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Abstract 

Active magnetic bearings (AMBs) have been utilized widely to support high-speed rotors. However, 

in the case of AMB failure, emergencies, or overload conditions, the auxiliary bearing is chosen as the 

backup protector to provide mechanical supports and displacement constraints for the rotor. With lack of 

support, the auxiliary bearing will catch the dropping rotor. Accordingly, high contact forces and 

corresponding thermal generation due to mechanical rub are applied on the dynamic contact area. Rapid 

deterioration may be brought about by excessive dynamic and thermal shocks. Therefore the auxiliary 

bearing must be sufficiently robust to guarantee the safety of the AMB system. Many approaches have 

been put forward in the literature to estimate the rotor dynamic motion, nonetheless most of them focus 

on the horizontal rotor drop and few consider the inclination around the horizontal plane for the vertical 

rotor. The main purpose of this paper is to predict the rotor dynamic behavior accurately for the vertical 

rotor drop case. A detailed model for the vertical rotor drop process with consideration of the rotating 

inclination around x- and y- axes is proposed in this paper. Additionally, rolling and sliding friction are 

distinguished in the simulation scenario. This model has been applied to estimate the rotor drop process 

in a helium circulator system equipped with AMBs for the 10 MW high-temperature gas-cooled reactor 

(HTR-10). The HTR-10 has been designed and researched by the Institute of Nuclear and New Energy 

Technology (INET) of Tsinghua University. The auxiliary bearing is utilized to support the rotor in the 

helium circulator. The validity of this model is verified by the results obtained in this paper as well. This 

paper also provides suggestions for the further improvement of auxiliary bearing design and engineering 

application. 
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1. Introduction 

Active magnetic bearings (AMBs) have been recommended widely to support high-speed rotors in 

the industrial machinery field. They have advantages in terms of complete exemption of contact, wear 

contamination and lubrication, excellent endurance and well-controlled performance [1]. Additionally, 

an auxiliary bearing is usually assembled as the backup protector to provide mechanical support and 

displacement constraint for the rotor in cases of AMB failure, emergencies, or overload conditions. When 

an AMB is in normal operation, translational motions of the rotor in x-, y- and z- axes, and rotational 

motions around x- and y- axes in the horizontal plane are all controlled by the AMB system. The axial 

rotational motion of the rotor around z- axis is often governed by a motor. When the rotor drops down 

under gravity or due to overload, the auxiliary bearing will support the rotor within a smaller clearance 

than that of the AMB. The radial clearance of the auxiliary bearing is typically half the magnetic gap [2]. 

During the drop process the high-speed rotating rotor will make axial contact with the auxiliary bearing. 

Accordingly, high level thermal generation due to mechanical rub over the transient dynamic contact 

area is involved. Rapid deterioration may be brought about by excessive dynamic and thermal shocks. 

Therefore the auxiliary bearing must endure high mechanical and thermal shocks to mitigate rapid 

deterioration and to guarantee the integrity of the AMB system. Proposals to improve the reliability and 

stability of auxiliary bearings have been put forward though design and application. The complicated 

interaction in the rotor drop process must be understood. Simulation of the dynamic rotor drop process 

is a prerequisite for the upgrade of the auxiliary bearing design. 

Many remarkable achievements have been accomplished in the literature to estimate the highly 

nonlinear dynamic process. In [3] the effects of auxiliary bearing parameters on system vibration were 

investigated with respect to friction, unbalance, stiffness and damping. Palazzolo et al. [4-6] considered 

rotor drop simulation of a flywheel energy storage system, numerically and experimentally. The effects 

of friction coefficient, support damping, and side load to reduce backward whirl were discussed in [4]. 

In addition, thermal growth of the rotor drop process was estimated in [5], and the fatigue life of auxiliary 

bearing in [6]. The results suggested therefore that the life of the auxiliary bearing can be extended by 

reducing auxiliary bearing clearance, dropping velocity, contact friction and support stiffness, applying 

static side-loads and increasing support. Keogh and Yong [7] indicated that the rotor drop procedure can 

be treated as a combination of bounce and rub. They simulated transient thermal response for a series of 

contact conditions. Moreover, an active recovery strategy was also obtained to make the rotor return from 

a persistent contact state back to a contact-free state [8]. The majority of reported researches involves 

horizontal rotor drop. However, in vertical rotor drop tests forward whirl is prevalent. Caprio et al. [9] 

provided a description of the design of a vertically oriented flywheel rotor/housing system and the rotor 

