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Abstract 17 

Objectives The objective of this review is to provide an overview of PK/PD models, focusing on drug-specific 18 

PK/PD models and highlighting their value-added in drug development and regulatory decision-making. 19 

Key findings Many PK/PD models, with varying degrees of complexity and physiological understanding, have 20 

been developed to evaluate the safety and efficacy of drug products. In special populations (e.g. pediatrics), in 21 

cases where there is genetic polymorphism and in other instances where therapeutic outcomes are not well 22 

described solely by PK metrics, the implementation of PK/PD models is crucial to assure the desired clinical 23 

outcome. Since dissociation between the pharmacokinetic and pharmacodynamic profiles is often observed, it 24 

is proposed that physiologically-based pharmacokinetic (PBPK) and PK/PD models be given more weight by 25 

regulatory authorities when assessing the therapeutic equivalence of drug products. 26 

Summary Modeling and simulation approaches already play an important role in drug development. While slowly 27 

moving away from “one-size fits all” PK methodologies to assess therapeutic outcomes, further work is required 28 

to increase confidence in PK/PD models in translatability and prediction of various clinical scenarios to encourage 29 

more widespread implementation in regulatory decision-making.  30 

 31 

 32 
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1 Introduction 62 

 63 

Over the last decades pharmacokinetic/pharmacodynamics (PK/PD) models have been evolving 64 

rapidly, starting with the pioneering work in the 1960s, then moving from empirical descriptions to 65 

models based on mechanistic and physiological approaches and still evolving today in the form of 66 

state-of-the-art mathematical models describing the progression of diseases as well as entire biological 67 

systems, under the umbrella of systems pharmacology and computational biology. [1],[2],[3],[4],[5],[6],[7]  68 

At the beginning of the conjunction of pharmacokinetics with pharmacodynamics, empirical models 69 

which were based on the shape of the effect-concentration curve and assumed that the pharmacologic 70 

response is directly related to the drug plasma concentration were introduced. Soon it was recognized 71 

that this scenario is only valid when the equilibrium between the plasma and the site of action is 72 

instantaneous, when the free drug concentration and the distribution to all tissues is the same (or 73 

remains proportionally the same) and when the system is at steady-state. A variety of these so-called 74 

steady-state empirical direct effect models have been reported in the literature: linear, power, 75 

hyperbolic, sigmoid (Emax model), logarithmic and logistic. Even though these models have been applied 76 

in a number of situations,[1],[8],[9] they have two important limitations. First and most important, they 77 

are time-independent (also referred to as static models). Second, they lack a mechanistic and/or 78 

physiological understanding of the underlying pharmacokinetics and pharmacodynamics.[10] For these 79 

reasons, non-steady state, mechanistic and physiologically based modeling approaches were 80 

introduced and these are more widely used these days in drug development. 81 

In parallel to the developments in modeling approaches, major regulatory authorities have been 82 

moving slowly but surely from “one-size fits all” concepts to a more case-by-case, scientifically justified 83 

approach, in which the application of modeling and simulation (M&S) is playing a valuable supporting 84 

role. Physiologically-based pharmacokinetic (PBPK) and PK/PD models have already been implemented 85 

in the assessment of drug-drug interactions (DDIs) and extrapolation of results from adults to pediatric 86 
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populations. [11],[12],[13],[14],[15],[16] In addition, generic dermatologic and inhalation products have been 87 

approved based on pharmacodynamic or clinical endpoint bioequivalence studies (BE).[17],[18]  88 

Most recently, pharmacokinetic metrics providing information about delivery of the drug to the body 89 

and exposure (i.e. onset and duration of action),[19] such as partial areas under the concentration-time 90 

curve (pAUCs) have been recommended by the US-FDA for the evaluation of several complex oral 91 

products combining immediate (IR) with extended release (ER). [20],[21],[22] However, there are still many 92 

cases, especially for systematically acting drugs, where the value of modeling and simulation methods 93 

has not yet been widely recognized by the regulatory authorities. Such cases include the virtual 94 

bioequivalence of oral drug products, the justification for potential extension of BCS-based biowaivers 95 

to some BCS class II compounds and the reduction of the number of volunteers for bioequivalence 96 

studies of highly variable drugs (HVDs). In view of the fact that single point pharmacokinetic metrics 97 

(i.e. Cmax, AUC) used to assess bioequivalence do not always comprise an appropriate surrogate for 98 

therapeutic equivalence (TE), which by definition is the ultimate goal of bioequivalence studies,[23] it 99 

would seem appropriate to implement modeling and simulation approaches to assure therapeutic 100 

outcomes in this arena too. 101 

The aim of this review is to provide an overview of existing non-steady state PK/PD models, focusing 102 

on drug-specific case examples. These are intended to serve as examples of the importance of 103 

mechanistic PK/PD models in assuring desired therapeutic outcomes in clinical practice and to 104 

encourage wider implementation of PK/PD in support of regulatory decision-making. 105 

2 coThe effect compartment model 106 

 107 

2.1 Overview 108 

 109 

In many cases, the site of action of a drug is kinetically distinct from plasma and the equilibration 110 

between the plasma and the effect site is often rather slow. In such cases, there will be a temporal 111 

delay between the drug plasma (Cp) and effect site concentrations (Ce) and the effect will be a function 112 
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of Ce rather than of Cp. Even though bioanalytical methods have improved greatly over the last 113 

decades, measuring the concentration at the effect site often remains a challenge, due to the lack of 114 

tissue accessibility.  115 

In 1970, a hypothetical compartment serving as a link between the pharmacokinetic and 116 

pharmacodynamic models to address the equilibration kinetics was introduced by Segre et al.[2] and 117 

was applied for the first time by Forester et al.[24] to describe the time-course of effect of various 118 

cardiac glycosides.[25] This approach, using a so-called «effect compartment» or «biophase 119 

distribution» model (Fig. 1), was further elaborated and described mathematically by Holford and 120 

Sheiner [3],[26] as follows: 121 

𝑑𝐴𝑒

𝑑𝑡
= 𝑘1𝑒 · 𝐴𝑝 − 𝑘𝑒0 · 𝐴𝑒     (1) 122 

Where 𝐴𝑝 and 𝐴𝑒 are the amounts of drug in the plasma (main compartment) and in the effect 123 

compartment, respectively, and 𝑘1𝑒, 𝑘𝑒0 are the first-order rate constants for distribution and 124 

elimination from the hypothetical compartment, respectively. 125 

Assuming that the effect compartment receives a negligible amount of drug and that distribution to 126 

and clearance from the biophase compartment are equal, the model can be simplified and then 127 

coupled with a pharmacodynamic model, for example a sigmoid Emax model:  128 

𝑘1𝑒 · 𝑉𝑝 = 𝑘𝑒0 · 𝑉𝑒     (2) 129 

𝑑𝐶𝑒

𝑑𝑡
= 𝑘𝑒0 · (𝐶𝑝 − 𝐶𝑒)    (3) 130 

𝐸(𝐶𝑒(𝑡)) =
𝐸𝑚𝑎𝑥 · 𝐶𝑒(𝑡)

𝛾

𝐶𝑒(𝑡)
𝛾

+ 𝐸𝐶𝑒50
𝛾      (4) 131 

where 𝐶𝑝, 𝑉𝑝, 𝐶𝑒, 𝑉𝑒 are the concentration and the volume in the central and effect compartment 132 

respectively; 𝐸𝑚𝑎𝑥, 𝐸𝐶𝑒50 and 𝛾 represent the maximum effect, the concentration in the effect site 133 

required to reach 50% of the maximum effect and the sigmoidicity factor, respectively. Alternatively, 134 
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the hypothetical compartment could be coupled with a peripheral compartment instead of the central 135 

compartment. However, it is not very common to use samples obtained at the effect site (e.g. using 136 

microdialysis) or any other peripheral compartment as a pharmacokinetic surrogate. 137 

A hallmark of the effect compartment model is the hysteresis observed in the effect-concentration 138 

plot due to the time delay between pharmacokinetics and pharmacodynamics. In fact, this is a common 139 

attribute of non-steady-state pharmacokinetic/pharmacodynamic models.[27] Well-known examples of 140 

drugs exhibiting a biophase distribution delay related response include neuromuscular blocking agents 141 

such as d-tubocurarine (see section 2.2) and pancuronium,[28] the calcium channel blocker 142 

verapamil,[29] and the bronchodilator theophylline.[30] Further cases that have been reported in the 143 

literature include quinidine, disopyramide, opioids such as pethidine, morphine, fentanyl, diclofenac, 144 

organic nitrates, benzodiazepines and digoxin.[31],[32],[33],[34],[35],[36],[37],[38] In the following section, the 145 

models for tubocurare, pancuronium, ibuprofen and morphine are used to illustrate application of the 146 

effect compartment model.  147 

2.2 Applications and case examples 148 

 149 

2.2.1 d-tubocurarine and pancuronium 150 

 151 

The assumption of a direct relationship between pharmacokinetics and drug response has been 152 

questioned for more than half a century, as illustrated by the case of d-tubocurarine.  153 

Already in the early 1960s, the first attempts to simultaneously model pharmacokinetics and 154 

pharmacodynamics, based on the available plasma concentration and effect data for d-tubocurarine, 155 

were made. In 1964, Levy implemented a log-linear model to describe the time course of d-156 

tubocurarine response, assuming one-compartment pharmacokinetics following intravenous bolus 157 

administration, based on the results of Ryan et al.[39] The log-linear model assumed that the effect of 158 

muscular relaxation is a linear function of the logarithm of the amount of d-tubocurarine present in 159 

the plasma,while elimination of the amount of d-tubocurarine in the body occurs exponentially with 160 
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time. In such cases, the pharmacologic activity declines linearly with time.[1] In 1972, an open three-161 

compartment model for the pharmacological effect of d-tubocurarine was proposed by Gibaldi et al.[40] 162 

The amount of drug in the central compartment at the time of recovery from neuromuscular block was 163 

deemed by these authors to be dose-independent. This observation, combined with the very rapid 164 

onset of action of d-tubocurarine, led the authors to the conclusion that the site of action is located in 165 

the central compartment,[40] implying instantaneous equilibration between plasma concentration and 166 

response. However, the data on which this model was based had been collected during the terminal 167 

elimination phase, during which a pseudo-equilibrium between plasma and tissues concentration is 168 

reached and the distributional delay is minimized.  169 

By contrast, Hull et al.[41] showed that after administration of pancuronium, a similar to d-tubocurarine 170 

neuromuscular blocking agent, a linear relationship between the logarithm of concentration and the 171 

response is a poor predictor of the early phase response, in which a hysteresis between the 172 

concentration in any compartment and twitch depression is observed. By adding a biophase 173 

compartment, expressed similarly to equation (3), and assuming that same degree of paralysis (i.e. 174 

during onset and offset of action) is associated with the same Ce, they were able to empirically relate 175 

the intensity of pharmacologic effect to the concentration at the site of action at every time point using 176 

a fixed effect pharmacodynamic model.[41] In the case of d-tubocurarine, the effect compartment 177 

model,  as described mathematically by Holford and Sheiner,[3],[26] was successfully applied as well. 178 

