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ABSTRACT 

To meet the increasingly stringent emissions standards, Diesel engines need to include more active technologies 

with their associated control systems. Hardware-in-the-Loop (HiL) approaches are becoming popular when the engine 

system is represented as a real-time capable model to allow development of the controller hardware and software 

without the need for the real engine system. This paper focusses on the engine model required in such approaches. A 

number of semi-physical, zero-dimensional combustion modelling techniques are enhanced and combined into a 

complete model, these include- ignition delay, pre-mixed and diffusion combustion and wall impingement. In addition, 

a fuel injection model was used to provide fuel injection rate from solenoid energizing signals.  

The model was parameterized using a small set of experimental data from an engine dynamometer test facility 

and validated against a complete data set covering the full engine speed and torque range. The model was shown to 

characterize Rate of Heat Release (RoHR) well over the engine speed and load range. Critically the wall impingement 

model improved R2 value for maximum RoHR from 0.89 to 0.96. This reflected in the model’s ability to match both 

pilot and main combustion phasing, and peak heat release rates derived from measured data. The model predicted 

indicated mean effective pressure and maximum pressure with R2 values of 0.99 across the engine map. The worst 

prediction was for the angle of maximum pressure which had an R2 of 0.74. The results demonstrate the predictive 

ability of the model, with only a small set of empirical data for training – this is a key advantage over conventional 

methods. The fuel injection model yielded good results for predicted injection quantity (R2=0.99), and enables the use 

of the RoHR model without the need for measured rate of injection. 

mailto:R.D.Burke@bath.ac.uk
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NOMENCLATURE 

Abbreviations 

AFR Air-fuel-ratio 

ATDC After top dead centre 

BDC Bottom dead centre 

BMEP Brake mean effective pressure 

BTDC Before top dead centre 

CA Crank Angle 

ECU Engine control unit 

EGR Exhaust gas recirculation 

EOC End of combustion 

EOI End of injection 

gIMEP Gross indicated mean effective pressure 

HiL Hardware-in-the-loop 

HR Heat release 

HSDI High-speed direct injection 

IMEP Indicated mean effective pressure 

LTC Limiting torque curve 

MAF Mass airflow 

MCC Mixing controlled combustion 

nIMEP Net indicated mean effective pressure 

PMEP Pumping mean effective pressure 

R2 Coefficient of determination 

RMSE Residual mean square error 

ROI Rate of injection 

RoHR Rate of heat release 

RT Real-time 

SD Standard deviation 

SFC Specific fuel consumption 

SOC Start of combustion 

SOI Start of injection 

SSE Sum of square errors 

TDC Top dead centre 
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Mathematical Symbols 

A Area m2 
a1-12 Fitted constants - 
AFR Air-to fuel ratio  
Carr Arrhenius model constant (Fitted)  
Cc Contraction coefficient  
Cd Drag coefficient - 
Cdiss Dissipation constant for (fitted) s-1 
Cmag Magnussen model constant  
Cmod Chmla Combustion model constant (fitted) J/kg/°CA 
cp Specific heat capacity at constant pressure J/kgK 
Cturb Turbulence generation constant (fitted)  
cv Specific heat capacity at constant volume J/kgK 
Cwall Wall impingement model parameter (fitted)  
d diameter m 
E Energy J 
f Function - 
H Enthalpy J 
h Specific enthalpy J/kg 
hc Convective heat transfer coefficient W/m2K 
k Turbulence density J/kg 
L Length m 
LCV Lower calorific value  
   
   
m Mass kg 
�̇� Mass flow kg/s 
N Speed rev/min 
n Polytropic index - 
p pressure bar or Pa 
Q Heat Energy J 
q Heat flux W/m2 
R Gas constant J/kgK 
r Radius m 
R2 Coefficient of determination - 
T Temperature K or oC 
T Time s 
U Internal energy J 
V Volume m3 
v Velocity m/s 
W Work J 
x Fuel mass share - 

 

Greek Symbols 

αmax Point of maximum pressure °CA ATDC 
γ Polytropic coefficient (ratio of specific heats) - 
η Efficiency - 
θ Crank angle rad 
θmax Point of maximum heat release °CA ATDC 
λ Stoichiometric ratio  
π Pi - 
ρ Density kg/m3 
σ Emissivity kW/m2k4 
𝜏 Time constant  

 

Subscripts 

avail Available  
bb Blow-by  
Ch Chemical  
c Combustion  



Burke 4  GTP-17-1057 

 

cyl Cylinder, Cylinder charge  
diff Diffusion combustion  
eng Engine  
EOI End of Injection  
ex Exhaust valve  
evap Evaporated  
f Fuel  
HT Heat Transfer  
ID Ignition Delay  
in Inlet Valve  
inj Injected  
liqu Liquid  
noz Injector nozzle  
Ph Physical  
Pilot From the pilot injection  
pre Pre-ignition  
Rail In the high pressure fuel rail  
SOC Start of Combustion  
SOI Start of Injection  
stoich Stoichiometric  
vap Vapourized  

 

1 INTRODUCTION 

Diesel engine design is becoming ever more complex in order to meet increasingly stringent emissions standards: 

some recent examples are the use of high and low pressure exhaust gas recirculation (EGR) and multi-stage 

turbochargers with variable geometry turbines. With current and future drive cycles running from cold start and 

containing harsher transients, control strategies can no longer be developed under steady-state conditions. This means 

the task of developing a capable control strategy has become more demanding and time consuming.. Hardware-in-

the-loop (HiL) techniques have been spearheaded by manufacturers by replacing engine hardware with real time 

models in an effort to reduce time spent on dynamometer testing and reduce overall development times. Nevertheless, 

current HiL models tend to rely on significant levels of empirical data to meet sufficient levels of accuracy which 

limits their usefulness in controller design as they are typically not available until a significant volume of calibration 

test data is available. 

This paper aims to address the limitations of current HiL models by combining a number of state-of-the-art zero-

dimensional combustion modelling techniques and applying a global parameterisation with only a small amount of 

experimental data. The work focusses on enhancing Rate of Heat Release prediction through consideration of fuel 

injection, ignition delay; pre-mixed combustion; wall impingement and pilot combustion. This new RoHR model 

would be used in conjunction with a single zone zero dimensional cylinder model. 
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2 BACKGROUND 

A vital element of transient engine modelling is the accurate prediction of combustion behavior, since the 

progression of the Rate of Heat Release (RoHR) primarily dictates the engine performance and emissions [1]. The 

RoHR is a key input to the single zone cylinder models which undertake an energy balance on combustion, work, heat 

and enthalpy transfers to calculate in-cylinder pressure and temperature. These are vital for predicting engine 

performance but also interact with the turbocharger and Exhaust Gas Recirculation (EGR) models [2]. A recent review 

of engine modelling has shown this to be one of the main weaknesses compared to more computationally demanding 

1D or multidimensional in-cylinder models. [3]. 

