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Abstract 9 

Corrosion is a significant problem in many industries, and when using stainless steel, 10 

passivation is undertaken to improve corrosion resistance.  11 

Traditionally, nitric acid is used within the passivation step, however, this has some 12 

detrimental environmental and human health impacts during its production and use. 13 

Reducing this impact is critical, and because of its toxicity, associated occupational risk and 14 

special disposal requirements, end-users of passivated stainless steels are exploring 15 

alternative passivation methods. However, it is also critical to understand the impact of any 16 

alternatives. Sustainable processing and manufacture embodies many elements, including; 17 

waste reduction, resource efficiency measures, energy reduction and the application of 18 

‘green’ or renewable chemicals. In order to ensure the most effective system is utilised the 19 

impact, or potential impact of the system must be measured and options compared. The 20 

comparative environmental credentials of bio-based chemicals can be assessed using tools 21 

such as Life Cycle Assessment (LCA). 22 
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This paper is the first paper to evaluate the environmental impact of passivation using nitric 23 

and citric acid. It uses attributional Life Cycle Assessment (ALCA) to assess the 24 

environmental benefits and dis-benefits of using citric acid - produced biologically via 25 

fermentation, to replace nitric acid, whilst keeping the same level of corrosion resistance. 26 

The work is anticipatory in nature as the process is not yet undertaken on a commercial 27 

basis. The results therefore feed into future manufacturing and design.  28 

Citric and nitric acids were compared using three different solutions: 4% and 10% citric acid 29 

solutions, and a 10% nitric acid solution (the conventional case). The results show that a 30 

scenario using a 4% citric acid solution is environmentally preferable to nitric acid across all 31 

impact categories assessed. However, a 10% citric acid solution used on low chromium and 32 

nickel steel was only environmentally preferable for 50% of the environmental impact 33 

categories assessed due to increased electrical energy demand for that scenario. 34 

- 35 

Highlights 36 

 Citric acid is environmentally preferable to nitric acid for stainless steel passivation  37 

 Extent is dependent on passivation bath conditions for comparable performance 38 

 Life cycle approach is key to understanding nuances of environmental impact for 39 

stainless steel passivation 40 

Key words 41 

Stainless steel, passivation, environmental impact, life cycle assessment, LCA 42 

1.0 Introduction 43 

Sustainability has become an increasingly important element in materials manufacture, 44 

leading to focus on process energy reduction and the application of green chemistry and 45 

other eco-design principles. The term ‘green chemistry’ gained traction during the 1990’s 46 

culminating in formal recognition through the publication of the 12 principles of green 47 
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chemistry [1]. The guiding element to this being ‘benign by design’.  The principles provide a 48 

toolkit for employing ideas embedded in industrial ecology [2].  The Environmental Protection 49 

Agency (EPA) definition of green chemistry is ‘the design of chemical products and 50 

processes that reduce or eliminate the use or generation of hazardous substances. Green 51 

chemistry applies across the life cycle of a chemical product, including its design, 52 

manufacture, use, and ultimate disposal’ [3].  53 

Metrics for green chemistry include the Efactor defined as the amount of waste produced per 54 

kilogram (product) [4], reaction mass efficiency or carbon efficiency [5]], and Cfactor which is 55 

the mass ratio of CO2 to product mass [6], however, it does not distinguish between fossil 56 

and biogenic CO2 emissions.  57 

Given that the overarching aim of green chemistry employs life cycle thinking and a 58 

consideration for the whole chemical product system, techniques like Life Cycle Assessment 59 

(LCA) are often used to quantitatively assess the potential environmental impacts of bio-60 

based/renewable solvents or resource efficiency measures [7, 8]. LCA evaluates 61 

environmental impact of a chemical process from raw materials production all the way 62 

through to end-of-life [9]. It is a comparative assessment method, meaning that is can be 63 

usefully applied to compare ‘green’ and conventional production methods. Unlike the green 64 

chemistry metrics, LCA also enables the comparison of production processes across a 65 

number of different environmental impact categories. ISO standards 14040 and 14044 set 66 

out procedures and methodologies for carrying out an LCA study [10, 11]. LCA has four 67 

main components: goal and scope definition, life cycle inventory (LCI), life cycle impact 68 

assessment (LCIA), and interpretation [10]. The goal and scope definition describes the 69 

product or process under assessment and details the purpose of the study. In the life cycle 70 

inventory step data is collected to then be analysed in the impact assessment stage.  71 