on the auxiliary bearing was demonstrated experimentally. A backup bearing system to the AMB, which 

was as part of the energy storage flywheel module, was developed and tested by Hawkins et al. [10, 11]. 
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A full circle forward whirl was visible consistently in all tests. This whirl frequency does not change with 

speed for speeds above 2400 rpm, regardless of spin speed [10]. Furthermore in [11] serial tests were 

performed based on different magnetic bearing failure/fault cases. Ransom et al. [12] conducted a series 

of experiments and concluded that the rotor always shows a forward cylindrical subsynchronous whirl, 

which is not affected by the unbalance level or drop speed. To reveal the detailed interactions in the 

vertical rotor drop process, a systematic approach was presented by Wilkes et al. [13]. It is suggested that 

axial friction force can induce synchronous forward whirl when the rotational speed is below the natural 

frequency, and constant frequency whip when the rotational speed is above a whip frequency. 

The 10 MW high-temperature gas-cooled reactor (HTR-10), renowned as the first modular high-

temperature gas-cooled test reactor, has been designed and researched by the Institute of Nuclear and 

New Energy Technology (INET) of Tsinghua University in China [14]. The circulator is utilized to drive 

helium in the primary loop for energy exchange. In the helium circulator system of HTR-10, the rotor is 

levitated by radial and axial AMBs with auxiliary bearings assembled on the stator in this system [2]. 

Many studies on the auxiliary bearing have been carried out by the INET. Zhao et al. [15] studied dynamic 

responses and the strain field of the auxiliary bearing. The ability of the auxiliary bearing to resist axial 

and radial impacts in its loading limit was verified by Xiao et al. [16]. Results have shown that severe 

internal plastic deformation and damage to the auxiliary bearing performance are avoided. A dynamic 

model with consideration of axial and radial friction forces is established by Kang [17]. The influences 

of rotational frequency, stiffness and damping on the rotor dynamic behavior are evaluated accordingly. 

Furthermore Zhao et al. [18] estimated the thermal responses of this system by a detailed thermal model. 

Many approaches have been put forward in the literature to estimate the rotor dynamic motion, 

nonetheless the vast majority of existing studies mainly focus on the horizontal rotor drop model and 

seldom consider the inclination around x- and y- axes in the horizontal plane. The main purpose of this 

paper is to predict the rotor dynamic behavior accurately for the vertical rotor drop. The axial contact 

between the rotor flange and the inner race of the auxiliary bearing adds to the level of the simulation 

complexity. Rolling and sliding friction are also included in the simulation. Thus the model is more 

accurate than that presented in the previous study [17]. This new model adds new features and precision. 

Furthermore, it is now possible to provide some suggestions for improvements to auxiliary bearing 

design and engineering application. 

 

2. Dynamic rotor drop model 

The detailed structure of the vertical model is shown in Fig.1. Two pairs of angular contact ball 

bearings are distributed at each end of the rotor. The upper auxiliary bearing endures the whole axial 

contact and part of the radial contact, and the lower one only endures part of the radial contact [2]. Rotor 

drop must relate to the interactions between the rotor and the auxiliary bearings. In vertical rotor drop 
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model the axial impact will firstly happen on the axial contact surface between the rotor flange and the 

inner race of the upper auxiliary bearing. High level mechanical rub will then ensue. Radial impact will 

subsequently occur due to normal contact forces and axial friction. The dynamic procedure is a 

combination of several contacts and bounces [7]. 

Given that three translational and two rotational motions lack support when AMB control is lost in 

the process of free rotor drop, they need to be simulated to describe the rotor dynamic motion. It is 

assumed that the rotor experiences gravity and interactions with the auxiliary bearing in the process of 

rotor drop. The rotational velocity is below any rotor bending critical modal frequency. The first-order 

critical frequency of the rotor is 160 Hz, which is much higher than the operating frequency of 83.3 Hz. 

Thus it is justifiable to treat the rotor as a rigid body as a first approximation. The analysis in this paper 

deals mainly with the following two aspects to reveal the rotor drop process: the axial and radial 

interactions and the detailed rotor dynamic model. 

