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DESINGULARIZATION OF CLIFFORD TORUS AND NONRADIAL
SOLUTIONS TO THE YAMABE PROBLEM WITH MAXIMAL RANK

MARIA MEDINA, MONICA MUSSO, AND JUNCHENG WEI

ABSTRACT. Through desingularization of Clifford torus, we prove the existence of a sequence of
nondegenerate (in the sense of Duyckaerts-Kenig-Merle ([7])) nodal nonradial solutions to the
critical Yamabe problem

-2
—Au = %hﬂﬁu, u € DV2(R™).

The case n = 4 is the first example in the literature of a solution with mazimal rank N =
2n 4 14 M)

Introduction

Consider the problem

—Au = vuP "ty in R", «:= u € DVA(RM), (0.0.1)

where n > 4, p = 22 and D?(R") is the completion of C§°(R") with the norm [Vl L2 @n).-

When u > 0, problem (0.0.1) arises in the classical Yamabe problem or extremal equation for
Sobolev inequality. For positive or sign-changing v Problem (0.0.1) corresponds to the steady
state of the energy-critical focusing nonlinear wave equation

OFu — Au — |ulﬁu =0, (t,z) e Rx R™ (0.0.2)

These are classical problems that have attracted the attention of many researchers ([8, 9, 15, 16,
18]). The study of (0.0.2) naturally relies on the complete classification of the set of non-zero
finite energy solutions to Problem (0.0.1), which is defined by

n(n — 2)

5= {Q e DI2(RM\{0}: —AQ = 4|Qynsz} . (0.0.3)

By the classical work of Caffarelli-Gidas-Spruck [2] all positive solutions to (0.0.1) are given

n—2

U L _n=2 y_g . 2 R — n
agly) =a 2 U — ) where U(y) := T e ,a>0,geR".  (0.0.4)
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2 M. MEDINA, M. MUSSO, AND J.WEI

For sign-changing solutions much less is known. A direct application of Pohozaev’s identity gives
that all sign-changing solutions to Problem (0.0.1) are nonradial. The existence of elements of
> that are nonradial, sign-changing, and with arbitrary large energy was first proved by Ding
[6] using Ljusternik-Schnirelman category theory. However no other qualitative properties are
known for Ding’s solutions. Recently more explicit constructions of sign-changing solutions to
Problem (0.0.1) have been obtained by del Pino-Musso-Pacard-Pistoia [4, 5]. In [20], the second
and the third authors established the rigidity of the solutions constructed in [4] by showing that
they are nondegenerate in the sense of Duyckaerts-Kenig-Merle ([7], see definitions below).

The purpose of this work is to give a positive answer to an open question formulated in
the work of M. Musso and J. Wei (][20]): whether there exists a solution that, apart from
nondegenerate, is mazimal. To properly explain this framework, let us denote by

2:={Q e DR\ {0} : —AQ =1|QIF'Q}
the set of nontrivial finite energy solutions of (0.0.1). It can be seen that the equation in (0.0.1)
is invariant under four transformations: translation, dilation, orthogonal transformation and
Kelvin transform. More precisely, if @ € X, then:
(i) Q(y + a) € X for every a € R™;

(ii) A%Q(Ay) € X for every A > 0;

(iii) Q(Py) € X for every P € Oy, where O,, denotes the classical orthogonal group;

(iv) [y1*"Q(lyl"%y) € =.

Denote by M the group of isometries of D2(R") generated by these transformations. Then,
M derives a family of transformations in a neighborhood of the identity (see [7, Lemma 3.8]) of
dimension
—1
N:i=2n+1+ ”(”2) (0.0.5)
In particular, M generates the vector space

5 (2 =n)yaQ + |y‘28yaQ — 2.y -VQ, 8,.Q, 1<a<n,
Jg = span @, |
(yaayﬁ_yﬁaa)Q, 1<a< f<n, 2Q+?J‘Q

Consider the associated linearized operator around ) € %, i.e.,

Lg = —A —yp|QP?Q,

and its kernel
Jg == {f € D*R"): Lof = 0}.

Clearly Jg C Jg and, following the work of T. Duyckaerts, C. Kenig and F. Merle ([7]), we can
define the notion of nondegeneracy.

Definition 0.0.1. @) € X is said to be nondegenerate if Jg = 5@.

Let @@ be nondegenerate. Its rank is defined as the dimension of jQ, which is at most N. Actually,
the positive solutions @ = W can be proved to be nondegenerate as a consequence of the radial
symmetry, and Jy,, which is

~ -2
JW:span{n2W+y-VVV, Oy W, 1<a<n},

has rank n + 1 ([21]). In this case, the rank is strictly less than N.
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In [20], the authors give the first example of nodal nonradial sign-changing solution satisfy-
ing the nondegeneracy condition. Indeed, they consider the solution wuy of (0.0.1) built in [4,
Theorem 1] given by

k n—2
up(y) =Uy) = > pp 2 Ulp'(y = &) +o(1),
j=1

where

n—2

Cn 2w . 2 2
Kk = ﬁv 5] T (6 k 70a"')7 U(y) = <1+‘y’2> )

and they prove that juk = Ju, , where the dimension of these vector spaces is 3n, i.e. the rank is
3n. Also in this case, the rank is strictly less than N.

The purpose of this work is to provide the first example in the literature of a nondegenerate
solution u to (0.0.1) which has the mazimal rank N.

Definition 0.0.2. A nondegenerate solution @ € X is said to be mazimal if
dim(Jg) = dim(Jg) = N,

where N was defined in (0.0.5).

Thus, our main result can be formulated as follows.

Theorem 0.0.3. Let n > 4. Then, there exists a sequence of nodal solutions to (0.0.1), with
arbitrarily large energy, which are nondegenerate according to Definition 0.0.1. If n = 4 these
solutions are mazimal in the sense of Definition 0.0.2.

To prove this result, we will build a solution in the following way: let k and h be two large
positive integers (not necessarily equal), and

2 2
§n—2 en—3 . B
pi= g )\::?, c<d<c, CQ<8<621, (0.0.6)
for some constants c1, co > 0 which are independent of k£ and & as they tend to infinity. Consider
now the points

mi(j—1)
g = /1— 27,0, 00 e R2x R 2 j = 1,... K,

2mi(l—1) ) ) . (0.0.7)
m=V1-)20,0,e & ,0,...,0) ERZx R2x R"™ [ =1,....h,
which satisfy
&GP +p* =1, IpP+X =1 (0.0.8)
Consider
k h
wy) =UW) =Y Uue;(y) = > _ Ui (y) + (v) (0.0.9)
j=1 I=1
where U is defined in (0.0.4),
_n2 (Y — & n2 Yy —y
Ung; (y) ==p 2 U <u]> U (y) :=A""2 U( )\77 > (0.0.10)

and ¢ is a small function when compared with the other terms (for the sake of simplicity we do
not make explicit the dependence of u in k and h).



4 M. MEDINA, M. MUSSO, AND J.WEI

Notice that functions U, U, ¢, and Uy, are invariant under rotation of angle 2% in the (y1,y2)
plane and of angle 2% in the (ys,y4) angle. Furthermore, they are even in the y,-coordinates,
for a = 2,4,5,...,n and invariant under Kelvin’s transform (due to (0.0.8)). Assume that ¢
also satisfies these properties (we will prove this in Part 1).

Consider the following set of functions:

n—2 0
20(y) == —5—uly) + Vuly) -y, za(y) = @tL(y), a=1,...,n, (0.0.11)
0 0 0 0

Zn =—yo—uly) +ty1=—uly), 2zn = —ya—uly) +ys=—uly), 0.0.12
+1(y) g, (y) + 95 (y) +2(y) Yag,: (y) +y3 s (v) ( )
Intar2(y) = —2ya20(y) + [y za(y), @ =1,2,3,4, (0.0.13)

Zntatd(V) = —Ya21(Y) + 1122(Y),  Zontat+2(¥) = —Yaz2(y) + v22a(y), a=3,...,n,
(0.0.14)

Z3nt+a—2(Y) = —Ya23(Y) + Y32a(Y), Zanta—6(Y) := —Yaza(y) + vaza(y), a=5,...,n.
(0.0.15)

Functions in (0.0.11) are related to the invariance of problem (0.0.1) under dilations and trans-
lations respectively, and (0.0.12) to the rotation in the (y1,y2) and (y3,y4) planes. Likewise,
(0.0.13) arises from the invariance under Kelvin transform, and (0.0.14), (0.0.15) from the ro-
tation in the planes (y1,¥a), (¥2,¥a), for « =3,...,n, and (y3,ya), (Y4,%a) for a =5,... n. If
we denote by L the linearized operator around u associated to (0.0.1), i.e.,

L) := A + py|ulPup, (0.0.16)

(0.0.11)-(0.0.15) provide Ny := 5(n — 1) elements of the kernel of L.

We will prove that these are indeed all the elements in the kernel, i.e., solution (0.0.9) is a
second example of nodal nondegenerate solution of (0.0.1). But what is more remarkable here
is that if n = 4, then Ny = N, that is, the solution is maximal in the sense of Definition 0.0.2,
which is the first example of a nondegenerate maximal solution in the literature, and answers
the open question formulated in [20].

Remark 0.0.4. When u # A, h # k, our solution is different from the ones constructed in [4, 5].
In [5] the symmetric case p = A, h = k is considered, which corresponds to the Clifford torus. In
this case the solution has an additional symmetry which reduces the problem to one dimensional.
Because of this symmetry the rank of the solutions constructed in [5] can be shown to be strictly
less than N. Thus our solutions are new. Our construction can be considered as a sort of
desingularization of Clifford torus. For geometric application of desingularization of Clifford
torus, we refer to the recent papers [1, 14] and the references therein.

Remark 0.0.5. The construction can be extended to higher even dimensions, that is, one can
anagolously set bubbles in the (ys,ys), (y7,¥s), ..., planes, in such a way that the solution
is expected to be nondegenerate and the elements corresponding to the invariances generate
a space of dimension exactly N. Therefore, this type of construction presumably provides a
sequence of nodal nondegenerate and maximal rank solutions of (0.0.1) for any even dimension
n > 4. The existence of a maximal solution for odd dimensions is still an open question.

Remark 0.0.6. Nondegenerate solutions to (0.0.1) play an important role in the analysis of
possible singularity formations in energy-critical wave equations. We refer to [7, 8, 9, 15, 16, 18]
and the references therein.
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Remark 0.0.7. The existence of sign-changing solutions for critical exponents in other contexts
has been studied in [13, 22, 23].

Remark 0.0.8. There exist many works on the uniqueness and nondegeneracy of positive solutions
to semilinear equations, whether or not for classical nonlinear Schrodinger equations [19] or for
nonlinear fractional equations [10, 11]. The rank of the positive solutions is at most n + 1. For
sign-changing solutions the nondegeneracy question is in general quite difficult without knowing
the precise behavior of the solution. Our result is the first of the type for sign-changing solutions
with maximal rank.

Along the work we will denote points y € R™, n > 4, as
y=(9,9), ¥:= (y1,92), §:= (y3,94), if n =4,

y=(10.9), ¥:=(y1,y2), §:= (y3,y1), ¥ := (Y5, .- Yn), if n =5,
and we will work with the norms
+2-2n -
[Blles o= 1L+ [yD)™ "0 Bllzagny, N8l = [[(1 4 [y[* ) S|l oo (rn), (0.0.17)
where § < ¢ < n is a fixed number.

Part 1 of the paper is devoted to prove that (0.0.9) solves (0.0.1), and Part 2 concerns the
proof of its nondegeneracy.

