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Abstract. Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an 

average of around $260-310 billion per year. The scientific and policy community recognise the need to reduce these risks. As 25 

a result, the last decade has seen a rapid development of global models for assessing risk from natural hazards at the global 

scale. In this paper, we review the scientific literature on natural hazard risk assessments at the global scale, and specifically 

examine whether and how they have examined future projections of hazard, exposure, and/or vulnerability. In doing so, we 

examine similarities and differences between the approaches taken across the different hazards, and identify potential ways in 

which different hazard communities can learn from each other. For example, we show that global risk studies focusing on 30 

hydrological, climatological, and meteorological hazards, have included future projections and disaster risk reduction measures 

(in the case of floods), whilst these are missing in global studies related to geological hazards. The methods used for projecting 

future exposure in the former could be applied to the geological studies. On the other hand, studies of earthquake and tsunami 

risk are now using stochastic modelling approaches to allow for a fully probabilistic assessment of risk, which could benefit 

the modelling of risk from other hazards. Finally, we discuss opportunities for learning from methods and approaches being 35 

developed and applied to assess natural hazard risks at more continental or regional scales. Through this paper, we hope to 

encourage dialogue on knowledge sharing between scientists and communities working on different hazards and at different 

spatial scales. 
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1. Introduction 

The risk caused by natural hazards is extremely high and increasing. Since 1990, reported disasters have led to over 1.6 million 40 

fatalities globally, and economic losses are estimated at an average of around $260-310 billion per year (UNDRR, 2015a). The 

need to reduce the risk associated with natural hazards is recognised by the international community, and is at the heart of the 

Sendai Framework for Disaster Risk Reduction (Sendai Framework; UNDRR, 2015b). The Sendai Framework adopts the 

conceptualisation of disaster risk as the product of hazard, exposure, and vulnerability. The hazard refers to the hazardous 

phenomena itself, such as a flood event, including its characteristics and probability of occurrence; exposure refers to the 45 

location of economic assets or people in a hazard-prone area; and vulnerability refers to the susceptibility of those assets or 

people to suffer damage and loss (e.g. due to unsafe housing and living conditions, or lack of early warning procedures). 

Reducing risk is also recognised as a key aspect of sustainable development in the Sustainable Development Goals (SDGs) 

and the Paris Agreement on climate change. 

Managing disaster risk requires an understanding of risk and its drivers, from household to global scales. This includes an 50 

understanding of how risk may change in the future, and how that risk may be reduced through disaster risk reduction (DRR) 

efforts. A global scale understanding of disaster risk is important for identifying regions most at risk, providing science-based 

information for DRR advocacy, and assessing the potential effectiveness of DRR solutions. Efforts to assess and map natural 

hazard risk at the global scale have been ongoing since the mid 2000s, starting with the Natural Disaster Hotspots analysis of 

Dilley et al. (2005). This was followed by the global risk assessments for an increasing number of natural hazards in the 55 

biennial Global Assessment Reports (GARs) of the United Nations Office for Disaster Risk Reduction (UNDRR) (UNDRR, 

2009, 2011, 2013, 2015a, 2017).  

At the same time, there have been increasing efforts in the scientific community to develop global methods to assess the 

potential risks of natural hazards at the global scale, in order to inform (inter)national decision-makers. In 2012, the session 

Global and continental scale risk assessment for natural hazards: methods and practice was established at the General Assembly 60 

of the European Geosciences Union, in order to bring together people and institutes working on large scale risk assessment 

from different disciplinary communities. The session has been held each year since 2012, leading to the current special issue 

in Natural Hazards and Earth System Sciences. One of the enduring themes of these sessions has been assessing future natural 

hazard risk. In Figure 1, we show the percentage of abstracts accepted to this session each year that explicitly mentions 

examining future projections of risk based on future scenarios of hazard, exposure, or vulnerability projections. The number 65 

of abstracts dealing with future scenarios of hazard and exposure is much higher than those dealing with future scenarios of 

vulnerability. Over the eight year period that the session has run, scenarios of future hazards have been the most common 

aspect amongst those abstracts dealing with future risk projections. 

 

Figure 1 70 
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In this paper, we review the scientific literature on natural hazard risk assessments at the global scale, and specifically examine 

whether and how they have examined future projections of hazard, exposure, and/or vulnerability. In doing so, we examine 

similarities and differences between the approaches taken across the different hazards, thereby identifying potential ways in 

which different hazard communities can learn from each other whilst acknowledging the challenges faced by the respective 

hazard communities. First, we review the scientific literature for each natural hazard risk individually. Second, we compare 75 

and contrast the state of the art across the different hazard types. Third, we conclude by discussing future research challenges 

faced by the global risk modelling community, and several opportunities for addressing those challenges. 

2. Review of literature per hazard type 

In this section, we review scientific literature on global scale natural hazard risk assessments. We limit the review to those 

studies that have used a spatial representation of the risk elements. Therefore, we do not include studies that use global (or 80 

continental) damage functions to directly translate from a global stressor (e.g. global temperature change) to a loss, or studies 

that solely use normalisation methods to assess trends in past reported losses. The results are presented for major natural 

hazards, including those that have been modelled for the UNDRR Global Assessment Reports.  

In carrying out the review, we focus on the aspects described in the bullets below. For each of the reviewed studies, the 

information across these aspects is summarised in Table 1. 85 

• Risk elements: we indicate whether hazard, exposure, and vulnerability are explicitly represented in the study. If so, 

we indicate whether these are represented in a static or dynamic nature over time. By static, we mean that no future 

projections are included (i.e only current representation is used), and by dynamic we mean that future projections are 

included. In the table, no representation is shown in white, static in orange, and dynamic in green. 

• Resolution of risk elements: we indicate the spatial resolution at which each risk element is represented. 90 

• Risk indicators: we show the indicators used to express the risk. 

• Future DRR measures: we indicate whether the study explicitly represents future DRR measures in its modelling 

framework, and if so we indicate whether these are related to structural, nature-based, or non-structural measures. We 

also indicate whether the costs of these measures are assessed, and whether the impact of human behaviour on their 

effectiveness is assessed. 95 

• Risk analysis: we indicate the type of risk assessment that was carried out. We have classed these as either non-

probabilistic (NP) or probabilistic (P). By probabilistic, we mean that expected annual impacts are assessed either by 

integrating across return periods or based on a probabilistic stochastic event set. We also indicate whether the risk 

assessment represents hazard using stochastic event sets (S), return period maps (R), maps of yearly (Y) or monthly 

(M) hazard, past events (PE), or the radius around a specific volcano (V). We also indicate the time horizon reported 100 

in the study, and the resolution at which the risk analysis is carried out, and the geographical scale to which the results 

are aggregated. 
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In the following subsections, each hazard is reported individually.  

 

Table 1 105 

2.1. Floods 

2.1.1. River floods 

A relatively large number of studies have been carried out to assess global risk from river floods. A description of each study 

and main findings can be found in the Supplementary Information. These studies are summarised in this section, and details 

of the reviewed aspects for each study are shown in Table 1.  110 

Dilley et al. (2005) was the first study to overlay regions that had been affected by large floods between 1985-2003 with 

population data. Güneralp et al. (2015) used the same data to map potential changes in urban areas in flood-prone regions. 

However, the flood maps used only provide a general impression of regions affected by floods, but not necessarily actual 

inundated areas, and are therefore not included in Table 1. The earliest assessments of future river flood risk examine changes 

in the number of people experiencing discharge flows of different magnitudes, at coarse resolutions ranging from 0.5° x 0.5° 115 

to ‘large river basins’ (Kleinen and Petschel-Held, 2007; Hirabayashi and Kanae, 2009; Arnell and Lloyd-Hughes, 2014; Arnell 

and Gosling, 2016). Whilst the numbers differ greatly between studies, they all reveal large increase throughout the 20th 

century. 

Since then, river flood risk modelling has progressed to examine flood hazard based on modelled inundation maps at 

resolutions varying from 30” x 30” to 2.5’ x 2.5’. Several early studies only examined current risk (Ward et al., 2013; UNDRR, 120 

2015a) or examined either dynamic hazard (Hirabayashi et al., 2013; Alfieri et al., 2017; Willner et al., 2018) or dynamic 

exposure (Jongman et al., 2012). Several of the most recent studies have used dynamic projections of both hazard and exposure 

(Winsemius et al., 2016; Ward et al., 2017; Dottori et al., 2018), whilst Jongman et al. (2015) also added dynamic vulnerability. 

In terms of hazard modelling, there has been a clear movement from the coarse resolution maps of extreme discharge to 

approaches using inundation maps of different return periods, whereby probabilistic risk is also assessed. There has been an 125 

overall shift from coarse exposure maps (0.5° x 0.5° to ‘large river basins’) of population only, to higher resolution maps with 

population, GDP, and land use. This has accompanied a transition from addressing affected people only, to moving towards a 

broader range of risk indicators, including direct damage and, in the case of Dottori et al. (2018), also indirect damage. In most 

studies where vulnerability has been considered, this has been done by using (one or a limited number of) intensity-damage 

functions (IDFs), namely depth-damage functions, whilst Jongman et al. (2015) and Dottori et al. (2018) have also used 130 

vulnerability ratios. The only study to develop dynamic vulnerability scenarios is that of Jongman et al. (2015).  

There has also been a clear shift from studies using non-probabilistic approaches focusing on impacts in a given year or time-

period, or on one or several discrete return period, to approaches using a probabilistic approach. The latter studies have 

integrated impacts across a range of return periods to estimate risk in terms of expected annual impacts. To date, none of the 

global scale studies use probabilistic stochastic event sets. 135 
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Planned future DRR measures have only been considered in the studies of Winsemius et al. (2016), Ward et al. (2017), and 

Willner et al. (2018), and only through structural measures. Of these studies, only Ward et al. (2017) assesses the associated 

costs and benefits. No studies to date have assessed behavioural aspects of future DRR measures. All studies project huge 

increases in future absolute risk, assuming no future DRR measures, on the order of hundreds to thousands of percent 

depending on indicator, scenario, time-periods, and study. However, the increases are significantly lower when expressed 140 

relative to population and/or GDP. Moreover, the more recent papers that include either change in vulnerability or future DRR 

measures show that much of the projected future risk could be reduced if effective DRR measures are taken, often with the 

benefits of these exceeding the costs. 

2.1.2. Coastal floods 

As with river floods, a relatively large number of studies have been carried out to assess global risk from coastal floods. Details 145 

of each study can, therefore, be found in the Supplementary Information, and they are summarised in this section and in Table 

1.  

Pioneering work on global coastal flood risk was performed in the Global Vulnerability Assessment for the Intergovernmental 

Panel on Climate Change (IPCC) (Hoozemans et al., 1993). This study used empirical approaches to derive extreme sea levels 

for four different return periods using co-variables such as wind and pressure climatologies and bathymetry. These were 150 

combined with socioeconomic data and scenarios, as well as cost estimates for increasing protection standards to estimate 

present day and future risk, as well as the costs of future DRR measures. 