 

Fig 1. Rotor/auxiliary bearing system layout 

 

2.1 Axial interaction between the rotor and the auxiliary bearings 

Axial and radial interactions between the rotor and the auxiliary bearings have been assessed in 

preliminary studies [13]. The schematic of the rotor motion which involves translational and rotational 

motions is described in Fig.2. Here x, y and z are the translational displacements, and ϕɺ  and θɺ  are the 

precession angular velocities of the rotor around x- and y- axes, respectively. In addition, z′  denotes the 

rotating axis and γɺ  the rotating velocity of the rotor. a and b denote the locations of the upper and lower 

auxiliary bearings with respect to the origin of the xyz system. 

Rotor

Lower Auxiliary Bearing

Upper Auxiliary Bearing
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Fig 2. Rotor motion in fixed and rotating coordinates 

 

Dynamic interactions are shown in Fig.3. Parameters α , ρ , and γ  are chosen to describe the 

dynamic behavior of the rotor. Ob denotes the auxiliary bearing geometric center, Or denotes the rotor 

geometric center and Oc denotes the rotor mass center, and α  is the angle between ObOr and the x-axis. 

The whirling velocity of the rotor is αɺ , while ρ  denotes the relative distance between Ob and Or, and 

γ  is the rotational angle of the rotor.  

 

  

 

 

 

 

 

 

 

 

 

Fig 3. Dynamic interactions 

 

Relative rotor to auxiliary bearing displacement is estimated to indicate whether contact happens. 

Axial contact happens when the axial penetration depth is positive. Similarly radial contact happens when 

the radial penetration depth is positive. The relationship of load and deflection during the rotor drop 

process can be obtained from a Hertz contact model. Thus the axial contact force generated by axial 

contact between the rotor and the upper auxiliary bearing can be represented as: 

φ·

θ
·

·γ

b

a

x

y

z'

z
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, 0

0, 0

e

a a a a a

a

a

K C
F

δ δ δ

δ

 + >
= 

≤

ɺ

              (1) 

in which Ka denotes axial stiffness, Ca denotes axial contact damping, aδ  denotes axial impact depth 

and e denotes contact parameter applied to treat different contact conditions. Surface contact (e=1) 

happens on the axial contact surface between the rotor flange and the inner race of the auxiliary bearing, 

line contact (e=10/9) happens on the radial contact surface while point contact (e=3/2) occurs inside the 

auxiliary bearing [18]. 

The friction forces projected in i and j directions ( ,af iF , ,af jF ) and friction torque (Ta) applied on the 

axial contact surface in polar coordinate may be deduced from the preliminary study [18]: 
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( )
( )

3 3

2 1

2 2
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a a b b

a

b b

F R R
T

R R

µ −
=

−
               (4) 

in which Pa denotes the axial contact pressure, aµ  the axial friction coefficient, 
b

θɺ  the velocity of the 

auxiliary bearing, Rb1 and Rb2 the inner and outer radii of the inner races, respectively. 

The rotor drop can be explained as a combination of the following three processes [17]: free drop 

under gravity; backward whirling tendency; and forward whirling motion, driven by unbalance. These 

equations can explain the reason of the forward whirl dominance due to unbalance. The rotor has a 

backward whirling tendency when same velocity is not achieved. Subsequently, when the rotor and the 

bearings rotate together (
b

γ θ= ɺɺ ), if the whirling velocity of the rotor is less than the self-rotating angular 

velocity (α γ<ɺ ɺ ), the axial friction force in j direction has positive value ( , 0af jF > ). That is to say, axial 

contact friction will induce the tangential friction force in the same self-rotating direction and therefore 

it will enhance the forward whirling frequency. On the contrary, if the whirling velocity of the rotor is 

larger than the self-rotating angular velocity ( α γ>ɺ ɺ ), then the axial friction force in j  direction is 

negative ( , 0af jF < ), which means axial friction force will induce forward whirl. This analysis shows that 

the axial friction force determines the forward whirl and drives the rotor in the direction of rotation. The 

axial contact force applied on the contact surface, the friction coefficient and the self-rotating velocity of 

the rotor also aggravate forward whirling motion. Furthermore, decreasing the rotor velocity is the most 

direct method to reduce the forward whirl motion. In the following analysis, a primary emphasis is placed 

on the influences of the rotor velocity and the friction coefficient on the rotor dynamic behavior. 

 

2.2 Radial interaction between the rotor and the auxiliary bearings 

With regard to radial contact, in the process of drop the rotor rotates with a significant rotational 
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velocity before colliding with the inner race of the auxiliary bearing. The radial contact force is: 

, 0

0, 0

e

r r r r r

r

r

K C
F

δ δ δ

δ

 + >
= 

≤

ɺ

               (5) 

in which Kr denotes radial stiffness, Cr radial contact damping, and rδ  radial impact depth. 

