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Abstract 

The relationship between population structure and demographic history is critical to 1 

understanding microevolution and for predicting the resilience of species to 2 

environmental change. Using mitochondrial DNA from extant colonies and radiocarbon-3 

dated subfossils, we present the first microevolutionary analysis of emperor penguins 4 

(Aptenodytes forsteri) and show their population trends throughout the last glacial 5 

maximum (LGM, 19.5 – 16 kya) and during the subsequent period of warming and sea 6 

ice retreat. We found evidence for three mitochondrial clades within emperor penguins, 7 

suggesting that they were isolated within three glacial refugia during the LGM. One of 8 

these clades has remained largely isolated within the Ross Sea, while the two other clades 9 

have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The 10 

differentiation of the Ross Sea population has been preserved despite rapid population 11 

growth and opportunities for migration. Low effective population sizes during the LGM, 12 

followed by a rapid expansion around the beginning of the Holocene, suggest that an 13 

optimum set of sea ice conditions exist for emperor penguins, corresponding to available 14 

foraging area.   15 
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Introduction 1 

Genetic data both from modern and subfossil samples, palaeo-ecological niche modeling, 2 

and fossil evidence have become vital tools for reconstructing demographic histories (e.g. 3 

woolly mammoths (Mammuthus primigenius) (Nogués-Bravo et al., 2008) and lions 4 

(Panthera leo) (Barnett et al., 2014)). Indeed such studies have shown that species’ 5 

patterns of genetic diversity and distribution have varied dramatically under different 6 

climatic regimes (Carstens &  Richards, 2007). Climatic shifts have been one of the major 7 

drivers of species’ range shifts, fluctuations in abundance, species extinctions and also in 8 

the formation of genetically distinct populations (Hewitt, 1996). As climate change and 9 

habitat degradation potentially take us into the 6th mass extinction (Barnosky et al., 2011), 10 

it is critical that we understand how species have coped with change in the past to be able 11 

to assess their likely responses and resilience to future climate change (Hoelzel, 2010).  12 

Emperor penguins (Aptenodytes forsteri) are an iconic Antarctic species whose 13 

population genetic structure has not been studied to date. We know little about dispersal 14 

among colonies or how historical climate change may have affected their range and 15 

abundance. Thus, we have limited capacity to predict how these birds may fare in the 16 

future. Projections for continent-wide declines of emperor penguins have been made 17 

based on the demographic responses of the Pointe Géologie colony to changes in sea ice 18 

conditions (Barbraud & Weimerskirch 2001, Jenouvrier et al., 2009, Ainley et al., 2010, 19 

Jenouvrier et al., 2012, Jenouvrier et al., 2014). However, decadal monitoring data is only 20 

available for this single site out of 46 known emperor penguin colonies; as such, the 21 

climate change responses of emperor penguins across their entire distribution and over 22 

millennial timescales are currently unknown (Ainley et al., 2010).  23 
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Emperor penguins are highly reliant on sea ice throughout most of their breeding cycle, 1 

and mating and incubation takes place on land-fast sea ice in most of the known colonies 2 

(Fretwell et al., 2012, Fretwell et al., 2014). During the breeding season, emperor 3 

penguins feed on prey that is also sea ice dependent (Gales et al., 1990). Significant areas 4 

of open water exist year-round within the Antarctic sea ice zone in the form of leads and 5 

polynyas (Zwally et al,. 1985 and references therein). These areas are often important in 6 

providing emperor penguins access to their underwater foraging habitat when the fast ice 7 

extends far from their colonies (Dewasmes et al., 1980). Polynya formation is driven by 8 

either upwelling of Circumpolar Deep Water or by the outflow of katabatic winds that 9 

push sea ice away from the coastline (Martin, 2001). Polynyas are associated with 10 

enhanced primary production, as the reduction in sea ice volume facilitates an earlier 11 

spring melting of sea ice and a coincident earlier start in photosynthetic primary 12 

productivity (Martin, 2001). Some polynyas are permanent features of the sea ice zone and 13 

create areas of hyperproductivity, such as the Ross Sea polynya (Smith & Gordon, 1997), 14 

whilst most are smaller and ephemeral features depending on wind stresses and currents.  15 

Changes in the extent and duration of sea ice around Antarctica show highly regionalized 16 

trends with some areas increasing or remaining stable while others are decreasing 17 

(Vaughan et al., 2013, Zwally et al., 2002); this has an effect on the population dynamics 18 

of emperor penguins as both positive and negative sea ice anomalies can result in 19 

negative population growth rates at the local scale (Massom et al., 2009, Ainley et al,. 20 

2010, Barbraud et al., 2011, Jenouvrier et al., 2014). Despite uncertainties over the rate 21 

and extent of ice loss that will occur around Antarctica, all climate models project a 22 

reduction in the extent and duration of Antarctic sea ice by the end of the century (Collins 23 

et al., 2013). As sea ice declines we might expect emperor penguins to be disadvantaged 24 

by a lack of breeding habitat (Jenouvrier et al., 2014), unless they have the capacity to 25 
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alter their preferred choice of breeding site or their range by colonising new areas. Recent 1 

studies have shown more plasticity than expected in the locations of breeding colonies; 2 

satellite imagery suggests that colonies where the fast ice is inadequate at the onset of the 3 

breeding season relocated or partially relocated onto ice shelves or ice-bergs (Fretwell et 4 

al., 2014, LaRue et al., 2014). However, as sea ice declines, emperor penguins may also 5 

have to contend with altered prey availability and face new threats from predators as 6 

changing conditions differentially affect species at other trophic levels (Trathan et al., 7 