This method was extended in the European DINAS-COAST project, in which the Dynamic Interactive Vulnerability 

Assessment model (DIVA) was developed. This model assesses coastal flood risks at a finer spatial resolution than Hoozemans 

(1993) using coastal segments, whereby each segment represents a different coastal archetype (Vafeidis et al. 2008). In total, 155 

12,148 coastal segments are defined, with the length of each section ranging from less than 1 to 5,213 kilometres, depending 

on physical and socioeconomic conditions. For these segments, extreme sea levels were computed following Hoozemans et 

al. (1993), and combined with biophysical and socioeconomic data along these coastal segments to enable assessment of risk 

in terms of affected coastal area and population, population forced to migrate, as well as damage based on a single depth-

damage function. From the start, the DIVA model has explicitly represented the costs and benefits of future DRR measures, 160 

since it was developed to assist climate adaptation studies. DIVA has been used in several studies at global scale, including 

Hinkel and Klein (2009), Hinkel et al. (2010), and Hinkel et al. (2014) to assess risks under scenarios of sea level rise, 

subsidence, and population growth, with several assumptions on future DRR measures. It has also been used by Hallegatte et 

al. (2013) to assess coastal flood risk and the costs and benefits of structural DRR measures in major coastal cities by 2050. 

Jongman et al. (2012) used extreme sea level estimates from the DIVA studies to produce a gridded inundation map for a 100 165 

year flood. Using this, they assessed the increase in risk during the 21st century as a result of change in exposure only. More 

recently, Schuerch et al. (2018) modified DIVA to perform a more comprehensive assessment of coastal wetland responses to 

climate change globally. Combined, the aforementioned studies show that in general risk will increase by a large amount 
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throughout the 21st century if no future DRR measures take place. The costs of implementing future DRR measures are large, 

but are far smaller than the benefits gained by their risk reducing effect.  170 

The previous studies all use the extreme sea levels from the original DIVA model. Fang et al. (2014) present the first gridded 

analysis of current flood risk in terms of affected people and affected GDP. Not until 2013 were the extreme sea levels in 

coastal flood risk studies improved through hydrodynamic modelling. Muis et al. (2016) made the dynamic Global Tide and 

Surge Reanalysis (GTSR) - the first of its kind - using the physically-based global coverage Global Tide and Storm surge 

Model (GTSM). GTSR was validated against sea level observations world-wide and compared against the previously used 175 

extreme sea levels within DIVA. GTSR represents extreme sea levels much better than the previously used extreme sea levels. 

Muis et al. (2016, 2017) used these new extreme sea levels to estimate the population exposed to a 100 year return period 

flood, and found the global numbers to be about 28% lower than those using the previously used extreme sea levels. Recent 

work by Hunter et al. (2017) used the approach of Hallegatte et al. (2013) to assess flood risk in global cities, but using extreme 

sea levels derived from tide gauges. They find that the original extreme sea levels are overestimated compared to observations, 180 

and that average annual damages are about 30% lower using observations. 

Several recent studies have examined new avenues for examining coastal risk. Beck et al. (2018) estimate the global flood 

protection savings that can be provided by coral reefs. Vafeidis et al. (2019) investigate the uncertainty introduced to global 

coastal risk modelling by the flood attenuation land inwards. They show that the uncertainties in attenuation are similar in size 

to the uncertainties in sea level rise, suggesting this is an important future research direction. 185 

From the outset, coastal flood risk assessments have been forward-looking, since the original studies were developed to assist 

climate adaptation studies. The use of future hazard and exposure scenarios is therefore widespread, as is the assessment of 

the costs and benefits of DRR measures, both structural and nature-based. Vulnerability has been included in many of the 

DIVA studies, dynamic vulnerability scenarios have not been developed. Several recent studies have focused more on current 

risk, using the newer datasets on extreme sea levels. Recently, a number of studies have assessed risks at a 30” x 30” gridded 190 

resolution, moving towards a higher spatial resolution compared to the studies carried out using the DIVA model.  Coastal 

flood risk studies have either assessed impacts for a single return period, or have assessed probabilistic risk by aggregating 

across several return periods. As with river floods, to date none of the global scale studies use probabilistic stochastic event 

sets. 

2.1.3. Pluvial floods 195 

To the best of our knowledge, the scientific literature does not contain any examples of global scale pluvial flood risk 

assessments, i.e. flooding caused by intense rainfall that exceeds the capacity of the drainage system. Pluvial flooding is most 

commonly assessed using flood models for a small area (e.g. city or even part of a city) that generate data on depth and velocity 

of surface water associated with rainfall events of different intensities. Guerreiro et al. (2017) did develop a modelling approach 

to assess pluvial flood hazard for 571 cities at the continental scale in Europe. The paper outlines some of the key challenges 200 

in such a continental approach, which would be amplified for a potential global scale application. These include: difficulties 
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in obtaining the required hourly rainfall records; low resolution of continental to global Digital Elevation Models (DEMs) 

compared to those typically used for pluvial flood models; and the lack of data to represent local sewer systems, building 

shapes, and infiltration in local green spaces. Opportunities to collect such data lie in high resolution remote sensing and data 

science (Schumann and Bates, 2018), but also in local crowd sourced methods such as community mapping (Winsemius et al., 205 

2019), which is a promising avenue particularly in strongly growing urban centres in developing countries. Guerreiro et al. 

(2017) demonstrate that current modelling capabilities and requisite computing power make large scale pluvial flood hazard 

assessment a possibility, if these data challenges can be overcome.  

2.2. Tropical cyclones 

Several studies on tropical cyclone (TC) risk have been carried out at the global scale, using various methods (Table 1). Peduzzi 210 

et al. (2009) assess current TC risk hotspots, expressed in terms of expected number of fatalities per year per country. Hazard 

is represented by computing buffers along individual TC tracks between 1980-2000, where wind speed exceeds a threshold of 

42.5 m/s. The tracks are taken from the the PreView Global Cyclones Asymmetric Windspeed Profile dataset. The average 

cyclone frequency per cell is determined by taking the spatial extents of individual cyclones (5km x 5km), and averaging the 

frequency over the entire period. Exposure is represented by population and GDP per capita (5km x 5km); taken from GRID 215 

and the World Bank, respectively. Vulnerability is represented using a selection of 32 socioeconomic and environmental 

variables. Since the results are only for current conditions, future DRR measures are not accounted for. 

Cardona et al. (2014) also assess current risk from TCs in the current time-period. They express risk in terms of economic 

damage (average annual loss and probable maximum loss for fixed return period of 250 years) by combining data on hazard, 

exposure, and vulnerability within the CAPRA Platform Risk Calculator (www.ecapra.org). Hazard is represented by maps of 220 

wind speed for different return periods at a horizontal resolution of 1km x 1km. These are derived from a stochastic set of 

wind fields, calculated using a model forced by historical observations of TCs from the IBTrACS v02r01 dataset (Knapp et 

al., 2010). Exposure is represented using the common dataset of the GAR 2015, in which it is represented as a group of 

buildings in each point or cell of analysis with a resolution of 5km x 5km. Vulnerability is represented by IDFs relating 

maximum wind velocity sustained for five seconds gusts at ten metres above ground level (Yamin et al., 2014). Since the 225 

results are only for current conditions, future DRR measures are not included. In the paper, rankings of national level risk are 

shown.  

Fang et al (2015) assess the global population and GDP at risk from TC winds in the current period. To represent hazard, they 

develop a 6-hourly TC track database up to 2012 using CMA-track (Ying et al 2014), HURDAT, (Landsea and Franklin 2013) 

and IBTrACS (Knapp et al., 2010). To convert the gust wind to sustained wind speed, a gust factor model is applied. Next, a 230 

Gumbel distribution is fitted to all grid cells (30” x 30”) with more than 20 TC events to calculate wind speeds at several return 

periods. Exposure is represented using gridded population data at a resolution of 30” x 30” from LandScan 2010 from ORNL, 

and is represented using gridded GDP data at a resolution of 0.5 °x 0.5° from the Greenhouse Gas Initiative (GGI) dataset of 

IIASA for 2010. Vulnerability is not accounted for, and since the study only examines current risk, no future DRR measures 
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are included. They find that China has the highest expected annual affected population and GDP, and the top 10% of countries 235 

are largely in Asia.   

Peduzzi et al. (2012) assess risk from TCs over the period 1970-2009, with projections of future risk to 2030 based on 

projections of increased exposure only. Hazard is represented by maps showing TC frequency and maximum intensity for 

events between 1970 and 2009 at a horizontal resolution of 2km x 2km. The dataset is derived from a TC model of wind speed 

profiles using a parametric Holland model (Holland, 1980), which is forced using historical observations of TCs from the 240 

IBTrACS v02r01 dataset (Knapp et al., 2010). Exposure is represented by gridded maps of population and GDP at a horizontal 

resolution of 30” x 30”. Current population data are taken from LandScan 2008 (LandScan, 2008) and current GDP data are 

taken from data from the World Bank. They are both extrapolated to each decade from 1970 to 2030, based on UNEP country 

data. Vulnerability is represented using different country level parameters relating to the economy, demography, environment, 

development, early warning, governance, health, education, and remoteness. These are used to calculate exposed GDP, affected 245 

population, and mortality risk per country for each year between 1970-2030. Future DRR measures are not included. The 

average population exposed to TCs per year is projected to increase by 11.7% by 2030, with about 90% of this increase in 

Asia. In relative terms, the largest increase in risk is in Africa.  

Mendelsohn et al. (2012) assess TC risk using future scenarios of hazard, exposure, and vulnerability.  Risk is expressed in 

terms of direct damage, and the damage pertains to storm surge, wind, and freshwater flooding, without distinguishing between 250 

the three sources. Hazard is represented by TC landfall locations and intensity from a synthetic dataset of TC tracks, simulated 

using the model of Emanuel et al. (2008). The TC model is seeded with climate data from four GCMs: CNRM-CM3, ECHAM-

5, GFDL-CM2.0, and MIROC-3.2, for both the current period (1981-2000) and future period (2081-2100) under the SRES 

A1b emissions scenario; sea level rise is not accounted for. The damage per storm is calculated using a statistical damage 

function per county in the USA or per country for the rest of the world. The damage function uses population density to 255 

represent exposure, and income as an indicator of vulnerability. Current exposure and income data are used per county for the 

USA and per country for other regions. Future projections of population per country are taken from the World Bank (2010), 

and future projections of GDP per country are based on long-term growth rates for three income groups. Probabilistic risk is 

expressed as direct damage per year, based on the damages from the stochastic storm tracks. Future DRR measures are not 

included. The main findings are an increase in global damage of ~115% by 2100 due to changes in population and income, 260 

with approximately a further doubling due to climate change. 

In summary, several studies have examined the risk from TCs at the global scale. Most have only considered current conditions, 

except Peduzzi et al. (2009) (change in exposure) and Mendelsohn et al. (2012) (changes in hazard, exposure, vulnerability). 

