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ABSTRACT 

Despite the ubiquity of cholesterol within the cell membrane, the mechanism by which it influences 

embedded proteins remains elusive. Numerous GPCRs exhibit dramatic responses to membrane 

cholesterol, with regards to the ligand-binding affinity and functional properties, including the 5-HT 

receptor family. Here, we use over 25 s of unbiased atomistic MD simulations to identify cholesterol 

interaction sites in the 5-HT1B and 5-HT2B receptors and evaluate their impact on receptor structure. 

Susceptibility to membrane cholesterol is shown to be subtype-dependent and determined by the quality of 

interactions between the extracellular loops. Charged residues are essential to maintain the arrangement of 

the extracellular surface in 5-HT2B; in the absence of such interactions, the extracellular surface of the 5-

HT1B is malleable, populating a number of distinct conformations. Elevated-cholesterol density near 

transmembrane helix 4 is considered to be conducive to the conformation of extracellular loop 2. 

Occupation of this site is also shown to be stereospecific, illustrated by differential behaviour of nat-

cholesterol isomers, ent- and epi-cholesterol. In simulations containing the endogenous agonist, serotonin, 

cholesterol binding at transmembrane helix 4 biases bound serotonin molecules towards an unexpected 

binding mode in the extended binding pocket. The results highlight the capability of membrane cholesterol 

to influence the mobility of the extracellular surface in the 5-HT1 receptor family and manipulate the 

architecture of the extracellular ligand-binding pocket.  
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INTRODUCTION 

G-protein coupled receptors (GPCRs) play a fundamental role in the transmission of extracellular stimuli 

to the cell interior, participating in a broad spectrum of physiological processes being the most prominent 

target of clinically approved drugs.
1
 GPCRs are seven-helix transmembrane proteins (TM1-7), which can 

exist in a variety of conformational states. The evolution of active, inactive and intermediate states is 

promoted by small-molecule binding in the core of the transmembrane bundle, typically accessible from 

the extracellular medium. Activating ligands, known as agonists, stabilize conformations capable of G-

protein coupling, eliciting a response within the cell. 

In recent years, membrane composition has emerged as an important factor in the drug-binding properties 

of GPCRs. Cholesterol,
2
 sphingolipids

3
 and phospholipid

4
 have been shown to modulate the activity of 

GPCRs; the ligand-binding affinity is a crucial property that can be regulated by cholesterol in both 

positive and negative manners.
5-7

 However, the mechanism by which cholesterol modulates protein 

structure and function is largely unknown.
8
 One theory suggests cholesterol acts by varying the physical 

properties of the membrane, which then influences the conformation of the protein. An alternative 

rationale proposes that cholesterol binds directly to specific sites on the protein surface, acting as an 

allosteric modulator. A third proposition suggests that cholesterol facilitates interactions with a third party 

which biases the activation state. Of course, the possibility also exists that these effects are not mutually 

exclusive, and a combinatory approach occurs.  

Cholesterol exhibits an asymmetric structure formed from the isooctyl chain planar attached to the rigid 

polycylic sterane backbone. The latter comprises a smooth α face and rough β face, and a polar hydroxyl 

moiety at the apex. A single cholesterol isomer occurs naturally, although eight stereocenters exist in the 

molecule (Scheme 1). Biological systems are capable of discriminating between stereoisomers of 

substrates and can therefore be classified as stereospecific. This is typically discussed in terms of enzyme 

catalysis. However, this trait has been established for various membrane proteins, regarding both agonists 

and allosteric modulators, such as membrane cholesterol. Subsequently, cholesterol isomers have emerged 

as valuable probes to distinguish between specific and non-specific effects of cholesterol in membrane 

proteins, and to scrutinize the level of specificity required action.
9
 Epi-cholesterol, which bears a distinct 

orientation of the hydroxyl group (Scheme 1), has been used widely, on the basis it forms analogous 

structured lipid domains
10

 and induces a similar level of membrane fluidity.
11

 However, other properties, 

such as the area per lipid and cholesterol tilt angle, are known to diverge,
12

 hence it is possible that both 

direct and indirect mechanisms of cholesterol are involved in modulation by epi-cholesterol. For this 

reason, it has been somewhat superseded by ent-cholesterol, the enantiomer of cholesterol (Scheme 1), 

which is considered to mimic the physiochemical membrane properties more closely.
13

 Experiments 

utilizing these analogues have successfully implicated stereospecific binding of cholesterol in the 

regulation of various membrane proteins.
14-19
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Scheme 1. Chemical structures of cholesterol isomers considered in this study. 

Identification of specific cholesterol binding sites in GPCRs has been accomplished by a number of 

methods. Several general cholesterol interaction motifs have been proposed and identified in GPCRs by 

sequence alignment,
20,21

 including the cholesterol recognition/interaction amino acid consensus (CRAC) 

motif,
22

 constituted of the sequence L/V-X1-5-Y-X1-5-K/R (where X can represent any amino acid), and the 

inverted form of the CRAC motif,
23

 termed the CARC motif, where the central tyrosine can also be 

occupied by a phenylalanine residue in the CRAC domain. High-resolution structural information of 

multiple GPCRs (A2A adenosine,
24

 β1-adrenergic,
25 

β2-adrenergic,
26,27

 5-HT2B
28

 and metabotropic 

glutamate type 1
29

 receptors) in complex with cholesterol molecules, has revealed a number of specific 

cholesterol interaction sites, such as cholesterol consensus motif (CCM), a groove region between TM2 

and TM4 constituted of highly conserved residues Y
2.41

,K/R
4.39-4.43

, I/V/L
4.46

 and W/Y 
4.50

 (labeled using 

the Ballesteros-Weinstein numbering scheme, which is a generic numbering scheme for class A 

GPCR’s).
27

 Further to this, molecular dynamics (MD) simulations have become an established tool to 

identify high- and low-affinity cholesterol interaction sites on GPCRs and evaluate the potential 

consequences on protein structure and dynamics.
30-33

 

 

Figure 1. Crystal structures of the (A) 5-HT1B (PDB ID: 4IAR) and (B) 5-HT2B (PDB ID: 4IB4) receptors. Each 

transmembrane helix (TM) is labelled. Ergotamine is displayed with carbon, oxygen and nitrogen atoms in orange, 

red and blue respectively. The alternate conformations of the TM5 helix are displayed within the red boxes. 

