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Abstract Flood damage processes are complex and vary between events and regions. State‐of‐the‐art

flood loss models are often developed on the basis of empirical damage data from specific case studies and

do not perform well when spatially and temporally transferred. This is due to the fact that such localized

models often cover only a small set of possible damage processes from one event and a region. On the other

hand, a single generalized model covering multiple events and different regions ignores the variability in

damage processes across regions and events due to variables that are not explicitly accounted for individual

households. We implement a hierarchical Bayesian approach to parameterize widely used depth‐damage

functions resulting in a hierarchical (multilevel) Bayesian model (HBM) for flood loss estimation that

accounts for spatiotemporal heterogeneity in damage processes. We test and prove the hypothesis that, in

transfer scenarios, HBMs are superior compared to generalized and localized regression models. In order to

improve loss predictions for regions and events for which no empirical damage data are available, we use

variables pertaining to specific region‐ and event‐characteristics representing commonly available expert

knowledge as group‐level predictors within the HBM.

1. Introduction

Implementation of efficient flood risk management requires accurate and reliable quantification of flood

risk. Flood loss estimation models are crucial in determining monetary losses incurred due to floods

(Bubeck & Kreibich, 2011; Merz et al., 2010). These models need to capture the damage processes due to

flooding using the relationships between incurred loss and its impacting and resisting factors (Merz et al.,

2013; Thieken et al., 2005). Most common flood loss models are depth‐damage functions, which estimate

the loss from the type or use of the element at risk (e.g., residential building) and the inundation depth

(Figueiredo et al., 2018; Gerl et al., 2016). Gerl et al. (2016) categorized flood loss models based on the model

development approach into synthetic/engineering models (e.g., Dottori et al., 2016; Klaus et al., 1994; Parker

et al., 1987; Penning‐Rowsell 1977; Smith, 1994) and empirical models (e.g., Carisi et al., 2018; Elmer et al.,

2010; Kreibich et al., 2010; Nicholas et al., 2001; Thieken et al., 2008; Zhai et al., 2005).

Commonly, empirical flood loss models are developed using damage data from single events covering a small

spatial extent (catchment/region; Chinh et al., 2017, Carisi et al., 2018). These models have the advantage

that they are able to incorporate local‐ and event‐specific differences either explicitly through additional pre-

dictors or implicitly through a specific stage damage function. However, research has shown that models

trained from specific events do not perform well when transferred in space and/or time (Cammerer et al.,

2013). The low skill of such localized models in transfer settings is a consequence of the spatiotemporal het-

erogeneity in the factors influencing building loss during different flood events and process types (Vogel

et al., 2018). Local exposure and vulnerability are commonly affected by predominant building style, house-

hold income, regulations, and flood insurance practice (Jongman et al., 2012). Significant variability in

hazard intensity, such as flood duration, flow velocity, contamination, and sediment load, is generally

observed for different events. Between consecutive flood events, the level of adaptation and exposure can

vary, resulting in temporal variability in damage processes (Kreibich, Botto, et al., 2017).

Flood intensity is influenced by duration of inundation, along with inundation depth (Rözer et al., 2019).

Households experiencing longer inundation duration experience higher building damage (Thieken et al.,

2005). Return period is an indicator of the extremity of the flood event in a given region. Return period is
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positively correlated to flooding intensity and negatively correlated to flood experience (Elmer et al., 2010).

Households in regions experiencing frequent flooding have high flood experience resulting in increased

awareness, preparedness, and widespread implementation of private precautionary measures, such as flood

proofing buildings and sealing oil tanks (Bubeck et al., 2013). These characteristics strongly influence the

damage processes in private households; however, it is quite challenging to collect data concerning these

attributes at the object level (household). Hence, the development of generalized flood loss models suitable

for various regions and events is not trivial. In order to overcome these challenges in the representation of

damage processes, we propose a Hierarchical Bayesian model (HBM) for flood loss estimation using water

depth at the household level as a predictor. This is a probabilistic model that provides uncertainty quantifi-

cation and also explicitly accounts for spatiotemporal variability in the damage processes.

HBMs can be theoretically conceptualized and implemented to account for causal effects in processes (Feller

& Gelman, 2015; Gelman, 2006; Kruschke & Vanpaemel, 2015; Levy 2012). Hence, these models have been

widely used in various fields involving experimental observations or survey data. Sun et al. (2015) implemen-

ted hierarchical Bayesian clustering to identify spatiotemporal trends in precipitation extremes; Ahn et al.

(2017) developed a HBM to forecast seasonal stream flows. Das et al. (2018) showed the potential of using

a hierarchical modeling approach for modeling irrigation withdrawals over the United States, especially

for data‐sparse years. However, as per our knowledge, there are no studies that implemented a HBM for flood

loss estimation.

The localizedmodel considers that each region and event has distinct damage processes that are independent

of the other regions and events. The generalized model assumes that all regions and events have the same

damage processes (given the explanatory variables, i.e., flood loss predictors). The hierarchical (multilevel)

approach aims to achieve a middle ground between completely generalized and localized regression models.

It provides flexibility in defining a meaningful structure to flood loss models. In order to facilitate spatiotem-

poral transferability of flood loss models, the damage processes pertaining to different events and regions are

modeled separately while also accounting for similar processes across regions and events. Bayesian probabil-

istic modeling is used for flood loss estimation because of its inherent ability to quantify uncertainty in the

observations and include it in the posterior distributions of the predictions. A Bayesian approach combined

with a hierarchical model structure provides estimates of uncertainty at the level of individual objects

(household) and groups, that is, events and regions. An additional advantage of the hierarchical approach

is the possibility to include information pertaining to different levels in the hierarchy as explanatory vari-

ables in the model structure. This allows us to use region‐ and event‐related aggregated data or expert knowl-

edge from secondary data sources such as government reports or media and news, pertaining to flood

damage processes to parameterize the model with the intention to improve loss predictions during

spatiotemporal transferability.