A defining aspect of a TC hazard is that it is composed of wind, precipitation, and storm surge. However, the current studies 

to date do not explicitly model all of these aspects. At present there are no methods available to parametrically model 2D 265 

precipitation fields from TCs in the same way that wind fields are parametrically modelled using the Holland Model (Holland 

1980). A large range of different approaches have been used for defining and modelling both the hazard and risk. Mendelsohn 
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et al. (2012) and Cardona et al. (2014) express risk in probabilistic terms. Mendelsohn et al (2012) is the only study to use a 

synthetic TC dataset, whilst the other studies use historical TC events to construct the hazard.  

2.3. Hazards associated with severe convective storms 270 

Perils associated with severe convective storms (SCS), such as large hail, heavy rainfall, strong wind gusts, or tornadoes, are 

among the most important perils in several regions of the world (Christian et al., 2003; Virts et al., 2013; Cecil et al., 2014). 

Of all SCS-related hazards, hail causes the largest economic damage (Kunz and Geissbuehler, 2017). However, the modelling 

of SCS risk is still in its infancy (Allen et al, 2016; Martius et al., 2018). As a result, there are currently no global risk models 

available for these SCS events or their sub-perils (hail, wind gusts, tornadoes, heavy rain, lightning), nor are efforts being made 275 

in this direction. 

However, as insurance companies have to either provide the solvency capital for rare events (e.g. 200-year return period event 

according to the EU Solvency II directive in Europe) or have to reinsure their risk, there is a growing and large demand to 

better estimate the risk related to the different SCS sub-perils in a scientific manner (Allen et al., 2019). The few existing 

models owned by the insurance market quantify the risk mainly on a regional (e.g., Schmidberger, 2018a),  national, or 280 

continental level (e.g., Punge et al., 2014). These models are not freely available and the literature is scarce. Initial loss 

estimates in the insurance industry were based on mathematical analyses of the company's own damage data and portfolio. As 

more and more data on SCS events and their sub-perils have become available during the last decade, an increasing number 

of damage and risk models for SCS have been developed either by insurance companies or by companies developing 

catastrophe models (CAT models). The CAT models consider basic hazard characteristics (e.g. length, width, angle of the 285 

footprints of sub-perils) and intensity metrics (e.g. hailstone size, hail kinetic energy, precipitation amount, max. wind speed) 

of an underlying event set and quantify the damage for a certain portfolio (exposure data) via fragility curves, a kind of IDF. 

Due to the restricted record length of SCS hazard event sets, stochastic simulations based on, for example, statistical 

distributions of the relevant input parameters in combination with Markov or Poisson processes are performed (e.g. Punge et 

al., 2014; Holmes, 2015; Ritz, 2017; Schmidberger, 2018a,b). In some cases, the CAT models also consider atmospheric 290 

conditions relevant for SCS development. None of the insurance models consider projected changes in the frequency and 

severity of SCS due to climate change. 

2.4. Droughts 

A relatively large number of studies have been carried out to assess global risk from droughts. Therefore, these are summarised 

in this section and in Table 1, and further elaborated upon in Supplementary Information. Here, we focus specifically on 295 

drought risk, rather than water scarcity. Drought itself is a difficult concept to define, and as a result more than 150 indices 

have been developed for its identification over the past decades. Commonly, drought as a hazard us defined as a relative 

concept, mostly as a deficit to normal e.g. when such drought indices fall below/exceed a given threshold. Nevertheless, since 

drought is a complex hazard which propagates from a rainfall deficit (meteorological drought), to soil moisture drought to 
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hydrological drought, variety of corresponding impacts may results with regard to the different types of drought, as well as 300 

underlying socio- economic and ecological conditions. Hence, since a universal of drought seems impracticable, a paradigm 

shift towards a definition of drought by its impacts has been recommended (Lloyd-Hughes 2014). 

The multifaceted aspects of drought are reflected in the large range of risk indicators used in the studies described below, as 

well as the very diverse range of approaches and datasets used to represent hazard, exposure, and vulnerability. The studies 

described below neither explicitly include future DRR measures, nor assess risk in a probabilistic sense.  305 

Dilley et al. (2005) is one of the first to conduct a global scale assessment of drought risk, overlaying layers of hazard (Weighted 

Anomaly of Standardized Precipitation; WASP) and exposure (population, GDP, road density) information at a relatively 

coarse resolution of 2.5° x 2.5° for the current time period. They assess risk in terms of affected GDP, population, roads, and 

infrastructure. Christenson et al. (2014) build on the drought risk assessment of Dilley et al. (2005), by making a further 

distinction between the type of population exposed (i.e. urban or rural). Neither of the aforementioned studies assess 310 

vulnerability. The studies of Yin et al. (2014) and Carrão et al. (2016) do include vulnerability (as well as hazard and exposure), 

and also calculate risk at a higher spatial resolution of 0.5° x 0.5°. Yin et al. (2014) express risk in terms of maize yield, and 

represent vulnerability by fitted logistic regressions between historical maize crop loss estimates and simulations of drought 

stress. Drought hazard is represented as the normalised cumulative water stress index during the growing season, and exposure 

is represented by a map of fields and maize yield. Carrão et al. (2016) assess risk using a drought index integrating several 315 

factors. Vulnerability is represented in the form of proxies of economic, social, and infrastructural vulnerability, at resolutions 

from 5’ x 5’ to country scale. Hazard is represented by WASP, whereby a drought is identified when the monthly precipitation 

deficit is less than or equal to 50% of its long-term median value for three or more consecutive months. Exposure is represented 

by gridded maps of agricultural land, population, and livestock. On the basis of their results, Carrão et al. (2016) state that a 

reduction in drought risk could be rapidly achieved by improved irrigation and water harvesting in regions where infrastructural 320 

vulnerability is high. 

Several studies assess future drought risk, as a result of either hazard, or hazard and exposure. The forward-looking studies 

below all use a horizontal resolution of 0.5° x 0.5°, except for that of Smirnov et al. (2016), where a resolution of 2° x 2° is 

used. The majority of these studies do not include vulnerability (Arnell et al., 2013; Smirnov et al., 2016; Arnell et al., 2018; 

Liu et al., 2018), whilst Li et al. (2009) and Guo et al. (2016) do include vulnerability, but only under current conditions.  325 

Li et al. (2009), Arnell et al. (2013), and Guo et al. (2016) perform future simulations by projecting changes in hazard only for 

different time slices up to the end of the 21st century, as a result of climate change. As with the current drought risk studies, 

the risk, hazard, exposure, and vulnerability are represented using very diverse metrics. All assess risk in terms of agricultural 

impacts, although the metric used is different in all cases. Hazard is represented by the Palmer Drought Severity Index (PDSI), 

Standardised Precipitation Index (SPI), namely SPI-12, and normalised cumulative water stress index respectively, whereby 330 

different thresholds are used to identify hazardous drought conditions. Representation of exposure is diverse, but shows some 

similarities across the studies, being represented either by data on crop yields, cropland/field areas, or a combination of both. 
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Vulnerability is included in very different ways; the proportion of area equipped for irrigation per country in Li et al. (2009) 

and proxies of economic, social and infrastructural vulnerability in Guo et al. (2016). 

Smirnov et al. (2016), Arnell et al. (2018), and Liu et al. (2018) add a layer of complexity in their future drought risk 335 

assessments by including projections of change in exposure as well as hazard, although vulnerability is not included in these 

studies. Risk is expressed in terms of the population affected in all of the studies, as well as cropland area affected by Arnell 

et al. (2018). Again, the indicators used to represent hazard are very diverse: Standardised Precipitation Evapotranspiration 

Index (SPEI), namely SPEI-24; Standardised Runoff Index (SRI); and PDSI respectively. Since they all assess the population 

affected by drought, they all use gridded population projections for the current and future time period, with Arnell et al. (2018) 340 

additionally using crop data. 

As a result of the wide range of risk indicators and approaches used, estimates of global drought risk vary significantly from 

study to study. Nevertheless, all studies find a robust increase in future drought risk due to changes in both climate and 

socioeconomic conditions.  

2.5. Wildfire 345 

Wildfire is increasingly understood as being an inherently socio-natural phenomenon with feedbacks between society, 

vegetation, fire weather, and climate (Riley et al., 2019). However, global wildfire risk is a particularly understudied area of 

disaster risk assessment. This may be due to a focus on global burnt area products to provide input to global climate modelling 

as a significant source of emissions (Giglio et al., 2009; GCOS, 2011; Chuvieco et al., 2016) rather than a disaster risk 

emphasis. It is also due to the large degree of complexity with interactions between natural and human processes driving 350 

occurrence and intensity of wildfires as well as exposure and vulnerability to them.  

In the studies reviewed below, DRR measures are not explicitly accounted for in the modelling frameworks. This is largely 

due to uncertainty in human actions - continued ability to manage fuel and suppress fires under different climatic conditions 

and increased sprawl into wildland-urban-interface (WUI) areas; and on regime changes in weather and vegetation making 

previously non-hazardous vegetation areas susceptible to fire, especially with increased logging and fragmentation, particularly 355 

in tropical areas (Laurance and Williamson, 2001; Flannigan et al., 2009; Corlett, 2011; Jolly et al., 2015). Significant steps 

forward could be made by examining interactions between vegetation, weather, climate, and human activities that cause 

wildfires. 

Meng et al. (2015) map forest wildfire risk globally under current conditions only. Risk is expressed in terms of forest area 

burnt for different return periods at a resolution of 0.1° x 0.1°, but are not integrated to estimates of probabilistic risk. Hazard 360 

is represented as annual forest wildfire occurrence based on historical data from MODIS satellite imagery (0.1° x 0.1°). The 

short historical time series of wildfire occurrence (12 years) required the use of fuzzy mathematics to allow for the calculation 

of different return periods of forest wildfire (Huang, 1997; Huang, 2012). Exposure is represented by the area of forest 

(representing economic value), using land cover data at 0.1° x 0.1°. Vulnerability is modelled as a function derived from fire 

occurrence versus burnt area, whereby a cell with high vulnerability indicates that a small number of fires can cause a large 365 
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amount of burnt area, with the inverse being true for low vulnerability. The results show highest risk in central Africa, central 

South America, north-western Southeast Asia, mid-eastern Siberia, and the northern regions of North America. High risk can 

also be seen eastern Australia, Laos, Cambodia, Thailand, Bangladesh, eastern Russia, and the borders of Zambia, Angola and 

Democratic Republic of Congo. Risk results from Meng et al. (2015) are used in Shi et al. (2015) as part of a multi-hazard 

global risk assessment. In this study, impacts are integrated across return periods to estimate probabilistic risk. However, the 370 

results are aggregated across eleven different hazards, so the risk attributed to wildland fire cannot be identified. 