There are a number of challenges in applying LCA to green chemistry and biotechnology. At 72 

design or process development stages, LCA is often seen as too complex when evaluating 73 

different materials, processing or solvent options – particularly where there is high 74 
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uncertainty on what the process may look like at scale. Another challenge is the availability 75 

of industrial production data for many biologically derived chemicals and solvents. In order to 76 

overcome some of these issues, key parameters for LCA of green chemicals have 77 

previously been identified in [12]. Never the less, LCA still remains an important assessment 78 

tool in determining comparative impact for bio-based chemicals across a range of 79 

environmental impact criteria.  80 

Passivation of stainless steel is an important process to improve corrosion resistance. For 81 

example, within the space industry stainless steels are used in spacecraft and ground 82 

support structures where corrosion risk is high, including the storage and handling of certain 83 

liquids and wastes, propulsion systems, and components and fasteners exposed to harsh or 84 

demanding environments [13]. The effects of corrosion can have substantial economic and 85 

safety impacts, and lead to prolonged periods of asset downtime. The passivation process 86 

removes anodic surface contaminants (e.g. iron compounds) via chemical dissolution and 87 

leads to the formation of a passive oxide layer.  The most commonly used acid to do this is 88 

nitric acid. Nitric acid is produced via ammonia oxidation. The process emits nitrous oxides 89 

(NOx) and ammonia (NH3) [14].  Nitric acid is highly corrosive and toxic on inhalation, and 90 

whilst it does feature on the EPA’s safer chemical choice list for its application as a 91 

processing aid and additive, it is recognised as having some hazard profile issues and is not 92 

necessarily a low level of hazard concern for all human health and environmental endpoints 93 

[15]. Because of its toxicity, associated occupational risk and special disposal requirements, 94 

end-users of passivated stainless steel such as NASA and the European Space Agency 95 

(ESA) have been evaluating the performance of alternative acids, namely citric acid, as a 96 

potential replacement for nitric acid for passivation [13].  97 

Citric acid is a common metabolite of plants and animals, also present in the juice of citrus 98 

fruits and pineapple. Its biological source and biodegradability make it a renewable and less 99 

toxic alternative to nitric acid. The acid is predominately used for soft drinks, confectionary, 100 
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medicinal citrates, with smaller quantities used in dying and engraving [16]. On an industrial 101 

scale it is predominately produced via fermentation of Aspergillus or Candida.  102 

Despite the introduction of citric acid products such as CitriSurf® for stainless steel 103 

passivation, to date there has lacked rigorous evaluation of chemical performance as a 104 

passivation medium, and comparative assessment of its environmental impact compared 105 

with nitric acid. The goal of this work is to compare nitric and citric acid production across a 106 

range of environmental impact categories to understand whether biologically produced citric 107 

acid can offer a greener, more environmentally friendly alternative to nitric acid passivation 108 

whilst reaching comparable performance levels.  109 

 110 

2.0 Methods 111 

This study is to contrasts the currently applied nitric acid passivation process with the most 112 

suitable citric acid passivation process for selected types of pristine and welded stainless 113 

steels. 114 

The process evaluated in this LCA study is based on a laboratory-scale method for stainless 115 

steel passivation. Primary data was collected based on processing methods employed by 116 

ESR Technology Limited. Secondary sources include databases such as Ecoinvent 3.4 [17] 117 

and published literature, which is referenced accordingly in section 2.2. LCA software 118 

package Simapro 8 is used for the study.  119 

The LCA evaluates a range of environmental impact categories as part of life cycle impact 120 

assessment, based on the ILCD recommended midpoint impact assessment categories [18]. 121 

The full range of midpoint categories are reported: climate change, ozone depletion, human 122 

toxicity (cancer and non-cancer), particulate matter, Ionizing radiation HH, Ionizing radiation 123 

