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Abstract     

Scientists use diagrams not just to visualize objects and relations in their 

fields, both empirical and theoretical, but to reason with them as tools of 

their science.  While the two dimensional space of diagrams might seem 

restrictive, scientific diagrams can depict many more than two elements, 

can be used to visualise the same materials in myriad different ways, and 

can be constructed in a considerable variety of forms.  This paper takes 

up two generic puzzles about 2D visualizations.  First: How do scientists 

in different communities use 2D spaces to depict materials which are not 

fundamentally spatial?  This prompts the distinction between diagrams 

that operate in different kinds of spaces: ‘real’, ‘ideal’, and ‘artificial’.  

And second: How do diagrams, in these different usages of 2D space, 

support various kinds of visual reasoning that cross over between 

inductive and deductive?  The argument links the representational form 

and content of a diagram (its vocabulary and grammar) with the kinds of 

inferential and manipulative reasoning that are afforded, and 

constrained, by scientists’ different usages of 2D space.   

 

 

1.  Introduction 

Studies of how diagrams are used by scientists have established that such 

representations offer a potentially wide range of epistemological services that 

cross over from inductive to deductive work.  But having recognised that 

diagrams offer a technology of representation that supports many different 

reasoning functions, it is critical to ask exactly what do the characteristic aspects 

                                                 
∗ My thanks go to Hsiang-Ke Chao, Harro Maas, Marcel Boumans and James Nguyen for 

engaging with the detail of my arguments; to participants at: a workshop on visualization 

convened by Erna Fiorentini in Berlin in 2014; a Taiwan conference on diagrams convened by 

Hsiang-Ke Chao in 2016, and the All-London HPS Reading Group’s discussion of scientific 

diagrams in 2019 convened by Chiara Ambrosio.  I also thank Xizi Luo for research assistance 

with the figures and two anonymous referees for the paper, whose challenging invitations for me 

to clarify proved incredibly helpful. 
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of diagrams - especially their use of 2D space, as opposed to other 2D visual 

materials such as pictures or photos (or even other forms of representation such 

as in words or mathematics) - offer to the scientist?  And how do diagrammatic 

representations that inhabit 2-D space support such varied usages?   

 

For the arguments of this paper, diagrams are taken to be both scientific objects 

that depict or denote things in the scientific field and - at the same time - tools 

used in scientists’ work.1  The question to be explored concerns the importance 

of the specific form of diagrammatic representation to the modes of argument 

used with it.  In Morgan (2012), I argued that making a model gives form to 

ideas in a particular medium of expression and in doing so makes them subject 

to a particular mode of reasoning that goes along with that medium.  For 

example, a working hydraulic model has a different form, and involves a 

different mode of reasoning, to a model of the same system in algebraic form.  

Even though not all diagrams are models (just as not all models are diagrams), I 

suggest that the same principle applies to diagrams: and since diagrams take 

lots of different forms, those forms don’t necessarily share one kind of usage or 

reasoning.  So, here, I extend my analysis of the relationship between form and 

reasoning to a discussion of diagrams, especially investigating those diagrams 

that feature in inductive and deductive modes of science.   

 

I use the labels ‘inductive’ and ‘deductive’ loosely here, for in the context of how 

scientists work with diagrams - I regard these both as explorative modes of 

                                                 

1 I have drawn, in the analysis of this paper, especially on the papers and introductions of two 

journal special issue investigations into diagrams.  Priest, de Toffoli and Findlen’s introduction 

(2018) offers a succinct entrance into the history of science literature, range of claims, and some 

useful exemplars.  They argue that one should think of diagrams as “closer to being things than 

representations of things”, though from the practising scientist and so the view of this paper, 

they surely are both.  Blackwell (2001), introducing another special issue in AI that offers 

particular resources for this paper, wants to treat diagrams as objects rather than as tools but - 

again here - in usage, such objects can be tools.  The work of three other scholars has also been 

important for my thinking.  Klein’s (1995) analysis of nineteenth-century terminology of 

diagramming as a ‘method’ captures both the making and using of diagrams. Boumans (2016) 

arguments about inductive judgement, and Woody’s analyses of the practices of theorizing the 

periodic law in chemistry (2014) and of reasoning with molecular orbital diagrams (2000), all 

proved liberating for approaching the mixed nature of reasoning with diagrams. 
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reasoning.  Scientists use diagrams to investigate, analyse, explore, suggest or 

rule out hypotheses, and generally reason about both empirical and theoretical 

matters and materials.  These reasoning practices, and functional usages, found 

with diagrams might not be strictly described as deductive or inductive, as 

recent history and philosophy of science discussions on the use of diagrams make 

clear. This difficulty can be seen from two perspectives: either scientists’ 

reasoning practices do not always fit easily into these philosophical labels, or, 

philosophers’ labels don’t always organise scientists’ modes of practical reasoning 

so well as philosophers might hope - as Woody (2014) deftly demonstrates in her 

analysis of the scientists’ reasoning that went along with representations of the 

periodic law and periodic table.  So, when I appeal to inductive and deductive 

modes of reasoning, these need to be loosely not strictly interpreted, not because 

the scientists are loose thinkers, but because practices are rarely so cut and 

dried. The point of this paper then is to concentrate attention not just on the 

diagrams of science per se, but on how scientists do science with them.  Within 

this, I have organised my analysis to understand how diagrams serve to make 

things visible, and - separately - how visualizations work as a tool for reasoning; 

the claim here is that using diagrams involves processes of both ‘inducing 

visibility’ and of ‘visual deduction’.2      

 

Another preliminary difficulty is defining what counts as a diagram, and it is 

important to note from the start that this paper is not about visual images used 

in science in general, but about diagrams, a subset of visual images in which 

scientists construct depictions of their materials.  Even amongst accounts of 

diagrams, a variety of ideas are relevant.  James Elkins (1999) differentiates 

pictures and notation from ‘schemata’ - a generic category that includes 

diagrams - and defines this generic category by what is not included rather than 

what is.  Sybille Krämer (2016) refers to ‘scripts’ or possibly “inscriptions”, a 

                                                 

2 This paper therefore takes up the contrasting agenda (set historically for economics by Chao 

and Maas, 2017) into a broader analysis of diagrams in inductive and deductive usage. Some 

readers may consider these labels misleading, and might prefer other terms or modes of 

reasoning - such as abduction.   
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category that “includes tables, lists, diagrams, graphs, and maps” (p205).  Alan 

Blackwell (2001) treats diagrams as objects that are not pictures or words.  

Perini’s (2013) account reaches closest to my interests in fixing interest on how 

“spatial relations in the picture are interpreted and thus convey content” (p 274).  

Her notion of diagrams includes pictures, but the critical point for me is how she 

focusses attention on the ‘form-content relations’ of diagrams in the context of 

visual representations in biology.   

 

The extensive OED3 definitions of diagrams refer to “An illustrative figure 

which, without representing the exact appearance of an object, gives an outline 

or general scheme of it, so as to exhibit the shape and relations of its various 

parts.”  Another OED definition points out that diagrammatic representations 

of empirical materials are essentially symbolic in form: “a set of lines, marks, or 

tracings which represent symbolically the course of results of any action or 

processes, or the variations which characterize it”.  Useful for deductive 

reasoning, they point to a definition coming from geometry: “a figure composed of 

lines, serving to illustrate a definition or statement, or to aid in the proof of a 

proposition”. And finally, another definition captures way that diagrams are 

sometimes used to depict abstract or conceptual or imagined things: “A 

delineation used to symbolize related abstract propositions or mental processes”.   

 

All of these definitions prove relevant to the examples I discuss here.  However, 

my aim is not to be driven by the definitions, nor to what is or is not a diagram in 

the sciences, but to point to how these definitions, taken together, offer 

possibilities for understanding the forms of diagrams, and their associated 

reasoning resources.  This focus on the use of diagrams in various modes is 

designed to throw light on how different modes of reasoning with diagrams 

                                                 

3 OED online consulted 13th August, 2018: http://www.oed.com/view/Entry/51854 
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depend on their form of construction, modes which are typically shared within a 

community of users in their research activities.4     

 

 

2.  Inducing Visibility 

Inducing visibility is an apt phrase, due to Erna Fiorentini, to refer to the ways 

in which producing diagrams makes things visible that were not visible before.5    

These diagramming processes are often (but surely not always) associated with 

the evidential space, and the process of inducing sense out of a collection of bits 

and pieces that are not so obviously related or not previously understood to be so.  