The serotonin (5-HT) receptor family spans seven receptor subfamilies (5-HT1-7), classified by structural 

and functional similarities. The serotonin (5-HT) receptor family spans seven receptor subfamilies (5-HT1-



4 

 

7), classified by structural and functional similarities. All serotonin receptors are GPCRs, with the 

exception of the 5-HT3 receptor, which is a ligand-gated ion channel. 5-HT receptors have been associated 

with medical conditions, including neurological disorders, such as Alzheimer’s disease, depression and 

schizophrenia. 
34,35

  

Significant experimental and computational efforts have been focused towards characterizing the 

functional response of the 5-HT1A receptor to cholesterol.
36-38 

 Solubilized native hippocampal membranes 

exhibit diminished ligand binding, which can be restored on the addition of membrane cholesterol or its 

enantiomer (ent-cholesterol).
39

 However, replenishment with closely related molecules, such as epi-

cholesterol (a diastereoisomer of cholesterol)
39

 fail to restore binding properties. Curiously, cholesterol 

depletion enhances ligand binding activity in neuronal cells, when examining the same agonist as prior 

experiments.
40  

Disparate effects are also observed when considering biosynthetic precursors, differing to 

cholesterol by a double bond, and various experimental procedures are used.
41,42

 Alongside this, 

simulation methodologies have been utilized to identify cholesterol interaction sites on homology models 

of the 5-HT1A receptor, in the absence of high-resolution structural information of this subtype.
43

 

In milestone publications, the crystal structures of related 5-HT1B and 5-HT2B receptors in complex with 

ergotamine, and dihydroergotamine in the former, were disclosed. These structures revealed insights into 

the molecular determinants of subtype selectivity and biased signaling (Figure 1A-B).
44,45

 The 5-HT 

receptors exhibit analogous orthosteric binding pockets, with 70% of residues completely conserved 

(residues 3.32, 3.37, 5.46, 6.48, 6.51, 6.52 and 7.43 in the Ballesteros-Weinstein numbering scheme), and 

another 10% displaying conservative mutations (3.33). As a consequence, subtype selectivity is attributed 

to the deviations in the extended binding pocket, constituted of residues from the second extracellular loop 

(ECL2) and the extracellular termini of TM3 and TM5-7. Most notably, an outward movement of TM5 in 

the 5-HT1B receptor increases the volume of the canonical binding pocket, relative to the 5-HT2B receptor, 

enabling inhabitance of bulkier ligands (Figure 1). This is demonstrated by the reported potencies of 

triptan molecules in wild-type 5-HT1B and 5-HT2B, and 5-HT2B mutants, reported in the same study. 

Considering the available structural information for the 5-HT1B and 5-HT2B receptors, and the reported 

cholesterol-dependence of the closely-related 5-HT1A receptor, we hypothesized that membrane 

composition may actuate the conformation of TM4-5, and the attached ECL2, in the 5-HT receptor family, 

which translates to diversity in the framework of the orthosteric and/or extending binding pockets. To 

investigate this scenario, we performed extensive unbiased MD simulations of the high-resolution crystal 

structures of the 5-HT1B (PDB ID 4IAR) and 5-HT2B receptors (PDB ID 4IB4) in POPC bilayers with 0% 

and 30% cholesterol concentrations. We also examined ent-cholesterol and epi-cholesterol, to delineate 

stereospecific cholesterol binding sites, considering the response of the 5-HT1A receptor to these 

molecules.
39

 Previous crystallographic and NMR studies of several class A GPCRs have demonstrated 

ligand-specific governance of the extracellular loop structure.
46-49

 Thus, the 5-HT receptors of interest 

were simulated in the apo state, initially, to eliminate potential bias arising from the ligand identity. 



5 

 

METHODS 

Membrane Preparation 

Bilayers containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) molecules and nat-

cholesterol molecules were generated using the CHARMM-GUI Membrane Builder.
50-52

 The cholesterol-

free bilayers contained 244 POPC molecules, with 196 POPC molecules and 84 nat-cholesterol molecules 

used for the cholesterol-enriched bilayers content. The mixed POPC/nat-cholesterol membrane was then 

modified to generate additional membranes containing the ent- and epi-cholesterol. All membranes were 

then equilibrated using the documented CHARMM-GUI protocol, and a production run was performed for 

50 ns.
51

 The membrane cholesterol in each bilayer was then transformed into the remaining isomers to 

provide three initial configurations of cholesterol in the membrane, labelled 1-3. 

5-HT Receptor Modeling 

The crystal structures of the 5-HT1B receptor (PDB ID: 4IAR) and 5-HT2B receptor (PDB ID: 4IB4) were 

used to prepare the initial models.
28,53

 In both cases, the third intracellular loop (residues L240 to M305 in 

5-HT1B  and Y249 to V313 in 5-HT2B) between helices 5 and 6  was replaced by the engineered BRIL
54

 

loop for the purpose of crystallization, and was removed. The bound agonist, ergotamine, and lipid 

molecules present in the crystal structure were also removed to allow for unbiased detection of lipid 

binding sites. Missing loops (191 to 196 and 340 to 344 in the 5-HT1B receptor) were replaced using the 

Modloop protocol,
55

 neutral caps were used on the termini and default protonation states were used for 

ionizable residues. Additional simulations were initiated with docked 5-hydroxytryptamine (5-HT), which 

is otherwise known as serotonin. Two conformations of serotonin were utilized to initiate independent 

simulations, consistent with the ergotamine binding pose observed in the crystal structure (Figure 2A). In 

conformation 1 (Figure 2B), the indole nitrogen of serotonin is positioned to H-bond with the T134 side-

chain, and the amine tail is positioned to interact with D129. In conformation 2 (Figure 2C), serotonin is 

flipped so that the hydroxyl group on the six-membered indole ring can interact with the T134 side-chain, 

whilst the amine tail can still interact with D129.  

