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Drought events have critical impacts on agricultural production yet there is little consensus on 

how these should be measured and defined, with implications for drought research and policy. 

We develop a flexible rainfall-temperature drought index that captures all dry events and 

classify these as Type 1 (above-average cooling degree-days, CDD) and Type 2 droughts 

(below-average CDD). Applied to a panel dataset of Indian districts over 1966-2009, Type 2 

droughts are found to have negative marginal impacts comparable to those of Type 1 droughts. 

Irrigation more effectively reduces Type 2 drought-induced yield losses than Type 1 yield 

losses. Over time, Type 1 drought losses have declined while Type 2 losses have risen. 

Estimates of average yield losses due to Type 1 droughts are reduced by up to 27% when Type 

2 droughts are omitted. The associated ex-post economic costs in terms of rice production are 

underestimated by up to 124%.
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1. Introduction

Extended periods of low rainfall that reduce the availability of moisture relative to normal 

climate conditions constitute drought events (Mishra and Singh, 2010), with the severity of 

these events being aggravated by climatic factors such as temperature (Wilhite, 2000a). Since 

1900, two billion people have been affected by drought and annual economic costs are 

estimated at US$ 6-8 billion (FAO, 2013). A number of low- and middle-income countries, 

including those located in Sub-Saharan Africa and the Indian sub-continent, are particularly 

vulnerable to the impacts of drought. In India, the setting for our paper, severe drought lowered 

annual GDP by around two to five percent between 1951 and 2003 (Gadgil and Gadgil, 2006); 

among drought-affected households, drought led to a 12 to 33% increase in the poverty 

headcount ratio and a 25 to 60% decline in household income (Pandey et al., 2007). The onset 

of drought in India has also been empirically linked to conflict, rural wages and human capital 

accumulation (Jayachandran, 2006; Sarsons, 2015; Shah and Steinberg, 2017). 

Against a backdrop of rising temperatures and drier conditions, droughts are projected 

to become more common with critical implications for agricultural production (IPCC, 2012). 

How meteorological drought is defined plays a central role in policymakers’ responses, not 

only in the agricultural sector but also in the water sector and in early-warning systems. Yet, 

there is presently little consensus on how droughts might be measured and hence, defined. 

Indeed, there is no universal definition of the conditions constituting a drought (Wilhite, 

2000b). A range of indices attempt to quantify the severity of a drought, ranging from simple 

rainfall measures to complex indices that account for rainfall, temperature and estimates of 

potential evapotranspiration1 (Mishra and Singh, 2010). Different criteria of what constitutes a 

‘drought’ therefore imply that a drought in one index may not constitute a drought in another. 

1 The combined process of water evaporated from land surfaces and plants.
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The implication is that, depending on the index used, there are classes of dry events which may 

be overlooked both in empirical analyses and by policymakers. 

In this article, we develop a simple rainfall-temperature index that allows for a flexible 

characterisation of drought events. It captures every dry event, in which cumulative rainfall 

over the growing season is below average relative to the average long-term cumulative rainfall 

for the growing season, while accounting for temperature. The novelty of our index is to include 

both the type of dry events typically captured by indices that account for temperature, i.e. 

characterised by above-average values of cooling degree days (CDD),2 which we term ‘Type 

1’ droughts, as well as ones characterised by below-average values of CDD. To our knowledge, 

the latter, which we term ‘Type 2’ droughts, have not been explicitly studied before. 

Type 2 droughts are likely to have impacts that differ from those driven by Type 1 

droughts. First, rainfall deficiency drives water stress thus negatively impacting on crop yields 

but the combined effects of heat and rainfall are likely to be greater than their individual 

impacts (Lamaoui et al., 2018). This implies that Type 1 droughts have higher potential impacts 

than Type 2 droughts. Second, for a Type 2 drought, a lower value of CDD over the growing 

season does not imply an absence of hot days. Heat stress, even for short periods of time, can 

cause permanent harm to plant growth (see, e.g., Luo, 2011). Third, some of the largest 

deviations in rainfall in India have occurred in years that were not considered particularly hot. 

In these years, impacts are likely to have been large and as such should not be overlooked.

Our index is applied to a panel dataset of Indian districts over the period 1966-2009 in 

order to estimate the marginal and total effects of each drought type on rice productivity. Rice 

is a principal food crop that is mainly grown in the kharif season (June to September). We also 

consider how, conditional on drought type, the marginal effects change over time, as well as 

2 ‘Degree days’ is a unit of temperature degree deviation from a benchmark during a 24-hour period. A ‘cooling’ 
degree day is a measure of heat, traditionally used to calculate the energy used to cool homes during a hot day.
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the extent to which they are mitigated by irrigation. Our base estimates are then used to 

calculate yield changes and associated ex-post economic impacts, which are likely to be 

underestimates given unobserved behavioural responses of farmers, e.g. if they engage in 

lower-risk lower-return activities because they anticipate the possibility of a drought (Elbers et 

al., 2007; Oviedo and Moroz, 2014). In a country where over two-thirds of total land area is 

vulnerable to drought (Ministry of Agriculture, 2009), and rain-fed agriculture covers 

approximately 60% of cropped area (Sharma, 2011), our analysis contributes to an important 

body of research on the impacts of droughts on Indian agriculture (e.g. Pandey et al., 2007; 

Sarkar, 2011). 