For controller design, it is essential that model run times are kept to a minimum to provide real time capabilities. 

By taking a zero-dimensional approach to RoHR modelling, model execution times can be reduced significantly [4]. 

Several techniques exist for accurately predicting in-cylinder pressure and RoHR in an efficient way, including neural 

networks [5, 6-8]; Wiebe methods (shape functions) [4, 9-12]; and phenomenological methods [13-15] such as mixing 

controlled combustion models [13]. These three types will be briefly described below. 

2.1  Neural Networks 

As highly non-linear mathematical functions, Neural networks are black-box models and therefore mask the 

underlying physical processes. For combustion modelling, this can be seen as a disadvantage as it prevents any analysis 

of the phenomena underpinning the resulting performance. Since neural nets have difficulty in making predictions 

outside of the range of training data, an exhaustive set of training and validation data are required owing to the many 

degrees of freedom associated with modern DI combustion [4]. Therefore, in order for the Neural network to act as 

predictor, it must be trained with empirical data covering the specific range of interest meaning large amounts of 

experimental data are required which undermines the argument for HiL based controller design.  

2.2 Wiebe Models 

Wiebe models describe the apparent fuel burning rate by fitting a Wiebe function to experimentally derived data. 

One common form of Wiebe model is the double Wiebe model suggested by Watson [10] which captures the pre-

mixed and diffusion phases of Diesel combustions; however, this cannot represent split injection strategies (e.g. pilot 

and post injections), therefore making its use in modern diesel engines limited. A more general multi-Wiebe method 

is described in [16]. 
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By introducing additional Wiebe curves, pre and post combustion events can be modelled (see figure 1). However, 

this increases the modelling effort considerably, since for each Wiebe curve, several parameters need to be tuned for 

each operating condition. As with neural networks, this can lead to problems of dimensionality [4], increasing the time 

taken to parameterise a model due to the quantity of data required. 

1.3 Mixing controlled combustion 

Chmela & Orthaber [17] hypothesized that the rate of heat release could be related the product of two parameters; 

the mixing rate and the fuel availability as described in equation 1. 

 

𝑑𝑄𝑐𝑦𝑙

𝑑𝜃
= 𝐶𝑚𝑜𝑑 ∙ 𝐿𝐶𝑉 (𝑚𝑓 −

𝑄𝑐𝑦𝑙

𝐿𝐶𝑉
) ∙ 𝑓𝑚𝑖𝑥𝑖𝑛𝑔 (1) 

 

Based on the observation that over 90% of the contribution to turbulent energy density input prior to combustion 

was due to fuel injection [17, 18] and that diffusion combustion is very closely related to the rate of injection (ROI) 

[1, 14, 15, 17, 19], they proposed that the mixing rate, and therefore RoHR, could be derived from the rate of injection. 

They proposed simplifying Magnussen’s theory of turbulent burning [20], replacing the term with a rate 

proportional to the square root of the kinetic energy density and a characteristic length derived from the instantaneous 

cylinder volume [17] (equation 2). k is defined later in equation 13. 

 

𝑓𝑚𝑖𝑥𝑖𝑛𝑔 =
√𝑘

√𝑉𝑐𝑦𝑙
3

 (2) 

 

However, as described by Dec [21], combustion in a modern DI engine can be described by two distinct phases: 

a rich, pre-mixed phase due to ignition delay, followed by the stoichiometric diffusive phase. As a result, this fails to 

describe combustion fully, especially at part-load where ignition delay and pre-mixed combustion are more prevalent, 

representing significant proportions of the total heat release [17, 18, 22, 23]. In addition to this, at high load on small 

displacement engines, interaction with the cylinder wall and combustion bowl can cause significant deviations from 

the predicted RoHR using the original MCC model [17, 18]. 
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In this paper we seek to enhance the mixing controlled combustion model by introducing sub-models of, ignition 

delay, premixed combustion, wall impingement and pilot injection. The aim of this work is to parameterize these 

physical models using a small subset of engine dynamometer data that enables good prediction over a broad range of 

engine operating conditions. 

3 COMBUSTION MODELLING APPROACH 

Considering the engine cylinder as a control volume and applying the conservation of energy, the change in 

internal energy of the gases in the cylinder can be equated as the sum of the heat released from combustion, the heat 

lost to the combustion chamber walls, the work transfer to the piston and the net enthalpy flow from valve opening 

and blow-by (equation 3) [24]. 

 

�̇� = �̇�𝑐 − �̇�𝐻𝑇 − �̇� + �̇�𝑖𝑛 − �̇�𝑒𝑥 − �̇�𝑏𝑏 (3) 

It is assumed that the mass trapped in the cylinder is at a homogeneous temperature which can be related to the 

internal energy U through the specific heat capacity. The perfect gas law can then be used to derive the instantaneous 

pressure in the cylinder and the equation solved on a crank angle basis. Whilst each of the terms in equation 3 deserve 

careful attention, the work in this paper will focus on modelling the heat release due to combustion, �̇�𝑐. It will be 

decomposed into premixed and diffusive components (equation 4) and applied to pilot and main injections. This will 

be described in detail in section 3.1. 

 

�̇�𝑐 =
𝑑𝑄𝑝𝑟𝑒

𝑑𝑡
+
𝑑𝑄𝑑𝑖𝑓𝑓

𝑑𝑡
 (4) 

 

3.1 Combustion Models 

In this section the six key physics based models used to describe the Diesel fueling and combustion process are 

described. The combustion model is composed of: 

 An ignition delay model 

 A premixed combustion model 

 A diffusion combustion model 
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 A wall impingement model 

 A pilot combustion model 

 A fuel injection model 

Figure 2 shows the contributions of these models at an arbitrary engine operating point including a single pilot 

and main injection event. Finally the fueling process is modelled using an empirical approach to predict the rate of 

fuel injection from the injector driver controller. 

3.1.1 Ignition delay model 

The prediction of combustion delay is of great importance to the combustion model because of its impact on the 

shaping of the rate of heat release following the delay period [24]. Figure 3 illustrates the effect of ignition delay on 

modelled main combustion. When SOC is predicted early, the pre-mixed combustion is under predicted, and diffusion 

combustion is over-predicted, see figure 3 (b). This is because ignition delay defines the portion of fuel dedicated to 

either pre-mixed, or diffusion combustion, altering the RoHR profile significantly. 