These processes might be broken down, in abstract terms if not in practise, to 

involve two elements: cognitive and inferential.   

 

First the cognitive aspect - by which I mean the ability to see something, or to 

recognise something, in the visual display a scientist produces that had lain 

unseen, un-remarked, or unrecognised in their other representing media such as 

tables, words, photos, summarising statistics, etc.  (Of course there are images 

which are the result of specially designed revealing technologies in science - such 

as X-rays - but it would seem very odd to count these as ‘diagrams’, given the 

constructive connotations of that label found in the OED definitions and in the 

literature on diagrams in science studies more generally.)  The second aspect is 

the ability to induce, or infer, within these diagrammized materials, which relies 

not only on salient subject matter knowledge, but more especially on the mode of 

reasoning appropriate to these diagrams.  The problematic issue of inference 

beyond the diagram, back to the world, will be taken up later. 

 

  

                                                 

4 I have discussed many of the examples and some of the ideas in this paper in various ways 

before, but there is a certain advantage in rethinking known objects of study (some of which go 

back to my first book) in the light of serious questions about how diagrams work.  I hope readers 

will forgive the re-use of old examples in the service of this renewed enquiry. 
5 This useful terminology was introduce at a meeting convened by Erna Fiorentini on 

“visualization” in Berlin in April 2014. 
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2.1 On Diagrams (not Tables) and Seeing (not Reading) 

The practical line between inducing visibility and inferring is necessarily opaque, 

for even the recognition of a pattern is itself an inference of a kind.  So the 

examples offered here serve not so much to define the difference between 

inducing visibility and inferring by using diagrams, but to delineate what is 

associated with each aspect.  Thus Figure 1 captures the moment that a 

scientist figured out that a drawn line - a graphic - made visible something quite 

difficult to see in a table of numbers.  In Figure 1, we see something that is half-

diagrammatic, half tabular in form, an in-between object which reveals a non-

regular, but definitely cyclical, pattern. The scientist, Clement Juglar, was a 

physician turned statistician/demographer, and his table-graphic captures the 

rises and falls in forms of money circulating in the economy in an indicative line 

beside the numbers.  Figure 2 (a and b) provides the contrast, demonstrating 

directly how a diagram (the graph, 2b) reveals, or enables the scientist to see 

possible relations between the marriage rate and the trade of the UK that lie 

hidden in the table of numbers (2a).  In this diagram: time is envisioned to move 

horizontally to the right and the vertical axes give the scales for the two series of 

numbers; whereas in the associated table: time changes vertically downwards.6 

So, not only did the language of representation move from numbers to 

diagrammed lines, but the mode of organisation and conventions of usage 

changed as the representation moved from tables to graphic diagrams.   

 

 

                                                 
6 In our contemporary social science and public usage, a table is normally read downwards with 

time, which may account for the fact that when social scientists began to adopt graphs as a mode 

of representation for phenomena in historical time around the third quarter of the nineteenth 

century, time was often on the vertical axis.  Conventions here were only settled in the last 

quarter of the nineteenth century within a history of serious discussion of such methods (see 

Maas and Morgan 2002).  The convention that historical time is visualised left to right on an 

historical graph may be associated with direction of text reading; there is some evidence that in 

societies where text is read right to left, it seems more natural to read time in that direction too 

(see Tversky, 2004).  On the other hand, other conventions reign in other fields.  Geological 

strata maps depict geological (historical) time going vertically upwards. Sheredos et al (2013) 

provide examples of biological graphs in which time is on both axes (eg vertical is time of day, 

and horizontal on successive days).  The seminal study of the history and development of time-

series graphs across the sciences is Klein, 1997 
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Figure 1 Juglar’s Table-Graph.  He depicts, in a table with a sketched graph 

beside it, the circulation of money and credit cycles in and out of the Banque of 

France over the 19th century. 

 

 

Source: Clement Juglar. 1862. Des Crises Commerciales edt de leur Terour Périodiqueen France, 
en Angleterre et aux État-Unis. 2nd Edition, 1889. p154.  Paris: Guillaumin.   
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Figure 2 Bowley’s Development of Tables to Graphs.  He converts the Table (a) 

of the marriage rate and trade into Graph (b) (his figure I) and then makes their 

relationship visible in another Graph (c) (his figure III). 
 

(a)                                  (b) 

 
 

(c) 

 

Source: Arthur L. Bowley. 1907. Elements of Statistics. Table p.174; Figures I and III p.175 

London: PS King & Son.  
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Graphs emerged as a form of diagram particularly helpful for depicting data of 

phenomena that can be ordered over time, or space, by some other ordered 

property.  In the fields of the examples used here, such diagrams often relied on 

the availability of data collected by the state (thus the important root of the term 

‘statistics’), such as demographic data, financial data, trade data etc., all data 

that were thought to be significant for the state, and which, during the 

nineteenth century, became public information rather than secret (see Nikolow 

2001). While the contrast in these two figures epitomise differences between 

tables and graphs and so the nature of diagrammatic representation more 

generally, there were - as always - significant precursors as shown in Figure 3 

(a and b).7 They are well worth mentioning here because they point to 

something more general about the use of 2D space: and to what is, and to what is 

not, involved in inducing visibility by creating and using diagrams.    

 

Joseph Priestley, notable chemist and man of letters of the mid-late eighteenth 

century is often credited with inventing ‘the graph’ in his immensely ambitious 

2-D display, along a horizontal historical time line (or axis), of the names of 

notable philosophers, statesman, religious men, mathematicians etc.  While 

such a graphic of history (only a small section of which is shown in Figure 3a) 

reveals which individuals overlapped in time, there is no meaningful order on 

the vertical axis, merely categories of fame which lie stacked on top of each 

other.  This may have served as a revealing representation in showing who lined 

up with whom at some historical time period, but its reasoning and inferential 

possibilities are limited because there is no vertically expressed order or scaling 

that would relate the categories.  In other words, it does not make full use of the 

second dimension of the representational space.   

 

  

                                                 

7 The most famous graphic of this fruitful late nineteenth-century period is Charles Minard’s 

1869 diagram of Napoleon’s ill-fated Moscow campaign. This turns the known facts of the 

campaign into a visual representation, of which, more later. 
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Figure 3 - Organising Visually, Using 2D Space 
 

a) Small fragment of Priestley’s massive biography chart showing: two vertical 

sections of ‘statesmen’ and ‘men of learning’ and time segments horizontally from 

BC650 to AD50. 

 

 

Source: Joseph Priestley. 1765. A Chart of Biography. London: Johnson 

 

b) One of Playfair’s many graphs of economic relations: plotting the trade 

between England and Denmark plus Norway vertically and the time period 1700 

to 1780 horizontally to show how the ‘balance’ switched to be favourable to either 

side. 

 

Source: William Playfair. 1786. The Commercial and Political Atlas. 3rd ed. edition 1801 
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In contrast to Priestley’s display, we have the set of diagrams created by William 

Playfair (engineer, political economist and possible secret agent), credited as the 

inventor of statistical graphs in the early nineteenth century for developing 

genuine 2-D statistical graphs in political economy using data on trade, prices, 

and so forth.  With both axes informative, and with time on the horizontal axis, 

we see how diagrammatic representations use both dimensions of the 2D space 

in ways that both reveal states of affairs and offer possibilities of reasoned 

inference.  Figure 3b is one good example from Playfair’s work, showing two 

simple lines which not only reveal visually the path of two different elements 

(which might indeed have been gained from a table) but also reveal - without any 

tedious comparison (let alone addition or subtraction on the part of a table-

reader) - the ‘balance in trade ‘between the UK and two Nordic countries.  In 

this period of the late eighteenth and early nineteenth centuries, such a balance 

of trade was a critical question, both in terms of evidence and for theorizing by 

the political economists of the day, as well as extremely salient in the public 

domain.   