After presenting background to our analysis in Section 2, we present Indian weather 

data underlying Type 1 and Type 2 droughts and propose an extension to a multiplicative index, 

developed by Yu and Babcock (2010), in Section 3. This extension allows for a more flexible 

characterization of drought events while retaining a key strength of their index, namely the 

inclusion of temperature and the capacity to capture the interaction between rainfall and 

temperature. Applied to our panel dataset of Indian districts, in Section 4, we find that Type 2 

droughts consistently display large negative marginal and total effects, comparable to those of 

Type 1 droughts. The omission of Type 2 droughts leads to a large underestimation of total 

drought impact. Irrigation appears to be more effective at reducing Type 2 drought-induced 

yield losses than those attributed to Type 1 droughts. Over time, Type 1 drought losses, as a 

proportion of yield, have become smaller while Type 2 losses have risen. Yield and ex-post 

economic losses are shown in Section 5 to be underestimated by up to 27% and 124%, 

respectively. We also test the forecasting accuracy of our index and we find that, while it 

outperforms the other indices considered, the improvements in terms of forecasting accuracy 

are marginal and statistically insignificant. Section 6 discusses the results and their implications 

for public policy.

Page 4 of 55Manuscript For Review



5

2. Defining ‘Drought’

Simple drought indices often rely solely on rainfall measures and are typically preferred 

by policymakers, including the Indian Meteorological Department (IMD), over more complex 

indices. Until 2016, the IMD recorded a ‘drought event’ when seasonal rainfall was below 75% 

of its long-term average (between 1950 and 2000), and a ‘severe drought’ when rainfall was 

below 50%. Simple metrics of precipitation deficiency, which have the advantage of being 

easily interpretable, are also used to evaluate drought impacts on agricultural production, e.g. 

Pandey et al. (2007); Auffhammer et al. (2012). 

Simple definitions of drought based on rainfall are, however, problematic for our 

understanding of drought impact. Variables in addition to rainfall, in particular temperature, 

help determine the physical severity of a drought. A growing literature suggests critical turning 

points at which higher temperatures cease to have positive impacts on agricultural yield, e.g. 

Schlenker and Roberts (2009); Guiteras (2009); Burgess et al. (2014); Lobell et al. (2012). 

High temperatures have particularly acute effects on crop growth during periods of low 

precipitation since the rate of evapotranspiration increases as temperatures rise (Prasad et al., 

2008; Lobell and Gourdji, 2012). In general, this increases a plant's demand for water at a time 

when water availability is already low due to deficient precipitation. Drought is documented to 

increase in severity as mean temperatures have risen. Higher temperatures, rather than the 

increased intensity of low rainfall events, have been held responsible for these drying trends 

(Vicente-Serrano et al., 2014; Diffenbaugh et al., 2015). As such, neglecting the effect of 

temperature on the severity of a drought event could underestimate drought impact.

More complex indices tend to rely on data that are often not readily available in most 

economic datasets, e.g. for soil moisture levels. The lack of data needed to derive such 

measures, which can depend on factors such as wind, radiation and humidity, limits their 

applicability in empirical analysis of drought impacts. Bridging the gap between simple and 

Page 5 of 55 Manuscript For Review



6

complex indices, Yu and Babcock (2010) propose a drought index that neatly captures the 

interaction between temperature and rainfall thus giving it the potential to capture the combined 

effect of cumulative heat and water stress on yield. Applied to the study of drought tolerance 

of soybean and corn yields in the US, it takes a non-zero value for years of below-average 

rainfall and above-average values of CDD: 

𝐷𝐼𝑖𝑡 = [―max (0,𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 )] ∗ [min (0,𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡 )]                   (1)

where: DIit denotes the drought index for geographical unit i in year t;  is standardized 𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡
total monthly rainfall over the growing season; and,  is standardized, cumulative 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
cooling degree days above 18°C. 

The index described in (1) gives a value of zero whenever either  is below or 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
 is above their respective long-term averages. Thus, a drought ‘event’ or ‘year’ is 𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡

defined when  is higher and  is lower than their respective long-term averages. 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡
A strength of this index lies in its capacity to capture the potential of high temperatures to 

exacerbate the effects of low rainfall on crop production. Birthal et al. (2015) adopt the index 

to study the tolerance of rice yields to drought in India. 

While Yu and Babcock’s (2010) approach has the advantage of being a relatively 

simple way to account for both temperature and precipitation, the index restricts the definition 

of drought to events characterised by below-average  accompanied by above-average 𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡
values of , our Type 1 drought. It does not consider events characterised by below-𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
average values of  as well as below-average , our Type 2 drought. Despite 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡
being common in many settings, the impacts of such events on agricultural production remain 

unknown, due to either being omitted altogether (as in Birthal et al. 2015) or joined with Type 

1 droughts in arbitrarily-defined rainfall indices. 
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Type 2 droughts should not be omitted a priori because, as explained in the 

introduction, focusing only on years with an above-average value of  (Type 1 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
drought) ignores the possibility that in years with a below-average value of  there 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
may still be a number of very hot days sufficient to negatively impact on agricultural 

productivity.3 Thus, a class of potentially destructive dry events would not be defined as 

‘drought’ per equation (1), which may underestimate the aggregate impact of all dry events. 