Part 1. Construction of the solution

To prove that (0.0.9) is a solution of (0.0.1) we use a Lyapunov-Schmidt reduction method,
following the ideas of [4]. We linearize the equation around a first approximation and take
advantage of the invertibility tools available for this setting. Then, performing a careful analysis
of the error of the approximation and of the non linear terms we solve the problem by a fixed
point argument. Let us point out that the precise scaling of the parameters p and A plays a
fundamental role here.

Recalling the definitions given in (0.0.7), (0.0.6) and (0.0.10), the main result of this part can
be stated as follows.

Theorem 1.0.1. Let n > 4, and let k,h be positive integers so that k = O(h). Then, for
sufficiently large k and h there is a ﬁm’te energy solution of the form

ukh( ZU/‘& ZU)\m +0k( )+0h(1>7

where o (1) and op(1) denote quantities that tend to zero when k and h tend to infinity respec-
tively.

1.1. ERROR OF THE APPROXIMATION

Denote

U«(y) ZUMEJ ZUAm
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and suppose that the solution u we are looking for has the form u = U, + ¢, where ¢ is a small
function when compared with U,. Then solving equation (0.0.1) is equivalent to find ¢ such
that

A¢+py|UP~ ¢+ E+vN(¢) =0, (1.1.1)

where
E =AU, +|UJ""'Us, N(¢) := U + ¢[P" (Ui + ¢) — |U P~ UL — p|UJP 1.

In this section we try to estimate the error term £. In particular,

p—1

k h k
v IE = U—ZU“,gj —ZU,\,m U‘ZU#»% ZUML —-U? +Z 1&; +ZU§m
=1 j=1

J=1

We divide the study of the error in three different regions. Roughly speaking, we will estimate
first the || - ||«« norm of the error far from the points &; and 7, then around &;, and finally around
n, forany j=1,...,kand [ =1,..., h. Indeed, let @ and & be positive numbers independent
of k and h. The computations are very close to the ones in [4], so we skip the details.

Exterior region: y € {ﬂé?:l{\y — &l > %}} N {ﬂle{\y —m| > %}}
For y in this region we can estimate

C no2 A2
Bl s [ s Y | 1.1.2
£l (14 y2)? | <=y —&l"2  “~|y—mn2 (1-12)

7=1
and thus

1—-n

n+2— 1,,
D™ Bl e Bty Qo1 S CE54076), (1.13)

Interior regions around &: y € {|ly — &| < ¢} for some j =1,... k.
Let j be fixed. For some s € (0,1) we have

Y E =p(Uye, +s(= Y Upe, +U = ZUM P =Y Uye, +U - ZUW
i#£] i#£]

—UP+ Z UIIL)@ + IZ Uf,m'
=1

i#]

Let us define E;(y) := p = E(gj + py) for |y| < .- Thus,
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7 'Ejly) = p (=Y Ul —u M — &) + 1" T UE + py)
i#j

p—1
_Z“ AT UGG + py — 771)) (=D Uly—n'(& - &)

i#]
h
U T UG+ py) — Z &+ y —m))
h +2 +2
—WTUPE ) = Y Uy — i (& — &) = D p AT UPATLE + iy — ).
i#£j =1
(1.1.4)
Noticing that h = O(k) we can compute
9_2n— n _n
0+ D" 5 Bl m) < O < OKH. (1.15)
Interior regions around n;: y € {|ly — | < %} for some [ =1,...,h.

The estimates in this region follow analogously to the previous case, but interchanging the role
N n42 N
of i, k and A, h. Thus, considering Fj(y) := )\%E(m + py) for |y| < 53, we get

9_2n n _n
L+ )™ 0 Bl <oy < OA% < CR7 0 (1.1.6)

1.2. BUILDING THE SOLUTION

Recall from Section 1.1 that to find a solution to (0.0.1) we will prove the existence of a function
¢ that solves (1.1.1). We will try to build this function in a special form.

Let ((s) be a smooth function such that ((s) =1 for s > 1 and ((s) = 0 for s > 2, and let
@, & > 0 be fixed numbers independent of k and h. Define

) = LSO Wy = GlPD Iyl > 1, [T Iy — iyl i ] > 1,
’ C(kay — &) if [yl < 1 C(hay —mil) if [y < 1

A function of the form
k h
=> ¢+ > bty (1.2.1)
j=1 =1

is a solution of (1.1.1) if we solve the system

Ad;+pyUS 71505+ G WU+ E+AN(9)] =0, j=1,....k, (1.2.2)

A+ YU oy + G [y UL+ E+N(9)] =0, 1=1,...,h, (1.2.3)
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(E+~N(¢)) =0.

k h k h
A+ pyUP g + [py(JUL PP —U”’l)(l—Z@ —Zf +py P! Z Z
— = =

L@

k
+py|UslP™ 12 —$;)o; + py|UfP™ IZ 1-Q)o+(1->¢
j=1

j=1
(1.2.4)
We assume in addition the following symmetry properties on aj and dgl,
— .y — 2r(i=1), .
0@ 9,y)=¢1(e” * '5,9,9), j=1,...k, (1.2.5)
where
$l(y17”'7yj7"‘7yn):il(ylw"a_yja”'uyn) j:2457"‘7n7
- ety (1.2.6)
o) =" "o (vl %y), ¢1(@9,9) =d1@e + 'gy), 1=1,...,h,
and
“ Ly, Ao _em(=b,
0;(¥,9,y) = b1y, e+ "gy), L=1,...h, (1.2.7)
where
él(yla"'vij"'ayn):le(ylw"a_yja"'vyn) ]:2,4,5,...,7’L,
(1) (1.2.8)

(Z)I(y) = |y|2—n¢§1(|y‘—2y)’ él(gagay) (lgl( k i?vgvy/)) ] = 17"'7k'
Assume in addition that

= Lfgi N A L72 A
161l < po 1Y) == 1T (& +py), ol <po di(y) == AT di(m +Ay),  (1.2.9)
for p > 0 small.

Lemma 1.2.1. There exist constants ko, ho, C, po such that, for all k > ko and h = hg, if 51-,
j=1,...,k, and ¢y, | = 1,... h satisfy conditions (1.2.5)-(1.2.9) with p < po then there exists
a unique solution v = V(¢p;, ¢21) to equation (1.2.4), that satisfies the symmetries

V(YL Yay ) =01,y =Yy -.), @ =D5...,n, (1.2.10)
— A / M A . — A / — MZ’A /
V@G, 9,9) =ve F 5,9,9), i=1,....k ¥@5Y)=vGe * '9y), I=1,...,h,

(1.2.11)
D(y) = lyl "ol y), (1.2.12)

and such that _ A
llle < C [IBalle + Idulle + &5 +n'5]. (1.2.13)

Moreover, the operator ¥ satisfies
=1 21 =2 22 =1 =2 21 22

W (1, 01) — V(1 91« < Clldr — 1 lls + [lo1 — ¢1ll4)- (1.2.14)

Proof. We write equation (1.2.4) as
k

h
A+ pyUP™ ) + V(y)e + py|U P O (1= () Zl—q &)+ M(y) =0, (1.2.15)

=1
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7j=1 =1
Consider first the problem
At + pyUP~Y)p = h, (1.2.16)
where h is a function satisfying (1.2.10)-(1.2.11), ||hl|+«+« < +o00 and
h(y) = |yl ™" h(ly|?y). (1.2.17)

Let )
azayaUv a=1,---, n-

(1.2.18)

Due to the oddness of Z, and assumption (1.2.10) on h it yields [p, Zoh = 0 for all @ =
5,...,n. The cases o = 0,1,2,3,4 also vanish proceeding as in the proof of [4, Lemma 4.1] as a
consequence of (1.2.11)-(1.2.11). Thus we can apply the linear existence result [4, Lemma 3.1]
to ensure the existence of a unique solution 1 to (1.2.16) such that

/ UP1Zyp=0foralla=0,1,...,n,

and |||« < C||h||«. Notice in addition that the functions

¢O¢(y) . 7/)@7?),---»—%»---,%)7 o :57 1, ’(/]nJrl(y) = |y|2_nd}(|y‘_2y)’
2w(j—1) . 2w (l—1)

¢12]( ) ?l)(e k Zya gvy,)a ] = ]-7 s 7k7 11)34l(y) = 1/)(?36 h ig’y/)’ l= 17' . 'ah7

also satisfy (1.2.16) and thus, by the uniqueness, ¥ = 1o = Y12 = V341 = Y41 for all a =
5...,my 7 =1,...,k, 1l =1,...,h, ie., 1 satisfies (1.2.10)-(1.2.12). Therefore, (1.2.16) has a
unique bounded solution ¢ = T'(h) satisfying symmetries (1.2.10)-(1.2.12) and

[0« < CliAllxs

for a constant depending only on g and n.
We will solve (1.2.15) by means of a fixed point argument, writing

k

h
V=TV +py U Q1= )65+ D (1= Q) + M()) = M(3),
=1

j=1
¢ € X, where X is the space of continuous functions ¢ with ||¢||. < 400 satisfying (1.2.10)-
(1.2.12). Thanks to the special form of U, and to the symmetry assumptions on ¢] and qﬁl,

k h
VY +py U O (1= C))ey Z (1= Q) + M (1)
7j=1 =1

satisfies (1.2.10)-(1.2.11) and (1.2.17) if ¢ € X, and M is well defined. Actually, we claim that
M is a contraction mapping in the |||+ norm in a small ball around the origin in X. Indeed,
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k n—2 h n—2
. 2 A2
Vi(y)| < ClIblLUP () | D Min—Q—i_Zﬁ
= ly =&l — ly—ml

Proceeding as in (1.1.3) we get

IVithllaw < Cllell (K0 +A177), (1.2.19)
On the other hand,
k h
Vot e < D MpUP9C i + 3 IPUP ™ 008 e < Clloll (67 + 11 7), (1.2.20)
J=1 =1

and putting together (1.2.19) and (1.2.20) we conclude
IVillon < Clllla (k75 + ' 75). (12.21)
Assume |y — &| > & and |y — | > % for all j and I. We knew that in this region

B < C(k' "0 +h'70),

Moreover,
_ h Eoo2 h 2
V(S8 Sdre | [<evt |5 | Sa 4
j=1 =1 j=1 =1
From (1.2.9), we get
n—2 n—2
wozo Az

3l < Clidall G| < Cllénll

n—2 + ’y _ gj’n—2’ /\n—2 + ‘y _ m|n—2 :

Moreover, UP~2|)|? < UP|)||2. Hence, proceeding again as in (1.1.3), we obtain
1—-2 = . n N
1M () [l < Ok 5 (L4 [§1]12) + CR' ™ (1 + | 61]13) + Cll| 2. (1.2.22)

Likewise, if [y — & > 5 and |y — | > %,
K — h ~ n = n 2
U265+ D d0llee < Ok 0[Sy« + Ch' ¢ ] .. (1.2.23)
Jj=1 =1

Moreover, for 11,1 satisfying ||[¢1]| < p, ||t2]| < p it follows

M (1) = M (¢2)[lx < Cpllthr — 2|

Joining (1.2.21), (1.2.22) and (1.2.23), we see that for p small enough the operator M defines a
contraction map in the set of functions ¥ € X with

= 1—n N 1—n = N
[l < Clll@rll« + &« +llorll« + 27 4], Nnllx <py llorll« <p,

for p small. Therefore, there exists a solution of (1.2.15) satisfying conditions (1.2.10)-(1.2.13).
The Lipschitz condition (1.2.14) easily follows. O



NONRADIAL NODAL SOLUTIONS WITH MAXIMAL RANK 11

Consider the operator \P(gl, $1). Equations (1.2.2) and (1.2.3) reduce to solve one of each,
for example for ¢; and ¢.
We try to solve first