Cao et al. (2015) is a similar study to Meng et al. (2015), but presents results for grassland wildfire risk at a resolution of 1km 

x 1km. The analysis is carried out for current conditions, expressing risk as average impacts per year over 2000-2010. Hazard 

is calculated based on probability of ignition, slope and vegetation properties (calculated from MODIS data) (1km x 1km). A 

logistic regression model is developed using these properties and historical burnt area records to model the probability of 375 

grassland burning. Exposure is based on the assumption that the primary impact of grassland fires is on the stock industry, 

which is dependent on available biomass from grassland. Therefore global net primary product (NPP) (1km x 1km) is used as 

the proxy for exposed value for grassland wildfire. Vulnerability is the probability of fire spread or propagation and contributes 

to the calculation of probability of grassland burning. The key results show that the areas of highest risk are in Australia, Brazil, 

Mozambique, Madagascar, United States of America, Russia, Kazakhstan, China, Tanzania, Canada, Angola, South Africa, 380 

Venezuela, Argentina, Nigeria, Sudan and Colombia. Again, the results are used in Shi et al. (2015) as part of a multi-hazard 

global risk assessment. 

Knorr et al. (2016) present wildfire risk for 1901 to 2005 and then to 2100 using Representative Concentration Pathways 

(RCPs) and Shared Socioeconomic Pathways (SSPs) to project hazard and exposure. Risk is expressed in terms of affected 

people and burnt area per year at a resolution of 1° x 1°. Hazard is modelled by coupling a semi-empirical fire model, SIMFIRE 385 

(Knorr et al., 2014) with a global dynamic land ecosystem and biogeochemical model LPJ-GUESS (Ahlström et al., 2012). 

This produces hazard metrics of fractional burnt area per year. The coupling with LPJ-GUESS allows vegetation and weather 

factors to update, with SIMFIRE providing annual updates on fire frequency per grid cell. The hazard modelling is driven 

using RCP4.5 and 8.5 data for monthly mean precipitation, temperature and radiation from CMIP5. Exposure is represented 

by population under SSP 2, 3 and 5, although this does not include changing rates of population splits between urban and rural 390 

areas, which is an important factor for future interactions with wildfire. Vulnerability and DRR measures are not explicitly 

considered, although population density is a factor within SIMFIRE accounting for the idea that generally increasing 

population will suppress wildfires. Under the future scenarios, there is a significant increase in the number of people in fire 

prone areas between 1971-2000 and 2071-2100: between 23% and 56% for RCP 4.5, and 25% and 73% for RCP 8.5, averaged 

across SSPs.  395 

2.6. Earthquakes 

A relatively large number of studies have been carried out to assess global risk from earthquakes. Therefore, these are 

summarised in this section and in Table 1, and elaborated on in Supplementary Information. Several global assessments have 
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used index-based methods based on overlays to assess global earthquake risk, and are not explicitly discussed in this review. 

All of the studies reviewed in Table 1 explicitly include hazard, exposure, and vulnerability, although none of them carry out 400 

future projections of risk.  

One of the first global earthquake risk models to go beyond this approach is that of Chan et al. (1998), which examines direct 

damage via macroeconomic indicators to derive global seismic loss at the relatively coarse scale of 0.5° x 0.5°. The study of 

Dilley et al. (2005) also uses hazard data based on past events (based on the Richter scale), but in addition uses 50 year return 

period hazard maps from the Global Seismic Hazard Program (GSHAP). The resolution of the risk analysis is higher, at 2.5’ 405 

x 2.5’, and a wider range of impact indicators is used (affected population, affected GDP, affected road and rail infrastructure, 

and fatalities). Global studies at a higher resolution of 1km x 1km were performed by Jaiswal and Wald (2010, 2011). These 

two studies essentially use the same approach, but the former assesses risk in terms of affected people and fatalities, whilst the 

latter also assesses risk in terms of direct economic damage and affected GDP.  Hazard is represented by shakemaps of intensity 

from past events at a resolution of 1km x 1km.  410 

Daniell (2014) and Daniell and Wenzel (2014) also assess global earthquake risk at 1km x 1km, whereby risk is expressed in 

terms of direct and indirect damage, fatalities, affected people, and affected GDP, at a resolution of 1km x 1km. In this case, 

hazard is represented by the spectral acceleration and/or macroseismic intensity (MMI) at each point, which is then rasterised 

on a 1km x 1km grid for each event. None of the aforementioned studies assess risk probabilistically, instead calculating 

impacts for past events or for a given return period.  415 

Li et al. (2015) describe a global earthquake risk model using a probabilistic approach, in which the impacts are integrated 

over several exceedance probabilities. Hazard is represented by peak ground acceleration (PGA) at 0.1° x 0.1° with conversion 

to macroseismic intensity. Risk is expressed in terms of direct damage, fatalities, affected people, and affected GDP, at a 

resolution of 0.5° x 0.5° for mortality and 0.1° x 0.1° for economic-social wealth. 

From the GAR2013 onwards (UNDRR, 2013, 2015a, 2017), a probabilistic approach using stochastic hazard modelling has 420 

been used in the GARs. Risk, in terms of direct damages, is calculated stochastically at a country resolution; and expressed at 

national scale in terms of Probable Maximum Loss and Annual Average Losses. Hazard is represented by spectral accelerations 

at a resolution of 5km x 5km, using a stochastic event set of earthquakes around the world. The Global Earthquake Model 

(GEM) (Silva et al., 2018) also uses stochastic event sets to produce probabilistic risk estimates in terms of economic damage 

to buildings (1km x 1km). 425 

Exposure data used in global earthquake models has generally increased in resolution from ~0.5° to ~1km, usually using 

datasets such as gridded population and GDP. A defining feature of more recent global studies has been the use of capital stock 

data (e.g. Daniell, 2014; Daniell and Wenzel, 2014; Silva et al., 2018). Vulnerability is represented in various ways, ranging 

from empirical loss and fatality functions based on reported losses and fatalities, empirical fatality and loss ratios; and IDFs 

based on different building types. 430 
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2.7. Tsunamis 

As with other natural hazards, tsunami risk can be broken down into hazard, vulnerability and exposure. However, limited 

empirical data on vulnerability and the computational burden of tsunami wave propagation simulations means that only a 

limited number of studies have so far been developed, and most of them either have limited scope or resolution.  Early risk 

assessments at local scale from Berryman et al. (2005) and Grezio et al. (2012) use methods to estimate the inundation at low 435 

resolution. The highest spatial resolution simulations have been carried out by Wiebe and Cox (2014) for parts of Oregon, 

Jelinek et al (2012) for Cadiz in Spain, and De Risi and Goda (2017) for the Miyagi prefecture in Japan. Some models have 

assessed risk in terms of fatalities, such as Tinti et al. (2008) or Okumura et al. (2017).  

Løvholt et al. (2015) assess global risk in terms of direct damage, affected people, and fatalities at a resolution of 1km x 1km. 

Risk is calculated probabilistically using stochastic event sets and a Probable Maximum Loss curve at 100, 500 and 1500 years, 440 

as well as average annual losses. Risk is only assessed for current conditions, and therefore no DRR measures are included. 

Hazard is represented in terms of inundation depth at a resolution of 90m x 90m. This is simulated using a 25km propagation 

model, followed by a 2D-model at a resolution of 1’ x 1’, and then further downscaled using a 90m DEM.  Exposure is 

represented by capital stock and population at 1km x 1km, taken from the coastal database of De Bono and Chatenoux (2015) 

used as part of GAR2015. Vulnerability is represented by IDFs for different buildings types derived from expert workshops 445 

(Maqsood et al., 2014) for the Asia Pacific. The Suppasri et al. (2013) functions are used for the rest of the world. They find 

that Japan and the Philippines, among other island nations, have the highest relative risk. 

Schäfer (2018) introduce a generic tsunami risk assessment framework that could be applied for global risk modelling, and 

apply it to various regions around the world. Risk is expressed in terms of direct damage, affected GDP, affected population, 

and fatalities, for current conditions, not accounting for DRR measures. It is calculated at 90m x 90m resolution for various 450 

return periods, with expected annual impacts being assessed by integrating across different exceedance probabilities. Hazard 

is represented by maps of inundation depths (90m x 90m), based on numerical simulations using shallow water wave equations 

and machine learning. Exposure is derived using a population-based capital stock model (90m x 90m) built from the Global 

Human Settlement Layer (Pesaresi et al., 2016). Vulnerability is represented by depth-damage IDFs that are resolved for three 

building classes (light, moderate and massive buildings) and a fatality function considering both water depth and arrival time. 455 

The study is tested in various regions, including Japan, Chile and the Caribbean and derives average annual losses and probable 

maximum loss curves. 

2.8. Volcanoes 

Volcanoes can produce a variety of hazards, including pyroclastic density currents (pyroclastic flows, surges and blasts), 

tsunamis, lahars, tephra (including volcanic ash and ballistics), debris avalanches (sector collapse), gases and aerosols, lava 460 

flows and domes and lightning. Not all volcanic hazards are produced by every volcano or eruption, and some can occur 

without an eruption, for instance volcanic gas. Whilst many hazards might be triggered by the volcano directly, the occurrence 
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or distribution of others can be influenced by hydrometeorological factors, for instance, rainfall triggered lahars and landslides 

or the influence of wind on the distribution of volcanic ash. Comprehensive assessments of volcanic hazard or risk at the global 

scale do not exist. Even assessments at the local scale are unlikely to include the effect of DRR measures. The field of volcanic 465 

hazard and risk assessment can therefore appear less well developed compared to other natural hazards, with the effect that 

assessments combining multiple natural hazards typically underestimate the threat from volcanic activity. There are at least 

three key factors that limit our ability to assess volcanic risk at the global scale: the multi-hazard, time-varying, and complex 

nature of volcanic events; a large discrepancy in the quality and quantity of data required to inform global volcanic hazard 

assessments between regions; and limitations of data to inform global volcanic risk assessment, especially because large, 470 

damaging eruptions impacting populated areas are relatively infrequent and impacted zones can be dangerous and sometimes 

inaccessible for long periods. International collaborations have now been established to facilitate the production of systematic 

evidence, data, and analysis of volcanic hazards and risk from local to global scales (e.g. Loughlin et al., 2015; Newhall et al., 

2017; Bonadonna et al., 2018). 

Past approaches to global volcano risk, described below, have mainly aimed to identify those volcanoes or cells that pose the 475 

greatest relative danger, in order to inform subsequent in depth investigations using local data and knowledge. The first 

assessment of the hazard threat posed by volcanoes globally is Yokoyama et al. (1984). They use an index-based approach to 

identify ‘high-risk’ volcanoes. Binary indices are used to score ten hazard and five exposure components, describing the 

frequency of recent explosive activity and hazards, and the size of the population within a certain radius of the volcano, 

respectively. Two quasi-vulnerability binary scores are used: one for if the volcano had produced historical fatalities, and one 480 

for if evacuations had resulted from historical eruptions. Scores for each volcano are summed, with ‘high-risk’ volcanoes 

defined as those with a score ≥ 10. This approach results in notable volcanoes that went on to produce some of the worst 

volcanic catastrophes of the 20th century being considered not high-risk.  