E (interim), photochemical ozone formation, acidification, terrestrial eutrophication, 124 
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freshwater eutrophication, marine eutrophication, freshwater ecotoxicity, land use, water 125 

resource depletion, mineral, fossil and renewable resource depletion. 126 

 127 

2.1 Functional Unit and System Boundaries 128 

Within LCA it is common for the environmental impacts to be calculated for the same given 129 

service – the functional unit. The functional unit used for this study is per 2000 cm2 of 130 

stainless steel surface passivated. This equates to the average surface area exposed during 131 

one passivation process run in the ESR Technology laboratory. Surface area could be used 132 

as a functional unit as it is assumed that each passivation process yielded a comparable 133 

passivation performance. This equivalence was the basis of the ESR and ESA research into 134 

the passivation processes - needing a functionally equivalent output on an area basis.  135 

Cut-off rules (relating to environmental significance of certain materials and energy flows) 136 

were not formally applied to the study; however, some inputs to the process were omitted for 137 

both citric and nitric acid passivation. This includes some laboratory disposables used in the 138 

cleaning of the stainless steel samples, such as disposable knitted polyester cloths and pH 139 

testing paper. This is due to an inability to model these inputs to a reasonable level of 140 

accuracy. Also omitted from this work are inputs relating to bagging and storage of samples, 141 

as the conditions for doing this are assumed to be the same for each acid assessment. The 142 

input of the stainless steel into the passivation process is outside the system boundary of 143 

this work. This was done to ensure focus on the passivation process itself, as for nitric or 144 

citric acid the input of stainless steel is assumed to be the same.  145 

The system boundary is given in Figure 1. This includes all activities associated with the 146 

cleaning, acid bath passivation, and subsequent washing and drying of samples. Impacts 147 

are allocated 100% to the functional unit.  148 

There are 3 stainless steels evaluated: AISI 410, PH17-7, and AISI 302. This was done in 149 

order to take into account the different processing conditions required for different types of 150 
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stainless steel based on chromium content. AISI 410 is Martensitic with a lower alloy content 151 

(~12.5% chromium, 0% nickel content). AISI 302 contains ~18% chromium, 9% nickel, and 152 

PH17-7 contains ~17% chromium, 7% nickel.  153 

The three passivation scenarios were evaluated: 50% nitric acid heated to 55°C and held at 154 

temperature for 30 minutes (for AISI 302/PH 17-7 and AISI 410 stainless steels); 4% citric 155 

acid heated to 60°C and held at temperature for 1 hour (AISI 302/PH 17-7 stainless steels); 156 

and 10% citric acid heated to 80°C and held at temperature for 3 hours (AISI 410 stainless 157 

steel only – accounting for lower alloying content). 158 

 159 

 160 

Figure 1. Process flow based flow for stainless steel passivation at laboratory scale (dotted line indicates process 161 

steps, full line indicates system boundaries 162 

 163 

2.2 Data collection and modelling 164 

The LCI was modelled based on primary data from ESR. Material inputs were modelled 165 

using Ecoinvent 3.4, and are shown in Table 1. An outline of the process is shown in figure 166 
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1. The abrasive paper used to polish the samples in the first process step was modelled 167 

based on a 3M abrasive paper specification. The acetone wipes used to clean the samples 168 

(3 samples per wipe) excluded the knitted polyester wipe used to apply the acetone. The 169 

same omission was applied to the application of isopropyl alcohol with a polyester wipe.  170 

The model for the Lenium® cleaning solution was based on its MSDS data sheet [19]. The 171 

two major components of the solution n-propyl bromide and 2-propanol were modelled using 172 

production data from Ecoinvent (Simpro inputs available in Supplementary Material). 173 

For the passivation process direct electricity demand was modelled based on primary data 174 

from ESR. The 3.5l acid bath containing solutions of 4%, 10% w/w citric acid and 50% w/w 175 

nitric acid was modelled using data from Ecoinvent. Subsequent neutralisation with sodium  176 

hydroxide, rinsing with deionised water and drying with gaseous nitrogen was also all 177 

modelled using data from Ecoinvent. Heating of the sodium hydroxide solution to 70°C on a 178 

laboratory hot plate was modelled using energy meter data at the University of Bath. The 179 

bagging and storing of samples is not included in the scope of the study.  180 

Electricity production is modelled using the Digest of United Kingdom Energy Statistics 181 