 

Figure 2. (A) Ergotamine binding pose (orange molecule) in the 5-HT1B receptor crystal structure (PDB 

ID 4IAR), (B) serotonin starting conformation 1, and (C) serotonin starting conformation 2. Residues 

forming the orthosteric binding site are shown and labelled. Oxygen and nitrogen atoms are displayed in 

red and blue, respectively. Carbon atoms are orange in ergotamine, purple in serotonin and grey in the 

receptor. 
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System Setup and Equilibration 

Each receptor model was aligned into the bilayer normal and inserted into the pre-equilibrated lipid 

bilayers (Table 1). All lipid molecules within 1.2 Å of the protein were removed with final cholesterol 

content approximately 30% in mixed bilayers. The combined system was then solvated to produce a 

rectangular water box of dimensions (92 x 92 x 105) Å
3
. Ions were added using the Autoionize Plugin of 

VMD, resulting in a final concentration of 150 mM.
56

 After the removal of water molecules overlapping 

(distance < 1.2 Å) with the ions, lipids or protein atoms, the final system contained between 70,000 and 

80,000 atoms. CHARMM22
54

 parameters (with CMAP correction) were used for the protein, 

CHARMM36 for lipids,
57

 CGenFF parameters for the serotonin ligand,
58,59

 standard parameters for ions
60

 

and the TIP3P
61

 model for water. The modified CHARMM36 parameters by Lim et al. were used for 

nat-cholesterol, ent-, and epi-cholesterol molecules.
12,62 NAMD2.9 was employed to calculate the 

dynamics of the systems throughout.
63

 Initially, 10,000 steps of minimization were performed to remove 

steric clashes, followed by the progressive removal of constraints at 500 ps intervals to allow for gradual 

equilibration of the system. Constraints were released in the following order: (i) bulk water and lipid tails, 

(ii) lipid head groups, (iii) water molecules in protein cavities, and finally, (iv) protein side chains. 

Unrestrained dynamics was then undertaken in the NPT ensemble. The Particle Mesh Ewald method was 

used for the treatment of full-system periodic electrostatic interactions; interactions were evaluated every 

second timestep with a value of 1 Å to determine grid spacing.
64

 Electrostatic and van der Waals forces 

were calculated every timestep and up to a cutoff distance of 12 Å. A switching distance of 10 Å was 

chosen to smoothly truncate the non-bonded interactions. Only atoms in a Verlet pair list within a cutoff 

distance of 13.5 Å were considered, with the list reassigned every 20 steps.
65

 The SETTLE algorithm was 

used to constrain all bonds involving hydrogen atoms to allow the use of a 2 fs timestep.
66

 The Nose-

Hoover-Langevin piston method was employed to control the pressure with a 200 fs period, 50 fs damping 

constant and a desired value of 1 atmosphere. 
67,68

 The system was coupled to a Langevin thermostat to 

sustain a temperature of 298K throughout. A summary of the simulations performed can be found in Table 

1.  

Table 1. Summary of simulations included in this study.  

 

Receptor 

Membrane Composition Ligand 

State 

Replica Simulation 

Length (ns) 

Simulation 

Abbreviation % POPC % Cholesterol Isomer 

5-HT1B 70 30 nat-

cholesterol 

- 1 600 CHL11B 

- 2 600 CHL21B 

- 3 600 CHL31B 

70 30 ent-

cholesterol 

- 1 600 ENT11B 

- 2 600 ENT21B 

- 3 600 ENT31B 

70 30 epi-

cholesterol 

- 1 600 EPI11B 

- 2 600 EPI21B 

- 3 600 EPI31B 

100 0 - - 1 600 POPC11B 

- 2 600 POPC21B 

5-HT1B + 

Ligand 

70 30 nat-

cholesterol 

1 1 600 L1-CHL11B 

2 1 600 L2-CHL11B 

1 2 600 L1-CHL21B 
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2 2 600 L2-CHL21B 

1 3 600 L1-CHL31B 

2 3 600 L2-CHL31B 

70 30 ent-

cholesterol 

1 1 600 L1-ENT11B 

2 1 600 L2-ENT11B 

1 2 600 L1-ENT21B 

2 2 600 L2-ENT21B 

1 3 600 L1-ENT31B 

2 3 600 L2-ENT31B 

70 30 ent-

cholesterol 

1 1 600 L1-EPI11B 

2 1 600 L2-EPI11B 

1 2 600 L1-EPI21B 

2 2 600 L2-EPI21B 

1 3 600 L1-EPI31B 

2 3 600 L2-EPI31B 

 100 0 - 1 1 600 L1-POPC11B 

    2 1 600 L2-POPC11B 

    1 2 600 L1-POPC21B 

    2 2 600 L2-POPC21B 

    1 3 600 L1-POPC31B 

    2 3 600 L2-POPC31B 

5-HT2B 70 30 nat-

cholesterol 

 1 500 CHL12B 

 2 500 CHL22B 

 3 500 CHL32B 

70 30 ent-

cholesterol 

 1 500 ENT12B 

 2 500 ENT22B 

 3 500 ENT32B 

70 30 epi-

cholesterol 

 1 500 EPI12B 

 2 500 EPI22B 

 3 500 EPI32B 

100 0 -  1 500 POPC12B 

 2 500 POPC22B 

 

RESULTS  

Specific binding of membrane components in 5-HT1B receptor 

Cholesterol hotspots on membrane proteins are routinely identified using classical MD simulations on 

extended timescales, akin to the simulations presented here. A random distribution of cholesterol 

molecules was utilized, with simulations initiated from three different random configurations, enabling the 

identification of cholesterol-binding sites in an unbiased manner. To determine potential interaction sites, 

the spatial distribution of the cholesterol headgroups was calculated in all simulations. We focus on the 

extracellular leaflet in the following text (Figure 3A and S1A in the Supplementary Information).  

Three high-density cholesterol regions are observed in the extracellular leaflet of the 5-HT1B receptor. S1 

is a hydrophobic groove on TM2, with the polar cholesterol region also in contact distance of extracellular 

loop 1 (ECL1). Cholesterol molecules can also occupy a number of positions on the periphery of TM4, 

and in close proximity to extracellular loop 2 (ECL2). Interactions at this site typically involve two or 

more cholesterol molecules; this expansive region has been denoted S2. S3 encompasses the TM5-TM6 

interface, with cholesterol positioning biased by the conformation of the extracellular end of these helices, 

as described in the following section. Out of these sites, the S2 site is reproduced in two out of three, ent-

cholesterol simulations and all epi-cholesterol simulations. Additional positions on the receptor surface 

can also be occupied when the isomers are present; TM6 residues in the extracellular leaflet are one such 
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site identified in three independent simulations (Figure S1). However, we note the timescales achieved in 

this study (~600 ns) prohibit exhaustive sampling of the receptor surface, and multiple 

association/disassociation events are not observed, hence meaningful occupation times of the cholesterol 

isomers in the identified hotspots cannot be extracted. 

