, averaged over 100 samples
on an Erdős-Rényi graph of 104 nodes and mean degree 3.

but beyond this it is difficult to discern from (6) how the
shape of the distribution should affect the global speed
of spread. To explore this aspect we show in Fig. 3 the
observed and predicted spreading speed for Weibull dis-
tributed delays, interpolating between heavy-tailed and
Dirac distributed. Crucially, we find that the shape of
the distribution of transmission time has a substantial
effect on the speed of spread in a network. If there is
mass near zero then delays are minimal due to the pres-
ence of extremely fast transmission routes. Conversely, if
transmission time is close to deterministic then spreading
is determined entirely by graph distance, meaning τ ≈ 1.
In the supplement we prove that τ is always less than
the mean delay time, with equality only for Dirac-delta
distributions.
The time taken to receive the infection. As well

as predicting the overall spreading speed, our approach
also allows us to rank nodes in the network by their ex-
pected time to become infected. Write ∆ij for the offset
in infection time between nodes i and j, which for large
n should satisfy Fn

i (nτ) = Fn
j (nτ + ∆ij). Inverting the

transform in Eq. (5) for large n by steepest descent and
comparing with the above (details in the supplement) we
find that

∆ij =
1

k?
log

(
ci
cj

)
+O(1/n) , (7)

where k? = argmaxk{ω(k)/k} and ci =
∑

j∈∂i vi→j is the
non-backtracking centrality of node i. This log-linear re-
lationship is demonstrated numerically in Fig. 4 for nodes
in a selection of networks from SNAP. This result is im-
portant as it resolves the open question of exactly how
network centrality measures may be used to estimate
epidemic arrival time, and provides a robust theoreti-
cal justification for the use of non-backtracking central-
ity (see supplement for a comparison to other centrality
measures).
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FIG. 4. Non-backtracking centrality predicts time to infec-
tion. Left: scatter plot of centrality and average arrival time
for nodes in a selection of networks using a contagion with
Weibull (κ = 10) infection times. Right: results for simu-
lations of complex contagions with threshold θ in an Erdős-
Rényi graph with 104 nodes and mean degree 6. Key: (a) an
inter-personal contact network in an American high school
[30], (b) ‘Epinions’ social media, (c) ‘Deezer’ Romanian so-
cial network [23], (d) an Erdős-Rényi graph with N = 105

nodes, (e) θ = 1, (f) θ = 2, (g) θ = 3.

Exponential Weibull (κ = 10)

Network name Simple 2-core 3-core Simple 2-core

Erdős-Rényi -0.9487 -0.9693 -0.9502 -0.9721 -0.9691

Epinions [29] -0.8765 -0.7769 -0.7428 -0.9946 -0.8661

Deezer Croatia [23] -0.8265 -0.8094 -0.8088 -0.9049 -0.8697

Facebook Artists [23] -0.7943 -0.7481 -0.7322 -0.9586 -0.8778

Arxiv Cond. Mat.[26] -0.8712 -0.7999 -0.7939 -0.9513 -0.8296

Facebook Companies [23] -0.8439 -0.7203 -0.6685 -0.9138 -0.7606

School contact [30] -0.7667 -0.7532 -0.7199 -0.9661 -0.9371

TABLE I. Correlation coefficient between contagion arrival
time (measured from 103 simulated spreading processes with
random sources) and the logarithm of non-backtracking cen-
trality, for various networks. Values close to the theoretical
limit −1 correlation imply strong prediction quality.

Going further, many realistic models of network conta-
gion require the number of infected neighbours of a node
to reach some threshold θ ≥ 1 before the infection is
passed on. In the supplement, we show how a variation of
our theory, building on results from [32], extends to these
complex contagion models by considering the θ-shortest
temporal paths from a node. Remarkably, the log-linear
relationship derived above continues to hold in this more
complex setting, as illustrated in Fig. 4. In addition to
this visual demonstration, we present in Table I the Pear-
son correlation coefficients between log-non-backtracking
centrality and infection arrival time for various disease
dynamics in various networks. These results show that
our theory, which is physically justified and cheap to com-
pute, provides excellent predictions of the relative delay
between nodes in a wide variety of spreading processes.

