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ABSTRACT 

Angiotensin-I converting enzyme (ACE) is a dual-domain zinc metalloprotease best known for its 

critical role in blood pressure regulation. The two domains of ACE (N- and C-) both hydrolyse 

angiotensin-I and bradykinin, but show different substrate and inhibitor specificities with the 

antifibrotic tetrapeptide Ac-SDKP being highly selective for the N-domain. Until recently, all clinical 

ACE inhibitor(s) (ACEi) have been shown to be non-selective towards either domain. The entries in 

the GVK (Gunupati Venkata Krishna) Biosciences database pertaining to ACE were inspected for 

possible N-domain selective binding patterns. From this set, a series of diprolyl compounds was 

selected and modelled using docking simulations. The series was expanded upon to target key 

interactions involving residues known to impart N-domain selectivity. A selection of seven diprolyl 

compounds were synthesised and tested for N-domain selective ACE inhibition. One compound with 

an aspartic acid in the P2 position (compound 16) displayed potent inhibition (Ki = 12 nM), and was 

84-fold more selective towards the N-domain. A high-resolution crystal structure of compound 16 in 

complex with the N-domain revealed a molecular basis for the observed selectivity. 
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INTRODUCTION 

Angiotensin-I converting enzyme (ACE; EC 3.4.15.1) is a zinc dipeptidyl carboxypeptidase 

that cleaves the inactive decapeptide angiotensin-I (Ang-I) into the vasopressor angiotensin-II (Ang-

II), and degrades the vasodilator bradykinin (BK). The importance of these activities is emphasised by 

the extensive use of ACE inhibitor(s) (ACEi) for the treatment of hypertension and cardiovascular 

disease. The ACEi captopril1 and lisinopril2 were designed in the 1970s and later extended by others. 

Currently, more than 17 ACEi have been approved for clinical use. 

Captopril is a peptidomimetic compound designed to mimic the sequence of peptides 

isolated from Bothrops jaracara venom, which were known to inhibit the ACE catalysed dipeptidyl 

cleavage of Ang-I. Since the elucidation of the RAAS, many more peptide substrates of ACE have 

been identified and have been shown to play a role in many more signalling pathways.3  

At the time of the development of captopril, ACE was assumed to share mechanistic 

similarities with carboxypeptidase A, a zinc metalloprotease of which the structure was known.4 

Following the cloning of somatic ACE, it was shown to consist of two homologous catalytic domains 

known as the N- and C-domains. Apart from structural differences, the two domains have been 

shown to possess different kinetic profiles when hydrolysing their peptide substrate.  

Subsequent studies have shown the C-domain to be responsible for the majority of Ang-I 

hydrolysis while the other major substrate bradykinin has been shown to be hydrolysed at a similar 

rate by both the N- and C-domain.5 It is currently believed that the two domains of ACE act 

independently of each other with the total activity of somatic ACE (sACE) equalling the sum of 

activities for the individual domains.  

The tetrapeptide AcSDKP was discovered around the same time that the two domains of 

ACE were elucidated.6 The presence of AcSDKP has been shown to reduce the deposition of collagen 

in haematopoetic stem cells of both cardiac and pulmonary tissues.7 Excess collagen deposition in 

these tissues has been identified as a mechanism for the pathogenesis of fibrosis. AcSDKP has been 

shown to be exclusively hydrolysed by the N-domain of ACE.8 N-domain selective ACE inhibition has 

been identified as a possible treatment for both cardiac and pulmonary fibrosis without the side-

effects of non-selective inhibition of both domains of ACE.  

Individual N- and C-domain ACE constructs have been crystallised with a variety of different 

inhibitors co-crystallised with both catalytic domains. These crystal structures have clearly 

elucidated the core interactions responsible for potent ACE inhibition.9,10  

The N- and C-domains share 65% sequence homology with each other.11 Many of the key 

interactions are shared between the two domains with most inhibitors showing similar Ki values. 

Both substrates and most ACEi bind to the ACE active site via a chelation interaction with the 

catalytic zinc metal, a H-bond between the catalytic Glutamic acid and the amide nitrogen of the zinc 

binding amide and a polar salt-bridge interaction between the charged terminal carboxylic acid and 

three conserved residues in the S2’ subsite (Gln259, Lys489 and Tyr498 in the N-domain, conserved 

as Gln281, Lys511 and Tyr520 in the C-domain). The P1’ backbone carbonyl interacts with the 

conserved His331 and His491 in the N-domain (His353 and His513 in the C-domain). A conserved 

tyrosine (Tyr501 and Tyr523 in the N- and C-domains respectively) can interact with either the P1’ 
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peptide carbonyl, or the ZBG. Lipophilic interactions between non-polar groups and the non-polar 

subsites indicated in figure 1 add to the potency of the inhibitor. These are mostly conserved 

between the two domains. However, the C-domain S2’ is more lipophilic and favours P2’ bicyclic 

groups, largely due to the replacement of Ser257 and Thr358 in the N-domain with Val379 and 

Val380 in the C-domain. The S1 subsite is largely similar except for Thr496 in the N-domain being 

replaced with Val518 in the C-domain, making this subsite more hydrophobic in the C-domain.  

There are various conserved residues in the S2’ subsite, and a conserved interaction between 

the backbone S2’ carbonyl with the backbone nitrogen of Ala334 in the N-domain (Ala356 in the C-

domain). However, there are two key differences between the two binding sites with the N-domain 

to C-domain substitutions of Arg381 to Glu403 and Tyr369 to Phe391. Both these substitutions could 

influence ligand binding. The substitution of a positive charge for a negative one, and a hydrophilic 

residue for a hydrophobic one provides an ideal set of interactions to be targeted for the design of a 

domain selective ACEi. 

Both of these substitutions were shown to impart N-domain selectivity in the case of the 

phosphinic tetrapeptide RXP407, the first example of an N-domain selective ACEi.12 RXP407 contains 

all the core ACEi moieties with the addition of an aspartic acid in the P2 position. RXP407 was shown 

to inhibit the N-domain with a 2500-fold Ki selectivity over the C-domain. This selectivity was 

explained via a P2 salt bridge with Arg381 and a H-bond partner Tyr369 with the N-domain. 

Substituting the positively charged Arg381 and the H-bond donor Tyr369 with the negatively-

charged Glu403 and the hydrophobic Phe391 in the C-domain could explain the dramatic disruption 

of binding observed in the C-domain.13  

While the N-domain selective ACE inhibition observed for RXP407 proved to be an excellent 

proof-of concept, the compound is too large and peptidic to be considered drug-like. Despite its 

shortcomings, RXP407 provides a template upon which to base the design of a drug-like N-domain 

selective ACEi. Designing an ACEi specific to just one domain of ACE requires careful consideration of 

the small structural differences in the respective domain active sites, such as the Arg381 to Glu403 

and Tyr369 to Phe391 substitutions. This objective warrants a structure-based approach. 

Many high-resolution crystal structures detailing the interactions between this target and a 

myriad of different inhibitors have now been reported.9, 13 A combination of crystal structure data, a 

large collection of ACEi from decades of ACEi development, modern computer hardware and state-

of-the-art docking software have provided an ideal opportunity to develop novel N-domain selective 

ACEi.  

In the search for drug-like N-domain selective ACEi, a large library of known ACEi were 

screened for a versatile P2 group with the potential to probe the structure-activity-relationship (SAR) 

around the residue substitutions found in the S2 subsite. Here we report an integrated approach to 

the identification of a novel drug-like N-domain selective ACEi. The approach entailed database 

mining, docking simulations, hit identification, synthesis, biological evaluation and high-resolution 

crystal structure studies. 

RESULTS AND DISCUSSION 
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In an effort to identify new starting point leads for a novel N-domain selective ACEi, we 

screened the comprehensive Gunupati Venkata Krishna (GVK) Biosciences database, containing 

inhibitors against most biological targets and their associated SAR data.14 The GVK database 

contained 24 958 compounds with data from biological studies performed on human sACE. Within 

this set, 1 832 unique compounds were found to contain a carboxylic acid ZBG with IC50 inhibition 

data.  