 
Figure 3. Interaction sites of membrane components. 2D density maps of (A) nat-cholesterol and (B) 

POPC, in three independent simulations of bilayers containing 30% nat-cholesterol. Bin dimensions of 

4x4 Å are normalized so that the maximum density is 1. Sites observed in multiple simulations (including 

simulations with cholesterol isomers in Figure S1) and described in the text are labelled. Transmembrane 

helices are numbered from 1 to 7; cholesterol and POPC sites are labelled as SX or PX respectively, where 

X is an arbitrary number to distinguish individual sites. 

In addition to the cholesterol interaction sites, we sought to ascertain if specific phospholipid binding sites 

also exist on the receptor surface, using the same methodology (Figure 3B and S1B). We identified two 

reproducible high-density sites (P1 and P2) in the extracellular leaflet. P2 is of interest, present at the 

TM4-5 interface, reproducible in all bilayers enriched with nat-cholesterol and isomeric forms. In this site, 

the phospholipid headgroup intercalates between ECL2 residues, which are initially beyond reach by 

membrane components. Occupation of this site can be evaluated using the contact distance between POPC 

molecules and residue P184 (Figure S3). This is determined by calculating the distance between the center 

of mass of all heavy atoms in both entities and identifying the minimum. In contrast, phospholipid 

molecules do not penetrate the ECL2 region consistently in both POPC-only bilayer simulations. In 

CHL11B, ENT11B and EPI21B, POPC molecules are able to penetrate the TM4-TM5 interface, due to 

conformational changes in this region. This will be described in the following section. 

Cholesterol tunes the extracellular surface in 5-HT1B receptor 

From this point forward, we refer to the second and third extracellular loops (ECL2 and ECL3) and the 

extracellular ends of the connected transmembrane helices (TM3-6) as the extracellular surface (ECS). 

The RMSD of the 5-HT1B extracellular surface relative to initial model is given in Figure S2. The structure 

of the extracellular surface is a highly variable region, as shown by clustering of the ECS conformations 

using a 2.5 Å RMSD criterion. Cluster population of the ECS is given in Table S1. Highly populated 
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clusters are identified (> 70 % of simulation time) in all CHL1B and POPC1B simulations. Visual 

inspection of the predominant clusters revealed that ECL2 can interact closely with the extracellular ends 

of TM5 and ECL3, or not at all, with the contact distance between hydrophobic residues V200/V201 

(ECL2) and M337 (TM6) critical. We define these conformations as open or closed, pertaining to the 

minimum distance between all non-hydrogen atoms in V200/V201 and M337, using 4 Å as a cutoff, 

exhibited in Figure 4A and B, respectively. The retention of such conformations, and the frequency related 

structural characteristics, are summarized in Table 2. The time evolution of the ECS in all simulations is 

reported in Figure S3-5. Cholesterol-containing bilayers can stabilize open or closed conformations of the 

ECS. Closed conformations of the ECS prevail in the POPC-only bilayer simulations, entering this state 

consistently within a period of 150 ns. The closed state can also be stabilized by a salt-bridge between 

E198 and K341, as in CHL31B (Table 2). In contrast, the absence of ECL2-TM6/ELC3 interactions in 

several simulations can mobilize ECL3 residues; F346, for example, can either remain buried in the 

surrounding bilayer or protrude into the extracellular solvent. The observed separation of ECL2 and ECL3 

can also be accompanied by disruption of the initial conformations of the attached helices; TM5 (T209, 

V210 and T213) and TM6 residues (L335 and M338) dissociate, enabling the penetration of a proximal 

POPC molecule into this region, as mentioned earlier. This novel conformational change can be attributed 

to the continued close association between TM4/ECL2 residues (in the region of P183, P184 and F185) 

and ECL2 residues at the opposing end, particularly N202 (Figure S5). 

Table 2. Summary of dynamics in ECL2 and surrounding regions in the 5-HT1B receptor in all simulations 

presented. The values given are percentages of the total simulation time spent in a prototypical closed state 

of the EC loops. The criterion for each characteristic is given within the table. 

Structural 

Feature 

ECL2-TM6 

Hydrophobic 

Interactions 

ECL2-ECL3 

Salt Bridge 

Interactions 

ECL3 Membrane 

Interactions 

TM5-TM6 Interactions ECL2-TM4 

Interactions 

Criteria V200/V201-M337 

Distance 

< 4 Å 

E198-K341 

Distance 

< 4 Å 

F346 Solvent-

Accessible Surface 

Area < 50 Å2 

T209/V210/T213-L335  

Distance < 5 Å 

P184-N202 

Distance > 4 Å 

POPC11B 88 14 100 100 97 

POPC21B 82 13 100 82 96 

CHL11B 1 0 18 3 9 

CHL21B 3 0 5 100 59 

CHL31B 67 55 100 100 73 

ENT11B 1 0 100 17 9 

ENT21B 60 10 43 100 55 

ENT31B 49 0 1 100 34 

EPI11B 35 2 13 100 56 

EPI21B 0 0 97 1 82 

EPI31B 81 1 0 100 69 

 

Overall, simulations with nat-cholesterol are in qualitative agreement with its enantiomer, with the ECS 

exhibiting variable degrees of opening, both displaying enduringly open, closed or intermediate states, 

with transient periods of ECS closure. Further to this, TM5 and TM6 dissociate in a similar manner. In 

contrast, simulations with epi-cholesterol exhibit deviant behaviour; in EPI11B and EPI31B a closed ECS 
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evolves after ~400 ns, persisting for the remainder of the 600-ns simulation. EPI21B, on the other hand, 

exhibits open forms of ECL2-ECL3 and TM5-6 from the outset (Figure S4).  

 

 

Figure 4. Dynamics of the extracellular surface. Representative structures of (A) closed (simulation 

POPC11B) and (B) open (simulation CHL11B) states of the ECS, displaying the density of residues 185-

204 (red) and 338-349 (blue). Representative structures of (C) closed (simulation POPC11B) and (D) open 

(simulation CHL11B) TM5-TM6 helices, displaying the density of residues 205-213 (red) and 330-338 

(blue). The density maps, shown as a wire mesh, are calculated using the VOLMAP plugin of VMD. 