The ignition delay period is a function of both a physical delay (𝜏𝑝ℎ) associated with fuel spray characteristics 

such as vaporization and mixing and a chemical delay (𝜏𝑐ℎ) that cover pre-reactions which occur prior to ignition [25]. 

The ignition delay time constant is a sum of these two, and is inversely proportional to the reaction rate. Equation 5 

represents the integral between SOI and SOC and constants are scaled so that SOC occurs when the equation reaches 

unity. 

 

∫
1

𝜏𝐼𝐷
𝑑𝑡 = 1,   𝑊ℎ𝑒𝑟𝑒 𝜏𝐼𝐷 = 𝜏𝑝ℎ + 𝜏𝑐ℎ

𝑆𝑂𝐶

𝑆𝑂𝐼

 (5) 

 

Numerous authors have used a correlation based on an Arrhenius expression [25] to describe the chemical delay 

as shown in Equation 6. However, the works of Chmela et al [22, 25] suggest that this alone is not enough to describe 

the process in a modern, high-pressure direct injection engine. In this case, the approach taken by Magnussen [20] is 

used to describe the effect of the turbulent energy density k which is increased by injection as shown in equation 7. 

The reaction rates are scaled by the concentrations of fuel and oxygen. These are calculated by dividing the fluid mass 
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by the mixture volume 𝑉𝑚𝑖𝑥 , which is calculated as the sum of the volume of fuel and air based on a fixed air-fuel-

ratio, and the cylinder gas density derived from spatially averaged in-cylinder pressure. 

 

1

𝜏𝑐ℎ
= 𝐶𝑎𝑟𝑟𝑐𝑓𝑐0𝑒

−
𝑎1𝑇𝑖
𝑇  (6) 

1

𝜏𝑝ℎ
= 𝐶𝑚𝑎𝑔𝑐𝑓

√𝑘

√𝑉𝑐𝑦𝑙
3

  (7) 

𝑊ℎ𝑒𝑟𝑒 𝑐𝑓 =
𝑚𝑓

𝑉𝑚𝑖𝑥
, 𝑐𝑜 =

0.232𝑚𝑐𝑦𝑙

𝑉𝑚𝑖𝑥
 

𝑎𝑛𝑑 𝑉𝑚𝑖𝑥 = 𝑚𝑓 (
1

𝜌𝐹,𝑣𝑎𝑝
+
𝜆(𝐴𝐹𝑅)𝑠𝑡𝑜𝑖𝑐ℎ

𝜌𝑐𝑦𝑙
) 

 

 

Figure 4 compares the ignition delay predicted by the Magnussen equation, the Arrhenius equation, and the 

resultant, combined rate against measured data. Although the ignition delay models are presented as curves for clarity, 

these represent the calculated ignition delays at the particular measured points. This explains the shape of these curves 

in the region of 800-900bar rail pressure and the graph should not be interpreted as a absolute relationship between 

rail pressure and ignition, but rather a convenient way of presenting model and experimental agreement against a 

meaningful physical variable. Measured ignition delay was calculated from experimental data as the time between 

start of injection (SOI) and start of combustion (SOC). SOI was determined from the injector model detailed below. 

SOC was determined differently for each injection: 

 Pilot combustion was found using the method described in [25, 27] by taking the second differential of in-cylinder 

pressure, and finding when it crossed a significant threshold 

 Main combustion could not be defined using the same method as pilot combustion as the additional noise caused 

by pilot combustion masks the main combustion event. In addition to this, the main combustion event has a smaller 

pre-mixed portion and is dominated by diffusion combustion resulting in a lower rate of pressure change which is 

harder to detect. Consequently main combustion SOC was determined through a threshold on RoHR. 

 

It shows that the Magnussen rate over-estimated the decrease in ignition delay with increasing rail pressure, 

whereas the Arrhenius rate under-estimated the variation. 
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This is a logical conclusion following comparison with the equations, since the Magnussen rate is dependent on 

the kinetic energy density which is a function of rail pressure, whereas the Arrhenius rates is dependent on oxygen 

concentration and cylinder temperature which do not increase as much as the rail pressure with increasing load. 

By combining both these rates the sum of the chemical and physical effects are accounted for, yielding the 

resultant rate which matches the measured data closely. 

 

3.1.2 Pre-mixed combustion model 

At part-load conditions, the combustion process becomes more complex, since a large proportion of the fuel is 

burnt during a pre-mixed reaction [22, 23, 26, 28, 29]. Lower rail pressures and in-cylinder temperatures cause auto-

ignition to be delayed, meaning more fuel is mixed with air before combustion occurs, to a higher proportion of 

combustion being pre-mixed. 

Equation 8 summarizes how pre-mixed combustion is described by an Arrhenius rate with a quadratic term 

containing the elapsed time since SOC to describe the initial burn rate, which progresses in a similar fashion to a spark 

ignition flame front [22, 26]: 

 

𝑑𝑄𝑝𝑟𝑒

𝑑𝑡
= 𝑎2𝑐𝑜𝑒

−𝑎3
𝑇𝑎
𝑇𝑐𝑦𝑙𝑚𝑝𝑟𝑒,𝑎𝑣𝑎𝑖𝑙

2 𝐿𝐶𝑉(𝑡 − 𝑡𝑆𝑂𝐶)
2 (8) 

 

Where Ta is the activation temperature and the mass of fuel available for premixed combustion is defined as: 

 

𝑚𝑝𝑟𝑒,𝑎𝑣𝑎𝑖𝑙 =

{
 

 
𝑥𝑝𝑟𝑒 ∫𝑑𝑚𝑓,𝑖𝑛𝑗 −

𝑄𝑝𝑟𝑒(𝑡)

𝐿𝐶𝑉

𝜃

𝑆𝑂𝐼

   𝜃 < 𝜃𝑆𝑂𝐶

0                                                 𝜃 ≥ 𝜃𝑆𝑂𝐶

  

 

𝑥𝑝𝑟𝑒 is the portion of the fuel dedicated to pre-mixed combustion during the ignition delay period. To avoid 

unnecessary complexity, or reliance on additional empirical data, these were assumed to be constant for all operating 

conditions. 