 

Other kinds of examples offer the same revealing and inferential resources.  

One such is the set of diagrams produced by August Crome in the early 

nineteenth century to depict the relative strength of states in ways which 

replaced both words and numbers.  These diagrams (examples are shown and 

discussed by Nikolow, 2001) have features of both tables and maps, but are 

neither: they use relatively-sized rectangular spaces and circles in the 2D space 

to provide a visual comparison of the relative resources of the different European 

states in order to reveal their relative political and economic power.  Other 

graphs depend neither on time nor space in their use of graphs, but on other 

features of phenomena that can be ordered along two dimensions.  Woody (2014) 

for example discusses graphic representations in chemistry of the periodic law, 

ordering atomic weight versus atomic volume on the two axes. 
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2.2 Indicating and Revealing  

I want to pick up two points from these first examples of inducing visibility.  

First, the line between indicating and revealing in creating diagrams is thin 

indeed.  They cannot really be separated, for the scientist in choosing how to 

represent things in a diagram both indicates and reveals hidden or non-obvious 

information in the relative position, variations, and sizes of the lines in a graph 

or shapes in a diagram.  Second, these indicating and revealing roles depend not 

only on the use of both dimensions of the 2D space in depicting those things, but 

also on the metrics used in the representations; care with both are needed to 

indicate patterns, relatives and relationships.  The spatial aspect is naturally 

important - both dimensions are important otherwise there would be no payoff 

from working with the resources of 2D and in employing visual reasoning and 

judgement.8 The metric aspect itself has two elements: one is the choice of 

metrics in scaling; and the second is the topological aspect.  Diagrams of 

empirical materials depend on both aspects, and thereby, of course, on the skills, 

knowledge and choices of the scientists in developing such metrics for their 

subject matter in order to make their diagrams a revealing technology and a 

useful or usable tool.   Diagrams don’t draw themselves (even with big data, 

machine learning, and automated computer programmes: someone has written 

the initial code and filled in the parameters).  And nor do diagrams use 

themselves.  Rather, diagrams are made and shared within a community of 

scientific users, usually with highly specialised diagrams particular to usage in 

that community.  Despite this, there are generic points to be made.   

 

Marcel Boumans (2016) recently argued for the importance of visual judgements, 

or rather the eye as an expert, in the ways that scientists frame statistical 

numbers and fashion them into lines in diagrams.  Almost never in the social 

                                                 

8 From this point of view, the schematic diagrams which join up labelled boxes with arrows found 

in parts of biology and the social sciences to depict causal relations, mechanisms, and pathways, 

do not make full use of the dimensionality potentialities of the 2D space.  Because they do not 

make full use of any metrics nor subject structure in form-content, they ‘float’ on the paper, 

limiting reasoning possibilities, as will emerge later in this paper.   
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science fields that concern Boumans are raw data presented directly in 

diagrams.  He gives a detailed account of the processes of treatment and 

manipulation that result in the time-graphs that were constructed by their 

innovator, Warren Persons, from business-cycle data and regularly used by 

economists and market commentators in the 1920s (see Figure 49).  The lines 

are the result of elaborate processes of composing together separate time-series 

data on different financial and economic phenomena into composite indicators of 

the business cycle.  That composition process depends on rules that are 

mechanical and ingenious as well as on visual judgements.  The individual 

numbers - the ‘items’ that make up the statistical data series - are already firmly 

ordered in time.  They cannot be taken out of time order, but they may have 

particular time-based variations (eg seasonal variations) removed from them.  

And each series can be related to others in the same space - but not necessarily 

exactly for the same calendar time as measured along the horizontal axis - for 

some series ‘lead’ the cycle and others ‘lag’ behind.  The lines joining up the 

treated numbers were represented in accordance with the (by then) established 

conventions of graphic work on this topic, with time on the horizontal axis and 

scaled vertically to be above or below a ‘trend’ line of the economy over time.  No 

longer raw numbers, interwar economists took these lines to represent the 

business cycle: for, as the OED definition suggests, these several associated lines 

of marks “represent symbolically the course of results of any [...] process”.   

  

                                                 

9 This particular example is from one of Persons’ collaborators, W.L. Crum. 
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Figure 4 Revealing Data Patterns:  Composing the mess of individual economic 

indicator series into a graph to uncover business cycles in the first ‘business 

barometer’. 

 

 

Source: Crum, W. 1925. The Interpretation of the Index of General Business Conditions. Chart 

14, p222. The Review of Economics and Statistics, 7, 217-235. 

 

Whereas Boumans is interested in how visual judgements are used to create 

those lines in a reliable way, that is, in the processes of turning raw observations 

into organised and meaningful lines on the graph; I am more interested here in 

the revealing aspects of the resulting diagrams, and so the sense that those 

scientists gained of the phenomena of interest they were aiming to represent.  

That is, the eye used not as a measuring judge, but as an instrument of 

perception and inference: of sense-making, and pattern recognition.  The 

business cycle was an ill-defined phenomenon in this period, and visual 

representations of this type were the result of following community views both 

about what it did not involve (not seasonal variation, not long-term trends), and 

what it did involve: a number of economic aspects that interacted or interrelated, 

but were not clearly described by any agreed causal mechanism or neat theory.  

The lines of marks in the diagrams revealed by Persons’ complex treatments 

(such as in Figure 4), suggest both the regularity and irregularity of the 

processes of economic activity, and their heterogeneous elements.  Their spatial 

form - in sets of curves moving together and apart over time, with different non 

regular and complex variations - offers the most succinct form of how economists 

described and understood the empirics of business cycle phenomenon in the early 

twentieth century.   
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These lines in combination formed what was called a ‘business barometer’, an 

inference tool for the community to predict the timing of future changes in the 

economy.  Use of this diagram as such a diagnostic tool was based on the 

confidence it provided in mapping or tracking the past history of the economy 

according to those lines.  We can see clearly here the difficulty of treating the 

diagram as a revealing diagram separately from its inferential possibilities for it 

fulfils both functions at once.  As Boumans suggests, the whole process of 

creating and using the barometer is a work of “graph-based inductive reasoning”.  

 

Boumans also points to alternative (and sometimes complementary) forms of 

manipulation and assembly for such data lines that rely on topological 

manipulation,10 that is, on stretching or compressing the lines so as to keep the 

same topological relations (as in caricatures) rather than by composing or 

decomposing the data series according to its time-component elements.  For 

both approaches, the purpose is to reveal, and make inferential use of its 

components.   

 

We see the topological work in Figure 2c, an example which comes from Arthur 

Bowley’s work of the very early twentieth century.  Bowley (one of the pre-

eminent social statisticians of the period, renowned not just for the introduction 

of random sampling, but perhaps the first statistical textbook for social 

scientists) figured out means to transform two data series to induce visibility of 

their relationship by creating a diagram in which inference might be drawn 

between the relative variations (not absolute values) in these two factors.  This 

involved going further than charting the table of numbers for the marriage rate 

and trade (from Figure 2a to Figure 2b).  In Figure 2c, he transformed the 

data, and reconstructed the chart to depict the two series on a base line 

representing the average value in both series, and adjusted the scales on the two 

sides to show the closest match for their variations (particularly the positive co-

                                                 
10 Topological manipulation, and its cognitive aspects, are explored for cases in mathematics in 

Giardino (2018). 
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movements in the later part of the graph).  Following this topological treatment, 

the new diagram reveals co-variations that were hardly visible in Figure 2b.  

While Bowley’s method can be interpreted as a graphic method of correlation 

(based on the technical manipulations and representation made), the outcome is 

not a single number but rather a spatially depicted relationship on the diagram 

which shows far more information about that relationship than the equivalent 

single statistical correlation coefficient would do (see Morgan, 1997).  Even 

though that correlation coefficient makes use of all the same data and so 

contains all the same amount of ‘information’ as the diagram, the latter offers a 

more revealing technology by making full and effective use of the dimensions of 

the 2D space.   

