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Abstract 

Studies on alkyne hydrophosphination employing nickel-NHC catalysts (NHC = N-

heterocyclic carbene) revealed that the free N-alkyl substituted NHCs themselves were 

catalytically active. DFT calculations showed the mechanism involves the NHC acting as a 

Brønsted base to form an imidazolium phosphide species which then undergoes rate-limiting 

nucleophilic attack at the terminal alkyne carbon. This mechanism explains the preference 

seen experimentally for reactions with aryl substituted phosphines and alkynes, while the 

rearrangements of the alkenyl anion formed upon P–C bond formation account for the 

observation of both Z- and E-regioisomers of the products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

N-heterocyclic carbenes (NHCs) have proven to be highly effective ligands for the 

transition metal catalyzed addition of E–H groups (E = H, group 13-15 element) across 

unsaturated C–C bonds.[1] In such processes it is usually assumed that the NHC plays the role 

of a strongly bound ‘spectator’ ligand that remains coordinated to the metal center throughout 

the catalytic cycle. Moreover, even if dissociation of the NHC ligand were to take place, the 

lack of precedent for reactions of NHCs with EH bonds, even under stoichiometric 

conditions,[2-5] would suggest the free carbenes would remain innocent and thus not 

contribute to catalysis.[6] Herein, we report an example that demonstrates this is not the case. 

 

Results and Discussion 

During studies of PH bond addition to alkynes (hydrophosphination) catalyzed by N-

alkyl substituted NHC complexes of nickel (Scheme 1a),[7] control experiments demonstrated 

that catalysis also proceeded when only the NHC was present in the absence of any nickel. 

Thus, a 10 mol% loading of IMe4
 (for the structures of all of the carbenes used in this study, 

see Chart 1) gave 81%% conversion of phosphine[8] to a 3.3:1 molar ratio of the Z- and E-

anti-Markovnikov products 1a and 1b after 24 h at room temperature in THF (Scheme 1b).[9] 

The Z-product 1a was also favoured in the Ni catalyzed reaction, although this also resulted 

in significant amounts of double hydrophosphination. 

Other N-alkyl substituted NHCs proved to be equally adept at catalysis (Table 1, entries 

1-5; ESI), yielding the Z-anti-Markovnikov product as the major isomer in the majority of 

cases. Neither unsaturated (entries 6, 7) nor saturated (entry 8) N-aryl substituted NHCs gave 

good catalytic activity. Both the diamidocarbene 6MesDAC (entry 9) and cyclic alkyl amino 

carbene Et2CAAC (entry 10) proved totally ineffective. 

 



 

Scheme 1. Comparison of (a) Ni-NHC and (b) NHC-alone catalysed hydrophosphination of 

PhCCH with PPh2H. 

 

 

Chart 1. Structures and abbreviations of the carbenes used in this study. 

 

The complete absence of side products seen with ItBu (entry 4) led us to conduct more 

detailed investigations of the hydrophosphination reaction with this NHC. No reaction was 

observed with just PhCCH (10 equiv),[10] whereas treatment of the carbene with PPh2H (10 

equiv) resulted in formation of the aminal, ItBuH2,[11] and the product of dehydrocoupling,[12] 

Ph2P-PPh2. NMR monitoring of a catalytic reaction of PPh2H and PhCCH with 10 mol% 

ItBu in THF as a function of time revealed that hydrophosphination was in fact very rapid, 



with 78% consumption of the phosphine within 20 min. NMR spectroscopy showed that ItBu 

was still intact at the end of the catalytic run. Upon addition of further PPh2H and PhCCH, 

70% of the phosphine was consumed within 1.5 h. Catalysis proved possible even at just 1 

mol% ItBu, with 95% conversion of PPh2H taking place over ca. 2.5 days. 

 

Table 1. NHC catalysed hydrophosphination of PhCCH with PPh2H.[a] 

 

Entry Carbene Conversion 

(%) of PPh2H 

Hydrophosphination products 

(%) as percentage of all products 

Z:E ratio 

1 IMe4 81 90 2.8:1 

2 IEt2Me2 92 74 0.9:1 

3 IiPr2Me2 85 93 2.0:1 

4 ItBu 89 100 3.5:1 

5 ICy 92 100 2.6:1 

6 IMes[c] 14 71 -[d] 

7 IPr[c] 0 - - 

8 6-Mes[c] 9 100 -[d] 

9 6MesDAC[c] 0 - - 

10 Et2CAAC 6[e] 0 - 

[a]Conditions: Carbene (0.04 mmol), alkyne (0.40 mmol), PPh2H (0.44 mmol), THF (0.5 mL), 

room temperature. [b]Based on phosphine consumption as quantified by inverse-gated 