Manual filtering was used to search for polar P1/P2 moieties. Within this carboxylic acid ZBG 

subset, 13 compounds (1-13; Table 1) fit the filtering criteria of a polar group in the P1/P2 position. 

This set of compounds contained four chemical series (Series 1-4) defined by a shared chemical 

scaffold. Compounds not belonging to one of these scaffolds were left ungrouped. Once these 

promising compounds had been identified, their binding pose was predicted using constrained Glide 

docking.15 

The ability of Glide to evaluate metal-ligand interactions is inadequate for the accurate 

prediction of an ACEi binding pose. This has been previously reported16 and is due to the 

prohibitively expensive quantum mechanical (QM) calculation required to accurately model the 

force field around transition metals. Consequently, Glide approximates the chelation interaction 

between a metal and a ligand using a template of pre-calculated interactions between each metal 

and its chelating species. Such an approximation does not account for the unique electrostatic 

environment of each metal inside each protein. The use of a pre-calculated generalised template for 

each metal-chelator interaction is problematic with ligands containing multiple metal-binding 

moieties of the same species. Most ACEi compounds fall into this category with two carboxylic acids. 

The use of chelation templates often fail to assign the correct metal binding group when presented 

with a choice of two carboxylic acids. Hence Glide could not efficiently recreate the native pose of a 

metal-chelating ACEi in the binding site without the use of docking constraints.  

In this case, five docking constraints were created in a docking grid centred around the 

Lisinopril ligand in the C-domain structure 1O869 and RXP407 in the N-domain structure 3NXQ.13 

These grids were assigned three positional constraints requiring the docked ligand to place either a 

carbon or nitrogen atom in one of three 1 Å radius spheres indicated in Figure 2A. Interaction 

constraints were then created for a chelation interaction between the ZBG and the zinc metal 

(Figure 2B). H-bond constraints were set between the terminal carboxylic acid and the H-bond donor 

Lys and Gln residues in the S2’ subsite (Figure 2C).  

Three different constraint conditions were created from different permutations of these five 

docking constraints, C1, C2 and C3 (Table 2). Different constraint conditions were employed due to 

the different structural requirements of each chemical series. In each case, one of the three 

constraint conditions enabled Glide to assign the correct ZBG and find a plausible docking pose 

(Table 2). 

Page 5 of 40

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



All compounds were successfully docked with a plausible pose into at least one of the two 

active sites using one of the three constraint conditions (Table 3). These details were then used to 

assess the potential of a compound to selectively inhibit the N-domain of ACE. This assessment of 

domain selectivity initially considered the distance from the ligand to a N atom from Arg381 and an 

O from Tyr369 in the N-domain, and the nearest aromatic C atom from Phe391 and an O atom of 

Glu403 in the C-domain. 

Figure 3 shows example representations of three compounds docked into the N- and C-

domains. Compound 1 of Series 1 displayed the ideal interactions with Tyr369 and Arg381 of the N-

domain in the S2 subsite. The other two compounds in this series demonstrated the versatility of this 

series with the modification to its P2 group occurring in the last stage of its synthesis. Variability in 

the P2 position is ideal for probing the SAR of the S2 subsite and possible causes of N-domain 

selective ACE inhibition. Series 2 and 3 provided limited opportunities for probing S2 interactions 

apart from a basic Lys group. Large bicyclic groups in the P2’ position have also been shown to cause 

C-domain selectivity.17 Series 4 consisted of a pair of natural products with a promising P1 acidic 

group. Despite the strong sACE inhibition, these two compounds appeared to be too short to make 

strong contacts with key S2 residues that have been shown to influence N-domain selectivity, 

although a weak, longer range H-bond with Tyr369 is possible. The combination of the shorter length 

and limited synthetic versatility of a natural product left little opportunity to explore the P1/P2 SAR of 

ACE using this series. An evaluation of the binding poses of the remaining three ungrouped 

compounds showed little opportunity for P1/P2 SAR studies.  

From the docking results, the diprolyl Series 1 with its variable P2 moiety, published by 

Greenlee et al.18 appeared to be an ideal scaffold to make contact with key residues in the S2 subsite. 

In addition, the P2 acid found in 1 made it an ideal candidate for N-domain selectivity as it docked 

with a salt-bridge interaction with Arg381 and formed an H-bond with Tyr369, while its prime groups 

made the conventional interactions of an ACEi scaffold. Upon closer inspection, 1 and 3 were found 

to differ from the respective referenced compounds of 14 and 15 published by Greenlee et al. (Table 

4). Despite the error present in the GVK database, the diprolyl series presents a promising scaffold 

with which to probe the P2 SAR as a large range of amino acids and amino acid analogues can be 

added in the final stage of the synthesis via the formation of an amide bond. 

Greenlee et al. synthesised seven compounds in the diprolyl series. Of the seven 

compounds, three (2, 14 and 15) contained a terminal P2 moiety which was free to interact with the 

Arg381/Glu403 and Try369/Phe391 residues in the N- and C-domains, respectively. Since the P2 

moiety can be replaced with any amino acid or monomer containing a carboxylic acid during the 

synthesis, a library of P2 diprolyl variants was modelled.  

The diprolyl series was expanded with a diverse range of amino acids and monomer 

carboxylic acid containing groups (Table 5). These groups were chosen for their ability to probe the 

P2 SAR with a carboxylic acid in a variety of positions and orientations. These compounds were 

docked using the fixed core method. The backbone was fixed in the most plausible pose from the 

first round of docking with flexibility only permitted in the P2 position. The resulting poses were then 

minimised. The final poses can be easily visualised in the 2D ligplot diagrams provided in SI1.  

When reviewing the docked poses, the position of the P2 group was primarily considered 

due to the rest of the diprolyl scaffold having conserved interactions. The distance between this 
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group and the Tyr369/Arg381 and Phe391/Glu403 residues in the respective N- and C-domains were 

measured. Favourable H-bond and salt-bridge interactions with Tyr369/Arg381 were noted, and any 

additional interactions, both favourable and unfavourable towards the P2 group were considered.  

Figure 4 shows example representations of 3 compounds docked into the N- and C-domains. 

The P2 group of compound 16 shows a network of interactions consisting of a salt bridge with 

Arg381 and H-bonds with Tyr369 and Arg500 (weaker at 3.4Å) in the N-domain. In contrast, when 

docked into the C-domain, the charged P2 group rotates away from the hydrophobic Phe391 and 

only forms a single interaction, albeit a strong H-bond with Arg522, the equivalent residue to Arg500 

in the N-domain. This movement of the P2 group of compound 16 between the N- and C-domains 

resulted in orientation towards the S3 subsite and is typical of compounds that were either too long 

for the S2 subsite, or were not able to form favourable interactions with Tyr369/Phe391 and/or 

Arg381/Glu403.  

The P2 group of compound 17 is one alkyl carbon longer than that of 16. The most obvious 

effect of this difference is the change, for both the N- and C-domains, from a trans proline in the P1 

position of 16 to a cis proline in 17. In the trans orientation, the P2 backbone carbonyl interacts with 

the backbone nitrogen of Ala334 and Ala356 for the N- and C-domains respectively. In contrast, with 

a cis proline the P2 backbone carbonyl interacts with Thr496 in the N-domain, which is not conserved 

in the C-domain, the interaction is instead with Arg522. This cis proline is also observed for 22 with 

both the N- and C-domains, 19 with the N-domain, and 2, 3 and 15 with the C-domain. For the N-

domain, the change to a cis proline with 17 only has small effect on the position of the P2 carboxyl 

group, but the orientation indicates potentially stronger interactions with Tyr369 and Arg381. In 

addition, there is a large change in the position of the P2 backbone nitrogen from interacting with 

the backbone carbonyl of Ala334 for 16, to H-bonds with Glu389 and Tyr501 for 17. A comparison of 

16 and 17 with the C-domain shows a shift of the P2 carboxyl group closer to Phe391 for the docked 

17, and this causes the loss of interaction with Arg522 seen for 16. Similar to the N-domain, there is 

a large change in position of the P2 backbone nitrogen between 16 and 17 in the C-domain, which 

interacts with Ala356 for 16, but Glu411 for 17.  

