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An assessment of chamber 14C methodologies for sampling aquatic CO2 

evasion  

 

Michael F. Billett, Mark H. Garnett and Fraser I. Leith 

 

ABSTRACT 

The development of new methods to directly measure the radiocarbon age of 

dissolved and evaded aquatic carbon dioxide has enhanced our ability to understand 

carbon transport and cycling in the soil-water-atmosphere system. One of the methods 

involves collecting enough carbon dioxide for radiocarbon dating by allowing carbon 

dioxide to outgas from the water surface into an enclosed floating chamber, with the 

gas subsequently trapped onto a zeolite molecular sieve cartridge. There are, 

however, several different methodological approaches that can be used for the 

collection of floating chamber samples and it is currently unknown whether these 

different approaches influence the isotopic (stable carbon and radiocarbon) 

composition of the measured sample. Here, we evaluate four different floating 

chamber approaches and compare the stable and radiocarbon composition of the 

evaded carbon dioxide. Chamber conditions varied considerably with the different 

methodologies, with for example, maximum chamber CO2 concentration ranging from 

ca. 400–6300 ppm during sampling. Despite the varying chamber conditions, our 

results indicate no significant differences in the 14C age of evasion (range: 1276–1364 

years BP) with any of the methodological approaches (in chambers where 

atmospheric carbon dioxide had been excluded). This confirms the methodologies are 

both robust and widely applicable. 

 

INTRODUCTION 

Although the measurement of the stable carbon (δ13C) and radiocarbon (14C) 

composition of aquatic dissolved inorganic carbon (DIC), dissolved organic carbon 

(DOC) and particulate organic carbon (POC) is well established (e.g. McNichol et al., 

1994), methods to measure gaseous carbon (C) species (carbon dioxide (CO2) and 

methane (CH4)) are more challenging. For the collection of CO2 for 14C analysis, 

portable molecular sieve cartridges have been developed in the UK (e.g. Bol and 

Harkness, 1995; Hardie et al., 2005) and elsewhere (e.g. Gaudinski et al., 2000; 

Palonen, 2015; Wotte et al., 2017). These cartridges have been used extensively to 
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improve understanding of the terrestrial carbon cycle in arctic, boreal and temperate 

regions (e.g. Gaudinski et al., 2000, Billett et al., 2007, Hartley et al., 2012). Molecular 

sieve cartridges have been used to collect and date atmospheric CO2 (Garnett and 

Hartley, 2010), soil-respired CO2 (Briones et al., 2010), and CO2 lost from water 

surfaces by evasion or degassing (Billett et al., 2006; 2007). For the aquatic 

environment this development has been a significant methodological step, since 

previous approaches relied upon the indirect measurement of the isotopic composition 

of CO2 by “gas stripping” (sample acidification) of DIC (e.g. Palmer et al., 2001) and 

the determination of δ13CO2 or 14CO2 by calculation.  

 The direct collection of evaded CO2 in a chamber floating on the water surface 

has removed a significant amount of uncertainty associated with the previous indirect 

method (Billet and Garnett, 2010). However, the fact that chambers produce artefacts 

has been widely recognized in measurements of soil CO2 fluxes (Davidson et al., 

2002). Since the conditions in the floating chamber differ from the ambient 

atmosphere, it has been argued that the isotopic composition of the CO2 lost from the 

water surface will be altered (see Billett and Garnett, 2010). For example, the mass 

differences of individual carbon isotopes are known to affect rates of diffusion of CO2 

in air, with 12CO2 diffusing at a rate of 1.044 and 1.088 times faster than 13CO2 and 

14CO2, respectively (Craig, 1953; Cerling et al., 1991; Egan et al., 2014). Although 

such “mass-dependent” isotopic fractionation effects do alter the 14C concentration 

relative to the other isotopes, conventional 14C age results are corrected for this by 

normalising to a standardised δ13C of -25 ‰ (Stuiver and Polach, 1977).  

 However, it has been shown that chambers can produce isotopic fractionation 

effects that are not accounted for by routine 13C normalisation (Egan et al., 2014). 

Using a modelling approach, Egan et al. (2014) found that for soil respired CO2 the 

rates of 13C and 14C accumulation in a chamber were not always a constant multiple 

of each other. Hence, the assumption that 14C fractionates double that of 13C, may not 

be universally applicable. While this suggests that 13C-normalisation to correct 14C 

measurements may not always be reliable, the error was considered minor and far 

smaller than the routine measurement error associated with accelerator mass 

spectrometry (AMS). 

 A similar situation may occur during CO2 evasion from water surfaces. Fluxes 

of seawater-atmosphere gas exchange can be described by the equation: 
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  Fgas = -kS(pCO2
w-pCO2

a)       (1) 

 

Where Fgas (mass area-1 time-1) represents the CO2 flux, -k is the gas exchange 

coefficient (length time-1), S is the solubility (mass volume-1 pressure-1) of CO2 and 

pCO2 the partial pressure (pressure) of CO2 in water (w) and air (a) (Zhang and Quay, 

1997; Wanninkhof, 2014). Fluxes of different carbon isotopes (e.g. 13C or 14C) can also 

be expressed dependent on their individual isotope concentrations in the atmosphere 

and water (Zhang and Quay, 1997). For example, for 13C:  

 

Fgas
13 = –kαkαaq-gS[ pCO2

w
 (13C/12C)DIC/αDIC-g – pCO2

a
 (13C/12C)a

g]    (2) 

 

Where Fgas
13 (mass area-1 time-1) represents the flux of 13CO2, αk represents the air-

water kinetic fractionation factor, and αaq-g and αDIC-g represent the equilibrium 

fractionation factors between aqueous and gaseous CO2, and DIC and gaseous CO2, 

respectively (Zhang and Quay, 1997; Billett and Garnett, 2010).  