Plasma concentration and effect data after intravenous administration were analyzed from healthy 179 

subjects and patients with renal failure. The model was able to fit data from both groups without 180 

statistically significant differences in the pharmacokinetic or pharmacodynamic parameters between 181 

the two groups.[42] Interestingly, the equilibration half-life (4 minutes) for pancuronium estimated in a 182 

more empirical way by Hull et al.[41] was very similar to the one for d-tubocurarine reported by Sheiner 183 

et al.[42] using an explicit pharmacokinetic/pharmacodynamic model. 184 

In parallel, Stanski et al.[43] explored the influence of various anesthetic agents on the muscle-relaxing 185 

effect of d-tubocurarine. Halothane induced-anesthesia, in comparison to anesthesia with morphine 186 
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and nitrous oxide, prolonged the equilibration half-life. An open two-compartment pharmacokinetic 187 

model coupled with a hypothetical effect compartment was implemented to fit both plasma and 188 

muscle paralysis data. Interestingly, changes in pharmacodynamic (ke0, t1/2ke0, EC50), but not in 189 

pharmacokinetic, parameters were observed for patients under halothane anesthesia. Furthermore, it 190 

was possible to distinguish between the effects of the agents on the EC50 for muscle paralysis showing 191 

that halothane sensitizes the neuromuscular junction to d-tubocurarine. Provided that the diffusion of 192 

tubocurarine into the extracellular fluid of the muscle and the receptor affinity is high, the rate limiting 193 

step for the onset of action is the rate of muscle perfusion, which is inversely proportional to the 194 

equilibration half-life (t1/2ke0).[43] Although the onset and the magnitude of response is dependent on 195 

muscle blood flow, the recovery from neuromuscular blockage is perfusion-independent and solely 196 

related to the drug-receptor dissociation rate.[44] The significant increase in t1/2ke0 under halothane-197 

induced anesthesia is consistent with the decreased muscle blood flow, which would suggest a later 198 

onset of paralysis. However, halothane also decreases the EC50, which compensates for the decrease 199 

in perfusion and results in a similar onset to that observed under morphine and nitrous oxide 200 

anesthesia.  201 

In summary, the evaluation of the pharmacodynamics in concert with the pharmacodynamics of these 202 

two muscle relaxants enabled a more mechanistic description of their dose-response characteristics 203 

and a better understanding of the drug interaction with the anaesthetic. These early successes 204 

triggered further interest in combining pharmacokinetics with pharmacodynamics to achieve a  more 205 

mechanistic description of the relationship between dose, dosing and clinical effects. 206 

2.2.2 Ibuprofen: dental pain relief 207 

 208 

Ibuprofen was selected as a model drug to investigate the clinical relevance of bioequivalence metrics 209 

to the therapeutic effect. An analysis of 25 bioequivalence studies of Ibuprofen immediate-release oral 210 

dosage forms over a  dose range from 200-600 mg showed that 14 of the studies failed to prove 211 

bioequivalence in Cmax , even though AUC fell within the bioequivalence limits.[45] The authors reported 212 
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that Ibuprofen, a weakly acidic BCS class II compound, is at higher risk to fail bioequivalence because 213 

of Cmax variations. However, in cases where the plasma concentration is related non-linearly and/or 214 

indirectly to the drug effect[46],[3] , the Cmax and tmax values may not be accurate metrics for the 215 

therapeutic response. For example, if the Cmax is higher than anticipated this will not necessarily 216 

translate to toxic effects. Likewise, if the Cmax is lower, this will not necessarily result in lack of 217 

efficacy.[47]  218 

Dissociation between pharmacokinetics and pharmacodynamics is common for NSAIDS. This may be 219 

because of delayed distribution to the biophase or related to an indirect response mechanism, for 220 

example when the pharmacodynamic endpoint is the inhibition of inflammation mediators.[48] Pain 221 

relief and antipyresis after administration of ibuprofen formulations have been extensively modelled 222 

in different populations. In this section, the main studies for pain relief after third molar extraction are 223 

presented, while studies investigating the antipyretic effect are addressed in section 4.2.1. 224 

Third molar extraction pain models describe the postoperative onset of inflammation, with maximum 225 

pain intensity occurring in 12 hours or less. Relief from pain associated with tooth extraction exhibits 226 

high reproducibility and a low placebo effect, features that are important for differentiation among 227 

various doses and thus for the identification of dose-response curves.[49],[50],[51],[52] The most commonly 228 

evaluated endpoints in dental pain models are the pain intensity difference (PID) and sum of pain 229 

intensity difference (SPID), the pain relief (PAR) and total pain relief (TOTPAR), the time to re-230 

medication (REMD), the time to first perceptible pain relief (TFPR) and time to first meaningful pain 231 

relief (TFMP).[53][54] 232 

In a double-blind, randomized, single- and multi-dose study of 254 adult patients, who had undergone 233 

third molar surgery, Hersh et al.[50] reported a positive dose-response relationship for sum pain 234 

intensity (SPID), total pain relief (TOTPAR), time to re-medication (REMD) and overall pain relief, after 235 

administration of 200 and 400 mg of ibuprofen as a single-dose. During the multi-dose phase, no 236 

significant differences between the two dose levels were detected. The authors concluded that 237 
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patients could benefit from higher doses for pain treatment immediately after the extraction, but that 238 

lower doses would be satisfactory thereafter. These results suggest that the single-dose approach 239 

adopted for bioequivalence testing might be over-discriminating for the assessment of ibuprofen 240 

formulations with regard to the maintenance of dental pain relief. Indeed, McQuay et al.[55] observed 241 

no significant differences between 200 and 400 mg of ibuprofen in a double-blind, randomized, 242 

placebo-controlled, single-dose study comparing the analgesic effect of 200 and 400 mg of ibuprofen 243 

with placebo and with 200 mg ibuprofen plus 50, 100 or 200 mg caffeine in 161 adult patients after 244 

third molar removal. In a further study, a positive dose-response relationship of ibuprofen over the 245 

dose range 50-400 mg with regard to sum of pain intensity difference (SPID) and total pain relief 246 

(TOTPAR) was reported by Schou et al.[54] However, in terms of TOTPAR the doses of 200 and 400 mg 247 

did not differ significantly.  248 

A meta-analysis of data from 13 trials with total of 994 patients reported an absolute increase of only 249 

9% (from 59% to 68%) in the number of patients who achieved at least 50% pain relief, when the dose 250 

of ibuprofen was doubled from 200 to 400 mg, meaning that 10 patients would need to be treated 251 

with the higher dose for just one of them to benefit. [56] The analysis indicates that the dose-response 252 

relationship is rather flat in the dose range 200 to 400 mg with respect dental pain relief by ibuprofen.  253 

Li et al.[53] applied a pharmacodynamic model to investigate the onset and offset of dental pain relief 254 

after administration of effervescent and standard tablets containing 400 mg ibuprofen. As an endpoint, 255 

a categorical pain relief score was applied and treated as a continuous variable, in agreement with 256 

Lemmens et al.[57] The observed distributional delay of the response to ibuprofen was addressed by 257 

the addition of an effect-compartment model and the overall effect as the sum of placebo and drug 258 

was described as following:  259 

𝑑(𝐶𝑒[𝑡])

𝑑𝑡
= 𝑘𝑒0 · {𝐶𝑝[𝑡] − 𝐶𝑒[𝑡]}     (5) 260 

𝑓𝑑(𝐶𝑒) =
𝐸𝑚𝑎𝑥 · 𝐶𝑒

𝛾

𝐶𝑒
𝛾

+ 𝐸𝐶50
𝛾      (6) 261 
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𝑓𝑝[𝑡] = 𝑃𝑚𝑎𝑥 · (1 − 𝑒−𝑘𝑝·𝑡)     (7) 262 

𝑃𝑅(𝑡) =  𝑓𝑝[𝑡] + 𝑓𝑑(𝐶𝑒) + 𝜀     (8) 263 

where 𝐶𝑝 and 𝐶𝑒 are the drug concentrations in plasma and in the effect-site compartment, 264 

respectively; 𝑘𝑒0 and 𝑘𝑝 are the first-order rate constants for the placebo effect and equilibration, 265 

respectively; 𝐸𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥 are the maximum ibuprofen and placebo effect, 𝑓𝑑(𝐶𝑒) and 𝑓𝑝[𝑡] are the 266 

pain relief by ibuprofen and placebo, respectively; γ and 𝐸𝐶50 are the sigmoidicity factor and the drug 267 

plasma concentration to achieve 50% of 𝐸𝑚𝑎𝑥, respectively; 𝑃𝑅(𝑡) represents the pain relief score at 268 

a given time t and 𝜀 stands for the normally distributed residual variability. 269 

The model was able to describe the pain relief score data adequately and the effect was directly related 270 

to the effect-site concentration, which increased much faster for the effervescent than the standard 271 

tablets, with the peak effect site-concentration occurring one hour earlier than for the standard tablet 272 

(1.0 h versus 2.0 h). The sigmoidicity factor was estimated to be 2.0 ± 0.43, confirming the relatively 273 

flat dose-response curve of ibuprofen. 274 

More recently, a PBPK/PD model for Ibuprofen was developed and validated by Cristofoletti and 275 

Dressman[58] with the SimCyp Simulator® version 12.2 (SimCyp Ltd.), fitting antipyretic and dental pain 276 

relief pharmacodynamic models to pharmacokinetic and pharmacodynamic data already published in 277 

the literature. The main goals of this study were a comprehensive evaluation of the clinical relevance 278 

of bioequivalence criteria for ibuprofen immediate-release oral dosage forms and a risk assessment of 279 

waiving in vivo bioequivalence studies of such products. To simulate the pharmacokinetic and 280 

pharmacodynamic profiles, virtual populations similar to those enrolled in the clinical studies by 281 

Walson et al.[59] and Li et al.[60] in terms of age and gender ratio were generated, such that virtual trials 282 

for the dental pain relief model included 100 adults per trial aging between 18-40 years and receiving 283 

tablets of 100, 200, 280 or 400 mg of Ibuprofen. One-at-a-time sensitivity analysis for the gastric 284 

solubility, gastric emptying time (GET), apparent permeability coefficient (Papp) and small intestine pH 285 
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was conducted and the effect of applying different dissolution rates in the simulations on the resulting 286 

pharmacokinetic and pharmacodynamic profiles was also investigated.[58] The authors found that the 287 

dose-response curve for dental pain relief is shallow and as a result relatively insensitive to changes in 288 

plasma concentrations within the range 12-23 mg/L (applying an EC50 of 10.2 mg/L). Comparing the 289 

pharmacodynamic response after the simulated administration of 280 versus 400 mg Ibuprofen tablets 290 

to adults undergoing third molar extraction, no significant differences in the response occurred. 291 

Interestingly, although (under the assumption that the 400 mg tablet is the reference product and the 292 