Rotational motions in the upper and lower bearings are driven by the axial friction torque and the 

radial friction forces. Furthermore, rotational motions of the rotor and the inner races of the upper and 

lower auxiliary bearings are given by: 

( )1 2t t r a

p

F F R T

I
γ

+ +
= −ɺɺ                (6) 

1 1 1
1

t b a b
b

b

F R T T

I
θ

+ −
=ɺɺ                (7) 

2 1 2
2

t b b
b

b

F R T

I
θ

−
=ɺɺ                 (8) 

in which Ip and Ib are the polar moment of inertia of the rotor and the moment of inertia of the auxiliary 

bearing, respectively. Ft1 and Ft2 are the tangential friction forces of the upper and lower bearings 

generated by radial collision respectively. Tb1 and Tb2 are the torque inside the upper and lower auxiliary 

bearings, which can be calculated by the Palmgren’s empirical equations [19]: 

, 0, , 1, 2b j j l jT T T j= + =                (9) 

where T0 is generated from the lubricating friction drag (with no load) and is influenced by the lubricating 

liquid, the bearing type, and the rotating velocity: 

7 2/3 3

0 0

7 3

0 0

10 ( ) 2000

160 10 2000

m

m

T f n d n

T f d n

υ υ

υ

−

−

= ≥

= × ≤
             (10) 

in whichυ ,the kinematic viscosity, and f0, the lubricating factor, both relate to the lubrication properties. 

Tl reflects the elastic hysteresis and the friction loss caused by the partial differential sliding and can be 

calculated as: 

1 1l mT f Pd=                  (11) 

where f1 depends on the bearing design and load. P1 denotes the equivalent dynamic load, and dm the 

equivalent diameter. 

A method of assessing whether rolling resistance occurs has been proposed [4]. Therefore this 

rolling condition is applied to determine the tangential contact force in the following analysis. When 

rolling friction happens on the contact surface of the upper auxiliary bearing, Eq. (12) is applied and is 

solved with Eqs. (6) and (7), simultaneously. Thus Ft1 is obtained as: 

1 1r b b
R Rγ θ= ɺɺ                  (12) 

( )2

2 1 1 1

1 2 2

1

t r p a r p b b b b b

t

r p b b

F R I T R I R I T R I
F

R I R I

− ⋅ − + + ⋅
=

+
           (13) 

in which Ft2 is calculated due to sliding friction, 
2 2t d rF Fµ= , 

dµ  being the dynamic friction coefficient. 

Similarly, when rolling friction happens on the contact surface of the lower auxiliary bearing, it follows 

from Eqs. (6) and (8) that: 
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1 2r b b
R Rγ θ= ɺɺ                  (14) 

2

1 2 1

2 2 2

1

t r p a r p b b b

t

r p b b

F R I T R I T R I
F

R I R I

− ⋅ − ⋅ + ⋅
=

+
            (15) 

in which Ft1 is calculated due to sliding friction, 
1 1t d rF Fµ= . In this rotor dynamic system there is rolling 

resistance on the surfaces of the upper and lower bearings. Then, using Eqs. (6), (7) and (8): 

1 1 1 2r b b b b
R R Rγ θ θ= =ɺ ɺɺ                (16) 

( ) ( )
2

1
1 2 1

1

1 2 2
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br r
a b b a b a

b p b p

t
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⋅
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           (17) 

1 2
2 1

1

a b b
t t

b

T T T
F F

R

− +
= +                (18) 

It’s important to note that if tj s rjF Fµ> ( 1, 2j = ), this condition corresponds with sliding friction 

( tj d rjF Fµ= ). Similarly, if tj s rjF Fµ< , rolling friction exists. In these formulas 
sµ  is the rolling friction 

coefficient. Another relevant point is that rolling friction happens when both the tangential velocity of 

the rotor and of the inner race are equal numerically. Tangential force influences the rotor motion greatly. 

If it changes direction, numerical instability may result. A numerical solution to the problem is obtained 

by the application of a small boundary to treat the zero relative velocity situation. The presupposed 

boundary of the relative velocity is 10-8 mm/s [4].Rolling friction only exists within this presupposed 

boundary. If the relative velocity exceeds this boundary, sliding friction is imposed. 