From this model, it follows that the flux of individual carbon isotopes from the 

water surface is at least partly dependent on the concentration of individual isotopes 

in both the water and the overlying atmosphere, resulting in a fractionation effect that 

is not solely based on the mass of individual isotopes. This “mass-independent” 

isotopic fractionation would not be corrected for during routine 13C normalisation of 14C 

results. In this scenario, in a floating chamber used to trap CO2 evasion, the rate of 

efflux of individual isotopes would be influenced by the isotopic composition of the 

chamber atmosphere itself, which will differ considerably from the free atmosphere as 

the evaded CO2 builds up. This implies that the chamber could produce an artefact 

and that samples collected for isotope analysis using the floating chamber approach 

may not be representative of evasion into the real atmosphere. To overcome this 

potential problem 14CO2 results have previously been mathematically corrected based 

on equation (2) to account for the fact that the chamber conditions differ from the free 

atmosphere (see Billett and Garnett, 2010 for details of this “gas flux correction”). 

Here, we investigate whether the methodological approach to sample evaded 

CO2 from surface waters using a floating chamber influences the measurement of 

carbon isotope concentration. We do this by performing multiple synchronous 

collections of evaded CO2 from a small section of a peatland stream using a standard 

floating chamber method (Billett et al., 2006). We deliberately manipulated chamber 
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atmosphere CO2 concentrations in order to provide four different “test” scenarios. We 

hypothesise that there will be no significant differences in the 14C concentration of all 

samples, because any isotopic fractionation effects will be mass-dependent (or 

insignificant) and corrected for using routine 13C normalisation procedures (Stuiver 

and Polach, 1977). 

 

 

MATERIALS AND METHODS 

Over two days (26–27th June 2013) we carried out a series of replicated experiments 

using multiple floating chambers to test the above hypothesis. The work was 

undertaken in Black Burn (Auchencorth Moss, SE Scotland, 55o47’40’’N; 

03o14’54’’W), a DOC- and CO2-rich, coloured peatland stream, that is a well-

established site for the study of aquatic C fluxes and their isotopic composition (e.g. 

Billett et al., 2006; 2007; Dinsmore et al., 2013; Leith et al., 2014). The study reach 

was a linear stream section (bank height 1.5 m, stream width 2 m, stream length 5 m, 

water depth 20–25 cm) 10 m upstream from the Black Burn discharge control 

structure.  

At the beginning and end of each sampling day a “spot” 100 ml sample of 

streamwater was collected and filtered on-site (0.45 μM GF/F syringe-driven filter, 

Whatman) for the determination of DOC and DIC using a Pollution and Process 

Monitoring LABTOC Analyser (detection range 0.1–4000 mg L-1). Concentrations of 

CO2 and CH4 were measured using the headspace technique, which involved 

equilibration of 40 ml streamwater with 20 ml of atmospheric CO2 (Kling et al., 1991; 

Hope et al., 2001). The headspace was analysed in the laboratory using a GC 

(HP5890 Series II) with detection limits of 7 ppmv (CO2) and 84 ppbv (CH4; Dinsmore 

et al., 2013). With this data the streamwater dissolved CO2 and CH4 concentrations 

were calculated using Henry’s Law (Hope et al., 1995). Supporting measurements of 

the stream temperature and pH, and of the conductivity were performed using portable 

sensors (HI 9124, Hanna Instruments, precision ± 0.4°C and 249 0.01 pH units; 

HI9033, Hanna Instruments, ± 1 %).  

To quantify any changes in underlying hydrochemical conditions a Campbell 

Scientific CR1000 logger system was used to make continuous measurements of 

stream temperature and conductivity (CS547A, Campbell Scientific) as well as 

streamwater dissolved CO2 concentrations using a Vaisala CARBOCAP® (transmitter 
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series GMT221) non-dispersive infra-red absorption (NDIR) sensor (Johnson et al., 

2010). Continuous stage height was measured separately (Level Troll 400, In-situ) and 

converted to discharge using a ratings equation (Dinsmore et al., 2013). Data from the 

continuous sensors were averaged and stored every 10 minutes. 

 We aimed to compare the isotopic composition of evasion CO2 collected on 

molecular sieve cartridges in the field, using four different methods with chamber 

conditions deliberately modified (both isotope and CO2 concentration) in order to test 

whether such differences affected the isotopic composition of CO2 lost by evasion from 

the water surface: 

 

 The “constant CO2” method maintained CO2 at ambient concentrations (ca. 

400±50 ppmv) throughout the sampling period, both during the removal of 

atmospheric CO2 and sample collection on the molecular sieve. When 

removing atmospheric CO2 we monitored the volume of chamber headspace 

that was scrubbed and proceeded with the sample collection only after at least 

five chamber volumes had been scrubbed. Compared to the other three 

methods, this approach most closely mimics the degassing of CO2 from the 

water surface to the ambient atmosphere. 

 

 The “conventional scrub” method (Billett et al., 2006) involved firstly removing 

all atmospheric CO2 (by soda lime scrubbing) from the floating chamber, then 

allowing sufficient time (ca. 1 h) for the CO2 to build up to suitable 

concentrations (ca. 1400 ppm) before collecting the CO2 with a molecular sieve. 