 

 

3.  Spaces and Dimensions of Reasoning  

The possibilities of reasoning with and from these kinds of diagrams raises the 

question that Larkin and Simon (1987) address in asking when reasoning with a 

diagram is better than reasoning with 10k words.  They argued that a 

diagrammatic form of representation is better (more “efficient” in a cognitive 

science formulation) for solving problems than a sentential representation when 

- I infer from their overall treatment - a) the material at issue can be spatially 

depicted and involves items that relate easily in a diagram but are difficult to 

relate easily and efficiently in sentential languages; and b) when the reasoning 

involved with the relations does not work easily in sentential form.  It is 

significant for this paper to note that for them “a representation consists of both 

data structures and programs operating on them to make new inferences” (p65), 

that is, it is not just the diagram’s form, but the operations that can be used on 

it, that matter for answering questions with a diagram.  Like Boumans they 

privilege the eye - but for them, the relevant property of the eye lies in enabling 

perceptual judgement about relationships rather than in judging smoothness 

and shapes of phenomena from numbers (the focus of Boumans’ discussion).  

Their point is that “efficiency” in “search, recognition and inference” depends on 
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a combination of the eye and the diagram, to obtain “perceptual results” at 

almost “zero cost” (p92). Their argument is buttressed by a thorough analysis 

using their two main examples of pulley systems and geometric proofs, which 

involved translating those diagrammatic depictions and associated reasoning 

tasks into equivalent sentential modes of representation and problem-solving.  

 

Larkin and Simon distinguish, with their examples, between diagrams that 

“describe systems in real ... or ideal” spaces, and graphic diagrams which they 

label “artificial diagrams” ie ones which “do not describe any actual spatial 

relationship” (Larkin and Simon, p 93).   I suggest it is better to label the latter, 

not “artificial diagrams”, but ‘diagrams in artificial space’.  Let me explain: from 

Larkin and Simon’s viewpoint, a map is a diagram of a real spatial system, a 

pulley can inhabit real space - so both can be described in a diagram in a 

similarly spatial world; that is, these diagrams map spatial dimensions of the 

object onto spatial dimensions in the diagram.  A geometric diagram inhabits an 

ideal spatial world, the abstract ideal world of mathematics.  In contrast, many 

diagrams drawn by scientists do not depict materials that exist in any real 

spatial system, but rather these scientists create artificial spaces, where the 

shapes and relations of their subject matters - that are not literally spatial - can 

be represented spatially into a 2D format.  Thus the messy graphs of statistics 

of the business cycle, or the circles and boxes of comparative power of European 

states, are each drawn into an artificial space constructed on paper to represent 

something in the world which is not inherently a spatial system.  The space of 

the human and social scientific diagrams of Figures 2 to 4 involve artificial 

spaces in which the numbers coming from a complex human and social system 

are used to depict lines or areas.  The axes provide the grounding for the 

relative positions of the lines and shapes; and by making such decisions about 

how to depict their materials, the scientist creates, describes and limits an 

artificial space which enables inferential or deductive reasoning about the 

objects depicted within that artificial space.  I stress that there is no one kind of 

artificial space.  Each kind of artificial space is constructed by a scientist or 
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their community when they choose to depict their subject matter in 

diagrammatic form.11   

 

The critical point I take from Larkin and Simon is their conclusion that such 

diagrams in artificial spaces are as equally open to ‘perceptual’ enquiry as those 

in real and ideal spaces.  Diagrams in artificial spaces can prompt recognition, 

and perceptual judgements, that enable the scientist to answer questions about 

their materials that it would be almost impossible to answer, and more 

important - perhaps not even arise - in other forms of representation.  And, 

when diagrams can make use of 2D space to depict relations, it may also be that 

those diagrams can be used to solve problems framed in that space more 

effectively than in using a large number of words (Larkin and Simon’s claim), or 

more than a long list of numbers in a table.   

   

But such diagrammatic enquiry is only possible, and hence potentially 

productive, when the visual form in which the scientific subject matters are 

represented gives them, and can make use of, spatial properties.  For example, 

Priestley’s diagram (Figure 3a) does not activate such perceptions or productive 

inferences because - as I pointed out - it does not make full use of the spatial 

properties of the vertical dimension.  The important contrast seen in the 

diagrams of Figure 2b/c, 3b and 4 is that they make use of both dimensions of 

the space: having productive vertical axes means the diagrams can reveal the 

variations in each line, the relative movements of the different lines, and the 

relative lack of smooth behaviour.  None of these can easily be captured in 

words or sufficient statistical measures, showing how a diagram in artificial 

space can be a better format of representation for interrogating those traces of 

evidence.  As is evident from the contrast between 3a and 3b, the artificial 

space of a diagram needs to be structured in some way to enable the diagram to 

                                                 
11 For example, Perini (2013) examines the kinds of diagrams and schema that biologists 

habitually use and classifies them according to their content and form; Sheredos et al (2013) offer 

another analysis of biological diagrams according to their functions.  Some of these diagrams use 

artificial space, and others real, though this characteristic is not part of their analysis. 
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be grounded for use in that space.  And as is evident from the comparison 2b 

and 2c, there are various ways to do that. 

 

As we have already seen, the most obvious way in which 2D space is structured 

is by some form of axes, whether scaled or merely ordinal.  At first sight, this 

does not seem to be very flexible and, neither do the modes of reading that space, 

for Krämer points out that the basic ways in 2D space can be read: up and down, 

right and left, and centre and periphery are not “interchangeable” (Kramer, 

2016, p210).  But even so, there is considerable flexibility in what can be 

depicted - both in terms of the myriad number of things that can be put into the 

diagram, and in the different content forms of depiction.   

 

To start with, the two dimensions of 2D space do not constrain the scientist to 

depict only two aspects of their materials.  Minard’s famous 1869 graph of 

Napoleon’s Russian campaign, much lauded in Edward Tufte (1983) is a mixed-

space diagram.  It is partly one of real space (because of its qualities as a map in 

which distances provide the basic metrics for the graph) and partly uses artificial 

space in depicting the size of the army (as depicted by the width of lines on the 

graph) and temperature (depicted at key points in the campaign in a time-series 

graph below the distance graph/map).12   All this information could have been 

given, and surely has been, in verbal formats, but the succinct form of putting all 

these separate bits of evidence together has tremendous revealing power.  The 

main point is not that you could not make the arguments or reveal the 

components in another form: historians have undeniably done so in sentential 

form in this case - but that, applying Larkin and Simon’s main point here: the 

diagrammatic form is much more efficient for revealing the problems that beset 

the campaign, and for making inferences about the factors that lead to 

                                                 

12 We might be tempted to suppose that temperature is depicted in a real space diagram, but we 

are really referring to the indicator on the measuring instrument for temperature, ie to 

conventional numbers on the thermometer. Just having numbers as a good measure of 

empirically accessible things (size of army, temperature) does not mean that the phenomena to 

which they refer are spatial phenomena and so are diagrammed in real 2D space. 
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Napoleon’s defeat.  Tufte argued that “it may well be the best statistical graphic 

ever drawn” ((1983, p40).   

 

Minard’s diagram helps us to recognise that the 2-dimensionality of a 

representational space (constrained by the surface on which a diagram is drawn) 

is not necessarily a constraint that means a scientist can only recognise or 

reason about the relation or parallels between two different things, either in the 

empirical domains (discussed above) or in the abstract or theoretical domains (to 

be discussed later).  We have already seen in the statistical graphical diagram of 

Figure 4 using artificial space, that a flat 2D artificial space can be used to 

depict many items when all are ordered in time (and even at different time 

delays), and they can show associated series and possible relationships between 

many more than two factors, just as the pulley system depicted in real space can 

have many elements.  Time and mechanical connections offer two kinds of 

orderings or relations found in many different subject matters using real or 

artificial space that can be depicted onto a 2D surface.   

 

In practice, the spatially structured possibilities of 2D space are actually very 

flexible, not just for the depiction of many things, but for depicting many 

different characteristics of something, and for depicting many different kinds of 

relations or properties of those things.  In one, possibly extreme, example: 

architects’ diagrams are concerned with depicting the physical aspects of things 

in three dimensions onto 2D space, and do so in relation to human scales, so 

architects’ design diagrams can be considered mainly diagrams of real space.  