AGy + 9 U105 + G [V 8(B1,60) + E + 9N ()] =0 in R,
or equivalently, )
Ady + PV U, P11 + GE + N6y, d1) =0, (1.2.24)
where N(@y, 61) = p(UL[P~1C, — [T, =101 + Gy [pIU P10 (Gy, 61) + N(8)] - Consider first

a general function h and the problem

- 17, T _ = 1p—1% .
Ap+pUL ¢ +h=0U), ZoinR", (1.2.25)
where L
R _n—2 - _ n h‘ZO
Zo(y) = "% Zo (y&>7 Go 1= JgnhZo =
K fR" Uu &1
with Zy defined in (1.2.18).
Lemma 1.2.2. Suppose that h is even with respect to each of the variables ya,ya, ys, . . ., Yn and
such that
_ 2m(l—1)
h(y) = lyI ™" 2h(lyl y), hy)=h@e = 9.9), I=1,...,h (1.2.26)
Assume that h(y) == h(fl + wy) satisfies ||h||« < +00. Then problem (1.2.25) has a unique
solution ¢ := T(h) that is even with respect to the variables y2,y4,Ys, - - -, Yn, tnvariant under

Kelvin’s tranform, i.e.,
oy) = ly> "o (lyl%y),
and with ¢(y) == "2 G(&1 + py) satisfying
R QUP ™ Zy =0, (|9l < O]«
Proof. We assume with no loss of generality that fRnﬁfo = 0, i.e., ¢¢ = 0. Thus, equation
(1.2.25) is equivalent to
Ap+py|UP~tp=—h inR™

Due to the evenness of h we know that

/ hZ,=0, a=2,45---,n. (1.2.27)

The proof of [, hZ1 = 0 follows exactly as in the proof of [4 Lemma 4.2], so we focus on the

case a = 3. Indeed, denote by w,(y) := ;FnT%U(u_ly) and J(t) := [, wu(y — & +tes)h(y) dy.
Notice first that

/ Oy wpu(y — &1)P(y )dy—/ hZs. (1.2.28)

2m(l—1)

On the other hand, defining g = (y, e~ n g,y for some | =2 3,... h, it can be checked that
7 — & +tes]? =y — & +té]>, teR”,
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where é := (0,0, cos(%(ﬁ;l)), - sin(%), 0,...). Thus, after a change of variables, by (1.2.26),

IO = [ w6+ tedh@) di = [ waly -+ )0 dy

Differentiating here,

2r(l—1) . (2m(l—1)
—cos (T2 Zydy —sin [ TV Zu dy.
dtJ( ) i cos < N > - hZs dy — sin < N - hZydy

Applying (1.2.27) and (1.2.28) we conclude that necessarily [,, hZ3 = 0. Thus, by [4, Lemma

3.1] there exists a unique solution ¢ satisfying

13ll+ < Cllhflon, /R GUP 2y = 0.

The invariance under Kelvin transform and the symmetries are obtained as a consequence of
the uniqueness. O

Likewise, we write R
Ay + pY|Unu [P 61 + G B +7N(@y, 61) = 0, (1.2.29)
with ) .
N(G:61) = p(U~ o1 = [Urs P71 + G [P 0(6y,61) + N(9)]
and we consider the problem
AG+pyUL, o + h = eUY, Zo in R, (1.2.30)
where h is a general function and

. e _ hZ
Zo(y) == AT 7 <y 771) , Coi= Jon hZo

T =152
A fR” Ug\) M1 Z2

Lemma 1.2.3. Suppose that h is even with respect to each of the variables yo, Y4, ys, ..., Yn and
such that

7 —n—27 (1, |—2 7 poo2mG=l) .

h(y) = !yl Wyl ™y), hy)=hle” ¥ 3,9.9), j=1....k
Assume that h(y) =\ h(m + \y) satisfies ||h|.x < +00. Then problem (1 2.30) has a unique
solution qﬁ = T(h) that is even with respect to the variables ya,y4,Ys, - - ., Yn, tnvariant under

Kelvin’s tranform, i.e.,
o(y) = [y "o (ly"?y),

and with (;)(y) = A%¢(n1 + \y) satisfying

R SUP 1 Zy =0, |+ < C[]e-

The proof of this result is analogous to the one for Lemma 1.2.2, interchanging the roles of u
and & with A and 7y, so we skip it.

We use these lemmas to solve the projected versions of (1.2.24) and (1.2.29), that is,
Ay + PYUpe, |p_1$1 + (L E +N(¢4, le) = COUM & ZOa

Ady+ py|Un [P b1 + GE + N (b1, 61) = é0US, 2o,

(1.2.31)
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in R, with
Co = fR"(ZlE + ’Yﬂ@l,ﬁﬁl))?o éO o fR"(ClE + VN(glagsl))ZAO
T —172 ’ T p—1 59 )
Jen Uiie, 2o Jor U %5

Proposition 1.2.4. There exists a unique solution ¢1 = (21,431) = (¢,(6), d1(e)) to (1.2.31)
such that

lg1lle := lldlls + 1]l < Ok + A7),

and

— = N _2n P N _2n
IN(@1; 01)llex S CE™ 95 [[N(d1, ¢1) [ < Ch 7 (1.2.32)

Proof. Denote by T and T the linear operators predicted by Lemma 1.2.2 and Lemma 1.2.3
respectively. Thus, solving (1.2.31) is equivalent to solve the fixed point problem

(B TGE+ NG o0) \ _ [ MGre0) | _
¢1 A A A= 2 A= 2 M(¢1)
¢1 T(GE +9N(61, 1)) M(¢y, 1)
Let us focus first on M@l, ¢?1) =T((E + WN(EI, (21)) Recall that
N(@1,61) = p(IUC) = U 7131+ [plU1 0By, 1) + N(9)]
Denote in general f(y) = % f(& + py). Consider fi(y) == pCi(|UuP"" = [Upg, ")y For
lyl < 5%

k

h
AW = UG+ S U@+ p 6 =) + D u T AT UN (& + py —m))
j=2 =1

n—2 - - y
— ez UG +uy)P ™ = U H(y)di(y)|-
Doing a Taylor expansion we get

1Ai(y)] < Cu™Z UP2(y) [y ()] < Cu™ T UP~(y) |6y (1.2.33)

and, proceeding as in the computations for the interior error, || fi||s < C,u;? \@1 ||l«. For the term
fo = (¢ — 1)U££11$1, we have

[}

o Mol <Cpoiliéyll. (1.2.34)

1)l SUPW)Io1]l, [yl >
Consider now f3 := C;p|U,|P~1W (¢, $1). Using (1.2.13) we get that, for |y| < %,

1 Fsllee < Cp2a (61l + [ Blls + 57 + 117 7).
Denote f; := (;N(¢), f5:=(E. Notice that
N(@) = [V + 1P~ (Ve 1) — [ValP = Vi = pl Vi~ 6,
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where ¢1(y) 1= "% ¢(& + py), and

e+ py —m)

||M:

k
Vi(y) = )= Uly+u (& —&))
7j=2

+ T U+ py).
Hence, for ¢ = ¢, + 22?:2 aj + Z?:l b1+ \Il(gl, $1), one has

r@|cm2w%u+wm>;ﬁﬂwaﬁmmww

Furthermore, in the region |y| < % it holds U(y) ~ uanQ and thus, after a second order Taylor
expansion one has

[ Falls < OB (0] + 0]l + K75 +R15).
Finally, by (1.1.5), we know
| f5llex < Cpu2a. (1.2.35)

Likewise, one can obtain analogous estimates for T(@E +7N($1, q?)l)) to conclude that M maps

functions ¢ with ||¢1]/« < C (,uQnTI + )\2%) into the same class of functions. Besides, one can prove
that the map is indeed a contraction, and thus we conclude the existence of a unique solution
to the system (1.2.31). O

Remark 1.2.5. The symmetry conditions (2.2.16) and (2.2.18) follow straightforward as conse-
quence of the uniqueness.
1.3. PROOF OF THEOREM 1.0.1

Thanks to Proposition 1.2.4 we have ¢, and 1 solutions to (1.2.31). Thus, if we find § and e
in (0.0.6) so that ¢y(d,e) = ¢o(d, ) = 0 they actually solve (1.2.24) and (1.2.29). Repeating this
argument for every j =1,...,k—1and [ =1,...,h — 1 we conclude that

with ¢ defined in (1.2.1) is the solution to problem (0.0.1) we were looking for. Thus, we want
to prove the existence of § and ¢ so that (we keep the names in an abuse of notation)

w06:0) = [ QE+NGLINZe =0, a6.2) = [ (GE+NGL)Z =0

Indeed, we will prove that

) 1
co(d,e) = —A, [(5a aZ ]+ ——=05,(0,¢),
k" k2 Rk (1.3.1)
é0<57 8) =—4A, h" Tn—2 [gb bn h] + W@k,h((su 5)'
Here A, is a fixed posmve constant that depends on n, while for i = 1, 2, an = b:z 5, are positive

constants, of the form amk =al +0(3), bf%h =% +0(3), as k,h — oo, with a!, and b}, positive
constants. Furthermore, ©y j,(0,) denotes a generic function, which is smooth in its variables,
and it is uniformly bounded, together with its first derivatives, in § and ¢ satisfying the bounds
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(0.0.6), when k — oo and h — oo. By a fixed point argument one can prove the existence of a
solution (0, ¢) to the system

Go(8,€) = ¢0(d,€) = 0. (1.3.2)

Thus, if we prove that (1.3.1) holds, we conclude the proof of Theorem 1.0.1.
Both estimates in (1.3.1) follow in the same way, so let us prove the first one. We write

Co(d,¢) = /n EZy+ /n(g1 ~1)EZy+ v ” N(gy, 51)70. (1.3.3)

and we analyze every term independently. For § and e satisfying (0.0.6), we have that

Claim 1:

— )
EZo=—Anmms [6ay . — a2 ]+ 71 Okn(d:€). (1.3.4)
R’ﬂ
Claim 2: )
/ (¢ —1)EZy= W@k,h(@é‘)- (1.3.5)
Claim 3:
N(¢1, é1)Zo ——O%n(d,€), (1.3.6)

n k
R
as k and h — oo. It is clear that these claims imply the validity of the first equation in (1.3.1).