 

2.3 Detailed dynamic rotor drop model 

Three translational and two rotational motions of the rotor, ( , , , ,x y z ϕ θ ), are considered to lose 

support through lack of AMB control, while γɺ , which is the axial velocity of the rotor, can be still driven 

by the motor during the rotor drop process (Fig.2). The geometrical relationship can be elaborated by: 

1 2

1 2

1 2

1 2

cos

sin

bx ax
x

a b

by ay
y

a b

y y

a b

x x

a b

ρ α

ρ α

ϕ

θ

+ = = +
+ = = +


− = −

 +
 − = −

+

               (19) 

in which x1, y1, x2, y2 are the displacements in the x- and y- axes of the upper and lower bearing cross 

sections, respectively. The motion of the mass center is governed by: 

cos sin sin

sin cos cos

c

c

x e

y e

ρ α αρ α γ γ

ρ α αρ α γ γ

= − −


= + +

ɺ ɺ ɺɺ

ɺ ɺ ɺɺ
             (20) 

In order to analyze the rotor dynamic behavior, the Lagrangian equation of motion is established 

through T and V, the kinetic energy and gravitational potential energy of the rotor, respectively: 

+ i

i i i

d T T V
Q

dt q q q

 ∂ ∂ ∂
− = 

∂ ∂ ∂ ɺ
               (21) 
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( )
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  (22) 

V mgz=                  (23) 

in which e is the eccentricity of the rotor , qi is the generalized coordinator and Qi is the generalized force. 

Therefore the dynamic equations to assess the rotor drop process are obtained in the following equations: 
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1 2y y

p

aF bF

I
ϕ

− +
=ɺɺ                 (26) 

1 2x x

p

aF bF

I
θ

−
=ɺɺ                 (27) 

-aF
z g

m
=ɺɺ                  (28) 

in which Fx1, Fy1, Fx2 and Fy2 mean the contact forces in Cartesian coordinate applied on the upper and 

lower bearing respectively. Also, αɺɺ  describes the whirling motion of the rotor. ρɺɺ  elaborates the rotor 

orbit in the horizontal plane. The angular acceleration around x- and y- axes, ϕɺɺ  and θɺɺ  are analyzed 

using Eqs. (26) and (27). The axial displacement of the rotor, z, can be calculated by Eq. (28). 

Furthermore the rotational motions of the rotor and the inner races of the upper and lower auxiliary 

bearings have been described in the analysis above, shown in Eqs. (6), (7) and (8). 

 

3. Results and discussion 

The model was applied to the helium circulator system with the AMBs of HTR-10. The rotor is 

about 1.5 m long and 450 kg of mass, rotating at 5000 rpm in a normal operating condition. The ceramic 

(Si3N4) angular contact ball bearing with dry lubrication is selected as the auxiliary bearing type and 

applied in pairs. Both the upper bearing and the lower bearing are arranged in face to face. Moreover 

detailed parameters are described in Table.1 [2]. 

Numerical simulations were carried out to assess the rotor dynamic behavior. The pre-set simulation 

period was 0.5 s with variable integration time steps to simulate the initial contact moment. The 

simulation cases are listed in Table.2. Cases I-1 to 4 are estimated to reveal the rotor responses due to 

initial condition and unbalance. Cases II-1 to 3 are simulated to examine the effect of the friction 

coefficient. The simulation responses of Cases III-1 and 2 are compared and characterized to show that 

the initial velocity is a critical factor for the dynamic behavior of the rotor. Case IV simulates the rotor 

drop process with an aerodynamic loading force, which is generated by the blades mounted under the 

rotor of the helium circulator. In this simulation scenario the axial aerodynamic loading force is 

approximately 2000 N. 
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Table 1. System parameters 

Rotor mass with circulator 450 kg 

Length of rotor 1518 mm 

Balance quality grade G 6.3 

Eccentricity 0.01 mm 

Rotor speed 5000 rpm 

Rotor first-order bending critical frequency 160 Hz 

Polar moment of inertia (rotor) 7.9 kg ⋅ m2 

Transverse moment of inertia (rotor) 78. kg ⋅ m2 

Axial gap between auxiliary bearing and rotor 0.52 mm 

Radial gap between auxiliary bearing and rotor 0.18 mm 

 

Table 2. Simulation cases 

Case 

Initial Velocity 

(rpm) 

Friction Coefficient Loading Force 

(N) 

Eccentricity 

(mm) Dynamic Static 

I-1 5000 0.1 0.2 0 0.01 

I-2* 5000 0.1 0.2 0 0.01 

I-3 5000 0.1 0.2 0 0.02 

I-4 5000 0.1 0.2 0 0.03 

II-1 5000 0.2 0.3 0 0.01 

II-2 5000 0.3 0.4 0 0.01 

II-3 5000 0.4 0.5 0 0.01 

III-1 4000 0.1 0.2 0 0.01 

III-2 3000 0.1 0.2 0 0.01 

IV 5000 0.1 0.2 2000 0.01 

* Cases I-1 and 2 have different initial conditions. 