280 mg tablet is the test product in a virtual bioequivalence scenario) the test product would not be 293 

bioequivalent to the reference product in terms of pharmacokinetics (Cmax ratio (Cmax-T/ Cmax-R) of 0.7), 294 

the 280 mg tablet would be still considered therapeutically equivalent to the 400 mg tablet for dental 295 

pain relief in adult patients.   296 

Cristofoletti and Dressman combined in vitro in vivo extrapolation with PBPK/PD model to simulate the 297 

effect of different dissolution rates from products containing ibuprofen free acid (IBU-H) and salts (IBU 298 

salts) and to investigate whether these would a) reflect reported differences in pharmacokinetics as 299 

well as whether b) differences in pharmacokinetics would translate into difference in the ability of 300 

ibuprofen to relieve dental pain in adults.[61] The model was able to adequately predict the observed 301 

pharmacokinetic profiles. The pain relief model by Li et al.[60] was adopted to simulate ibuprofen 302 

response. As expected from the faster dissolution of the products containing salt forms of ibuprofen, 303 

the 90% confidence intervals (CI) for Cmax did not meet the average bioequivalence (ABE) acceptance 304 

criteria. However, pain relief scores elicited by ibuprofen free acid and salts were identical. 305 

Interestingly, the simulated peak effect-site concentrations for both IBU-H and IBU salts 400 mg were 306 

found to be higher than the estimated EC80≈20 mg/L, indicating that the extent of pain relief would be 307 

insensitive to pharmacokinetic changes at this dose level. Importantly, the duration over which the 308 

effect-site concentrations are maintained above EC80 should be also taken into account. The authors 309 

concluded that the bioequivalence criteria for Cmax might be over-discriminatory and not clinically 310 
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relevant for assessing therapeutic equivalence of ibuprofen products in terms of overall dental pain 311 

relief.   312 

As illustrated by the example of ibuprofen, therapeutic equivalence is not always captured 313 

appropriately by simple plasma concentration measurements due to the insensitivity of the 314 

pharmacodynamic response to the pharmacokinetics in the dose range typically applied. From this 315 

case example, it is evident that the interaction of the drug pharmacokinetics with the pharmacologic 316 

response should be taken into account to set clinically relevant specifications (“safe spaces”) for drug 317 

products. Modeling and simulation techniques would be a powerful tool in this direction, facilitating a 318 

regulatory transition from the current “one size fits all” bioequivalence paradigm to a scenario based 319 

on the clinically-based, specific PK/PD characteristics of the drug product and thus able to provide a 320 

more accurate assessment of therapeutic equivalence. 321 

2.2.3 Anti-nociceptive effect of morphine 322 

 323 

For drugs, which exhibit high biological target affinity and/or reach their site of action by active 324 

transport mechanisms, distribution to the biophase may or may not impose a rate-limiting step. Over 325 

the past few years, several specific transporters that may influence the distribution of drugs to their 326 

site of action in the central nervous system (CNS) have been identified.[62],[63],[64],[65] However, the 327 

number of pharmacokinetic/pharmacodynamic (PK/PD) studies exploring the functional role of these 328 

transporters in the distribution to the effect site are few. One interesting example is the anti-329 

nociceptive effect of morphine, for which mechanism-based models of the biophase distribution 330 

within the central nervous system were established using intracerebral micro-dialysis. 331 

Letrent et al.[66] investigated the effect of GF120918, a potent and selective P-glycoprotein (P-gp) 332 

inhibitor, on the pharmacokinetics and pharmacodynamics of morphine in rats, which were 333 

randomized into GF120918 pretreated, vehicle and control groups. The concentrations of both 334 

morphine and its metabolite, morphine-3-glucoronide (M3G), in serum were quantified and the anti-335 

nociception was expressed as the percentage of maximum possible response (% MPR). A two-336 
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compartment pharmacokinetic model, together with an effect compartment coupled to a sigmoidal 337 

Emax model was employed to simultaneously fit the pharmacokinetic and pharmacodynamic data. 338 

Among the pharmacokinetic (AUC, Cl, MRT, Vss) and pharmacodynamic (ke0, EC50, γ) parameters 339 

evaluated, only the equilibration rate constant (ke0) and the %MPR were significantly altered by pre-340 

treatment with GF120918, indicating a faster onset and more intense action, respectively (p=0.0023). 341 

The increased pharmacodynamic response could not be attributed to pharmacokinetic changes or to 342 

the elevated M3G concentrations. Since M3G does not possess any anti-nociceptive 343 

properties,[67],[68],[69] the authors suggested that the inhibition of P-gp by GF1920918 might diminish the 344 

efflux of morphine from brain capillary endothelial cells, leading to more rapid distribution and higher 345 

concentrations of morphine at its site of action. These data were supported by Xie et al.[70], who 346 

demonstrated, using trans-cortical micro-dialysis, that morphine concentrations in the brain were 347 

increased (1.7-fold) after administration to mdr-1a genetic deficient rats, whereas the metabolite M3G 348 

was unaffected. 349 

Evaluation of the kinetics of biophase distribution within the central nervous system by intracerebral 350 

microdialysis, which has already been successfully applied to the characterization of the distributional 351 

behavior in several cases [71],[70],[72],[73], is a promising tool for the development of more sophisticated, 352 

mechanism-based models, enabling as yet unexplained aspects of the pharmacodynamics of the 353 

central nervous system acting drugs to be illuminated. 354 

 355 

3 Modeling of irreversible mechanisms of action  356 

 357 

3.1 Overview 358 

 359 

In this section, we describe some examples of drugs that act in the human body through irreversible 360 

inhibition at the site of action. In general, pharmacodynamic (PD) effects are initiated by the 361 

interaction of drugs with targets such as receptors, enzymes, ion channels, cell membranes etc. Such 362 
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interactions may be reversible, with a balance between association and dissociation of the drug with 363 

the target, or irreversible when a drug bonds covalently to the target or the dissociation rate is 364 

extremely slow for the relevant time span. As a result of these interactions, a cascade of events is 365 

triggered, leading to the pharmacological effect, which can either stimulate (agonist) or inhibit 366 

(antagonist) a physiological process.[74],[75] 367 

In many cases, drugs that irreversibly inhibit a physiological process are transformed, as a first step, 368 

into reactive metabolites, which then bind covalently to their target, resulting in its inactivation. In 369 

order for the pre-existing situation to be reestablished, it is necessary to resynthesize the target. In 370 

such cases, the duration of action is likely to be independent of the pharmacokinetic half-life of 371 

elimination of the drug and instead depends essentially on the de novo synthesis of the target. The 372 

irreversible inactivation of endogenous enzymes or receptors caused by drugs e.g. the antiplatelet 373 

effect of aspirin after binding cyclo-oxygenase-1,[76],[77] the 5 α-reductase inhibitors,[78],[79] and the 374 

proton pump inhibition by proton pump inhibitors (PPI),[80],[81],[82] are often described using  such 375 

turnover models. Further examples are drugs that  trigger apoptosis in human cells, bactericidal 376 

antibiotics,[83] reduction of viral load due to the treatment with antivirals,[84] cell death processes 377 

induced by anticancer drugs[85] and  cytotoxic drugs which cause myelosupression.[86] 378 

In general, the turnover models that have been presented in the literature are based on the following 379 

differential equation:[87]  380 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 · 𝑅 − 𝑓(𝐶) · 𝑅                𝑅(0) = 𝑅0  (9)     381 

where R denotes the response produced by the drug, 𝑅0 is its initial response value, 𝑘𝑖𝑛 is a zero-order 382 

rate constant for the response, 𝑘𝑜𝑢𝑡 is a first-order elimination rate constant and the function of the 383 

drug concentration 𝑓(𝐶) can be interpreted as a bimolecular interaction of the drug or its active 384 

metabolite with the target. This is the general equation representing the turnover rate of the response, 385 

however, more complex scenarios are also possible, requiring more mechanistic models to be 386 

developed as will be discussed later.   387 

 388 
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Figure 2 depicts a turnover model that can be applied to the interaction between the drugs with 389 

receptors, enzymes or ion channels. In the case of interaction with endogenous enzymes, the 𝑘𝑖𝑛 and 390 

𝑘𝑜𝑢𝑡 parameters represent apparent rates of response formation and dissipation respectively and f(C) 391 

represents the effect as a function of drug concentration. 392 

 393 

3.2 Applications and case examples 394 

 395 

3.2.1 Proton pump inhibitors 396 

 397 

Proton pump inhibitors (PPIs) were chosen as the drug model for this topic since their inhibition of the 398 

proton pump (H+, K+-ATPase) enzyme present in the parietal cells of the stomach is irreversible. To 399 

understand the mechanism of inhibition by the PPIs, models describing the turnover of H+, K+-ATPase 400 

have been described. 401 

The PPIs are, in and of themselves, inactive drugs that require an acid environment for their activation. 402 

These weakly basic substances reach the general circulation after absorption from the gastrointestinal 403 

tract and then become concentrated in the acid compartment of the parietal cells present in the gastric 404 

mucosa. Following their activation by conversion to the sulphonamide form in the acidic intracellular 405 

environment of the parietal cells, a covalent bond occurs between the activated PPI and cysteine 406 

residues present in H+, K+-ATPase. This enzyme is responsible for the final step in the secretory gastric 407 

acid process.[81],[88],[89] As a consequence of the binding, the enzyme is inactivated and this results in 408 

suppression of acid secretion into the gastric lumen.[90],[80] PPIs inhibit both basal and stimulated gastric 409 

acid secretion, regardless of the nature of stimulation of the parietal cells. In order for the acid 410 

secretion to be re-established, de novo synthesis of H+, K+-ATPase is necessary.[90],[91],[92]  411 

Even though the elimination half-life of PPIs is only 1-2 hours, the pharmacodynamic half-life of the 412 

inhibitory effect on H+, K+-ATPase is about 48 hours, rendering a rapid elimination (PK) but long 413 

duration of response (PD) to members of this class.[92],[93],[94] By comparison, the pharmacodynamics of 414 
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drugs that reversibly bind to the proton pump to decrease acidic secretion in the stomach, such as 415 

cimetidine and other H2 receptor antagonists, can be described with a direct response PD model.[95]  416 

To construct a mechanistic PK/PD model for PPIs, several factors have to be considered: the 417 

accumulation of PPI in the parietal cell, the amount of active enzymes present in the canaliculus of 418 

parietal cell, the rate of de novo synthesis of new proton pump enzymes, the metabolism and 419 

inactivation of PPIs, the extent of covalent PPI binding to the proton pump in the parietal cell and the 420 

stability of this binding.[96] Because of this complexity, several different models have been proposed to 421 

describe the relationship between PK and PD for this class of drugs. There are empirical models that 422 

simply consider the turnover of the proton pump and those that are more mechanistic, taking into 423 

account the relevant physiology and PPI characteristics. In this section we will focus on PK/PD models 424 

that have been used to describe the difference between the elimination half-life (PK) of PPIs and the 425 

temporal inhibition of acid secretion (PD) that results from binding of the PPI with H+, K+-ATPase. 426 