Proof of Claim 1. Let us denote

Ext = {_{ly - &| > %}} PNl =l > T

For @ > 0 independent of k we can write the first term as

EZq _/ EZO+/ EZO+Z/ EZO+Z/ . (1.3.7)
R™ §I7k Ext §j7k

77[7h

Considering E1(y) = MT E(& + py) and using (1.1.4) we obtain

[ 2= B wZ/ U0y — i — €0))Zo dy
B(&1,%) B(0,:%) j#£1
+7pun52/ B U”‘IU(£1+uy)Zody+7p/ -~ [(U(y)+5V)p_1—Up_l]V(y)Zody
B(0,-%,) B(0,:5%)

h
—VPZM%ZA‘"T_Q - U”‘IU(A*(&+uy—m))Zody—u"32/ _ UP(& + py) Zody

=1 B(0, %) B(0,:%)

h
_ nt2 _ nt2 _
_Z/ UMy —p NG =) Zody=Y " AT _UPOTN &+ py — ) Zo dy,
/B0 — B(0,5)

where
V(y) == Uly—n 1&g —€)) +u'% Ul& + py) - Zu A &+ py —m))
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Doing a Taylor expansion, for j # 1 there holds
n—2 2

UP U (y — =M€ — &) Zo dy = — 1+ —H  0un(6,2)),
)\n—2 )\2
UP LU (E + py — m)) Zo dy = ——° 1+ Opn(d,2)),
/B(D = A (& + py —m)) Zo dy 6 - Ul’"_Q( TR kn(0,€))

where ¢; is some positive constant, and, as before, Oy (d,¢) denotes a generic function, which
is smooth in its variables, and it is uniformly bounded, together with its first derivatives, in ¢
and ¢ satisfying the bounds (0.0.6), when k — oo and h — co. Proceeding in a similar way,

/ a ) UPU(€1 + py) Zo dy = eap™ T (1+ (k) O 10, €)),
71@

for some positive constant co. On the other hand,

n+2 n+2 1
i [ (§1+My)Zody‘ opti / L <o (1)
B(0,2) B(0,5) (1+y])
Z/ - 1(5j§1))Zody‘ < C(pk) QZ —, (1.3.9)
j#1 % |£J £1|
and
h +2 +2 +2
Z - CUPATME + py —m) Zo| < CuENE Rk, (1.3.10)
—1 B(0,.%)
Finally, puttmg together (1.3.8), (1.3.9) and (1.3.10),
[ Wyt o)z
B(0, %)
(1.3.11)
7’L+2 n+2 n+2
<C | p"T k2 + (uk) 2274_2—1-#7)\ hk?
& — &il”
J#1
To estimate the second term in (1.3.7) we apply Holder inequality to get
EZo| < CI(L+1y)"* % Bllagmen | 1+ )"+ Zol (1.3.12)
st ol & Yy La(Ext) Yy 0 Lq%vl(Ext). -9
Proceeding as in [4] and using the estimates obtained in Section 1.1 we see that
i 2k2(n—2) "—)\—kn—th—2
’/ EZ| < S e . (1.3.13)
Eat kn K" aha
Likewise,
EZ g; n—2 , 1.3.14
Z/ B, m) o (k) Z’fg 51\” 2 ( )
J#1 %) J#1
Z/ CEZo| <CA'ThTap T (AW ik (1.3.15)
=1 B(nl’h)
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Claim 1 follows from these estimates applying the fact that h = O(k).
Proof of Claim 2. Let us estimate the second term of (1.3.3). Noticing that

/(C1—1)EZO / 57,
n {ly=&11>%}

the Claim follows from (1.3.13), (1.3.14) and (1.3.15).
Proof of Claim 3. Notice that

= R n+2 = N
R N(¢17 ¢1)ZO =p 2 R N(¢17 ¢1)(£1 + My)ZO(y>7
and thus, from estimates (1.2.33) — (1.2.35) and the fact h = O(k) we conclude

N3y, 61)%0 < CK*3 / UP| 2.

<C

)

Rn
Part 2. Nondegeneracy

As stated before, the goal of this part is to prove the nondegeneracy (see Definition 0.0.1) of
the solution u provided by Theorem 1.0.1 (we drop the dependence on k and h by simplicity).
Recalling the functions z, defined in (0.0.11)-(0.0.15) we can formulate the result in Theorem
0.0.3 as follows.

Theorem 2.0.1. There exists a sequence of solutions u to Problem (0.0.1) among the ones
constructed in Theorem 1.0.1 for which all bounded solutions to the equation

—Ap — yplulP"2up =0 (2.0.1)
are linear combination of the functions zo for a =0,..., Ng — 1. (Recall that Ny :=5(n —1).)

For later simplification, we introduce the following functions
zg:=z2g, if B#n+3,n+4,n+5n+6,

— 2.0.2
Z‘”‘Zf’”““, if a=1,2,34. (202)
Since zg are linear combinations of the original functions zg, the statement of Theorem 2.0.1
is equivalent to say that there exists a sequence of solutions among the ones constructed in
Theorem 1.0.1 for which all bounded solutions to (2.0.1) are linear combinations of zg, for
B=0,...,Ng—1.

Thus, let ¢ be a bounded solution of (2.0.1), namely L(y) = 0, with L defined in (0.0.16).
We decompose ¢ as

No—1
ply) = Z agzg(y) + ¢(y)  with ag so that / luPz55 =0 (2.0.3)
=0 R

Zni2+4+a ‘=

holds. Notice that, since zg € ker{L}, one has L(¢) = 0 and thus our goal will be to prove that
actually ¢ = 0.

Recall that our solution v has the form

k h
uly) =UW) = Y Uug; () = Y Ui () + (1), (2.0.4)
j=1 I=1
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where ¢ is defined in (1.2.1) as ¢ = Z§:1 @+ Zlhzl b1+ 1.
We introduce the following functions

n—2 0 0

Zoo(y) = —5— U+ () + VIU+ YY) -y, Zaoly) := e Uy) + Ee (y), a=1,...,n
(2.0.5)
For j fixed in {1,...,k}, we define
Zosy) 1= "5 2 g, + 3510) + Vg, +351(0) - (0 — &)
Z1i(y) =& - VylUue, + Gil(W),  Zoj(y) ==& - Vy[Upug, + 651(v),
Zos() = 5, Une, ) + 3], a=3com,
For [ fixed in {1, ...,A}, we define
Zoi(y) = "2 W + B) + VUn +B) - (v — )
Zsi(y) == VU + ), Zu(y) = ni" - Vy[Usy + &),
Zai(y) == &[Ukml(y) +¢], a=1,2,56,...,n.
In Appendix 2.6 we provide the expressions of the functions zg, =0, ..., No— 1, in terms of

the functions Z,q, 7aj, 7=1,...,k and Za,b l=1,...,h, forany a = 0,...,n. These relations
will be useful in other parts of our argument.

_ . . 1T
We write the functions above in (n+1) vector fields as I1,, := [Za[), Zolyo s Laky Loty s Lah|
_ . 1T
a=0,1,...,n, and, for any given vector d = [do,dl, oo dy,dy, . ,dh} € RMF+ we use the
notation

k h

d-To:=doZao + Y djZaj+ Y diZu.
j=1 =1

With this in mind, we write the function ¢ in (2.0.3) as

n
Py) = ca Maly) + ¢ (y), (2.0.6)
a=0
where ¢q := [Ca0sCal, - - - s Caks Cals - s Can)’ » @ =0,...,n, are (n+ 1) vectors in RFt"+1 chosen

so that, for any a =0,1,...,n,j=1,...,k, l=1,...,h,
/n Up_lZaoch = /Rn Ui’EJ_IZQjQPL = /R" Uf;]llzalgoj_ =0.

Hence, to prove that ¢ = 0 we have to see that ¢, = 0 for every a and o = 0. This will be
consequence of the following three facts.

Fact 1: Since L(¢) = 0, one has that

> o L(Ily) = —L(g™), (2.0.7)
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with L defined in (0.0.16). We write ¢ = ¢f + Z?:l Gjl +3 @7, where

_L(SO(J)_) = ZCOCOL(ZOCO)7 _L(Ej_) = ZéajL(Zozj), _L(lel) = ZéalL(Zal)y
a=0 a=0 a=0

forany j=1,...,k,and [ =1,..., h. Furthermore, let us define

k h
=1 n=2__| N n=2 ,| 1 1 =1 NN
P (W) =17 By (uy+&5), A (W) == A7 ¢ Qytm), ol = lleg 4+ 175 It 167 |-
j=1 =1
Thus, as we will prove in Section 2.4, there exists a positive constant C' such that
n
o042
lt | < CE™22 3~ lcall- (2.0.8)
a=0

Fact 2: Condition (2.0.3) is equivalent to

n n k
an./ I, |uPtzp = Z Ca[)/ Zao|ulPtzs +anj/ ZojlulP~tzs
a=0 R a R j=1 Rn

2.0.9
b (2.0.9)
+Zéal/ Zal!u!p_lzgl = —/ orulPtzg, B=0,...,Nog— 1.

=1 R R™

Let us denote 0; := 2Z(j — 1), 0, := (1 —1),

1 0 1 0
— cos 09 §n— sin 6o s = cos 05 ’ i sin 6y 7
cos B sin @y, cos éh,l | sin éh,l
(2.0.10)
1 1 0 0 |
T=| ... |, 1= ... |, O:=1| ... |, O:==1| ... 1, (2.0.11)
1 1 0 0

where T and 0 are k-dimensional vectors, and 1 and 0 are vectors of dimension h. Likewise,
define

€00 Cal Cal Co Co

Cno Cak éah Cn+1 Cn
where ¢y € R*! ¢, € RF, ¢, € R, ¢ e ROTDk gnd ¢ € ROHDR Thys,
Proposition 2.0.2. Solving system (2.0.9) is equivalent to solve

1 0

0
co-| —1 | +ec- -1 |+ c3 -+ 0 = to+ Rh,k» (2.0.12)
1 0 -1



20 M. MEDINA, M. MUSSO, AND J.WEI

1 0 0 1
c1-| —C08 | +eo- | sin | =t +Rpg, c1-| —sin | +cy- | —CO8 | = ty+ Rpy,
-1 | 0 0| -1
(2.0.13)
1] [ 0] 0] L]
cs- | —1 |+e-| O | =t3+Rpp, c3- 0 |+e-| =1 | =tat Rpp,
| —cos | | sin | | —sin | | —cOs |
(2.0.14)
1 0 [ 0
cat | =L | =ta+Rpk, a=5,....n, co- | 1 | =tnp1+Rpp, ca-| 0| =tnpo+ Rug,
—i 0 i
(2.0.15)
F o F o _ 0 - _ 0 .
cop- | COS | —cy- | COS | =tp43+Rpp, co-| sin | —cp- | sin | =tuqq+ Ry,
| 0] | 0] | 0 | 0
(2.0.16)
F o o _ 0 - _ 0 -
co - 0 —c3- 0 =tpys + Rpg, co- 9 —c3- Q = tnye + Rnk,
| cos | | cos | | sin | | sin |
(2.0.17)
0 0 i 0 i [0
c-| 0 | +eg-| —COS | =tppr+Rpp, - | 0 | +ecar| —COS | =tnyg+ Rpp,
cOs 0 | | sin | | 0
(2.0.18)
0 0 0 0
co - 0 +c3- —sin | =topys, Co- 0 +cq - —sin | = topy6 + Rh,k’) (2.0.19)
cos 0 sin 0
and, fora =5,...,n,
0 0
Ca* | —COS | =tntaya+RBpg, Ca- | =8I0 | =lonyat2 + Rag, (2.0.20)
0 | 0
0 [0
Co - OA =t3nta—2+ Rk, cCa- 0 = tanta—6 + Bp k. (2.0.21)
—sin | —cos

Here t;, i = 0,...,5n — 6, are fired numbers such that |t;|| < C|¢t|. Moreover, Ry =
Ry, i[co,c1,. .. cq] stands for a function, whose specific definition changes from line to line, which
can be described as follows:

Rh’k[CQ, Cly... Cn] = @k,hL (Coo, ey Cn()) + @kﬁf (61, - ,Ek) + (:)hhf: (él, e ,éh)
and £ : R™ S5 R, £ : RF+H) 5 R L RMOFD S R are linear functions uniformly bounded
when k,h — oo, and

n A~

Ok = O(k' ), Orn =0k 1), Opp= O(k™ ),
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where O(1) denotes a quantity uniformly bounded when k,h — oo, and § < q < n is the number
fized in (0.0.17).

We will prove this result in Section 2.3.

Fact 3: Multiplying (2.0.7) for every Zao, Zaj, Zotso=0,1,....n,5=1,...,kandl=1,...,h
and integrating in R™ we get a system of the form

[ Jen L) Zao
Co ) fRn L(LPL)ZM
M = | | Wit = | e K6 | (2.0.22)
en o Jan L) 2
L fRn L(‘PL)Zah J
M, O

Due to the symmetries, the matrix M has the form M = , where M7 and Ms are

0 M,
square matrices of dimensions (5 x (k+h+1))? and ((n —4) x (k+ h +1))? of the form
A B C D E _
BT F G A I S
Mi=|CT G J K L |, My= 0 ,
pr AT KT M N R
~ ~ ~ - ~ H
ET [T NT P 0 0 0 M
with
JLZa)Zeo  (JL(Ze0)Zas);  (J E(Za0)Zat),
Ho=| (JLZ)Zw), (JLZadZai)y; ([LZadZa),, |, (2029)
(f L(Zam)ZaO)m (f L(Zam)Za])mj (f L(Zam)2a1>ml
fori,j=1,...,kand m,l =1,...,h. Thus, solving (2.0.22) is equivalent to find a solution of
€o 70
My | @ | =1 ¢ |, Hyco =74 for a =5,...,n, (2.0.24)
C4 T4

with r, defined in (2.0.22).