 

3.1 Rotor drop model validation 

The rotor dynamic behavior can be analyzed by the study of Case I-1. The rotor spins with full 

velocity, which is 5000 rpm. Accordingly, an experiment was also conducted. To evaluate the actual state, 

the initial condition is assumed that the initial center positions of the upper and lower bearings are in 

different quadrants with an initial velocity disturbance. The axial displacement of the rotor and its 

velocity are shown in Figs.4 and 5. The axial orbit obtained by the experiment is shown in Fig.6. A 

similar trend between the predicted rotor orbit and the measured rotor orbit is observed. It is clear that 

the rotor goes mainly through several significant bounces and then the vibration tends to be steady during 
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the intermittent contact period. Sustained axial bouncing is observed experimentally long after the 

simulations predict bouncing to have stopped. The axial displacement transducer was mounted on the 

stator housing, hence it measures relative rotor to stator displacement. This is considered to be the cause 

of the residual motion for t > 0.2 s, involving stator induced vibration. Stator vibrations are not included 

in the system model. 

The predicted upper and lower orbits are shown in Figs.7 and 8, respectively. The red circle in the 

figure signifies the initial clearance between the rotor and the auxiliary bearing. The high-speed forward 

whirl in the upper rotor orbit has been fully developed over time after free fall, while more bounces are 

detected in the lower rotor orbit. The experimental orbits are plotted in Figs.9 and 10, which support the 

predicted findings. While the experimental results have some extra loops during the drop that may be 

related to unbalance. The angles around x- and y- axes obtained from the simulation have a similar 

variation tendency and are shown as Figs.11 and 12.  

Rotor velocity decreases as shown in Fig.13. The rotor speed reduction is caused by the friction 

torque. A constant motor torque is assumed and the rotor speed change is only 0.4 rad/s. A motor under 

speed control would eliminate this, but clearly the changes would be very small. In addition the velocities 

of the upper and lower bearings are shown in Fig.14. After about 0.25 s the rotor and the bearings reach 

the same velocity and rotate together due to the large inertia difference. While an important aspect is that 

the upper bearing has a faster velocity acceleration than the lower bearing, this is due mainly to the 

driving torque applied on the axial contact surface. Furthermore, the whirling velocity of the rotor is 

revealed in Fig.15. The whirling velocity fluctuates rather dramatically in the initial period and then 

fluctuates smoothly in a certain range below the initial velocity. 

The axial contact force is obtained in Fig.16. The rotor endures high impact initially. After several 

bounces the contact force undergoes a progressive decline and finally stabilizes to support the weight of 

the rotor. The axial contact force is entirely applied on the upper auxiliary bearing, which plays a crucial 

role to support the rotor during the rotor drop process. It is generally considered that more emphasis 

needs to be made to assess whether replacement is required. The maximal contact force in the first 

collision is about 5 × 104 N, and the following contact force is less than the first contact force. The 

maximal force is within the allowable load tolerance. Hence the auxiliary bearing during the short period 

of rotor drop with medium velocity is guaranteed away from excessive load deterioration.  

Moreover axial friction torque is also shown in Fig.17. It is the main torque that propels the whirl 

motion of the rotor. The axial friction force is the cause of the forward whirl observed in the predicted 

orbits. The forces applied on the upper and lower bearings are also plotted in Figs.18 to 21. They show 

a similar tendency with each other, fluctuating rather drastically and then stabilizing within a rather 

narrow range. The peak contact force of the upper bearing is slightly higher than that of the lower bearing.  

The effect of the rotor unbalance is considered in the analysis of Cases I-2 to and 4. It is assumed 
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that the rotor drops from the initial position without any velocity disturbance. Compared with Case I-1, 

the upper and lower orbits of Case I-2 are similar and the rotor responses as cylindrical motion. The 

predicted rotor orbits are plotted in Fig.22. With the increase of the eccentricity, the rotor behavior 

becomes more disordered. The rotor experiences a transition from cylindrical bouncing motion to circular 

rub motion. The centrifugal force applied on the rotor is accelerated by the unbalance. In the realistic 

experiments the unbalance even can induce extra loops, shown in Figs. 9 and 10. 