In this study, we use empirical flood loss data from six flood events in the Elbe, Danube, Rhine, and Oder

catchments in Germany in order to test the following hypotheses:

1. Implementing a HBM for flood loss estimation captures spatiotemporal variability (regions and events) in

the damage processes better and improves loss prediction, compared to the generalized and localized

regression models.

2. Including group‐level predictors with information representing specific region‐ and event‐characteristics

using expert knowledge improves flood loss prediction of the HBM.

The paper is organized as follows: The empirical data used in this study is described in section 2.1. The func-

tional form and different model structures of HBM and localized and generalized models are discussed in

section 2.2. Methods and metrics to assess model performance are discussed in section 2.3. The best perform-

ing HBM structure is chosen in section 3.1. The HBM, localized, and generalized model parameters are

explained in section 3.2. The development of a HBM with group‐level predictors is described in

section 3.3. The predictive performance of the models and inferences are explained in section 3.4.

2. Data and Methods

2.1. Data

Object (household)‐level empirical flood loss data are available via computer‐aided cross‐sectional telephone

surveys of private households that have suffered from losses due to floods in 2002, 2005, 2006, 2010, 2011, and
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2013 in the Elbe, Danube, Rhine, and Oder catchments in Germany using a standardized questionnaire.

Using the flood masks derived from satellite data (DLR, Center for Satellite Based Crisis information,

https://www.zki.dlr.de/), a list of affected streets was derived. The telephone numbers of households in these

streets were obtained from public telephone directory. The survey campaigns always focused on a single

event and used a questionnaire with about 180 questions regarding aspects of hazard, exposure, vulnerabil-

ity, and residential building and content losses. Water depth above ground level is determined using the

reported water level in the highest affected story by applying corrections based on the presence of a basement

and height of the ground floor. Relative loss to buildings, rloss, is the ratio of absolute building loss (Euro) to

its total replacement value (Euro) at the time of the event (Elmer et al., 2010). Hence, rloss has a range of 0 to

1, where 0 indicates no building damage and 1 indicates total loss of the building. More information about

the individual flood events, the surveys, and their results were published in Thieken et al. (2007), Kreibich

et al. (2011), Kreibich, Botto, et al., (2017), Kienzler et al. (2015), and Vogel et al. (2018). For our study, we

selected from these surveys all data sets that refer to residential buildings with basements (for unbiased mea-

surements of water depth) and for which information on water depth and relative building loss is available.

In the context of spatiotemporal transferability of flood loss models, the event during which the household

experienced flooding is used to group the households temporally and the catchment in which the household

is located is used for spatial grouping. Nine region and event groups with considerable number of completed

data sets (>25) are considered in this study, resulting in total 1,663 data sets. Information regarding each of

the spatiotemporal groups is reported in Table 1.

From Table 1, the events in the Elbe catchment in 2002 and 2013 were extreme floods, which affected a large

number of households. Though the events were both extreme, owing to an increase in prevalence of flood

experience and private precaution, the losses caused due to the 2013 floods in the Elbe is significantly lower

than the losses caused due to 2002 floods. In both Elbe and Danube catchments, there is an increase in pre-

valence of flood experience and private precaution after the 2002 event. The June 2013 event in the Danube

catchment resulted in large spatial extent of flood peaks with high magnitudes. This flood was in hydrologi-

cal terms the most severe flood in Germany at least for the last six decades (Schröter et al., 2015). Also, the

average duration of inundation in most areas during the 2013 event was close to 4 days. Therefore, despite

high flood experience and improvements in private precaution, this event resulted in high losses. In the

Rhine catchment, though the median water depth experienced by households during the 20‐year return per-

iod event in 2011 was 2.2 m, these households suffered the least amount of losses. A possible explanation for

this is that more than 80% of these households had high flood experience and 99% of the households had

implemented one or more private precautionary measures.

Table 1

Sample Size, the Summary (Median) of Water Depth (wd) inMeters, Exposed Building Value (bv) in EUR, Absolute and Relative Losses to Residential Buildings (bloss in

EUR, rloss), Inundation Duration (d) in Hours, Footprint Areas of the Buildings (ba) in Square Meter and Return Period of the Event (rp) in Years, Prevalence of Private

Precaution (pre)—Percentage of Households That Implemented One or More Private Precautionary Measures, Including Waterproof Sealing, Flood Adapted Use and

Flood Adapted Interior Fitting, Prevalence of Flood Experience (fe)—Percentage of Households that Have Experienced at Least One Flood Event in the Past, Prevalence

of Building Types (bt)—Percentage of Buildings That Are Single‐Family Houses (bt1), Multifamily Houses (bt2), and Semidetached Houses (bt3) for Each of the

Spatiotemporal Groups

Catchment Event

Sample

size wd bv bloss rloss pre fe d

bt

ba rpbt1 bt2 bt3

Danube 2002 225 1.7 354,785 6,258 0.015 36 40 15 28 27 45 170 53

2005 104 2.0 406,012 7,874 0.015 65 52 24 25 37 38 200 39

2013 79 3.0 571,536 45,000 0.060 68 32 96 24 13 63 206 >1,000

Elbe 2002 518 3.5 302,005 43,805 0.096 21 17 120 30 22 48 144 190

2006 42 2.9 307,800 6,962 0.018 86 78 156 10 29 61 142 28

2011 58 2.7 475,456 9,140 0.015 78 67 24 29 14 57 160 30

2013 492 2.7 427,680 23,250 0.051 80 58 168 13 15 72 150 112

Oder 2010 75 3.3 376,200 32,258 0.060 73 29 30 16 21 63 150 366

Rhine 2011 70 2.2 531,300 2,092 0.004 99 81 48 26 20 54 205 19

Total 1,663

Note. Values adjusted for inflation to values as of 2013 using the building price index (DESTATIS, 2013).
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2.2. Modeling Flood Damage Processes

2.2.1. Functional Form and Bayesian Parameter Estimation

A flood loss model based on a depth‐damage function is set up to estimate relative loss (rloss) suffered by

individual residential buildings. A square root function of water depth (wd) in meters is used (
ffiffiffiffiffiffiffi
wd

p
), since

this functional form has been proven to be suitable (Merz et al., 2013; Rözer et al., 2019; Schröter et al.,

2014; Wagenaar et al., 2017). Values of rloss lie between 0 and 1. In contrast to deterministic models that

assume certainty in the process and determine the outcome as a point estimate, probabilistic models result

in a probability distribution representing the uncertainty in the model structure, parameters, and noise in

the data. Random variables and probability distributions are incorporated in probabilistic models. A prob-

abilistic flood loss model is set up to estimate relative losses. Since, rloss values are bounded between 0

and 1, prediction from regression models using unbounded distributions may result in implausible values.