Proposition 2.0.3. There exists ko, hg such that, for all k > ko, h > hg, system (2.0.24) is
solvable. Moreover, the solution has the form

1 0 0 0 0
co= vg+ 1o -1 + 11 0 + 12 0 + i3 0 + iy 0
i 0 0 0 0
0 0 0 0 0 0
—i—f() 0 +f1 coS —i—fg sin —l—tb 0 +£1 0 —i—fg 0 ,
0 0 0 0 cos sin
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0 R - 0 v
ca=vitto| =L |+t | T 429 |+t —msm +t3| 0| +t4] 0
0 -1 0 0 0
0 0 0 0 0 0
+to| O | +% | —cos | +ty| —sin |+t | O | + 4 0|+ to 01,
0 0 0 0 0 0
0 10 —_ f- _— 9 9
= v2+t | 0|+ o |+t _MC S+t | 0] +ta| O
0 0 1 0 0
0 0 0 0 0 0]
—{—EO 1 —I—El 0|+t ] 0 —I—fo Q —|—Lt1 9 +£2 9 ,
0 0 0 0 0 0
0 0 0 L 0
cs3=v3+to| O |+t | 0|+t 0| +1t3 -1 + 14 0
-1 0 0 - 1];>\2 Cés L —ﬁsin
0 0 0 0 01 [0
4+t | O | +% | 0|+t | 0 |+ £0 0|+ tAl 0 + 7?2 OA ,
0 0 0 0 —c0s | —sin
0 0 0 o] b
ca=vatto | O | +& | 0+t 0| +13 0 |+t -1
0 0 0 JEsin | — s cos
0 0 0 0 0 0
+t0 | O |+t | O |+ |0 |+ 0 + 1 0 + 1y 01,
0 0 0 1 0 0
and, fora =5,...,n,
Iy 0 0 0 0
Ca=UVat+ta| =1 | +7n @ + Va2 | SIn | + a1 0 + Va2 9 )
-1 0 0 cO0s sin

for any to,t1,ta, ts, ta, to,t1, 2,80, t1,t2, and ta, Va1, Ta2, Va1, Vaz Teal parameters. The vectors
Vo € RFFIHL are fized and satisfy

lvall < Cllet, @ =0,1,...,n.

Proof. Proceeding as in [20, Proposition 6.1] it can be checked that, for any o = 0,...,n,

_ n—2 L N n—2 n
[Tall < Cu= e[, lI7all < CAZ o™,
and combining this estimate with Lemma 2.1.1 and Lemma 2.2.2 we obtain the result. O
We shall use the following notations: for any o = 0,1,...,n,
v Cal éal
Co = [ Ny } eRMI Goi=| ... | eRF, éi=| ... | €RP, (2.0.25)
“ Cak éozh
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; ERF, 7o := : €R".

fR" L(@l)iak‘ fRn L((pl)Zah

2.1. SOLVING THE SECOND SYSTEM IN (2.0.24)

Let a be fixed in {5,...,n}. This section is devoted to solve

Hoco = ra, (2.1.1)

where 74 is the vector defined in (2.0.22). Using (2.0.23) and (2.0.5) and the fact that L(z,) =0

it follows that
k+h+1

rowy(Ha) = Y row(Ha,).
=2

As a consequence, [ 1 -1 -1 ] € ker(fla)7 and hence Hyc, = 7o has a solution only if
To - [ 1 -1 -1 ] = 0. This last orthogonality condition is indeed fulfilled since one has

kt1 htk+1
rowi(ra) = Y _row;(ra) + »  row(ra), (2.1.2)
=2 I=k+2
again as consequence of the fact that L(z,) = 0. Thus, the general solution to (2.1.1) has the
form
1
0 _
Ca =1 - +t| =1 |, teR,
Ca A
-1
where ¢, solves
L : H Yalkxn
Holo = th Hy = “ RS =5,... 2.1.3
ala = Ta, W1 a |: Vol nxi A, y & ) y 1y ( )

being H, and H, square matrices of dimensions k& X k and h x h respectively, defined by

H, = (/ L(Zayi)ZaJ dy) , fIa = (/ L(Zavl)zoé’m dy> , Va ::/ L(Zal)Zal,
1,7 l,m n

with i,5 = 1,...,kand [,m = 1,...,h. By 154 we mean a s X t-dimensional matrix whose
entries are all 1. Observe that
ol < CE*2", (2.1.4)

for some fixed constant C. Arguing as in [20], one can show that H, and H, are circulant
matrices of dimensions (k x k) and (h x h) respectively (see [17] for properties). Moreover, [20,
Proposition 5.1] ensures that

H,[ea] =30, Halta] = $a, (2.1.5)
has a solution if
5o COS =354 -sin =0 and 8§, - cOs = §q - sin = 0.

Actually, if a solution to (2.1.5) exists, it has the form

Co = W + V1COS + Ussin,  Cq = We + 1€0S + Uosin,
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for all 71, Us, 11, U9 € R, where w,, W, are the unique solutions to
HoWo = Sa, We-COS=1Wq-sin=0, Holg=258q, We-coS=1g: sin=0.
Furthermore, in [20, Proposition 5.1] it is proved that there exists a constant C' independent of
k so that, for all k large
[@all < CE™ 50l and |liall < CE™ |54l

We start with the observation that system (2.1.3) is solvable. Indeed, since L(Zpiqt4) =
L(Z2n1a42) = 0, one has that 7, -¢0s = 7, -sin = 0. Similarly, one gets that 7, -cos = 7, -sin = 0,
as consequence of the fact that L(zsni1a—2) = L(Zanta—6) = 0. Moreover, the vector LjxpCo
is a multiple of 1, and 1;,4x4Co is a multiple of 1. Thus 1jxxCa - c0S = Lpxpnéa - sin = 0, and
1pxkCa - €Os = 1}k Cq - sin = 0. Now we observe that the solution of system (2.1.3) has the form

Co = Wo + V1COS + Upsin, ¢, = Wq + P1COS + osin, (2.1.6)
for any value for 7y, Us, 1, o € R, where w, and w, are the unique solutions to

H o wWo =70 — ValgxhWa, Wq - COS = Wy -sin = 0,

N . (2.1.7)
Hog = 7o — YalpxpWea, We - €OS = W, - sin = 0.
Moreover, there exists a constant C' so that
[@all < CK" 4|7l and [[da < CE™||7all. (2.1.8)
Existence and uniqueness of solutions to (2.1.7) satisfying (2.1.8) follows from a contraction
map argument. Indeed, ZZ is a solution if and only if it is a fixed point to A, :gz =

To — Yol ps n0 w, H,0
71 (| T Yo tkxhWa h denote by T}, the Ii T Yo ) = Jatla
o <[ P — oLy k0 , where we denote by Ty, the linear map 74, B i, ,

which is invertible for vectors that are orthogonal to €os, sin, in their first components, and to
c0s, sin in their second components. Let

w, _ —dp— . VTN
Be= ([ 0 | € Ko s Jall < okl and o] < k)

E — - — — ~ A~ ~ o .

where K, := Y | e RFh . 15, -CO8 = W, - sin = 0, W, - ¢O8 = W, - sin = 0}. Then, choosin

w ) ) g
(6%

r large but fixed, and thanks to (2.1.4), one has that A, is a contraction in B,. This gives the
existence of solutions to (2.1.7), satisfying (2.1.8).

Summarizing the above arguments, we have

Lemma 2.1.1. Let o € {5,...,n} be fizred. Then system (2.1.1) is solvable, and the solution
has the form

0 1 0 0 0 0
Co=| Wo | +t| -1 | +71| TS | +Ty| sin |+04| 0O | +in| 0 |, (2.1.9)
We, -1 0 0 cos sin

SN w
for any values of t,71,Us,01,05 € R. In the above formula { UA)O“

(2.1.7), and satisfies (2.1.8).

} is the unique solution to
(0%
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2.2. SOLVING THE FIRST SYSTEM IN (2.0.24)

This section is devoted to solve the first system in (2.0.24), namely

€o
M,

Cq

To
(2.2.1)

T4

Using (2.0.23) and (2.0.5) and the fact that L(z,) = 0 for every a = 0, ..., 4, together with the
result in Section 2.6, we observe that, in the matrix M,

k h
row; = Z rOW14; + YOWgth42+4 + Z TOWk41+4 + TOW4k43h+4+1,
i=1 i=1
. k - - h
TOWg 442 ~ [Z oS 0;TOW g 4 4245 — SINO;TOWoR 1 2p 4344 | + ZTOW2k+h+2+z’,
M L=t i=1
1 k h
TOW2)42h+3 T [Z Sin 0;roWg 1 p124i + €08 0;T0Wak  op 1344 | + Z TOW 34 2h+3+i
T L=t i=1
k 1 r h -
TOW3k+3h+4 = ; TOW3)+3h+4+i 1 ﬁ _; €08 0;TOW 4, 4 3p 444 — Sin 911"0W5k+4h+5+i_ )
k 1 r A -
TOW4k+4h+5 = ; TOW Ak 4+ 4h+5+4 T e ; Sin 0;TOW4j 4 3p444i + COS 91‘1"0W5k+4h+5+i_
From these facts we deduce that system (2.2.1) is solvable only if
[ 7o ry | rw; =0, j=0,1,....4, (2.2.2)
where (recall definitions (2.0.10) and (2.0.11))
wo:i=[1 -1 -1 0 -T 600000 -1000],
_ . L R . _ . — A 4T
wp=[0 001 ——=2=es ~1 0 —Z=sin 0 0 0000] 7
- . 1 . L “ o A 9T
wy:=[0 00 0 — I_MQSIH 01 — 1_M2cos -1 0 0 0 0 0 O } . (2.2.3)
. . . _ . T
wyi=[0 000000001 -T ——Lgcos 00 11_/\2sin} ,
- _ N _ N _ N _ ~ _ . T
wgz=[0 0000000000 —lesin 1 -1 —ﬁcos},
which all belong to ker(Mj). On the other hand, using again that L(z,) = 0 for every o =
0,...,4 one sees that the vectors r, satisfy the following relations
k41 htk+1

row(rg) = Z [row;(19) 4+ row;(r1)] + Z [row;(rg) + row;(rs)]

j=2 I=k+2
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k+1 h+k+1

1 _
rowy(ry) = Z cos 6 _irow;(ry) — sinf;_1row;(ra)] + Z row;(r1),
\/1_7 I=k+2
1 k+1 htk+1
rowy (rg) = Z sin@;_irow;(rq) + cos f;_1row;(ra)] + Z row;(rz),
\/1_7 I=k+2
k41 e
rowy (r3) = Z row;(r3) + —— Z [cos 0;_1row;(r3) — sin 91_1rowl(r4)} ,
j=2 V1—A I=k+2
k+1 | R
rowy(ry4) = Z row;(rs) + —— Z [sin 0;_1row;(rs) + cos Gl,lrowl(m)} .
j=2 V1-=A I=k+2

These facts imply that the orthogonality conditions (2.2.2) are satisfied, and thus (2.2.1) is
solvable. The solution to (2.2.1) has the form

[co a1 2 3 e ]T:[O G0 0 ¢ 0 & 0 & 0 &4 ]T—I—twg+sw1+rw2+uw3+vw4,

for any values of t, s,r,u,v € R, where ¢, := [ Co Co }T are solutions of
Co To
: . . Ta
Ql : | =1 |, Ta:= [ ; ] (2.2.4)
- - To
C4 T4