Compound 21 is an example where the P2 group is not an amino acid, and possibly a 

consequence of this is that the P1 proline backbone is twisted in both the N- and C-domains, 

therefore neither cis nor trans. In the N-domain, the P2 carboxyl group forms the desired 

interactions with Tyr369 and Arg381, whereas in the C-domain this group twists away from the 

hydrophobic Phe391, but does form an H-bond with Arg522. There is also a difference with the P2 

backbone carbonyl which interacts with Thr496 in the N-domain (not conserved in the C-domain), 

but Tyr523 in the C-domain. 

In addition to the qualitative assessment of the binding pose, a quantitative molecular 

mechanics – generalised Born surface area (MM-GBSA) binding energy calculation was performed to 

provide a metric with which to assess the binding prediction. The combination of the qualitative 

binding assessment and the quantitative MM-GBSA binding energy calculation for each ligand in 

each domain helped to form a binding prediction.  

Upon the formulation of the binding predictions, all compounds were deemed to be specific 

for either the N-domain (N) or C-domain (C), or non-selective (NS) (Table 5). Considering these 

selectivity predictions and availability of starting materials, a representative set of seven compounds 
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(indicated with an asterisk in Table 5) was selected for synthesis. These compounds were chosen for 

proof-of concept studies to test the hypothesis that an acid group in the P2 position is crucial for N-

domain selective ACE inhibition.  

Chemistry. 

The diprolyl series was synthesised in 8-steps as depicted in scheme 1. For reaction i N-Boc 

pyrrolidine aldehyde was mixed with Ala-Pro in MeOH/NH4
+Cl- solution at 25 °C for 36 hours to 

produce 27 with a yield of 36%. This compound was then oxidised in an acidic HCl/MeOH solution at 

25 °C for two days. After a quick work-up the product was dissolved in a solution of (Boc)2O and 

Et3N/MeOH to reprotect any Boc-amine groups hydrolysed during a side reaction to produce 28 

(72%) which was then loaded onto an Amberlyst 15 resin and stirred in MeOH at 60 °C for 10 days. 

Compound 29 was then eluted from the resin using HCl in dioxane (40%). The RCO2H group was then 

attached to 29 using T3P in a basic Et3N solution at 0-25 °C for 12 hours to form 30_x with x denoting 

the final compound to be synthesised after its deprotection (30_2 was deprotected into compound 

2). The product was then de-esterified using LiOH in THF/H2O and Boc deprotected using 

HCl/Dioxane if the compound still contained a Boc protected amine. 

Biological Evaluation. 

Docking and MM-GBSA simulations predicted compounds 2 and 14 to be strong inhibitors of 

both ACE domains, 15 to potentially have some C-domain specificity, while 3, 16, 17 and 18 were 

predicted to show a degree of selectivity towards the N-domain. Only 3, 16 and 17 met both the 

qualitative and quantitative criteria for selectivity, albeit the difference between the MM-GBSA 

binding energy for the N- and C-domains for 3 was small. 

The Ki values of all seven synthesised diprolyl compounds were evaluated against both 

domains via a fluorimetric competitive inhibition assay (Table 6). All compounds inhibited both 

domains of ACE in the nanomolar range. Compounds 3, 14 and 18 showed very low nanomolar 

inhibition of both domains with a small degree of C-domain selectivity. Of the four compounds 

predicted to selectively inhibit the N-domain of ACE, only 16 was specific for the N-domain with a 

similar affinity as 3, 14, and 18, but an 84-fold lower affinity for the C-domain. In contrast, 

compound 17 had the same high affinity for both domains showing no specificity. Compounds 2 and 

15 were lower affinity inhibitors for both domains, with 2 showing a small level of C-domain 

specificity. 

The design and docking procedures have produced high affinity inhibitors of ACE. The data 

also shows that introducing the P2 carboxylic acid group can give the desired N-domain specificity as 

seen with compound 16. It is not immediately obvious from the docking results why compound 17 

has a higher affinity for the C-domain than 16, and therefore why 17 loses N-domain specificity. 

Compound 17 docked with the cis proline conformation. Although this causes the loss of the H-bond 

with Arg522, and there are no additional interactions, the cis proline conformation may allow the 

conserved interactions to be stronger. Further SAR and structural studies are needed to fully 

understand these subtle differences. 

X-ray Crystallography. 
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Three structures (A and B) of the N-domain of ACE in complex with compound 16 are 

presented in this paper (Table 7), both of which crystallised in the usual P1 space group previously 

seen for the N-domain of ACE. These two structures have a larger unit cell (Table 7) than what is 

typical of the ACE N-domain with 4 chains in the asymmetric unit, similar to the structure of the N-

domain in complex with amyloid-beta 4-10 (PDB code 5am8). However, the overall structure of all 

chains in the unit cells of both structures are similar to each other and previously reported 

structures. Residues 10-23 and 74-90 form part of the proposed N-terminal hinge region and often 

show flexibility in crystal structures with increased temperature factors (B-factors) and poor electron 

density. This is seen to some degree in every chain of both reported structures, but to a greater 

extent in chain B of each structure. In addition, chain B of structure A shows a particularly high 

degree of flexibility with some evidence of a second conformation apparent in the mFo-DFc electron 

density map of this region. The electron density for this second conformation is not sufficient to 

model the structure, but to account for this the first conformation of this region has been assigned a 

0.8 occupancy.  Another difference between the chains in the asymmetric unit is that an extra 7 

(structure A) and 8 (structure B) residues can be resolved in Chain D at the C-terminus due to the 

proximity and interaction with a symmetry-related molecule. In both structures, there is a region of 

positive density in the mFo-DFc difference map adjacent to residue Asp177 of chain D. This cannot 

be properly accounted for by waters or any other constituent of the purification or crystallisation 

conditions, and has therefore been left un-modelled. A further significant difference between the 

molecules, is seen with Arg381 as described in detail below. 

The active site of the N-domain/compound 16 complex structure shows clear electron 

density for the ligand in every molecule of the asymmetric unit in both structures (Figure 5A). 

Compound 16 binds to the active site in the expected position and orientation coordinating the zinc 

metal with its carboxylic acid ZBG, while the remainder of the ligand occupies the S2’, S1’, S1 and S2 

subsites. The C-terminus mimic of 16 occupies the usual position in the S2’ subsite forming strong 

hydrogen bonding and salt bridge interactions with Gln259, Lys489 and Tyr498 (Figure 5B). These 

residues are conserved in the C-domain. The P1’ backbone carbonyl forms hydrogen bonds with the 

His331 and His491 sidechains, and the P1’ backbone nitrogen with the backbone carbonyl of Ala332. 

These residues are also conserved in the C-domain and the interactions are typical in most 

structures of the N-and C-domains in complex with different ligands. The ZBG of 16 also interacts 

with the C-domain conserved residues Glu362 and Tyr501. The S1 subsite contains the Thr496 to 

Val518 substitution between the N- and C-domains, making the S1 subsite more hydrophobic in the 

C-domain. This would most likely favour the pseudo-proline P1 group of 16, and therefore cannot 

account for the difference in affinity towards 16.  