Since the non-backtracking centrality of a node is
mainly a property of its local environment, the result
(7) means that we should expect the vast majority infec-
tions to occur during a time window whose duration is
independent of the total size of the network. However, it
can be shown that in a network of size N the time needed
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FIG. 5. Fractional size of the cluster of infected node as a
function of time in various Erdős-Rényi graphs of different
sizes N and mean degree c, averaged over 100 simulations
from random seed nodes, with standard exponential infection
times. The left panel shows real time, the right has rescaled
time showing convergence to a step function in the limit N →
∞ implying ‘instantaneous’ spread to the bulk of the network.

for an infection to take hold grows like log(N)/(λ − 1).
Taken together these results imply that, on the timescale
of the spreading contagion in a large network, one will
observe an almost instantaneous jump between a vanish-
ing fraction of nodes infected to almost complete infec-
tion. We illustrate this result in Fig. 5 for Erdős-Rényi
graphs of increasing size, and provide precise theoreti-
cal derivations in the supplement, where we show that
this property holds for models of temporal percolation in
both sparse and dense networks.

Discussion. We have presented here a theoretical
framework for determining the speed of contagion pro-
cesses in large networks. Analysing the spreading front
of contagion probability we derived Eq (6), showing how
network topology and infection dynamics affect speed
via, respectively, the network percolation threshold and
the Laplace transform of the transmission time law. Our
theory also reveals in Eq. (7) a surprisingly simple re-
lationship between contagion arrival times and the non-
backtracking centrality of nodes. Finally, we have ob-
served that these results imply that spreading process in
large networks undergo an almost instantaneous expan-
sion in their reach when time is properly scaled.

The setting for our theoretical derivation has been
that of simple epidemics spreading on large tree-like net-
works. However, we have shown that the key results hold
remarkably well for a broad class of networks, includ-
ing those with high clustering, and for contagion models
including non-Markov dynamics and complex threshold
models. Further development of rigorous mathematical
results for these models is a challenging problem wor-
thy of considerable future efforts. Excitingly, our results
suggest possible routes for the development of monitor-
ing and intervention protocols for real-world contagions
using message-passing methods. Progress in this direc-
tion may require the consideration of even more detailed
models including temporally varying and multi-layered
networks; both promising avenues for future research.
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Supplemental material:
Predicting the speed of epidemics spreading on networks

CALCULATION OF TIME DELAY

Recall that we write T ni for the shortest (temporal) path to a node at distance n from i, and T ni→j
for the shortest such path whose first step is to node j. As illustrated in Fig. 6, we can decompse
these quantities as follows:

T ni = min
j∈∂i

T ni→j , T ni→j = Xi→j + min
k∈∂j\i

T n−1
j→k , (8)

where ∂i denotes the set of neighbours of i.

FIG. 6. The shortest temporal path (bold) from node i to reach distance n (= 3 here) going via j has length given by the delay
Xi→j , plus the minimum length of a path reaching distance n− 1 from j that does not go via i.

Writing F n
i→j(t) for the cumulative distribution function of T ni→j, Eq. (8) implies the message

passing equation

F n
i→j(t) =

∫ t

0

f(x)

1−
∏
k∈∂j\i

(
1− F n−1

j→k(t− x)
) dx . (9)

For t� nτ , we linearize (9) to obtain

F n
i→j(t) ≈

∫ t

0

f(x)
∑
k∈∂j\i

F n−1
j→k(t− x) dx . (10)

The two sided Laplace transform of Eq. (10) reads

F̃ n
i→j(k) = f̃(k)