 

3.1.3 Diffusion Combustion Model 
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The diffusion combustion model is equivalent to the original MCC model reported by Chmela et al [17] with 

additional equations describing the allocation of fuel from the ignition delay period, and the delay caused by 

evaporation. It is proposed that combustion is a function of fuel availability and mixing rate [22, 23]: 

 

𝑑𝑄𝑑𝑖𝑓𝑓

𝑑𝑡
= 𝐶𝑚𝑜𝑑 ∙ 𝐿𝐶𝑉 ∙ 𝑚𝑓,𝑑𝑖𝑓𝑓,𝑎𝑣𝑎𝑖𝑙 (

√𝑘

√𝑉𝑐𝑦𝑙
3

 ) (9) 

 

Available fuel 𝑚𝑓,𝑑𝑖𝑓𝑓,𝑎𝑣𝑎𝑖𝑙  can be described as that which has evaporated from the liquid pool dedicated to the 

diffusion model [23] as detailed in equations 10-12 

 

𝑚𝑓,𝑑𝑖𝑓𝑓,𝑎𝑣𝑎𝑖𝑙 = ∫𝑑𝑚𝑓,𝑑𝑖𝑓𝑓,𝑒𝑣𝑎𝑝 −
𝑄𝑑𝑖𝑓𝑓

𝐿𝐶𝑉

𝜃

𝑆𝑂𝐼

 (10) 

𝑑𝑚𝑓,𝑑𝑖𝑓𝑓,𝑒𝑣𝑎𝑝

𝑑𝜃
=

1

6𝑁𝑒𝑛𝑔
∫

𝑇𝑐𝑦𝑙
3.3𝑘

𝐶𝑒𝑣𝑎𝑝𝑑𝑛𝑜𝑧
𝑚𝑓,𝑑𝑖𝑓𝑓,𝑙𝑖𝑞𝑢

𝜃

𝑆𝑂𝐼

 (11) 

 

Equation 12 describes that prior to SOC a portion of liquid fuel is dedicated to the diffusion model, initiating the 

evaporation process which draws from the liquid pool. Once combustion has started, it is assumed that any additional 

fuel injected is added to the liquid diffusion fuel pool [22, 26]. 

 

𝑚𝑓,𝑑𝑖𝑓𝑓,𝑙𝑖𝑞𝑢

=

{
  
 

  
 
(1 − 𝑥𝑝𝑟𝑒) ∫𝑑𝑚𝑓,𝑖𝑛𝑗 −𝑚𝑓,𝑑𝑖𝑓𝑓,𝑒𝑣𝑎𝑝

𝜃

𝑆𝑂𝐼

   𝜃 < 𝜃𝑆𝑂𝐶

∫ 𝑑𝑚𝑓,𝑖𝑛𝑗 −𝑚𝑓,𝑑𝑖𝑓𝑓,𝑒𝑣𝑎𝑝

𝜃

𝑆𝑂𝐶

                         𝜃 ≥ 𝜃𝑆𝑂𝐶

 

(12) 

 

Equation 13 shows how turbulent energy density k is a function of the energy in the cylinder 𝐸𝑢, derived from the 

energy input from the injection process 𝐸𝑖 : 

 

𝑘 =
𝐸𝑢

𝑚𝑓(1 + 𝜆𝑑𝑖𝑓𝑓𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐ℎ)
 (13) 
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The rate of change in energy is defined as the difference between that input into the system and energy dissipated 

[17]: 

 

𝑑𝐸𝑢
𝑑𝜃

=
𝑑𝐸𝑖
𝑑𝜃

−
𝑑𝐸𝑑𝑖𝑠𝑠
𝑑𝜃

 (14) 

 

Energy input from the injection is described in equation 15, and the energy dissipation rate is described in equation 

16: 

 

𝑑𝐸𝑖
𝑑𝜃

= 𝐶𝑡𝑢𝑟𝑏18𝜌𝐹 (
𝑁𝑒𝑛𝑔

𝐶𝑑𝐴𝑛𝑜𝑧
)
2

(
𝑑𝑚𝑓/𝑑𝜃

𝜌𝑓
)

3

 (15) 

𝑑𝐸𝑑𝑖𝑠𝑠
𝑑𝜃

= −
𝐶𝑑𝑖𝑠𝑠
6𝑁𝑒𝑛𝑔

𝐸𝑢  (16) 

 

3.1.4 Wall impingement Model 

At high loads, the MCC model tends to overestimate RoHR after TDC during fuel injection, but under-predicts 

RoHR after the EOI (see figure 13c). As a result, measured RoHR appears to lag behind the model, picking up later 

during the expansion stroke. 

This effect is hypothesized to be a result of the injected fuel not burning immediately, but being stored and burnt 

later [17]. In [18], it was observed that this effect was more apparent in small sized engines (of 2 liters or less), at 

loads over 50%. It was proposed that this effect could be due to wall impingement slowing the rate of energy input 

into the system, and thus the RoHR. 

A correction for wall impingement was suggested in [18] based on the momentum lost at the wall at the time of 

impingement, where energy input into the cylinder is modified by an additional parameter 𝐶𝑤𝑎𝑙𝑙 , see equation 17. 

 

𝑑𝐸𝑖
𝑑𝜃

= 𝐶𝑤𝑎𝑙𝑙 ∙ 𝐶𝑚𝑜𝑑 ∙ 𝐿𝐶𝑉 ∙ 𝑚𝑓,𝑑𝑖𝑓𝑓,𝑎𝑣𝑎𝑖𝑙 (
√𝑘

√𝑉𝑐𝑦𝑙
3

 ) (17) 

 

Equation 18 shows how in engines of small bore sizes, combustion is decelerated when the spray reaches the wall 

at a spray penetration 𝑠 = 𝑑𝑐𝑦𝑙/2 from the injector. 
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𝐶𝑤𝑎𝑙𝑙 =

{
 
 

 
 
(
𝑣𝑤𝑎𝑙𝑙
𝑣𝑓𝑟𝑒𝑒

)

2

   𝑠 ≥
𝑑𝑐𝑦𝑙

2

1                  𝑠 <
𝑑𝑐𝑦𝑙

2

 (18) 

𝑊ℎ𝑒𝑟𝑒 𝑠 = √8𝐶𝑑𝑣𝑖𝑛𝑗𝑑𝑖𝑛𝑗𝑡 (
294

𝑇𝑐𝑦𝑙
)

1/4

  

 

When the spray meets the wall, there is a continuous loss of momentum. This can be described as a loss 

proportional to the square of the ratio between the free velocity 𝑣𝑓𝑟𝑒𝑒  and the velocity of the jet once it has met the 

wall 𝑣𝑤𝑎𝑙𝑙. These are defined in equations 19 and 20 respectively. 