Small and Naumann (2001) and Freire et al. (2019) rank volcanoes globally according to the population exposed within radii 

of 200 km and 10-100 km from a volcano, respectively. Hence, hazard and vulnerability are not included. Exposure is 485 

represented by gridded population data at a resolution of 2.5’ x 2.5’ (Small and Naumann, 2001) and 250 m (Freire et al., 

2019). For the GAR2015, an index-based approach to assessing volcanic hazard and risk is also used, combining data and the 

approaches of Auker et al. (2015) and Brown et al. (2015a,b). Hazard is represented by Auker et al. (2015) using an index 

method to represent the hazard level of each volcano according to the frequency and intensity of past eruptions, while 

accounting for record incompleteness. Exposure is represented using the method of Brown et al. (2015a), an index of 490 

population exposure weighted to historical data of fatalities (Auker et al. 2013) with distance, and vulnerability is expressed 

in terms of affected population and fatalities for past events. Combining the hazard index with fatality-weighted population 

counts gives estimates of individual volcanic threat. Not all volcanic hazards are considered in the weighting; the weights are 

sourced from volcanic flow fatality data only, as pyroclastic density currents and lahars are the source of the majority of direct 

historical fatalities (Auker et al. 2013). Brown et al. (2015b) further aggregate the volcanoes to the national scale to provide 495 
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country-level estimates of volcanic threat. Whilst this approach represents our most sophisticated attempt at considering 

volcanic hazard and risk at the global scale, it still assumes concentric radii around each volcano.  

Grid-based global assessments of volcanic risk have been carried out by Dilley et al. (2005) and Pan et al. (2015). Dilley et al. 

(2005) include volcanoes as part of their multi-hazard hotspot analysis, whereby risk is expressed in terms of affected GDP 

and population, and fatalities (2.5’ x 2.5’). Hazard is expressed in terms of the count of volcanic activity, which is gridded to 500 

2.5° x 2.5°, between 79-2000 A.D. (i.e. no consideration of the size of eruptions or their spatial extent). Exposure is represented 

by gridded population from the Gridded Population of the World 3 (GPWv3) dataset from CIESIN; GDP per capita at national 

scale from the World Bank; and transportation lengths from the VMAP datasets, all at 2.5’ x 2.5’. Vulnerability is represented 

by two quasi-vulnerability values, for mortality and economic loss rates globally as a result of volcanic activity between 1981 

and 2000 based on the EM-DAT database, aggregated to country and regional levels. A major limitation of this approach, as 505 

recognised by the authors themselves, is that the hazard records are too short to capture the larger, typically more damaging 

events and are biased towards those volcanoes for which we have good and recent records of past activity. Also, no attempt 

was made to account for far-reaching volcanic hazards like ash. Pan et al. (2015) built on this approach to assess fatalities, by 

extending the length of the fatalities database used to 1600 AD. They also add relationships between eruption Volcanic 

Explosivity Index (VEI) and frequency and hazard extent, although concentric circles are still assumed. Hazard is defined here 510 

as the frequency of each VEI eruption, using the method of Jenkins et al. (2012a). Exposure is represented using gridded 

population data (30” × 30”) of 2010 from Oak Ridge National Laboratory (ORNL) (Bright et al 2011). Vulnerability is 

represented by fatality curves fitted to the historical average fatality of each VEI provided by National Oceanic and 

Atmospheric Administration (NOAA). 

2.9. Landslides 515 

Assessing the risk associated with landslides at a global scale is challenging for several reasons. Firstly, the spatial extent of 

individual landslides is typically small, limiting the effectiveness of routinely monitoring these events at global scale. Further, 

the diversity of parameters influencing the hazard susceptibility (e.g. elevation, lithology), preconditioning (e.g. soil moisture, 

seismicity), and triggering (e.g. extreme rainfall, earthquakes) make it difficult to physically model these processes using 

uniform approaches. Moreover, while the spatial extent of landslide source regions is generally small, the downstream hazards 520 

- which are often associated with the greatest damage (Badoux et al., 2014) - can be more widely distributed, meaning risk 

assessments must consider locations both near and far from the source areas. 

Efforts have been made to catalogue landslides and their impacts, based on a range of data sources including media reports, 

government statistics and other written sources, remote sensing, and citizen science (e.g. Guzzetti et al. 1994; Kirschbaum et 

al. 2010, Petley, 2012; Tanyas et al., 2017; Froude and Petley, 2018; Juang et al. 2019). In addition, several studies have tried 525 

to model global landslide hazard (e.g. Stanley and Kirschbaum, 2017; Kirschbaum and Stanley, 2018). In the following 

paragraphs, those studies that have explicitly assessed global risk are described, and summarised in Table 1.  

Nadim et al. (2004, and updated in 2006) is among the first studies to assess risk associated with landslides at the global scale. 

Risk is expressed in terms of the number of fatalities per year at a resolution of 30” x 30”, over the period 1980-2000, associated 
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with landslides and avalanches. Hazard is estimated using a range of global datasets based on both susceptibility (factors such 530 

as slope, lithology, and soil moisture) and triggering factors (rainfall and seismicity). A similar approach is used to define the 

hazard associated with avalanches. Exposure is represented by the Global Population of the World v4 (GPWv4) dataset (30” 

x 30”) (CIESIN 2016). Vulnerability is estimated using empirical data on loss-of-life from landslides in a number of countries, 

using the EM-DAT database. Future projections and therefore future DRR measures are not included in the study. They find 

that hotspots for landslide fatalities are the Himalayas, Taiwan, the Philippines, Central America, northwestern South America, 535 

the Caucasus, Indonesia, Italy, and Japan, with smaller proportional impacts in other countries and regions. 

Dilley et al. (2005) estimate the risk associated with landslides, expressed in terms of direct damage and affected GDP and 

population at 2.5’ x 2.5’, for current conditions. Hazard is represented using the data of Nadim et al. (2004) at 30” x 30”. 

Exposure is represented by data at 2.5’ x 2.5’ constructed from GPW population data, road density data from VMAP datasets 

developed by the United States National Imagery and Mapping Agency, and gridded economic and agricultural activity from 540 

the World Bank and based on Sachs et al. (2001). Vulnerability is represented by empirical loss rates based on the EM-DAT 

database. Future projections and therefore future DRR measures are not included in the study. Their primary output is in map 

form, with the most elevated impacts found in many of the same locations as Nadim et al. (2004, 2006), although they find 

higher impacts in terms of total GDP in China. 

Yang et al. (2015) assess risk in terms of fatalities for the current period at a resolution of 0.25° x 0.25°. Hazard is represented 545 

based on the method of Nadim et al. (2006), using TRMM satellite rainfall data to estimate the number of landslide events, 

and filling in gaps in the data using information diffusion theory. Exposure is represented by population data from Landscan, 

resampled to 0.25° x 0.25°. Vulnerability is based on empirical mortality rates per country calibrated using a dataset of global 

landslides causing fatalities from Kirschbaum et al. (2010). Future projections and therefore future DRR measures are not 

included in the study. They find similar patterns to Dilley et al. (2005) and Nadim et al. (2006), but additionally find many 550 

areas that have elevated risk of mortality compared to those prior studies, including large parts of China and sub-Saharan 

Africa.  

Nowicki Jessee et al. (2018) present a global earthquake-induced landslide hazard model, which is implemented within the 

USGS Ground Failure hazard and risk model. Risk is expressed in terms of exposed population in near real-time for each 

earthquake event that triggers landsliding. Hazard is calculated by leveraging the earthquake-triggered database from Tanyas 555 

et al. (2017), based on various sources of information describing factors controlling susceptibility (such as slope and lithology) 

and earthquake parameters, such as shaking intensity, to estimate the relative density of landsliding within an area impacted 

by a major earthquake. The model landslide density estimates are not dependent on resolution. Exposure is represented by 

Landscan population maps, with a resolution of 30” x 30” (Bright et al. 2017). No vulnerability data are incorporated. Future 

projections and therefore future DRR measures are not included in the study. For each earthquake, an estimate of population 560 

exposed to landsliding and liquefaction is presented. 
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3. Comparison of approaches across hazard types 

3.1. (Dynamics of) risk elements 

As our review focuses on global scale natural hazard risk assessments, we have not included studies that only examine the 

hazard. All but two of the studies have an explicit representation of hazard intensity and/or probability, and of exposure. The 565 

only exceptions are the volcano studies of Small and Naumann (2001) and Freire et al. (2019), in which the population living 

within a set radius of volcanoes is estimated, without an explicit representation of the hazard. About two-thirds of the reviewed 

studies include a specific representation of vulnerability. Across the various hazards, there is no clear difference in the 

proportion of studies including vulnerability as we move towards the most recent publications. It is noteworthy that all of the 

earthquake and tsunami studies reviewed include a specific representation of vulnerability. For pluvial flooding and SCS, there 570 

are currently no global scale risk models, with the local scale of the hazard and impact of these events making their large scale 

modelling difficult. 

In terms of the inclusion of dynamic risk drivers, there is a clear difference between studies focusing on hydrological, 

climatological, and meteorological hazards, and those focusing on geological hazards. For geological hazards, none of the 

reviewed studies include future projections, whilst for hydrological, climatological, and meteorological hazards, around two-575 

thirds of the studies include projections of at least one of the risk drivers. The difference between the studies of hydrological, 

climatological, and meteorological hazards, compared to those of geological hazards in terms of projections, may be due to 

the climate change-related focus of many studies in the former group. This provides a policy context for carrying out forward-

looking hazard projections to examine the influence of climate change on risk. In total, there are 32 reviewed studies that 

include future projections: 19 include projections of hazard and exposure; 8 include projections of hazard only; and 3 include 580 

projections of exposure only. The remaining 2 studies include projections of vulnerability (as well as hazard and exposure); 1 

study for river flooding and 1 for TCs. Time-horizons used for the forward-looking studies tend to be towards mid and late 

21st Century. For river flooding and drought, several recent studies have examined future warming levels, rather than future 

time-slices. It is interesting to note that projections of the other risk drivers have not yet been examined for the geological 

hazards, despite their importance for other policy contexts, such as the Sendai Framework and SDGs, although definitions 585 

used for monitoring of these frameworks explicitly state disaster risk assessment as “evaluating of existing conditions of 

exposure and vulnerability” without considering future change (UNGA, 2016). The global scale geological risk studies could 

apply some of the forward-looking models of exposure in their analysis to estimate future risk, which is of importance for 

designing prospective risk management strategies and measures. 