Therefore, rloss is modeled as a beta distribution bounded between 0 and 1 (Rözer et al., 2019). The shape

parameters of the beta distribution, α and β, can be algebraically determined using mean μ and

precision φ (equation (1)). μ is the mean rloss which is a function of
ffiffiffiffiffiffiffi
wd

p
and φ represents the precision

(inverse of variance) of the distribution of estimated rloss values for each household.

The function parameters of μ (slope and intercept) and φ are estimated using Markov Chain Monte Carlo

(MCMC) sampling. Since μ is the expected value of rloss that needs to be positive, we use a log‐link function.

To estimate the parameter values, we start with our general belief about the distribution of the parameters

(priors) and then use evidence the data (represented as likelihood). Monte Carlo simulations create a large

number of replications of these parameters that represent the damage processes, which results in approxi-

mate posterior distributions for relative loss estimates (rloss). The MCMC sampling assumes memoryless

property or Markov property by which, during an iteration, if the current state of the estimated parameters

represents the data generation process better than the immediate previous one, it is added to the chain of

parameter values. Hence, when a large number of iterations are run, the parameter values are not influenced

by where the sampling began initially. Though the posterior distribution of the parameters is estimated from

the priors and the likelihood, the evidence from data dominates the prior beliefs. However, giving appropri-

ate priors helps us to improve efficiency of the parameter search and also rejects implausible parameter

values. For the flood loss model represented by equation (1), weakly informative generic priors are provided.

For example, the water depth is constrained to be positively correlated with rloss.

rlossebeta α; βð Þ
α ¼ μ×φ

β ¼ 1−μð Þ×φ

μ ¼ E rlossð Þ

log μð Þ ¼ f
ffiffiffiffiffiffiffi
wd

p� �
:

(1)

2.2.2. HBM

AHBM is a multilevel probabilistic regression model that estimates a set of coefficients for each group while

the predictors are used to model the outcomes. There is a second probability distribution over these group‐

level parameters that govern the variability between the groups. Model parameters that remain constant

across all the groups are termed as shared parameters or fixed effects. Parameters that vary across different

groups are termed as varying effects.

Given the functional form from equation (1), the damage processes can be modeled to vary either randomly

between region and event groups (varying intercept model) or conditioned on
ffiffiffiffiffiffiffi
wd

p
(varying slope model) or

a combination of both as shown in Table 2. A varying intercept suggests that damage processes may vary ran-

domly between the groups, whereas a varying slope suggests that the damage processes vary conditioned on

the square root of water depth. A model structure with varying intercept is commonly applicable when the

median building losses conditioned on water depth at each region and event group are different. A model

structure with varying slope is recommended when the spread/variance of building losses conditioned on

water depth at each region and event group is different. In a varying intercept model, the variability in

damage processes between groups of households remains the same irrespective of the water depth experi-

enced by the households. For example, consider a small flood event in a well‐prepared neighborhood, if
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majority of the households do not have expensive fittings or valuables in the lower floors, then the overall

exposure value is reduced. Hence, irrespective of the experienced water depth, all the households in the

region will incur less damage on average compared to a group of households with low preparedness. A

model structure with varying slope suggests that the variability in damage processes is dependent of the

water depth and more reflected in the estimated building loss for households experiencing higher water

depths. An example of damage processes with varying slopes is the effect of contamination. Contaminated

water causes more damage to building structure even at smaller water depth, and the magnitude of

damage due to contamination also increases with increasing water depth. Similarly, a reduction in

incurred damage is seen due to measures such as water barriers. However, the effectiveness of these

measures is dependent on the water depth. Beyond a certain level of water depth, the measures can only

reduce loss and not prevent it completely.

When the model structure includes varying effects between different groups, there is always an overarching

probability distribution in the hierarchy governing these variations. For example, in a HBM structure, where

the slope and intercept are made to vary between regions, a second distribution governs the variability of the

slope and intercept across the regions (see Table 2: Model Structure M5). Similarly, when the slope and inter-

cept are made to vary between region and event groups, there are overarching distributions at two levels, gov-

erning their variability across the region and event groups and also across regions (see Table 2: Model

StructureM8). A number of HBM structures can be formulated using a depth‐damage function. For choosing

the best model structure, we select eight meaningful model structures based on the premise that the varia-

bility in damage processes of households across multiple events is always conditioned on the region in which

the households are located (see Table 2: Model Structures M2, M4, M6, and M8). Among the tested model

Table 2

Specification of the Eight HBM Structures (M1–8) Tested in This Study

HBM

structure Description

Model structure

specification

M1 Varying intercept between spatial groups (regions) log μið Þ ¼ θ×
ffiffiffiffiffiffiffi
wd

p
i þ εr

εr~normal(μ′r, σ′r)

M2 Varying intercept between spatiotemporal groups (regions‐events) log μið Þ ¼ θ×
ffiffiffiffiffiffiffi
wd

p
i þ εre

εre~normal(μ′re, σ′re)

μ′re~normal(μ′r, σ′r)

M3 Varying slope between spatial groups (regions) log μið Þ ¼ θr×
ffiffiffiffiffiffiffi
wd

p
i þ ε

θr~normal(μr, σr)

M4 Varying slope between spatiotemporal groups (regions‐events) log μið Þ ¼ θre×
ffiffiffiffiffiffi
wd

p
i þ ε

θre~normal(μre, σre)

μre~normal(μr, σr)