 

𝑣𝑓𝑟𝑒𝑒 = √8𝐶𝑑𝜐𝑖𝑛𝑗𝑑𝑛𝑜𝑧
1

2√𝑡
(
294

𝑇𝑐𝑦𝑙
)

1/4

 (19) 

𝑣𝑤𝑎𝑙𝑙 = 0.75√𝜐𝑖𝑛𝑗𝑑𝑛𝑜𝑧
1

2√𝑡
(
294

𝑇𝑐𝑦𝑙
)

1/4

 (20) 

 

In figure 13c, it can be observed that when taking wall impingement into account, the calculated RoHR deviates 

away from the original model shortly after TDC, staying closer to the measured value. It is also important to note that 

after EOI, the modelled RoHR decay matches the measured value very closely. 

 

3.1.5 Pilot Combustion model 

Pilot injections reduce engine noise, emissions and wear of components by lowering the main ignition delay, 

lessening the proportion of fuel burnt in a pre-mixed combustion event. For example, the in-cylinder pressure and 

temperatures prior to the main combustion event are sensitive to the phasing of pilot combustion, since pilot occurs 

early during the compression stroke, and any errors become cumulative after that point. The effect on pressure is 

demonstrated in figure 5, comparing the modelled pressure with the correct pilot phasing (solid) to pressure traces 

where the ignition delay has been artificially altered (dotted) against measured data (dashed). 

By necessity pilot injections occur early in the compression stroke, and often have large ignition delays. Therefore, 

the pilot combustion event is modelled as a fully pre-mixed reaction, since the fuel injection quantities are small and 
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the fuel air mixture is assumed to be fully mixed prior to combustion [26]. The effect on main injection ignition delay 

can be modelled by modifying the Arrhenius rate, as proposed by Rether et al [28]: 

 

1

𝜏𝑐ℎ
= 𝐶𝑎𝑟𝑟𝑐𝑓𝑐𝑜𝑒

−
𝑎2𝑇𝑖

𝑇+𝑎4𝑄𝑝𝑖𝑙𝑜𝑡 (21) 

 

In this case, an additional term is added to the denominator of the exponent proportional to the energy released 

from the pilot combustion, 𝑄𝑝𝑖𝑙𝑜𝑡 . 

3.1.6 Fuel injection model 

A requirement for calculating the RoHR using the zero-dimensional model, is accurate prediction of the rate of 

injection (ROI) [26]. However, since a direct measure of the injection rate is not possible and the objective of this 

modelling was to be used in HiL applications, it was necessary to develop a Rate of Injection (ROI) model based on 

mean cycle measured fueling and measured injector current. 

The fuel injector used in this study uses a solenoid actuated valve which controls a “spill” flow of fuel through a 

control chamber back to the vehicle fuel tank. The spill flow creates a pressure imbalance on the injector needle 

causing the needle to rise, allowing flow through the nozzles into the cylinder. The 

main difficulty with this type of injector is in knowing when the injector needle is open as this cannot be deduced 

directly from an injector driver voltage or current. Both the point at which the needle open and the needle opening 

times must be determined. Figure 6 shows a typical solenoid energizing signal captured using a current clamp around 

the injector drive cable. The signal can be broken up into three main components, the cracking current (a); hold current 

(b); and the current fall (c) [30]. 

Figure 7 compares calculated and measured total fuel injection. The total fuel injected has been calculated by 

integrating the flow rate over different portions of the injection signal and assuming full needle lift over this proportion. 

It shows that using any part of the signal up to its entirety correlates linearly with the measured injected quantity above 

quantities of 25mg. Regardless of the proportion of the signal used, the injected quantity is always underestimated 

using this method with injection quantities over 25mg. This suggests that either the injection does not occur only over 

the specific periods defined in figure 6, or that the rate of injection is underestimated. 
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Below 25mg the relationship changes, suggesting the rate of injection reduces at lower loads, possibly due to 

needle lift being partial for a significant portion of the injection. This results in the over-estimation of total fuel flow 

for some points below 25mg.  

When the needle is open, the driving force for fuel flow into the cylinder is the pressure difference between the 

fuel in the common rail and the gases in the cylinder. Flow rate was calculated assuming Bernoulli flow as described 

in equation 22. 

 

�̇�𝑓 = 𝐶𝑑𝜌𝑓𝐴𝑛𝑜𝑧√
2(𝑝𝑟𝑎𝑖𝑙 − 𝑝𝑐𝑦𝑙)

𝜌𝑓
 (22) 

 

Where the discharge coefficient is modified for the effects of cavitation with Cc the contraction coefficient 

dependent on the geometry of the injector [31]. 

 

𝐶𝑑 = 𝐶𝑐√
𝑝𝑟𝑎𝑖𝑙 − 𝑝𝑓,𝑣𝑎𝑝

𝑝𝑟𝑎𝑖𝑙 − 𝑝𝑐𝑦𝑙
 (23) 

To provide a model with short calculation times, firstly the needle opening duration was determined using an 

empirical model based on the manufacturer’s injector map shown in figure 8. The data in figure 8 was used to estimate 

the total mass of fuel to be injected depending on the pulse width and the rail pressure.  

Inconsistencies could exist between the manufacturer data in figure 8 and the actual injector used in the engine in 

this study due to injector drift, manufacturing tolerances and engine versions. To account for these, linear functions 

were applied to rail pressure and pulse width and a quadratic function was applied to the map data. Since injector 

maps are at atmospheric conditions, a linear correction factor proportional to cylinder pressure was added to simulate 

the increasing resistance to injection at higher gas loads. Therefore the injector map in figure 8 was incorporated into 

the model using equation 24. For this look-up table, pulse width was found by integrating the time between the start 

of the hold current and the end of the hold current (b and c in figure 6). 

 

𝑚𝑓,𝑝𝑟𝑒𝑑 = 𝑎5𝑚𝑓,𝑙𝑜𝑜𝑘𝑢𝑝
2 + 𝑎6𝑚𝑓,𝑙𝑜𝑜𝑘𝑢𝑝

− (𝑎7𝑝𝑐𝑦𝑙 + 𝑎8)  
(24) 
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𝑊ℎ𝑒𝑟𝑒: 𝑚𝑓,𝑙𝑜𝑜𝑘𝑢𝑝 = 𝑓(𝑡𝑝𝑢𝑙𝑠𝑒 , 𝑝𝑟𝑎𝑖𝑙,𝑚𝑜𝑑), 

𝑡𝑝𝑢𝑙𝑠𝑒 = 𝑎9𝑡𝑝𝑢𝑙𝑠𝑒 + 𝑎10   

 𝑎𝑛𝑑 𝑝𝑟𝑎𝑖𝑙,𝑚𝑜𝑑 = 𝑎11𝑝𝑟𝑎𝑖𝑙 + 𝑎12 

 

 

With a total mass injected (equation 24) and the rate of injection (equation 22), the injection duration between 

SOI and End of Injection (EOI) was determined from equation 25. 