 

 

Fig 4. Predicted axial displacement, Case I-1 
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Fig 5. Axial velocity, Case I-1 

 

Fig 6. Experimental axial displacement, Case I-1 
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Fig 7. Predicted upper rotor orbit, Case I-1 

 

Fig 8. Predicted lower rotor orbit, Case I-1 
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Fig 9. Experimental upper rotor orbit, Case I-1 

 

Fig 10. Experimental lower rotor orbit, Case I-1 
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Fig 11. Predicted angle around x-axis, Case I-1 

 

Fig 12. Predicted angle around y-axis, Case I-1 
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Fig 13. Rotor velocity, Case I-1 

 

Fig 14. Bearing velocity, Case I-1 
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Fig 15. Whirling velocity, Case I-1 

 

Fig 16. Axial contact force, Case I-1 
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Fig 17. Axial friction torque, Case I-1 

 

Fig 18. Upper radial contact force, Case I-1 
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Fig 19. Upper radial friction force, Case I-1 

 

Fig 20. Lower radial contact force, Case I-1 
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Fig 21. Lower radial friction force, Case I-1 

 

Fig 22. Predicted rotor orbits 
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3.2 Friction coefficient 

Cases II-1 to 3 were conducted to evaluate the effect of the axial friction coefficient, which is an 

important factor to assess in the rotor drop process. The influences to the drop down procedure are 

discussed in the following analysis. The comparison of the predicted rotor orbits is listed in Fig.23. The 

initial condition of these cases is assumed that the upper and lower orbits have a similar initial position. 

Therefore in these cases the initial condition is attributed to the cylindrical motion. The orbits of these 

two cross sections have a similar trend in the same orientation. The rotor drop process is rather sensitive 

to the initial condition. 

Figure 24 is obtained from the comparison of whirling velocity among these cases. There is a 

positive correlation between the steady whirling velocity and the friction coefficient. Thus a solution to 

reduce the forward whirl motion is to alleviate the friction coefficient while under some circumstances 

reducing the friction coefficient may affect the simulation stability. This is purely numerical in the 

simulation and caused by numerical sensitivity to reduced system damping from lower friction forces. 

Another aspect that friction coefficient affects is the contact force illustrated in Fig.25. It is noted that the 

influence to the peak axial contact force is rather limited. Peak axial contact force doesn’t vary 

significantly when the friction coefficient changing. Nevertheless the peak radial contact forces of the 

upper and lower bearings vary with the friction coefficient. The friction coefficient clearly affects the 

radial contact. 

 

Fig 23. Predicted rotor orbit 
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Fig 24. Predicted whirling velocity 

 

Fig 25. Contact force 
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3.3 Initial velocity 

The rotor motion influenced by the initial velocity is discussed in the following analysis. The 

difference of the rotor orbits (Cases III-1 and 2) is shown in Fig.26. It’s observed from the simulation 

that tendency to full whirl decreases as the initial velocity decreasing. Additionally, the experimental 

result shown in Fig.27 also manifests this tendency. The rotor drops with different initial rotational 

frequencies, 20 Hz, 40 Hz and 60 Hz, respectively. 

When the velocity is slow enough, the contact motion is greatly reduced. The experimental results 

also show that the whiling motion especially in the lower orbit isn’t developed as fully as the model 

predicts. Moreover, as shown in Fig.28, the peak whirling velocity increase monotonically with the 

increase of velocity while the steady whirling velocity remains almost the same. The comparison results 

for contact forces are revealed in Fig.29. The peak radial contact forces grow with the increase of velocity 

while the axial contact force remains almost the same. The key aspect of this analysis is that we can 

alleviate whirling motion by reducing the initial velocity of the rotor. Lower velocity with which the 

rotor drops will reduce the radial contact. It is also indicated that when the initial velocity is above 3500 

rpm, the contact force of the upper auxiliary bearing is much higher. When the initial velocity is below 

3500 rpm, the contact force of the lower auxiliary bearing is higher. 