Here @ is the square matrix of dimension [5(k + h) x (k + h)]? defined as

A B C D FE

B F G H 1

Q=|c" ¢" J K L |,

Dt H' KT M N

ET 1 LT NT P
where every submatrix of @ has dimension (k+h) x (k+ h) and entries of the form [, L(V)W,
where

InH: Ve {(71j)j:1,...,ka (Zl Ji=1,...n}, W€ {(
(ix) InI: Ve {(le)j Lok (Zuhi=1, b W€ {(Zag) j=1,. s (Za)i=1,. 0}

(xi) In K V € {(ZZ])j 1,k (?21) -1 ,...,h}, W € {@3;’%:1 ..... ks (?31)1:1,...,}1}
(xii) In L: V € {(Z2))j=1...k» Zot)i=1,..0.}s W € {(Z4aj)j=1...k» (Za1)i=1,..}-

(i) I A: V,W € {(Zoj)j=1,..5, (Zot)i=1,. .0} )
(ii) In B: V € {(Zo;)j=1,... k> (?oz)lzl,...,h}, W e {(Z1;)j=1...k (%1l)l:1,..,,h}-
(ili) In C: V € {(ZOJ)]:L o (ZA01)1=1,...,h}, W e {(Z2j)j=1...k (ZA21)1:1,,..,h}-
(iv) In D: V € {(Z0j)j=1,...k» (Zo)i=1,.n} W € {(Z35) =105 (Z31)1=1,...0 }-
(v) In E: V€ {(Zoj)j=1,...ks (Zo)1=1,..n}, W € {(Z4j)j=1,... 00 (Za1)i=1,..n}-
(vi) In F: V,W € {(Z1j) =1, k> Z1)i=1,..h}- A
(vii) In G: V € {(Z1))j=1,...k, (Zu)i=1,..n}, W € {(Z2)) j=1,..k, (Z2)i=1,...n}-
(viii) Z35) =1, > (Z31)i=1,...0 }-
)
)
i)
)
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(xiii) In M: V,W € {(73j)j:1,..,,]f; (Z31)i=1,...n}- A
(xiv) In N: V € {(Z3j)j=1,.. (Z3I)Al:1,...,h}7 W € {(Z4j)j=1,..ks (Za)i=1,..n}-
(XV) In P: V, W e {(74]')]':17“_719, <Z4l)l:1,...,h}‘
Let us analize the structure of every matrix, where we will make use of the notation

/BQLOQ = /L(all)Zagl- (2.2.5)
Matrix A. Due to the invariance properties one can check that for i, = 1,...,k and I,m =

1,....h,

/L(ZOi)ZOj:/R L(Zo1)Zo ji—j|+15 /RL(ZOI)ZAOm:/ L(201)Zo,u—m|+1,

n

/n L(Z)j)ZOl = /n L(ZOl>ZOj = /n L(Zo1) Zo1 = Boo-

Thus we can write o
A [ A Ay = BooLkxn ]
A = Boolpxk A ’

where A and A are circulant matrices of dimensions (k x k) and (h x k) (see [17]).
Matrix B. Applying the invariance properties like in matrix A we obtain
E Bl = (f L(?Oj)le)

By = (fL(ZOl)Zj)l:1 S 0

B— j=1,...k,1=1,...,h

I

where B is a (k x k) circulant matrix. Rotating in the (y1,y2) and (y3,y4) one obtains
/L(ZQj)ZH = COngﬂol, /L(ZOZ)le = COSéjﬁlo,
forj=1,....k, 1 =1,... h, since Bya = P2p = 0 due to the symmetry properties. Notice that

both expressions are independent of [.

Matrix C. Likewise,
6 Cl = (f L(Zoj)221>

j:l,...,k, l:1,~~-7h
Cy = ([ L(Z0)725)

C= ,

l:17"'7h7j:17"'7k

whith C being a (k x k) circulant matrix and
/L(ZOj)ZQl = sinf;fo, /L(ZOZ)ZQj = sind; .

Matrix D. —
0 Dq = ( L(Zo:)) Z )
1 f ( 0]) 3l j=1,....k,1=1,....h

b= Dy = (f L(ZO,)Z,]-) b ’

I=1,...,h, j=1,...k
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whith D being a (h x h) circulant matrix and

/L(ZOj>Z3l = cos 01803, /L(ZOZ)Z3j = cos 0,330

Matrix E.
0 E1 = (f L(?Oj)ZAM)

E2 = (fL(ZOl)Z4j>l:1 h,j=1,....k E

E= Gk 1= e

whith £ being a (h x h) circulant matrix and
/L(ZOj)Z4l = sin 0, Boa, /L(ZOZ)Z4j = sin 6§ 33.

Matrix F.
F F1 = (f L(71j)21l>

j=1,..k,1=1,....h
Fy = (f L(Zu)le>

F =
I=1,...,h, j=1,...k

where F and F are (k x k) and (h x h) circulant matrices respectively and
/ L(Z1j)Zu = / L(Zv)Z1j = cos® B;B11 + sin® 0 Bz

Matrix G.
G Gri= (J L(Z1;)Z2)
Gy = (f L(Zu)Z,)
where G is a (k x k) circulant matrix and

/L(Z]_j)ZQl = /L(le)ZQj = COng singjﬁll — singj coséjﬁgg.

_ j=1,....k, 1=1,....h

l:17"'7h7j:17"'7k

Matrix H.

0 Hy = (f L(jlj)ZA:az)
Hj = (f L(le)73j>
where, since 14 = 11 = P23 = P32 = Poa = a2 = 0,

/L(le)Zgl = COng COS élﬁlg, /L(le)Z3j = COng COS élﬁgl.

j:17"'7k7 l:177h‘

I1=1,...,h, j=1,...k

Matrix 1.
0 1 2—_( %)) )
I 1 [ L(Z1j)Zu =1 kd=1, h
Iy := ( L(Zu)Z > = '
2 f ( 1l) 4'7 l:17.--ah)j 1""’k

)

)

il
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where
/L(le)24l = COS@j Sinélﬁlg, /L(le)Z4j = COSg]‘ Sinélﬁgl.
Matrix J.
7 Jy = ( L(Z2;) 2. )
_ ! JUZ2;) 2 j=1,..k,1=1,...h
J ;:( L(Zy)Z ) J
2 f ( 21) 2j =1, hj=1. .k

where J and J are (k x k) and (h x h) circulant matrices respectively and

/L(ZQj)ZQl = /L(ZQZ)ZZj = Sin2 gjﬂll + COS2 ngQQ.

Matrix K.
K: 1 f ( 2]) 3 j=1,...,k,l1=1,...,h
2 J L(Z2) 23, I=1,...h, j=1,...k
where
/L(sz)Zgz = sin 6, cos 0,13, /L@zz)z?ﬂ = sin 0 cos 0 331.
Matrix L.
0 L= ([ L(Z2)Za)
- 1 f ( 25) 44l =1,...k,I=1,....,h
L _( L(Z)Z )
2 [ 1(Z21) 24 I=1,..h, j=1,..k
where
/L(ZQJ')Zu = sin 0; sin 6513, /L(Z2I)Z4J' = sind; sin 0.
Matrix M.
- oy = ([ L(Zay) 22
1 f ( 3]) 3l j=1,....k,l=1,....,h
YA ) u
(f 3l 3j I=1,..,h,j=1,..k

29

where M and M are (k x k) and (h x h) circulant matrices respectively and, since 34 = 843 = 0,

/L Z3j) 23 = /L(Zm)sz = cos? 0833 + sin? 0 B44.
Matrix N.

1 f ( 3]) 41 j=1,...k,1=1,...,h
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where N is a (h % h) circulant matrix and

/L(Zgj)24l = /L(Zgl)Z4j = COS él sin élﬁgg — sin él COS élﬁ44.

Matrix P.

- P = (f L(74j)ZA4l)j:1w7k7 =1,k
Pyi= ([ L(Za)Z)) | |

I=1,...h, j=1,...k

where P and P are (k x k) and (h x h) circulant matrices respectively and

/L(Z4j)24l = /L(Z4I)Z4j = sin2 91533 + COS2 élﬁ44.

Notice that
F=J and M =P.

Henceforth, system (2.2.4) can be decomposed in two different systems in the following way,

AT B C 0 0]7e1 [7] Al B Ci D Ei|[é]
B F é 0 0 C1 T Bg Fy G1 H, I 1
chcdt T o0 o G |=|m|-|CI GY hn Ki L é |, (2.2.6)
0 0 0 M 0||% E Dy Hy K My Ny || &

0 0 0 0 P|Le] |7 Ey Iy Ly Ny Pi||¢&

A Q 0 D E|]¢] [ 7y ] Ay By Cy Dy Ey | [ e |

0O F 0 0 0 & 1 Bl B Gy Hy I ¢1

0 0 J 0 0 G l=m|-|Ccl GT J Ky Ly e | . (227
DT 0 0 M N C3 T3 DI HI KI' My, N C3

ET 0 o NT P |Lé] |71 f 1 LT N B ||@ |

By [20, Proposition 5.1] we know that the systems

A B C 0 0Ty 50 A 00 D E|Tg %
B F G 0 0 1 S1 0 F 0 0 0 1 §1
ctEdh T o0 o=, 0O 0 J 0 0 e | =1 3 |,
0 0 0 M 0 C3 33 DT 0 0 M N és 83
0O 0 0 0 P [ S4 ET o o NT P C4 54

are solvable if the orthogonality conditions
S9-1=(80+31) cos=(50+31) sin=0, 53-CoS=353-sin=0, 34 -C08=354-sin=0,

54-1=(80+43) cos = (§0+§3)-sfn20, §1-cos=38; -sin=0, §y-cos=5y-sin=0,
(2.2.8)
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hold. Moreover,

Co wWo 0 CcoS Sii
C1 =|w |+t 9 +ty | —cos | +t3 | —sin |, Vii,t0, 13 €R,
i Co i i w2 i i 1 ] | 0 i L 0
[ ¢y | [ g ] [0 ] [ cos | [ sin ]
és | = | ws | +t5 9 +tg | —cOs | +ty | —sin |, Vis5,t6,t7 € R,
| G4 | | W4 | 1] 0 . 0 (2.2.9)
C3 = W3 +f4ﬁ+f5% Vﬂ;,f{, € R,
€4 = Wy + tgcos + tysin, Vig, t7 € R,
1 =wy + 7?1065 + tAgSiAn v£17£2 € R,
Co = Wy + fng)S + tA4SiAn, Vfg, f4 € R,
with [ Wy ... W4 ] , [ Wy ... W4 ] fixed vectors such that
wo C So Wo C S0
1 0 gl o | 1] (1 gl | | (2.2.10)
Wy S4 W4 S4
We will prove that (2.2.6) and (2.2.7) have a solution [ G ¢ ... T4 ¢4 | in the space

C3-Ccos=c3-sin =0, ¢C4-COS=Cy4-sin =0, }

X = [EQ cop ... C4 64]2A . . -~ R . . ~
C1-cos=2¢1-sin=0, ¢p-cos=Cy-sin=0.

We need the following auxiliar result, whose proof follows straightforward using the same argu-
ment as in Lemma 1.2.2 so we skip it.