∑
k∈∂j\i

F̃ n−1
j→k(k) , (11)
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where f̃(k) =
∫
e−kxf(x)dx is the Laplace transform of f . For large n we can expect

F̃ n
i→j(k) ∝ vi→j e

−ω(k)n. (12)

Here v is identified as the top eigenvector of the non-backtracking matrix B with entries

Bi→j,k→` =

{
1 if k = j and ` 6= i

0 else.
(13)

Using the ansatz (12), the inverse transform reads

F n
i→j(t) =

vi→j
2πi

∫ c+i∞

c−i∞
ϕ(k)ekt−ω(k)n dk , (14)

where c is chosen freely in the region of convergence of F̃ n
i→j.

To have convergence of time delay to a constant τ , setting t = t+ nτ to get

F n
i→j(t+ nτ) =

vi→j
2πi

∫ c+i∞

c−i∞
ϕ(k)ekt−(ω(k)−τk)n dk , (15)

we should expect not to see either exponential growth or decay in F . Now for large n the integral
(15) will be dominated by the saddlepoint k? = c + iz?. So then the requirement for F exhibiting
neither exponential growth nor decay means that the modulus of the exponential factor in (15) must
vanish at this point.

That is for k? such that

d(ω(k)− τk)

dk

∣∣∣∣
k?

= 0 (16)

then we require that

<[ω(k?)]− τc = 0 . (17)

Combining these we get

τ = ω′(k?) =
<[ω(k?)]

c
, (18)

implying =[ω′(k?)] = 0. Further since

ω′(k?) =
<[ω(k?)]

c
⇐⇒ d(ω(k)/k)

dk

∣∣∣∣
k?

= 0 (19)

then the possible k? are the stationary points of ω(k)
k

with τ the value at these points. Hence choosing
k? to maximize τ finds the asymptotic time delay we are seeking.

AN UPPER BOUND ON DELAY TIME

We claim that τ ≤ EX where X ∼ f , the random variable for transmission time. The proof of this

follows from considering our expression for τ = mink

[
− log(λf̃(k))

k

]
. The Laplace transform of f is

f̃(k) = E(e−kX) where X ∼ f , (20)



8

then by Jensen’s inequality, since e−x is convex,

E(e−kX) ≥ e−kE(X) (21)

with equality if f is the Dirac delta distribution. Then

−1

k
log(λf̃(k)) ≤ −1

k
log(λe−kE(X)) = E(X)− 1

k
log(λ) (22)

and

τ ≤ max
k

[
E(X)− 1

k
log(λ)

]
= E(X) (23)

which is attained for Dirac delta f . Therefore, as noted in the main text, we expect time delay to
be minimal for heavy tailed f and maximal, going to E(X), for Dirac delta f .

INFECTION TIME OFFSET

To quantify the heterogeneity in infection recieval we take advantage of the symmetry of the infection
process to write

F n
i (nτ) = F n

j (nτ + ∆ij) . (24)

Thus an approximation of the offset, ∆, may be found by first approximating the c.d.f

F n
i (t) = 1−

∏
j∈∂i

(
1− F n

i→j(t)
)
. (25)

Now using (16) and (17) it follows that

ω(k)− τ(k) ≈ (=[ω(k?)]− τz?)i− 1

2
ω′′(k?)(k − k?)2 (26)

and thus taking ∆k = k − k? equation (15) gives us that

F n
i→j(t+ nτ) ≈ vi→j

2πi

∫ c+i∞

c−i∞
ϕ(k)eφ dk (27)

where

φ = (k? + ∆k)t− (=[ω(k?)]− τz?)in− 1

2
ω′′(k?)∆k2n . (28)

Further taking 1
2
ω′′(k?) = D, then

F n
i→j(t+ nτ) ≈vi→j

2πi
e−(=[ω(k?)]−τz?)in+k?t

∫ c+i∞

c−i∞
ϕ(k)e−Dn(∆k− t

2Dn
)2+ t2

4Dn dk . (29)

As n becomes large then the integrand becomes dominated by the contribution at k? and we may
approximate to a Gaussian integral to find

F n
i→j(t+ nτ) ≈

n→∞
−vi→jϕ(k?)