Stereospecific behavior of the TM3-4 site in the 5-HT1B receptor 

From this point forward, we focus on CHL11B, ENT11B and EPI11B simulations, which are initiated from 

the same configuration of sterol molecules, displaying similar cholesterol occupancies as a result. In this 

case, the reported loop movements are not conserved when epi-cholesterol is present, despite occupation 

of molecules in the adjacent S2 site. Closure of the ECS in EPI1 at ~400 ns (Figure S4), follows 

destabilization of the P184-N202 interaction, in the 250-300 ns time period, which is maintained in CHL1 

and ENT1 (Figure 5A). P184 resides at the TM4/ECL2 boundary; throughout, multiple sterol molecules 

inhabit the S2 region in close proximity to P184, interacting consistently with residues from TM3 (V120, 

F124, S127 and T131), TM4 (I178) and ECL2 (F185).  

Differences can be observed in the binding poses of individual cholesterol molecules and attributed to the 

differential dynamics of this region. Sterol molecules in ENT11B and EPI11B penetrate deeper in the 

membrane, capable of H-bonding with T131 (TM4) (Figure 5B). In the latter case, this H-bond is formed 
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in the initial stages of the simulation, and epi-cholesterol remains anchored in this position for the entirety 

of the simulation. In this pose, the smooth face of epi-cholesterol stacks onto W174 (TM4); the hydroxyl 

headgroup H-bonds to T131 (TM3) and is surrounded by polar residues S127 (TM3) and S181 (TM4); the 

flexible tail extends to residues in TM2 (S90, V93 and L97) (Figure 5C, D). The headgroup of ent-

cholesterol occupies the analogous region, with enhanced mobility, due to the orientation of the hydroxyl 

group on the rough face of cholesterol (Figure 5C, E). With this in mind, we postulate that the stability of 

cholesterol in this site is dependent on its exact structure, and that this region acts as a functional binding 

site in the 5-HT1B receptor.  

 

Figure 5. Comparison of 5-HT1B receptor dynamics in CHL11B, ENT11B and EPI11B simulations. (A) Time 

evolution of P184-N202 contact distance, CHL11B, ENT11B and EPI11B simulations are displayed in red, 

blue and green respectively. (B) Time evolution of the minimum contact distance between cholesterol 

hydroxyl atoms and T131, colored as in (A). (C) Contact frequency of 5-HT1B residues with stable ent- 

(blue) and epi- (green) cholesterol binding poses. Values are given as a percentage of total simulation time 

and calculated using a 5 Å criterion. (D-E) Position of deep epi- and ent-cholesterol molecules in the S2 

site. Interacting 5-HT1B residues are shown in licorice representation in grey. 

Effect on ligand binding in the 5-HT1B receptor 

To discern the functional consequences of cholesterol binding to transmembrane helix 4, and the resulting 

conformational changes, we focused our attention towards the extracellular ligand-binding site. In the 

crystal structure of the 5-HT1B receptor with bound ergotamine, which is used to construct our initial 

model, the planar ergoline moiety is embedded in the orthosteric binding pocket, a hydrophobic cleft 

composed of I130, C133, S212, A216, W327, F330 and F331 residues. Binding is stabilized by (i) a H-
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bond between the indole nitrogen of ergotamine and the T134 side-chain, and (ii) a salt-bridge interaction 

between the amine tail of ergotamine and D129, which in turn is reinforced by H-bonding with Y359.  

Additional simulations were performed with a 5-HT molecule, commonly known as serotonin, bound in 

the orthosteric binding site in two alternative conformations (see Methods), consistent with the 

interactions observed for ergotamine in the crystal structure. To distinguish between different open and 

closed states of the receptor, the extracellular surface (defined as residues 184 to 205 and 337 to 349), was 

clustered using a 2.5 A RMSD criterion (Table S1). The position of membrane cholesterol was monitored 

in the most highly populated cluster. The S2 site is occupied in 10 out of 18 independent simulations 

containing membrane cholesterol (L1-CHL11B, L2-CHL11B, L2-CHL21B, L2-ENT11B, L1-ENT21B, L2-

ENT21B, L1-EPI11B, L2-EPI11B, L1-EPI21B and L1-EPI31B). The position of the serotonin molecule was 

compared in ECS conformations from POPC-only simulations (denoted NoC), simulations with a mixed 

bilayer where S2 is occupied by cholesterol (denoted CS2) and simulations with a mixed bilayer where S2 

is not occupied by cholesterol (denoted CNoS2). The density maps of cholesterol and serotonin, in the 

extracellular binding site are shown in Figure 6. 

To illustrate the effect of cholesterol on extracellular ligands, we focus on the two most highly populated 

binding poses observed in the simulations, labelled Lig1 and Lig2 in Figure 6C-E. Remarkably, Lig1 is 

the only serotonin binding pose in the CS2 clusters. In the CNoS2 clusters, the serotonin density maximum is 

located in close proximity to the Lig1 position; overall, however, the serotonin position is more variable. 

Lig2 is a distinct maximum observed only in the NoC simulations, where serotonin resides deeper in the 

5-HT1B receptor, consistent with occupation of the orthosteric binding pocket. The contact frequency of 5-

HT1B receptor residues interacting with serotonin in conformations Lig1 and Lig2 were extracted from the 

L2-CHL11B and L1-POPC1B simulations, respectively (Figure 6F-G). Important residues (contact 

frequency > 90 %) are shown in Table 3. These are consistent with experimental mutagenesis studies 

which reveal that binding of lysergic acid diethylamide (known as LSD), serotonin and ergotamine is 

completely abolished in D129A, I130A, C133A, and W327A
 
and F330A mutants.

44,45
 Overall, our results 

provide strong evidence that cholesterol binding influences the ligand binding characteristics of the 5-HT 

receptor. 
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Figure 6. (A-B) Combined 2D density maps of the position of cholesterol isomers in CS2 and CNoS2 

simulations respectively. Bin dimensions of 4x4 Å are normalized so that the maximum density is 1. 