Lemma 2.2.1. LQet h, g be functions in R™ such that h(y) = h(e%(j_l)y, 9,y") forallj=1,...,k
and g(y) = g(@,en Vg o) for alll =1,...,h. Then,

/n Zu(y)h(y) dy = /n Zo(y)h(y) dy = /Rn Z3;(y)g(y) dy = /n Z45(y)g(y) dy =0,

foralll=1,...,h, j=1,... k.
Let us focus on (2.2.6). By (2.0.7),

m-1_§k:/ Y2y =) [/ zn:ZZm‘)sz+/L(Z Za) 75

Notice that the second term vanishes due to Lemma 2.2.1 since, by the symmetry properties of
the functions,
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and L(Z§:1 Zsj) is invariant under rotation of angle 2%(j — 1) in the (yi,y2) plane. Therefore,
n ok k B k k B
To 1= (/ L(Z ZZM‘)Zm) ZsinHj + (/ L(Z ZZM‘)ZQQ) ZCOS 9j =0. (2.2.11)
a=0 i=1 ‘
On the other hand, as a consequence of [20, Lemma 6.1],
(To +71) - €os = (Tp +71) - sin = 0. (2.2.12)

Using the invariances under rotation in the planes (y1,y2) and (y3,y4) and Lemma 2.2.1 we get

n n h n k
[ 12 = [ L0 ZaZay + [ LSS 2 Zes = [ (Y23 Zai) 2
a=11i=1 a=1[=1 a=11i=1
and thus
n k k
T3 - COS = /L(Z Zoi)Zs1 | Y cost; | =0. (2.2.13)
a=1i=1 j=1
Analogously
T3 -sin =74 - €0S = T4 - sin = 0. (2.2.14)

Let us now check the last term in (2.2.6). We expect

(CF [éo] + GE[é1] + Juea] + Ki[és] + Liféa)) - 1= 0, (2.2.15)
(A1léo] + Bilér] + Ciléa] + D1lés] + Er[é4]
+B3 [éo] + Fi[é1] + Giléo] + Hy[és] + I1[é4]) - ©os = 0, (2.2.16)
(A1[éo] + Bilé1] + Ciléa] + D1lés] + Er[é4]
+B3 [éo] + Fi[é1] + Gléa] + Hiles] + I1[é4]) - sin = 0, (2.2.17)
(DI [eo) + HI 1] + KT [é9] + My [é3] + Ny[éq]) - €05 = 0, (2.2.18)
(D3 [e0] + Hy [&1] + K3 [é2] + M[és] 4 Ni[é4]) - sin = 0, (2.2.19)
(E3 [e0] + I3 [&1] + L3 [é2] + N3 (&3] + Pr[éa]) - €08 = 0, (2.2.20)
(E5 [é0] + I [&1] + L [é] + Ny [é3] + P1[éa]) - sin = 0, (2.2.21)
where ¢, . . ., ¢4 satisfy
é1-cos=¢é1-sin=0, ¢ -cos=¢p-sin=0. (2.2.22)

Notice that, since Co and G9 have all their rows identical,

=
Il
o

h k
CTléo] -1 = Bo (Z 50,> Y sinf; | =0, and likewise G [¢] -
=1 j=1

Using the definition of J; and Lemma 2.2.1,
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since L (Z?Zl 72]-) is invariant under rotation of angle ¢;, and

k k
Kilés) - 1= Bis(és - cos) Z sinf; | =0, Lq[éq) 1= Pi3(és- sin) Z
j=1 j=1

Thus, (2.2.15) follows. Furthermore, again by [20, Lemma 6.1],
(A1 + B3)j = (Bi+ Fi)j = (C1+ G =0,

and thus (A1 + BY)[é] = (B1 + Fi)[é1] = (C1 + G1)[éa] = 0. Likewise, (D1 + H1)j = (Eq +
I)j = 0, and therefore (Dy + Hy)[és] = (Eq + I1)[¢4] = 0. (2.2.17) can be analogously proved.
Furthermore,

k

DT [ég] - cos = Ba31(¢éo - cos) Zcos@ =0,

h k
M [é3] - cos = [533 <Z é31 cos? él) + Baa <Z C31sin 91)] Z sb; | =0,

=1 =1

h k
Ny [64] - COS = (ﬁgg — 544) <Z Cy1 Sin él CcOos él> Z COS?j =0,

=1
and, due to (2.2.22),

k
Hj [&1] - ©o8 = Bs1(é1 - cos) Z cos? 0, KZ[éo]-cos = f31(ég - cos) Z sinf; cosf; = 0,
=1

0 (2.2.18) holds. Identities (2.2.19)—(2.2.21) can be obtained in a similar way, and thus (2.2.6)
is solvable. An analogous reasoning proves the solvability of (2.2.7). Thus, the systems (2.2.6)
and (2.2.7) have a solution in X with the form (2.2.9), where [@o, ..., W4, Wy, ..., W] satisfies
(2.2.8). It can be checked that

|Baa| S Ck™2 0 =0,2,4, [faal <CE2"6 a=1,3,
|Boras] < CE™2"0 a1, a0 =0,1,3, a1 # as.
where (4, 0, Was defined in (2.2.5), and henceforth, by (2.2.10) and recalling that h = O(k),
[@all < CE"H[Fall,  ll@all < CK"H7all, a=0,1,...,4.

(2.2.23)

As it was done in the case o > 5, we will solve the systems by means of a fixed point argument.
If we denote

A B C 0 0 A, By C, Dy E;

B F G o ol Bl Fm G H I
My=|¢" G 7 o of| Mi:=|C3 GI 1 Ki Li|,

0O 0 0 M 0 Dy Hy K5 My N

O 0 0 0 P Ey I, Ly Ny P
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A oo D E Ay By Cy Dy By
0O F 0 0 0 . B B Gy Hy I
My=1| 0 0 J 0 0|,M:=|C GtV J»n K L|,
DT 0 0 M N DI HI KT M, N,
| ET 0 0 NT P | Ef Il L{ N P
then [wy, ..., W4, Wo, ..., Wws] is a solution of (2.2.6)-(2.2.7) if and only if it is a fixed point of
[ wo ] _ N “ _
To wo 0 Wo
- T1 _ | un T .| W
F UAJ4’ = S_l T9 — M, W9 , 79 — My | wo ,
0 T3 w3 T3 w3
I 1y | T4 Wy T4 Wy
where
wo wo | wo | wo
S e y e = Ml cee , M1
Wy Wy wy Wy

Notice that S is a linear map which is invertible for vectors satisfying the orthogonality conditions
(2.2.8). Let

wo wo wWo To wo 70
B {| oo || L] e ol T rser ]
Wy Wy Wy T4 Wy T4

for some fixed r large, where

wo Wo
K:={| ... | eR> | ... | € R%" satisfying (2.2.8)}.
Wy Wy

~

Thanks to the particular form of the matrices M, M (all their submatrices are combinations
of sinus and cosinus multiplied by a term [, q,) and (2.2.23) it can be checked that F' is a
contraction mapping that sends B, into B,. This finishes the proof of the existence of a solution
to (2.2.6)-(2.2.7) satisfying (2.2.8).

Define the vectors

U:=[0000000T00000°00], (2.2.24)
% :=[0 s 00 —es 000000000 0], (2.2.25)
Uy:=[0 sm 0 0 —sm 0 00000000 0], (2.2.26)

do:=[0 0000000000000 1], (2.2.27)
ﬁ1:=[0606806()OGOOG—CGSOGO]T, (2.2.28)
d5:=[0 0 sin 000 000600 —sin 00 0]". (2.2.29)

We can summarize this section in the following lemma.
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Lemma 2.2.2. System (2.2.1) is solvable, and the solution has the form
. - 9T
[ co ... C4 ] =w + towg + t1wy + towg + t3ws + t4wy
+ Totio + a1 + balla + fotl + E101 + Eatla,
where
w::[O wyg wog 0 wp wp 0 wy we 0 w3 w3 0 7wy 12)4]T
(Wo, . .., Wy, Wy, . . ., Wyq being the unique solution to the system (2.2.6)-(2.2.7) satisfying (2.2.8)and

(2.2.10)), to, ..., ta, to,t1,to, tAQ,f]_, tAQ € R and ¢y, ..., ¢4, Wo,...,Wq, Uy, U1, U2, Uy, U1, U are de-
fined in (2.0.25), (2.2.3), (2.2.24)-(2.2.29).

2.3. PROOF OF PROPOSITION 2.0.2

With this in mind, we observe that Proposition 2.0.2 is a consequence of the following esti-
mates: if k, h — oo

/|Up_lZaoZﬁo—/Up 1200+O( +)\ 7 ) ifa=p=0,
= [ UPIZ5 0T +AT) ifa=B#0, (2.3.1)

=02 + )\TLT?Q) otherwise,

/|U’p_ ZMZBJ_/UP—lng—{—O(H 2 ) ifa=p8=0,i=j,
B / UP 123+ O(u's) ifa=F#£0i=] (2:3.2)
=O(p 2 ) otherwise
/!u\“Z 1Zpm = /UplzgO +OWN'T) ifa=8=01=m,
= /Up—lzfo FOWN'T) ifa=8#01=m, (2.3.3)
= O()\nT72) otherwise,
n—2 =2 5 n—2 _ n—2
/|u|p ZO‘ZZBO - 'u 2 /|u|p lZ,BO = T), /|u|p_1ZaiZﬂl = O(MT)\T)

(2.3.4)

In the formulas above, ¢,j =1,...,k, I, m=1,...,h, a,3=0,...,n.

The proof of (2.3.2) and (2.3.3) follows like (8.3) in [20], and (2.3.1), (2.3.4) are obtained
analogously. Let us prove the last integral in (2.3.4).

The key point here is to notice that if y € B(¢;, %) then |y —n| > C, with C independent of 4,
l and k, and |y — &| > C whenever y € B(n, %), where C is independent of i, [ and h. Consider



36 M. MEDINA, M. MUSSO, AND J.WEI

the case « = 8 = 0. We split the integral into four parts.

/\u|p_120i201 :/ _ |u]p_170120j +/ A |u‘p_1701'20j +/ |U|p_170i20j
B(&, %) B(m, %) R™\B(0,2)

+ / _ _ |u|p_170i20j
B(0,2)\(B (&, $)UB(m, %))

=:11 + 12 + i3 + 14,

Firstly, using the definition of Zg; and ZOZ,

n—2

=1 Ai n n— n— n—
71 <C/ B |u|p_1Zo7;% < Cu?g)\'f/ UP~1Zy < C’,uTQ)\ 22’
B(&,2) ly — i B(0,2)

o
ke

where the second inequality follows by the change of variable x = &; + py. io follows in the same
way only by translating to x = 1; + Ay. On the other hand, we have that

n—2 /\Lﬂ 1 dy < C L*Q)\L*?
2 2 — —dy < Cp 2 2 .
rn\B(0,2) [Y|*|y]"2|y|"2

i3 < Cu

To estimate i4 we take into account that, since & and 7; are separated, |y — fi\_(”_m and |y —
771]_("_2) cannot be singular at the same time, so the behavior of the integral comes determined
by the singularity of only one of them. That is,

i <OpTNT / P s —dy < TN
B02)\(B(&, T)UB(m,2)) ly =& [y — il

The case a, 5 # 0 follows analogously just by noticing that
P T e n—1 S
oy =&t g

Z
and hence (2.3.4) is proved.
We now need the following result.