Katashima and co-workers[95] were the first to publish a mechanistic PK/PD model for PPIs. In the first 427 

study, a model relating the unbound plasma concentration (𝐶𝑓) of lanzoprazole and omeprazole to 428 

the inhibitory effect on stomach acid secretion was developed. This model, illustrated in Figure 3, 429 

utilizes the apparent turnover process of H+, K+-ATPase to describe the relationship between plasma 430 

concentration and the inhibitory effect of the PPIs on gastric acid secretion.[97] 431 

 432 

According to this PK/PD model, the inactive form of the PPI is present in the plasma, and only after 433 

reaching the acid environment of the parietal cells is it transformed into the active form. This form 434 

then reacts with active H+, K+-ATPase according to a second order reaction with the rate constant, 𝐾, 435 

to establish a covalent bond between the activated PPI and H+, K+-ATPase, resulting in inactivation of 436 

the enzyme. 437 

 438 

The total amount of proton pump (Et) remains at a constant level (ks/k1) because H+, K+-ATPase is 439 

synthesized, on the one hand, at a rate described by the rate constant, Ks, but also eliminated, on the 440 
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other hand, at a rate described by the first order rate constant 𝑘1. The inactive proton pump recovers 441 

at a rate described by the first order rate constant 𝑘2. Under these circumstances, the apparent 442 

turnover rate constant, k, is represented by 𝑘1 + 𝑘2. The time courses of variation in the amount of 443 

active H+, K+-ATPase (𝐸) and the inactive fraction (𝐸𝑐) are expressed by the following equations: 444 

𝑑𝐸

𝑑𝑡
=  −𝐾 ∙ 𝐶𝑓 ∙ 𝐸 − 𝑘 ∙ 𝐸 + 𝑘2 ∙ 𝐸𝑐 + 𝐾𝑠       (10)   445 

𝑑𝐸𝑐

𝑑𝑡
= 𝐾 ∙ 𝐶𝑓 ∙ 𝐸 − (𝑘1 − 𝑘2) ∙ 𝐸𝑐     (11)   446 

An in vivo pharmacokinetic and pharmacodynamic study in rats was conducted over a dose range of 447 

0.006 - 3 mg/kg (IV) with omeprazole and lanzoprazole. Using the data from intravenous 448 

administration in rats, the estimated half-life of the proton pump was 27 times longer than the 449 

elimination half-life for omeprazole and 66 times longer for lansoprazole. Using the PK/PD model 450 

described above, good agreement between predicted and observed data was achieved for both drugs. 451 

 452 

After their success with the PK/PD model in describing the data from rats, Katashima and co-workers[81] 453 

extended the model to human studies with pantoprazole (PPZ), lansoprazole (LPZ) and omeprazole 454 

(OPZ). The PK/PD analysis of these PPIs in humans was conducted using data obtained after oral 455 

administration of OPZ (40mg), LPZ (30mg) and PPZ (40mg). Again, good agreement between the 456 

predicted and observed values for the parameters was achieved. The estimated half-life of elimination 457 

for omeprazole was 0.854 h, for lansoprazole 1.66 h and for pantoprazole 1.52 h, while the apparent 458 

recovery half-life of the inhibitory effect on gastric acid secretion was 27.5 h for omeprazole, 12.9 h 459 

for lanzaprole and 49.9 h for pantaprazole. These results confirmed the divergence between plasma 460 

concentration (PK) and the inhibitory effect on gastric acid secretion (PD) of these there PPIs. 461 

 462 

The mechanistic PK/PD model was extended by Puchalski and co-workers for lansoprazole.[82] Their 463 

model was set up to describe the intra-gastric pH time profile over a 24 hour period, enabling the 464 

circadian rhythm of acid secretion and food effects on intra-gastric pH to be taken into account. Using 465 

this model, the estimated value for lansoprazole half-life of elimination was 3.2h, somewhat longer 466 
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than in the Katashima model (1.66 h), while in the clinical study the pH had not returned to the baseline 467 

level after 24h. As this proposed model took into account several factors that can interfere in the PPI 468 

absorption and activation, it should be particularly useful in the design of clinical studies, the prediction 469 

of the optimal dosing regimen and the investigation of PPI effects in different patient populations.[82] 470 

The inhibitory effect of PPIs on gastric acid secretion has also been described by Abelo and co-471 

workers[80] using a simpler, empirical turnover model type I, as introduced by Dayneka et al.[98] (see 472 

section 4.1.1). In the basic turnover model shown in Eq. 12 and applied to omeprazole in Figure 4, it is 473 

assumed that the drug inhibits or stimulates the production of an effect, which can be characterized 474 

by the zero order 𝑘𝑖𝑛 turnover and the elimination first order kout rate constants as appropriate. The 475 

rate of change of the response (R) provoked in the absence of the drug is described with the following 476 

equation: 477 

 478 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 ∙ 𝑅   (12) 479 

 480 

According to Eq. 12 the acid secretion (𝐴𝑆) is directly proportional to the concentration of the active 481 

proton pump enzyme (𝐸). Equation 13 can be used to correct for the placebo effect on acid secretion: 482 

𝑅 =
𝐴𝑆(𝐷𝑟𝑢𝑔,𝑡)

𝐴𝑆(𝑃𝑙𝑎𝑐𝑒𝑏𝑜,𝑡)
=

𝐸(𝐷𝑟𝑢𝑔,𝑡)

𝐸(𝑃𝑙𝑎𝑐𝑒𝑏𝑜,𝑡)
     (13)    483 

 484 

Omeprazole irreversibly removes the enzyme from the system at a rate proportional to the amount of 485 

enzyme and the inhibitor concentration. Irreversible removal of the enzyme results in a decrease in 486 

the response according to equation 14: 487 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − (𝑘𝑜𝑢𝑡 + 𝑘𝑜𝑚𝑒 ∙ 𝐶𝑝) ∙ 𝑅    (14)   488 

 489 

For a given concentration of omeprazole, the value for 𝑅 at steady state (𝑅𝑠𝑠) will be: 490 

𝑅𝑠𝑠 =
𝑘𝑖𝑛

𝑘𝑜𝑢𝑡+𝑘𝑜𝑚𝑒∙𝐶𝑝𝑆𝑆
     (15)  491 

This relationship states that with increasing omeprazole concentration, 𝑅𝑠𝑠 approaches zero. 492 
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Data from studies in dogs were used to predict the PK and PD parameters for omeprazole for this 493 

species, leading to a prediction for the half-life of elimination of 1.3 h and for the effective half-life for 494 

inhibition of acid secretion (t1/2 Kout) of 51h. Using allometric scaling, the predicted half-life for humans 495 

was 1.5 h and the effective half-life for inhibition of acid secretion (t1/2 Kout) was 71.7 h. The discrepancy 496 

between predicted (71.7 h) and observed (48) t1/2 Kout  in humans was attributed to differences in basal 497 

acid secretion between dogs and humans. [99] 498 

 499 

Ferron and co-workers [100] also used the basic turnover irreversible PK/PD approach, in this case to 500 

describe the inhibition of gastric acid secretion by pantoprazole in rats and humans. The model was 501 

able to adequately describe the time course of gastric acid secretion in rats at all doses studied. The 502 

next step it was to apply it to gastric secretion data obtained after single or multiple oral or intravenous 503 

administration of pantoprazole in humans. The estimated half-life for pantoprazole was 0.5 h in rats 504 

and 0.8 h in humans, in agreement with the observed data in both species. 505 

 506 

Both the mechanistic and empirical models described in this section were able to predict the 507 

discrepancy between the half-life elimination (PK) of PPIs and the time-course of inhibition of acid 508 

secretion (PD). The models were also successful in describing further characteristics of PPIs, namely 509 

that the effect in acid secretion inhibition of PPIs is linked to the extent of exposure (AUC), and that 510 

the onset of action is governed by the maximum concentration (Cmax). Thus, PK/PD modelling provides 511 

a powerful tool for analysing/predicting effects achieved with other dosing regimens. To circumvent 512 

the use of invasive methods in clinical studies for monitoring the gastric pH and inhibition of gastric 513 

acid secretion, it would be necessary to build PK/PD models that can also predict the extent of acid 514 

inhibition in terms of the pH value and the duration over which the pH is kept above a clinically relevant 515 

threshold value (usually pH 4) by the PPI. 516 

 517 
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In conclusion, modelling and simulation clearly shows why PPIs, despite having a short plasma half-life, 518 

are able to have a long duration of effect. Such models enable better decisions to be made about 519 

dosing intervals and also help to identify the time-frames over which drug/drug interactions with PPIs 520 

may persist.  521 

3.2.2 Acetylsalicylic acid 522 

 523 

Similarly to the PPIs, aspirin (ASA) has a long duration of action, even though it has a short elimination 524 

half-life (t1/2 18-30 min).[101],[102] ASA inhibits platelet-derived thromboxane (TXB2), with approximately 525 

60% inhibition still observed four days after discontinuation of ASA.[101],[102] This pronounced 526 

dissociation between the elimination half-life (PK) and the time-frame of drug action (PD) occurs 527 

because ASA binds covalently to TXB2 causing irreversible inhibition of this enzyme. The TXB2 activity 528 

can only be re-established by synthesis of new platelets, which is a process that occurs over a period 529 

of approximately 10-14 days.[101] Because platelets are not nucleated, they are unable to synthesize 530 

new COX-1, and for this reason platelet function will only normalize after the platelets that have been 531 

acetylated by ASA are removed from the systemic circulation and replaced by new platelets derived 532 

from megakaryocytes.[103] 533 

 534 

The first model describing cyclooxygenase activity in platelets and the blood vessel endothelium after 535 

oral administration of aspirin was developed by Yamamoto and co-workers.[77] These authors used 536 

irreversible inhibition, with renewal by enzymatic turnover, to explain the long duration of the 537 

antiplatelet effect of aspirin in humans. In this study thromboxane B2 concentrations and the 538 

percentage of prostacyclin production in the blood vessels were used as biomarkers.[77] 539 

 540 

It has been suggested that non-selective COX-1 inhibitors, e.g. ibuprofen, could limit the cardio-541 

protective effect of aspirin.[104] For this reason Hong and co-workers[76] developed a PK/PD model 542 

that was based on the turnover of the COX-1 enzyme, in which the irreversible inhibition  by aspirin 543 

and the reversible binding by ibuprofen were both incorporated. The rate changes of free 544 
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enzyme concentration available for aspirin binding (𝐸) and the ibuprofen-enzyme complex (𝐸𝐼) were 545 

described by the following equations:  546 

𝑑𝐸

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 · 𝐸 − 𝐾 ∙ 𝐶𝑎𝑠𝑎 ∙ 𝐸 − 𝑘𝑜𝑛 ∙ 𝐶𝑖𝑏𝑢 ∙ 𝐸 + 𝑘𝑜𝑓𝑓 ∙ 𝐸𝐼     (16)     547 