 

 The “conventional no scrub” method was identical to the “conventional scrub” 

method, apart from not removing all atmospheric CO2 from the floating chamber 

at the beginning of the process. Thus, the isotopic CO2 composition of this 

headspace differed considerably from the others at the start of the CO2 build 

up period. Samples collected using this method will therefore be “contaminated” 

with a small amount of atmospheric CO2, which we corrected (corr) using the 

following isotope mass balance equation: 

 

Icorr = ((Vend x Iend) – (Vstart x Istart)) / (Vend – Vstart)  (3) 
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Where I represents the isotopic concentration (pMC or δ13C), V is the CO2 

concentration (in parts per million; ppm), as measured by a portable infrared 

gas analyser (IRGA; PP Systems EGM4) when the chamber was first deployed 

and only contained air (start), and when the molecular sieve sample was 

recovered (end). We collected one sample of atmospheric CO2 on a molecular 

sieve cartridge which we used to provide the carbon isotopic (pMC and δ13C) 

composition of the contemporary atmosphere. We varied the atmospheric CO2 

concentration at the start of the sampling across the four chambers by 

scrubbing with soda lime to simulate different levels of atmospheric CO2 

contamination (ranging from 227 to 400 ppm). 

 

 

 The “equilibrium” method was like the conventional scrub method except that 

after scrubbing, the CO2 was allowed to build up over time to a constant 

chamber concentration, where it reaches equilibrium with the water 

concentration. Although evasion rate in the first 10 minutes of buildup is linear, 

over time as the CO2 concentration gradient decreases, the rate of buildup 

decreases until it reaches equilibrium. On both sampling days we allowed the 

duplicate floating chambers to equilibrate for 2.5 and 4.5 h. In addition, we left 

two chambers for an extended period to equilibrate overnight (17 h), before 

trapping the evaded CO2. 

 

Evasion CO2 was collected in multiple identical black plastic floating chambers (height 

14 cm, width 25 cm, length 30 cm) with a volume of ca. 10.5 L. The chambers were 

deployed on the surface of the stream and (if required) securely attached to the stream 

bank with rope to prevent drifting during the duration of the experiment. Each chamber 

had an inlet and an outlet tube with automatic shut-off couplings on the upper surface 

to allow (1) measurement of temporal changes in CO2 concentrations using an IRGA 

and (2) removal and trapping of CO2 onto an in-line molecular sieve cartridge or soda 

lime trap. The latter was part of a portable, closed loop 14CO2 sampling system (Hardie 

et al., 2005; Billett et al., 2006) that pumped (500 ml min-1) and trapped the evaded 

CO2 onto a zeolite molecular sieve (type 13X, BDH, UK) once it had accumulated a 
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sufficient (>3 ml) volume in the floating chamber. The portable system can be used to 

scrub atmospheric CO2 from the floating headspace using a soda lime trap prior to the 

collection of a “pure” (i.e. uncontaminated with atmospheric CO2) evasion sample (also 

at 500 ml min-1).  

After sampling, the molecular sieve cartridges were returned to the NERC 

Radiocarbon Facility, where the evaded and trapped CO2 was recovered by heating 

(500oC) and cryogenic trapping (Garnett and Murray, 2013). The removed CO2 was 

then split into aliquots. The first subsample (>0.2 ml) was analysed for 13C content 

using an Isotope Ratio Mass Spectrometer (Thermo-Fisher Delta V) and 13C 

concentrations expressed as δ13C (‰) relative to the Vienna Pee Dee Belemnite 

international standard (VPDB). A second subsample (>1 ml) was analysed for 14C after 

graphitisation associated with Fe-Zn reduction, using AMS at the Scottish Universities 

Environmental Research Centre AMS Facility, East Kilbride, UK. According to 

convention 14C results are expressed as radiocarbon ages (BP) and pMC (Stuiver and 

Polach, 1977), after being normalised to a δ13C of -25 ‰. This standardisation of the 

14C results is used to correct for mass-dependant fractionation in all conventional 

radiocarbon age results. 

 In total we carried out 16 dual isotope (δ13CO2 and 14CO2) measurements of 

evasion CO2 collected using the four different methods; “constant CO2” (n=2), 

“conventional scrub” (n=4), “conventional no scrub” (n=4) and “equilibrium” (n=6).  

We calculated δ13CO2 and 14CO2 values for the “conventional scrub” samples 

to simulate CO2 fluxing into a free atmosphere (using the results from the atmospheric 

CO2 sample: 400 ppmv; δ13C = -9 ‰; 14CO2 = 102.6 pMC) using the “gas flux 

correction” (based on equation (2) and described in detail in Billett and Garnett (2010)). 

In this case, equilibrium conditions are not assumed and sample pH, DIC and 

temperature values are used in combination with our directly measured evasion 

isotopic CO2 values to estimate the isotopic composition of DIC. This value is then 

used to predict what the evasion CO2 isotopic composition would be if fluxed into a 

free atmosphere.  

 

RESULTS 

An important pre-condition for this method comparison was that stream flow conditions 

and underlying hydrochemistry were stable before and throughout the 27 h study 

period (Table 1 and Figure 1). There was no rainfall during the study period until 11:00 
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hrs on Day 2 when a small amount of light rain occurred. Streamwater chemistry 

reflected these stable hydrological conditions, with pH varying by a maximum of 0.13 

pH units. Streamwater DOC concentrations were lower (by 1.47 mg L-1) on Day 2, 

whereas concentrations of DIC, CO2 and CH4 were slightly higher. Continuous 

measurement of conductivity and temperature before, during and after the period 

showed a consistent diurnal pattern with both variables reaching minimum and 

maximum values around 5:30 hrs and 16:00 hrs, respectively. The maximum 

amplitude of the day/night variation was 5.3oC and 13 µS cm-1. Likewise, CO2 

concentration showed a consistent diurnal pattern with highest values at 05:00 hrs and 

lowest at 10:30 hrs with a change in concentration during the study period of 

approximately 500 ppmv. 