3.2. Resolution and type of input data 590 

The list of studies in Table 1 shows a general tendency towards higher resolution risk analyses as we move towards more 

recent studies, though this is not the case for all studies. Many of the early studies are at resolutions from several degrees to 

0.5°, and for many hazards there has been a progression towards higher resolutions of 30”/1km, and even up to 90m/point 
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values in some cases. We do see differences between the various hazards. Most of the early coastal flood risk studies examine 

risk using the coastal segments from the DIVA database, although recent studies have also moved towards 30”/1km. For 595 

drought, the resolution tends to be much lower, from around 0.5° to 2.0° in general. This is in line with the difference in 

resolution at which drought impacts are felt (Stahl and Hisdal, 2004), compared to many of the other hazards in which the 

direct impacts are felt more locally. For a similar reason, TC studies tend to show a much higher resolution in their analysis, 

which reflects the fact that TC impacts for an individual event are felt over smaller areas. Most global volcano risk studies to 

date examine risk at the resolution of an individual volcano, rather than on a raster grid. Several recent studies on earthquakes 600 

(Silva et al., 2018) and earthquake-induced landslides (Nowicki Jessee et al., 2017) use model frameworks that can use 

variables scales.  

In most cases, the resolution of the risk analysis follows the resolution of the hazard and exposure datasets used as input. In 

most cases these have the same resolution, and where this is not the case the tendency is either to resample the lower resolution 

datasets to the higher resolution, or vice versa. Therefore, the resolution of the input hazard and exposure databases tends to 605 

show the same overall patterns as those discussed above for the risk calculations. The most commonly used datasets used to 

represent exposure are gridded datasets of population and GDP. Direct economic damage is further assessed using land use 

data, whilst in recent studies related to earthquakes and tsunamis the use of capital stock estimates (based on building 

typologies) has become more common. Given the importance of agricultural impacts for drought, exposure is also represented 

using datasets such as gridded agricultural area, cropland area, planting area, and so forth. For wildfires, area of forest and 610 

grassland are also used. Nevertheless, Kreibich et al. (2019) highlighted that especially for drought, data on losses/impacts that 

are directly attributed to the hazard of drought are lacking. 

 

Methods and datasets used to represent vulnerability are highly diverse. Within the flooding community, the most common 

approach is to use intensity damage functions (IDFs). For flooding, the IDF takes the form of a depth-damage function. In 615 

most studies, one global IDF is used (especially for coastal flooding), whilst for river flooding several studies have also used 

regional or country level IDFs. Jongman et al. (2015) also use regional ratios of affected GDP to reported losses and affected 

population to reported fatalities; the latter is also used by Dottori et al. (2018). Global IDFs are also used in studies that examine 

wildfires. Some earthquake and tsunami studies have also used IDFs. They either use IDFs per income class or region (i.e. not 

a global function), or in more recent years there has been a tendency to use IDFs related to building types. Another approach 620 

is to use empirically derived regressions between reported impacts and a given levels of hazard/exposure to derive empirical 

regression equations. In volcanology the limited amount of impact data has meant that only a few vulnerability and fragility 

functions for physical vulnerability have been developed (Blong, 2003; Jenkins et al., 2014; Maqsood et al., 2014, Wilson et 

al., 2014).  Global TC and volcano studies tend to use various socioeconomic variables at country (or state) level as a proxy 

of vulnerability. Therefore, the spatial representation of vulnerability is much coarser, and does not use gridded datasets in the 625 

same way as hazard or exposure.    
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It is clear that the different hazard communities use some common datasets to represent exposure, for example relating to 

population and GDP. However, there are also differences and opportunities for learning. For example, the use of building stock 

data based on building typologies in earthquake and tsunami studies could provide opportunities for improving the assessment 

of other hazards. The same can be said for the other hazards, where advances in IDFs related to building type offer opportunities 630 

outside the seismic community. On the other hand, approaches that have been developed to project future exposure in the flood 

risk community could be harnessed by the other hazard communities.   

3.3. Risk indicators 

The most commonly used risk indicator is the number of affected people, which is used in 59% of the reviewed studies. A 

large number of studies also use some indicator of direct economic damage (44%), with fatalities (26%) and affected GDP 635 

(24%) have also been used in many studies. Fatalities have been much less commonly assessed in flood and drought-risk 

studies than in studies of the other hazards, offering potential for cross hazard learning on methods for fatality assessment. 

3.4. Future DRR measures 

To date, future DRR measures have only been explicitly included in several studies, all of which are related to flooding. Global 

scale assessments in coastal flooding have been forward-looking from the outset, since the original studies were developed to 640 

assist climate adaptation studies. As such, they also include a wider range of DRR measures (both structural and nature-based) 

than the few river flood studies that have explicitly included DRR measures in recent years. The costs of DRR measures have 

only been explicitly assessed in a couple of studies, for coastal or river flood risk. Hence, in this regard the global flood 

modelling community has a lot of knowledge and examples that can be used to begin to include DRR measures in global scale 

assessments of other hazards. To date, no global studies have assessed the influence that human behaviour and perception can 645 

have on the effectiveness of DRR measures. 

3.5. Type of analysis 

In Table 1, we have classed studies as either non-probabilistic (NP) or probabilistic (P), whereby probabilistic refers to studies 

that assess expected annual impacts either by integrating across return periods of based on a probabilistic stochastic event set. 

For droughts, volcanoes, and landslides, studies to date have used non-probabilistic approaches only. Studies on floods and 650 

earthquakes have seen a move towards more probabilistic studies in more recent years, and the two studies reviewed for 

tsunamis also use a probabilistic approach. For wildfires and TCs, both approaches are used, with too few studies to be able to 

see any particular change in focus through time. A major difference between the studies of earthquakes and tsunamis, in 

comparison to the other hazards, is the extensive use of stochastic event sets in the former. Stochastic modelling could also be 

beneficial for the assessment of other several other hazards, as discussed in Section 4.  655 
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4. Future research challenges and opportunities 

Our review shows that the field of global natural hazard risk modelling has developed rapidly over the last decade, and 

advances continue to be made at a rapid pace. We show that there are differences between the modelling and assessment 

methods used in the different hazard communities, and show possibilities for learning between hazards. There are also 

opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at 660 

continental or regional scales. As section 2 demonstrates, rather than simply make direct comparisons, it is essential to 

contextualise the reasons for advances in global risk assessments for certain hazards compared with others, which include 

policy drivers (e.g. climate change), different levels of complexity (e.g. multi-hazard environments) and the relative frequency 

of occurrence of certain hazard related disasters. We have identified within the literature opportunities for addressing some of 

the key challenges. Given the constraints of space, this is not intended to be an exhaustive list, and is more intended to 665 

encourage dialogue on knowledge sharing between research and policy communities working on different hazards and at 

different spatial scales. 

4.1. Hazard 

Continual improvements in hazard modelling are required, both to correctly represent processes and to increase resolution. 

The availability of higher resolution input datasets with increased accuracy is helping in this regard and is a common theme 670 

across hazard studies. In some cases, global hazard models are available, but have not yet been used in global risk assessments. 

For example, Jenkins et al. (2015) provide a global volcanic hazard assessment (10 km x 10 km), that accounts for ash fall 

affected by local wind conditions. While the geographic extent of major disasters may be large, the specific hotspots for hazard 

may be much more localised. As such, there are ample opportunities to model the downscaled impact of hazards. For example, 

global models at present do not capture the downstream impact of landslide material (e.g. Nowicki Jesse et al. 2017), even 675 

though in many settings debris flows and sediment related damage can be the costliest type of hazard (Turowski et al. 2014). 

Within the global earthquake and tsunami risk modelling community, we see many examples of the use of stochastic events 

sets. Similar approaches could be developed for assessing risk of other hazards. For example, for the modelling of TCs, several 

models have been developed to generate synthetic TCs, such as the STORM model (Bloemendaal et al 2019), the MIT model 

(Emanuel and Nolan, 2004) or CHAZ (Lee et al 2018). Such TC events could then be used to force global storm surge models, 680 

thereby also benefitting global coastal flood risk assessment. Methods for generating large, synthetic event sets could also be 

especially useful for those events with high spatial and temporal resolution that currently miss global approaches, such as 

pluvial flooding and SCS-related perils. 

There is also a tendency to focus on one parameter of the hazard, whilst a hazard’s impact is often related to several parameters. 

For example, in flood risk analysis, global hazard studies focus on the flood depth, whilst risk is also related to other parameters 685 

such as flood duration, velocity, and the rate at which floodwaters rise (Ward et al., 2016). Similar issues exist for TCs, where 

there has been a lot of recent attention on their possible slowing down and stalling (Kossin, 2018; Wang et al., 2018; Hall and 
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Kossin, 2019). For example, Hurricane Dorian in 2019 stalled over the Bahamas for 36 hours, pounding large parts of the 

island with 270 km/h winds and 5 m storm surge. 

For the water-related hazards, one avenue towards improved global hazard modelling is the improvement in hydrodynamic 690 

modelling of floods. For example, Sampson et al. (2015) present a fully hydrodynamic modelling approach for the globe, 

which could address some of the stated problems. The approach has been further developed by Wing et al. (2017) for the 

conterminous USA, and further been applied for current and future flood risk assessment in the USA at continental scale (Wing 

et al., 2018). For coastal flooding, the fully hydrodynamic model GTSM is now being used to simulate water levels due to 

surge and tide up to the coastline, but then simple planar models are used to translate these water levels into inundation maps 695 

on land. Vafeidis et al. (2019) have shown the importance of accounting for hydrodynamic processes by developing an 

approach to assess the impacts of water-level attenuation due to different land covers on flood hazard. This approach can be 

used as a first step towards improving global coastal flood risk assessment. Vousdoukas et al. (2016) use the hydrodynamic 

LISFLOOD-FP model to assess coastal flood hazard at the European scale, and this has been applied for European scale coastal 

flood hazard by Koks et al. (2019). Hydrodynamic inundation modelling is also being applied by Schäfer (2018) for the 700 

modelling of tsunami events. For the case of drought, studies typically focus only on a single type of drought/drought index. 

To comprehensively understand drought events and corresponding risks, an all angle view is of needed. Furthermore, for the 

global scale, remote sensing products that capture hazard and impact at the same time (NDVI, fAPAR) should be applied more. 

4.2. Exposure 

Similarly, continual developments are being made in the improvement of global exposure databases. As stated in the review, 705 

building typologies and/or investment data have been used to develop global databases of capital stock, which are now 

routinely used in global earthquake and tsunami modelling (Gunasekera et al., 2015). These data can also be applied to other 

hazard types in most cases, underlining the need for communication and collaboration across hazard communities. Efforts are 

also ongoing to develop exposure maps based on building material types within the flood risk community. For example, 

Englhardt et al. (2019) have developed an approach for mapping exposure in urban and rural areas in Ethiopia, based on data 710 

on buildings and their materials. This method is currently being tested for several other countries in Africa. Pittore et al. (2017) 

discuss the challenges in designing a global and spatial-temporally dynamic exposure database, focusing on building stock. 