2011). 8 

During the last glacial maximum (LGM, 19.5 – 16 kya), the winter sea ice extent was 9 

approximately double the present day values, and seasonal variation in sea ice extent is 10 

thought to have been greater (Gersonde et al., 2005). It is unclear how this would have 11 

affected emperor penguins. Thatje and colleagues (2008) suggested that they may have 12 

migrated with the sea ice to lower latitudes, staying within energetic migration thresholds 13 

of the ice edge, and could have maintained breeding populations around Antarctica by 14 

foraging in the marginal ice zone at the sea ice edge. Alternatively, they could have 15 

remained associated with polynyas. Sediment cores suggest the existence of LGM 16 

polynyas in several locations, including the north-western Ross Sea, the south-eastern 17 

Weddell Sea off Dronning Maud Land, and the north-western Weddell Sea (Mackensen 18 

et al., 1994, Brambati et al., 2002, Thatje et al., 2008, Smith et al., 2010). In either case, 19 

reductions in overall primary productivity within what is today’s seasonal sea ice zone 20 

(Domack et al., 1998, Kohfeld et al., 2005) would likely have been detrimental to 21 

emperor penguin populations (Ainley et al,. 2010). 22 

Little is known about the level of natal philopatry or migration among emperor penguin 23 

colonies. Understanding philopatry is particularly important in light of population models 24 

that suggest that emperor penguins may be declining as a result of local climatic shifts 25 
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(Jenouvrier et al., 2009, Jenouvrier et al., 2014). High emigration rates are conceivable 1 

amongst emperor penguin colonies; satellite tracking has shown that they travel 2 

thousands of kilometres on their juvenile journeys, often passing other colonies (e.g. 3 

Kooyman et al., 1996, Thiebot et al., 2013, Wienecke et al., 2010). Generally, philopatry 4 

is high amongst penguins (Dehnhard et al., 2014, Saraux et al., 2011), but population 5 

structure is absent in many species (e.g. Chinstrap penguins (Pygoscelis antarctica) 6 

(Clucas et al., 2014)) as even low levels of migration can be sufficient to homogenize 7 

populations (Hartl &  Clark, 1997).  8 

We analyzed the population structure among eight extant emperor penguin colonies 9 

(Figure 1) using mitochondrial DNA sequences, and inferred population trajectories 10 

during and since the LGM using a combination of ancient and modern DNA sequences in 11 

a Bayesian coalescent framework (Drummond et al., 2005). This method reconstructs 12 

past changes in abundance by estimating the genealogy from sequence data, and co-13 

estimating the effective population size at different points in time, where the effective 14 

population size is the number of individuals that contribute offspring to the descendant 15 

generation (Pybus et al., 2000). We aimed to: 1) investigate how emperor penguin 16 

populations were affected by sea ice conditions during and following the LGM; and 2) to 17 

test the hypothesis that emperor penguins comprise one panmictic population as a result 18 

of the high dispersal of individuals after fledging, and the lack of obvious ecological 19 

barriers to dispersal around the Antarctic coastline. 20 

  21 
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Materials and methods 1 

Sample collection 2 

Skin tissue of dead emperor penguins was collected from Halley Bay (see Figure 1 for all 3 

sample locations) in November 2012 and transported frozen to the UK, where it was 4 

transferred to 90% ethanol and stored at -20°C. Blood samples were collected from Gould 5 

Bay in December 2013 and transported to the UK at ambient temperature in RNAlater 6 

(Life Technologies), and then stored at -20°C. Shed feathers were collected from the Ross 7 

Sea between 2010 and 2012, and were transported and stored at -20°C. Shed feathers 8 

were collected at least 10 meters apart to minimize sampling the same bird. Pectoral 9 

muscle biopsies were collected from dead chicks at Fold Island in September 2010, from 10 

Pointe Géologie in December 2010 and from Amanda Bay in December 2012 and 2013. 11 

Biopsies were immediately placed in 90% ethanol and stored at -20°C. Whole dead 12 

chicks were collected from Auster in September and October in 1993 and 1994 and 13 

transported and stored at -20°C. Bones from the subfossil remains of three penguins were 14 

collected at Club Lake in January 2013 and stored at -80°C. Club Lake is an ice-free area 15 

in the Vestfold Hills which is currently unoccupied by penguins. The nearest extant 16 

colony is Amanda Bay, 95 km away. 17 

Where blood samples were taken, one handler seized the upper body with both hands and 18 

restrained the flippers, with the bird’s head placed under the arm of the handler to prevent 19 

biting and minimize stress (Le Maho et al., 1992). The second handler took blood from 20 

the brachial vein using a 25G needle and 1 mL syringe. Total restraint time was generally 21 

two to three, but occasionally four, minutes. The bird was then released at the edge of the 22 

colony. Sampling was conducted under permits from the UK Foreign and Commonwealth 23 