M5 Varying slope and intercept between spatial groups (regions) log μið Þ ¼ θr×
ffiffiffiffiffiffiffi
wd

p
i þ εr

θr~normal(μr, σr)

εr~normal(μ′r, σ′r)

M6 Varying slope between spatiotemporal groups (regions‐events) and varying

intercept between spatial groups (regions)

log μið Þ ¼ θre×
ffiffiffiffiffiffi
wd

p
i þ εr

θre~normal(μre, σre)

μre~normal(μr, σr)

εr~normal(μ′r, σ′r)

M7 Varying slope between spatial groups (regions) and varying intercept between

spatiotemporal groups (regions‐events)

log μið Þ ¼ θr×
ffiffiffiffiffiffiffi
wd

p
i þ εre

θr~normal(μr, σr)

εre~normal(μ′re, σ′re)

μ′re~normal(μ′r, σ′r)

M8 Varying slope and intercept between spatiotemporal groups (regions‐events) log μið Þ ¼ θre×
ffiffiffiffiffiffiffi
wd

p
i þ εre

θre~normal(μre, σre)

μre~normal(μr, σr)

εre~normal(μ′re, σ′re)

μ′re~normal(μ′r, σ′r)

Note. In the model structure specification,
ffiffiffiffiffiffiffi
wd

p
i is the square root of water depth at ith household, θ and ε are the coeffi-

cients of water depth and intercept, respectively. The shared parameters that are common to all region and event groups
are represented without subscripts, that is, θ and ε. Subscript i refers to ith household; subscript re refers to the group of
households belonging to a particular region and event group; subscript r refers to the group of households belonging to a
particular region group. The priors of the parameters are represented as ~. HBM = Hierarchical Bayesian Model.
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structures, the one with the best prediction capability is chosen and compared against the generalized and

localized models that are introduced below.

Since we do not intend to implement strict constraints over the parameters, weakly informative generic

priors are provided for the shared parameters (Gelman et al., 2017). θ~normal(0,1), ε~normal(0,1) and the

coefficient of
ffiffiffiffiffiffiffi
wd

p
; θ is constrained to be positive. Weakly informative generic priors are also provided for

region‐level hyper‐priors in the varying slope and intercept models, μr,σr and μ′r,σ′r, respectively.

μr~normal(0,1), σr~cauchy(0,10), μ′r~normal(0,1), and σ′r~cauchy(0,10). The parameters for standard

deviation, σr and σ′r, are constrained to be nonnegative.

2.2.3. Generalized Model

In a generalized model, a single set of parameters is estimated, irrespective of any grouping. Hence, there is

only one level in the model structure. Most flood loss models developed using empirical data from multiple

regions and events are generalized models (Kreibich, Di Baldassarre, et al., 2017; Merz et al., 2013). The

damage processes across all events and regions are generalized given the flood loss predictors. Adopting this

approach to parameterize the depth‐damage function (equation (1)) generalizes the damage processes con-

ditioned on
ffiffiffiffiffiffiffi
wd

p
and results in a single slope estimate (θ), intercept (ε), and precision (φ), as shown in

Figure 1. Weakly informative priors are provided for θ and ε; θ and φ are constrained to be positive.

2.2.4. Localized Model

A localized model uses an independent set of parameters for each group. Flood loss models developed

using empirical data from specific events and regions can be considered as localized models. The loca-

lized model approach to parameterize the depth‐damage function from equation (1) results in slope

(θre), intercept (εre), and the precision parameter (φre), as shown in Figure 1. θre and φre are constrained

to be positive. These parameters are estimated independently for every region and event group (re). In the

absence of sufficient data for each region and event group, the localized modeling approach may result in

unreliable, noisy estimates.

2.3. Analyzing the Predictive Performance of Models

The predictive performance of the models is determined by comparing the predicted relative loss estimates to

the observed relative losses. Two validation tests, that is, out‐of‐sample and out‐of‐group validations, are

Figure 1. Generalized and localized models—graphical structure and specification. The graphical illustration is adopted

from Levy et al. (2012). A box with rounded corners represents a particular level in the hierarchy, and the indicators at

its bottom right corner refer to the number of entities in the particular level. N refers to the total number of households in

the model (1,663);mre refers to the number of region and event groups ((9) see Table 1). Subscript i refers to ith household;

subscript re refers to the group of households belonging to a particular region and event group. In the localized model

structure, variable re refers to the region and event group of each household.
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performed using three performance metrics—expected log‐pointwise predictive density (elpd), Mean

Absolute Error (MAE), and Mean Bias Estimate (MBE). elpd (equation (2)) is a measure of the predictive

accuracy of the model for data points considered (Vehtari et al., 2017).

elpd ¼ ∑
n

i¼1

∫pt eyið Þlogp eyijyð Þdeyi; (2)

where pt eyið Þ is the true density of observed rloss for ith household and p eyijyð Þ is the posterior predictive dis-
tribution for rloss for ith household using the model. The sum of predictive densities over n households

involved in the validation is used to reflect the accuracy of the model. The advantage of using expected point-

wise predictive density is that elpd is a fully Bayesian method that estimate out‐of‐sample predictive perfor-

mance of the model using the entire posterior distribution, whereas commonly used information criteria

only consider goodness of fit using maximum likelihood of the predictions, which is a point estimate

(Gelman et al., 2014).

MAE ¼ 1

n
∑
n

i¼1

grloss i−rlossi
���

���×building valuei; (3)

MBE ¼ 1

n
∑
n

i¼1

grloss i−rlossi: (4)

Prediction errors in the point estimates (median of posterior distributions) of rloss from the probabilistic

depth‐damage functions are reported usingMAE andMBE. In equations (3) and (4), n refers to the total num-

ber of households in the validation data set; rlossi and grloss i are the observed and predicted relative loss point

estimates for ith household. Models resulting in lower values ofMAE and lower absolute values ofMBE have

better prediction capabilities.