(DUKES) [20]. This assumes a 2015 UK energy mix and assumes a mix broken down in the 182 

following way: 22% coal, 30% natural gas, 21% nuclear, and remaining proportion from 183 

renewables.   184 

Within the LCA model, acid waste is treated differently depending on whether it is citric or 185 

nitric acid. Spent nitric acid from the passivation bath (which is assumed to be emptied after 186 

every six samples) is treated by waste solvent incineration. Spent citric acid, emptied from 187 

the passivation bath at the same frequency as the nitric acid, is treated as effluent to waste 188 

water treatment. Within the main LCIA, waste treatment is included as a sub-process within 189 

the passivation step.  190 
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Waste management is also modelled separately in EcoSolvent [20] to evaluate each acid 191 

under different waste management scenarios: incineration and waste water treatment. 192 

Again, this assumes the passivation bath is emptied after each six sample batch. 193 

The model assumes a large waste-solvent incineration plant, where the co-products of the 194 

incineration plant are steam and electricity. Waste water treatment is calculated as a function 195 

of the waste water composition. The model provides generic and site-specific data ranges 196 

for mechanical-biological treatment, reverse osmosis and extraction. It is adapted to fit the 197 

chemical properties of nitric and citric acid.  198 

 199 

 200 

 201 

 202 

 203 

 204 

Table 1. Inventory for 2000 cm2 passivation of stainless steel 205 

Item Process input Comment 
Grit paper  6 pieces Based on 3M grit paper 12.5% 

silicon carbide, 87.5% paper 
backing 

Acetone 30 ml Primary data (ESR) 
Isopropyl alcohol  30 ml Primary data (ESR) 
Lenium® solution 0.15 kg Primary data (ESR) based on 85% 

n-propyl bromide and 10% 2 
propanol 

Ultrasonic cleaning bath  1.92 kWh Primary data (ESR) based on 85% 
n-propyl bromide and 10% 2 
propanol 

Deionised water 5.2 kg Primary data (ESR) 
Passivation   

50% nitric acid   

Nitric acid  1.75kg Primary data (ESR) 

Bath heating 0.21 kWh Primary data (ESR) 

Fume hood operation 0.93 MJ Calculated based on Caltech fume 
hood energy calculator: 
http://fumehoodcalculator.lbl.gov/ 

   

4% citric acid   

Citric acid  0.14kg Primary data (ESR) 

Bath heating 0.52 kWh Primary data (ESR) 

Fume hood operation 1.8 MJ Calculated based on Caltech fume 
hood energy calculator: 
http://fumehoodcalculator.lbl.gov/ 

   

10% citric acid   

Citric acid 0.35kg  Primary data (ESR) 
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Bath heating 3.3 kWh Primary data (ESR) 

Fume hood operation 5.6 MJ Calculated based on Caltech fume 
hood energy calculator: 
http://fumehoodcalculator.lbl.gov/ 

Sodium hydroxide solution  2l Primary data (ESR) 

 206 

 207 

 208 

2.3 Assumptions and Limitations  209 

There are a number of assumptions and limitations associated with the LCA study. The 210 

process is based on laboratory scale stainless steel passivation, therefore may not be 211 

indicative of passivation at industrial scale. The production of steel is not included within the 212 

scope of the LCA to allow direct comparison between passivation acids (with the production 213 

of citric and nitric acid included in the scope of the study). Some laboratory consumables are 214 

omitted from the study, such as polyester wipes used for initial degreasing of the samples, 215 

as it has proved difficult to obtain inventory data to accurately represent these. These form 216 

only a very small part of the study and are their omission is therefore thought to have 217 

minimal impact on the results. As per standard LCA practice, the production of laboratory 218 

equipment is also not included within the scope of the assessment. 219 

In the LCA study it is assumed that nitric and citric acid undergo different waste treatment 220 

options. Nitric acid is treated via waste solvent incineration, and citric acid via waste water 221 

treatment. There is uncertainty as to what would be the case at an industrial scale, and 222 

therefore waste treatment was also modelled separately in Ecosolvent. 223 

3.0 Results and Discussion 224 

3.1 Contribution analysis 225 

The contribution of each processing step to the overall environmental impact of the whole 226 

passivation process was assessed using the ILCD recommended midpoint impact 227 

assessment categories. In this analysis everything is analysed as a percentage contribution 228 
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of the individual process. This indicates within each option which impact has the most 229 

significant contribution.   230 

The contribution results assess the following 3 scenarios for the passivation bath step: 231 