𝑑𝐸𝐼

𝑑𝑡
= 𝑘𝑜𝑛 · 𝐶𝑖𝑏𝑢 ∙ 𝐸 − 𝑘𝑜𝑓𝑓 ∙ 𝐸𝐼 − 𝑘𝑜𝑢𝑡 ∙ 𝐸𝐼     (17)                 548 

where 𝑘𝑖𝑛 is the zero-order production effect rate constant, 𝑘𝑜𝑢𝑡 is the first order elimination rate 549 

constant, 𝐾 is the second-order rate constant for the irreversible enzyme inactivation by aspirin, 550 

and 𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓 are the association and dissociation rate constants for binding of ibuprofen on the 551 

enzyme. 𝐶𝑎𝑠𝑎 and  𝐶𝑖𝑏𝑢 represent the aspirin and ibuprofen concentrations in the plasma, assuming 552 

that both drugs follow a one compartment PK model with first order rate constants for absorption and 553 

elimination.  554 

The mechanistic PK/PD model was able to reflect the anti-platelet effect of aspirin administered either 555 

alone or concomitantly with ibuprofen. As well as simulating the PK and PD time courses,  significant 556 

inhibition of the antiplatelet effects of aspirin in the presence of a typical ibuprofen regimen was also 557 

demonstrated.  558 

The most mechanistic PK/PD model describing the effects of aspirin on COX-1 activity to date was 559 

proposed  by Giareta and co-workers.[105] This model uses a population of megakaryocytes (MK) and 560 

peripheral platelets present in the blood circulation to describe aspirin’s antiplatelet activity, as shown 561 

in Figure 5.  562 

For the construction of the PK/PD model for aspirin, the inactivation of COX-1 by low dose aspirin and 563 

the recovery of COX-1 after stopping treatment were taken into consideration. Other physiological 564 

processes, e.g. the description of the megacariopoiese process responsible for the maturation and 565 

generation of new platelets, were also accounted for. The basic characteristics of the megacariopoiese 566 

process are shown in Figure 5. The schematic description of the resulting PK/PD model is shown in 567 

Figure 6. It consists of three linear compartments to describe the PK behavior of aspirin and two non-568 
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linear compartments to describe the mechanism of inactivation of COX-1 (PD) in MK cells and in the 569 

platelets generated from them. A full mathematical description of the model has been published by 570 

Giaretta and co-workers.[105] 571 

 572 

The PK and PD parameters of the model were inferred from the literature and calibrated by 573 

measurements of TXB2, which represents the COX-1 activity in peripheral platelets, in 17 healthy 574 

subjects and 24 patients with essential thrombocythemia (ET).[105] The model was able to reproduce 575 

both the mean TXB2 inhibition time in healthy patients and the reduced inhibition of TXB2 seen in 576 

patients with ET. Thus, this mechanistic PK/PD model may helpful to customize aspirin regimens under 577 

conditions of altered megakaryopoiesis. 578 

 579 

In addition to the dissociation between PK (short half-life of elimination) and PD (long response period) 580 

demonstrated by the models described above, the dose-response relationship for platelet inhibition 581 

by aspirin is flat. Feldman and co-workers[101] demonstrated that even with a 10-fold increase in dose 582 

of aspirin, only a two-fold increase in response (inhibition of TXB2) was observed. Since doses of 81 583 

and 325 mg of ASA are not significantly different with regard to this clinical response, applying a  low 584 

dose of aspirin to prevent platelet aggregation is justified.[101] 585 

In summary, mechanistic models of the pharmacodynamic action of aspirin on platelets appear to be 586 

useful for customizing the prevention of thrombus formation and for designing clinical trials in special 587 

patient populations e.g. the elderly, pregnant women, children, obese patients, etc. Indeed, regulatory 588 

authorities are increasingly relying on and encouraging the use of modeling and simulation to forecast 589 

changes in PK and PD in rare diseases and in special populations of patients in whom it is challenging 590 

to perform clinical trials. 591 

3.2.3 Exemestane 592 

 593 
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Exemestane, an irreversible aromatase type I (Ar type I) inhibitor for the treatment of advanced breast 594 

cancer of postmenopausal women, provides a further, interesting example of irreversible binding and 595 

biological target inactivation.  596 

 597 

In an open, three-period, randomized, crossover study of twelve healthy post-menopausal women 598 

Valle et al. investigated the effects of formulation (suspension versus tablet) and administration of 599 

food (i.e. fasted versus fed) on the pharmacokinetics and pharmacodynamics of exemestane. As had 600 

already been demonstrated by previous clinical trials, oral administration of exemestane (25 mg/day) 601 

inactivates peripheral aromatase, leading to a 85-95% decrease in basal plasma estrone, estradiol and 602 

estrone sulphate (EIS) concentrations in post-menopausal women with advanced breast cancer. 603 

[106],[107],[108] First, population pharmacokinetic models, consisting of a mono- or bi- exponential 604 

absorption and three compartment distribution function, with empirical Bayesian estimates for each 605 

individual were developed. Absorption lag times were determined for both absorption models. An 606 

inhibitory (type I) indirect response pharmacodynamic model (see more details in section 4.1), in which 607 

synthesis and elimination of EIS (which is indirectly related to aromatase activity) are governed by zero- 608 

and first-order rate constants, respectively, was implemented to describe the dissociation between 609 

plasma concentrations and the observed effect: 610 

𝑑𝐶𝐸𝐼𝑆

𝑑𝑡
= 𝑘𝑠 − 𝑘𝑜 · 𝐶𝐸𝐼𝑆     (18) 611 

𝑑𝐶𝐸𝐼𝑆

𝑑𝑡
= 𝑘𝑠 · (

𝐶𝛾

𝐶𝛾 + 𝐼𝐶50
𝛾 ) − 𝑘𝑜 · 𝐶𝐸𝐼𝑆   𝐶𝐸𝐼𝑆(0) = 𝐶𝐸𝐼𝑆 0    (19) 612 

where 𝐶𝐸𝐼𝑆 is the plasma concentration of estrone sulphate, 𝑘𝑠 is the zero order rate constant for 613 

synthesis and 𝑘𝑜 is the first-order rate constant for elimination, 𝐶𝛾 is the exemestane plasma 614 

concentration, 𝐼𝐶50 represents the exemestane plasma concentration at which 50% of inhibition is 615 

achieved and γ is the Hill-coefficient. This semi-empirical, non-linear mixed-effect modeling approach 616 

fitted the data adequately.  617 
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A more mechanistic model, incorporating the irreversible aromatase inactivation by exemestane, was 618 

also applied. In this model the aromatase concentration, Ar, is assumed to be the system variable 619 

controlling the rate of synthesis of EIS. The production and elimination rate of aromatase is in turn 620 

governed by a zero-order (𝑘𝑠𝑒) and first-order (𝑘𝑜𝑒) rate constant, respectively. The irreversible 621 

inhibition of aromatase by exemestane is characterized by an increase in the elimination of aromatase 622 

and represented by a second-order rate constant 𝑘𝑖. Assuming that the concentration of EIS precursor 623 

is constant and the concentration of aromatase is known, the model is fully identifiable. The rate of 624 

concentration changes of EIS and Ar are defined by the equations:  625 

𝑑𝐶𝐸𝐼𝑆

𝑑𝑡
= 𝑘𝑠 · 𝐴𝑟 − 𝑘𝑜 · 𝐶𝐸𝐼𝑆     𝐶𝐸𝐼𝑆(0) = 𝐶𝐸𝐼𝑆 0     (20) 626 

𝑑𝐴𝑟

𝑑𝑡
= 𝑘𝑠𝑒 − 𝑘𝑜𝑒 · 𝐴𝑟 − 𝑘𝑖 · 𝐶𝐸𝐼𝑆 · 𝐴𝑟    𝐴𝑟(0) = 𝐴𝑟0     (21) 627 

 628 

where 𝐴𝑟0 is the baseline concentration of aromatase. 629 

 630 

The adoption of a more physiological relevant mechanism of action in the model was expected to 631 

provide better results. Nevertheless, the goodness of fit was not significantly improved over the type 632 

I indirect response model. Despite being semi-empirical, the type I indirect-response model was able 633 

to predict the drug effect in different scenarios (i.e. doses, dosage regimens), providing an external 634 

validation. In a sense, the initial, indirect response type I model could be considered as a “collapsed” 635 

form of the mechanism-based model, under the assumptions that Hill-coefficient is equal to one (γ=1) 636 

and that the aromatase dynamics equation is solved at equilibrium and then substituted in the EIS 637 

equation. These assumptions appear to be justified in the case of exemestane, since the 638 

pharmacodynamic parameters do not change significantly in the data range studied and a value of Hill-639 

coefficient 1.75 (γ=1.75) has been reported. Hence, a relatively flat dose-response is implied. 640 

 641 
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An almost 4-fold increase in the absorption rate of exemestane when administered as a suspension as 642 

compared to a tablet was detected, while food intake decreased the absorption rate. Interestingly, 643 

these differences were mitigated in terms of pharmacodynamic response such that the maximum 644 

effect and time to maximum effect were not significantly different among treatment groups. The 645 

authors concluded that even large differences in pharmacokinetics arising from formulation or 646 

administration with food were not translated to a meaningful difference in pharmacodynamics. 647 

 648 

The example of exemestane is interesting for two main reasons: a) it illustrates that a mechanism-649 

based model of irreversible pharmacodynamics can be transformed, depending on data availability or 650 

fast equilibration, to a simplified, “collapsed” model, without influencing the outcome appreciably, 651 

and b) observed differences in absorption patterns and food effects are not always clinically relevant, 652 

especially when there is a long delay between plasma levels and the elicited drug response. Again, 653 

these findings support the consideration of pharmacodynamics as well as pharmacokinetics when 654 

determining whether two drug products or two dosing scenarios are therapeutically equivalent. 655 

 656 

4 Indirect response and feedback control models 657 

 658 

4.1 Overview 659 

 660 

Most pharmacological targets are subject to homeostatic mechanisms, characterized by continuous 661 

degradation on the one hand and re-synthesis of one or more biomarkers (e.g. enzymes, antibodies, 662 

circulating proteins or inflammation factors) to compensate for elimination on the other hand, which 663 

balance each other to maintain a stable steady-state. This is often referred to as the turnover process. 664 

Some drugs elicit their action by perturbing the steady-state, resulting in a temporary or a more 665 

permanent change in the marker value. Such mechanisms of actions, which do not affect the response 666 

itself but rather influence the turnover process, are inherently indirect and the models describing their 667 

effect-time course are usually referred to as turnover or indirect response models. These models 668 
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typically exhibit a delay between the drug concentration-time and response-time profiles. The 669 

amplitude of the response and the extent of the time delay are dependent on the turnover rates 670 

(synthesis and degradation) of the pharmacological target as well as the magnitude of the effect. 671 