 

𝑚𝑓,𝑝𝑟𝑒𝑑 = ∫ �̇�𝑓(𝑡)𝑑𝑡

𝐸𝑂𝐼

𝑆𝑂𝐼

 (25) 

 

Secondly the point at which the needle lifts and the injection begins (SOI) was determined by analyzing the results 

from the full hydraulic model and by comparing measured injector current signals and high frequency fluctuation in 

the high pressure fuel rail in proximity of the injector. This experimental technique assumes that any fluctuations in 

rail pressure result from the flow of fuel into the cylinder. Using both techniques, SOI was found to correspond to a 

point approximately 0.17ms into the injector current rise for all injections, pilot and main, and regardless of engine 

operating point as illustrated in figure 9. This point likely to be where the solenoid has fully risen and flow has been 

established in the control chamber, resulting in a step change in load on the solenoid as fuel pressure pushes against 

the spring force. This is evidenced by the subtle change in current rise rate after 0.17ms which can occur due to lower 

electromagnetic forces acting on the solenoid. These results are consistent with those found by other authors [32]. 

3.2 Other Models 

For the purpose of this work, the other key models described by equation 3 are summarized as below. For a more 

detailed discussion on this aspect the reader is directed to [33]. 

- Heat loss to combustion chamber walls: The model proposed by Finol et al. [34] was implemented whilst 

wall temperature was taken from a look-up table using engine speed and load. In practice, this wall 

temperature could be obtained from measurements or a separate, more elaborate simulation of the thermal 

behavior.  

- Enthalpy flow by blow by: This was modelled as an isentropic discharge through a nozzle connecting the 

cylinder and crankcase [35] while assuming a constant flow coefficient. 
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- Gas properties of the cylinder charge: these are calculated on a crank angle basis, as a function of temperature, 

and weighted to consider the instantaneous fractions of fresh air, burnt gases and fuel in the cylinder. 

 

3.3 Model Calibration 

Optimization of the model parameters was performed using the MATLAB algorithm ‘fminsearch’, which 

minimizes the target function for a given set of coefficients. 

Figure 10 indicates how the algorithm was implemented. Firstly, the algorithm is given an initial set of parameters. 

From this, it performs a number of sub-iterations, varying each parameter individually to determine how to reduce the 

output of the target function. In this case, the target function run the model with the supplied parameters returning the 

sum of square errors (SSE) calculated from comparing the model output to the measured output. The algorithm then 

assesses the stopping criteria. If the algorithm exceeds a specified number of iterations, or the rate of change of the 

target function drops below a given value, the algorithm stops. In the first case, this is to stop the algorithm over 

running, and in the second it is assumed that a minima has been found. 

Using this algorithm, a single set of model parameters were found to suit all test points as opposed to a range of 

parameters for each individual speed load condition which the model would interpolate. Individual sub-models were 

optimized using different data sets to ensure the phenomena observed at different operating conditions were captured. 

Figure 11 indicates the regions of the engine map which were used for model optimization, indicating what data were 

used for individual sub-models. 

Model constants for the ignition delay models were found initially by minimizing the SSE between modelled and 

observed ignition delay for an individual point. This was then extended to a range of points (point a in figure 11) 

between 20Nm and limiting torque for a single mid-speed, 2500 rev/min, to ensure the model captured the trend of 

ignition delay with increasing rail pressure (see figure 4). By calibrating the ignition delay models first, this ensured 

the pre-mixed portion for the RoHR model was approximately correct, since this depends on ignition delay. 

The diffusion RoHR model, and pilot model were calibrated using the mid-speed, mid-load point (point b in figure 

11). This point was chosen since the RoHR is mainly diffusive but also includes a pilot injection, as shown in figure 

12. In this case, model parameters were found by minimizing the SSE between gross RoHR derived from the model 

and measured data between inlet valve close (IVC) and exhaust valve open (EVO). 
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The pre-mixed model constants were optimized in a similar fashion, but at a different operating point. A low 

speed, medium load condition (point c in figure 11) was chosen since the combustion here was characterized by high 

ignition delay, and RoHR was dominated by pre-mixed combustion.  

The wall interaction model was optimized using a high speed, high load condition (point d in figure 11), where 

the simulation without the wall interaction model was observed to deviate from measured data. 

 

4 EXPERIMETAL SETUP 

 

Experimental data was collected from a 2.0L Diesel engine installed on a transient engine dynamometer facility. 

Details of the engine are listed in table 1.  

 

 

 

 

 

 

Type Turbocharged diesel 

Nb. Cylinders 4 

Displacement 1998cc 

Stroke 86mm 

Bore 86mm 

Conrod Length 152mm 

Firing Order 1-3-4-2 

Compression Ratio 16 (using prototype pistons) 

Max Torque 320Nm at 1800-2000rpm 

Max Power 95kW at 3800rpm 

Fuel Injection Common rail (1600bar) 

Table 1: Engine specifications 

Two data acquisition systems were installed: the first was a CP Engineering Cadet Automation System monitoring 

low frequency data at a rate of 20Hz and the second was a D2T Osiris system capturing indication data for every 

0.1oCA. Table 2 summarizes the key instrumentation used in this study. 

 

Low frequency  

Channel Sensor 

Fuel Flow CP FMS1000 Gravimetric Flow Meter 

Air Flow ABB Sensy flow hot wire flow meter 

Gas Pressure Piezo-resistive pressure transducers 
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Gas Temperature k-type thermocouple 1.5mm 

Engine Torque HBM analog torque sensor 

  

High Frequency  

Channel Sensor 

In-cylinder pressure Kistler Piezoelectric Pressure Sensor (Type 

6056A) installed in glow plug adaptor 

Fuel rail pressure Kistler Piezoelectric Pressure sensor (Type 

4067A) installed on rail supply pipe. 

Injector current Picotech current clamp 

Table 2: Summary of key Instrumentation sensors 

After an initial warm up period to allow engine coolant, oil and metal temperatures to stabilize, steady state points 

were taken at steps of 20Nm from 20Nm to the limiting torque curve (LTC) in steps of 500rev/min from 1000rev/min 

to 4000rev/min. All measurement points are shown on the engine speed/torque map in figure 11. For each operating 

condition, data was recorded after a 5 minute settling time and averaged over 30 seconds (low frequency data) or 100 

cycles (indicated data).  