31P{1H} NMR spectra. [c]18 h reaction time. [d]Only the Z-isomer of PhCH=CH(PPh2) was 

formed.[e]Product of Ph2-H addition to CAAC formed.[3b] 



To ascertain further details about the catalysis, the electronic properties of the alkyne 

were varied and shown to impact on the product Z:E ratios (see Scheme 2 and ESI). Both 

para-F and para-OMe substituents increased significantly the Z:E ratio (9:3:1 and 35:1 

respectively), whereas the ortho-2-pyridyl-substituted substrate led to preferential generation 

of the E-isomer (Z:E = 0.01:1). The internal alkynes PhCCPh and PhCCMe proved to be 

reactive, but afforded significant amounts of dehydrocoupling. Only dehydrocoupling was 

observed with 1-hexyne. 

 

 

Scheme 2. ItBu catalyzed hydrophosphination of alkynes with PPh2H. Numbers shown on the 

right give the ratio of Z:E isomers and (in parentheses) percentage conversion of PPh2H. 

 

The mechanism of the ItBu catalyzed hydrophosphination of PhCCH with PPh2H was 

probed using DFT calculations, with optimizations performed in THF solvent with the TPSS 

functional and final energies computed with M05-2X.[13] Reaction of ItBu with PPh2H 

involves an initial adduct, I, at +6.0 kcal/mol from which phosphine deprotonation occurs 

through TS(I-II) at +18.1 kcal/mol. This forms a contact ion-pair, [ItBuH][PPh2] (II, +4.9 

kcal/mol), which accesses PC bond formation via TS(II-III) at +17.9 kcal/mol to give III, 

the product of net carbene insertion into the PH bond, at +9.1 kcal/mol. No direct pathway 



for this insertion process could be characterised and, at least for this combination of 

substrates, the insertion product is thermodynamically less favoured than the ion-pair II. Both 

the ion-pair and insertion product are thermodynamically uphill with respect to free ItBu and 

PPh2H and this is consistent with their non-observation experimentally. They are, however, 

kinetically accessible. 

 

 

Figure 1. Computed free energy reaction profile for P-H activation of PPh2H with ItBu 

(kcal/mol, computed at the M052X-D3(THF)/def2-TZVP//TPSS(THF)DZP level). 

 

The computed pathways for the onward reaction with phenylacetylene to form the Z- 

and E-isomers of PhCH=CH(PPh2) are shown in Figure 2 with details of key transition states 

in Figure 3. Initial nucleophilic attack of the phosphide ion within ion-pair II at the terminal 

alkyne carbon occurs via TS(II-IV) at +23.2 kcal/mol; the alternative attack at the internal 

carbon (that would lead to the Markovnikov product) involves a much less accessible 

transition state at 29.4 kcal/mol (see ESI). The new contact ion-pair formed, IV (+9.3 

kcal/mol), comprises a Z-alkenyl anion and the imidazolium cation. 



 

Figure 2. Computed free energy reaction profiles for formation of Z- and E-PhCH=CH(PPh2) 

via reaction of contact ion-pair II with PhCCH (kcal/mol computed at the M052X-

D3(THF)/def2-TZVP//TPSS(THF)DZP level) 

  

Formation of 1a then requires movement of the imidazolium to place the C2–H bond 

adjacent to the alkenyl anion lone pair; this is most simply modelled by dissociation to a 

solvent-separated ion-pair at +15.7 kcal/mol which then recombines to give Va at +4.6 

kcal/mol. Proton transfer within Va readily occurs to form 1a and free ItBu at -25.5 kcal/mol. 

Alternatively, isomerization of IV can occur via an allenyl transition state structure TS(IV-

Vb) at 15.3 kcal/mol (Figure 3). This generates contact ion-pair Vb at +4.6 kcal/mol with 

facile proton transfer then forming the E-isomer 1b and ItBu at -28.1 kcal/mol.[14] 

Combining Figures 1 and 2 shows hydrophosphination to be strongly exergonic (G = -

25.5 and -28.1 kcal/mol for 1a and 1b respectively) and to have a reasonable overall barrier 

of 23.2 kcal/mol in which phosphide nucleophilic attack is rate-limiting. The geometry of 

TS(II-IV) (Figure 3, in which the imidazolium cation is omitted for clarity) shows 

developing sp2-character at both alkyne carbons and during this process (and ultimately in 



intermediate IV), a formal negative charge developing on the -carbon (with respect to PPh2) 

can be stabilised via delocalization around the adjacent phenyl ring. This accounts for the 

lack of hydrophosphination seen with 1-hexyne; indeed, the transition state computed using 

propyne as a model aliphatic alkyne is much higher in energy at +31.5 kcal/mol. With 

PhCCMe, an overall barrier of 29.0 kcal/mol is computed, consistent with the much lower 

reactivity of this substrate compared to PhCCH and presumably reflecting the greater steric 

encumbrance associated with attack at an internal alkyne carbon. Details of all additional 

pathways are provided in the ESI. 