2
√
πDn

e−(=[ω(k?)]−τz?)in+k?t+ t2

4Dn (30)
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FIG. 7. Spreading speed of the SIR model with fixed infectious period Γ and unit rate (i.e. β = 1) infection. Left: simulation
results on the cumulative distribution function of time to reach a given distance n, averaged over all starting points, for different
durations of infection. The uncertain transmission affects the final fraction of contagions reaching a given distance, but does
not appreciably affect the speed. Right upper: analytical calculation of the delay τ as a function of Γ, showing very little
variation. Right lower: scatter plots of the correlation between node non-backtracking centrality and mean time to infection
(excluding contagions that do not reach the node). We used an Erdős-Rényi random graph of N = 104 and mean degree c = 3.

Going back to equation (8) we then have, for t� nτ ,

F n
i (nτ) =1−

∏
j∈∂i

(
1− F n

i→j(nτ)
)
≈
∑
j∈∂i

(
F n
i→j(nτ)

)
(31)

≈− ϕ(k?)

2
√
πDn

e−(=[ω(k?)]−τz?)in
∑
j∈∂i

vi→j .

Thus, substituting this approximation into (24) and solving gives

∆ij =
1

k?
log

(
ci
cj

)
+O(1/n) , (32)

where k? = argmaxkω(k)/k and ci =
∑

j∈∂i vi→j is the non-backtracking centrality of node i

DIFFERENT DISEASE DYNAMICS

It is straightforward to adapt our set-up to include SIR models by adding a time Ri to recovery, so
that transmission from i to j only occurs if Xi→j < Ri. This presents the interesting complication
that there is generally a difference between the time to transmit an infection up to a certain distance
from a source, versus the time to recieve an infection that starts a certain distance away. This effect
was explored in detail in [16]. However, for the asymptotic study of the fastest infection routes
(obtained by considering the linearisation of the message passing equations), this distinction is not
important. Similarly, SIS and SIRS dynamics do not behave substantially differently in this regard,
since only the fastest passage time is relevant, not the subsequent recovery and reinfection dynamics.

In general, uncertain transmission is incorporated to our settting simply by allowing Xi→j = ∞
with some probability, so that

∫∞
0
f(x)dx = ρ < 1. Here ρ corresponds to the edge occupation
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probability in the bond percolation model induced by the epidemic [4]. In Figure 7 we show example
results for the SIR model in which individuals remain infected for a fixed duration Γ, during which
they infect their neighbours at constant rate β. For this example, the transmission time density
function is f(x) = βe−βxIx<Γ. The corresponding edge occupation probability is ρ = 1 − e−βΓ and

Laplace transformed density is f̃(k) = β
β+k

(1− e−(k+β)Γ). As expected, varying the infectious period

Γ has almost no effect on the speed of propagation of the contagion, which is determined by the
fastest transmission route and hence unaffected if slower routes are trimmed.

More interestingly, many popular models of contagion on networks require the number of infected
neighbours of a node to reach some threshold θ ≥ 1 before the infection is passed on. Our formalism
extends to these complex contagion models by considering the θ-shortest temporal paths from a
node to the bulk of the network.

Specifically, the time that node i becomes infected in a complex contagion on a large network with
threshold θ maps to the large n limit of T ni defined by

T ni = θ-min{T ni→j | j ∈ ∂i} , (33)

where “θ-min” denotes the θ-smallest element of the specified set, and

T ni→j = Xi→j + θ-min{T n−1
j→k | k ∈ ∂j \ i} . (34)

As detailed in [32], the corresponding equations for the cumulative density functions are

Fi→j(t) =

∫ t

0

f(x)

1−
∑

M⊆∂j\i
|M |<θ

∏
k/∈M

(1− Fj→k(t− x))
∏
m∈M

Fj→m(t− x)

 dx . (35)

Note that the special case θ = 1 corresponds to the simple contagion model previously considered,
and indeed the inner sum in Eq. (35) contains only the element M = ∅, and hence reduces to Eq. (2).