But they can also show many additional elements: using shape, size, position, 

and direction to depict not only walls, rooms, etc, but also indicate human 

experiences of sound, light, heat, wind and rain patterns, as well as human 

concerns such as privacy (see Do and Gross, 2001).  An equally fruitful example 

comes with diagrams of crystals.  Elkins (1999, Chapter 2) dissects the many 

different ways in which crystal diagrams use the full possibilities of 2D real 

space to reveal different 3D properties by using different conventions of 



21 

 

representation.  His historical survey runs from drawings of actual crystals in 

the early eighteenth century, through depictions of how crystals fit together 

(including diagrams of crystals’ ‘habits’), and in parallel and stereographic 

projections.  Some of these representations are drawings, some are diagrams of 

idealized forms, and each form of diagram offers different insights into the 

properties of crystals.   

 

These are just two specialist field examples, but the possibilities are 

considerable, and now extended with computer graphic methods.  Elkins, in his 

(Chapter 13) discussion of schemata (the category that is closest to diagrams 

here) refers to the use of axes, scales, lines, nets, grids, rulers and lattices, on 

which can be drawn circles, trees, columns, bars, and nets as well as lines and 

points.  The social sciences produce decision trees, network diagrams, flow 

diagrams, causal chains, etc, all of which are fitted into, and grounded in, 2D 

artificial spaces.  Figure 5 depicts two examples of such diagrams to indicate a 

little of the vast variety.  Figure 5a depicts a group structure of a ‘street corner’ 

gang from William Foote Whyte’s analysis of a North Boston slum in the 1930s.  

Formal axes are absent, but the social hierarchy is completely obvious in this 2D 

artificial space.  Figure 5b provides a diagram from a parallel study of social 

groups in a Southern black/white town in the same period.  It maps individuals 

in the black community into their social groups.  The grouping uses age 

(horizontally, like time) and class ranging from “LL” (lower lower class) to “U” 

upper class, (vertically expressed by convention) to depict the membership 

characteristics of different special interest groups or ‘cliques’.    
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Figure 5 Group and Caste Maps: Using the 2D to depict social relationships 

 

a)Whyte’s map of the relationships of individuals in a ‘street corner’ gang in 

Boston in the late 1930s. 

 

 

Source: William Foote Whyte. 1943. Street Corner Society: The Social Structure of an Italian 
Slum. From Chapter 1, p13. Chicago: University of Chicago Press.  
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b) Davis, Gardner and Gardner’s map of the social stratification amongst the 

African American community in Mississippi in the early 1930s, arrayed by age 

horizontally and by class (Upper down to Lower Lower class) vertically. 

 

 

Source: Allison Davis, Burleigh B. Gardner and Mary R. Gardner (1941) Deep South: A Social 
Anthropology of Caste and Class.  Figure 13.  Chicago: University of Chicago Press.  

 

At this point I return to my main argument to make the next step.  Diagrams in 

artificial space do not depict spatial relations between objects in the world, such 

diagrams use artificial space to depict and reveal other kinds of relations.  So 

long as these presented relations in the diagrams are constructed to use the 

properties of 2-D space, they can potentially fulfil Larkin and Simon’s argument 

that they provide for efficient problem solving.   But such problem solving using 

the resources of such diagrams in artificial space does not necessarily lead to 

inference beyond the diagram to the real objects and relations depicted in those 

diagrams.   
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Making inferences with diagrams depends on subject matter knowledge of course 

(it always does).  Much of the time, scientists make inference within the diagram 

about the relations between the objects depicted in the diagram: that is about 

what is being revealed, in patterns, in co-movements, etc. and about what can be 

argued for given the reasoning using the diagram.  More problematic is any 

inference made from the results of either empirical or theoretical reasoning made 

in using the diagram back to the world, that is, to the system, objects, and 

relations depicted in the diagram.13 This is a big topic, but it seems reasonable 

to suggest that while some inferences from diagrams using real space might be 

feasible, it is likely more problematic for diagrams using artificial space.  

Downes (2012) argues (for diagrams generally) that inference from diagrams is 

more difficult than from images such as photographs of various kinds, because 

the latter offer ‘direct representations’ which depict (and in some way look like) 

the object that they represent.  Diagrams don’t represent in this ‘direct’ way, 

rather they are “inferentially distant from their objects” (Downes quoting 

Roskies, 2012, p 123).  On the other hand, inferences from diagrams might be 

more ‘legible’ than those from images such as photographs, because lots of 

(arguably unimportant) details are omitted in the diagram.  This certainly 

seems to be relevant to inference within the diagram. However, this benefit does 

not extend to inference back to the world in any immediate sense.  Diagrams 

can clarify the hypotheses about what happens in the world either empirically or 

theoretically but these hypotheses from diagrammatic reasoning may have to be 

carefully examined with other methods of science in order to make valid back-to-

the-world inference, particularly when the space of the diagram is artificial.14    

                                                 

13 Of course, such ‘back inference’ is in any case problematic for all sorts of scientific research not 

just that using diagrams - very obviously with model work and case work, but even for 

experimental work, where the strict controls in the lab may make inference beyond the lab 

difficult.  There is a large literature, part surveyed as the problem of ‘resituating knowledge’ in 

Morgan (2014a). 
14 Diagrams in mathematics might be different, for here inference within the diagram does not 

need to be inferred back to the world, but rather remains argument and proof within the 

diagram: now understood as deductive rather than inductive proof.  Of course, diagrammatic 

work in mathematics may support broader theoretical work at a more generic level, as perhaps in 

knot diagrams in which case inference or deduction can be within and beyond the diagram to 

speak to more general mathematical claims (see De Toffoli and Giardino, 2014).  But those 
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4.  Visualizing and Visual Deduction 

While many sciences have relied on the inductive use of diagrams using 

empirical resources, scientists have also developed their own forms of diagrams 

to encourage visual deduction.  These practices of visualizing involve the 

construction of diagrams to represent the imagined relations or hypothesized 

objects and phenomena of their sciences at a theoretical level.  They are 

widespread in the sciences, many using artificial not ideal spaces, and usually 

highly specialised to a community of scientists.  Usage of such diagrams 

involves not so much recognition in empirical materials of shapes, movements, 

changes and so forth over time but rather envisioning in diagrammatic form the 

properties, behaviour, causes and associations that are involved in abstract, 

conceptual or theoretical materials in order to reason about those materials.  In 

the context of a study of the history of graphs, Judy Klein has labelled the kind 

of arguments made with these theory-concept diagrams as reasoning about 

“logical time law curves” (versus the analysis of “historical time fact curves” of 

the type discussed earlier in this paper).15  She refers here to the reasoning 

about the possible things that can happen in these scientifically imagined 

worlds, where these ‘logical’ changes are determined by the scientists’ theories 

about the phenomena as represented in the diagram.  Reasoning with these 

theoretical-based diagrams enables scientists to explore the content of their 

theories, suggest new hypotheses or close off others, and so forth.  

 

The classic example of these theory-based curves in economics are the supply 

and demand diagrams that Alfred Marshall drew in the 1890s shown in Figure 

6.  The creation of such diagrams first of all involves imagination about the way 

                                                 

direct mathematical deductions are surely different than using knot diagrams to model idealized 

DNA diagrams, in which case inference from the ideal space mathematical diagram to the 

artificial space source field diagram of DNA is a ‘back inference’ problem that requires other 

support (see Priest et al, 2018).    
15 In fact, Klein (1995) offers a four way analysis of diagrams, drawing on many historical 

examples in science going back to Nicholas Oresme, but the main force of her argument is based 

on eighteenth and early nineteenth-century examples including the seminal forms developed and 

used by Johann Lambert, James Watt and William Playfair.   
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the world is, and how it works, to depict the range of possibilities in the different 

shapes of the curves (see Morgan 2012, and 2014).  Their subsequent usage 

involves a different cognitive practice from either perception or making eyeball 

judgements, but one that appeals to visualizing skills to make deductions 

visually from working with the diagrams. 

 

Figure 6 - Marshall’s Visual Deduction with Diagrams in Supply and Demand 

Theorizing 

 

 

Source: Alfred Marshall. 1890. Principles of Economics.  London: Macmillan.  Book V, Chapter 

XIII, Figures 24-6, Note 1, p. 464; Figures 27-9, Note 1, p. 466.  Reproduced with 

acknowledgement to Marshall Library of Economics. 