 50% nitric acid heated to 55°C and held at temperature for 30 minutes (AISI 302/PH 232 

17-7 and AISI 410 stainless steels) 233 

 4% citric acid heated to 60°C and held at temperature for 1 hour (AISI 302/PH 17-7 234 

stainless steel) 235 

 10% citric acid heated to 80°C and held at temperature for 3 hours (AISI 410 236 

stainless steel) 237 

  238 

Impact relating to acid usage and waste disposal is included as part of the passivation step. 239 

Figure 2Figure 2 shows the contribution to total impact for the 4% citric acid scenario. Major 240 

contributors to climate change impact (kg CO2eq) are the ultrasonic cleaning step (55%) and 241 

the passivation step (19%). Within both of these stages the main contribution to impact is 242 

from process energy use – the operation of the cleaning bath or the passivation bath. 243 

Further impact categories show a similar trend with ultrasonic cleaning and passivation step 244 

dominating.  245 
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 246 

Figure 2 Contribution analysis for AISI 302/PH 17-7 4% citric acid 247 

The passivation step is far more dominant for the 50% nitric acid scenario (Figure 3Figure 248 

3). Here contribution to climate change impact is 83% of the total score. Passivation 249 

dominates other environmental impact categories. The dominance of the passivation step 250 

relates to the production of nitric acid. Nitric acid in Ecoinvent via the Ostwald process is 251 

dominated by ammonia production. 252 
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 253 

Figure 3 Contribution analysis for AISI 302/PH 17-7 and AISI 410 50% nitric acid 254 

The 10% citric acid scenario is used for the AISI 410 steel type only (figure 5). This has a far 255 

lower chromium and nickel alloy content (12.5% chromium, 0% nickel). Here the passivation 256 

step dominates impact for the majority of impact categories assessed. For climate change it 257 

contributes to 51% of overall impact. For freshwater ecotoxicity it contributes 56%, and for 258 

human toxicity (cancer and non-cancer) it contributes 55%. Sub-processes leading to the 259 

significant contribution of the passivation bath step to total impact are energy demand (bath 260 

operation) and production of citric acid. In this case citric acid is assumed to be produced via 261 

the fermentation of microorganism Aspergillus niger. Fermentation data is provided by a 262 

European citric acid producer, but the dataset aggregated by Ecoinvent to protect process 263 

confidentiality. Due to the contribution of the citric acid, further exploration undertaken in this 264 

area showed that although the process is widely known there is no published disaggregated 265 

data available on this. However, based on analysis of ecoinvent proxies (and previous 266 
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evaluation by [22]) indicate that the impacts in citric acid production result predominantly 267 

from the feedstock and any energy used in associated fermentation. 268 

 269 

Figure 4 Contribution analysis for AISI 410 10% citric acid 270 

 271 

3.2 Comparisons 272 

All three passivation scenarios can be compared against each other (figure 5). All impacts 273 

are compared with nitric acid as the reference, which is shown as 100% impact. Therefore, 274 

effectively the two citric acid options are compared to nitric acid as the base case.  275 

Comparing the 4% citric acid scenario used for AISI 302 and PH17-7 stainless steels against 276 

the 50% nitric acid scenario used for all steels, the 4% scenario performs better across all 277 

ILCD impact categories. For 8 out of the 16 ILCD impact categories for the 10% citric acid 278 

scenario (AISI 410 stainless steel) has a higher environmental impact than the 50% nitric 279 
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acid scenario. This is due to the production of electricity required to heat the passivation bath 280 

for three hours. Options to reduce this would include using a higher penetration renewable 281 

technology for the heating, or heating in a more efficient way, if possible.  282 