 Table 2 shows that we successfully managed to manipulate the chamber CO2 

conditions of the four different collection methods to create a wide range of chamber 

CO2 concentrations, and by inference, different water:air CO2 concentration gradients. 

We maintained the “constant CO2” chambers at 400±50 ppmv (for 100–110 minutes) 

to mimic fluxing into a free atmosphere. The maximum CO2 concentrations achieved 

using the “conventional scrub” method ranged from 1428 to 1474 ppmv (mean 1458 

ppmv), whereas the “conventional no scrub” method were sampled at slightly higher 

chamber concentrations (range 1920 to 2370, mean 2183 ppmv). The six “equilibrium” 

chambers vary in maximum CO2 concentration at least partly because each pair of 

chambers were allowed to accumulate evasion CO2 for different lengths of time. 

Hence, the shortest collection period (ca. 2.5 h) resulted in the lowest mean chamber 

CO2 concentration (3486 ppmv), the intermediate period (ca. 4.5 h) in a greater mean 

concentration (5328 ppmv) and the longest (overnight) equilibrium period (17 h) in the 

highest mean concentration (6125 ppmv). 

Dual isotope δ13CO2 and 14CO2 measurements are presented in Table 2 and 

Figure 2. On both sampling days, the δ13CO2 values collected using the “conventional 

scrub” and “constant CO2” methods were similar (within measurement uncertainty), 

suggesting no difference between these two collection methods. The difference in 

δ13CO2 between the “conventional” and “equilibrium” samples was ~1.2 ‰ (26th June) 

and ~0.6 ‰ (27th June), suggesting there was a slight difference between these two 

methods, with the latter producing more 13C-enriched values.  

Samples collected using the “conventional no scrub” method were (as 

expected) relatively 13C-enriched, since they had an atmospheric (δ13CO2 = -9.0 ‰) 
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component. Replicate measurements of this method taken on both days were also the 

most variable (differing by 0.7 ‰) compared to the other three collection methods.  

 The 14C enrichment values (Table 2 and Figure 2) of evasion CO2 collected in 

chambers in which atmospheric CO2 had been removed by scrubbing, varied between 

84.38 and 85.32 pMC reflecting 14C ages of 1364 to 1276 years BP. The 14C age of 

all samples collected using the “constant CO2”, “conventional scrub” and “equilibrium” 

methods was therefore not significantly different (within measurement uncertainty). 

The “conventional no scrub” chambers produced higher pMC values (85.48 to 86.71 

pMC) with slightly younger 14C ages (1260 to 1146 years BP). They were also the 

most variable set of replicates compared to the other three collection methods. Isotopic 

mass balance correction to account for the atmospheric component overcorrected the 

14C values producing lower pMC values (83.00 to 84.02; with equivalent radiocarbon 

ages between 149 to 351 years older; Table 3).  

 Finally, for the “conventional scrub” method only, we compared the actual 

measured (uncorrected) evasion δ13C and 14C values with values that had been 

produced using the “gas flux correction” based on the assumption that evasion CO2 

would have fluxed out into a free atmosphere (see Billett and Garnett, 2010). Table 4 

shows that the corrected values are slightly less 14C enriched and produced older 

conventional ages (by on average 91 years). The corrected δ13C values were also 

slightly more depleted (mean -1.1 ‰), however, the uncorrected values are closer to 

the results from the other three collection methods and the differences are relatively 

small considering the measurement uncertainty.  

 

DISCUSSION 

By using several methodological approaches, we collected evasion in chambers with 

different (400 to 6300 ppmv) CO2 concentrations. If chamber conditions influenced the 

isotopic composition of the evaded CO2, we would expect to obtain different results. 

In fact, for chambers where atmospheric CO2 had been excluded from the sample, 14C 

ages for evasion ranged narrowly from 1276±35 to 1364±37 years BP, with all results 

having measurement uncertainties that overlap at less than 2 σ. This suggests that 

different collection methodologies did not result in different 14C ages. Furthermore, it 

supports our hypothesis that any isotopic fractionation effects caused by the different 

chamber sampling approaches are either too small to be significant (as reported by 
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Egan et al., 2014), or are corrected for by using the existing 13C normalisation 

approach (Stuiver and Polach, 1977). 

 Our finding that evasion samples collected under different chamber conditions 

did not result in significantly different 14C ages, suggests that the “gas flux correction” 

that we have previously employed (Billett and Garnett, 2010) is not necessary. This is 

further supported by the fact that when applied, the 14C ages treated with the “gas flux 

correction” were more dissimilar to the samples collected using the other chamber 

methods. In the present study, the correction only resulted in an age shift of between 

87 and 95 years, which is not much greater than the 2 σ analytical uncertainty of the 

14C measurements. We acknowledge that this aspect of the study is not as conclusive 

as it might have been. Previously when samples were collected at this same location, 

the conditions influencing the “gas flux correction” (e.g. pH, temperature etc) led to a 

greater age shift (up to 313 years when pH was 5.87 and stream temperature 1.4 oC; 

site A10 in Billett and Garnett, 2010), which would have allowed for a more sensitive 

test. 