Our strategy for analysis in the θ = 1 case was to consider the left tails of F , in which the recursion
equation can be linearised. The simple physical intuition for this linear theory is that for a node to
receive the infection unusually early, it is only necessary (and indeed likely) for one neighbour to be
infected. Unfortunately, for the case of θ ≥ 2, such a linear theory is not possible as early infection
of a node requires θ of its neigbours to be infected early. Mathematically, this rule is manifested in
the fact that the small F expansion of the right hand side of (35) has order θ.

An alternative approach is to consider the recursion map G defined by the action

G[F n](t) = F n+1(t− τ) , (36)

that is, G maps the collection of functions {F n
i→j} to their updated versions according to equation

(35), offest by the (as yet unknown) spreading delay τ . In the limit of many applications of G we
have convergence

Gn[F ]
n→∞−→ F ? , (37)

where F ? is a non-trival limiting profile function (i.e. not identically one or zero). Let us consider
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the asymptotic stability of G around F ?. Let e be a directed edge in the network, then

∂G[F ]e(t)

∂Fe′(t′)
= −

∫ t−τ

0

f(x)
∑
E⊆∂e
|E|<θ

∂

∂Fe′(t′)

[∏
e′′ /∈E

(1− Fe′′(t− τ − x))
∏
e′′∈E

Fe′′(t− τ − x)

]
dx

= −He,e′f(t− t′ − τ)
∑
E⊆∂e

|E|<θ ,e′∈E

∏
e′′ /∈E

(1− Fe′′(t′))
∏

e′′∈E\e′
Fe′′(t

′)



+He,e′f(t− t′ − τ)
∑
E⊆∂e

|E|<θ ,e′ /∈E

 ∏
e′′∈∂e\E\e′

(1− Fe′′(t′))
∏
e′′∈E

Fe′′(t
′)


(38)

Hence the Jacobian of G in the neighbourhood of the limit F ? can be written

Je,e′(t, t′) =
∂G[F ]e(t)

∂Fe′(t′)

∣∣∣
F=F ?

= He,e′f(t− t′ − τ)Σe,e′(t
′) , (39)

where

Σe,e′(t
′) =

∑
E⊆∂e
|E|<θ

(∏
e′′∈∂e\E (1− F ?

e′′(t
′))
∏

e′′∈E F
?
e′′(t

′)(
1− F ?

e′(t
′)
)
Ie′ /∈E − F ?

e′(t
′)Ie′∈E

)
. (40)

In the case of simple contagion processes, we have Σe,e′(t
′) ≈ 1 for large t′. This leads to the

simplified expression J = H ⊗F , where F is the integral operator

F [g](t) =

∫ t−τ

0

f(t− t′ − τ)g(t′) dt′ . (41)

This operator is made diagonal by a Laplace transform, and hence the eigenfunctions of J are
therefore of exactly the form (9) found previously. In particular, the presence of the Hashimoto
matrix H in (39) implies a contribution proportional to vi→j as a prefactor to the limiting form of
Fi→j. Note that although this analysis goes via the simplification found at large t′, both the delay
τ and the prefactors vi→j are the same across the whole time range.