The interactions between 16 and the S2’, S1’ and S1 subsites involve largely conserved 

residues. The observed specificity for the N-domain must therefore arise from the interactions 

between the P2 group and residues in the S2 subsite. Since the binding site cavity begins to widen 

near the S2 subsite, there are numerous residues that could interact with the ligand depending on 

the orientation and length of the P2 moiety. As already mentioned, Tyr369 and Arg381 in the N-

domain are the only two residues not conserved in the C-domain that could realistically provide 

different interactions with 16. These residues are replaced by Phe391 and Glu403 respectively in 

analogous positions in the C-domain. As previously mentioned, interactions with Tyr369 and Arg381 

were targeted due to the interactions observed with RXP407 in the 3NXQ N-domain complex 

structure. In all the molecules of the asymmetric unit for both structures, Arg381 is poorly defined 
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beyond the Cα (Figure 6A-C). The weak density suggests a high degree of flexibility, with two 

orientations partly explaining some of this flexibility. However, neither conformation interacts 

directly with compound 16. There is a varying amount of electron density visible for these 

conformations in the different chains, but each conformation is visible to some extent in at least one 

chain of both structures. This collective observation across the 8 chains was used to model these 

alternative conformations into weak density with a high degree of certainty (a true experimentally 

observed ‘dynamic picture’ emerged from the crystal structures with multiple copies in the 

asymmetric unit of the crystal lattice), and is the reason for including 2 versions of the structure. One 

of these conformations allows for a water mediated interaction between Arg381 and the P2 

carboxylic acid, with the water bridging both oxygens of the carboxylic acid. However, due to the 

high degree of flexibility of Arg381 observed in these structures, it is unlikely that interactions with 

this residue significantly contributes to the N-domain specificity of 16. The second conformation 

orientates away from the bound ligand, and there is variation in this conformation across the 

different chains in the asymmetric units further confirming the flexibility of this residue. 

In contrast to Arg381, the crystal structure shows a strong H-bond interaction between the 

P2 carboxylic acid of 16 and the hydroxyl group of Tyr369 (Figure 6D). The equivalent Phe391 residue 

in the C-domain, lacks the hydroxyl hydrogen bond donor group while creating a hydrophobic 

environment that is not suitable for charged moieties. Therefore, it is likely that the interaction 

between 16 and Tyr369 is a major contributing factor for the N-domain specificity of this compound. 

The P2 carboxylic acid also has water mediated interactions with Arg500 (Figure 6D) 

contributing to the high affinity of 16 for the N-domain. The docking results predicted this as a long 

range (3.4 Å) direct interaction, and an H-bond between 16 with the equivalent residue Arg522 of 

the C-domain. Therefore, the interaction seen with Arg500 of the N-domain may not contribute to 

the specificity of 16. 

Comparison of Crystallography and Docking Results. 

The crystal structure of compound 16 in the N-domain overlays very closely with the 

predicted docked pose (Figure 7A). An RMSD of 1.182 Å was measured between the predicted and 

crystallised poses. The diprolyl scaffold shows a strong agreement with just a small difference in the 

orientation, but not the position of the P2 aspartate. This close overlay strongly validates the 

constrained docking methodology. The only notable difference between the predicted and 

crystallised structures was the lack of a salt-bridge between the P2 carboxylic acid and Arg381. This is 

a consequence of docking the ligand against the crystal structure of 3NXQ where Arg381 is 

orientated inwards to make a salt-bridge contact with the P2 carboxylic acid of the larger RXP407 

ligand. The choice of the 3NXQ structure is justified for this purpose to maximise the identification of 

compounds that could potentially interact with Arg381 

Overlaying the docked C-domain pose of 16 with the N-domain crystal structure (Figure 7B) 

illustrates the change in orientation of the P2 group that is possibly required to avoid an 

unfavourable interaction with Phe391 in the C-domain. This may also be driven by the favourable 

direct interaction with Arg522 that resulted from this change. In the N-domain crystal structure, the 

interaction with the equivalent Arg500 is water mediated. 
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The docking results for 16 are therefore consistent with the results from the crystal structure 

and the biological assay with 16 having a greater number of interactions with the N-domain than 

with the C-domain, particularly the strong H-bond with Tyr369, thereby explaining the specificity for 

the N-domain. 

Comparison of N-domain Specific Inhibitor Structures. 

The work presented here investigated whether N-domain specificity could be achieved by 

targeting interactions with Tyr369 and Arg381 in the N-domain S2 subsite. These residues were 

identified for their important interactions contributing to the N-domain specificity of RXP407.13 A 

comparison of crystal structures of the N-domain in complex with compound 16 and RXP407 

(depicted as an overlay in Figure 8A), show the compounds occupying very similar positions with the 

majority of interactions conserved. In the S2 subsite, 16 retains the Tyr369 interaction, but Arg381 at 

best only provides a transient water mediated interaction. This is consistent with the 2500-fold N-

domain selectivity of RXP407 compared with compound 16 showing an 84-fold N-domain selectivity. 

Compared to RXP407, the P2 carboxylic acid of 16 is shifted approximately 0.5 Å away from the 

Arg381 location due to differences in ligand structure. This small shift appears to be sufficient to 

prevent a strong interaction with Arg381 indicating the sensitivity of the binding to slight changes in 

ligand structure.  

33RE is another N-domain specific inhibitor, with identical groups to RXP407 in the P2’, P1’ 

and P1 positions, but with the P2 group including the substitution of the carboxylic acid for a tetrazole 

group. 33RE has a 1000-fold specificity towards the N-domain. An overlay of the 33RE structure19 

with that of 16 shows the P2 groups occupy a similar position (Figure 8B). The tetrazole of 33RE 

interacts with Tyr369, similar to both RXP407 and 16, but without a direct interaction with Arg381. It 

is interesting to note that due to this lack of interaction, the Arg381 in the 33RE structure overlays 

with the second conformation of Arg381 in the 16-complex structure. Comparison of the P2 group 

interaction does not explain why 33RE shows a greater specificity for the N-domain than observed 

with 16.  

Previous analysis of N-domain specificity shown by RXP407 and 33RE20 indicated that a P2’ 

carboxylic acid in place of an amide group greatly reduces, or even abolishes the N-domain 

specificity. Both RXP407 and 33RE contain P2’ amide groups, whereas 16 has a carboxylic acid. It is 

possible that changing this P2’ carboxylic acid of 16 to an amide may greatly increase the specificity 

for the N-domain. In addition, it is conceivable that compounds 3, 17, and 18, predicted to be N-

domain selective, but shown to be non-specific or even having some C-domain specificity, are having 

their P2 N-domain selectivity masked by the P2’ carboxylic acid. Synthesis of P2’ amide analogues of 

these compounds would therefore be of considerable interest.  

Conclusion. 

We have investigated a series of diprolyl compounds for specificity towards the N-domain 

catalytic site of ACE by screening the GVK database for potentially N-domain selective P2 chemical 

groups. The series was expanded with a diverse range of amino acids and monomer carboxylic acid 

containing groups to explore the S2 subsite. These compounds were assessed using molecular 

docking and MM-GBSA to estimate their relative binding affinity. Nine compounds with different P2 

groups were predicted to bind selectively to the N-domain. A representative set of seven 
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compounds, four of which were predicted to be N-domain selective, 1 C-domain specific and 2 non-

specific, were synthesised using an 8-step synthetic route. While six of the compounds showed 

highly potent N- and C-domain inhibition, only the P2 Asp derivative (16) was N-domain-selective and 

bound with an 84-fold higher affinity than the C-domain.  

The high-resolution crystal structures of compound 16 in complex with the N-domain 

showed that the ligand position, orientation and interactions largely agreed with the docking results. 

The only significant difference was the lack of a salt bridge with Arg381. This residue was shown to 

be highly flexible forming only a transient water mediated interaction with the with the P2 carboxylic 

acid. Instead, hydrogen bonding of 16 with Tyr369 is likely to be the interaction responsible for N-

domain selectivity. The close correlation between the predicted and crystallised pose of 16 reaffirms 

accuracy of the pose prediction while the movement of Arg381 highlights the shortcomings of a 

fixed receptor prediction.  

The discovery of the diprolyl series has provided a more drug-like scaffold with which to 

probe the S2 subsite of ACE for N-domain selectivity. While the discovery of 16, a novel N-domain 

selective ACEi is encouraging, it highlights the need for a more extensive SAR study probing the S2 

subsite to better define the chemical space responsible for N-domain selective ACE inhibition. A 

previous study showed a complete loss in N-domain specificity caused by a change from a P2’ amide 

to carboxylic acid. That SAR masked the contribution of the P2 group.12  The present study has 

identified the first drug-like N-domain selective ACEi. Compound 16 serves as an excellent starting 

point for further SAR studies which could realistically develop into a viable N-domain selective ACEi 

and achieve the original goal of treating tissue fibrosis without affecting blood pressure. 