The samples collected from chambers that had not had atmospheric CO2 

removed before sample collection had higher variability in δ13C which likely reflected 

the different atmospheric CO2 components since the variation reduced after isotopic 

mass balance correction (Table 3). This atmospheric correction overcorrects the 

evasion δ13CO2 values by between -1.2 to -2.7 (mean -2.0) units resulting in more 13C-

depleted values (-22.9 to -23.7 ‰) compared to the “conventional scrub” method. 

Hence, an atmospheric correction based on the atmospheric component at the start 

of CO2 build up in the chamber is unable to correctly calculate the evasion δ13CO2 

value.  

Evasion collected using the “conventional no scrub” method was also 14C-

enriched relative to samples collected without an atmospheric CO2 component. At the 

start of sampling the non-scrubbed chambers would have contained up to 4.2 ml of 

atmospheric CO2 with a significantly higher 14C concentration compared to the aquatic 

CO2. Like for δ13C, isotope mass balance correction for atmospheric CO2 (equation 

(3)) overcorrected for this contamination because it calculated 14C concentrations 

(ranging from 83.00 to 84.02 pMC) that were lower than the other chambers (ranging 

from 84.38 to 85.32 pMC). Reducing the atmospheric component in the correction of 

the “conventional no scrub” chambers (e.g. ranging from 84.73 to 85.05 pMC when 

halving the atmospheric CO2 component in “conventional no scrub” chambers) makes 
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the results more comparable with the “conventional scrub” results, suggesting that an 

unquantified amount of invasion (as well as evasion) is occurring in the chambers 

during CO2 build up and that equilibrium conditions have not been established. As a 

result of this uncertainty, the “conventional no scrub” methodology is the only one that 

we would not recommend based on our tests. 

We found that the “constant CO2” and “conventional scrub” chamber 

methodologies resulted in similar δ13C values for evasion. In contrast, the results for 

“equilibrium” chambers were 13C-enriched by ca. 1 to 2 ‰ compared to the other 

chamber results when allowed to equilibrate for 4.5 h or more. Interestingly, 

experimentally derived equations for the prediction of isotopic fractionation between 

water and air under equilibrium conditions predict a similar (~1.2 ‰) 13C enrichment 

in gaseous CO2 compared to aqueous (dissolved) CO2 (Zhang et al., 1995). Since this 

13C enrichment appears to be absent in the non-equilibrium chambers, this suggests 

that CO2 evasion has a similar isotopic composition to the aqueous pool of CO2 in the 

streamwater. This implies that little isotopic fractionation occurs when CO2 evades 

from the water into the floating chamber. The results also suggest that the δ13C values 

from the “conventional” method more accurately reflect the true evasion value. We 

also note that the range of δ13C values that we determined (-22.8 to -21.0 ‰, excluding 

the “conventional no scrub” samples) was similar to our previous floating chamber 

measurements of evasion on this stretch of the Black Burn (i.e. -21.6 to -21.0 ‰, Billett 

et al., 2006; -21.5 to -18.3 ‰, Billett et al., 2007; -21.0 to –19.5 ‰, Billett and Garnett, 

2010). 

The radiocarbon age of evasion CO2 that we measured in chambers in June 

2013 (1276 to 1364 years BP; excluding the “conventional no scrub” method) 

compared favourably with ages of 1443 and 1454 years BP for evasion CO2 collected 

at the same site in August 2004 (Billett et al., 2006). During both summer sampling 

periods (June and August) the stream was in low flow conditions characterised by 

circum-neutral pH and high DIC concentrations. Whether the change in age of evasion 

of ca. 100 years BP at this location over nine calendar years reflects a significant shift 

in the contribution of carbon sources producing the evasion is difficult to say from just 

two sets of measurements. We cannot imply from the close agreement of 14C results 

collected over the two days of this study that short-term variations in the age of evasion 

are unlikely, since we purposefully chose a period with stable conditions. Moreover, at 

a location 500 m downstream from our sampling point 14C ages of dissolved CO2 
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ranged from 311 to 1077 years BP (Billett et al., 2007); these samples were collected 

during different seasons and included periods of high discharge. Therefore, seasonal 

changes in the 14C content of evasion at this site easily exceed the difference that we 

found between the summers of 2004 and 2013.  

We have also measured the annual variability in the 14C age of dissolved CO2 

at the same site using molecular sieves deployed below the water surface for periods 

of 4 to 12 weeks (Garnett et al., 2012). Although this is a “passive” in stream method, 

which measures an average 14CO2 age over a much longer time period (weeks) 

compared to short-term (hours) measurements using floating chambers, we found that 

the 14C age varied between 707 and 1210 years BP with the oldest dissolved CO2 

occurring when discharge was lowest in late spring/early summer. These results show 

that the age of evasion and dissolved CO2 of a specific stream can clearly be highly 

variable and differ to a much greater extent than the values we observed in our test of 

different methodological approaches to chamber sampling.  

 

CONCLUSIONS 

This study represents the most thorough test of the floating chamber method since it 

was first published (Billett et al., 2006), and shows that statistically identical 14C ages 

were obtained for CO2 evasion collected using different methodological approaches. 

The results support our hypothesis that any fractionation effects during chamber 

sampling are either insignificant or are corrected for using routine 13C normalisation 

procedures. The tests that we performed suggest that the “gas flux correction” that 

has been previously applied, is not necessary. In global aquatic systems where the 

degree of CO2 oversaturation and evasion are highly variable and often unpredictable 

(e.g. Butman and Raymond, 2011), we argue that floating chambers provide a robust 

and relatively straight-forward method to source and age CO2 released to the 

atmosphere. 