The comparisons made here show that despite the increased toxicity and environmental 283 

impact from use of nitric acid as opposed to bio-based citric acid to passivate stainless steel, 284 

where the process requires longer heating periods (10% citric acid scenario) and hence 285 

higher process energy inputs this reduces some of the environmental gains made through 286 

use of bio-based chemicals. The findings here highlight why multi-impact category 287 

assessment methods like LCA are valuable for assessing green manufacturing alternatives.  288 

Table 2 shows the characterised data in terms of absolute total values. The same data as in 289 

Figure 5 is shown here, but not in terms of a percentage of the largest impact in each 290 

category. Therefore, here one can compare the impact across the scenarios all the 291 

scenarios in absolute terms for each scenario. 292 
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 293 

Figure 5. Comparison of each acid passivation scenario across all ILCD Recommended impact categories (nitric 294 

acid = 100%) 295 
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Table 12. Breakdown of individual ILCD impact scores for each passivation scenario 305 

Impact category Unit 

AISI 
302/PH17-7 

4% citric acid  

AISI 302/PH17-
7/AISI 410 50% 

nitric acid 
AISI 410 10% 

citric acid 

Climate change kg CO2 eq 2.42E+00 1.15E+01 4.02E+00 

Ozone depletion kg CFC-11 eq 4.92E-07 8.29E-07 7.67E-07 
Human toxicity, non-cancer 
effects CTUh 8.39E-07 1.21E-06 1.41E-06 

Human toxicity, cancer effects CTUh 1.26E-07 1.74E-07 2.03E-07 

Particulate matter kg PM2.5 eq 1.89E-03 5.27E-03 3.04E-03 

Ionizing radiation HH kBq U235 eq 8.75E-01 9.07E-01 1.60E+00 

Ionizing radiation E (interim) CTUe 2.42E-06 2.99E-06 4.34E-06 

Photochemical ozone formation 
kg NMVOC 
eq 8.46E-03 1.99E-02 1.44E-02 

Acidification molc H+ eq 2.04E-02 5.02E-02 3.58E-02 

Terrestrial eutrophication molc N eq 3.40E-02 1.34E-01 6.27E-02 

Freshwater eutrophication kg P eq 1.17E-03 1.71E-03 1.85E-03 

Marine eutrophication kg N eq 3.73E-03 7.73E-03 7.10E-03 

Freshwater ecotoxicity CTUe 1.89E+01 3.22E+01 3.03E+01 

Land use kg C deficit 1.03E+01 1.28E+01 1.91E+01 

Water resource depletion m3 water eq 2.25E-02 2.26E-02 3.11E-02 
Mineral, fossil & ren resource 
depletion kg Sb eq 1.80E-04 2.25E-04 3.04E-04 

 306 

3.3 Acid waste treatment 307 

Aside from potentially different processing conditions for citric (4%, 10% scenarios) and nitric 308 

acid during the stainless steel passivation process, the methods for acid disposal also differ. 309 

Nitric acid is highly corrosive and a strong oxidiser meaning that the 50% nitric acid solution 310 

within the passivation bath will require special handling. It is likely that it would be disposed 311 

of via a formal solvent disposal route as opposed to an industrial waste water treatment 312 

system. Within the LCA model itself the nitric acid is assumed to be incinerated, whereas the 313 

citric acid is treated via waste water treatment. For transparency, the disposal methods are 314 

compared using Ecosolvent, which is a life cycle assessment tool developed by ETH Zurich 315 

to quantify impacts relating to waste solvent treatment [20]. The tool models a hazardous 316 

waste solvent incineration plant, and an industrial waste water treatment plant. Coproducts 317 

from the incineration plant are steam and electricity, with environmental credits granted for 318 

these.  319 
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Ecosolvent holds data for 26 solvents based on their elemental composition, heat of 320 

vaporisation, and heating value. The model for these was adapted for nitric and citric acid 321 

using their chemical property information. The incineration model calculates inventory data 322 

for solvent combustion as a function of chemical composition. The model is based on data 323 

for a Swiss incineration plant with a capacity of 35,000 tonnes per year. Results from each 324 

waste scenario are reported in terms of their global warming potential  325 

For the incineration scenario (figure 6), incineration energy recovery for all 3 scenarios is not 326 

enough to counter direct emissions from the process. Per functional unit impact from solvent 327 

production is far higher for nitric acid than for both citric acid scenarios. GWP totals for 10%, 328 