Other data sources, such as OpenStreetMap, also offer the opportunity to use building level information to improve global risk 

modelling. For the USA, Wing et al. (2018) have used the FEMA National Structure Inventory. The latter dataset is interesting 

in that it is also accompanied by projected distributions under several future SSPs, whilst currently, forward-looking 715 

projections of exposure at global level are limited to GDP, population, and land use. Recent studies have also shown the 

importance of examining temporal variations in exposure (e.g. between day and night and between seasons) (e.g. Freire et al., 

2015) and between different income groups (e.g. Winsemius et al., 2018; Hallegatte et al., 2016). The importance of capital 

stock models such as those which encompass buildings, infrastructure, cross-sector applications and contents are shown in the 
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GRADE process; given that in most cases the building stock is only one portion of the capital stock at risk (Gunasekera et al., 720 

2018). 

4.3. Vulnerability 

As evidenced from the review, much attention is required to improve the representation of vulnerability in global risk models. 

Currently there exist a limited number of vulnerability and fragility functions for some hazards (see Murnane et al. 2019), 

compounded by the limited amount of impact data available to inform them (e.g. volcanic eruptions). However, a limited 725 

number of socioeconomic vulnerabilities in volcanic environments are being considered in – for instance – global datasets 

(e.g. global fatalities, Brown et al., 2017) and there are some studies accounting for the indirect impacts of eruptions (loss of 

livelihood, displacement and resettlement) at the volcano scale (e.g. Barclay et al., 2019). In time and with more resources and 

studies, such efforts may be scalable, and used to inform future global risk studies.  

The highly temporal and spatial dynamics of vulnerability and the resulting non-linearity of risk has been underscored by 730 

UNDRR’s Global Platform for Disaster Risk Reduction. While recent studies at regional and local scale have begun to account 

for these aspects in changing hazard (e.g. Mora et al. 2018) and exposure conditions (e.g. Cammerer et al. 2013), only a few 

studies account for the dynamics of vulnerability (e.g. Kreibich et al., 2015) across multiple hazards. Cutter and Finch  (2008) 

have assessed future spatial and temporal patterns of social vulnerability at a national scale based on historical events. For 

future projections, climate change is widely recognized as an important driver of the increased frequency and intensity of 735 

weather-related hazards, but does not explain the (projected-) changes in damages caused by geophysical hazards such as 

earthquakes. An improved understanding of future vulnerability can significantly improve the ability of risk managers to more 

efficiently implement DRR measures. Recent studies at the continental or global scale show that vulnerability to natural hazard-

related disasters is decreasing in some areas, because people adapt over time and reduce vulnerability (e.g. Ciscar et al. 2019; 

Jongman et al. 2015). In other areas, future vulnerability is expected to increase, for example due to a limited availability of 740 

resources to adapt (Winsemius et al., 2018) or due to the impacts of successive disasters that push communities into poverty 

(Mirza 2003). 

Some of the remaining scientific challenges include a harmonisation of indicators used to assess damages across a wide range 

of different hazard types, in order to enable the collection of loss data that is comparable across hazards. This would allow for 

a better comparison of the dynamics of vulnerability between different hazards. Currently, the impact data that are collected 745 

by countries, first responders, and researchers from different fields remain very heterogeneous (Cutter et al. 2015; 

AghaKouchak et al. 2018) and the data are often collected at different times after a disaster. 

4.4. DRR measures 

The number of global risk studies that explicitly include DRR measures is extremely limited, and limited to flood risk studies, 

especially coastal flooding. Even then, most of these studies have assessed structural measures and do not explicitly examine 750 

the costs. Much can be learnt from studies at local to regional scale, and it is certainly beyond the scope of this paper to provide 

a review of the many studies addressing DRR at this scale. A specific aspect that has not been covered in any of the global risk 
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studies reviewed is the influence that human behaviour and perception can have on the effectiveness of DRR measures, through 

various feedbacks. A classic example in hydrology is the levee effect (White, 1945), in which increased levels of flood 

protection from levees and dikes can also lead to increased exposure and/or vulnerability in areas protected by dikes. Similarly, 755 

for wildfires feedbacks exist between the physical risk and human actions to attempt to manage fuel and suppress fires. A 

promising way to address these feedbacks is through agent-based models that attempt to represent the behaviour of agents (e.g. 

individuals, businesses, governments) through a set of decision rules (e.g. Aerts et al., 2018). An application of the ABM 

approach has recently been used in natural hazard risk modelling at the continental scale (Haer et al., 2019), paving the way 

towards exploring the use of these methods at global scale. Another aspect that is often overlooked, especially on a global 760 

scale, is the interactions between different DRR measures that are aimed at specific hazards (Zaghi et al. 2016; Scolobig et al., 

2017). Moreover, assessing the impact of complex multi-hazard damages that result from hazard chains (e.g. an earthquake 

followed by a flood) has only been assessed at local scales, for example by using a probabilistic approach to calculate the 

probabilities of different final damage states (e.g. Korswagen et al. 2019). These complex hazard chains require the design of 

structures and DRR measures that are able to address the combined damages of different hazard chains (Korswagen et al. 765 

2019).  

Studies that consider the dynamics of how drivers impact risk into the future also enable the assessment of prospective DRR 

actions across exposure and vulnerability components. By modelling exposure profiles dynamically, risk reduction actions that 

consider where development occurs and how this can be changed to reduce future losses can be assessed. This would support 

demonstrating the effectiveness of land use planning and risk-sensitive developments as a DRR action. Similarly, for 770 

vulnerability, incorporating assessment of future vulnerability and the inclusion of improved building standards allows for 

demonstrating the benefits of more resilient construction. If changes in exposure and vulnerability are excluded from disaster 

risk modelling, then the assessment of prospective DRR measures is extremely challenging. Examples of this globally however 

are limited. Regional and city-level studies showing elements of these benefits have been demonstrated for multiple risks using 

coupled hazard models with cellular-automata land use models and capital stock models (Lallemant, 2015; Riddell et al., 775 

2019;). Global dynamic models of urban and land use change however do exist and efforts could be made to effectively couple 

these with global hazard and risk models (Hasegawa et al., 2017; Van Asselen and Verburg, 2013). 

4.5. Multi-hazard and multi-risk 

There is a rapidly growing policy and scientific recognition and dialogue on the need for multi-hazard (both the multiple 

hazards and the simultaneous, cascading or cumulative occurrence of these; UNDRR 2017) risk assessments, as exemplified 780 

by high-level discussions at the UNDRR Global Platform 2019 and the aims of the Sendai Framework. These call upon the 

science community for an increased understanding of the risk of consecutive and cascading disasters (UNDRR, 2019). So far, 

the vast majority of global risk assessment studies have examined risk from a single hazard type, and indeed have examined a 

single parameter of the hazard (section 4.1). However, many environments are multi-hazardous and many hazards can trigger 

secondary or cascading hazards. For example, volcanoes can produce a wide variety of primary and secondary hazards that 785 
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can occur simultaneously or sequentially, and that differ widely in their spatial extent, duration, dynamic characteristics and 

associated impacts. Capturing all these hazards, and their impacts, within the one assessment is very challenging, and typically 

the future hazard or risk is considered separately for each type of hazard (e.g. Sandri et al., 2014) or by assuming a given 

eruption scenario (e.g. Lindsay and Robertson, 2018). Methods for volcanic multi-hazard assessment across multiple scenarios, 

where the range of potential future volcanic hazards are shown on the one map, have been developed but as yet only been 790 

applied at the single volcano scale (e.g. Neri et al., 2013).  

Interactions between different primary hazards can also influence the overall risk (Gill and Malamud, 2014; Korswagen et al., 

2019). For example, within the flooding community, there has recently been much attention for so-called compound floods, 

whereby the interaction of coastal, river, and pluvial floods can influence the overall hazard and risk (Zscheischler et al., 2018). 

Methods are being developed at the global scale to assess both the statistical dependence between these hazards (e.g. Ward et 795 

al., 2018; Bevacqua et al., 2019; Couasnon et al., 2019) and their physical impacts in terms of hazard (Ikeuchi et al., 2017), 

with the step towards risk being the next logical step. 

Understanding inter-hazard linkages is also important for properly calibrating estimates of risk in the aftermath of major 

disasters. Earthquakes in particular can affect the long-term propensity of a given landscape to fail via landsliding (Marc et al. 

2015), while the prior saturation state of a landscape - due to flooding or human input of irrigation water - can increase landslide 800 

susceptibility during an earthquake itself (Bradley et al. 2019; Watkinson and Hall 2019). These interactions remain poorly 

constrained, but can influence the long term recovery from major hazards.  

Several studies have identified the current shortcomings in future exposure and vulnerability projections for multi-hazard risk 

assessments (e.g. Gallina et al., 2016). In spite of the clear need to adopt a multi-hazard risk approach to global risk 

assessments, the very nature of the endeavour (accounting for multiple, interrelated hazards and their dynamic influence on 805 

vulnerability and exposure) has arguably restricted progress towards truly comprehensive analyses of global multi-hazard risk. 

There is a need to address the previously mentioned challenges with critical work at multiple scales (local to global) towards 

comprehensive global multi-hazard risk assessments. Collaboration between the international hazard science and risk research 

communities is key to progress. 

4.6. Use of citizen science/crowdsourced data 810 

All elements of risk may be better quantified or qualified using citizen science and crowd-sourced data, which are utilised 

across a number of natural hazards (Hicks et al., 2019). De Bruijn et al. (2017) already showed that passively shared 

information through social media platforms can provide a plethora of qualitative and sometimes quantitative information of 

flood hazards, as well as impacts in near real-time. Also, active sharing mechanisms are becoming available. For example, 

citizen scientists report information on landslide hazard that is otherwise difficult to obtain. At the global scale, volunteers can 815 

contribute information through Landslide Reporter (https://landslides.nasa.gov/reporter). Numerous local, regional, or national 

crowdsourcing projects have also been undertaken (Juang et al. 2019). Information on landslide timing is often missing from 

existing landslide inventories, because neither remote sensing nor geologic fieldwork are determining this feature (Kocaman 
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and Gokceoglu, 2018). However, precise knowledge of landslide timing is crucial for research into the triggering mechanisms 

of landslides. Citizen scientists could remedy this in cases where they have first-hand knowledge of recent events. Citizen 820 

science has been applied in volcanic environments, from observations of ash fall (Wallace et al., 2015) to community-based 

monitoring (Stone et al., 2014), and has a well-established application in earthquakes (e.g. USGS “did you feel it”). 

An exciting avenue in citizen science lies in more active mechanisms to report on hazards and their impacts (damages, 

households affected, people in need of help, and so on). In particular, where such reports concerns citizen’s own property or 

surroundings, they are likely to be more motivated and more accurate in their reporting and by having an active reporting 825 

mechanism, this can lead to a more structured approach to monitor and keep track of past hazards and their impacts. 