For complex contagions with thresholds θ ≥ 2, we have Σe,e′(t
′) ≈ 0 for large t′, which rules out

direct use of the linear analysis outlined above. However, progress can be made with the heuristic
Σe,e′(t

′) ≈ σ, where σ ∈ R+ depends on θ, but not the edge in question or the delay time distribution.
Essentially, the constant σ captures the (multiplicative) additional “difficulty” for the contagion to
spread with higher thresholds. This approximation implies a modification of the timescales obtained
in the linear theory, but does not alter the dependence on the network, and hence the relative time
to infection is again proportional to the logarithm of the non-backtracking centrality. Figure 4 in
the main text supports this claim with numerical evidence. Computing the delay τ requires the
determination of the precise form of σ. This appears far more challenging and we leave it for future
work.
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FIG. 8. Comparison between contagion arival time and (log) centrality of nodes under various metrics. The network used was
an Erdő-Rényi random graph on N = 104 nodes with mean degree 3; contagion simulations were averaged over 1000 samples,
with exponentially distributed transmission times.

OTHER CENTRALITY MEASURES

Many different node centrality measures have been proposed in the networks literature, and the
weights they ascribe to different nodes are more or less correlated with one another depending on
the metrics in question. In Figure 8 we show a comparison between the contagion arival time
(as accurately predicted by the non-backtracking centrality) and five other well-known centrality
measures. Betweenness centrality, degree centrality and PageRank all show signficant spread of
contagion arrival times relavite to centrality score and hence are not useful predictors of, for exmaple,
epidemic risk.

Closeness centrality is based on the mean distance between nodes in a network, corresponding
presicely to the mean contagion arrival time in the limit of Dirac-delta distributed transmission
times. Unsurprisingly, this metric shows a strong corelation with epidemic arrival when presented in
the logarithmic scale which we have shown to be the correct. We should emphasise three points of
advantage our results have over the heuristic use of closeness centrality. First, our theoretical deriva-
tions have shown (log) non-backtracking centrality is the correct measure. Second, our analytical
results apply to a broad range of infection time distributions. Third, non-backtracking centrality is
significantly faster to compute than closeness centrality.

In the simple test presented in Figure 8, the logarithm of eigenvector centrality also appears to
make a usable prediction of the infection arrival time. It is well-known, however, that eigenvector
centrality can become localized in networks containing high-degree “hub” nodes [15]. We illustrate
this problem in Figure 9, showing how eigenvector centrality is distorted by the presence a hub node;
the striations visible in the left panel correspond to distance from the hub node, which is given undue
prominance in eigenvector centrality. Non-backtracking centrality, by contrast, continues to perform
well for this example.
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FIG. 9. Comparison between non-backtracking centrality and eigenvector centrality in predciting infection arival time in the
presence of a hub. The network used was an Erdő-Rényi random graph on N = 104 nodes with mean degree 3, with the
addition of a single “hub” node connected to 50 randomly selected other nodes. Contagion simulations were averaged over 1000
samples, with exponentially distributed transmission times.

TEMPORAL PERCOLATION

While the shape of the infection size curve may be described by the non-backtracking centrality
distribution of the nodes, one can predict the time at which the bulk of the outbreak occurs by
considering the following simple heuristic for unit rate infections. The time needed for an infected
cluster of size m to grow by one node scales as 1/Em where Em is the number of edges leaving the
cluster. During the exponential growth phase, addition of a node to the cluster will cause the loss
of one external edge (used for transmission) and an average gain of λ additional edges from the
neighbours of the new node. Therefore Em+1 = Em + λ− 1, and we thus find that the time needed
to infect a fraction β of all nodes grows like log(N)/(λ − 1). This implies that rescaling time by
t′ = t(λ− 1/ log(N) should collapse the curves for different large networks, as shown in Fig. 5 of the
main text. Moreover, the transition between β = 0 and β = 1 becomes sharp at t′ = 1 in the limit
of large network size.