The classification of these events as non-droughts could lead to biased estimates of drought 

impact. Thus, if Type 2 droughts do have a significant negative impact on productivity, then 

the application of Yu and Babcock's index potentially underestimates drought impacts due to 

the inclusion of Type 2 drought events in the ‘no drought’ control group. Finally, since we 

expect crops to respond differently to increasing deviations from mean rainfall, depending on 

whether the value of  is below- or above-average, Type 2 droughts ought not only to 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
be included but also modelled separately from Type 1 droughts.

Our definitions of drought – Type 1 and Type 2 – are important for understanding and 

predicting crop yields. We argue that they are an improvement on measures and indices used 

in earlier research. Table 1 lists previous studies that have adopted both simple and more 

complex non-linear functions of temperature and rainfall as predictors for crop yields. In 

general, these measures focus on either heat or rainfall thus neglecting the combined impact on 

yield from cumulative heat and water stress. One possible reason is that the temperature bins 

approach is often used and requires a very large number of coefficients to estimate the 

combined effect of heat and rainfall. Previous work on drought impacts also typically adopts a 

single binary definition to estimate the impact of drought on yields. However, the use of a 

binary definition makes it difficult to assess the relationship between drought and yield.

3 In Yu and Babcock (2010), a below-average value of  means that the cumulative sum of degree-days 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
above 18°C over a given period is lower than its long-term average. While this suggests lower cumulative heat 
during the season, it does not imply an absence of hot days and/or temperature spikes during the growing season. 
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3. A New Index to Define Drought in India

Weather data on daily rainfall and daily average temperature at the district level are sourced 

from the IMD to Figures 1 and 2 4 We define our growing season as June-September5 and both .

long-term average rainfall and CDD are defined vis-à-vis their 1956-2009 averages.6

Panel (a) of Figure 1 shows the proportion of districts, by year, limited to events characterized 

by both below-average rainfall and above-average values of CDD (Type 1). The vertical blue 

lines indicate All-India Drought Years.7 Panel (b) of Figure 1 shows the proportion of districts 

in years characterised by below-average rainfall and below-average values of CDD (Type 2). 

4 The weather data were obtained under licence from IMD for a fee. The rainfall data are available in gridded 
format at a resolution of 0.25°x 0.25° (Pai et al., 2014). Gridded temperature data are at a resolution of 1°x1° 
(Srivastava et al., 2009). District-level weather data are then obtained by taking a weighted average of gridded 
weather observations from grid cells that fall within a district's boundary based on the proportion of the grid cell 
that falls in each district.
5 The majority of India’s rice production is cultivated in the kharif season, between June and September, and the 
majority of total yearly rainfall (approximately 80%) also falls between these months (Jain and Kumar, 2012). 
6 The reference temperature for the CDD is the average June-September daily temperature for the district between 

1956 and 2009. The CDD variable is calculated as , where we subtract the 𝐶𝐷𝐷𝑖𝑡 = ∑𝑀𝑚= 1
∑𝐷𝑑= 1

(𝐷𝑇𝑖𝑚𝑑― 𝐷𝑇𝐴𝑖)
average daily temperature over the growing season observed from 1956-2009 (  from the observed daily 𝐷𝑇𝐴𝑖)
temperature (  We then sum all the positive deviations over the growing period and give a value of 0 to 𝐷𝑇𝑖𝑚𝑑).

negative deviations. See Appendix A.
7 According to the IMD, 13 ‘All-India Drought Years’ have been recorded since 1966 (Birthal et al., 2015). Such 

‘Drought Years’ were recorded when the total area affected by a moderate or severe drought covered 20-40% of 
the total land area of the country and rainfall during the monsoon season fell 10% below average seasonal rainfall 
recorded between 1950 and 2000. When more than 40% of the total land area was affected by drought, this was 
termed an ‘All India Severe Drought Year’.
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Figure 2 shows why the omission of Type 2 droughts is likely to be problematic. For 

each year, we estimate the number of districts affected by Type 1 droughts net of the number 

of those affected by Type 2 droughts, with a positive number (in darker grey) denoting a year 

in which the former exceeds the latter. A negative number (in lighter grey) indicates a year in 

which the latter exceeds the former. Overall, Type 1 droughts are slightly more prevalent (55%) 

than Type 2 droughts (45%). In the 1990s, most of the drought-affected districts were affected 

by Type 1 droughts. Since 1999, Type 2 droughts have increased, with the number of districts 

affected by Type 2 droughts outnumbering the number of districts affected by Type 1 droughts 

in seven out of 11 years. 
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Formally shown in Appendix A, the first step of our index involves the calculation of 

the deviation of CDD over the growing season (June-September) from average long-run (1956- 

2009) CDD over the growing season, a variable we define as DCDD. Positive values of DCDD 

indicate above-average CDD while negative values indicate below-average CDD. A similar 

procedure is followed for rainfall in that we create a variable, DTR, which is defined as the 

deviation of district-specific, cumulative rainfall from long-term, mean cumulative rainfall 

between 1956 and 2009.  Negative values of DTR represent below-average cumulative rainfall 

while positive values indicate above-average rainfall. 