 

5 RESULTS AND DISCUSSION 

 

5.1 Review of MCC model performance 

Figure 13 shows the behavior of the basic MCC model at three different engine loads and 2500 rev/min. Since 

the MCC model does not consider ignition delay, in each case the model prediction has been shifted to remove any 

phase shift with the experimental data in order to facilitate the comparison. The first obvious discrepancy between the 

model and measured data is the lack of pilot combustion at the low and medium load points. This is because the MCC 

model was developed on a unit injector system, which typically do not have split injection strategies, unlike modern 

common rail engines. 

By comparing rate of injection to start of combustion (SOC), it is clear that in all cases there is significant ignition 

delay, especially at low load. As a result, at low load, there is a clear distinction between the model and measured data. 

The MCC model under-predicts the initial peak caused by pre-mixed combustion, and over predicts RoHR after 15ºCA 

ATDC. 
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In the medium load case, the MCC model captures the rise and decay of combustion well, with the exception of 

some over prediction of the peak and phasing error after end of injection. 

At high loads, the MCC model tends to over-predict RoHR, as mentioned in the original study [17]. In Figure 

13c, the model over estimates the rate during injection after 5 ºCA ATDC, and under-estimates it after injection. By 

use of the wall impingement model described previously, predicted RoHR is much closer to the measured data. This 

suggests that in small displacement engines, wall impingement has a significant influence on the RoHR at high loads. 

5.2 Performance of enhanced combustion model 

The following section compares the simulation against the heat release results derived from the fired steady state 

map data presented in figure 11. 

5.2.1 Injection Modelling 

Predicted injection mass was compared against measured fuel consumption data from the fired steady state data 

as shown in figure 14. Figure 14a shows that the injector model yielded good correlation with the measured fuel 

consumption, which is confirmed by an excellent R2 value of 0.99. From figure 14a, model error appears to be more 

prevalent at both low levels loads and very high loads. At low loads, error can be attributed to increased cyclic 

variability caused by the engine operating with low mass airflow, close to the smoke limit of the control strategy. At 

these points, fuel will be limited according to mass airflow and at low speeds cylinder balancing will adjust fuel 

delivered to each cylinder dynamically. This increase in variability can result in the cyclic data not being representative 

of the time-averaged fuel flow data since the cycle-averaged injector signal will be skewed towards the median rather 

than the mean injected quantity. 

The increase in spread at higher loads is most likely due to the decrease in time-based resolution with engine 

speed, since an error ±0.1oCA is more significant at this point. In addition to this, the injection pressure is greater at 

higher loads, resulting in a higher sensitivity to smaller errors. 

Despite the error observed at these points, the magnitude of error was low overall, with most between ±2mg, as 

shown in figure 14b. 

 

5.2.2 Heat Release Modelling 

Figure 15 compares gross RoHR derived from measured data (solid grey) to RoHR predicted by the model (solid 

black), with ROI indicated by dotted grey lines. This is done across a number of steady state points from the fired data 
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set from low speed to high speed (left to right), and low, medium and high loads (top to bottom). All letters in the 

following paragraphs refer to those in figure 15. 

Overall, the model fits the measured data very well, matching the shape and magnitude of RoHR across all the 

tests points compared. SOC, peak heat release rates and initial rise rates of combustion are all characterized well by 

the model. The exponential decay of RoHR observed as the rate of prepared fuel being added to the chamber tails off 

is also captured for both conditions where this is influenced by injection, (g), (h), (k) and (l), and when this is 

determined by the dynamics of a flame front, i.e. the Arrhenius rate, shown in (a) to (d). 

The model has also captured the influence of ignition delay on combustion, with the operating conditions that 

have large ignition delays, (a), (b), and (e), exhibiting significantly higher proportions of pre-mixed combustion as 

indicated by the measured data. However, pre-mixed combustion at high engine speeds is not characterized as well, 

see (d), (h) and (l), since the initial pre-mixed peak is not clear on the simulated RoHR trace. This is thought to be due 

to the pre-mixed burning rates being optimized to capture low speed behavior.  

Wall impingement is also represented very well, damping the peak ROHR and influencing the decay of heat 

release at full load, see (i) to (l). Some over-prediction is observed at low speeds, which may be due to incomplete 

combustion not predicted by the model. 

Pilot combustion is characterized very well in terms of magnitude and phasing with the exception of (d) where 

combustion is late and over-predicted in magnitude, and (j) where the peak is under predicted. In the case of (d) the 

model over predicts pilot ignition delay, resulting in late main SOC and a larger pre-mixed peak than measured. From 

the measured data, it appears that pilot occurs earlier, but is not complete, with the remaining fuel being carried over 

to the main combustion event. By comparing (e), (f), (g) and (h), it is clear that the influence of the change in injection 

timing with increased engine speed is accurately modelled. Despite pilot timing being advanced significantly over 

these test points, pilot SOC prediction remains consistent with measured data. 

 

5.2.3. Ignition Delay 

Figure 16 compares the trend in measured pilot ignition delay from the fired map data (circles) for increasing rail 

pressure at constant engine speed against predicted ignition delay (line). It indicates that the pilot ignition delay model 

has captured the effect of increasing rail pressure and load on pilot ignition delay across a wide range of engine speed 
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points. There is some deviation in 1000rev/min (a) and 3500rev/min (f), where the model over predicts ignition delay, 

but overall the trend with rail pressure is captured well. 

Figure 17 performs the same comparison, but for the main combustion event. It suggests that main ignition delay 

model yields good prediction in terms of shape and magnitude, particularly between 2000 rev/min (c) and 3500rev/min 

(f). 

However, for low engine speed (a), the model over predicts ignition delay significantly. This may have been due 

to the filling/emptying model under predicting in-cylinder pressure, leading to unrealistically low temperatures and 

an over-estimation of combustion delay. 

In addition to this, at very high and low speeds, there was difficulty in measuring main SOC, since it was hard to 

discern pilot burn from main burn, and also to filter out random noise caused by measuring low cylinder pressures (at 

low engine speed and load), or that caused by the pre-mixed pilot combustion. Therefore, at these points, the 

measurement of main SOC may be inaccurate which could have caused some of the deviation between the model and 

the indicated data. 

 

5.2.4. Combustion 

Gross indicated mean effective pressure (IMEP) was chosen as an indicator of engine performance, since this 

only considers the compression and expansion strokes, which are most influenced by combustion. Figure 18 shows a 

plot of predicted gross IMEP against measured gross IMEP. Prediction was found to be excellent, with little deviation 

from experimental data except at very low and extremely high loads, suggesting that the combustion model captured 

fired engine pressure for the majority of the engine speed and load conditions tested. 

Table 3 gives an overview of the predictive ability of the model showing R2 for the cyclic parameters compared. 