2.3.1. Out‐of‐Sample Validation

Out‐of‐sample validation measures the model performance in predicting losses incurred by households that

have not been used in model development but belong to the same regions and events used in model devel-

opment. elpd for out‐of‐sample validation is estimated using leave‐one‐out cross‐validation (LOO‐CV), by

determining the model prediction accuracy while excluding households, one at a time. This process is

approximated using Pareto smoothed importance sampling (PSIS), implemented by Vehtari et al. (2017).

The shape parameter of the Pareto smoothed distributionbk is required to be less than 0.7 for the elpd estimate

to be reliable (Vehtari et al., 2017). While applying PSIS approximation, as a conservative estimate, the dif-

ference in elpd between themodels is considered significant when it is greater than 4 times the standard error

(SE) whose corresponding p value is <0.0001.MAE for out‐of‐sample validation are determined using a ten-

fold cross‐validation performed by iteratively removing 10 equal‐sized random samples of households with-

out replacement, one at a time, refitting the model and predicting the losses suffered by the held‐out

households.

2.3.2. Out‐of‐Group Validation

Out‐of‐group validation is used to measure the model performance in predicting losses incurred by house-

holds that experienced a new event. The new event may either occur in a region that has already been

included in the model development (temporal transferability) or a new region (spatial transferability).

Out‐of‐group validation is performed using leave‐one‐group‐out cross‐validation. To estimate a model's cap-

ability in predicting losses for a new event, households are held out while fitting the model, one event at a

time, and losses incurred by the held‐out households are predicted. Similarly, a model's prediction capability

for new regions is estimated by removing the households belonging to individual regions, one region at a

time, refitting the model and predicting the losses for households in the held‐out region. Since the localized

models are completely localized, they cannot be tested for transferability in the same way. The localized

models developed for each region and event group are applied to the other region and event groups.

During the transfer, the average of out‐of‐group prediction errors from the individual models is used to deter-

mine the performance of the localized model. In order to nullify the bias due to varying numbers of house-

holds in different region and event groups, stratified bootstrap sampling with equal number of households

(400 from each region and 200 from each region‐ and event‐group) with replacement is performed while esti-

mating elpd for out‐of‐group validation.
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3. Results and Discussion

3.1. HBM Structure

The out‐of‐sample predictive performances of the eight potential HBM structures are provided in Table 3.

When the elpd difference is significant (i.e., >4 SE) and positive, then the first model performs better than

the second and vice versa. For all the model comparisons, the PSISbk values were less than the recommended

estimate of 0.7, indicating that the elpd estimate is reliable (Vehtari et al., 2017). The elpd difference between

M4 and the two model structures M6 and M8 are insignificant, implying that these model structures show

similar out‐of‐sample predictive performance. M2 performs better than M1 and M3. M4, M6, and M8 per-

form better thanM5 andM7. Among these threemodels showing similar performance, M4 has the least com-

plexity (least number of parameters). M4 also performs better than M2. The Kruskal‐Wallis (Hollander &

Wolfe, 1973) test also confirms that in the varying intercept models (M6 and M8), there is no significant dif-

ference in the intercepts for various spatial and spatiotemporal groups. Therefore, we choose M4 (varying

slope between spatiotemporal groups) as the appropriate model structure. Its graphical structure and model

specifications are shown in Figure 2. Thus, this HBM structure is proposed for flood loss estimation and, in

the following, tested against the generalized and localized models.

According to the chosen structure, HBM—M4 (Figure 2), rloss is modeled using

1. θre—effect of wd on rloss that is specific to each region and event levels,

2. ε—shared intercept for all region and event levels,

3. μre, σre—distribution parameters at region‐ and event‐level governing θre,

4. μr, σr—distribution parameters at region‐level governing μre,

5. ϕ—common precision parameter for distribution of rloss, and

6. weakly informative priors for ε, μr, σr, and σre.

The best performingmodel structure, HBM—M4, includes a single shared intercept, ε, and varying slope, θre.

In addition to the distribution governing the varying slope (θre) at the region and event level, HBM—M4

comprises a second governing distribution at the region level. The varying slope across different groups of

households accounts for variability in damage processes conditioned on
ffiffiffiffiffiffiffi
wd

p
. A single shared intercept

across different groups implies no random variability in damage processes independent of water depth across

the groups. The distribution parameters at the region level (μr, σr) capture the variability of damage processes

across regions, which is consistent across multiple events in the same region.

Based on expert knowledge regarding the drivers of damage processes in different region and event groups,

the best performing model structure, HBM—M4, is justifiable. The implementation of private precautionary

measures was increased by more than 40% after the 2002 floods in Germany. However, the implemented

measures did not completely prevent losses during extreme fluvial floods (Table 1: Median water depth for

all the events was more than 1.5 m). Since most of the property‐level flood barriers were overtopped during

these events (Hudson et al., 2014; Sairam et al., 2019), the implemented measures could mostly reduce the

Table 3

Out‐of‐Sample Predictive Performances of Potential Hierarchical Bayesian Model Structures

Model

comparison

Out‐of‐sample LOO‐CV with PSIS approximation

elpd difference (SE)

Model comparison read as >

superior = equal <inferior

M1 vs. M2 −60 (12) M1 < M2

M2 vs. M3 53 (12) M2 > M3

M2 vs. M4 −21 (4) M2 < M4

M4 vs. M5 74 (15) M4 > M5

M4 vs. M6 0 (1) M4 = M6

M4 vs. M7 17 (4) M4 > M7

M4 vs. M8 0 (0.6) M4 = M8

Note. LOO‐CV with PSIS approximation is used to estimate and compare the out‐of‐sample expected log‐pointwise. The
standard errors (SEs) of the comparisons are shown in brackets. elpd, expected log‐pointwise predictive density; LOO‐
CV, leave‐one‐out cross‐validation; PSIS, smoothed importance sampling.
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impact of flooding but not prevent it completely. In this respect, the variability in damage processes across

region and event groups is always influenced by the experienced water depth. Hence, a single shared

intercept (ε) between region and event groups in HBM—M4 is reasonable.