Next, we normalize DCDD and the negative of DTR, which we define as  and NCDDit

, respectively. Normalizing the negative of rainfall, rather than rainfall directly, allows NTRit

us to generate a variable bounded between 0 and 1, with higher values signalling more severe 

rainfall deficiency. Thus,  is increasing in temperature and  is increasing in rainfall NCDDit NTRit

deficiency. Using the normalized negative of rainfall enables us to construct an index without 

running into the problem of negative values that emerges from the interaction of the 

standardized variables. Finally, a multiplicative relationship is generated between the two 

normalized variables, resulting in two drought indices. Type 1 droughts are denoted  and 𝐷𝐼1it

Type 2 are denoted :𝐷𝐼2it

𝐷𝑟𝑜𝑢𝑔ℎ𝑡= {𝐷𝐼1it = NTRit ∗ NCDDit  𝑖𝑓 DTRit < 0  𝑎𝑛𝑑 DCDDit > 0;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝐷𝐼2it = NTRit ∗ NCDDit  𝑖𝑓 DTRit < 0  𝑎𝑛𝑑 DCDDit < 0;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (2)

As such,  can be interpreted as a normalized version of Yu and Babcock’s (2010) 𝐷𝐼1it

index. It takes a strictly positive value for all events characterized by below-average rainfall 

and above-average . The second index, , only takes non-zero values for events 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 𝐷𝐼2it

with below-average rainfall and below-average , the category Yu and Babcock omit. 𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡
Constructing these two indices separately allows us to test their respective statistical 

significance in the yield regressions. 
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Our indices are increasing in temperature but decreasing in rainfall and reflect that both 

higher temperatures and lower rainfall are expected to contribute to drought severity. A 

maximum value of one is obtained for the most severe droughts, and is only possible for the 

restricted set of drought events considered by Yu and Babcock. The similarity of their index to 

our own is illustrated in Appendix table 1, which shows the correlation coefficients and the 

spearman correlation coefficient. As expected, our index DI1 is highly correlated with Yu-

Babcock, displaying a correlation coefficient of 0.787 and a spearman correlation coefficient 

in excess of 0.99. Our second index DI2, on the other hand, has a negative correlation 

coefficient with a correlation coefficient of -0.189 and a spearman coefficient of -0.363. Since 

Yu-Babcock is invariant with a value of zero for these events, this result is also as anticipated. 

In addition, these two indices differ in terms of their maximum values. While the maximum 

value for Type 1 droughts is one (which occurs when the hottest year is also the year with the 

lowest rainfall), the maximum value of events in which both rainfall and CDD are below-

average is 0.54 (see Table 2). These two maximum values capture the fact that a combination 

of above-average CDD with below-average rainfall is likely to lead to more severe drought 

than below-average CDD combined with below-average rainfall. 
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Figure 3 shows how our index values change over time for all districts. There are clear 

spikes in the values of the index for a number of All-India Drought Years. The years 2002 and 

2009 are associated with the largest deviations in rainfall. Similarly, 1972, 1979, 1987 are also 

considered years with particularly high deviations and our index rises in these years. 

Throughout the 1990s, however, it is striking that, despite relatively modest deviations of 

rainfall from trend, our index still records high values. One possible explanation for this could 

be rising land-surface air temperatures over time (Pai et al., 2013).

4. Impact of Drought on Rice Productivity

To investigate drought impacts on aggregate rice productivity at the district level, we obtain 

agricultural data from the ICRISAT Meso-level Database.8 For the period 1966-2009, this 

dataset contains detailed agricultural and socioeconomic information (ICRISAT, 2012). Data 

are available for annual crop production and area under crop production for a range of crops, 

for most districts. Focusing on rice, we create a balanced panel, which implies that, of the 311 

8 Since 1966, a number of districts have split into smaller districts. To maintain spatial consistency over time 

district splits are dealt with by returning split districts to their ‘parent’ districts as of 1966.
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districts available in the dataset only 159 are used in our empirical analysis due to missing data 

for irrigated rice area (see map: Appendix Figure 1). Rice yield is estimated by dividing total 

rice production by total rice area. Table 2 summarises the variables used in our analysis.

To model the relationship between rice yield and our drought index, we estimate the 

following fixed-effects model:9

ln (𝑦𝑖𝑡)
= 𝛼𝑖 +  𝛾𝑡 + 𝛿𝑖1 ∗ 𝑡+ 𝛿𝑖2 ∗ 𝑡2 +  𝛽1𝑞 𝐷𝐼𝑖𝑡𝑞 + 𝛽2𝑞 𝐷𝐼2𝑖𝑡𝑞 + 𝛽3𝑞 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑡+ 𝛽4𝑞 𝐷𝐼2𝑖𝑡𝑞 ∗ 𝑡
+ 𝛽5𝑞 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽6𝑞 𝐷𝐼2𝑖𝑡𝑞 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝜖𝑖𝑡                  (3)

where for district i in year t: In(yit) denotes the natural logarithm of rice yield;  and  𝛼𝑖 𝛾𝑡
represent the district and year fixed effects, respectively;  and  are the coefficients on the 𝛿𝑖1 𝛿𝑖2
district-specific linear and quadratic trends, respectively. Quadratic terms are also included for 

the following variables, to account for potential nonlinearities in the relationship between 

drought type and yield. First, the coefficients associated with a type q (i.e. Type 1 – above-

average CDD, or Type 2 – below-average CDD) drought index, which captures the marginal 

impact of a type q drought, are denoted  and . Coefficients  and  capture the 𝛽1𝑞 𝛽2𝑞 𝛽3𝑞 𝛽4𝑞
interaction between drought type and time, t, while the coefficients  and  capture the 𝛽5𝑞 𝛽6𝑞
interaction between drought type and the proportion of rice area under irrigation. Finally,  𝜖𝑖𝑡
represents the error term. Consistent with Yu and Babcock (2010) and Birthal et al. (2015), we 

do not include additional controls in our main specifications. This is also the norm in the 

climate impacts literature.  