METHODS 

Computational. 

All computational predictions were carried out using desktop workstations running the CentOS 6.5 

OS using the Glide utility included in the Schrodinger 2014-1 suite release. PDB entries 3NXQ and 

1O86 of the respective N- and C-domains were prepared using the Maestro prepwizard to complete 

the structure with the addition of bond orders and missing side-chains. The non-peptide ligands 

were edited manually to reflect their correct structure. Non-bound waters were removed and in the 

case of 3NXQ, the less complete Chain-B was removed. The automated optimize and Impref 

protocols were then run to refine the structures.  Glide docking grids of default length were created 

centred on the native Lisinopril and RXP407 ligands, each with one metal chelation constraint, three 

positional constraints and two S2’ H-bond constraints as indicated in Figure 3. Docking simulations 

were performed iteratively using the Glide SP setting with constraint conditions CS1-CS3 enforced 

until a plausible docking pose was found.  

Binding energy was calculated using the Prime MM-GBSA minimisation and binding energy 

calculation package provided with the Schrodinger suite. MM-GBSA calculations were performed 

using the VSGB solvent model. The minimisation was performed with flexibility tolerated for all 

protein atoms within a 15 Å radius of the ligand.  

Synthesis 

Reagents and Solvents. 
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All chemical reagents and anhydrous solvents used during the synthesis of the Enalaprilat analogue 

were purchased from Sigma Aldrich. HPLC grade solvents were purchased from Sigma-Aldrich, Merck 

and Microsep 

Chromatography. 

Thin layer chromatography (TLC) reaction monitoring was performed using Merck F254 aluminium-

backed silica gel 60 plates. Spots were visualised with either ultra violet (UV) light (254/366 nm), 

anisaldehyde or ninhydrin stains. Reaction products were all purified via column chromatography 

using Merck kieselgel 60:70-230 mesh via gravitational column chromatography and flash 

chromatography. 

HPLC. 

Peak purity of each compound was determined using preparatory HPLC with a thermo separation 

system comprising of a Spectra Series P200 pump, an AS100 automated sampler and a UV 100 

variable wave detector. The UV detector was set to monitor peak absorption at 214 nm. A Waters® 

X-bridge C18 5.0 µm (4.6 x 150 mm) (Phenomenex, Torrance, CA) column stationary phase used was 

fitted to a Supelguard ® Ascentis TM C18 guardcartridge (2cm x 40 mm, 3 µm) (Supelco Analytical, 

Bellefonto, PA).  

Diastereomer separation was performed using a thermo separation system comprising of an 

Analytical Technologies® P2230 HPLC pump with an automated sampler and Analytical 

Technologies® UV 2230 variable wavelength detector set to detect absorbance at 214 nm. The 

stationary phase column used was a Gemini® NX – C18 3.5 µm (4.6 x 50 mm) (Phenomenex, 

Torrance, CA). 

LC-MS. 

Liquid chromatography mass spectrometer (LC-MS) analysis on each compound was performed 

using an Agilent® 1260 Infinity Binary Pump, Agilent® 1260 Infinity Diode Array Detector (DAD), 

Agilent® 1290 Infinity Column Compartment, Agilent® 1260 Infinity Standard autosampler and an 

Agilent® 6120 Quadruple (Single) mass spectrometer equipped with an APCI and ESI multimode 

ionisation source. Compound purity was determined using an Agilent® LC-MS with a Kinetex Core 

C18 2.6 μm column (50 x 3 mm).  

NMR. 

All NMR spectra were recorded a Brucker Ultrashield-Plus Spectrometer (1H-400 MHz; 13C-100 MHz), 

with compounds dissolved in either deuterated methanol (MeOD-d4) or deuterium oxide (D2O) 

solvents. 

Inhibitions Assays. 

The Ndom389 and tACE Δ36NJ constructs of the respective N- and C-domain samples were diluted 

to 10 nM and 5 nM respectively from frozen stock solutions. 50 mM stock solutions of each 

compound were prepared in deionised water. Aliquots of these stock solutions were then diluted to 

10 mM with deionised H2O followed by dilution into a phosphate buffer (100 mM KHPO4, pH 8.3, 300 

mM NaCl, 10 µM ZnSO4, 1mg/ml albumin).  
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10-fold dilution series running from 100 μM to 1 nM of each compound were prepared in buffer. 40 

μL of each solution in the series was mixed with 40 µL of the enzyme in buffer. A 10 µM solution of 

Lisinopril in buffer was used for positive control while buffer was used for the negative control. The 

mixtures were incubated at room temperature for 30 minutes after which triplicate 20 µL aliquots of 

each mixture were loaded into 3 individual wells of a 96 well plate. 30 µL of 1 mM Z-FHL substrate 

(Bachem Ltd., Bubenhof, Switzerland) was then added to each well. The plate was then incubated at 

40 ˚C for 15 minutes in a shaker. The reactions were then stopped and the product was derivatised 

with the addition of 190 µL of a base and O-pthaldehyde solution (0.28 M NaOH and 7 mM O-

pthaldehyde) to each well followed by further incubation on a shaker at room temperature for 10 

minutes. The wells were then quenched with 25 µL of 3 M HCl and the plate was read on a 

fluorimeter (Varian Inc., Mulgrave, Victoria, Australia) with an excitation wavelength at 360 nm and 

an emission wavelength at 485 nm. After approximating the IC50 values from the 10-fold dilution 

series of each compound, 9 solutions of a two-fold dilution series spanning the approximated IC50 

were prepared. Activity curves were plotted to determine the IC50 of each compound. For better 

inhibition comparisons between the two domains of ACE, the Ki values were calculated using the 

equation given below:  

K� =	
IC��

1 −
�S
K�

 

Characterisation 

General Ester Deprotection Method.  

5 equivalents of a 4.0 M aqueous solution of LiOH was added to a 0.1 M solution of the methyl ester 

protected form of each diprolyl compound in a THF/MeOH/H2O (3:2:1) solution. The mixture was 

stirred for two hours at room temperature. The mixture was then diluted with 5 mL of water then 

neutralised by adding 1 N HCl dropwise. The compound was either dried and purified via Prep-HPLC 

or the crude product was Boc-deprotected. 

General Boc Deprotection Method. 

Crude Boc protected compound was dissolved in chilled 4 M HCl/Dioxane under N2 at 0 °C. The 

mixture was stirred for 30 min at 0° C and monitored via TLC. Upon completion, the solvent was 

evaporated and the residue was washed with diethyl ether. The final compound was then purified 

over prep HPLC. 

2 

The general ester deprotection was performed on 90 mg of 30_2 after which the crude residue was 

Boc deprotected via the general Boc deprotection method after which it was purified via HPLC to 

yield 65 mg (97%) of 30_2 as a sticky yellow solid.  

1H NMR (400 MHz, D2O) δ 4.42 (m, 2H), 4.29 (q, J = 6.9 Hz), 3.95 – 3.84 (m, 3H), 3.54 (m, 2H), 3.48 – 3.33 (m, 

2H), 2.25 (s, 1H), 2.15 (m, 1H), 2.04 (m, 1H), 1.95 (m, 4H), 1.82 (m, 1H), 1.50 (d, J = 6.9 Hz, 3H). 13C (100 MHz, 

D2O): δ 177.1, 176.2, 174.7, 170.9, 70.5, 63.1, 56.3, 55.5, 52.3, 51.5, 42.9, 31.8, 26.9, 25.9, 24.1, 23.5 LC-ESI-MS 

(+ve ion mode): 371 [M+H]
+
 HPLC purity 93.6%, tr = 5.66 min 
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3 

The general ester deprotection was performed on 50 mg of 30_3 after which the crude residue was 

Boc deprotected via the general Boc deprotection method after which it was purified via Prep HPLC 

to yield 30 mg (78%) of 30_3 as a sticky yellow solid.  