 

Interestingly, Larkin and Simon use these very same Marshall diagrams as 

examples of their “artificial diagrams”, although as I suggested above, it makes 

more sense to refer to these as ‘diagrams in artificial space’.  Using imagination 

to give form to such theoretical ideas in 2D artificial space requires adopting 

some metric, or device, in which to pin down the diagrammatic structures within 

that artificial space.  Real space diagrams such as geographical maps are 
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pinned down by the 2 and 3 dimensions of the real space depicted in the 

representation: the north/south/east/west dimensions, and the topographical 

height lines. Geological maps use 2D real space to chart layers of different strata 

beneath the surface that lie over each other.  In contrast, and at first sight, 

these late nineteenth-century diagrams from Marshall appear to be 

unconstrained by any feature that pins the diagrammed objects into the artificial 

space they inhabit; there are no obvious metrics or topology compared to those 

found in the earlier examples of statistical graphs. But just because a space is 

artificial does not mean that its space is arbitrarily defined; rather the space of 

such a diagram is defined or pinned down by the concepts, definitions, and 

theories of the subject matter of the science.   

 

In terms of depiction, the curves in Marshall’s diagrams, represents how 

economists hypothesize that consumers and producers imagine they might 

behave, with quantities on the horizontal axis and prices on the vertical (see 

Morgan 2014).  The market-level SS supply curves depict how economists 

hypothesize producers (as a group) might respond in changing their supply as 

prices rise and the market-level DD demand curves depict how consumers (as a 

group) might respond as prices change.  The supply and demand curves depicted 

therefore occupy an artificial space defined by the relations of prices and 

quantities, both envisaged on an ordinal scale on the axes - the diagram enables 

the theorized behaviour of consumers and producers to be depicted together.  

These abstract, concept-based, diagrams developed out of earlier descriptions of 

the ‘laws of supply and demand’ which were verbally couched using arithmetical 

terms describing consumers and producers responding to higher or lower, rising 

or falling, prices.   

 

Using such diagrams requires a degree of imagination along with a facility for 

deductive reasoning to explore the hypothesized relations using the 

diagrammatic resources.  For economists, this exploratory-explanatory 

reasoning uses the theories of supply and demand behaviour to explore various 
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possible reasons (or hypotheses) for changes in the curves, tracing through the 

steps of the argument to an outcome using the diagrams of Figure 6.  (For 

example, these could include a change in income that changes the DD curve’s 

position, or a change in technology that shifts the SS curve.)  Marshall himself 

asked four questions with each version of the diagram: what would happen if the 

demand curve shifts up or down (ie changes the quantity demanded for all 

prices); what would happen if the supply curve shifts up; and what happens if 

there is a tax on the good (so as to increase the price)?   I have described these 

processes of usage elsewhere as ‘model experiments’, experiments that involve 

deductive reasoning by manipulating the diagrammatic model.16  Some of these 

deductive visual experiments were done by Marshall physically drawing the shift 

in the curves in the 2D space of the diagram; others were done as mental spatial 

deductions, only possible because the answer had become obvious from the 

previous visual diagrammatic reasonings.   Priest (2018), in writing about 

Darwin’s invitation to readers to imagine different scales on his ‘tree of life- 

diagram, refers to the such mental visual reasoning as “manipulative 

imagination”, an apt label for a practice once a diagram has become well 

accepted and used in a community.17  Giardino (2018) uses that term in 

discussing experts’ reasoning with knot diagrams in mathematics; and she also 

introduces the term “representational affordances” to provide a sense of the 

enabling possibilities of diagrams.  Diagrams prompt the manipulative 

imagination, but at the same time they anchor and constrain the manipulations 

that are possible.  The visual deductive reasonings with the diagrams of Figure 

6 gave Marshall a testing ground for his theories in figuring out what kinds of 

                                                 

16 See Morgan, 2012, Chapter 7, and before that, Morgan, 2002 on model experiments.  I would 

not want to call the exploratory work done in these kinds of experiments on diagrams 

representing theoretical claims as counterfactual since these are not ‘fact-based’ diagrams. There 

are fact-based experiments done on empirical diagrams in economics, some of which might count 

as counterfactual, but are more usually referred to as  ‘scenarios’ or ‘simulations’. 
17 One might have used the term ‘thought experiment’ here, but ‘manipulative imagination’ 

works better because the diagram both constrains and anchors the reasoning, and so the 

manipulations that are possible. 
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things might happen in an hypothesised world whose relationships and 

behaviours were pictured in the artificial space diagram and tracked in its usage.   

 

The manipulative possibilities, both on the diagram using the diagram, and 

mentally in thinking with the diagram, are key to the claim of deductive 

reasoning.  Such reasonings may also involve mathematical operations.  Once 

again it is worth emphasising that this is not a particularly social science mode, 

but rather a generic mode of using diagrams within the sciences wherever the 

diagram affords the use of mathematics at certain points.  For economists with 

their diagrams, it was a simple step to indicate optimum points by depicting 

tangencies to curves: thus bringing mathematical reasoning into the argument, 

where it was efficient to do so.   Chao (2018) discusses how geographers 

(between the 1820s and 1930s) created and understood their location theories 

directly in terms of ideal geometric shapes: concentric rings, triangles, and 

hexagons; and then reasoned about the properties of location in terms of such 

ideal mathematical spaces.  He points out how later economists reversed the 

process to argue from their mathematized theories into spatial interpretations in 

diagrammatic form.    Wise (2017) discusses how visual simulations of the 

processes of chemical bonding rely on diagrams based on mathematical models to 

explore the multiple paths to such bonding using computer simulations.  Priest, 

et. al. (2018) discuss how the DNA double helix diagram was first reasoned with 

by depicting its 3D qualities in a 2D space using linking struts and up and down 

arrows.  As they tell it, knot diagrammatic methods of manipulation were 

subsequently applied to the DNA double helix diagram, but only following some 

discussion with the mathematicians as to whether the subject content of the 

DNA diagrams allowed for such mathematical treatment.   

 

Diagrams - as other forms of representation - both ‘constrain’ and ‘afford’.  

Reasoning with diagrams, both physically and mentally, offers a demonstration 

system for exploring theoretical possibilities about the phenomena, not an 

illustration system of what is known about the world.  Such deductive inference 
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is a process of using the diagram to learn about what the diagram can and 

cannot teach the scientist about the nature of the imagined world, not a 

visualization that could easily validate direct or indirect inferences to the real 

world that is being depicted.  Provided that the diagrammatic materials are 

pinned down into 2D space and structured in some way to depict and so 

constrain their relations in ways that are consistent with the subject matter, 

then Larkin and Simon’s claim about reasoning and problem solving with diverse 

kind of diagrams in artificial space work in much the same way as for the real 

and ideal forms of diagrams they analysed.  What is perhaps less evident is that 

each space - ideal, real or artificial - potentially has its own language and 

grammar used by the scientist in working with their diagrams.   

 

 

5.  Modes of Diagrammatic Reasoning 

Reasoning with diagrams - visual deductions - relies on both the content of the 

diagram and its rules of manipulation or operation, both of which are determined 

in large part by the subject matter and how these are imagined and visualised.  

The meanings and rules of behaviour of the subject matter supply the vocabulary 

and grammar of the diagrams.18 For example, the vocabulary of kinship 

diagrams shows the possible array of relationship connections, but analysis 

based on many anthropological studies of different cultures suggests that there 

is more than one system - or grammar - of kin relations that can be depicted in 

kinship diagrams: there are two types (and perhaps an extra half, see Read, 

2013).  The typical European kinship pattern depicts horizontal and vertical 

relations, is ‘read’ downwards (usually) by generation, and allows, for example, 

                                                 

18 Taking a cue from Do and Gross (2001), I use the terms ‘grammar and vocabulary’, rather than 

‘syntax and semantics’, to apply to my discussion of diagrams.  We are used to the idea that 

there are separate rules and practices of both grammar and vocabulary, and it is well-understood 

these gradually change over time and vary over languages and cultures.  Shimojima (2001) 

discusses 7 different versions of the graphic/linguistic pairings, included Goodman’s (1976) 

account of syntax, itself subject to an interesting critique from Elkins (1999) in his account of 

visual images.  Woody (2000) discusses the units of molecular orbital diagrams as members of an 

‘alphabet’. 
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for several marriages, with children by each marriage.  But there is another 

typical kinship pattern found in other societies, which can best be diagrammed 

with diagonal lines in which the children of one’s siblings count as one’s own.  