4.1 Regression Results

We run a regression of the natural logarithm of yield on a set of district-specific quadratic 

trends and the drought indices. Specifically, we estimate the model in (3), in both log-levels 

9 We prefer a fixed-effects model over a pooled ordinary least squares because it captures time-invariant 
heterogeneity. Also, a Hausman test rejected a random-effects model in favour of a fixed-effects model. 
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and levels. First, we include only Type 1 drought events (columns 1 and 3 in Table 3). Second, 

we estimate separate coefficients for Type 1 and Type 2 drought events (columns 2 and 4 in 

Table 3). 

Table 3 highlights two results.10 First, at mean drought intensity (the average for all 

events with non-zero index values), both drought types have significant and negative effects 

when considered separately. Thus, Type 2 events have large and statistically significant, 

negative impacts on rice yield. Second, we find that at means of all variables, Type 2 droughts 

have a higher marginal effect on yield. However, as will be shown in the next section, the 

overall effects on yield and associated economic costs are higher for Type 1 droughts. This is 

because the index value of Type 2 droughts is typically around half of the index value of Type 

1 droughts.11 Although both excess heat and reduced moisture have negative impacts on 

production, reduced rainfall carries greater weight in the Type 2 index than in the Type 1 index, 

explaining the greater marginal effect. Values of CDD are, by definition, higher in the latter 

than in the former. As a result, yields are likely to respond (more) negatively to changes in the 

Type 2 index than in the Type 1 index. 

The differences in impacts between Type 1 and Type 2 are tested into two ways. First, 

the confidence intervals of the marginal effects at means for the two drought types are shown 

in Table 3 (see rows ‘95% CI’). The DI2 marginal effect (evaluated at means of all variables) 

is outside the 95% CI of the DI1 marginal effect (again at means of all variables) for the levels 

specification and it is just marginally inside the 90% CI for the log-levels specification. Second, 

10 The R-squared (within, between and overall) are estimated for three different regressions and are shown in 

Appendix Table 2: district and year fixed effects; district and year fixed effects plus a district-specific quadratic 
trend; and, all the variables included in Table 3. These results suggest that trends have a high explanatory power 
(overall R-squared increases from 0.168 to 0.645 (levels) and 0.164 to 0.22 (log-levels) following their inclusion). 
The results also suggest that adding the remaining variables (irrigation, drought indices and their interactions) 
leads to an improvement in the explanatory power of the model (overall R-squared increases from 0.645 to 0.775 
(levels) and from 0.22 to 0.446 (log-levels)).
11 A value of 0.5 in our Type 2 index represents approximately the same rainfall deficiency as a value of one in 
our Type 1 index, which helps explain larger marginal impacts.
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we tested whether all the DI1 coefficients (and interactions) are jointly different from all the 

DI2 coefficients (and their interactions) (see Appendix table 3). For the log-levels specification, 

the F-test was rejected at the 10% level. For the levels specification, the hypothesis that the 

coefficients are equal could not be rejected. This may be due to the large number of interactions 

included in the model. 
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The estimated change in marginal effects by irrigation and over time are presented, 

respectively, in Tables 4 and 5 for the levels specifications. The marginal effects for the log-

levels specifications are shown in Appendix tables 4 and 5. 

From Table 4, the levels specification results suggest that absolute drought impacts 

either remain fairly constant (Type 1) or increase (Type 2) as the proportion of rice area under 

irrigation rises. Yet, as a proportion of total yield results, from the log-levels specification, 

suggest that the marginal effect decreases substantially as the proportion of rice area under 

irrigation increases, as expected (Appendix table 4). This can be explained by the fact that 

yields in irrigated areas tend to be higher and, even if losses remain constant or increase 

moderately in absolute terms, yield increases from improved irrigation implies a fall in losses 

as a proportion of the total. Our results also suggest that, as a proportion of the total, increases 

in the proportion of rice area under irrigation reduce the marginal impact more when 

considering Type 2 droughts compared with Type 1 droughts. With increasing proportion of 

rice area under irrigation (above 95% irrigated), impacts of Type 2 droughts (at mean intensity) 

are not significantly different from zero (at the 5% level). The same does not apply for Type 1 

droughts: even when the proportion of rice area under irrigation is very high we still find 

statistically significant effects on yields. This suggests that irrigation seems to be an effective 

strategy at substituting for water deficiency, but less effective at mitigating the combined 

effects of heat and water deficiency.
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From Table 5, the results over time suggest that absolute yield losses attributed to 

drought have increased. As a proportion of total production, the log-levels specification in 

Appendix table 5 shows that losses follow a different pattern depending on the type of 

drought.12 Type 1 drought impacts as a proportion of the total have fallen over time whereas 

Type 2 impacts have increased. Two potential explanations for this result can be derived from 

our data and are summarized in Figure 4. 