4.1.1 “Basic” and “extended basic” indirect response models 672 

 673 
Nagashima et al.[109] were the first to implement an indirect response model, which was used to explain 674 

the anticoagulant effect of warfarin on the activity of the prothrombin complex. In 1993, Dayneka et 675 

al.[110] introduced four basic mathematical models describing the indirect pharmacological processes, 676 

according to which the production and loss of the response, R, are governed by zero- and first-order 677 

rate constants, kin and kout, respectively. The drug can inhibit or stimulate the synthesis and/or the 678 

elimination process as follows:  679 

Model I (inhibition of kin):  680 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 · (1 −

𝐼𝑚𝑎𝑥 · 𝐶

𝐶 + 𝐼𝐶50
) − 𝑘𝑜𝑢𝑡 · 𝑅,   𝑅(0) = 𝑅0      (22)   681 

Model II (inhibition of kout): 682 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 · (1 −

𝐼𝑚𝑎𝑥 · 𝐶

𝐶 + 𝐼𝐶50
) · 𝑅,   𝑅(0) = 𝑅0      (23)   683 

Model III (stimulation of kin): 684 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 · (1 +

𝐸𝑚𝑎𝑥 · 𝐶

𝐶 + 𝐸𝐶50
) − 𝑘𝑜𝑢𝑡 · 𝑅,   𝑅(0) = 𝑅0      (24) 685 

Model IV (stimulation of kout):  686 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 · (1 +

𝐸𝑚𝑎𝑥𝐶

𝐶 + 𝐸𝐶50
) · 𝑅,   𝑅(0) = 𝑅0      (25) 687 
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where 𝑘𝑖𝑛, 𝑘𝑜𝑢𝑡 are the zero order production and first order elimination rate constants, C is the drug 688 

plasma concentration, and 𝐸𝐶50 and 𝐼𝐶50 represent the drug plasma concentrations achieving 50% of 689 

the maximum stimulating, 𝐸𝑚𝑎𝑥, and inhibitory, 𝐼𝑚𝑎𝑥, effects, respectively. 690 

These four basic models, which are illustrated in Figure 7, have been applied extensively and some 691 

examples have been summarized by Jusko and Ko.[4] The inhibition of basophil trafficking by 692 

methylprednisolone and the furosemide-mediated inhibition of water reabsorption from the tubules 693 

and collecting duct were assessed by Model I and II, respectively, while the stimulation of the cyclic 694 

adenosine monophosphate (cAMP)-induced bronchodilation by the β-adrenergic receptor agonist 695 

terbutaline was described by Model III. In a further example, it was shown that the increase in cAMP 696 

by terbutaline activates the cellular membrane sodium-potassium pump, resulting in an increase of 697 

efflux of potassium ions from the plasma into cells, an effect that can be described with Model IV. 698 

These basic turnover models can be modified and/or extended to account for more complex 699 

physiological processes such as time-dependent production (kin(t)),[111] the rate of loss of cells 700 

according to their lifespan[112],[113],[114] and capacity limited processes such as nonlinear synthesis and 701 

degradation functions.[115] Further, many physiological processes such as secretion of hormones and 702 

gastric acid, gene expression, cardiac output and blood pressure are known to be subject to circadian 703 

rhythms, which might influence the pharmacokinetics and pharmacodynamics of various 704 

drugs.[116],[117],[118] Symmetric circadian rhythms have been described by trigonometric functions, such 705 

as the cosine model introduced by Lew et al.,[119] whereas asymmetric circadian rhythms have been 706 

modelled with the addition of exponential, dual cosine or harmonic functions.[120],[111] The detailed 707 

mathematical formalism around these functions has been summarized by Krzyzanski.[121] 708 

 709 

4.1.2 Signal transduction and feedback control indirect response models 710 

 711 
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When a sequence of events takes place between receptor binding or activation and the observable 712 

effect, this is referred to as signal transduction and can involve signaling cascades, activation or 713 

inhibition of secondary messengers, gene up- or down-regulation and mRNA transcription to 714 

functional proteins. By definition, every transduction process has two inherent attributes: the 715 

transformation of the original signal and the introduction of a time-delay.[122],[123] Depending on the 716 

experimental time-scale, the time delay might or might not be discernable and in the latter case the 717 

response is described by a transduction model with no delay, for example in the operational model of 718 

agonism introduced by Black and Leff.[124] This model has been applied to describe the 719 

pharmacokinetic/pharmacodynamic relationships of A1 adenosine, μ-opioid and 5-HT1A receptor 720 

agonists.[125],[126],[127],[128],[129] However, in other cases the time delay produced by the transduction 721 

process is significant and the mathematical models need to be adjusted accordingly. The most common 722 

approach is the so-called transit compartment model (Fig. 8), which has been applied to the modeling 723 

of the genomic effects of corticosteroids, in this case known as the 5th generation model for 724 

corticosteroids, as well as myelosuppression and hematologic toxicity in cancer 725 

chemotherapy.[130],[131],[132],[133] 726 

Most physiological processes are subject to feedback control and belong to the so-called 727 

autoregulation systems. The pharmacokinetic/pharmacodynamic (PK/PD) models that do not address 728 

these auto-regulatory mechanisms fail to provide a complete insight of the drug-exposure relationship 729 

and it has been shown that this can lead to underestimation of the drug’s potency.[123] The feedback 730 

control indirect response (FC IDR) models (see Figure 9) usually incorporate terms proportional to the 731 

error signal itself, the integral and the derivative of the error signal in linear and, less commonly, in 732 

nonlinear combinations. There are also FC IDR models which include an additional state, the 733 

“moderator” state, which feeds back to alter the synthesis or turnover of the response.[134] Numerous 734 

applications of PK/PD models incorporating feedback regulation mechanisms have been published in 735 

the literature.[132],[135],[136] The example of (S)-citalopram, a widely used selective serotonin receptor 736 

inhibitor (SSRI), is presented in detail in section 4.3. 737 
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4.2 Applications and case examples 738 

 739 

4.2.1 Ibuprofen: antipyretic response  740 

 741 

As mentioned in section 2.2.2, the antipyretic effect of ibuprofen resulting from the inhibition of 742 

prostaglandin synthesis has been investigated in numerous clinical studies and an indirect response 743 

model has been applied to fit the reported pharmacodynamic data. In a single-dose, placebo-744 

controlled, double-blind and parallel-group trial by Walson et al.,[137] the safety, efficacy, tolerability 745 

and dose-effect relationships of ibuprofen products, formulated as a suspension at doses of 5 mg/kg 746 

and 10 mg/kg to treat febrile children, were compared to liquid formulations of acetaminophen. The 747 

patients (N=127) were split into groups according to their initial temperature and on whether 748 

antibiotics were being administered concurrently. A positive dose-response relationship between 749 

ibuprofen suspension 5 mg/kg and 10 mg/kg in the higher temperature (102.6-104°F), non-antibiotic 750 

group was demonstrated, whereas in the lower temperature group (101-102.5°F) both doses were 751 

equally effective. However, the authors pointed out that the plasma levels necessary for maximum 752 

effective antipyresis of ibuprofen (approximately 10 mg/L) are achievable at doses even less than 5 753 

mg/kg, implying a ceiling effect in the antipyretic response at doses of 5 mg/kg or higher. 754 

 Similar results in 178 children were observed by Wilson et al.[138] In a single-dose, placebo-controlled 755 

study, during which age and initial temperature were considered as co-variates, both the 5 and 10 756 

mg/kg doses were significantly superior to placebo, but not different from each other in terms of 757 

maximum reduction in temperature. However, it was concluded, based on the temperature at 6 hours 758 

after administration, the change of temperature from the baseline value and the percentage of 759 

efficacy, that the 10 mg/kg dose was more effective. The effect of the age and the initial temperature 760 

value on the magnitude of the pharmacological action was also emphasized.   761 

In a double-blind, randomized, single-dose study of 5 and 10 mg/kg ibuprofen to treat febrile children 762 

(N=153) Brown et al.[139] noted a dissociation between tmax and time of maximum temperature 763 

decrease and found no correlation between the extent of temperature change and plasma levels at 764 
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tR,max or 6 hours post-administration. Further, there was no evidence that pretreatment with 765 

antibiotics, race or gender influenced the antipyretic effect. By contrast, age and initial temperature 766 

were shown to be co-variates. Interestingly, after compartmental pharmacokinetic analysis, only the 767 

pharmacodynamic, but not the pharmacokinetic parameters related to absorption (Cmax, tmax) and 768 

elimination (kel, t1/2), were affected by the age of the child. In a subsequent paper, Brown et al. [140] 769 

implemented an effect-compartment model coupled with a sigmoid Emax pharmacodynamic model to 770 

describe the antipyretic effect of ibuprofen in children and further elaborated the model by adding a 771 

linear and/or sinusoidal cyclic function for the decrease in temperature as co-variates to fit their own 772 

as well as previously reported data [138]. Values of the estimated sigmoidicity factor (γ) were 3.97 ± 0.58 773 

and 4.27 ± 0.63 for ibuprofen 5 mg/kg and 10 mg/kg, respectively, implying that the dose-response 774 

relationship for antipyresis in children might be steeper than for dental pain relief in adults.  775 

Troconiz et al.[47] reported a temporal disconnection between tmax after administration to febrile 776 

children of 7 mg/kg ibuprofen as a suspension or as effervescent granules dosed at 200 or 400 mg (0.5 777 

for the suspension and 1.9 hours for the effervescent granules) and time of maximum decrease in body 778 

temperature (3 hours in both cases), suggesting that the formulation and its pharmacokinetic behavior 779 

has little impact on the antipyretic effect of ibuprofen. The antipyretic response of non-steroidal anti-780 

inflammatory drugs (NSAIDs) has been attributed to their ability to inhibit the synthetic pathway of 781 

prostaglandins, particularly of prostaglandin E2 (PGE2), via an indirect mechanism.[141] The following 782 

equation was derived to describe the pharmacodynamics of antipyresis by this mechanism: 783 

𝑑𝑇

𝑑𝑡
= 𝑘𝑠𝑦𝑛 · (1 − 𝐸max ·

𝐶𝛾

𝐶𝛾 + 𝐸𝐶50
𝛾 ) − 𝑘𝑜𝑢𝑡 · 𝑇        (26) 784 

where 𝑑𝑇 𝑑𝑡⁄  represents the rate of body temperature change with time, 𝑘𝑠𝑦𝑛 and 𝑘𝑜𝑢𝑡 are the zero-785 

order and first-order rate constants for synthesis and degradation of the inflammation mediator (i.e. 786 

PGE2), respectively, 𝑇 is the body temperature, 𝐸max is the maximum antipyretic effect, 𝐸𝐶50 is the 787 
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drug plasma concentration (𝐶) required to achieve half of the maximum effect and 𝛾 is the sigmoidicity 788 

factor. 789 

The proposed pharmacokinetic-pharmacodynamic model fitted the antipyretic profiles well. The 790 

estimated 𝐸𝐶50 and 𝑘𝑜𝑢𝑡 parameters were in agreement with those previously reported by Garg and 791 