Transmembrane helices are numbered from 1 to 7; site S2 is labelled. (C-E) Combined 2D density map of 

the position of the serotonin molecule in (C) CS2, (D) CNoS2 and (E) NoC simulations (defined in the main 

text). Throughout, the serotonin position is measured as the z coordinate and the distance of this from the 

central axis (both of the center of mass of the indole ring axis) of the simulation box. (F) Representative 

frame of Lig1 binding pose from the L2-CHL11B simulations and Lig2 binding pose from the L1-POPC1B 

simulation. Residues forming the orthosteric binding site are shown and labelled. Oxygen and nitrogen 

atoms are displayed in red and blue, respectively. Carbon atoms are purple in serotonin and grey in the 

receptor. 

Table 3. Residues of 5-HT1B interacting with serotonin cluster poses Lig1 and Lig2. Residues included 

exhibit a contact frequency > 90 %, measured using a distance 5 Å criterion between the heavy atoms of 

the protein and ligand molecules. 

Simulation Serotonin 

Pose 

Interacting Residues  

L2-CHL11B Lig1 L126 D129 I130 C133 T134 V201 Y208 S212 T213 A216 W327 F330 F331 S334 

L1-POPC1B Lig2 L126 D129 I130 C133 T134 V201 Y208 S212 T213 A216 W327 F330 F331 S334  

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

Table 4. Residues of 5-HT1B which H-bond to the hydroxyl group of cholesterol molecules in the S2 

(TM4) site. H-bond frequency is given as a percentage of the cluster measured; residues with H-bond 

frequency > 30% are shown. 
Simulation Residue H-Bond Frequency (%) 

L1-CHL11B S127 48 

S128 64 

L2-CHL11B S127 63 

L2-CHL21B - - 

L2-ENT11B T131 47 

L1-ENT21B D123 41 

L2-ENT21B R188 32 

L1-EPI11B S127 56 

L2-EPI11B - - 

L1-EPI21B - - 

L1-EPI31B - - 

 

Examining the S2 site more closely, the cholesterol molecules are seen to penetrate deep into the upper 

leaflet and hydrogen bond with S127 (L1-CHL11B, L2-CHL11B and L1-EPI11B) or T131 (L2-ENT11B) 

(Table 4), in agreement with our apo state simulations. The interactions frequencies of the deep 

cholesterol binding sites are given for these simulations in Figure 7. In CHL1B simulations, the cholesterol 

molecule consistently interacts with L97, F124, S127, S128, T131, W174 and I178, for > 80 % of the 5-

HT1B cluster frames. In addition, nat-cholesterol interacts with L182 in L1-CHL11B and F185 in L2-

CHL11B. In L1-EPI11B, where the hydroxyl group also H-bonds to S127, interactions with neither L182 

and F185 are identified, although epi-cholesterol is more engaged with residues L101 and V175. In L2-

ENT11B, persistent interactions (> 80 % of the cluster frames) are only observed with L97, D123, F124 

and S127, highlighting the variability of ent-cholesterol in this site. This data suggests that cholesterol 

isomers interact differently with the TM4 surface, supporting our earlier postulate that the S2 site is 

stereospecific. 

 
Figure 7. Contact frequency of 5-HT1B residues with stable nat- (red), ent- (blue) and epi- (green) 

cholesterol binding poses, in simulations (A) L1-CHL11B, (B) L2-CHL11B, (C) L2-ENT11B and L1-EPI11B 

. Values are given as a percentage of total simulation time and calculated using a 5 Å criterion. 

In several cases, a group of cholesterol molecules occupy the TM4 surface. This can be attributed to the 

high cholesterol concentration used in our simulations (30%). Under these circumstances, cholesterol 
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molecules cover a larger region of the receptor surface and it becomes difficult to delineate stable binding 

poses and differences between individual cholesterol isomers. 

Enhanced stability of ECL2 in the 5-HT2B receptor 

To determine if this mechanism of cholesterol is applicable to other 5-HT receptors, analogous 

simulations were performed for the 5-HT2B receptor, as a crystal structure is available (PDB ID 4IB4). 

Here, cholesterol can populate the surface of all seven transmembrane helices in the extracellular leaflet to 

some extent (Figure 8). Five reproducible cholesterol hotspots have been identified: L1 (TM2), L2 (TM3-

4), L3 (TM4-5), L4 (TM5-6) and L5 (TM7-1).  

 
Figure 8. Interaction sites of membrane components on the 5-HT2B receptor. 2D density maps of (A) nat-

cholesterol and (B) POPC in three independent simulations of bilayers containing 30% cholesterol. Bin 

dimensions of 4x4 Å are normalized so that the maximum density is 1. Sites observed in multiple 

simulations (including simulations with cholesterol isomers in Figure S1) and described in the text are 

labelled. Transmembrane helices are numbered from 1 to 7; cholesterol and POPC sites are labelled as LX 

or MX respectively, where X is an arbitrary number to distinguish individual sites. 

The position of the L2 site overlaps with the S2 (TM3-4) site identified for the 5-HT1B receptor. The 

sequences of both receptors were aligned, and residues involved in cholesterol were compared (Figure 9). 

In the 5-HT2B receptor, the cluster of interacting residues (F133, I184, I188, P191 and I192) are localized 

at the extracellular ends of TM3 and 4. Here, the site is 100% hydrophobic, whereas the 5-HT1B site is 

~67% hydrophobic, ~8% charged and 25% polar, revealing critical differences between the sites. Residues 

S127, S128 and T131 in the 5-HT1B receptor, whose small, polar side-chains enable deep binding in the 

site, are equivalent to bulky, hydrophobic residues F133, L134 and L137 in the 5-HT2B receptor, 

prohibiting cholesterol from entering the analogous position.  
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Figure 9. Comparison of the TM3-4 in the (A) 5-HT1B and (B) 5-HT2B receptors. Residue side-chains are 

shown in licorice, with carbon, nitrogen and oxygen atoms in grey, blue and red respectively. Residues 

with cholesterol interaction frequencies over 80% (< 4 Å between heavy atoms) in any nat-cholesterol 

simulations are highlighted in red.  