12 An F-test, of differences in the DI1 and DI2 trends shows that, for the log-level estimation, equality of the trend 

coefficients was rejected at the 5% level, which is not the case for the levels specification (see Appendix Table 
3). However, in the case of the levels specifications, the marginal effect of Type 2 droughts evaluated at the mean 
of the drought index (and all other covariates) at different points in time is often outside the 95% confidence 
interval of the marginal effect for the Type 1 drought evaluated at its mean and at the same point in time.

Page 19 of 55 Manuscript For Review



20

 

First, our results could be driven by trends in the composition of Type 1 and Type 2 

events, with the former increasingly driven by cumulative heat over the growing season and 

the latter by rainfall deficiency. Figure 4(a) shows the ratio of normalised CDD to normalised 

rainfall deficiency. A higher value indicates a higher contribution of CDD relative to rainfall 

in our index. The plotted linear trend in Figure 4(a) suggests that the composition of the two 

types of drought has followed different patterns over time, with Type 1 droughts increasingly 

driven by CDD and Type 2 droughts increasingly driven by rainfall deficiency. As shown in 

Figure 4(b), this change in composition is not captured by the index value, which has followed 

very similar trends. However, should rainfall deficiency and CDD increases be associated with 

different impacts, the change in composition could partially explain the increase in impacts 

over time for Type 2 droughts.

Second, Type 2 droughts seem to be increasingly preceded by dry years, which could 

increase the impact of this type of drought, turning what we have defined in this study as a 
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meteorological drought into a potential hydrological drought. Figure 4(c) plots the proportion 

of affected districts (by drought type) in a given year conditional on the previous year being 

drier than average (i.e. either a Type 1 or Type 2 drought). This figure shows contrasting trends 

for Type 1 and Type 2 events, with the proportion of the former declining slightly while the 

proportion of the latter follows an increasing trend. Figure 4(d), which plots the average 

intensity of droughts (by type) if preceded by a drier-than-average year, also suggests that the 

intensity of Type 2 droughts increased at a faster rate than that of Type 1 droughts.13 

13 We also test whether the differences in trends for panels (a)-(d) in Figure 4 are statistically different. They are 
statistically significant (at the 1% levels) for panels (a) and (c), but not for panels (b) and (d).
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Supporting evidence that lagged dry events might be associated with larger drought 

impacts is given by Shah and Kishore (2009), who argue that in years of below-average 

precipitation more groundwater tends to be extracted to compensate for rainfall deficiency and 

minimize production losses. However, the extent to which losses can be minimised depends on 

the availability of groundwater. For example, 2002-2003 was an exceptionally dry period 

preceded by two moderately dry years, which put additional pressure on groundwater 

resources. These resources had not sufficiently recovered by 2002-2003 thus limiting their 

capacity to minimise production losses. 

5. Estimating Yield and Economic Losses

We estimate yield impacts and economic costs by running simple simulations using our 

estimated regressions in Table 3 (see Appendix B). Column 1 shows the predicted impacts of 

Type 1 droughts when Type 2 droughts are excluded (i.e. using results from columns 1 and 3 

in Table 3) and columns 2-4 show the impacts of both types of drought (i.e. using results from 

columns 2 and 4 in Table 3). Specifically, we estimate the: (i) average yield loss for an affected 

district over the sample period; (ii) average total production loss for an affected district over 

the sample period; (iii) average value of production loss for an affected district; (iv) average 

yearly production loss across all the Indian districts in our sample; and, (v) the average yearly 

cost of predicted production losses across sampled districts. A summary of estimates is 

presented in Table 6. 

From Table 6, we note that, despite a higher estimated coefficient, total yield and 

economic losses from Type 2 droughts are smaller than those from Type 1 droughts. This is 

due to the index values for Type 2 droughts being substantially lower (approximately half) in 

affected districts. Depending on the specification used, we estimate the range of average yield 
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loss per district at 130-155 kg/ha (Table 6, column 2) and 84-121 kg/ha (Table 6, column 3) 

for Type 1 and Type 2 droughts, respectively. These smaller impacts on yield translate into 

lower total economic costs. Whereas we estimate that, in a given year, the total economic cost 

of a Type 1 drought ranges, on average, between USD 224-265 million (Table 6, column 2),14 

this falls to USD 121-185 million for a Type 2 drought (Table 6, column 3). We note that the 

estimated impact of Type 1 droughts increases when Type 2 droughts are included. This is due 

to the fact that, when Type 2 droughts are excluded, they are part of the ‘no drought’ 

counterfactual, which is likely to bias the Type 1 drought impacts downwards.

Omitting Type 2 droughts can lead to a lower estimate of Type 1 drought impacts. 

These effects are quantifiably large as we illustrate by comparing the first two columns of Table 

6 for the full sample. Average yield losses are estimated to be approximately 25-27% higher 

(from 104-122 kg/ha to 130-155 kg/ha) when Type 2 droughts are included. These estimates 

have a substantial effect on the estimated average annual cost. This ranges from USD 179-204 

million (Table 6, column 1) when Type 2 droughts are omitted compared to USD 224-265 

million (Table 6, column 2) when they are included, which represents a 25-30% increase. Thus, 

if estimating the economic cost of Type 1 droughts without accounting for Type 2 droughts, 

the average yearly total costs of drought would approximate USD 179-204 million. Including 

Type 2 droughts raises this total cost by 121-124% to USD 402-450 million (Table 6, column 

4). Overall, both specifications suggest that Type 2 droughts are responsible for about 35-40% 

of the total ex-post economic value of yield losses. 