1H NMR (400 MHz, D2O) δ 7.61 – 7.51 (m, 2H), 7.27 (dd, J = 8.7, 2.9 Hz, 2H), 4.51 (t, J = 8.5 Hz, 1H), 4.33 (q, J = 

6.9 Hz, 1H), 4.29 (m, 1H), 3.96 (m, 1H), 3.62 – 3.36 (m, 4H), 2.21 (m, 2H), 2.13 – 2.00 (m, 1H), 1.98 – 1.79 (m, 

4H), 1.66 (m, 1H), 1.50 (d, J = 6.9 Hz, 3H). 13C (100 MHz, D2O): δ 176.3, 174.8, 174.1, 168.3, 133.9, 128.1, 127.7 

(2C), 126.8 (2C), 67.5, 66.1, 60.7, 58.2, 52.7, 48.9, 28.1, 26.4, 23.7, 22.1, 21.1. LC-ESI-MS (+ve ion mode): 433 

[M+H]+ HPLC purity 93.79%, tr = 4.95 min 

14 

The general ester deprotection was performed on 45 mg of 30_14 and then purified via prep HPLC 

to obtain 26 mg (62%) of a sticky white-yellow solid.  

1H NMR (400 MHz, Methanol-d4) δ 7.62 – 7.55 (m, 2H,), 7.55 – 7.44 (m, 3H, H-12), 4.72 (t, J = 8.7 Hz, 1H), 4.52 – 

4.47 (m, 1H), 4.37, (d, J = 1.9 Hz, 1H), 4.23 (q, J = 6.8 Hz, 1H), 3.70 (m, 1H), 3.60 (m, 2H), 3.50 (d, 1H), 2.44 – 

2.25 (m, 3H, H-2), 2.12 – 1.93 (m, 4H), 1.87-1.73 (m, 1H), 1.64 (d, J = 7.0 Hz, 3H). 13C (100 MHz, Methanol-d4): δ 

175.9, 175.1, 173.2, 168.2, 132.3, 129.4, 127.9 (2C), 126.5 (2C), 66.3, 64.2, 59.5, 58.3, 50.5, 49.3, 27.2, 25.3, 

23.4, 22.7, 22.1 LC-ESI-MS (+ve ion mode): 418 [M+H]+ HPLC purity 98%, tr = 8.26 min 

15 

The general ester deprotection was performed on 50 mg of 30_15 after which the crude residue was 

Boc deprotected via the general Boc deprotection method after which it was purified vi prep-HPLC 

to yield 38 mg (97%) of 30_15 as a sticky yellow solid.  

1H NMR (400 MHz, D2O) δ 7.32 (m, 3H), 7.25 (m, 2H), 4.51 (t, J = 7.6 Hz, 1H), 4.40-4.30 (m, 3H, H-4), 3.82 (d, J = 

4.4 Hz, 1H), 3.64 (d, 2H), 3.54 – 3.39 (m, 2H), 3.23 (dd, J = 14.7, 5.1 Hz, 1H), 3.06 (dd, J = 14.8, 7.7 Hz, 1H), 2.21 

(m, 1H), 2.07 (m, 1H), 2.00 – 1.81 (m, 6H), 1.48 – 1.36 (m, 3H). 13C (100 MHz, D2O): δ 177.1, 175.3, 174.8, 

171.2, 136.7, 129.1 (2C), 128.5 (2C), 127.2, 68.3, 67.5, 62.1, 57.3, 53.6, 51.9, 49.2, 40.1, 29.3, 25.7, 24.1, 22.8, 

22.1 LC-ESI-MS (+ve ion mode): 461 [M+H]+ HPLC purity 97.4%, tr = 5.52 min 

16 

The general ester deprotection was performed on 230 mg of 30_16 after which the crude residue 

was Boc deprotected via the general Boc deprotection method after which it was purified via prep-

HPLC to yield 85 mg (49%) of 30_16 as a sticky yellow-brown solid.  

1H NMR (400 MHz, D2O) δ 4.60-4.50 (m, 1H), 4.48-4.35 (m, 2H), 4.33-4.24 (m, 1H), 3.85 (d, J = 2.1 Hz), 3.70-

3.48 (m, 3H), 3.47-3.35 (m, 1H), 3.03-2.91 (m, 1H), 2.84 – 2.71 (m, 1H), 2.23-2.14 (m, 2H), 2.13 – 1.75 (m, 6H), 

1.59 – 1.35 (d, J = 6.1 Hz, 3H). 13C (100 MHz, D2O): δ 177.1, 176.5, 175.9, 174.2 170.6, 70.9, 68.5, 59.5, 58.2, 

53.8, 50.2, 49.1, 41.9, 31.1, 28.3, 27.1, 24.1, 23.5. LC-ESI-MS (+ve ion mode): 429 [M+H]+ HPLC purity 97.55%, tr 

= 4.76 min 

17 
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The general ester deprotection was performed on 80 mg of 30_17 after which the crude residue was 

Boc deprotected via the general Boc deprotection method after which it was purified to yield 6 mg 

(10%) of 30_17 as a sticky yellow-brown solid. 

1H NMR (400 MHz, D2O) δ 4.40 – 4.23 (m, 4H), 3.76 (d, J = 2.0 Hz, 1H), 3.65 (m, 1H), 3.53 (m, 2H), 3.39 (m, 1H), 

2.54 (t, J = 7.5 Hz, 2H), 2.22 (m, 2H), 2.13 (m 2H), 1.95 (m, 5H), 1.77 (q, 1H), 1.49 (d, J = 6.9 Hz, 3H). 13C (100 

MHz, D2O): δ 178.2, 177.4, 175.5, 174.9 171.4, 72.3, 68.9, 61.5, 58.1, 51.9, 51.2, 48.3, 41.9, 31.1, 29.7, 28.1, 

26.4, 24.2, 22.9. LC-ESI-MS (+ve ion mode): 443 [M+H]+ HPLC purity 98.95%, tr = 4.76 min 

18 

The general ester deprotection was performed on 30 mg of 30_18 and then purified via prep HPLC 

to obtain 23 mg (62%) of a sticky white-yellow solid.  

1
H NMR (400 MHz, Methanol-d4) δ 8.07 (d, J = 7.8 Hz, 2H), 7.65 (dd, J = 8.2, 2.9 Hz, 2H), 4.71 – 4.61 (t, J = 8.2 

Hz), 4.40 (q, J = 6.9 Hz, 1H), 4.12 (m, 1H), 3.96 (m, 1H), 3.62 (m, 2H), 3.43 (m, 2H), 2.32 (m, 3H), 1.98 (m, 3H), 

1.86 (m, 1H), 1.74 (m, 1H), 1.58 (d, J = 6.4 Hz, 3H). 
13

C (100 MHz, Methanol-d4): δ 175.9, 175.1, 174.5, 171.3, 

167.2, 134.3, 128.8, 128.1 (2C), 126.3 (2C), 67.1, 66.2, 59.3, 57.9, 51.5, 49.1, 27.3, 25.8, 23.1, 22.5, 21.3. LC-ESI-

MS (+ve ion mode): 462 [M+H]
+
 HPLC purity 97%, tr = 7.31 min 

Protein Purification and X-ray Crystallography. 

The N-domain of ACE was expressed and purified to homogeneity from CHO (Chinese-

hamster ovary) cells.13
  Compound 16 in complex with Ndom389 (minimally glycosylated ACE N-

domain) was prepared by incubating a 4:1 v/v ratio of 5 mg ml-1 Ndom389 (in 50 mM Hepes, pH 7.5, 

0.1 mM PMSF) and 20 mM 16 at room temperature for 1 hour. The hanging drop co-crystallization 

used 1 μL of the complex mixed with an equal volume of reservoir solution (30% PEG 550 MME/PEG 

20000, 0.1 M Tris/Bicine pH 8.5, and 60 mM divalent cations. Molecular Dimensions Morpheus A9). 