The consequences of cholesterol binding in such positions are ambiguous, in this case. Here, ECL2 (G194 

to R213) and ECL3 (L347 to T357) do not undergo significant conformational changes. The highly 

flexible region of ECL2 (T197 to I205) and ECL3 is flanked by multiple anchor points to surrounding 

transmembrane helices: (i) a disulfide bond between C128 (TM3) and C207 (ECL2) conserved in class A 

GPCRs, (ii) H-bonding between the backbone oxygen atom of K193 (TM4) and the sidechain of R213 

(ECL2) and vice versa, (iii) a salt-bridge between K211 (ECL2) and D351 (ECL3), and, finally (iv) a 

hydrophobic cluster formed between V209 (ECL2) and residues from TM3 (L132, V136), TM4 (V190) 

and TM5 (F217). The dynamic interactions are prevalent in the simulations irrespective of the membrane 

composition, negating large-scale conformational changes in the extracellular ends of TM4, TM5 and 

TM6 (Table 5). These native contacts are conserved in the available structures of 5-HT2B  receptor,
44,45,49,69

 

with the exception of K211-D351 in the crystal structure of the 5-HT2B receptor obtained using serial 

femtosecond crystallography at room temperature (PDB ID 4NC3), where the sidechain of K211 is 

unresolved.
70

 This is consistent with our simulation data, where a frequency of interaction approximately 

between 70 and 95% is recorded in this case. 
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Table 5. Summary of dynamics in ECL2 and surrounding regions of the 5-HT2B receptor. The values 

given are percentages of the total simulation time spent in a prototypical closed state of the ECS. The 

criterion for each characteristic is given within the table. The TM3/4/5 residues specified are in close 

contact, forming a hydrophobic cluster; therefore, this criterion is satisfied if V209 is within 5 Å of any of 

these residues.  

Structural 

Feature 

TM4-ECL2 

Salt Bridge 

ECL2-ECL3 

Salt Bridge 

ECL2 –TM3/4/5 

Hydrophobic Interactions 

Criteria K193-R213 

Distance < 3.5 Å 

K211-D351 

Distance < 3.5 Å 

V209- L132 (TM3)/V136 (TM3)/V190 (TM4)/F217(TM5) 

Distance < 5.0 Å 

POPC12B 100 77 99 

POPC22B 100 87 99 

CHL12B 100 71 100 

CHL22B 100 86 100 

CHL32B 100 96 100 

ENT12B 100 68 100 

ENT22B 100 79 100 

ENT32B 100 88 100 

EPI12B 100 72 100 

EPI22B 100 92 100 

EPI32B 100 80 99 

DISCUSSION 

The bulk of specific cholesterol interaction sites identified by structural and simulation methodologies are 

situated so that the hydroxyl group inhabits the headgroup region of the membrane 
8
. However, additional 

buried sites have also been exposed by computation.
71

 In the 5-HT2B receptor, cholesterol hotspots are 

shown on all of TM helices, occupying typical positions in the upper leaflet of the bilayer. In the 5-HT1B 

receptor, we detect unparalleled high occupancy of the TM4 helix by membrane cholesterol in the upper 

leaflet. The TM4 helix includes the CARC motif
23

 in the extracellular leaflet and the CCM
27

 in the 

intracellular leaflet. Our simulations reveal that of several cholesterol molecules inhabiting this area, a 

single molecule can penetrate a deep cholesterol binding site on the TM3/4 helices, which can contain 

components of both canonical interaction motifs situated in this area. This is observed in multiple 

independent simulations for all three stereoisomers of cholesterol examined. Cholesterol molecules are 

able to hydrogen-bond with S127 or T131 several residues, exhibiting differential interactions with 5-

HT1B receptor residues in each case. With this in mind, we propose this region acts as a functional binding 

site in the 5-HT1B receptor, with stereospecific properties. In compliance with this, high cholesterol 

density on TM4 (in the extracellular leaflet) is observed in coarse-grained simulations of the closely-

related 5-HT1A receptor.
31

 This result is particularly important considering the known stereospecific 

requirement of cholesterol in the 5-HT1A receptor.
39

 

In support of this, we report reproducible conformational changes in the ECS, originating from residues in 

this region. The vulnerability of the TM4-ECL2 boundary in the 5-HT1B receptor to cholesterol binding in 

this region, can be accredited to the presence of multiple proline residues (P183-P184), which are unable 

to adopt typical secondary structural components, and thus are inherently more flexible. This motif is 

conserved in all 5-HT1 receptors; in 5-HT2 receptors a hydrophobic residue is inserted in the middle of the 

analogous proline residues (P189-V190-P181 in 5-HT2B), stabilizing this area to a greater extent. 

Considering the importance of such residues in the adjustability of ECL2 in the 5-HT1B and 5-HT2B 
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receptors, it is conceivable that this region can act as a stereospecific cholesterol sensor in the 5-HT 

family, propagating changes through the ECS. 

Interest in the behaviour of the highly variable ECS in GPCRs has grown in recent years, as a potential 

target for subtype-selective drugs.
29,72,73

 In rhodopsin, ECL2 forms a steadfast cap over the covalently 

bound ligand.
74

 However, in a number of class A GPCRs with diffusible ligands, the dependency of the 

ECL2 conformation on the chemical structure of the ligand has been demonstrated experimentally. In the 

β2-adrenergic receptor, NMR spectroscopy revealed ligand-specific conformations of the ECS in the 

vicinity of a salt-bridge linking ECL2 and ECL3.
46

 In the angiotensin type II receptor, cysteine 

accessibility experiments disclose open and closed conformations of ECL2, which can influence the 

dissociation rates of bound ligands.
47

 In relation to 5-HT receptors, circular dichroism and steady-state 

fluorescence revealed variations in ECL2 conformation in the 5-HT4A, resulting from binding of full, 

partial or inverse agonists.
48

 Furthermore, in the 5-HT2B receptor, the remarkably slow dissociation rates 

of the archetypal hallucinogen LSD have been attributed to an ECL2 lid revealed by the high-resolution 

structure of this complex.
49

 Mutagenesis of one such residue, V209, dramatically altered LSD’s binding 

kinetics in this case. Here, we demonstrate that cholesterol addition, depletion or substitution is able to 

bias the conformational states of ECL2 in the 5-HT1B, providing a potential mechanism by which 

cholesterol and other membrane constituents can alter the ligand-binding properties of GPCRs.  

It should be noted that the exact nature of cholesterol modulation on ligand binding affinity in the 5-HT1B 

receptor cannot be ascertained from the data presented in this study. Nevertheless, our simulations expose 

a situation where the configuration of the extracellular binding site is altered in cholesterol-rich bilayers. 