Jusko (6.18 versus 10.2 mg/L for 𝐸𝐶50 and 1.17 versus 0.89 h-1 for 𝑘𝑜𝑢𝑡), who had also applied an 792 

indirect response model.[142] The sigmoidicity factor was calculated to be 2.71 ± 0.18, suggesting a 793 

relatively flat dose-response curve. In contrast to previous studies, however, age and initial 794 

temperature did not elicit covariate effects. [138],[143]  795 

Based solely on the differences in Cmax and tmax between the suspension and the effervescent granule 796 

formulations, a delayed onset of drug action would be expected for the effervescent granules. 797 

Nevertheless, the maximum antipyretic effect was similar and occurred at the same time for both 798 

formulations. Importantly, an almost identical mean effect time course of 200 and 400mg of Ibuprofen 799 

effervescent granules in febrile children was observed, implying that at least for this formulation there 800 

was no significant clinical benefit with a dose increase (Fig. 10). Therefore, the authors concluded that 801 

the formulation-dependent pharmacokinetic differences are mitigated by the response mechanism, 802 

leading to similar pharmacodynamic responses for both formulations at both doses in febrile children. 803 

Using a verified PBPK/PD model Cristofoletti and Dressman simulated the antipyretic response with 804 

virtual trials of 2, 5, 7 or 10 mg/kg dosing of Ibuprofen suspension to 100 febrile children per trial in 805 

the age range of 2-11 years.[58] In terms of maximum decrease in temperature from the baseline value, 806 

the 5, 7 and 10 mg/kg doses were proven to be significantly superior to 2 mg/kg but not statistically 807 

different from one another. A rather flat dose-response curve (with EC50≈6.18 mg/L) was confirmed 808 

for the antipyretic effect in children. Under the assumption that the 7 and 10 mg/kg dose represent 809 

the test and reference products, respectively, the test product would be bioinequivalent to the 810 

reference in terms of Cmax and AUC ratios (Cmax,T/Cmax,R and AUCmax,T/AUCmax,R around 0.7), but still 811 

therapeutically equivalent in children. This conclusion is supported by the data from Troconiz et al.[47], 812 
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whose clinical trial demonstrated superimposable antipyretic profiles between ibuprofen suspension 813 

7 mg/kg and effervescent granules 400 mg (normalized by children mean body weight as 11.8 mg/kg) 814 

after administration to febrile children.                                 815 

4.2.2 Rosuvastatin 816 

 817 

Of the currently available 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) 818 

inhibitors, rosuvastatin is one of the most effective at lowering the low density lipoprotein (LDL) 819 

cholesterol. Mevalonic acid synthesis, which takes place in the liver, is catalyzed by HMG-CoA 820 

reductase and is the first irreversible stage of the cholesterol biosynthetic pathway.[144],[145],[146]  821 

A pharmacokinetic/pharmacodynamic model was developed to predict the response of rosuvastatin 822 

to different dosage regimens and identify differences in response between morning (at 07:00 a.m.) 823 

and evening (at 06:00 p.m.) administration. For this purpose, Aoyama et al.[147] used a two-824 

compartment pharmacokinetic model with first order absorption and elimination from the central 825 

compartment, which was then linked to a modified inhibitory indirect response pharmacodynamic 826 

model describing the plasma concentrations of mevalonic acid (MVA). The model was further extended 827 

by incorporating a time-dependent periodic function in the zero-order synthesis rate constant of 828 

mevalonic acid to account for the circadian rhythm, as introduced by Krzyzanski et al.[148],[149] The model 829 

is presented in Figure 11 and described by the following equations:  830 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 · (1 −

𝐶𝑝
𝛾

𝐶𝑝
𝛾

+ 𝐼𝐶𝑝50
𝛾 ) − 𝑘𝑜𝑢𝑡 · 𝑅     (27)    831 

where R is the response, 𝑘𝑖𝑛 is the time-dependent zero order rate constant for the increase in plasma 832 

MVA concentration, 𝑘𝑜𝑢𝑡  is the first order rate constant for the decrease in plasma MVA 833 

concentration, 𝐶𝑝 represents the plasma concentration of rosuvastatin, 𝐼𝐶𝑝50 is the plasma 834 

concentration at which 𝑘𝑖𝑛 is reduced 50% and 𝛾 is the sigmoidicity factor. The time-dependent 𝑘𝑖𝑛 to 835 

account for the circadian rhythm is defined as follows 836 
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𝑘𝑖𝑛 =  𝑘𝑚 + 𝑘𝑎𝑚𝑝 · cos(2 · 𝜋(𝑡 − 𝑡𝑧) 24⁄ )    (28) 837 

where 𝑘𝑚 and 𝑘𝑎𝑚𝑝 represent the mean MVA synthesis and its amplitude rate constants, respectively, 838 

and 𝑡𝑧 is the acrophase time, during which MVA is synthesized at the maximum rate. The following 839 

function to describe the circadian rhythm of 𝑘𝑚  was proposed by Krzyzanski et al.[148]: 840 

𝑘𝑚 =  𝑘𝑜𝑢𝑡 · 𝐼𝐶 −
𝑘𝑎𝑚𝑝 · 𝑘𝑜𝑢𝑡

2

𝑘𝑜𝑢𝑡
2 + (2𝜋 24⁄ )2

· [cos (
2 · 𝜋 · (𝑡𝑧)

24
) − (

2 · 𝜋

24 · 𝑘𝑜𝑢𝑡

) · 𝑠𝑖𝑛 (
2 · 𝜋 · (𝑡𝑧)

24
)]    (29) 841 

where IC is the initial plasma MVA concentration measured at 6 a.m., set to 4.32 ng/ml. 842 

Application of the time course of rosuvastatin and mevalonic acid plasma concentration to the model 843 

enabled an adequate prediction of the clinical data reported by Martin et al.[150] A higher reduction 844 

ratio of 7.7% in the area under the plasma MVA concentration–time curves over 24 hours at steady 845 

state (AUEC0-24) was observed after administration in the evening. Furthermore, sensitivity analysis on 846 

the pharmacokinetic parameters showed that changes in the pharmacokinetics have a greater effect 847 

on the AUEC0-24 reduction ratio after morning than after evening administration. This was attributed 848 

to the circadian rhythm, with the acrophase time estimated to be 15.5 hours. The authors concluded 849 

that evening administration of rosuvastatin might be useful in clinical practice.[147] The main limitation 850 

of the model is that it is based only on the mean plasma pharmacokinetic and pharmacodynamic data. 851 

Therefore, it does not address the concentration at the effect site, which is the liver and not the 852 

plasma, or the inter-subject variability. Most importantly, the use of only one mean PK/PD data set 853 

raises questions about the identifiability of the estimated parameters and caution should be exercised 854 

in drawing conclusions about the validity of this model. 855 

Since the liver is the effect site for the statins, uptake into the liver is an important factor in their 856 

efficacy. Multiple transporters of the family of the organic anion transporting polypeptide (OATP) 857 

family are abundant in the liver, facilitating the active hepatic uptake of endogenous substances and 858 

xenobiotics, including statins, from sinusoidal blood.[151],[152],[153],[154],[155] Rosuvastatin is a substrate of 859 

the organic anion transporting polypeptide 1B1, 1B2, 1B3, 1A2 and the sodium-dependent 860 
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taurocholate co-transporting polypeptide.[151],[156] The expression of OATP1B1 on the sinusoidal 861 

membrane of human hepatocytes is encoded by the gene SLCO1B1, which is subjected to single-862 

nucleotide polymorphisms (SNPs). As already demonstrated for paravastatin, pitavastatin and 863 

simvastatin, such polymorphisms are associated with reduced OATP1B1 in vitro activity and markedly 864 

increased plasma concentrations.[157],[158],[159],[160],[161] Pasanen et al.[158] investigated the effect of 865 

SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin, after oral 866 

administration in 32 healthy volunteers, with the following genotypes: SLCO1B1 c.521CC (n=4), 867 

SLCO1B1 c.521CT (n=12), SLCO1B1 c.521TT (wild type, n=16). Significant increases in the AUC0-48 h and 868 

Cmax (65% and 79%, respectively) in SLCO1B1 c.521CC subjects compared to the reference genotype, 869 

SLCO1B1 c.521TT, were observed. By contrast, increases in the AUC0-48 h (144% increase), but not the 870 

Cmax, were reported after administration of atorvastatin. This study implies that the reduced OATP1B1-871 

mediated hepatic uptake of rosuvastatin due to SLCO1B1 polymorphism results in an increased risk of 872 

a reduced cholesterol-lowering effect as well as adverse effects such as myopathy and/or 873 

rhabdomyolysis. 874 

Based on the model of Aoyama et al.,[147] a full PBPK/PD model was built in the SimCyp Simulator® by 875 

Rose et al.[162] to investigate the impact of polymorphic hepatic uptake (OATP1A1, OATP1B4) and efflux 876 

transposers (BcRP, MRP2) on the disposition, pharmacologic and toxic effects of rosuvastatin. First, 877 

plasma concentrations were linked to the cholesterol-lowering effect of rosuvastatin, according to the 878 

plasma AUC of MVA. The simulations performed with the PBPK/PD model showed a large increase in 879 

the mean plasma AUC infinity (AUC∞)  of rosuvastatin by 63% and 111% for the SLCO1B1 c.521CT and 880 

SLCO1B1 c.521CC, respectively, compared to the wild type (SLCO1B1 c.521TT). Similarly, a significant 881 

increase in MVA plasma AUC of 30% and 35% for the same genotypes was observed. However, the 882 

hepatic unbound intracellular water concentration (CuIW) of rosuvastatin, which was predicted by a 883 

permeability limited liver model, was considered to be a more relevant driver of its pharmacodynamic 884 

effect. Interestingly, only a slight decrease in CuIW based AUC∞ of 5.7% and 9.6%, with a parallel 885 

decrease in MVA plasma AUC of 3.1% and 5.8% were reported for the heterozygote and homozygote, 886 
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respectively. The latter findings are in agreement with a number of studies showing that OATP1B1 887 

c.521T>C SNP has either no or only a slight effect on the cholesterol-lowering response to 888 

statins,[163],[164],[165] and that when plasma concentrations were used as the input, the results were 889 

misleading. 890 

With regard to toxic effects, the effect of genetic polymorphism on rosuvastatin-mediated myopathy 891 

was investigated by prediction of muscle concentrations using a perfusion-limited model. A strong 892 

correlation between plasma concentrations and the risk of muscle-related adverse effects was 893 

observed. Thus, in contrast to the results for the cholesterol-lowering effect of rosuvastatin, the 894 

plasma concentration appears to be a good surrogate for the concentration at the muscle when 895 

assessing the risk of statin-induced muscle toxicity in individuals with polymorphic hepatic uptake 896 

transporter activity. This result was also in agreement with an already published study.[166] 897 

High inter-individual variability among the different genotypes, limited availability of accurate in vitro 898 

data and/or published clinical studies at different dose levels as well as incomplete understanding of 899 

the impact of transporters on pharmacokinetics and/or pharmacodynamics, are some of the 900 

limitations which restrict the robustness of the models for rosuvastatin and their confidence in 901 

simulating different clinical scenarios. Despite these limitations, rosuvastatin serves as a useful case 902 

example to demonstrate the potential of linking PBPK with PD model to enhance physiological 903 

understanding and improve the ability to assess the impact of transporters on the pharmacologic 904 

and/or toxic response. Of particular importance was the finding that, in some instances, parameters 905 

other than the plasma concentration are appropriate indicators of the therapeutic and/or toxic effect.  906 