14 Crop prices in Indian rupees are converted into USD using the average monthly exchange rate obtained from 
http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008. More details on how prices are 
computed are available in the Appendix (B). 
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5.1 Forecasting accuracy

To test the forecasting accuracy of our index, an out-of-sample prediction on yield 

(levels) is undertaken using: 1) the DI1 and DI2 index (separately); 2) the normalized Yu-

Babcock index (DI1); 3) the combined DI1 and DI2 index (DI12); 4) a rainfall-only index 

(proportion of rainfall against the long-term average for years below normal); and, 5) a CDD 

only index. We estimate out-of-sample accuracy by estimating the models up to 2000 and 

forecasting yield from 2001 to 2006.15 The year 2000 was chosen as a cut-off period as the 

2001-2006 period is notoriously difficult to predict; many districts were affected by drought so 

the results can be seen as a lower-bound in terms of forecasting accuracy.16 All the statistics 

used to evaluate the forecast accuracy are bootstrapped (100 repetitions), which gives an 

indication of the sensitivity of the results (see also Appendix C). 

15 We performed the same exercise for different cut-off years and results do not change substantially. 
16 Forecasting performance is better for years other than the cut-off period. 
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The results are shown in Appendix Table 8 in which we also report four indicators of 

forecast accuracy, namely the Mean Absolute Error (MAE), the Root Mean Square Error 

(RMSE) and the proportion of false negatives (FN) and positives (FP). We define false 

positives as cases where the observed yield was not 10% below normal17 yield (drought), but 

our model predicted yields lower than 10% below normal. Conversely, false negatives are 

defined as cases where observed yields are lower than 10% below normal, but the model 

predicts yields above this level.

Overall, the separate indices (DI1 and DI2) and the combined index (DI12) perform 

better than other indices in all metrics (Appendix table 8). The FP and FN rates are 

approximately 16% and 24%, respectively. Also, while the DI12 model performs better than 

alternative indices, the difference in performance is not statistically different and the MAE 

remains large (above 500kg/ha). This is mainly due to the fact that the estimated model was 

not primarily conceived for forecasting. In Appendix C, we show how forecasting performance 

can be improved with some very minor alterations in terms of the chosen specification; 

Appendix table 10 shows the results of these alternative specifications.

6. Discussion 

Overall, three main findings emerge from our analysis. First, we show that two types 

of dry event, defined according to whether they have an above- or below-average value of 

CDD, have significant impacts on rice productivity in India. A consideration of the latter type 

– Type 2 – is shown to be critical, especially in a setting where there has been a clear increase 

in the number of such events in recent years. If an assessment of economic impacts is performed 

solely based on Type 1 droughts alone, i.e. those considered by Birthal et al. (2015), 

17 Normal yield is defined as the median yield for the five years preceding the cut-off.
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approximately half of all potential dry events would be overlooked. Our results strongly 

suggest that Type 2 events have had quite a severe impact on rice yields. 

Second, the impacts are ameliorated differently when rice is irrigated. Specifically, 

absolute losses increase with the proportion of rice area under irrigation as a result of higher 

yields, although they decline as a proportion of total yield. We also find that irrigation seems 

to be more effective at reducing drought-induced yield losses from Type 2 droughts than Type 

1 droughts. This suggests that the potential effects of irrigation in mitigating drought-induced 

impacts of climate change hinges on drought typology. 

Third, there is some evidence that marginal impacts over time differ depending on 

drought type. Overall, absolute yield losses have either remained fairly constant or increased 

over time. As a proportion of yield, Type 1 drought losses have become smaller while Type 2 

losses have risen. We attribute this partially to the fact that Type 2 droughts have become 

increasingly severe over time and have increasingly been preceded by dry years, which may 

have accentuated the impacts of this type of drought.

The economic value of production losses attributable to Type 2 droughts is calculated 

to be approximately 70% of the value of losses attributable to Type 1 droughts. Also, the 

omission of Type 2 droughts underestimates the economic value of production losses caused 

by to Type 1 droughts, by around 27%. While we acknowledge that our back-of-the envelope 

estimates are based on a number of assumptions regarding prices and so forth, they do suggest 

that we have found sufficient empirical evidence and an economic rationale to justify the 

inclusion of Type 2 droughts, both in ex-post analyses of drought impact and in forecasts of 

impact.

We acknowledge that our index has a number of technical limitations. First, similar to 

any index based on relative values, our index may have limited transferability because index 
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values change when the minimum and maximum values change over time. Thus, its values 

might not be easily comparable across different regions, e.g. dry vs humid areas. Second, the 

normalization process is bounded between 0 and 1. If a given district has a very large outlier 

in a given year but records lower values in other years then this would indicate a low value in 

the drought index thus masking what might have been a severe drought year. The third potential 

weakness arises from the multiplicative nature of the index. Whenever temperature is close to 

0, this can lead to a very low value of the drought index despite very deficient rainfall, an issue 

that also applies to Yu and Babcock’s index. Fourth, similar to their index, our index does not 

take into account intra-seasonal deficiencies in rainfall, which have been shown to have 

important impacts on agricultural productivity,18 e.g. Fishman (2016). Finally, similar to most 

drought indices, our index does not take into account (rare) multi-year droughts because this 

would require an index with ‘memory’ that takes into account soil moisture conditions. That 

said, since drought in India is mainly driven by variation in the annual monsoon, we argue that 

using an annual measure of monsoon rainfall is of greater relevance when estimating drought 

impact in our setting.