Based on these computed profiles, the ratio of the hydrophosphination products, 1a:1b, 

will be determined by the rates of the different rearrangements of intermediate IV. While 

formation of Vb is well-defined via TS(IV-Vb) at 15.3 kcal/mol, it is less straightforward to 

assess the formation of Va. In Figure 2 this is assumed to proceed via a solvent-separated ion-

pair at 15.7 kcal/mol, but other possibilities can be considered, including rearrangement 

within the contact ion-pair, or addition of a second, external imidazolium cation directly to 

the alkenyl carbon. As such, 15.7 kcal/mol may be considered as an upper limit for this 

rearrangement barrier. The two processes leading to 1a and 1b are therefore likely to be 

competitive, and indeed experimentally both isomers are observed in most cases (Scheme 2). 

Recomputing these rearrangements with p-XC6H4CCH (X = F, OMe) shows the separated 

ion-pair becomes more accessible than the isomerization via TS(IV-Vb): for X = F the ion-

pair is 1.1 kcal/mol more stable (+15.3 kcal/mol cf. +16.4 kcal/mol), while for X = OMe the 

difference increases to 2.0 kcal/mol (ion-pair: +19.2 kcal/mol; TS(IV-Vb): +21.2 kcal/mol). 

Formation of Va (and hence the Z-isomer 1a) therefore becomes more favored with these 

substituted alkynes, reflecting the higher Z:E-ratios observed experimentally. NBO charge 

calculations on TS(IV-Vb) indicate an increase in negative charge in the aryl substituent that 

appears to be poorly accommodated by +M substituents. In contrast, +I substituents would be 



expected to facilitate isomerization and lead to lower Z:E ratios. This is confirmed with 

calculations on p-CF3C6H4CCH for which the isomerization transition state was computed 

to lie 5.1 kcal/mol below the solvent-separated ion-pair (see ESI) indicating the E-isomer 

should be preferred.[15]
 This was subsequently borne out experimentally with the ItBu-

catalyzed hydrophosphination of this substrate giving exclusively the E-isomer of p-

CF3C6H4CH=CH(PPh2) (ESI).  

 

 

 

Figure 3. Computed geometries for key transition states TS(II-IV) and TS(IV-Vb). Selected 

distances are given in Å and spectator imidazolium cations have been omitted for clarity. 

  

Hydrophosphination with a simple dialkylphosphine, PMe2H, with PhCCH was also 

modeled. As for PPh2H, insertion of ItBu into the PH bond involves a two-step process via a 

contact ion-pair; however in this case the neutral carbene insertion product (IIIMe, +7.0 

kcal/mol) is now significantly more stable than the preceding ion-pair (IIMe, +22.2 kcal/mol). 

Onward reaction of IIMe with PhCCH entails a transition state at +35.1 kcal/mol. This 

reflects the lack of reactivity observed experimentally upon replacing PPh2H with PtBu2H 

(ESI) and correlates with the much higher pKa of dialkyl- versus diaryl-phosphines.[16]  

In conclusion, we have shown that N-alkyl substituted NHCs can promote the catalytic 

hydrophosphination of alkynes. The proposed mechanism (Figures 1 and 2) indicates that 

initial P–H activation proceeds via deprotonation with the NHC acting as a Brønsted base. P–

C bond formation involves rate-limiting nucleophilic attack of the resultant phosphide at the 



more accessible alkyne carbon, with Z:E selectivity being determined by the rearrangements 

of the resultant alkenyl anion. This mechanism accounts for the scope of the reaction which 

favors relatively acidic arylphosphines, as well as aryl-substituted alkynes in which charge 

delocalization around the aryl ring provides additional stabilization of the alkenyl anion 

intermediate. This catalytic hydrophosphination has parallels to NHC-catalyzed conjugate 

addition reactions in which the NHC acts as a general base to activate alcohols, amines and 

ketones.[17] 

  While examples of base-catalyzed hydrophosphination have previously been 

reported,[18,19] these typically employ more explicit bases such as KOtBu or KHMDS.[20] In 

contrast, in catalysis with transition metal-NHC complexes, the role of the NHC is usually 

assumed to be as a ligand, but this study shows that the capability of any dissociated, free 

NHC to act as a base and perform catalysis in its own right should not necessarily be 

neglected. Finally, it is interesting that the catalytic alkyne hydrophosphination reported 

herein does not rely on E–H bond ‘oxidative addition’ (i.e. carbene insertion) of the type 

often targeted in putative main group catalysis.[21] While we compute such species to be 

kinetically accessible, in the present case they lie off-cycle and thus do not contribute directly 

to catalysis. 
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