This explosive transition is, in fact, a general property of time-ordered percolation. In the supple-
ment we show how the above reasoning can be made precise for sparse configuation-model networks
with finite second moments, corresponding to graphs with non-zero percolation thresholds. Ad-
ditionally, we study temporal percolation on dense graphs with a fraction q of all possible edges
present, showing that the same result holds under the rescaling t′ = tqN/ log(N).
A sharp transition in sparse graphs
Write Rm for the time to reach m nodes. For exponential transmission times

E[Rm+1] = E[Rm] + E
[

1

Om

]
, (42)

where Om is the number of outgoing edges from the cluster of m infected nodes. In a configuration
model graph we can write

Om+1 = Om +Km − 1 , (43)

where Km is the degree of the node added as the cluster grows from size m to m + 1, and the −1
term corresponds to the edge used in transmission, that becomes internal to the cluster. This leads
to the expression

Om = K0 +
m−1∑
i=1

Ki − (m− 1) . (44)
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For a configuration model graph, K0 is chosen according to the degree distribution and all subsequent
Ki are chosen according to the branching distribution.

Introduce generating functions

g(x) = E[zK0 ] , g̃(z) = E[zK1 ] , γm(z) = E[zOm ] . (45)

Now (44) implies

γm(z) = z−mg(z)g̃(z)m−1 . (46)

Asymptotically in large m we have

γm(z) ≈ g(z)

g′(z)
em(1−z)(λ−1) , (47)

where we used the fact that g̃′(1) = λ = 1/ρc. It then follows that

E
[

1

Om

]
=

∫ 1

0

γn(z)dz ≈ 1

m(λ− 1)
, (48)

and hence

E[Rm] ≈ log(m)

λ− 1
. (49)

A sharp transition in dense graphs
We show how the sharp transition in infected proportion is not a phenomenon exclusive to this

setting but rather a characteristic of time dependent percolation in general by considering a dense
network setting also.

Suppose we have for simplicity an infection spreading at exponential rate 1 on a dense network
of size N and mean degree qN , starting from a single node. Taking E(Rm) to denote the expected
time to reach m infections, it follows that the time for the number of infected to increase from m to
m+ 1 will be given in the early stages by

E(Tn+1 − Tn) =
1

qn(N − n)
(50)

and so E(Rm) is given, and bounded, by

E(Rm) =
m−1∑
`=1

1

qN`− q`2

>

m−1∑
`=1

1

q(N − 1)

1

`
=

1

q(N − 1)
log(m) (51)

For an upper bound first notice that 1
q`(N−`) is decreasing with ` in the interval (0, N/2] and so for

m ≤ N/2 the sum may be bounded by the integral, so

E(Rm) =
m−1∑
`=1

1

q`(N − `)
<

1

qN
+

∫ m−1

1

1

q`(N − `)
d`

<
1

qN

(
1 + log

(
(m− 1)(N − 1)

N − (m− 1)

))
<

1

qN

(
1 + log

(
Nm

N −m

))
(52)
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FIG. 10. Plot showing the proportion of infected vs time on complete graphs of varying size for an infection with exponential
infection times as an average over 500 simulations from random seed nodes. Time is scaled by N/ log(N) as per our calculation
to show a progressively sharp transition at time 1.

Similarly for m > N/2 a bound may be made by shifting the end points of the integral to get

E(Rm) <
4

qN2
+

∫ m

N/2

1

q`(N − `)
d`

<
1

qN

(
1 + log

(
Nm

N −m

))
(53)

(note we are only interested in large N)
These bounds motivate introducing the rescaled variables

Qβ =
qN

log(N)
TdβNe , for β ∈ (0, 1) . (54)

Then

1 +
log(β)

log(N)
< EQβ < 1 +

log(β)

log(N)
+

1− log(1− β)

log(N)
. (55)

If we rescale time by t′ = qNt/(logN) then, for large N , up to time t′ = 1 almost nobody is
infected and after time t′ = 1 the infection reaches almost everyone.
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FIG. 11. Plot of the time 〈tn〉 for an infection to reach a given distance n from a random source. For this figure we simulated
an infection with exponential unit rate transmission time in an Erdős Rényi graph of 107 nodes and mean degree 3, averaged
over 100 samples. The red dotted line shows the gradient τ as predicted by our theory for spreading speed. The grey dashed
line shows numerical simulations of a branching process model tuned to match the network in question, effectively removing
the large n finite size effects.