4% citric acid and 50% nitric acid were 3.23, 2.37 and 7.52 kg CO2eq respectively.  329 

Impact from treatment at a waste water treatment plant (figure 7), despite not including any 330 

energy recovery, is environmentally favourable for all acid passivation scenarios. Impact is 331 

separated between solvent production, electricity and ancillaries in mechanical-biological 332 

treatment and associated emissions (MBTP), sludge treatment, and waste water treatment 333 

(WWTP). Impacts relating to reverse osmosis and extraction are zero. The relative GWP for 334 

10%, 4% citric acid and 50% nitric acid scenarios is 1.79, 0.72, and 5.5 kg CO2eq.  335 

The results from modelling of waste treatment show that for both waste treatment options 336 

nitric acid has the higher GWP potential compared with both 4% and 10% citric acid 337 

scenarios. However, much of this additional impact comes from nitric acid production 338 

(particularly for waste water treatment), rather than the waste disposal method selected.   339 
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 340 

Figure 6 Waste solvent treatment - Incineration. Global Warming Potential (GWP) per functional unit 341 

 342 

Figure 7 Waste solvent treatment. Waste water treatment plant. Global Warming Potential (GWP) per functional 343 

unit 344 

 345 

 346 

 347 

-8

-6

-4

-2

0

2

4

6

8

10

12

14

10% citric acid 4% citric acid 50% nitric acid

kg
 C

O
2

 e
q

solvent production ancilleries direct emissions energy recovery

0

1

2

3

4

5

6

10% citric acid 4% citric acid 50% nitric acid

kg
 C

O
2

 e
q

solvent production MBTP sludge treatment WWTP



20 
 

4.0 Conclusions 348 

The use of green chemicals in manufacture and materials treatment processes, increases 349 

sustainability and helps to avoid difficult scale-up issues relating to chemical health and 350 

safety implications. Bio-based, renewable chemicals have the potential to be safer and have 351 

lower environmental impacts associated with both production and disposal stages of their life 352 

cycle than many conventional chemicals and solvents. However that is not always the case, 353 

and using Life cycle assessment (LCA) is a useful quantitative method for determining the 354 

comparative benefits or dis-benefits when selecting certain ‘green’ chemicals.  355 

When treating stainless steel for corrosion resistance, there is increasing interest in 356 

passivating them using citric acid as opposed to nitric acid. Nitric acid is highly corrosive and 357 

toxic on inhalation, requiring heightened EHS criteria. This paper provides the first LCA of 358 

the potential benefits of citric acid over nitric acid as a passivation technique. This is based 359 

on the required conditions for passivation in order to generate the same corrosion resistance 360 

performance.  361 

The LCA results show that the 4% citric acid scenario using AISI 302 and PH17-7 stainless 362 

steels, is environmentally preferable to 50% nitric acid across all ILCD recommended 363 

environmental impact categories. However, for the lower chromium and nickel content 364 

stainless steel AISI 410, the environmental benefits of moving to citric acid are less 365 

pronounced with only 50% of the ILCD impact categories assessed having a lower impact 366 

score than the nitric acid case. Impact associated with ionising radiation, resource depletion, 367 

and human toxicity were higher for the 10% citric acid scenario than for the nitric acid 368 

scenario. This is due to the increased time required within the heated passivation bath for 369 

the 10% citric acid scenario over the 4% citric acid, and 50% nitric acid scenarios.  370 

This work demonstrates the importance of LCA as a method for evaluating processes which 371 

contain ‘green’ or bio-based chemicals. Evaluation across a number of different impact 372 

categories reveals a more nuanced picture of comparative environmental impact than that 373 
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given through use of singular assessment metrics. This is despite modelling approach 374 

having been carried out at a laboratory scale and lead to potential misalignment with actual 375 

processing at industrial scale.  Process energy provision during passivation has been shown 376 

to strongly influence the scale of environmental gains made by switching to a ‘greener’ acid 377 

alternative.  378 
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