Office, the US National Science Foundation and the Australian Antarctic Division. Each 24 

of these permits was issued following independent ethical review of the sampling. All 25 
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sampling was carried out in accordance with UK Home Office guidelines and also 1 

received ethical approval from the University of Oxford, British Antarctic Survey and 2 

Australian Antarctic Division. The radiocarbon ages, expressed here as years BP (i.e. 3 

before 1950), of the Club Lake remains were determined using accelerated mass 4 

spectrometry by GNS Science Rafter Radiocarbon National Isotope Centre, New Zealand. 5 

The apparent ages were corrected for the marine-carbon reservoir effect (Gordon &  6 

Harkness, 1992) using the calibration program Calib7.0 (ST UI &  Reimer, 1993).  7 

DNA extraction, amplification and sequencing 8 

Genomic DNA (gDNA) was extracted from modern samples with the QIAGEN DNeasy 9 

Blood and Tissue Kit. The manufacturer’s protocols for blood and tissue samples were 10 

followed with the following modifications to the digestion step:  for blood samples 30 μL 11 

of proteinase-K was used and the digestion time was 3 h; for tissue samples 40 μL 12 

proteinase-K and an additional 10 μL 1 M dithiothreitol (skin samples only) was used 13 

with an incubation time of 32 h. All samples were treated with either 1 μL RNase A 14 

(QIAGEN) or 1 μL Riboshredder (Epicentre) according to the manufacturers’ instructions. 15 

DNA was eluted in 100 μL of elution buffer following an incubation of 5 – 20 min. For 16 

subfossil samples ~50 mg of bone was decalcified in 0.5 M EDTA/0.001% Triton X100 17 

at 56°C for 48 h and then extracted using a standard phenol chloroform protocol with 18 

ethanol precipitation and a final elution volume of 30 μL. The subfossil samples were 19 

extracted in a physically isolated laboratory which had not been used previously for avian 20 

samples to minimise the risk of contamination. The mitochondrial hypervariable region 21 

(HVR) and cytochrome B (CytB) were sequenced in all modern and ancient DNA 22 

samples. HVR is a rapidly evolving region of the mitochondrial genome, and so is 23 

suitable for investigations of recent demographic history, whilst CytB is a conserved gene 24 

and can hence give information about longer-term demographic history (Baker &  25 
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Marshall, 1997). HVR was amplified in all modern samples using primers F-0225 and R-1 

INR (all primer sequences can be found in Supplementary Table 1). The reaction mix 2 

consisted of 7.5 μL of PCR Master Mix (QIAGEN), 0.2 μM of each primer, and 5 -10 ng 3 

gDNA, made up to 15 μL with ddH2O. Thermocycling conditions were: 94°C for 3 min; 4 

35 cycles of 94°C for 30 s, 59.5°C for 45 s, 72°C for 1 min; followed by an extension 5 

period of 72°C for 10 min. Occasionally, double bands were apparent when the PCR 6 

product was visualized by electrophoresis. For these individuals, the shorter 755 bp band 7 

was extracted from the gel and purified using QIAGEN or Promega gel extraction kits 8 

following the manufacturer’s instructions.  For Fold Island, Amanda Bay, Auster and 9 

Pointe Géologie colonies, CytB was amplified using primers B1 (Baker et al., 2006, 10 

Kocher et al., 1989) and B6 (Baker et al., 2006) with a reaction mix consisting of 7.5 μL 11 

of GoTaq Green Master Mix (Promega), 0.2 μM of each primer, and 5-10 ng gDNA, 12 

made up to 15 μL with ddH2O. Thermocycling conditions were: 95°C for 1 min; 35 13 

cycles of 95°C for 20 s, 52°C for 40 s, 72°C for 50 s; then 72°C for 5 min. For the Cape 14 

Washington, Cape Crozier, Gould Bay and Halley Bay samples, primers CytB-F1 and 15 

CytB-R1 were used with a reaction mix consisting of 7.5 μL of PCR Master Mix 16 

(QIAGEN), 0.2 μM of each primer, and 5 -10 ng gDNA, made up to 15 μL with ddH2O. 17 

Thermocycling conditions were: 94°C for 3 mins; 35 cycles of 94°C for 45 s, 60°C for 45 18 

s, 72°C for 1 min; then 72°C for 10 min. For the subfossil samples we designed novel, 19 

species-specific primers (Supplementary Table 1) to amplify short (<150bp) overlapping 20 

fragments in order to improve the success rate of amplification from degraded DNA. The 21 

reaction mix consisted of 7.5 μL of AmpliTaq Gold 360 Master Mix (Life Technologies), 22 

0.2 μM of each primer, and 25-50 ng gDNA, made up to 15 μL with ddH2O. 23 

Thermocycling conditions were: 95°C for 10 min; 42 cycles of 95°C for 20 s, Tm (primer) 24 

for 20 s, 72°C for 20 s; 72°C for 5 min. PCR products for Fold Island, Amanda Bay, 25 
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Auster, Pointe Géologie and the subfossil samples were bi-directionally sequenced by the 1 