The varying slope (θre) in HBM—M4 is reasonable since the variability in damage processes between region

and event groups is more pronounced in households experiencing higher water depths, especially during

extreme events. Extreme events generally affect larger areas, and the households that are not affected during

more frequent events might experience flooding. These households generally have low preparedness. Hence,

encountering an extreme event with high water depths may result in higher amount of incurred losses

(Elmer et al., 2010). θre in HBM—M4 potentially captures this characteristic of damage processes due to dif-

ferences in exposure to flooding and preparedness. Some exposure and vulnerability characteristics pertain-

ing to a particular region such as predominant building construction types and socioeconomic characteristics

of households do not vary across frequent events. Hence, in addition to the distribution governing the vary-

ing slope (θre) at the region and event level, HBM—M4 comprises a second governing distribution at the

region level. Thus, along with event‐specific variability, the model is also capable of capturing such

region‐specific variability such as land use and predominant building construction types, which are consis-

tent across multiple events, occurring in a short time span.

3.2. Model Parameters

The HBM—M4 has a single shared intercept (ε = −3.75) but separate slopes for each region and event group

with overarching distributions as shown in Figure 3a. The parameters of the overarching distributions (μre,

σre, and μr, σr) provide finite variance for the slopes across region and event groups. The distribution para-

meters of the slope, intercept, and the overarching distributions are provided in sections S1–S4 in the sup-

porting information. In the HBM, slopes with large deviations from the governing distribution means are

penalized. This effect is termed as “shrinkage” (Levy et al., 2012). In the absence of shrinkage, the variance

of slopes across the groups can range from zero to infinity. Alternatively, complete shrinkage generalizes the

damage processes as the variance of slopes between the region and event groups reduces to zero. Thus, the

aspect of shrinkage, which is ubiquitous to hierarchical models, helps to achieve a balance between bias

and variance. The slopes from the HBM—M4 pertaining to each region and event group significantly vary

Figure 2. Hierarchical Bayesian model (HBM) with Structure M4 (HBM—M4) graphical structure and specification. The

graphical illustration is adopted from Levy et al. (2012). A box with rounded corners represents a particular level in the

hierarchy, and the indicators at its bottom right corner refer to the number of entities in the particular level. For example,

N refers to the total number of households in the model (1,663);mRE refers to the number of region and event groups (9);

mR refers to the number of region‐groups ((4); see Table 1). Subscript i refers to ith household; subscripts r and re refer to

the group of households belonging to a particular region group and region and event group, respectively. Variables r and re

refer to the region group and region and event group of each household.
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from each other (Figure 3a). This proves the presence of large variability in damage processes between event

and region groups. For example, the depth‐damage relationship for the extreme flood event in 2002 in the

Elbe region has the highest slope (θElbe2002 = 3.29) reflecting the strong influence of water depth on

building loss. However, the succeeding event in 2013 in the Elbe has a much smaller slope

(θElbe2013 = 2.79) indicating the improved resistance of households to flood damage compared to the 2002

event. The means of the distributions governing the variabiality of the slopes (θre) within each region, μre
(Figure 3a), do not show much variation between the Elbe (μElbe(02,06,11,13) = 2.23) and Danube (μDanube

(02,05,13) = 2.26) regions. This suggests that the variability in damage processes across different events

within the same region is much higher than the variability across regions.

The localized model results in independent sets of slope and intercept estimates for each region and event

groups as shown in Figure 3b. From the distributions of slope and intercept for every region and event

group provided in sections S1 and S4, we find that the parameters estimated using localized models have

large uncertainty except for the extreme events of 2002 and 2013 with large sample of empirical data set.

Consistent inferences regarding damage processes cannot be made from these noisy parameter estimates.

The generalized model results in a single slope parameter (coefficient of
ffiffiffiffiffiffiffi
wd

p
, θ = 2.78) and intercept

(ε = −3.77) for all region and event groups (Figure 3c). The damage processes represented by the para-

meters of the generalized model are more inclined toward extreme events (such as Elbe 2002 and 2013

and Danube 2013) and may not accurately capture the damage processes of small events (such as Elbe

2006 and Danube 2005). The distributions of the slope and intercept from the generalized model are pro-

vided in sections S1 and S4.

3.3. HBM With Group‐Level Predictors

For many regions, detailed empirical data concerning flood depths and incurred losses may be unavailable at

the household level. Undertaking household‐level surveys are quite tedious and also implausible if there is

no available record of flooding in the region or if the last flood event occurred a long time ago. Within the

hierarchical framework, there is a possibility to include group‐level predictors that may potentially improve

model predictions. Hence, in order to improve risk assessment for region and event groups for which empiri-

cal loss data are unavailable, we include group‐level predictors that are explanatory variables obtained on

basis of aggregated data or expert knowledge, pertaining to a region and event group. For example, there

may be cases where residents leave a region after an extreme event. In these cases, the temporal variability

in building occupancy and overall exposure can be included as group‐level predictors in order to explain the

variability in damage processes.

Figure 3. (a) Intercept (ε) and slope (θre) parameters estimated from the hierarchical Bayesian model—M4 with μre for

each region is represented as dot‐dash vertical lines with solid vertical lines showing the 95% confidence interval, (b)

intercept (εre) and slope (θre) parameters estimated from the localized model structure, and (c) intercept (ε) and slope (θ)

parameters estimated from the generalized model structure.
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Identifying group‐level predictors that improves flood loss predic-

tions during spatiotemporal transfer requires a good understanding

of the variability in damage processes across region and event groups.

In our study, we statistically derive the group‐level predictors by attri-

buting the varying slopes (θre) from HBM—M4 to loss

influencing/resisting aspects pertaining to respective region and

event groups. A stepwise linear regression (Venables & Ripley,

2002) with 1,000 iterations is performed to predict the varying slopes

of depth‐damage functions from the HBM—M4 using the attributes

from Table 1. The model is updated in steps with the best predictors

using generalized Akaike information criterion and Bayesian infor-

mation criterion. Both Akaike information criterion and Bayesian

information criterion score the model based on goodness of fit and

also penalize the model for overfitting based on the number of parameters. These criteria are used for deter-

mining the best predictors in a regression model. We determine that among the group‐level attributes influ-

encing flood losses, from Table 1, prevalence of flood experience (fere), duration of inundation (dre), and

return period of the event (rpre) are crucial in explaining the spatiotemporal variability in damage processes

(Table 4).