Here the grammar of kinship relations provide the rules of construction and use 

of the diagram.  In general, the grammar is not only important to the depiction, 

but outlines the allowable manipulation or operations that can be conducted in 

reasoning with the diagram (and so provides the ‘logic’ that Klein (1995) points 

to).  

 

The subject matter of a diagram, as it is developed and used by the community of 

scientists, feeds constraints and determines possibilities into the operations and 

vice versa.  Once created, the grammar and vocabulary of a diagram do not just 

depict allowable relations and moves, but also determine some that are not 

possible.  So it is not just the diagram, but their grammars and vocabularies 

which are developed within a community of use; and these may not always be 

clearly articulated before they become conventional and unspoken.  Thus, these 

rules of operation and vocabulary are as obvious to those in the community of 

users in the case of the real space diagram of the pulleys as in they are the 

artificial space of Marshall’s diagrams.  In reasoning with the mechanical pulley 

system diagram, it is the kind of standard parts, and structure of the typical 

interrelations of the parts, which enable the user of the diagram to figure out 

what can happen.  This involves using the rules of how pulleys work and how 

the system works to answer questions and solve potential problems about pulley 

systems by reasoning with the diagram.  The rules of how to use the real pulley 

system are different from the rules of reasoning in the ideal space of a geometric 

proof; and both are different from the rules of reasoning based upon the 

grammar and vocabulary of diagrams in artificial space such as Marshall’s 

diagrams.  The user of any diagram needs to understand both the grammar and 

the vocabulary of that system and these will differ between systems.  The 

difference depends not in the nature of the space, but in the subject matters 

depicted and used in reasoning with the diagram.  
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For the business cycle graphs, the grammar may be more clearly defined than 

the vocabulary. Thus the rules for charting and using the lines on such diagrams 

must adhere to the rules for reading and using time-series graphs: time is 

represented on an axis orthogonal to the variables represented, time goes in one 

direction, and the lines are in a timed relation to each other (even if they do not 

all match in time, ie are leading or lagging one of the other lines).  What exactly 

these lines refer to, and so how to interpret them is less clear.  On the one hand, 

it is obvious, for they are data taken from various observatories of the economy 

and treated (as discussed above) to create the lines that reveal the patterns and 

relations between them.  But exactly what the broader inductive space involves 

is much less obvious, for the community of users interprets these diagrams as 

‘indicator’ diagrams and their interpretation in terms of business cycle ideas, 

definitions, concepts and theories remains opaque.   

 

In contrast, in the case of the diagrams of supply and demand, the vocabulary 

and it meanings are rather straightforward to the community as theoretical 

constructions not empirical ones. The curves have clear meaning to them, and it 

is clear also what the points on those curves and shifts in the curves represent in 

terms of the economists’ notions of ‘laws of supply and demand’.  The axes form 

ordinal scales for the two variables of prices and quantities.  It is important that 

the meanings of the curves have implications for the grammar, that is, for what 

are allowable shapes and allowable movements of those curves; not all shapes 

and not all movements are considered possible according to the subject matter 

represented in the diagram.  For example, serious discussions might involve 

questions as to whether the curves could hit the axes, whether they must be 

continuous or could be discontinuous, whether they could be wiggly or not, and 

so forth: issues about the grammar of the diagram.  But in the case of the 

Marshallian diagrams, as with many such theory-driven diagrams in economics, 

there are elements of the relations and so grammar of usage which are also 
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mathematical constructions (such as tangencies to curves) which mean the 

diagrams depend on a mixed grammar.19   

 

The issue here - previously hidden or neglected in worrying about what diagrams 

are - is the emphasis on the operations that are done on diagrams and how these 

are constituted, characterised, and restrained.  Of course, this is equally 

relevant to questions about the different operations on representations which are 

not diagrammatic.  This was the starting point for my investigation: namely 

how decisions about form of representation have implications for the form of 

reasoning used.  As argued in Larkin and Simon (following others, p 68), the 

differences between representations is not about the notations, but the 

operations used on them.  But the important point for me here is these are not 

independent.  Both have implications for the other, as Chao (2018) shows in his 

discussion of cases from the history of location theory in geography.  I turn to 

another example in economics to clarify this by looking at examples of different 

depictions of the same subject matter, using the same vocabulary, but where the 

diagrams are made in forms that embed conceptual differences between their 

objects, and require different operations because their use involves different 

grammars.  

 

Again in the late nineteenth century, three economists developed accounts of the 

relations that individual people (not groups in the market) had with the goods 

they sought to consume - the utility relation.  These founders of this conceptual 

and theoretical shift in what is called ‘value theory’ included, at significant 

points in their writings, diagrams to motivate their ideas as found in Figure 7 

(a, b & c, below).  In one of them, William Stanley Jevons (1871), depicted 

variations in the “intensity of feeling from moment to moment” (p30) as the 

‘duration’ of consumption increases.  This curve of feelings of pleasure and pain, 

                                                 
19 See Morgan 2012, chapter 2, for an historical account of how economists in developing the 

Edgeworth box diagram created the vocabulary and grammar of the diagram in ways that used 

both mathematical and subject matter forms and rules of reasoning. 
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as directly experienced by the consumer, was transposed into utility space (in 

Figure 7a), depicting the same kind of intensity (on the vertical axis) and 

quantity of utility (on the horizontal axis) to be gained from increasing 

consumption of a commodity (with the area under the curve depicting the whole 

quantity of utility).  The diagram was used to show the feelings of people based 

on their psychological response as they increased their amount consumed of the 

good, and to pinpoint the exact point to stop consuming - thus defining the 

marginal unit of the good.  Jevons described and depicted this human behaviour 

in the ‘ideal space’ of mathematics using the calculus to define changes in 

feelings, because for him, the mathematics of his diagram in ideal space mapped 

the ‘real space’ of man’s physiological and mental experience of utility from 

consumption.   

 

Figure 7 - Utility Diagrams: 2D diagrams designed to depict theories of utility in 

ways that enable reasoning. 

a) Jevons’s utility curve experienced by the individual: ‘intensity’ on the vertical 

axis, ‘duration’ on the horizontal. 

 

 

Source: William Stanley Jevons. 1871. Theory of Political Economy. 3rd Edition, 1888. Figure IV, 

p. 49. London: Macmillan & Co. 

 

 



35 

 

Another, Carl Menger (1871) produced the 2-D diagram in Figure 7b.  This is a 

particularly interesting example where the rules of usage - its grammar - is not 

at all self-evident.   It looks superficially like a mathematical matrix, but is not.  

It could be thought of as a 2-D table, but is not quite that either.  Its numbers 

depict not numerical amounts of utility, nor feelings of pleasure and pain from 

consumption of one good as Jevons’ diagram did, but expressed relative 

equivalent values in satisfying different needs with different goods.  The 

vertical and horizontal dimensions were designed to reflect the gradations of 

satisfactions of needs in life to be obtained both from consuming more of one good 

(vertically depicted) and equivalences of each good against a set of different 

goods (horizontally).   Both implied ‘axes’ use ordinal scales.  The point of the 

diagram is not just to depict the menu of possibilities that the consumer faces, 

but to use the diagram to make a number of reasoned points.  The flexibility of 

the diagram enabled Menger to depict not only consuming more or less units of 

the same good (eg, more or less food reasoning downwards), but that these can be 

interpreted as successive values associated with satisfying different needs by 

different usages of the same good (for example, satisfactions gained from Good I 

(water) could be, in descending order of satisfaction, water for drinking, for 

washing, for cooking, for watering the crops, or for one’s dog or horse, etc).   