Australian Genome Research Facility (AGRF) via the Sanger sequencing method using 2 

the PCR primer pairs. PCR products for Gould Bay, Halley Bay, Cape Washington and 3 

Cape Crozier were sequenced using the Sanger method by Macrogen Europe. The reverse 4 

primer for the HVR and the forward primer for CytB were used to sequence each product 5 

twice, as these were found to work best in the sequencing reaction. Geneious v5.5.9 was 6 

used for alignment. A high number of heteroplasmic sites were found in the HVR and 7 

these were re-scored manually according to IUPAC ambiguity codes. No heteroplasmic 8 

sites were recorded in the CytB sequences.  9 

Data analysis – summary statistics and population structure  10 

Arlequin v3.5 (Excoffier &  Lischer, 2010) was used to calculate summary statistics for 11 

HVR, CytB, and concatenated HVR and CytB. jModeltest (Posada &  Buckley, 2004) 12 

was used to estimate the best substitution model for each dataset, and then the following 13 

corrections for calculating genetic distances were implemented in Arlequin: HVR - 14 

Tamura correction with a gamma distribution for rate heterogeneity with α = 0.016; CytB 15 

– Tamura correction; concatenated – Tamura correction with a gamma distribution for 16 

rate heterogeneity with α = 0.109 (Tamura, 1992). Arlequin was also used to calculate 17 

pairwise genetic distances (θST) between colonies and perform analyses of molecular 18 

variation (AMOVA) on the concatenated sequences with the Tamura & Nei correction. 19 

Network v4.612 (Fluxus Technology Ltd.) was used to draw haplotype networks. 20 

Data analysis - demographic histories 21 

Bayesian phylogenetic analyses and demographic reconstructions were performed using 22 

BEAST v1.8 (Drummond et al., 2012). The dataset was partitioned into HVR and CytB, 23 

with a nucleotide substitution model of HKY (Hasegawa et al., 1985) with four gamma 24 

categories for HVR and TN93 (Tamura &  Nei, 1993) for CytB, with ambiguous states 25 
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permitted. We used the coalescent Extended Bayesian Skyline Plot tree prior (Heled &  1 

Drummond, 2008) with a strict molecular clock. For molecular clock calibration, the 2 

HVR substitution rate prior was specified as a normal distribution around a mean value of 3 

0.55 substitutions/site/Myr (SD = 0.15), to reflect the substitution rate of the HVR in 4 

Adélie penguins (Pygoscelis adeliae) (Millar et al., 2008). In the absence of a published 5 

substitution rate for CytB in penguins we used a uniform prior of 5x10-4 to 5x10-1 6 

substitutions/site/Myr with a starting value of 2x10-2 (Weir &  Schluter, 2008). The 7 

corrected radiocarbon ages of the Club Lake samples were input as tip dates, for 8 

additional calibration of the molecular clock. Based on these initial priors, substitution 9 

rates for our dataset were estimated during the analysis. The posterior distributions of 10 

substitution rates, phylogenetic trees and effective population size through time were 11 

generated using the Markov chain Monte Carlo (MCMC) sampling procedure, 12 

implemented in BEAST, which was run for 120 million generations with samples drawn 13 

every 6000 steps and the first 10% discarded as burn-in. Tracer v.1.5 was used to check 14 

effective sample size (ESS) values to confirm convergence with all values >200. Three 15 

independent BEAST analyses were performed to ensure reproducibility of the posterior 16 

distribution. The population size parameter of the demographic model (Ne*tau) was 17 

converted to Nef by dividing the parameter by 14 years, which is the estimated generation 18 

length of emperor penguins (Forcada &  Trathan, 2009, Jenouvrier et al., 2005). 19 

Phylogenetic trees were visualised using FigTree v1.4. 20 

 21 

  22 
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Results 1 

Present day population structure 2 

We sequenced 226 individuals from eight colonies (Figure 1) plus three subfossil birds 3 

whose ages ranged from 643 – 881 years BP (after correction for marine reservoir effect). 4 

We sequenced 629 bp of the mitochondrial hypervariable region (HVR) and 867 bp of 5 

cytochrome b (CytB) from each individual (GenBank accession numbers KP644787 - 6 

KP645015 and KP640645 - KP640873, respectively). Genetic diversity was extremely 7 

high for the HVR, with 220 haplotypes recorded out of the 229 individuals sequenced; the 8 

mean number of pairwise differences between haplotypes was 20.62 ± 9.14 (Table 1). 9 

Genetic diversity was much lower for CytB, with just 59 unique haplotypes recorded. 10 

Our results show a high level of gene flow among all the EAWS colonies (East Antarctica 11 

including Adélie Land, and the Weddell Sea) and between the two Ross Sea colonies 12 

(Table 2), but little exchange between the EAWS and Ross Sea colonies (pairwise θST 13 

values range from 0.213 to 0.617, Table 2). When colonies are grouped into two 14 

populations (Ross Sea and EAWS), a high proportion (17.7%) of the genetic variation is 15 

explained by the difference between the groups, and there is strong and significant 16 

genetic differentiation between them (AMOVA, FST = 0.196, p<0.001).  This pattern is 17 

also evident from haplotype networks (Supplementary Figures 1 & 2), which show that 18 