We hypothesize that region‐ and event‐group‐level predictors such as the percentage of households that have

prior flood experience, the median duration of inundation in the region, and return period of the event

improve the performance of the HBM—M4 during transferability scenario. The HBM—M4 with group‐level

predictors includes interaction terms, fere, dre, and rpre, representing the prevalence of flood experience, med-

ian duration of inundation, and return period in every region‐event groups as shown in Figure 4. The varying

slope θre is defined as a linear function of fere, dre, and rpre with their Coefficients A, B, and C, respectively,

and Intercept D. The distributions of the Parameters A, B, and C obtained via MCMC sampling are included

in section S5.

3.4. Predictive Performance of Models

The out‐of‐sample and out‐of‐group prediction errors (MAE and MBE) are summarized according to region

and event groups in Tables 5a and 5b, respectively. The elpd comparison for the models are provided aggre-

gated for all the region and event groups in Table 5c.

Table 4

Results of Stepwise Regression Predicting Varying Slopes of Hierarchical

Bayesian Model—M4

Step Model R
2

Adjusted R
2

AIC BIC

1 — −3.84 24.10

2 fere 0.71 0.66 −12.89 15.25

3 fere + dre 0.92 0.89 −22.18 6.15

4 fere + dre + rpre 0.96 0.93 −26.49 2.04

Note. AIC, Akaike information criterion; BIC, Bayesian information criterion.
R
2
is the coefficient of determination. It is a measure of how well the slopes

of HBM—M4 are replicated by the regression model. Adjusted R
2
is a variant

of R
2
that is penalized for increasing number of explanatory variables.

Figure 4. Hierarchical Bayesian model (HBM)—M4 with group‐level predictors. The graphical illustration is adopted

from Levy et al. (2012). In the structure, the box with rounded corners represents a particular level in the hierarchy,

and the indicators at its bottom right corner refer to the number of entities in the particular level. For example, N refers to

the total number of households in themodel (1,663);mRE refers to the number of region and event groups ((9); see Table 1).

In the model specification, subscript i refers to ith household; subscript re refers to the group of households belonging to a

particular region and event group. The variable re refers to the region and event group of each household.
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Table 5

Accuracy Assessment of Generalized, Localized, and Hierarchical Models

(a) MAE of medians of posterior relative loss distributions. Error from the best performing model is shown in bold.

Accuracy Assessment Model

Danube

2002

Danube

2005

Danube

2013

Elbe

2002

Elbe

2006

Elbe

2011

Elbe

2013

Oder

2010

Rhine

2011

k‐fold (out‐of‐

sample)

Localized 0.016 0.021 0.066 0.074 0.024 0.025 0.038 0.045 0.005

Generalized 0.023 0.036 0.048 0.070 0.042 0.035 0.038 0.046 0.037

HBM—M4 0.014 0.020 0.043 0.074 0.020 0.015 0.031 0.043 0.008

Out‐of‐group (leave‐one‐event‐

out)

Localized 0.228 0.033 0.049 0.091 0.041 0.037 0.037 NA

Generalized 0.025 0.035 0.044 0.091 0.042 0.038 0.039

HBM—M4 0.019 0.029 0.035 0.090 0.029 0.025 0.033

HBM—M4 with group‐level

predictors

0.013 0.020 0.018 0.075 0.026 0.016 0.032

Out‐of‐group (leave‐one‐region‐

out)

Localized 0.019 0.028 0.049 0.098 0.035 0.029 0.038 0.050 0.032

Generalized 0.024 0.034 0.051 0.103 0.028 0.025 0.031 0.048 0.040

HBM—M4 0.013 0.019 0.048 0.087 0.018 0.014 0.030 0.042 0.021

(b) MBE of medians of posterior relative loss distributions. Error from the best performing model is shown in bold.

Accuracy assessment Model Danube

2002

Danube

2005

Danube

2013

Elbe

2002

Elbe

2006

Elbe

2011

Elbe

2013

Oder

2010

Rhine

2011

k‐fold (out‐of‐

sample)

Localized −0.002 −0.003 −0.019 0.008 −0.006 0.003 −0.006 0.005 −0.004

Generalized −0.005 −0.019 −0.024 0.039 0.033 −0.026 −0.004 −0.003 −0.029

HBM—M4 −0.001 −0.003 −0.001 0.004 −0.003 −0.000 −0.003 0.001 −0.002

Out‐of‐group (leave‐one‐event‐

out)

Localized −0.005 −0.005 0.052 0.078 −0.011 −0.011 0.026 NA

Generalized −0.006 −0.019 0.018 0.104 −0.035 −0.026 0.013

HBM—M4 0.004 −0.002 0.014 0.065 −0.004 −0.006 0.005

HBM—M4 with group‐level

predictors

0.003 0.000 −0.001 0.008 −0.002 −0.001 0.002

Out‐of‐group (leave‐one‐region‐

out)

Localized 0.001 0.023 0.011 −0.035 −0.007 −0.008 0.014 0.016 −0.020

Generalized −0.006 −0.019 −0.002 0.074 −0.015 −0.013 0.010 −0.011 −0.031

HBM—M4 0.001 0.007 0.000 0.015 0.003 −0.002 0.008 0.009 −0.004

(c) Differences in expected log‐pointwise predictive density

Accuracy assessment Model comparison Elpd difference

(SE)

Model comparison read

as > superior,=equal, <inferior

Out‐of‐

sample

Leave‐one‐out (LOO‐CV) with PSIS

approximation

Localized vs. Generalized 196 (30) Localized > generalized

Localized vs. HBM—M4 76 (30)
a

Localized = HBM—M4

Out‐of‐

group

Leave‐one‐event‐out (temporal transfer) Localized vs. Generalized −568 (120) Localized < Generalized