More significantly, the diagram is used to demonstrate how equivalence 

judgements are made by suggesting how a consumer decides at a certain point to 

stop consuming more units of Good I (to use his example: food) and instead 

consume their first unit of Good V (tobacco) - namely where the satisfactions to 

be gained are equal at (ordinal) value 6.  These equivalences can be followed by 

reading the numbers, but are more effectively seen by visual perception because 

of the alignment of numbers along the diagonals in the 2D space of the diagram.  

To know how to use the diagram requires us to understand the grammar of the 

diagram before we can understand the abstract theses Menger is advancing, but 

before we can understand those abstract claims about his concept of utility, we 

need to know the nature of the relationship between the needs of man and the 

value of different needs satisfied by a good.  A succinct understanding of his 
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theory requires a sense of how all the goods, needs, and values fit together as in 

the relationships depicted in the diagram, and which then enable reasoning with 

those relationships. 

 

Figure 7 - Utility Diagrams: 2D diagrams designed to depict theories of utility in 

ways that enable reasoning. 

b) Menger’s utility schedule of satisfactions of needs as experienced by the 

individual: from goods arrayed horizontally, and each good satisfying different 

needs arrayed vertically. 

 

Source: Carl Menger. 1871. Principles of Economics. 1950 translated and edited by James 

Dingwall and Bert F. Hoselitz. p127. New York: The Free Press.  

 

In a third version, J.B. Clark (1899) created the 2-D diagram in Figure 7c 

depicting the set of different services (utilities), a commodity provides, A through 

F, with the highest value to the consumer coming from A and the lowest from F.  

He argued that the second unit of any commodity used for the same service (eg 

A) will have negative value (Aʹ), so each different good has a vertical line 

indicating the positive value of the first unit of the service and its second 

negative unit (a second overcoat over the first might have negative utility). The 

letters could also refer to a bundle of different services that consumer might 

value from the same one commodity.  In that case, the sloping line drawn from 

joining these letters up on the diagram depicts the diminishing amounts of value 

or utility coming from those different services provided from the same good. For 

example, imagine the good is a canoe (his example): A could be the service of 

keeping the person afloat (a service which is satisfied by a certain quality of a 
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piece of wood that floats); B could be the power to move across the water; down to 

F which could be the colour and fittings of the canoe.  For Clark, these services 

were associated with the valuations held by different social groups who would 

demand those services, for each social group sets or decides its own marginal 

value for each service, and so sets the price for those services.  It is all a bit 

more complicated than this, but it is clear already that the use of the 2D space, 

the means of representation, and the practices of reasoning are once again 

interdependent.  And they are very different here in Clark’s account from those 

of Menger and Jevons.   

 

Figure 7 - Utility Diagrams: 2D diagrams designed to depict theories of utility in 

ways that enable reasoning. 

c) Clark’s utility graph experienced by the individual as member of a social 

group: with different degrees of utility vertically, and bundles of different 

attributes of the good/service horizontally.  

 

 

Source: John Bates Clark. 1899. Distribution of Wealth. p232. New York: Macmillan.  
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These three different diagrams in Figure 7 are concept-forming visualizations 

created in conceiving the relations between people and their enjoyment of, or a 

need for, goods (the concept of utility) explored in diagrams of those relations in 

2D space, real or artificial (depending on the scientist involved).  Although they 

all share the notion that the ‘marginal unit’ is the important one in decision 

making, they do not share the same diagram, nor a mode of reasoning: the 

grammar for manipulating and using each diagram is different.  This is 

because, despite bearing the same labels, they do not share the same meanings 

of utility, the vocabulary has different conceptual connotations across the three.  

And they each rely in different ways on their diagrams and those spatial 

arrangements to define and develop their different abstract accounts using a 

number of elements in that 2D space.  What they also share is using a diagram 

not just to help define their notions of utility but at the same time to help them 

to investigate the relations inherent in their concepts.  The differences between 

the three diagrams - and how they can be reasoned with - are critical to an 

understanding of the difference between their theories. 

 

Again, lest this be considered an example that is peculiar to economics, consider 

the case of the history of the periodic law and table.  Woody (2014 and 

elsewhere) shows how there were many different depictions of the periodic law, 

some were diagrams, some were graphs with empirical reference, some were 

tables-cum graphs, some were ‘tables’ which, like Menger’s, did not fit any 

standard format.20 These objects that represented the periodic table or law were 

be reasoned with according the grammar and vocabulary of those 

representations, and their differences were critical to an understanding of the 

differences in theories about that phenomenon.  

 

                                                 

20 The amazing range of diagrams and other artefacts depicting the periodic law, in its 

theoretical and empirical counterparts, that appeared over the history of reasoning about the 

periodic law/table were presented in Andrea Woody’s talk at a Pittsburgh workshop on diagrams 

in 2015; only a small subset are given in Woody (2014).  Woody (2000) also provides a 

informative analysis of the construction, representation, and reasoning associated with different 

molecular orbital diagrams which parallels some of my analyses in this paper. 
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6.  Conclusions 

In considering the usage of diagrams in artificial spaces, such as the empirical 

ones of business cycle evidence and the theoretical experiments with supply and 

demand curves, there might be a presumption (as I suggested at the start) that 

the empirical graphs use one kind of logic for statistical thinking (induction), and 

the supply/demand diagrams use another associated with their mathematical 

equivalents in algebraic form (deduction).  Yet the final examples of utility 

thinking with diagrams suggests we need to be very cautious in assuming that 

any particular form of metrics (statistical or mathematical) provide all we need 

to know to determine the logic of reasoning appropriate for any diagram.  The 

subject matter of a diagram determines not just the vocabulary but the grammar 

of use which elucidates and determines the operations that can be made on it.  

Recognising that there will be such vocabularies and grammars enables us to 

understand scientists’ explorations with their diagrams and thus how those 

activities prove useful to their scientific community. 

 

To illustrate the main point more simply now that it has been made, we can 

usefully compare diagrams with a familiar subset of diagrams, namely maps.  

Diagrams come with keys, like map keys: vocabulary labels which are created 

along with the diagram (see Morgan, 2014 for the importance of this).  In 

economic diagrams, these keys could be labels of empirical materials - such as 

‘the monthly interest rate’ or they could be symbolic forms such as ‘r’ referring to 

the theoretical notion of ‘the interest return on capital’.  For maps, knowing the 

keys provides the vocabulary of the map, and enables a user to see what is 

where.  But to use any map to get around the world, users need to know the 

grammar of the map.  The grammar tells the user how the spatial arrangements 

on the piece of paper are related to the topology and relations depicted in the 

terrain.  Maps come in different forms, and whether the terrain is the flat A-Z 

one of London streets, or the topological one of the Rocky Mountains, or the 

hypothetical one of science fiction - each form will have its own grammar just as 

Figures 7a, b, and c do.  For maps, as for any diagram, the user needs to 
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understand not just how the 2D space of the particular diagram is organised but 

how the objects of the diagram relate, and it is this knowledge of the grammar 

that enables them to use the map for inference and for reasoning.  Similarly 

with a scientific diagram, understanding the grammar enables the user to infer 

from the diagram or to reason with the diagram about the things represented in 

the diagram, be they empirical or theoretical materials.   Maps are 

representations of real space, but the same arguments follow in the artificial 

spaces of diagrams constructed by scientists.  A community of scientists 

visualizing their materials into a diagram in a 2D artificial space must 

understand both the grammar and vocabulary of the diagram they have created 

to use it fruitfully in either the inductive or deductive mode.   

 

Whereas this investigation began with epistemic questions, it appears now that 

the answers have ontological import.  Decisions about diagrams involve 

decisions not just about what to depict, but how to depict it for use, both of which 

affect the way that the community thinks about the things depicted.  As they 

develop and use a diagram, those scientists come to understand those subject 

matters in different ways.  Diagrams may begin life to solve epistemological 

problems, but may have implications for the way those scientists think about 

their materials and subject matters, and so have ontological consequences.21  

 

 

 

                                                 

21 This is a lesser claim than that of world-making that I advanced for the construction of models 

(2012), but by focussing on form and reasoning, it perhaps becomes a more subtle argument. 
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