Ross Sea individuals tend to be closely related, whilst sequences from EAWS colonies 19 

tend to cluster independently from the Ross Sea haplotypes. However, some Ross Sea 20 

sequences are found across the network, and vice versa. This could indicate low-level 21 

gene flow between the Ross Sea and EAWS. 22 

 23 

 24 
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Population history with respect to climate change 1 

There is evidence of past population expansion in emperor penguins across Antarctica as 2 

indicated by our Extended Bayesian Skyline Plots (EBSPs) (Figure 2). An almost nine-3 

fold increase in abundance of the EAWS population commenced approximately 12 kya. 4 

The Ross Sea population expanded three-fold from approximately 9.5 kya. 5 

Superimposing expansion signals over the estimated temperature derived from ice cores 6 

(Figure 2c), it is clear that population expansion followed the end of the LGM. Tajima’s 7 

D and Fu’s FS statistics provide further support for an expansion of both populations 8 

(Table 1).  9 

Our phylogenetic analyses indicate three highly supported clades (Figure 3), which 10 

diverged during the Late Pleistocene (97 kya, 95% HPD: 50−154 kya). One of these 11 

clades is comprised predominantly of Ross Sea penguins, whereas the other two are 12 

dominated by EAWS individuals.  13 
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Discussion  1 

This first analysis of emperor penguin population structure shows colonies within the 2 

Ross Sea are genetically distinct from other Antarctic colonies, whereas those from the 3 

rest of the continent and spanning up to 8000 km of coastline are panmictic (Table 2). 4 

The admixture of the EAWS emperor penguins supports our hypothesis of limited 5 

population structure and indicates a very large dispersal range for the species. Given our 6 

genetic evidence of extensive mixing across Antarctica, the unique structure in the Ross 7 

Sea emperor penguins is surprising, and interestingly the same pattern was reported for 8 

the sympatric Adélie penguin (Ritchie et al., 2004), providing further evidence that the 9 

Ross Sea has a unique evolutionary history.  10 

The existence of distinct penguin populations in the Ross Sea is puzzling. There are 11 

neither geographic nor oceanographic barriers isolating the Ross Sea from the rest of 12 

Antarctica. Furthermore, the relative distance between the Ross Sea and other colonies 13 

does not adequately explain its isolation as, for example, the Pointe Géologie colony is 14 

approximately 5600 km closer to the Ross Sea colonies than to those in the Weddell Sea 15 

(Figure 1). Emperor penguins are known for their extraordinary migrations; satellite 16 

tracking showed that juveniles can travel >7000 km in eight months (Thiebot et al., 2013). 17 

These observations support our genetic results for the EAWS region and indicate juvenile 18 

emperor penguins could comfortably traverse the 1800 km between Pointe Géologie and 19 

the Ross Sea colonies. There are also no clear habitat, environmental or foraging 20 

differences between the Ross Sea colonies and those located elsewhere (Budd, 1961, 21 

Smith et al., 2012), except that Ross Sea colonies are located closer to the ice edge, and 22 

are therefore potentially more resilient to increases in sea ice. We suggest that the 23 

divergence of emperor penguins into two populations is historical in origin.  24 
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There are three ancestral lineages within modern emperor penguins, providing evidence 1 

that populations were isolated in the past (Figure 3) and diverged through 2 

microevolutionary processes, such as selection or genetic drift, which occur more rapidly 3 

in small, isolated populations (Hewitt, 2000). One of these lineages is mostly limited to 4 

the Ross Sea, indicating that the isolation of this region has persisted through time. 5 

Indeed, emperor penguins occupying the Ross Sea may have become so differentiated 6 

that interbreeding with the EAWS penguins occurs at very low rates, perhaps because of 7 

genetic, behavioural (Templeton, 1981) or cultural incompatibilities, such as the timing of 8 

breeding or the development of regional dialects (de Dinechin et al., 2012, Jouventin &  9 

Aubin, 2002, MacDougall-Shackleton &  MacDougall-Shackleton, 2001).  10 

Emperor penguins use complex display calls to recognise their mates and offspring 11 

(Robisson et al., 1993). Vocalisation is known to be an important part of the courtship 12 

process for most penguins (Richdale, 1944, Waas et al., 2000). Interestingly, royal 13 

penguins (Eudyptes schlegeli) respond more strongly to calls from their own colony 14 

members than to calls originating from different colonies, suggesting differences in 15 

dialect (Waas et al., 2000). Differences in vocalisations have also been found among 16 

gentoo penguin (Pygoscelis papua) populations (de Dinechin et al., 2012). If dialects 17 

become too different, then courtship may be inhibited, thereby limiting interbreeding. 18 

This has been observed in passerine birds, in which genetically distinct groups have 19 

unique mating songs (MacDougall-Shackleton &  MacDougall-Shackleton, 2001). 20 

Emperor penguin vocalisation patterns have only been recorded at Pointe Géologie 21 