Proposition 2.3.1. The functions 7, can be decomposed as

k h
Ta(y) = Y Taij(¥) + D> fat + Taly),
j=1 =1

where
_2n(i=1) _2n(l-1)

ﬁaj(y) - ﬁal(e Yy, y’), 7ATOtl(y) = fral(ya € oy, y/>'
Furthermore, there exists a positive constant C' such that

[Falls <C('" 0 +h'74), |[Farlls <Ck 4, |Farls <Ch 4, a=0,1,...,n,

= n—2 2 n-2 ,
where To1 := p" 2 Ta1(&1 + py) and Ta1 := A2 Ta1(n1 + Ay).
We omit the proof of this result.
Thanks to Proposition 2.3.1, we get

] [ 1 Zuoms | < Clial } [ 1 Zuims

< Clmalls. \ / P Zogres

< Ol
(2.3.5)
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Notice next (see (8.5) in [20] for a proof) that [UP~'Z3, = [UP~1Z%) > 0, and thus we can
define

1 Ly p—1
tgi=———— Pz,
B fUp—lng /‘P |u‘ Z/B

which satisfies [t5] < C||¢* ||« with C independent of k and h.
Consider (2.0.9) for § = 0. Thus, by using the definition of zp, (2.3.1)-(2.3.4), (2.3.5) and

Proposition 2.3.1 we get

k h
Zao|UIp120+anj/ Zocj\U|p120+Zéal/ Zea|ulP~ 20
j=1 R" =1 "

n

> e |

a=0 R™
k h
= COO/Up_lzgo _Z%j/Up_lZgo_ZéOZ/Up_lzgo
=1 =1
k h " ” Co0
- oy / Urz2, - ey / UP 23+ O(k' 7 + h'7a)L
J=1 =1 Cno
. Co .| <
FOEDT| ... | +0m D)L :
Cn Cn

where £, £ and £ are linear functions with coefficients uniformly bounded in k and h. Identity
(2.0.12) follows straightforward from here. (2.0.13)-(2.0.21) are obtained in the same way.
2.4. PROOF OF (2.0.8)
We proceed as in [20, Section 9]. Indeed, we decompose gp& as

Spé‘ = Z Caogoi_o, with L(Qﬁé_o) == _L(Za())a

a=0
which is equivalent to
A(eao) +P1UPH(90) + a0(y)wan = —L(Zao), (24.1)
where ag(y) = py(lulP~t — UP~1). Adapting the arguments of [20] it can be seen that a €
Lz (R™),
™" 2 L(Zoo) (1 ™%y) = —L(Zoo)(y),  [yI™" "> L(Zao)(ly| %) = L(Zao)(y), a=1,....n,

(2.4.2)
and
n—1 n—1
1L(Ze0)l, 25y gy < COLT + X5, (2.4.3)

We will solve (2.4.1) as a fixed point problem. Let us consider the problem

Lo(¢) = h —ao(y)o,

where Lo(p) := Ap + pyUP~ Ly and h € L%(R”) satisfies h(y) = |y| " 2h(|ly|"2y). Let T be
the operator that associates to every ¢ the solution ¢ to this problem, that is, ¢ = T'(h—ao(y)o).
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Naming A(¢) := T'(h — ap(y)¢) we are going to see that this operator is a contraction and that
maps the ball

n—1 n-1 -n -
B:={p € D*R"): ¢/l <C(u= + A7 ), 0(y) = [yl "6yl )},
into herself. Indeed, assume ¢ € B. Thus,

ao(y)(y) = lyI ™" 2ao(ly|y) sy ?v),
and, by [20, Proposition 9.1], we know that

el < €= an(udell, 2, ) < € (101, 25 g + oDl 2, ) )

and p(y) = y|* "o (ly|%y).
We study the last term in two different regions. First, in

n a &
R™\ ({U§:1B(§ja E)} U {uiL,B(m, E)})
we can estimate ag as

2 n—2

2 ;
lao(y)] < OUF Z\y o Zry =2

and consequently,

/ _ ao(y)*E dy < © (k’("’” + h’("’”) : (2.4.4)
R\ ({UA B(&, ©)I0{U, B, )}

Consider now j € {1,...,k} and the ball B(§;, $). Here |ag(y)| < C|Upe, (y)[P~!, and thus

%2 (r—1)2%5
lao(y)|7+2 dy < C / n] <Ck ™D (24.5)
Z/B(gm Z B(&;,5) 1+|y &2
Likewise,
Z/ lao(y)|7i2 dy < Ch=(=D. (2.4.6)
7717h

Putting (2.4.4), (2.4.5) and (2.4.6) together we conclude that if ¢ € B, then

n—1 n—1
a0 @)l 22, oy < ISz cenllan @), 2, < COT + A",
Furthermore
[A(p1) — A(g2)|l« < C'Hao(y)HL%(Rn)H% — ¢2llx = o(1)[|¢1 — P2llx, (2.4.7)

where o(1) denotes a quantity which goes to zero when k, h tend to infinity. Thus, A defines a
contraction mapping whenever

n-1 n—1
[[A]l <O +A7).

n+
Hence, considering h = L(Z40), by (2.4.3) we conclude the existence of a solution to (2.4.1)
satisfying

n—1 n—1
ol < Clp™n +X170).
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Consider now j € {1,...,k}, 1 € {1,...,h}, and let us write
n n
P =) cajPa; with L) = ~L(Zaj), & =) caan, with L(¢n) = —L(Za)-
a=0 a=0

Performing the change of variables

—1 n—2__ N n—2
G () =07 Pai(py+ &), H(y) = AT o500y +m),

the previous equations turn into

—1 _1,=1 — —1 7 2 — 2 A 2 7
A@;) + U @) + pva; ()@ = hi(y), AT +pyUP (&) + prau(y) o = hu(y),
where

@(y) = Y7 Jul(py + €)= UPTY, hyly) = —p"F L(Zaj)(ny + &),

aiy) = pr (A7 [y + )P~ = UP7Y, Tuly) = A5 L(Zat) Ay + ).

Performing an analogous fixed point argument we conclude (2.0.8).

2.5. FINAL ARGUMENT

Let [ co €1 ... Cp ]T be the solution to (2.0.24) provided by Proposition 2.0.3, and let
to, t1,ta, t3, ta, to, 1,2, to, 11, %2, and ta,Tal, Pa2, Vals Va2, & = 5,...,n, be the associated pa-
rameters. Thus, it follows straightforward the existence of a unique vector of parameters

* kR R TR Py Dk Dk gk —k —% ~ % ~ %
(t()v'--:t4at07t17t2’t07t17t2at5’V517V527V517V52?'"atrw Vnls n27 nl? n2>

such that [ o €1 ... Cn ]T solves the system in Proposition 2.0.2 and, equivalently, (2.0.9).
Moreover,

k gk gk gk gx R K R D Dk Dk gk —x —k Ak A%k ¥ —k =k Ak A 1
||(t0, 1> o, b3, 1y, tg, Ly, to, Lo, 17t2’t57V517V527V517V527'"7tn7yn1’yn27ynlvyn2)” < Clle |,

and therefore || [ co 1 ... cn ||| < Cllet]. ThlS estimate, together with (2.0.8), allows us
to conclude ¢, = 0 for all a = O, ...,n, and thus ¢ = 0. Replacing this in (2.0.6) the proof of
Theorem 2.0.1 is complete.

6. APPENDIX

According to their definitions, see (0.0.11)—(0.0.15) and (2.0.2), it is convenient to rewrite the
functions z, as

k

20(y) =Zoo(y Z [Zoj(y) + Z1;(y

7=1 =1

Mm

[Zoz )+ Z(y)|
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= = h
cos0:7q; —sin6,; 2 N
Zl(y) —Zm(y) - Z J 1](y) - J 2J(y) o ZZII(:’J>7
j=1 L—p =1
k = = h
sin@,;Z1;(y) +cos,;Z N
a(y) =Zaoly) - 3 AW L0 IW) 5 )
j:

j=1 =1
h A A
— sin 0, Zs;(y) + cos 0, Zy (y)
z4(y) =Zao(y) — (y) — :
a\y 40\Y ; 45\Y ; Ny
k h
Za(y) —Zao(y) - Ziaj(y) - Z Zal(y)7 a =9, ,
j=1 =1
k ho
znt1(y) = — 2723 ), znt2(y) = — Z Zu(y),
j=1 =1

Znts(y) = =/ 1 — p? ZCOSH Z4i(y) + V1= X2 Zsm@lZu
Znta+a(y -V 1—-pu Zcos?? a=>5,...,1n,

k h
2on+5(y) = =/ 1 — p? Z sin6;Zs; + mz cos 0,2,
j=1 =1

k h
22n+6(y) =—y1- ,u2 Zsin§j74j +V1-)2 Zsin 0,2,
j=1 =1

k h
22n+a+2(y) =—4/1- /12 Z sin§j7aj, Zgn_:,_a_g(y) =—V1- A2 Zsin (91Z3l,

j= =1

[y

h
Zanta—6(y) = =V 1 — N2 Zcos 0,2y, fora=>5,...,n.
=1

The proof of the above identities follows from straightforward computations, and the symmetry
properties for U(y) +¢(y), for Uy¢; (y) + ¢;(y) and Uy, (y) + ¢1(y) respectively.
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A less straightforward computation gives that, for « =n +3,n+4,n + 5,n + 6, we have

k
Zny3(y) = 21 — 21— pi? ZCOS@‘ [Zoj(y) + Z15] ,

Znta(y) = 22 — 24/ 1 — Zsm@ ZOJ )+ le]

(2.6.1)

zn+5(y) =21 — 2\/ 1-— )\2 ZCOS él [Zol(y) + Zgl} s

Zn+6 =21 —2vV1—=)\2 Z sin Gl [Z()l + Zgl}

We shall prove the validity of the first identity in (2.6.1). The proofs of the other expressions
are similar. We write

0
Zors =21+ T(w), T(w):=(|y|> = 1)—— — 2y (=

u(y) + Vu(y) - y).

oyt 2
Thus (2.6.1) follows from (2.0.2) and from
T(u) = —Qiﬁjl [Zoj + V(Upg, + 0 ) - &1 (2.6.2)
=1
From the explicit expression of u irj (2.0.4) we get
T(u) = T(U + 1) ZT Uye, +6;) — zh:T(Uvaégz).
j=1 =1

We shall first show that T(U + ) (y) = 0, and T(Uy,, + é1)(y) = 0 for any I =1,..., h.
Observe that, if v is any smooth function and if we define h(z) := -2 <|z|2_”v(%)), then

— On z|
we have
2z [n—2 z z z 1 oOv z
0= " () + v () ()] + s ()
and g(y) := |y|,1b_ h(| ‘2) takes the form
n—2 ov
o) =2 "5 20 + o) o] + )

With this is mind, one gets that if v is Kelvin invariant v(y) = |y|" v (‘ |2> then

1 ov [y ) [n -2 } 5 Ov
— =5 ) =-2 v(y) + Vo(y) -y | + ly|*=—(y). 2.6.3
= <|y2 yi |5 o) W)-y| + Wl 5 W) (2.6.3)
On the other hand, if v is Kelvin invariant (with respect to the origin) and even in y;, then also
the function 8‘9—;’1 is Kelvin invariant, that is 387”( ) = ly|"~ 26y1 <‘y|2> By (2.6.3), we get that

any function v which is invariant under Kelvin transform (with respect to the origin) and even
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in the y; direction, one that T'(v)(y) = 0. Since the functions (U +1)(y), and (U y, + &) (y) for

any [ = 1,...,h are invariant under Kelvin transform and even in y;, we get the proof of our
claim. B
Let us fix j € {1,...,k}. We write, for v(y) = (U.e, + ¢;)(y),
— v n—2
T(Unsg; +65)(y) = (ly* — Dy @) =2 = &hl=5=0() + Vo) -yl

=Tj(v)
—2(&)1 [Zoj(y) + Voly) - &] -
We claim that T;(Uy,e, + ¢;)(y) = 0. To prove this fact, we recall that
- _n=2 = (y=§&
o) = O, + 30 =20 +3) (L5,

see Section 1.2. Also, p1 and [¢] are related so that U, ¢, +$j is invariant under Kelvin transform.
Thus, from (2.6.3), we get

T000) = s g (2] = )+ 260 | "5 o)+ T 0.

2oy \lylP) on 2

We note that, in this case, U, ¢, + aj is not even in the y; variable, so that one gets

2t () = 22 - @ - 2elo) + 290(0) ).

This concludes the proof of (2.6.2).
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