 

ACKNOWLEDGEMENTS 

Radiocarbon dating was supported by NERC Radiocarbon Allocation 1733.1013. We 

thank staff at the NERC Radiocarbon Facility and SUERC AMS Facility. The detailed 

comments provided by an anonymous reviewer were a significant help in improving 

the quality of the final manuscript. 

 



 

 
This article is protected by copyright. All rights reserved. 

REFERENCES 

Billett, MF, Garnett, MH. (2010). Isotopic composition of carbon dioxide lost by evasion 

from surface water to the atmosphere: Methodological comparison of a direct and 

indirect approach. Limnology and Oceanography: Methods, 8, 45-53. 

doi:10.4319/lom.2010.8.45 

Billett, MF, Garnett, MH, Dinsmore, KJ. (2015). Should aquatic CO2 evasion be 

included in contemporary carbon budgets for peatland ecosystems? Ecosystems, 

18(3), 471-480. doi:10.1007/s10021-014-9838-5 

Billett, MF, Garnett, MH, Hardie, SML. (2006). A direct method to measure 14CO2 lost 

by evasion from surface waters. Radiocarbon, 48(1), 61-68. 

doi:10.1017/S0033822200035396 

Billett, MF, Garnett, MH, Harvey, F. (2007). UK peatland streams release old carbon 

dioxide to the atmosphere and young dissolved organic carbon to rivers. 

Geophysical Research Letters, 34, L23401 doi:10.1029/2007GL031797 

Billett, MF, Harvey, FH. (2013). Measurements of CO2 and CH4 evasion from UK 

peatland headwater streams. Biogeochemistry, 114(1-3), 165-181. 

doi:10.1007/s10533-012-9798-9 

Bol, RA, Harkness, DD. (1995). The use of zeolite molecular sieves for trapping low 

concentrations of CO2 from environmental atmospheres. Radiocarbon, 37(2), 643-

647. doi:10.1017/S0033822200031155 

Briones, MJI, Garnett, MH, Ineson, P. (2010). Soil biology and warming play a key role 

in the release of 'old C' from organic soils. Soil Biology & Biochemistry, 42, 960-

967. doi:10.1016/j.soilbio.2010.02.013 

Butman, D, Raymond, PA. (2011). Significant efflux of carbon dioxide from streams 

and rivers in the United States. Nature Geoscience, 4, 839. doi:10.1038/ngeo1294 

Cerling, TE, Solomon, DK, Quade, J, Bowman, JR. (1991). On the isotopic 

composition of carbon in soil carbon-dioxide. Geochimica Et Cosmochimica Acta, 

55(11), 3403-3405. doi: 10.1016/0016-7037(91)90498-T 

Cole, JJ, Prairie, YT, Caraco, NF, McDowell, WH, Tranvik, LJ, Striegl, RG, Duarte, 

CM, Kortelainen, P, Downing, JA, Middelburg, JJ, Melack, J. (2007). Plumbing the 

global carbon cycle: Integrating inland waters into the terrestrial carbon budget. 

Ecosystems, 10, 171-184. doi:10.1007/s10021-006-9013-8 

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochimica Et 

Cosmochimica Acta, 3, 53-92. 



 

 
This article is protected by copyright. All rights reserved. 

Davidson, EA, Savage, K, Verchot, LV, Navarro, R. (2002). Minimizing artifacts and 

biases in chamber-based measurements of soil respiration. Agricultural and 

Forest Meteorology, 113(1-4), 21-37. doi:10.1016/s0168-1923(02)00100-4 

Dinsmore, KJ, Billett, MF, Dyson, K. (2013). Temperature and precipitation drive 

temporal variability in aquatic carbon and GHG concentrations and fluxes in a 

peatland catchment. Global Change Biology, 19, 2133-2148. 

doi:10.1111/gcb.12209 

Egan, J, Nickerson, N, Phillips, C, Risk, D. (2014). A numerical examination of 14CO2 

chamber methodologies for sampling at the soil surface. Radiocarbon, 56(3), 

1175-1188. doi:10.2458/56.17771 

Garnett, MH, Dinsmore, KJ, Billett, MF. (2012). Annual variability in the radiocarbon 

age and source of dissolved CO2 in a peatland stream. Science of the Total 

Environment, 427-428, 277-285. doi:10.1016/j.scitotenv.2012.03.087 

Garnett, MH, Hartley, IP. (2010). A passive sampling method for radiocarbon analysis 

of atmospheric CO2 using molecular sieve. Atmospheric Environment, 44, 877-

883. doi:10.1016/j.atmosenv.2009.12.005 

Garnett, MH, Murray, C. (2013). Processing of CO2 samples collected using zeolite 

molecular sieve for 14C analysis at the NERC Radiocarbon Facility (East Kilbride, 

UK). Radiocarbon, 55(2), 410-415. doi:10.1017/S0033822200057532 

Gaudinski, JB, Trumbore, SE, Davidson, EA, Zheng, S. (2000). Soil carbon cycling in 

a temperate forest: radiocarbon-based estimates of residence times, 

sequestration rates and partitioning of fluxes. Biogeochemistry, 51(1), 33-69. 

doi:10.1023/a:1006301010014 

Hardie, SML, Garnett, MH, Fallick, AE, Rowland, AP, Ostle, NJ. (2005). Carbon 

dioxide capture using a zeolite molecular sieve sampling system for isotopic 

studies (13C and 14C) of respiration. Radiocarbon, 47(3), 441-451. 

doi:10.1017/S0033822200035220 

Hartley, IP, Garnett, MH, Sommerkorn, M, Hopkins, DW, Fletcher, BJ, Sloan, VL, 

Phoenix, GK, Wookey, PA. (2012). A potential loss of carbon associated with 

greater plant growth in the European Arctic. Nature Climate Change, 2, 875-879. 

doi:10.1038/NCLIMATE1575 

Hope, D, Dawson, JJC, Cresser, MS, Billett, MF. (1995). A method for measuring free 

CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 

166(1), 1-14. doi: 10.1016/0022-1694(94)02628-O 



 

 
This article is protected by copyright. All rights reserved. 