(Robisson et al., 1993), but our hypothesis could be explored in the future by comparing 22 

vocalisations of emperor penguins from the Ross Sea with those of other colonies.  23 

Although the isolation and differentiation of the Ross Sea emperor penguins has persisted, 24 

the other two historical lineages show no geographic bias and have now hybridized to 25 
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form one EAWS population. Incomplete mixing of ancestral lineages is typical of species 1 

that have survived the Pleistocene ice-ages in multiple refugia (Hewitt, 1996). Our EBSPs 2 

indicate that both the EAWS and Ross Sea populations had reduced effective population 3 

sizes during the LGM (Figure 2). Thus, contrary to a hypothesis that emperor penguins 4 

would benefit from glaciation as a result of reduced competition with other predators 5 

(Thatje et al., 2008), it seems that they, like other Antarctic and sub-Antarctic penguin 6 

species (Clucas et al., 2014, Ritchie et al., 2004, Trucchi et al., 2014), were adversely 7 

affected by the LGM. 8 

We propose that both the reduced abundance and divergence into three lineages were 9 

linked to breeding and foraging habitat availability. Today emperor penguins have a 10 

circumpolar distribution with suitable habitat spanning the entire continent (Fretwell &  11 

Trathan, 2009). However, Antarctica during the LGM looked very different than the 12 

continent we know today (Figure 4). Most of the continental shelf was covered by ice as a 13 

result of both the extension of ice-sheets and thick, perennial sea ice, which reduced 14 

productivity south of the modern-day Polar Front drastically (Anderson et al., 2002, 15 

Anderson et al., 2009, Domack et al., 1998, Gersonde et al., 2005, Kohfeld et al., 2005, 16 

Samuel Jaccard pers. comm.). We suggest that the increased sea ice extent would have 17 

severely restricted the foraging habitat available for emperor penguins and, coupled with 18 

lower primary production, could have resulted in a scarcity of prey resources. 19 

Additionally, air temperatures were approximately 13°C colder than the present day 20 

(Jouzel et al., 2007), which may have been near the penguins’ lower limit of temperature 21 

tolerance (Le Maho et al., 1978), potentially impacting both breeding success and adult 22 

survival.  23 

The extent and duration of sea ice are important factors in the breeding success of 24 

emperor penguins (Massom et al., 2009). Emperor penguins require stable fast ice to 25 
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breed, but they have to traverse the sea ice to establish colonies in autumn and to forage 1 

in winter and spring. The distances between the colonies and potential foraging areas can 2 

influence breeding success where the fast ice extent is variable (Massom et al., 2009), but 3 

not in locations where the extent is relatively stable (Robertson et al., 2013). We therefore 4 

expect that if the winter sea ice extent was substantially greater in the LGM, or if the 5 

timing of sea ice retreat was altered, that this would have made some of the extant colony 6 

locations energetically untenable during the LGM. 7 

During the LGM, the summer sea ice extent was similar to what we observe today, 8 

whereas the winter extent was roughly doubled (Gersonde et al., 2005). Colonies may 9 

have been located close to the continent so that the ice remained stable throughout the 10 

breeding season, but this would have required adults to walk immense distances to reach 11 

foraging areas during winter and spring while provisioning the chick. In that case, the 12 

chicks would receive fewer meals and be less likely to survive. The present distribution of 13 

colonies close to land (Fretwell &  Trathan, 2009) suggests that fast ice proximate to land 14 

provides a more stable platform than near the fast ice edge. Also, stable ice close to the 15 

coast occurs in predictable locations that might be important for colony establishment and 16 

cohesion. Colonies further away from the coast may therefore be difficult to maintain. 17 

Our discovery of three distinct lineages provides evidence against a straightforward, 18 

latitudinal range shift in line with the sea ice edge, and suggests that emperor penguins 19 

may have survived the LGM in three suitably situated, geographically isolated refugia. 20 

Emperor penguin refugia during the LGM may have been linked to the presence of 21 

polynyas. Several extant emperor penguin colonies are located near polynyas, which may 22 

be utilised for foraging during the winter (Croxall et al., 2002). Polynyas acted as “hot 23 

spots” of primary productivity during the LGM, supporting marine life and flying 24 

seabirds (Thatje et al., 2008). Sediment cores in the north-western Ross Sea indicate open 25 
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water polynya conditions throughout the LGM (Brambati et al., 2002, Thatje et al., 2008) 1 

and this polynya could have sustained a refuge population until the Ross Sea began to 2 

clear of ice (Figure 4). By 9.6 kya most of the northern Ross Sea was open water (Licht &  3 

Andrews, 2002). The retreating sea ice and increased upwelling during deglacation 4 

increased productivity in the Ross Sea (Anderson et al., 2009) and likely increased the 5 

foraging habitat and prey availability to emperor penguins, therefore we hypothesise that 6 

these factors drove the three-fold expansion of emperor penguins in this region around 7 

this time (Figure 2). The LGM polynya may have also supported Adélie penguins, 8 

accounting for the existence of a distinct Ross Sea clade as previously observed for this 9 

species (Ritchie et al., 2004).  10 

Another polynya was located in the south-eastern Weddell Sea off Dronning Maud Land 11 