X-ray diffraction data were collected from two crystals on station IO4-1 at the Diamond Light 

Source (Didcot, UK). Crystals were kept at constant temperature (100 K) under the liquid nitrogen jet 

during data collection. Images were collected using a PILATUS-6M-F detector (Dectris, Switzerland). 

Raw data images were indexed and integrated with DIALS,21 and then scaled using AIMLESS22 from 

the CCP4 suite.23 Initial phases were obtained by molecular replacement with PHASER24 using PDB 

code 3NXQ12 as the search model. Further refinement was initially carried out using REFMAC525 and 

then Phenix,26 with COOT27 used for rounds of manual model building. Ligand and water molecules 

were added based on electron density in the Fo-Fc difference map. MolProbity.28 was used to help 

validate the structures. Crystallographic data statistics are summarized in Table 7. All figures showing 

the crystal structures were generated using CCP4mg.29 
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Figure Legends  

Figure 1: A schematic outline of the ACE binding site occupied by a typical ACEi drug. ACE inhibitors 
bind to the catalytic region of the active sites of both domains via a chelation interaction with the 
zinc atom and a hydrogen bond with the catalytic Glu residue. A salt-bridge and hydrogen bonding 
interactions with the respective Gln, Lys and Tyr residues in the S2’ subsite hold in place the terminal 
P2’ carboxylic which is attached to a cyclic group. Hydrophobic side-chain mimicking P1 and P1’ 
groups interact with the respective hydrophobic S1’ and S2’ subsites. Different regions of the active 
site are colour coded according to polarity as indicated in the legend. 

Figure 2: An illustration of the positional (A), metal chelation (B) and H-bonding (C) docking 
constraints created and implemented under various permutations when docking ligands against 
both the N- and C-domains of ACE. Positional constraints (A) were set holding either a carbon or 
nitrogen atom in one of the 1 Å constraint spheres. The metal chelation constraint was created 
between the zinc atom and a carboxylic acid ZBG from the ligand. The H-bonding constraints were 
created between both the Lys489/511 and Gln259/281 donors from N-/C-domain and a H-bond 
acceptor from the P2’ group on the ligand.  

Figure 3: Poses of 1 (A and B), 4 (C and D) and 10 (E and F) docked into the N- (cyan; left) and C-
domains (green; right). The two key ACEi binding features; a carboxylic acid Zn chelation and a 
second carboxylic acid acting as an H-bond acceptor in the S2’ subsite are evident. Compound 1 in 
the N-domain has a twisted peptide bond for the P1 proline and interactions between the carboxylic 
acid P2 group with Tyr369 and Arg381. While in the C-domain 1 contains a trans proline and the P2 
carboxylic acid has no interactions. The bicylic link in compound 4 is too long and rigid to allow for a 
conventional orientation in either domain, and causes the P2’ and ZBG carboxylic acid groups to bind 
in different positions in the N- and C-domains respectively. This, along with the flexible alkyl chain 
allows for a large variation in the position of the P2 group. Compound 10 is too short to form 
interactions from its P2 carboxylic group with Arg381 or Tyr369 in the N-domain, instead it 
coordinates with the zinc ion. In the C-domain there are no interactions with this this group. 

Figure 4: Representative samples of ligand poses from the extended set of diprolyl compounds. A 
and B, C and D, and E and F show 16, 17 and 21 respectively docked in the N- (cyan; left) and C-
domains (green; right). 

Figure 5: A. Schematic representation of compound 16 bound to the N-domain of ACE overlayed 
with the 2mFo-DFc (blue, contoured at 1σ level) and mFo-DFc (green, contoured at 3σ level) electron 
density omit maps. The zinc ion is shown as green sphere with the coordinating side chains shown as 
sticks. B. Ligplot representation of the binding site interactions of compound 16 in complex with ACE 
N-domain. The Arg381 conformation that could possibly provide water mediated interactions with 
16 is shown for completeness, although this is not a major form. 

Figure 6. Close up views of the P2 carboxylic acid binding site. The 2mFo-DFc electron density map 
(contoured at 1σ level) is shown in blue, the zinc ion and relevant water molecules are shown as 
green and red spheres respectively.  A-C. Schematic representation showing the possible alternate 
conformations of Arg381 in 3 molecules of the complex structure with ACE N-domain. This highlights 
the weak density for Arg381. D. Schematic representation showing the strong interaction between 
Tyr369 and the P2 carboxylic acid of compound 16 and the water mediated interaction with Arg500.  

Figure 7: A. An overlay of the crystal (orange) and docked (cyan) structures of 16 in the N-domain of 
ACE. The zinc ions in the crystal and docked structures are shown as green and grey spheres 
respectively. The two poses of the ligand are closely correlated (RMSD = 1.182 Å) while Arg381 is 
seen to be highly flexible with two conformations of this flexibility being visible to varying extents in 
the different chains of the asymmetric units. B. An overlay of compound 16-N-domain crystal 
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structure (orange) and 16 docked in to the C-domain (green). The zinc ions in the crystal and docked 
structures are shown as green and grey spheres respectively. The major portion of the scaffolds 
overlay between the two structures while a shift is observed for P2 carboxylic acid group showing 
interactions with Tyr369 and Arg522 for the N- and C-domains respectively. In addition, there is a 
water mediated interaction with Arg500 in the N-domain. 

Figure 8: Overlays of the ACE N-domain complex structures of compound 16 (Orange) with A RXP407 
(cyan) and B 33RE (lilac). The zinc ions are shown as a green sphere for the compound 16 structure 
and grey spheres for the RXP407 and 33RE structures. Water molecules from the 16 structure 
involved in mediated interactions are shown as red spheres. The water molecule marked * is 
conserved in the RXP407 structure in an almost identical position. A water molecule in the 33RE 
structure that performs a similar mediated interaction is shown as a pink sphere.  
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Table 1: 13 compounds identified from the GVK database for their polar P2 groups. These 
compounds were then docked to assess their potential for selectively inhibiting the N-domain. IC50 
values given are those reported in the GVK database. The IC50 values of compounds 1 and 3 are 
marked with an asterisk (*) to indicate these values were reported in the database but were later 
found to correspond to different compounds in the cited reference. 

Entry R IC50 (nM) 

Series 118 

 

1 

 

6* 

2 

 

6 

3 

 

5.4* 

Series 230,31  

 

4 

 

4.0 

5 
 

7.0 

6 H2N

 
40 

Series 332,33 
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7 R1 = CH3 R2 = CH3 10 

8 

R1 =  R2 = H 

188 

Series 434 

 

9 OH 80 

10 H 85 

Ungrouped 

11 

 

10 

12 

 

103 

13 

 

52 
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Table 2: The three different permutations of the docking constraints employed to help find plausible 
docking poses of the given ACEi. 

Condition Constraints 

C1 Carboxylic acid – Zn chelation, H-bond with Lys489/511 or GlnGln259/281 

C2 Carboxylic acid – Zn chelation, amide/amine N in constraint sphere 3 

C3 
Carboxylic acid – Zn chelation, amide/amine N in constraint sphere 3, amine N 

or alkyl C in constraint sphere 1 
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Table 3: Summary of constraint conditions used to dock each compound in the respective catalytic 
domains. The distances are provided between the nearest ligand atom and an N from Arg381 or an 
O from Glu403 and the atom from the ligand indicated in brackets. 