Overall, the model yields good correlation with the parameters analyzed, R2 values over 0.9 for most parameters. One 

notable exception is the angle of maximum cylinder pressure 𝛼𝑚𝑎𝑥, which had an R2 value of 0.744; however, this 

still indicates good correlation. The improvement made by introducing the injection rate correction due to cavitation 

(equation 23) over the model without cavitation is indicated by an increase in R2. 

 

Parameter R2 
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Main injection qty 0.989 

Pilot SOC 0.998 

Main SOC 0.998 

pmax 0.989 

αmax 0.744 

HRmax  w/o injector cavitation) 0.891 

HRmax  (with injector Cavitation) 0.961 

IMEPgross 0.996 

Table 3: Prediction power for selected combustion parameters 

Figure 19 shows the trend in peak pressure against break mean effective pressure (BMEP) for constant speed 

points for measured data (circles) and predicted data (line). It shows that in general, peak pressure prediction from the 

model is excellent. 

Yet, some deviance is observed at high loads and high speed. For example, at 4000 rev/min (g), The peak cylinder 

pressure, pmax is consistently under-predicted which is thought to be a result of the filling and emptying model 

underestimating initial in-cylinder pressure during intake at this speed. This is consistent with the results from the 

initial validation of the filling and emptying model against motored data, where mass airflow and peak pressure were 

underestimated for high speeds. 

Figure 20 shows how the measured (circles) and predicted (line) maximum heat release rate varies with BMEP 

for a set of steady speeds. It shows that maximum RoHR prediction is good compared to the measured trend for most 

speeds using model #1 (without injection rate modification), but at high speeds it is over-predicted by some margin. 

The model with cavitation gives similar prediction to the model without, but maximum heat release rates are decreased, 

staying closer to the measured data, especially for higher engine speeds. The exception to this is at 3500rev/min (f), 

where maximum heat release is under predicted with cavitation. 

Finally, figure 21 shows how the measured (circles) and predicted (line) point of maximum pressure changes 

according to rising BMEP across the steady engine speeds measured. 

Despite the relatively low R2, point of maximum pressure is still predicted very well with the model reproducing 

a trend similar to that measured across a range of speeds and loads, including the discontinuity observed between low 

and high loads between 1500rev/min (b) and 2500rev/min (d). However, for low loads at 3000rev/min (e), the model 
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over predicts the point of peak pressure significantly. This may be due to the over-prediction of RoHR during the main 

combustion for low loads at 3000 rev/min, see figure 15c, causing the point of peak pressure to be shifted towards the 

expansion stroke. 

 

5 CONCLUSIONS 

 

A new RoHR model has been developed, exhibiting a number of enhancements over Chmela’s original MCC 

model. Injection delay and pre-mixed combustion models were introduced which improved model prediction at part-

load. 

It was found that at high loads, the diffusion combustion rate was over-predicted using the original model. It was 

proposed that this was due to fuel flow impinging on the wall, slowing the rate of energy input into combustion due 

to the momentum lost at the wall. By modelling this effect, predictive improvement in peak combustion rates, phasing 

and decay were witnessed – The model R2 values across the engine speed/load map for maximum heat release rate 

was increased from 0.89 to 0.96. 

Due to the presence of multiple injections in the test points taken, a pilot combustion model was required. Based 

on the  

assumption that pilot combustion is predominantly pre-mixed, the pilot model was developed from the main pre-

mixed model. Additional terms were added to the ignition delay model to model the influence of pilot combustion on 

the main ignition lag. 

A simple injector model was developed to provide injection rate based on the solenoid energizing signal. This 

yielded an R2 values for mass of fuel injected per cycle of 0.99, thus enabling the use of the RoHR model without the 

need for measured ROI data, which can be challenging to measure directly. 

An optimization process was used to calibrate a single set of parameters derived from a small set of measured 

steady state points. The model was shown to characterize RoHR well over the full range of speed and load points. 

This was reflected in the model’s ability to match both pilot and main phasing, and peak heat release rates derived 

from measured data. High accuracy in prediction of engine performance parameters such as IMEP, pmax and 𝛼𝑚𝑎𝑥 was 

also observed with R2 values of 0.99, 0.99 and 0.74 respectively. This demonstrates the predictive ability of the model 

without the need for a large set of empirical data, a key advantage over conventional methods. 
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Figure 1: Combustion modelling using Multiple Wiebe approach to capture Rate of Heat Release profile for multiple 

injection events 

 

 

Figure 2: Simulated Rate of Heat Release showing pre-mixed and diffusion (Mixed Controlled) combustion and ignition 

delay 

ID: Ignition Delay, ROI: Rate of Injection, MCC: Mixing Controlled Combustion 
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Figure 3: Sensitivity of main combustion profile to combustion phasing: (a) Correct SOC (b) early SOC 

 

 

Figure 4: Comparison of ignition delay for Arrhenius, Magnussen and combined models and experimental data. Curves 

and measured data represent points obtained from an engine load sweep at 2500rev/min 
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Figure 5: Sensitivity of in-cylinder pressure to the phasing of pilot injection for an arbitrary operating point 

 

 

Figure 6: Injector driver current split into three characteristic phases (a= rise / cracking, b= hold, c= fall) 
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Figure 7: Correlation of measured fuel consumption to predicted fuel injected during various injector current phases 

 

 

Figure 8: Normalized fuel injection map for Diesel injector 
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Figure 9: Measured injector currents for pilot and main injections at all engine loads at 2500rev/min 

 

 

Figure 10: Model parameter optimization routine 
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Figure 11: Measured operating points highlighting subsection of points used in model parameter optimization routines for 

(a) ignition delay, (b) diffusion combustion, (c) pre-mixed combustion and (d) wall impingement 

 

 

Figure 12: RoHR evolution during the optimization process for engine operating condition of 2500rpm and 125Nm 
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Figure 13: Simulated RoHR using MCC model only at 2500rev/min for (a) low load, (b) medium load and (c) Full load 
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Figure 14: (a) Predicted vs. measured and (b) Prediction error for main injection fuel mass  

 

 

Figure 15: Predicted gross heat release (black solid lines) compared to measured 

gross heat release (grey solid lines) with ROI indicated by the grey dotted lines for a 

range of engine speeds and loads
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Figure 16: Measured and predicted pilot injection ignition delay grouped by operating speeds 
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Figure 17: Measured and predicted main injection ignition delay grouped by operating speeds 

 

 

Figure 18: Predicted vs. measured gross IMEP for all test points 
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Figure 19: pmax prediction vs. measured across different load points 
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Figure 20: RoHRmax prediction against measured across different load points 
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Figure 21: Predicted point of maximum pressure against measured across different load points 
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