(DML) (Mackensen et al., 1994, Thatje et al., 2008) (Figure 4). Colonies of snow petrels 12 

(Pagrodroma nivea) were present in DML throughout the LGM, associated with this 13 

polynya (Wand &  Hermichen, 2005), and it may have also provided a refuge for emperor 14 

penguins. There is evidence from sediment cores for a third LGM polynya, located in the 15 

north-western Weddell Sea (Smith et al., 2010) (Figure 4); this would be consistent with 16 

our third emperor penguin refuge, given that the refuge is likely to be more proximate to 17 

DML than the Ross Sea, since the two refugial lineages hybridized post-glacially while 18 

the Ross Sea lineage remained distinct.  19 

We propose that two refuge populations that were isolated in the Weddell Sea expanded 20 

their range into Prydz Bay and Adélie Land and merged during the retreat of the East 21 

Antarctic ice sheet 14 – 7 kya (Mackintosh et al., 2011). At this time, the onset of more 22 

favourable environmental conditions could have resulted in the dramatic, nine-fold 23 

increase in abundance shown here (Figure 2). A seasonal sea ice cycle was established in 24 

Prydz Bay approximately 10.4 kya (Barbara et al., 2010), opening up foraging habitat and 25 
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coinciding with high levels of primary productivity (e.g. (Anderson et al., 2009, Sedwick 1 

et al., 2001). In Adélie Land, primary productivity and the duration of the ice-free season 2 

increased from 9 kya (Denis et al., 2009a, Denis et al., 2009b). This new habitat could 3 

have facilitated the range expansion of the EAWS lineages.  4 

It should be noted that the timing of the abundance increase of emperor penguins does not 5 

coincide exactly with the end of the LGM (Figure 2). We hypothesise that it is not the 6 

temperature change itself, but rather the subsequent change in sea ice conditions and 7 

primary productivity that are most likely to affect emperor penguins. Indeed, it has been 8 

proposed that there is an optimal level of sea ice at the large temporal / spatial scale for 9 

emperor penguins, which roughly corresponds to current conditions (Ainley et al,. 2010). 10 

Therefore, the greater sea ice extent of the LGM was most likely sub-optimal for emperor 11 

penguin populations. The end of the LGM is measured when temperatures began to 12 

increase (19 – 16 kya). However deglaciation, during which ice-sheets and sea ice 13 

retreated and primary productivity increased, occurred slowly over an extended time 14 

period (ca. 17 – 11 kya) (Anderson et al., 2009). These events occurred later in the Ross 15 

Sea than in East Antarctica, and our results support the hypothesis that ice-sheet and sea 16 

ice retreat and increasing primary productivity were the main factors controlling emperor 17 

penguin abundance, as the Ross Sea emperor penguin population expanded later than the 18 

EAWS population (Figure 2). Furthermore, emperor penguins produce only one chick per 19 

year and take approximately five years to reach sexual maturity (Jenouvrier et al., 2005), 20 

so any abundance increase would be initially slow. 21 

Our hypothesis of three refugial populations of emperor penguins during the LGM could 22 

be tested using a higher density of genetic markers. This would allow for the investigation 23 

of clinal variation in genetic diversity arising from founder effects as new areas were 24 

colonized following the expansion from refugia after the LGM (Hewitt, 1996). It should 25 
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be noted that our present study is based on mitochondrial DNA and therefore represents 1 

dispersal patterns of females only, but nonetheless supports a plausible explanation for 2 

past and present microevolutionary processes in emperor penguins. The next step should 3 

be to verify these findings using nuclear markers to account for male-mediated gene flow. 4 

In this continent-wide study of microevolution in an Antarctic penguin we suggest that 5 

past climatic changes have greatly impacted emperor penguin populations. As conditions 6 

became more favourable after the LGM, their global population expanded and the 7 

populations from the Weddell Sea and East Antarctic intermixed to form one large, 8 

panmictic population. Interestingly, the isolation of the Ross Sea emperor penguins has 9 

persisted until today. The reasons for this isolation remain unknown, but we suggest that 10 

separate management plans are required for the Ross Sea and EAWS populations. By 11 

conserving the full spectrum of genetic variation and, in particular, all phylogeographic 12 

lineages, the evolutionary potential of the species can be maximised (D’Amen et al., 13 

2013). 14 

Our study suggests that emperor penguins have shown important historic responses to 15 

past climate shifts and their population increase post-LGM was remarkable. However, the 16 

projected rate of temperature increase over the next century is an order of magnitude 17 

greater than that following the LGM (Collins et al., 2013, Masson-Delmotte et al., 2013, 18 

Shakun et al., 2012). At present, emperor penguins become heat stressed around 0°C, so 19 

may exist near the upper limits of their physiological tolerance (Wienecke, pers obs). 20 

Whether the resilience demonstrated in the past of this highly cold-adapted species will 21 

enable it to adapt to projected climate change remains to be seen, as rising temperatures 22 

will alter its breeding grounds and foraging space more rapidly than in the past.  23 
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Supporting Information Legends 1 

Figure S1. Haplotype network of phylogenetic relationships among all HVR sequences. 2 
Magenta – EAWS colonies; green – Ross Sea colonies; blue – subfossil samples; the size of 3 
the circle indicates the relative frequency of the haplotype. 4 