Entry N-domain 
Distance from 

Arg381 (Å) 

Distance from 

Tyr369 (Å) 

C-

domain 

Distance 

from 

Glu403 (Å) 

Distance 

from 

Phe391 (Å) 

1 

C1 
2.02 (O-4; Salt-

bridge) 

2.94 (O-5; H-

bond) 
C3 5.93 (O-4) 4.22 (O-4) 

 

2 

C1 5.62 (N-1) 3.52 (N-1) C1 7.59 (N-1) 4.45 (N-1) 

 

3 

C1 4.05 (N-1) 4.78 (C-2) C1 5.09 (N-7) 3.95 (C-3) 

 

4 

C1 
9.15 (C-4) 

 
8.33 (C-4) C1 6.69 (C-10) 4.74 (C-11) 

 

5 

C1 9.74 (C-4) 8.35 (C-7) C2 11.88 (C-4) 9.77 (C-3) 

 

6 

C1 8.19 (N-5) 7.30 (C-2) -   
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C1 9.84 (C-5) 8.13 (C-5) C1 10.47 (O-6) 9.79 (O-6) 

7 

8 

C1 8.37 (O-6) 7.53 (O-7)  C2 9.52 (N-14) 6.71 (N-14) 

9 

C2 8.24 (O-7) 6.73 (O-2) C2 9.47 (O-6) 8.46 (O-6) 

10 

C2 5.10 (O-6) 4.16 (O-6) C2 9.60 (O-6) 8.69 (O-6) 

1N
H
2

O

3

4
5HO

6

O
7

11 

- -  C2 8.82 (C-4) 4.11 (O-6) 

12 

- -  C1 9.86 (O-1) 7.93 (O-1) 

13 

C1 6.70 (O-7) 6.06 (C-6) C1 9.65 (C-2) 8.43 (C-2) 
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Table 4: Comparison of the structures found in the GVK database vs the corresponding structures 
published by Greenlee et al. 

 

Compound Incorrect GVK Entry  Compound 
Published 

Structure 

1 

 

2 
 

3 

 

15 
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Table 5: Summary of docking poses, MM-GBSA binding energy calculations and domain selectivity 
predictions. Each binding pose was assessed by measuring the distance between the ligand and 
atom indicated in brackets and a N atom from Arg381, an O-atom from Tyr369 in the N-domain with 
the distances between the nearest aromatic C atom from Phe391 and an O atom of Glu403 from the 
C-domain. Salt-bridge interactions and raised energy conformations are also noted along with each 
measurement. The MM-GBSA binding energy is also given as a quantitative metric with which to 
analyse each pose. Each pose is then judged as non-selective (NS) or N-domain selective (N). 
Compounds which were selected for synthesis have been marked with an asterix (*). 

 

Compound 
Arg381 

distance 
Tyr369 

distance 
Glu403 

distance 
Phe391 
distance 

C ΔG 
(kJ/mol) 

N ΔG 
(kJ/mol) 

Prediction 

* 
2 

6.17 (C-2)  5.49 (O-4) 8.36 (O-4) 
4.59 (N-

1 
-52.14 -53.50 NS 

* 
3 

4.32 (N-10) 
2.96 (N-10; 

H-bond) 
5.56 (N-

10) 
3.28 (N-

10) 
-62.94 -73.82 N 

 
14* 

4.12 (C-1) 3.08 (C-1) 6.13 (C-2) 
3.90 (C-

1) 
-47.14 -59.24 NS 

 
15* 

3.16 (C-11) 3.79 (C-10) 6.27 (C-9) 
3.89 (C-

9) 
-82.72 -56.41 C 

 
16* 

2.77 (O-9; 
salt Bridge) 

2.95 (O-8; 
H-bond) 

5.56 (O-9) 
4.46 (N-

1) 
-51.57 -71.76 N 

17* 

2.61 (O-10; 
Salt Bridge) 

2.71 (O-9; 
H-bond) 

5.63 (O-
10) 

3.70 (O-
10) 

-52.10 -70.32 N 
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18* 

2.40 (O-12; 
Salt Bridge) 

2.61 (O-11; 
H-bond) 

5.56 (O-
11) 

6.25 (C-
1) 

-54.82 -51.62 N 

 
19 

2.60 (O-12; 
Salt bridge) 

2.85 (O-12; 
H-bond) 

6.43 (C-8) 
5.28 (C-

8) 
-43.86 -62.44 N 

 
20 

2.63 (O-13; 
salt bridge) 

2.56 (O-12; 
H-bond) 

5.09 (O-
12) 

6.36 (C-
6) 

-39.55 -65.84 N 

 
21 

2.63 (O-12; 
Salt Bridge) 

2.61 (O-12; 
H-bond) 

4.64 (O-
12) 

 

4.08 (C-
7) 

-48.6 -70.40 N 

 
22 

3.03 (O-10; 
Salt Bridge)  

3.48 (C-5) 6.33 (C-5) 
3.65 (C-

5) 
-53.82 -60.10 N 

 
23 

2.74 
(O-12; salt 

bridge) 

2.59 (O-12; 
H-bond) 

7.41 (C-8) 
4.85 (C-

8) 
-34.90 -58.15 N 

 
24 

5.67 (C-2) 5.52 (C-3) 5.20 (C-5) 
3.82 (C-

6) 
-53.46 -53.88 NS 
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Table 6: Summary of Ki values for each compound synthesised and the observed N-domain 

selectivity factor. N-domain selectivity is calculated as the C-domain Ki / N-domain Ki. All KI values 

are reported with a 95% confidence interval. 

Compound N-Domain Ki (nM) C-domain Ki (nM) N-Domain Selectivity Factor 

2 279.48 ± 46.93 44.38 ± 3.58 0.16 

3 3.37 ± 0.55 0.22 ± 0.02 0.07 

14 4.45 ± 1.15 0.31 ± 0.11 0.07 

15 70.35 ± 9.73 167.80 ± 31.33 2.39 

16 11.45 ± 1.37 961.02 ± 153.00 83.93 

17 9.63 ± 1.56 17.39 ± 2.38 1.81 

18 16.86 ± 1.24 2.29 ± 0.27 0.14 
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Table 7 

 A B 

Resolution (Å) [102.11-9.59] (1.80-1.75) [101.89-9.86] (1.83-1.80) 

Space group P1 

Cell dimensions (a,b,c) 
angles (α,β,γ) 

74.2, 103.5, 115.5 Å 
84.9, 85.5, 82.0° 

74.5, 103.4, 115.7 Å 
84.5, 85.5, 81.6° 

Molecules/asymmetric unit 4 4 

Total / Unique reflections  2,276,898 
330,946 

2,039,183 
305,646 

Completeness (%) [99.3] 97.2 (95.7) [99.1] 97.3 (95.9) 

Rmerge
 [0.025] 0.110 (1.366) [0.028] 0.135 (1.345) 

Rpim [0.014] 0.069 (0.933) [0.016] 0.085 (1.006) 

<I/σ(I)> [29.8] 7.7 (1.0) [27.4] 7.2 (1.0) 

CC1/2
 [0.992] 0.997 (0.521) [1.000] 0.997 (0.956) 

Multiplicity [7.8] 6.9 (6.1) [7.6] 6.7 (5.5) 

Refinement statistics  

Rwork/Rfree
 0.173/0.198 0.193/0.226 

Rmsd in bond lengths (Å) 0.009 0.013 

Rmsd in bond angles (°) 0.948 1,161 

Ramachandran statistics (%) 

Favoured 98.6 98.3 

Allowed 1.4 1.7 

Outliers 0 0 

Average B- factors (Å2) 

Protein 32.0 29.8 

Ligand 42.6 41.2 

Water 36.3 32.9 

Number of atoms 

Protein 39446 39476 

Ligand 1930 1897 

Water 2410 2381 

PDB code 6EN5 6EN6 
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Figure 1 
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Figure 3  
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Figure 6 
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Figure 7  
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Figure 8 
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Scheme 1 – Synthesis of the diprolyl series:  i. TMSCN, MeOH/NH4+Cl-, 25 °C 36h, 36% ii. a. HCl in 
MeOH, 25 °C, 2d. b. (Boc)2O, Et3N/MeOH, 72% iii. a. Amberlyst 15, MeOH, 60°C, 10 days b. 
HCl/Dioxane 25 °C, 12hr, 40% iv. a. RCO2H, T3P, Et3N, DCM, 0 °C – 25 °C b. LiOH, THF/H2O, (c. 
HCl/Dioxane) 
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