Hope, D, Palmer, SM, Billett, MF, Dawson, JJC. (2001). Carbon dioxide and methane 

evasion from a temperate peatland stream. Limnology and Oceanography, 46(4), 

847-857. doi:10.4319/lo.2001.46.4.0847 

Johnson, MS, Billett, MF, Dinsmore, KJ, Wallin, M, Dyson, K. (2010). Direct in situ 

measurement of dissolved carbon dioxide in freshwater aquatic systems - method 

and applications. Ecohydrology, 3, 68-78. doi:10.1002/eco.95 

Kling, GWG, Kipphut, W, Miller, MC. (1991). Arctic streams and lakes as conduits  to 

the atmosphere: Implications for tundra carbon budgets. Science, 251, 298-301. 

doi:10.1126/science.251.4991.298 

Leith, FI, Garnett, MH, Dinsmore, KJ, Billett, MF, Heal, KV. (2014). Source and age of 

dissolved and gaseous carbon in a peatland–riparian–stream continuum: a dual 

isotope (14C and δ13C) analysis. Biogeochemistry, 119(1), 415-433. 

doi:10.1007/s10533-014-9977-y 

Mayorga, E, Aufdenkampe, AK, Masiello, CA, Krusche, AV, Hedges, JI, Quay, PD, 

Richey, JE, Brown, TA. (2005). Young organic matter as a source of carbon 

dioxide outgassing from Amazonian rivers. Nature, 436(7050), 538-541. 

doi:10.1038/nature03880 

McNichol, AP, Osborne, EA, Gagnon, AR, Fry, B, Jones, GA. (1994). TIC, TOC, DIC, 

DOC, PIC, POC — unique aspects in the preparation of oceanographic samples 

for 14C-AMS. Nuclear Instruments and Methods in Physics Research Section B: 

Beam Interactions with Materials and Atoms, 92(1), 162-165. doi: 10.1016/0168-

583X(94)95998-6 

Palmer, SM, Hope, D, Billett, MF, Dawson, JJC, Bryant, CL. (2001). Sources of organic 

and inorganic carbon in a headwater stream: Evidence from carbon isotope 

studies. Biogeochemistry, 52(3), 321-338. doi:10.1023/a:1006447706565 

Palonen, V. (2015). A portable molecular-sieve-based CO2 sampling system for 

radiocarbon measurements. Review of Scientific Instruments, 86, 125101. 

doi:10.1063/1.4936291 

Stuiver, M, Polach, HA. (1977). Reporting of 14C data. Radiocarbon, 19(3), 355-363. 

doi: 10.1017/S0033822200003672 

Wallin, MB, Grabs, T, Buffam, I, Laudon, H, Ågren, A, Öquist, MG, Bishop, K. (2013). 

Evasion of CO2 from streams – The dominant component of the carbon export 

through the aquatic conduit in a boreal landscape. Global Change Biology, 19(3), 

785-797. doi:10.1111/gcb.12083 



 

 
This article is protected by copyright. All rights reserved. 

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the 

ocean revisited. Limnology and Oceanography: Methods, 12(6), 351-362. 

doi:10.4319/lom.2014.12.351 

Wotte, A, Wordell-Dietrich, P, Wacker, L, Don, A, Rethemeyer, J. (2017). 14CO2 

processing using an improved and robust molecular sieve cartridge. Nuclear 

Instruments and Methods in Physics Research Section B: Beam Interactions with 

Materials and Atoms, 400, 65-73. doi:https://doi.org/10.1016/j.nimb.2017.04.019 

Zhang, J, Quay, P. (1997). The total organic carbon export rate based on 13C and 12C 

of DIC budgets in the equatorial Pacific region. Deep-Sea Research II, 44(9-10), 

2163-2190. doi: 10.1016/S0967-0645(97)00032-5 

Zhang, J, Quay, PD, Wilbur, D. (1995). Carbon isotope fractionation during gas-water 

exchange and dissolution of CO2. Geochimica Et Cosmochimica Acta, 59, 107-

114. doi: 10.1016/0016-7037(95)91550-D 

 
Data availability 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 

  



 

 
This article is protected by copyright. All rights reserved. 

Table 1. Streamwater chemical characteristics during the two-day sampling period. 

DOC = dissolved organic carbon, DIC = dissolved inorganic carbon. 

 

Sample date 

(time) pH 

Conductivity 

(µs cm-1) 

Temper-

ature 

(oC) 

DOC 

(mg 

L-1) 

DIC 

(mg L-1) 

CO2-C 

(mg L-1) 

CH4-C 

(µg L-1) 

26-Jun-13 

(11:00 hrs) 6.95 142.7 10.3 9.64 16.50 3.75 15.5 

26-Jun-13 

(17:00 hrs) 7.08 140.6 13.9 9.69 16.67 3.44 15.4 

27-Jun-13 

(10:30 hrs) 7.06 147.7 10.1 8.34 17.58 4.12 17.9 

27-Jun-13 

(14:30 hrs) 7.08 145.0 11.5 8.05 17.15 3.67 16.7 
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TTable 2. Isotopic composition of atmospheric CO2 and evaded CO2 collected using the four different sampling methods. n/a = not 

applicable. The “conventional no scrub” values have not been corrected for the atmospheric component. 