Figure S2. Haplotype network of phylogenetic relationships among all CytB sequences. 5 
Magenta – EAWS colonies; green – Ross Sea colonies; blue – subfossil samples; the size of 6 
the circle indicates the relative frequency of the haplotype. 7 

Table S1. Primer sequences. 8 

 9 

 10 

  11 
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Tables 1 

Table 1. Summary statistics by geographic and genetic region. n = number of individuals; 2 
NH = unique haplotypes; NP = polymorphic loci; H = haplotype diversity; π = mean number 3 
of pairwise differences between sequences;  significance is indicated for Tajima’s D and Fu’s 4 
FS test statistic where * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001. 5 

Geographic 
Region 

Genetic 
Region 

n NH NP H  π   Tajima’s 
D 

Fu’s FS 

All sequences HVR + CytB 229	 222	 205	 0.999	±	0.000	 23.12	±	10.21	 -1.03	 -23.63***	

Ross Sea HVR + CytB 81	 80	 124	 0.999	±	0.002	 18.49	±	8.28	 -0.903	 -22.84***	

East Antarctic & 
Weddell Sea 

HVR + CytB 148	 145	 171	 0.999	±	0.001	 22.15	±	9.81	 -0.930	 -23.80***	

All sequences HVR 229	 220	 164	 0.999		±	0.001	 20.62	±	9.14	 -0.835	 -23.67***	

Ross Sea HVR 81	 76	 109	 0.997	±	0.003	 16.81	±	7.56	 -0.836	 -17.21***	

East Antarctic & 
Weddell Sea 

HVR 148	 144	 138	 0.999	±	0.001	 19.58	±	8.71	 -0.758	 -23.85***	

All sequences CytB 229	 59	 41	 0.864	±	0.016	 2.94	±	1.54		 -1.651*	 -21.79***	

Ross Sea CytB 81	 26	 15	 0.876	±	0.028	 1.99	±	1.14	 -0.979	 -3.43***	

East Antarctic & 
Weddell Sea 

CytB 148	 41	 33	 0.797	±	0.031	 2.96	±	1.56	 -1.482*	 -12.92***	

 6 
 7 

 8 

  9 
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Table 2. Pairwise genetic differentiation between colonies. Pairwise θSTs are presented 1 
below the diagonal, and associated p-values above the diagonal. Significance is indicated by 2 
bold text, where * denotes p < 0.05, ** denotes p < 0.01, *** denotes p< 0.001. 3 

	4 
 

Gould Bay Halley Bay Fold Island Auster Amanda Bay Pointe Géologie Cape Washington Cape Crozier 

Gould Bay  0.596 0.731 0.560 0.186 0.129 0.000 0.006 

Halley Bay -0.027  0.566 0.798 0.708 0.301 0.002 0.008 

Fold Island -0.050 -0.032  0.515 0.323 0.462 0.000 0.007 

Auster -0.026 -0.086 -0.027  0.595 0.797 0.000 0.000 

Amanda Bay 0.055 -0.058 0.014 -0.038  0.576 0.000 0.000 

Pointe Géologie 0.091 0.029 -0.012 -0.085 -0.033  0.000 0.000 

Cape Washington 0.355*** 0.440** 0.468*** 0.567*** 0.617*** 0.596***  0.509 

Cape Crozier 0.213** 0.266** 0.256** 0.432*** 0.447*** 0.428*** -0.011  

 5 

  6 
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Figure Legends 1 

Figure 1: Sample locations of emperor penguin colonies. The number of sequences 2 

obtained from each location is shown in brackets. Red points indicate the origin of modern 3 

samples, the blue point indicates the origin of the subfossil samples. 4 

Figure 2: Extended Bayesian skyline plots showing the change in effective female 5 

population size (Nef). Solid lines show the median estimate; dotted lines show the 95% 6 

highest posterior density interval.  a) EAWS colonies; b) Ross Sea colonies; c) the Antarctic 7 

temperature anomaly (the difference from the average of the last 1000 years) as estimated 8 

from the EPICA Dome C ice core (Jouzel et al., 2007), with the ice core location indicated in 9 

red. 10 

Figure 3: Phylogenetic relationships among individuals. Magenta - EAWS individuals; 11 

green - Ross Sea individuals; blue – subfossil individuals. The posterior probabilities are 12 

shown for the major, strongly supported clades. 13 

Figure 4. Schematic of contemporary population structure and reconstruction of 14 

historical conditions. Sampled colonies are indicated by dots, as in Figure 1. The magenta 15 

and green shading indicates population structure as estimated from this study. Lines represent 16 

the sea ice edge, as in Gersonde et al., 2005. M-SSI = modern summer sea ice edge; LGM-17 

SSI = LGM summer sea ice edge; M-WSI = modern winter sea ice edge; LGM-WSI = LGM 18 

winter sea ice edge, ? = insufficient data to reconstruct the sea ice edge. Penguins represent 19 

hypothesised locations of polynya refugia. Emperor penguin picture: © Samuel Blanc / 20 

www.sblanc.com. 21 
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