In several independent simulations of the apo state, the orthosteric binding site is susceptible to lipid 

interactions, resulting from separation of the EC loops (ECL2 and ECL3) and the attached TM helices 

(TM5 and TM6). In simulations with serotonin, the ligand occupies an alternative binding site away from 

the orthosteric binding site, as a result of reorganization of ECL2.  Coupling of the orthosteric binding 

pocket with the membrane milieu has been reported previously. In various cases, membrane-mediated 

pathways are required for ligands to circumnavigate closed ECSs, which prohibit transport between the 

extracellular binding pocket and solution. In the opsin receptor, TM5-6 and TM7-1 openings have been 

postulated to allow access to retinal,
75-77

 and in the human free fatty-acid receptor 1 (known as FFAR1 or 

GPR40), the lipophilic agonist is proposed to traverse between an opening in TM3-4,
78

 both as a result of 

closed ECL2 conformations. Similarly, an N-terminus fold obstructs the ECS in the S1P1 receptor, 

indicating ligand access occurs via TM7-1.
79

 This multi-step process has been mapped by extensive 

unbiased MD simulations.
80

 Moreover, it has recently been reported that membrane constituents can enter 

the orthosteric binding pocket via similar pathways. In the adenosine A2A receptor, cholesterol is able to 

penetrate the protein core via TM5-6, effectively acting as a competitive inhibitor and abolishing binding 

of antagonist, ZM241385.
81

 Overall, these studies substantiate our proposed response to specific 

cholesterol binding in 5-HT1B receptor. 
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A related point to consider is the significance of the extracellular N-terminal domain.  The involvement of 

the GPCR N-terminus in receptor surface expression and trafficking has been studied extensively.
82 This 

structural domain has also been implicated in regulation of ligand binding in class B
83

 and C GPCRs;
84 

several examples have also been shown for the class A receptor family.
85,86

 Of relevance to this study, 

single-residue polymorphisms (R6G and E42G) in the N-terminus of the 5-HT2B receptor, were shown to 

increase the binding affinity of radioligand [3H]-5-HT amongst other effects.
87

 Similar outcomes were 

recorded when the N-terminus was truncated. However, N-terminus residues are absent in the structural 

models used in this study (1-37 in 5-HT1B PDB 4IAR and 1-47 in 5-HT2B PDB 4IB4),
44,45

 and in the other 

high-resolution structures available for these receptor types.
49,70,88,89

 Improvements in membrane protein 

crystallography have enabled the N-terminus to be resolved in a handful of rhodopsin-like GPCRs: human 

cannabinoid 1 (CB1) receptor,
90

 lysophosphatidic acid 1 (LPA1) receptor,
91

 sphingosine 1-phosphate 1 

receptor (S1P1),
79

 C-X-C chemokine receptor type 4 (CXCR4),
92

 human orexin 1 receptor (OX1)
93

 and 

protease-activated receptor 1 (PAR1).
94

 In the future, an atomic description of the N-terminus in 5-HT 

receptors will be useful to further elucidate how the behaviour of the N-terminus and extracellular surface 

affects ligand binding, and to what degree this is regulated by membrane cholesterol and other factors.  

The indirect mechanism of cholesterol action has not been addressed thus far. The effect of cholesterol on 

the physical properties of model phospholipid bilayers have been studied intensively, with increased 

bilayer thickness and SCD order parameters, as well as decreased area per lipid, consistently reported upon 

cholesterol enrichment.
95-98

 Our previous work examined the molecular properties of nat-cholesterol, ent-

cholesterol and epi-cholesterol in the phospholipid bilayers utilized here.
12

 In general, epi-cholesterol 

exerted slightly weaker effects on bilayer properties, yet increased the solvent-accessible surface area of 

POPC molecules, relative to the cholesterol-free bilayer. In contrast, cholesterol-rich bilayers containing 

nat- and ent-cholesterol decreased this property. Considering this, we cannot completely rule out an 

indirect effect of cholesterol on the dynamics of the 5-HT1B receptor. It is apparent, however, that the 

decisive conformational changes reported can be rationalized by stereospecific binding of cholesterol 

molecules to the receptor surface. 

Finally, we acknowledge the increasing abundance of literature concerning the effect of cholesterol on the 

oligomerization properties of GPCRs. For example, coarse-grained MD simulations have shown that the 

dimer interface in the 2-adrenergic receptor is altered when cholesterol concentration is increased.
99

 

Similar conclusions have since been reported for the 5-HT1A receptor
100

 and chemokine receptor type 4 

using comparable methodologies.
101

 The interrelationship between membrane cholesterol, receptor 

dimerization and the conformation of the extracellular surface may prove interesting in future studies. 

CONCLUSIONS 

In the current study, over 25 s of unbiased MD simulations has been used to explore the relationship 

between membrane cholesterol in the 5-HT receptor family, specifically the 5-HT1B and 5-HT2B receptors. 

Our data suggests that the stability of the extracellular surface is subtype-dependent; the conformation of 
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ECL2 in the 5-HT2B receptor is maintained by a number of salt-bridges and hydrophobic interactions with 

sequentially distant regions of the protein. In the absence of such interactions in the 5-HT1B receptor, 

ECL2 is unmistakably more mobile, populating a number of distinct conformations. In the latter case, we 

provide evidence that fluctuations in ECL2 are governed by occupation of the TM3 and TM4 surfaces by 

cholesterol molecules in the extracellular leaflet. Mobile residues at the TM4-ECL2 boundary are critical 

in this respect, interacting with both membrane cholesterol and residues at the other extreme of ECL2. 

Comparative analysis of cholesterol isomers demonstrates differential binding to this site, suggesting 

structural rearrangements in this region may be influenced by stereospecific binding of cholesterol. In 

addition, distinctive binding poses of serotonin are observed in simulations where cholesterol is bound in 

the suggested TM4 site, and where the TM4 site is unoccupied, providing a direct relationship between 

occupation of this site and ligand binding characteristics of the 5-HT1B receptor. This data contributes to 

our understanding of how cholesterol and other membrane components modulate receptor function and 

might aid the development of targeted therapies of GPCRs, required for the treatment of numerous 

neurological disorders, such as depression and anxiety. 
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