SIMULATION DETAILS

For a given network G = (V,E), the SI model is simulated as follows:

1. Choose a source node s ∈ V uniformly at random

2. For each i ∈ V , compute the length of the shortest path from s to i, and store this as the
distance di

3. For each ordered pair of neighboring vertices i and j generate a random delay Xi,j, chosen from
the distribution with pdf f

4. For each i ∈ V , compute the minimum weight wi of a path from s to i in the weighted digraph
with weights given by the delays computed in step 3. That is,

wi = min {Xs,`1 +X`1,`2 + · · ·+X`m,i : (s, `1, . . . , `m, i) is a path from s to i} .

Following this procedure, we generate exact samples of the arrival times of the underlying epidemic
spreading process. Each sample gives a set of N pairs of the form (di, wi) for i ∈ V , where di is the
distance from the source and wi the epidemic arrival time.

To compute the expected arrival times for the scatter plots in Fig. 4 of the main text, we simply
average the wi over many samples with different random source nodes. To compute the delay τ
requires additional consideration of the distance from the source. For each n, one can compute the
time for a simulated contagion to reach that distance from the source by computing tn = mini{wi :
di = n}. Averaging this quantity over many samples produces 〈tn〉, the mean time for a contagion
to reach distance n from a random source. Figure 11 shows a typical example of how this quantity
varies with the distance considered.

In the networks we are interested in, the number of nodes at distance n from the source grows
exponentially with n (the small world property). We have developed our theory under the assumption
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that n� 1, but still small relative to the diameter of the network. For n too small or too large the
speed of spread will be limited by a lack of multiplicity of routes of that length. In this sense the
theoretical value of τ we compute is the smallest possible, corresponding to the regime in which the
contagion is spreading rapidly through the bulk of the network. To measure this from simulation
data we take τ = minn{〈tn+1〉 − 〈tn〉} .

For simulating complex contagions with a threshold θ > 1, we find it easier to use an event-based
algorithm. Starting from a randomly chosen set of source nodes (larger for higher θ to give the
contagion a chance to take hold), we keep track of individual contagion events to determine for each
node when its threshold is reached.

TABLE OF DATA FOR MAIN FIGURE 2

Table entries are ordered according to their position in the figure, reading right to left.

Network name λ τ τemp N 〈k〉 Clustering Assortativity

Deezer Romania [23] 16.0 0.0236 0.0225 41773 6.024 0.0912 0.1140

Amazon Co-purchasing [24] 17.8 0.0211 0.0188 262111 6.866 0.4198 -0.0025

Amazon Products [25] 20.7 0.0181 0.0162 334863 5.530 0.3967 -0.0588

Deezer Hungary[23] 22.9 0.0163 0.0187 47538 9.377 0.1162 0.2072

Facebook Companies [23] 30.6 0.0122 0.0145 14113 7.387 0.2392 0.0126

Arxiv Cond. Mat.[26] 35.8 0.0104 0.0145 21363 8.546 0.6417 0.1253

Facebook Athletes [23] 44.3 0.0084 0.0124 13866 12.521 0.2762 -0.0270

Deezer Croatia [23] 46.2 0.008 0.0104 54573 18.258 0.1365 0.1971

Brightkite Social [27] 99.9 0.0037 0.0086 56739 7.5 0.1734 0.0096

Enron Email [28] 115.5 0.0032 0.0055 33696 10.732 0.5092 -0.1165

Epinions [29] 181.6 0.0021 0.0044 75877 10.695 0.1378 -0.0406

School contact [30] 335.9 0.0032 0.00099 788 300.2 0.499 0.0539
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