 

Fig 26. Predicted rotor orbit 
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Fig 27. Experimental rotor orbit 

 

Fig 28. Predicted whirling velocity 
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Fig 29. Contact force 

 

3.4 Aerodynamic loading force 

The dynamic rotor drop model mainly simulates the process that the rotor drops onto the auxiliary 

bearing with no aerodynamic force. Nevertheless the blades mounted under the rotor of the helium 

circulator may induce axial aerodynamic loading force during the rotor drop process. The loading force 

is approximately 2000 N in the simulation. Case IV is cited as an instance to discuss the influence of 

aerodynamic loading force. The predicted orbits from a full speed drop with aerodynamic loading force 

are presented in Fig.30, 31 and 32. Accordingly, the experimental results are plotted in Figs.33, 34 and 

35. Compared with the results obtained in Case I-1, which is without consideration of loading force, the 

tendency to fully developed whirl is much more obvious. The simulation results show consistent trends 

with the test data although the radial contact happening on the lower bearing is not developed as fully as 

prediction. The axial and radial contact forces are shown in Figs.36, 37 and 38, respectively. There is no 

significant difference between the tendencies of the radial contact force, while the peak value of the axial 

contact force is about 6.13 × 104 N, which is greater than that with no loading force. The axial contact 

force applied on the inner race is the main force to accelerate the velocity. Given this as shown in Figs.39 

and 40 the period to arrive at the same velocity is 0.2 s which is shorter than that of Case I-1, which is 

0.25 s. 
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Fig 30. Predicted upper rotor orbit, Case IV 

 

Fig 31. Predicted lower rotor orbit, Case IV 
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Fig 32. Predicted axial displacement, Case IV 

 

Fig 33. Experimental upper rotor orbit, Case IV 
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Fig 34. Experimental lower rotor orbit, Case IV 

 

Fig 35. Experimental axial displacement, Case IV 
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Fig 36. Axial contact force, Case IV 

 

Fig 37. Upper radial contact force, Case IV 
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Fig 38. Lower radial contact force, Case IV 

 

Fig 39. Rotor velocity, Case IV 
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Fig 40. Bearing velocity, Case IV 

 

4. Conclusions 

This paper presents a comprehensive analysis of the drop of an AMB levitated vertical rotor onto 

auxiliary bearings. It considers contact forces and torque that depend on contact condition, including 

dependence on rolling and sliding friction. The model simulated in this paper adds certain precision than 

previous models. Also rotor drop simulations are conducted to illustrate the implementation of the 

auxiliary bearing model. The predicted data show similar trends with the measured data from a realistic 

test rig. Specifically, 

a) The dynamic friction coefficient is a critical parameter that induces forward rotor whirl under 

contact. The peak axial contact force is, however, only weakly dependent on the friction coefficient. In 

contrast, the peak radial contact forces increase with the value of the friction coefficient.  

b) The initial rotor velocity, which may be of unknown value in operational conditions, is liable to 

increase the onset of rotor whirl if high. Lower initial rotor velocity alleviates the onset of full whirl. 

c) Axial aerodynamic force tends to increase the peak axial contact force, though the time taken for 

the rotor to enter rolling contact with the auxiliary bearing is reduced.  

In conclusion, the results in this paper will contribute to the further improvement of auxiliary 

bearing design and engineering application. 
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Nomenclature 

a  = location of upper auxiliary bearing 2bR  = outer radius of inner race 

b  = location of lower auxiliary bearing rR  = radius of rotor 

C  = contact damping T  = kinetic energy / torque 

e  = contact parameter / rotor imbalance eccentricity V  = gravitational potential energy 

F  = contact force x  = displacement in x  direction 

tF  = radial friction force y  = displacement in y  direction 

bI  = moment of inertia of auxiliary bearing z  = displacement in z  direction 

pI  = polar moment of inertia of rotor z′  = rotating axis 

K  = contact stiffness α  = angular between 
b rO O  and x -axis 

m  = mass γ  = rotating angular of rotor 

bO  = geometric center of auxiliary bearing δ  = impact depth 

cO  = mass center of rotor θɺ  = precession angular velocity of rotor in y-axis 

rO  = geometric center of rotor 
b

θɺ  = velocity of auxiliary bearing 

aP  = axial contact pressure µ  = friction coefficient 

iq  = generalized coordinator ρ  = relative distance between 
bO  and 

rO  

iQ  = generalized force ϕɺ  = precession angular velocity of rotor in x-axis 

1bR  = inner radius of inner race  

Subscripts 

a  = axial r  = radial 

b  = bearing x  = x  axis 

f  = friction y  = y  axis 

i  = i  axis 1 = upper auxiliary bearing 

j  = j  axis 2 = lower auxiliary bearing 
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