Generalized vs. HBM—M4 −91 (31) Generalized < HBM—M4

HBM—M4 vs. HBM—M4 with group‐level

predictors

−131 (44) HBM—M4 < HBM—M4 with group‐level

predictors

Leave‐one‐region‐out (spatial transfer) Generalized vs. HBM—M4 −57 (24) Generalized < HBM—M4

a
Insignificant difference (elpd difference from LOO‐CV with PSIS approximation <4 SE)
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In terms of out‐of‐sample prediction accuracy (k‐fold cross‐validation), the HBM—M4 has smaller point‐

estimate error (MAE) compared to the generalized model except for the 2002 event in Elbe. The generalized

model resulted in the least out‐of‐sample MAE for the 2002 event in Elbe. From the posterior distribution

plots, we find that the slopes and intercepts (see Figures S1 and S4) of Elbe 2002 are very close to the slope

and intercept of the generalized model. Since a large sample of households in the data set suffered the

2002 event in Elbe, the generalizedmodel parameters are strongly influenced by this region‐ and event‐group

characteristics leading to a better fit for Elbe 2002 compared to the HBM—M4.

For the 2011 event in Rhine, the localizedmodel results in leastMAE for out‐of‐sample predictions compared

to the HBM—M4. One plausible reason is that the damage processes that occurred in Rhine 2011 are very

different from that of the other events. Though households that suffered the 2011 event in Rhine experienced

water depths comparable with the other events and had similar values of exposed buildings, the incurred

damage was much lesser (Table 1). While investigating further, we also see that from the posterior distribu-

tions of parameters of Rhine 2011 from HBM—M4, generalized and localized models, the slopes and inter-

cepts from the localized model (Figures S1 and S4) in Rhine 2011 are very different from the rest of the

events. Additionally, the unavailability of empirical loss data pertaining to other events from the region hin-

ders the modeling of the regional variability in damage processes. Though the HBM—M4 results in an over-

all best fit (refer to section 3.1), generalizing the damage processes (varying slope and constant intercept—

M4) between Rhine 2011 and other events leads to overestimation of losses pertaining to the 2011 event in

Rhine. The HBM—M4 performs better than localized and generalized models in terms of least absolute value

of MBE for out‐of‐sample predictions.

The Bayesian model comparison through elpd difference aggregated for all region and event groups (Table 5

b) shows significant improvement in the prediction accuracy of the localized model over the generalized

model. However, the localized model and HBM—M4 show no significant difference (elpd difference < 4

SE) in their out‐of‐sample prediction capabilities (LOO‐CV). For all LOO‐CV model comparisons (Table 5

b), the PSIS bk values were less than 0.7, indicating a reliable estimation of elpd (Vehtari et al., 2017).

The ability of the models to perform in spatiotemporal transfer scenarios is tested using out‐of‐group predic-

tion accuracy. The out‐of‐group prediction errors from localized models pertaining to each region and event

group are averaged and compared with the prediction errors of the individual hierarchical and generalized

models. The out‐of‐group validation for held‐out households from each event and region groups is performed

for seven region and event groups out of nine. Since the 2010 event in Oder and 2011 event in Rhine are the

only events from the regions in our data set, they are not used in temporal transfer. All the nine region and

event groups are used in predicting held‐out households from the regions (Out‐of‐group CV). The HBM—M4

performs best during spatiotemporal transfer compared to the generalized and localized models in terms of

point estimate errors MAE and MBE (Tables 5a and 5b). This result agrees with the conclusions from pre-

vious studies (Cammerer et al., 2013; Jongman et al., 2012; Schröter et al., 2014; Vogel et al., 2018;

Wagenaar et al., 2016) that models built using data from the respective regions representing the local char-

acteristics result in better damage estimates compared to more generalized or transferred localized models.

Similar results are seen when the elpd differences are estimated between the models (Table 5c). Hence, the

predictive performance of the HBM—M4 is significantly higher than that of the generalized and localized

models during spatiotemporal transfer.

The performance of the HBM—M4 with group‐level predictors is assessed for held‐out households using

Out‐of‐group CV. The HBM—M4 with group‐level predictors performs better than HBM—M4 in terms of

point estimate errors and elpd estimates (Tables 5a–5c). Thus, introducing aggregated variables or informa-

tion through expert knowledge pertaining to every region and event group as group‐level predictors within

the hierarchical framework helps to improve predictive capability of the HBM during

spatiotemporal transfer.

4. Conclusions

AHBM is developed for capturing spatiotemporal variability in flood damage processes. Parameterization of

the widely used depth‐damage functions, that is, square root functions of water depth, with shared intercept

and varying slope across region and event groups results in a HBM for flood loss estimation. Aggregated vari-

ables attributing to region‐ and event‐characteristics, namely, flood experience of the households, duration
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of inundation, and return period of the event, are used as group‐level predictors to estimate the varying

slopes in the HBM and improve loss predictions for regions and events where no empirical loss data are avail-

able. Such region‐ and event‐specific information could also be provided via expert knowledge. We tested

and proved the hypothesis that, in transfer scenarios, HBMs are superior compared to localized and general-

ized regression models.

Additional advantages of implementing this model for flood loss estimation are the following:

1. The HBM is developed based on depth‐damage functions, which can be further improved with expert

region‐ and event‐specific information that is mapped on model parameters (slope and intercept).

Hence, the model development requires only object‐level empirical data consisting of water depth and

incurred flood losses.

2. Since the HBM is a probabilistic model, it inherently provides quantification of uncertainty in the pre-

dicted loss estimates. This is valuable for improved decision making.

3. Owing to the availability of input data (water depth), the HBM is widely applicable and will as such sig-

nificantly improve flood loss modeling, particularly in spatiotemporal model transferability settings.

In this study, the development and validation of the HBM and localized and generalized regression models

are performed based on empirical flood loss data from six flood events in the Elbe, Danube, Rhine, and Oder

catchments in Germany. However, these models are easily scalable and might be even more valuable in

international flood loss model transferability applications.
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