This example illustrates that implementation of (PB)PK/PD models (even on an exploratory basis) can 907 

provide valuable information during clinical drug development and significantly contribute to the 908 

clinical ramifications of genetic polymorphism and facilitate an optimal dosing regimen. 909 

4.2.3 Escitalopram 910 

 911 
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Selective serotonin reuptake inhibitors (SSRIs), such as escitalopram, block the neuronal reuptake of 912 

serotonin (5-HT), resulting in increased neurotransmitter concentration at the terminal and somato-913 

dendritic areas. However, the auto-receptors 5-HT1A and 5-HT1B, which regulate the 5-HT release from 914 

neurons by negative feedback control, are also situated at the terminal and somato-dendritic neuronal 915 

parts, respectively (Fig. 12).[167] Intracerebral microdialysis can be used to measure the extracellular 916 

concentration of 5-HT and thus its concentration at the site of action.[168],[169]  917 

Bundgaard et al.[170] developed an indirect response PK/PD model for escitalopram, including a 918 

moderator state (tolerance model) to account for the auto-inhibitory feedback. For this purpose, 919 

different doses of escitalopram were administered intravenously at a constant infusion rate over 60 920 

minutes in four groups (vehicle, 2.5, 5 and 10 mg/kg) of six male Sprague-Dawley rats and the response 921 

was expressed as the change in extracellular 5-HT concentration. A two-compartment 922 

pharmacokinetic model with first order elimination from the main compartment was used to fit the 923 

individual mean unbound plasma concentration-time profiles for each dose group and the predicted 924 

profiles were used as the input to drive the pharmacodynamic model. A type II basic indirect response 925 

model was implemented to describe the inhibition of 5-HT reuptake. In this model, the increase in the 926 

response, R, over the baseline value R0, feeds back to the moderator compartment and stimulates the 927 

production of the moderator, M. As a simplifying approximation, the rates in and out of M are 928 

described by a first-order rate constant ktol. An increase in M induces a negative feedback on the 929 

generation of the response and thus enables the baseline value to be reestablished. The model is 930 

illustrated in Figure 13 and described by the following equations:  931 

𝑑𝑅

𝑑𝑡
=

𝑘𝑖𝑛

𝑀
− 𝑘𝑜𝑢𝑡 · 𝑅 · 𝐼(𝐶𝑝)    (30) 932 

𝑑𝑀

𝑑𝑡
= 𝑘𝑡𝑜𝑙 · 𝑅 − 𝑘𝑡𝑜𝑙 · 𝑀      (31) 933 

𝐼(𝐶𝑝) = 1 −
𝐼𝑚𝑎𝑥 · 𝐶𝑝

𝑛

𝐼𝐶50
𝑛 + 𝐶𝑝

𝑛      (32) 934 
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where R, M and Cp represent the response, the moderator and the escitalopram unbound plasma 935 

concentration respectively, Imax, IC50 and n are the maximum inhibitory effect, the potency and 936 

sigmoidicity factor respectively, and 𝑘𝑖𝑛, 𝑘𝑜𝑢𝑡 and 𝑘𝑡𝑜𝑙 represent the turnover rate, fractional turnover 937 

rate and feedback rate constants, respectively (see Fig.13). By setting equations 30 and 31 equal to 938 

zero, the initial baseline conditions are obtained:  939 

𝑘𝑖𝑛 = 𝑘𝑜𝑢𝑡 · 𝑅0
2    (33) 940 

𝑅0 = 𝑀0 = √
𝑘𝑖𝑛

𝑘𝑜𝑢𝑡
  (34) 941 

The feedback control model fitted the response-time data well. Between unbound plasma 942 

concentration and 5-HT response, a distinct time-delay was observed for all doses, leading to a 943 

counter-clockwise hysteresis loop. The development of tolerance was confirmed by the fact that the 944 

terminal phases of the hysteresis loops were not superimposable as a function of dose: the higher dose 945 

groups exhibited a lower response at the same concentration. Based on one-way analysis of variance 946 

(ANOVA) and post hoc analysis, maximal increases in 5-HT extracellular levels reached 337%, 424% and 947 

456% of the baseline and the levels remained elevated for 135, 175 and 235 minutes at the 2.5, 5 and 948 

10 mg/kg doses, respectively. Despite the significant differences in plasma concentrations, the basal 949 

response value was recovered within 360 min following the administration of all tested doses. In fact, 950 

neither the duration nor the magnitude of the response increased when the dose was increased from 951 

5 to 10 mg/kg. These findings are in agreement with previous studies in rats, in which increasing the 952 

dose of escitalopram exhibited a ceiling effect in the extracellular levels of 5-HT in the frontal cortex, 953 

as measured by microdialysis.[171],[172] 954 

The results from this study established the high potency (IC50= 4.4 μg/L) of escitalopram, with almost 955 

complete (Imax= 0.9) inhibition of reuptake. A fast neuronal 5-HT reuptake with a half-life of less than 5 956 

minutes (𝑡1
2⁄ 𝑘𝑜𝑢𝑡

) was reported, whereas the half-life for the development of tolerance,  𝑡1
2⁄ 𝑘𝑡𝑜𝑙

 was 957 

estimated at 10 hours. The importance of incorporating a moderator state to account for the 958 
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physiological homeostatic autoregulation mechanisms was demonstrated by comparison of the 959 

pharmacodynamic parameters of this more mechanistic model with the conventional effect-960 

compartment model. The effect-compartment model predicted higher EC50 values at increased doses, 961 

which was inconsistent with the physiological response. In addition, Zhang and D’Argenio[123] used the 962 

same data sets to compare the performance of the basic model II inhibitory model with and without 963 

the addition of proportional and proportional-plus-integral feedback gain. When the feedback was 964 

omitted, the drug’s potency was underestimated, while the model with the proportional-plus-integral 965 

feedback gain performed the best (lowest Akaike information criterion value). 966 

These findings not only highlight the usefulness of implementing feedback control mechanisms in 967 

pharmacodynamic models, but also the importance of assessing the PK/PD at multiple doses. It is 968 

evident that when the autoregulation of the pharmacodynamic response is not taken into account, the 969 

evaluation of in vivo potency can lead to an underestimation of drug’s potency and application of 970 

unnecessarily high doses. Additionally, feedback control models may be useful for the comparison of 971 

the pharmacodynamic behavior among SSRIs, to improve understanding of their antidepressant 972 

effects and as a guide to set effective plasma concentrations in clinical practice. 973 

5 Outlook and concluding remarks 974 

 975 

This review describes the large variety of pharmacokinetic/pharmacodynamic modeling approaches 976 

available to predict dose-concentration-effect relationships and to simulate various clinical scenarios. 977 

Models incorporating a physiological understanding of the underlying mechanism(s) of action of the 978 

drug and progression of disease can serve as powerful tools for exploring and predicting clinical drug 979 

product performance. Provided such models are adequately validated, they can also be implemented 980 

with confidence to drive model-informed decisions during drug development as well as at the 981 

regulatory level.   982 

An even more complete understanding of a drug’s therapeutic value would be possible if dose-983 

concentration-adverse reactions relationships were to be simultaneously established through 984 
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toxicokinetic/toxicodynamic models, so that not only efficacy, but also safety can be evaluated. This is 985 

important, since dose-response curves may differ significantly between the therapeutic and adverse 986 

effects in different patient populations as well as among different indications of the same drug.  987 

A current limitation of mechanistic models is that their complexity often leads to issues of identifiability 988 

and reproducibility of parameters. The commercially available physiologically based pharmacokinetic 989 

models are often implemented with mostly (or only) literature data. In these models the number of 990 

parameters is often far greater than would be required for application of classical compartmental 991 

models and it may be difficult to acquire reliable values for some parameters. The advent of more 992 

sophisticated analytical techniques such as microdialysis will promote a better understanding of the 993 

time profile of drug concentration at the effect site. In the meantime, to ensure maximum quality and 994 

to facilitate the interpretation of PK/PD models, transparency in the parameter values applied in the 995 

model, as well as in the underlying assumptions and the derived equations, together with 996 

harmonization based on good coding practice (GCP), is essential. 997 

Once there is enough confidence in the translatability, estimation and prediction of preclinical and 998 

clinical PK/PD and systems pharmacology models, a move towards linking them with biorelevant in 999 

vitro tools to guarantee therapeutic equivalence will be another key step forward in the drive to link 1000 

the laboratory to the patient, which seems not only promising, but also imminent. Bridging the gap 1001 

between in vitro, in vivo and in silico methods by applying the Quality by Design (QbD) and the 1002 

Biopharmaceutics Risk Assessment Roadmap (BioRAM),[173],[174] will allow pharmaceutical scientists to 1003 

correctly assess the relative impact of formulation, dose and dosing interval during development of 1004 

new drugs.  1005 

For the formulation scientist, modeling and simulation used in this way will assist in the selection of 1006 

the most appropriate dosage form and to set formulation targets, knowing to what extent the 1007 

formulation can be expected to steer the in vivo performance of the drug product. For the clinician, 1008 

the approach helps to identify the dosing strategy which optimizes the efficacy/safety ratio. 1009 
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For the analyst, modeling and simulation can provide guidance in setting clinically relevant dissolution 1010 

specifications, taking into account not only which formulation factors steer the drug plasma 1011 

concentration (critical quality attributes) but also how any differences in these will translate in the 1012 

clinical outcome. In this context, robust PK/PD modeling approaches will play an essential role in 1013 

model-informed drug development.  1014 

Finally, from a regulatory decision-making point of view, a seamless description of the relationship 1015 

between the pharmacokinetic and pharmacodynamic characteristics of a drug together with a 1016 

knowledge of how, and to what extent, formulation and formulation performance can influence the 1017 

PK and PD, provides an excellent, clinically relevant basis for an integrated approach to assessing 1018 

applications for drug approval.  Currently, pharmacodynamics considerations are taken into account 1019 

in the approval of labeling of new drug products, for example, whether taking the drug before vs. after 1020 

a meal will influence efficacy. There is also a thrust towards virtual bioequivalence, for example using 1021 

PBPK modeling to determine whether a change in the dissolution characteristics will impact the plasma 1022 

profile significantly. A logical further step would be to combine these two approaches to optimize the 1023 

approval process. Foreseen is a scenario in which the release testing in the laboratory reflects the 1024 

release in the target patient population(s), the data are combined with verified PBPK models tailored 1025 

to the target population(s) and then translated with PK/PD modeling into a prediction of the clinical 1026 

outcome.  This scenario would not only provide sponsors as well as the regulatory authority with more 1027 

flexibility in the approval procedure, without sacrificing efficacy or safety, but also be a way forward 1028 

to move effectively towards a more personalized medicine concept. 1029 
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