Public-

ation code 

(SUERC-) Sampling method Date 

Atmospheric 

CO2 

scrubbed? 

Chamber 

CO2 

(ppmv) 

Sample 

collection 

time (h) 

14C enrichment  

(pMC ± 1σ) 

Conventional 

 14C age (years 

BP±1 σ) 

δ13C VPDB  

± 0.3 (‰) 

50489 Atmospheric CO2 26-Jun-13 n/a n/a 1 102.60+/-0.47 n/a -9.0 

50490 Constant CO2 26-Jun-13 Y 400 2 84.75+/-0.37 1329+/-35 -22.3 

50499 Constant CO2 27-Jun-13 Y 400 2 84.95+/-0.37 1310+/-35 -22.8 

50491 Conventional scrub 26-Jun-13 Y 1428 1 85.15+/-0.39 1292+/-37 -22.4 

50494 Conventional scrub 26-Jun-13 Y 1466 1 84.98+/-0.39 1307+/-37 -22.1 

50500 Conventional scrub 27-Jun-13 Y 1465 1 85.32+/-0.37 1276+/-35 -22.7 

50501 Conventional scrub 27-Jun-13 Y 1474 1 85.20+/-0.39 1286+/-37 -22.5 

50497 Conventional no scrub 1 26-Jun-13 N 2114 1 86.71+/-0.38 1146+/-35 -20.7 

50498 Conventional no scrub 2 26-Jun-13 N 1920 1 85.97+/-0.37 1214+/-35 -21.4 

50508 Conventional no scrub 1 27-Jun-13 N 2326 1 86.46+/-0.40 1169+/-37 -21.3 
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50509 Conventional no scrub 2 27-Jun-13 N 2370 1 85.48+/-0.39 1260+/-37 -22.0 

50504 Equilibrium (2.5 h) 27-Jun-13 Y 3470 2.5 85.02+/-0.37 1304+/-35 -22.1 

50505 Equilibrium (2.5 h) 27-Jun-13 Y 3501 2.5 85.28+/-0.37 1279+/-35 -21.9 

50496 Equilibrium (4.5 h) 26-Jun-13 Y 5242 4.5 84.38+/-0.39 1364+/-37 -21.0 

50495 Equilibrium (4.5 h) 26-Jun-13 Y 5414 4.5 84.93+/-0.39 1312+/-37 -21.1 

50506 Equilibrium (17 h) 27-Jun-13 Y 5920 17 85.02+/-0.37 1303+/-35 -21.6 

50507 Equilibrium (17 h) 27-Jun-13 Y 6330 17 84.81+/-0.39 1324+/-37 -21.5 
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Table 3. Comparison of isotopic values of evasion CO2 collected using the “conventional no scrub” method before and after 

correction for atmospheric CO2 using equation (3). 

 

  14C enrichment  

(pMC) 

Conventional 14C age  

(years BP) 

δ13CVPDB 

(‰) 

Publication 

code  

(SUERC-) 

Atmos-

pheric CO2 

in chamber 

at start 

(ppm) 

Un-

corrected Corrected Difference 

Un-

corrected Corrected Difference 

Un-

corrected Corrected Difference 

50497 400 86.71 83.00 -3.71 1146 1497 351 -20.7 -23.4 -2.7 

50498 227 85.97 84.02 -1.95 1214 1398 184 -21.4 -22.9 -1.5 

50508 385 86.46 83.26 -3.20 1169 1472 303 -21.3 -23.7 -2.4 

50509 200 85.48 83.90 -1.58 1260 1410 149 -22.0 -23.2 1.2 

Mean   86.16 83.55 -2.61 1197 1444 247 -21.4 -23.3 -1.4 

 

  



 

 
This article is protected by copyright. All rights reserved. 

Table 4. Comparison of corrected and uncorrected isotopic values of evasion CO2 collected using the “conventional scrub” method 

before and after applying the “gas flux correction”. 

 

 14C enrichment  

(pMC) 

Conventional 14C age  

(years BP) 

δ13CVPDB 

(‰) 

Sample ID Uncorrected Corrected Difference Uncorrected Corrected Difference Uncorrected Corrected Difference 

SUERC-50491 85.15 84.21 -0.94 1292 1381 89 -22.4 -23.5 -1.1 

SUERC-50494 84.98 84.07 -0.91 1307 1394 87 -22.1 -23.2 -1.1 

SUERC-50500 85.32 84.33 -0.99 1276 1369 93 -22.7 -23.9 -1.2 

SUERC-50501 85.20 84.20 -1.00 1286 1381 95 -22.5 -23.7 -1.2 

Mean values 85.16 84.20 -0.96 1290 1381 91 -22.4 -23.6 -1.1 

 



 

 
This article is protected by copyright. All rights reserved. 

 

 

 

Figure 1. Continuous (10 minute interval) changes in stream temperature and 

conductivity (a) and aquatic CO2 concentration (b) before, during and after the 

experimental period (26–27 June). The shaded area represents the 27 h study period. 
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Figure 2. δ13C and 14C enrichment values of evasion CO2 collected using four different 

methods reflecting different chamber CO2 conditions. Error bars represent 1 σ.  
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