Opportunities lie particularly in reporting of local flash floods, local landslides and local drought conditions such as small 

reservoir states for rainfed farming, and grass states for pastoralists. These natural hazard conditions concern time and space 

scales that are too small to capture with other means, but may occur frequently and in many locations. Structured and organised 

data collection by citizens is taking place more and more. Large-scale community mapping projects are initiated that rapidly 830 

increase the availability of well-organised taxonomic information on buildings and infrastructure (e.g. Soden and Palen, 2014; 

Iliffe et al., 2017). These may serve as exposure and vulnerability databases for multiple natural hazards, as well as drainage 

information, that can be used to establish flood hazard models (Winsemius et al., 2019). The tools and data platforms to collect, 

store and share such data in any resource setting are broadly available, such as OpenDataKit (Brunette et al., 2013) and 

OpenStreetMap (Haklay and Weber, 2008). These data may be used for instance to train machine learning algorithms that 835 

estimate exposure and vulnerability characteristics based on remote sensing, or to keep risk models in rapidly changing 

environments, such as growing urban centres, up to date (Winsemius et al., 2019). These opportunities have been explored 

only to a limited extent and we foresee a growth in demand of these research directions. 

4.7. Concluding remarks 

As shown by this review, efforts to assess and map natural hazard risk at the global scale have increased considerably in the 840 

last decade, in an attempt to contribute to the Sendai Framework’s first Priority for Action of Understanding Disaster Risk. 

This paper presents a first attempt to review these studies across different hazards, thereby examining similarities and 

differences between the approaches taken across the different hazards, and identifying potential ways in which different hazard 

communities can learn from each other. We also indicate several opportunities for addressing some of the pressing challenges 

in global risk modelling. We hope that this review paper can serve to further encourage the dialogue on knowledge sharing 845 

between scientists and communities working on different hazards and at different spatial scales that has been facilitated by the 

session Global and continental scale risk assessment for natural hazards: methods and practice at the EGU General Assembly 

since 2012.  
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Figure 1: Percentage of abstracts accepted and presented at the EGU session ‘Global and continental scale risk assessment for 

natural hazards: methods and practice’ explicitly mention examining future projections of risk based on future scenarios of hazard, 1325 
exposure, or vulnerability projections. 
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Table 1: Summary of findings across the reviewed literature and across the reviewed aspects. Explanatory notes: ‘Risk elements' - white of this risk 

element is not included, orange if included and static, green if included and dynamic; ‘Type of risk analysis’ - NP = probabilistic, P = probabilistic (P), S 

= stochastic event sets, RP = return period maps, Y = maps of yearly hazard, M = maps of monthly hazard, PE = past events, V = radius around specific 1330 
volcano.  
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River floods                             

Kleinen & Petschel-Held 
(2007)       Large basins Large basins     X           NP-R 2080 

Large 
basins 

Hirabayashi & Kanae (2009)        1.0° 1.0°     X           NP-Y Yearly to 2100 1.0° 

Jongman et al. (2012)       30" 30"  X  X   

Urban area 

exposed, 

assets exposed       NP-R 2050 30" 

Hirabayashi et al. (2013)       2.5' 2.5'     X           NP-Y Yearly to 2100 2.5' 

Ward et al. (2013)       30" 30" Global IDF X  X X  

Affected 

agricultural 
value       P-R Current 30" 

Arnell & Lloyd-Hughes 

(2014)       0.5° 0.5°  X  X           NP-R 2050, 2080 0.5° 

UNISDR (2015a)       1 km 5 km Regional IDFs X             P-R Current 1 km 

Jongman et al. (2015)       30" 30" 

Regional 
fatality & loss 

ratios X    X         P-R 2030, 2080 30" 

Arnell & Gosling (2016)       0.5° 0.5°  X  X   

Affected 

cropland area       NP-R 2050 0.5° 

Winsemius et al. (2016)       30" 30" Global IDF X       X     P-R 2030, 2080 30" 

Ward et al. (2017)       30" 30" Global IDF X       X   X  P-R 2080 30" 

Alfieri et al. (2017)       30" 30" Country IDF X  X           P-R 

1.5, 2 & 4°C 

warming 30" 

Dottori et al. (2018)       2.5' 2.5' & 7.5' 

Country IDF 

& fatality 

ratios X X X  X         P-R 

1.5, 2 & 3°C 

warming 2.5' 
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Willner et al. (2018)       2.5' 2.5'       X       X         P-R 2040 0.25° 

Coastal floods                             

Hoozemans et al. (1993)       Country Country     X   

Wetland loss 

& rice 

production X     NP-R 1 meter SLR Country 

Hinkel & Klein (2009)       

Coastal 

segments 

Coastal 

segments Global IDF X  X X  Wetland loss X X    P-R 2100 

Coastal 

segment

s 

Hinkel et al. (2010)       

Coastal 

segments 

Coastal 

segments Global IDF X  X X  Wetland loss X X    P-R 

Up to 5°C 

warming 

Coastal 
segment

s 

Jongman et al. (2012)       30" 30"  X  X   

Urban area 

exposed, 
assets exposed       NP-R 2050 30" 

Hallegatte et al. (2013)       
Coastal 

segments 
Coastal 

segments Global IDF X       X   X  P-R 2050 90 m 

Hinkel et al. (2014)       

Coastal 

segments 

Coastal 

segments Global IDF X  X X  Wetland loss X X    P-R 2100 

Coastal 

segment

s 

Fang et al (2014)       1 km 1 km     X X         NP-S Current 1 km 

Muis et al. (2016)       30" 30"     X           NP-R Current 30" 

Muis et al. (2017)       30" 30"     X           NP-R Current 30" 

Schuerch et al. (2018)       

Coastal 

segments 

Coastal 

segments        Wetland loss X X    P-R 2100 

Coastal 
segment

s 

Hunter et al. (2019)       City City Global IDF X             P-R Current City 

Beck et al. (2019)       30" 30" Global IDF X  X X      X    P-R 2100 90 m 

Vafeidis et al. (2019)       
Coastal 

segments 
Coastal 

segments Global IDF X   X X   Area exposed           P-R 2100 

Coastal 

segment
s 

Tropical cyclones                             

Peduzzi et al. (2009)       5 km 5 km 

Country 

socioeconomi

c variables      X         NP-R Current 5 km 
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Mendelsohn et al. (2012)       Storm tracks 

County 

(USA) & 
country (rest 

of world) 

Income per 

county (USA) 
& country 

(rest of world) X             P-S 2100 

Storm 

tracks 

Peduzzi et al. (2012)       2km 30" 

Country 
socioeconomi

c variables    X X X         NP-Y 2030 30" 

Cardona et al. (2014)       1km 5 km Regional IDFs X             P-R Current 1 km 

Fang et al. (2015)       30" 30" & 0.5°       X X               NP-R Current 0.1° 

Droughts                              

Dilley et al. (2005)       2.5° 2.5'     X X X 

Road 

infrastructure       NP-Y Current 2.5' 

Li et al. (2009)       0.5° Country 

Country 

socioeconomi

c variables       

(Reduced) 
yield of maize, 

wheat, rice, 

barley       NP-Y 2050, 2100 0.5° 

Arnell et al. (2013)        0.5° 0.5°        

Cropland  

exposed, 

wheat and 

soybean 

productivity       NP-M 

2030, 2050, 

2080, 2100  0.5° 

Christenson et al. (2014)       2.5° 5' & 0.5° 

0.5° 

regressions    X           NP-Y Current 2.5' 

Yin et al. (2014)       0.5° 0.5°        Yield of maize       NP-RP Current 0.5° 

Carrão et al. (2016)        0.5° 30" & 5' 

5' to country 

to 
socioeconomi

c variables       

"Index" across 

several factors       NP-Y Current 0.5° 

Guo et al. (2016)       0.5° 30" 

0.5° 

regressions       

(Reduced) 

yield of maize       NP-RP Current 0.5° 

Smirnov et al. (2016)       2° 2°     X           NP-M 

20 year time-

slices to 2100 2° 

Arnell et al. (2018)        0.5° 0.5°     X   

Cropland 

exposed       

NP-

M/Y 

1.5 & 2°C 

warming 0.5° 

Liu et al. (2018)       0.5° 0.5°       X                 NP-M 

1.5 & 2°C 

warming 0.5° 

Wildfires                             

Cao et al. (2015)        1 km 1 km 

Global 

functions       

Net primary 

production      NP-Y Current 1 km 
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Meng et al. (2015)        0.1° 0.1° 
Global 

functions       

Forest area 
burnt      NP-R Current 0.1° 

Shi et al. (2015)       0.1° 0.1° 

Global 

functions       

Forest area 

burnt      P-R Current 0.1° 

Knorr et al. (2016)       1° 0.5°     X   

Forest area 
burnt      NP-Y 1901 - 2100 1° 

Earthquakes                                        

Chan et al. (1998)       0.5° 0.5° 

Income class 

functions X             NP-S Current 0.5° 

Dilley et al. (2005)       2.5' 2.5' 

Global fatality 

ratios    X  X X      NP-R Current 2.5' 

Jaiswal & Wald (2010)        1 km 1 km 

Regional 

fatality ratios    X  X         NP-S Current 1 km 

Jaiswal & Wald (2011)       2 km 1 km 

Regional loss 

functions X   X          NP-S Current 1 km 

UNISDR (2013, 2015, 2017)       5 km 5 km 
Building type 

IDFs X             P-S Current 1 km 

Daniell (2014); Daniell & 

Wenzel (2014)       1 km 1 km 

Country 

regressions X X X X X         NP-S Current 1 km 

Li et al. (2015)       0.1° 0.1° & 0.5° 

Regional 

fatality rates 

and damage 
functions X  X X X         P-R Current 

0.1° & 
0.5° 

Silva et al. (2018)       1km variable 

Building type 

IDFs X                     P-S Current Variable 

Tsunamis                             

Løvholt et al. (2015)       90 m 1 km 

Building type 

IDFs X  X  X         P-S current 1 km 

Schäfer (2018)       90 m 90 m 

Building type 
IDFs and 

global fatality 

function x   x x x             P-R current 90 m 

Volcanoes                             

Yokoyama et al. (1984)       Volcano Volcano  

Indices per 

volcano       Risk index       NP-PE Current Volcano 

Small & Naumann (2001)         2.5'     x           NP-V Current Volcano 

Dilley et al. (2005)       2.5° 2.5' 

Regional 
fatality & loss 

ratios    X X X         NP-PE Current 2.5' 
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GAR 2015 (Auker et al., 

2015; Brown et al., 2015a,b)       Volcano Volcano      x  x         NP-PE Current Volcano 

Pan et al. (2015)       Volcano 30" 
Global fatality 

function      X         NP-PE Current Volcano 

Freire et al. (2019)         250 m       x                 NP-V Current Volcano 

Landslides                             

Dilley et al. (2005)       30" 2.5' 

Country 

regressions X   X X         NP-Y Current 2.5' 

Nadim et al. (2006)       30" 30" 

Country 

regressions      x         NP-Y Current 30" 

Yang et al. (2006)       0.25° 0.25° 

Country 

regressions      X         NP-Y Current 0.25° 

Nowicki Jessee et al. (2017)       Variable 30"       x                 NP-Y Current Variable 
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