6.1 Behavioural responses to drought

Our empirical analysis precludes a consideration of the ex-ante and ex-post behavioural 

responses to drought (Oviedo and Moroz, 2014). Previous research has shown that farmers 

often engage in lower-risk-lower-return activities as coping strategies to cope with anticipated 

weather shocks, e.g. the adoption of less-profitable crop portfolios less sensitive to rainfall 

deviations (Rosensweig and Wolpin, 1993), field scattering (Goland, 1993) and the adoption 

of low-risk-low-return crops (Dercon, 2008). Such strategies have been shown to have large 

negative impacts on profits and capital stock growth. Similarly, ex-post responses to drought 

18 However, we show that when we include a monthly index for different months during the cropping season, 

our main results still hold (see Appendix Tables 6 and 7).
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have been shown to have negative impacts, e.g. a disinvestment in productive assets 

(Rosensweig and Wolpin, 1993), a slowdown in the post-drought asset recovery process 

(Jodha, 1978), as well as effects on human capital (Shah and Steinberg, 2017). 

In our particular context, we might expect a reduction in rice areas in anticipation or as 

a result of a drought. Higher perceived drought risk may drive higher levels of diversification 

and hence, potential yield losses from rice specialization. Divesting in productive inputs (seeds, 

livestock) as a result of a previous drought is another type of behavioural response that is not 

captured in our data. The implication is that our cost estimates, which are only based on yield 

losses, are likely to represent an underestimate of the true economic cost of drought’s impact 

on rice yield in India. 

6.2 Policy implications

In 2016, the IMD officially stopped using the word ‘drought’, as part of a policy 

decision to move away from the use of terms it did not consider to have much scientific 

precision (Koshy and Vasudeva, 2016). An All India Drought Year was changed to a ‘Deficient 

Year’ while an All India Severe Drought Year became a ‘Large Deficient Year’. Yet, these 

events are still defined according to rainfall shortfall and the proportion of area affected, as 

described in Section 3. The declaration of droughts remains the prerogative of India’s States 

and while a rainfall shortfall combined with area affected allows a State to declare an 

‘agricultural’ and ‘meteorological’ drought, this gives no indication of the impact on yield. 

Our index covers all events defined as ‘Deficient Years’ by the IMD. Since it 

incorporates the impact of temperature as well as rainfall shortfalls on productivity, it could 

complement the existing efforts of Indian policy-makers. It could also be adopted in other 

settings given its simplicity, reproducibility, and flexibility, e.g. i.e. can be broken into ‘bins’ 

or adapted to other quadrants of interest. Since our index is based on readily-available, 
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climactic data, it has the potential to be used as an input in the design of weather-based index 

insurance. 

The results derived from application of our index have general implications for policy. 

We show that different water-stress heat-stress combinations have different impacts on yield. 

Thus, the future impacts of rising temperatures driven by climate change may not only depend 

on the frequency and intensity of drought but also the composition of drought, in terms of the 

relative importance of heat and water stress. This is of particular relevance in drought-prone 

areas. 

Shaping the appropriate policy response to drought, particularly with respect to the 

costs of mitigation as well as climate adaptation in the agricultural sector, often involves the 

application of cost-benefit analysis, e.g. Mechler et al. (2008). In general, this and other 

economic modelling approaches, e.g. general equilibrium models, rely upon estimates of 

drought impacts on production (e.g. Pauw et al., 2011; WMO and GWP, 2017). Yet, if such 

models focus solely on events where the value of CDD is above average then this is likely to 

lead to a downward bias in the predicted economic benefits, by both reducing the potential 

gains from mitigation (since the gains from mitigation depend on the size of the impacts) and 

adaptation, hence lowering the cost of inaction. 
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DOES CHOICE OF DROUGHT INDEX INFLUENCE ESTIMATES OF DROUGHT-

INDUCED RICE LOSSES IN INDIA? 

APPENDIX

(A) – Data and Variables

The raw data file includes cumulative monthly rainfall data at the district level.

Generating rainfall variables

We start by generating the rainfall variable, which represents cumulative rainfall over the June-

September period. A long-term average rainfall measure is then defined for each district. We 

take the average total cumulative rainfall over the growing season (June-September) for each 

district over the period 1956-2009. 

For a given district, the general formula used is the following:

𝑇𝑅𝑖𝑡 =

𝑁∑𝑚= 1

𝑅𝑚𝑖𝑡
Where the total rainfall in a given growing season for a given district i in a given year t, is equal 

to the sum of the monthly cumulative rainfall over the June-September months (m to M) 

included in the growing season. To calculate the long-term average rainfall, we use the 

following formula:

𝐿𝑇𝐴𝑅𝑖 =
1

54

𝑇= 2009∑𝑡= 1956

𝑇𝑅𝑖𝑡
Where the long-term average rainfall for a given district i is simply calculated as the average 

total rainfall in that district over the 1956-2009 period.
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Generating temperature variables

We opt for a measure of cooling degree days (CDD) to capture accumulated heat over the 

growing season (June-September, in our main specification). This captures the number of 

degree days above a reference (average) temperature, , over a given time period. We use 𝐷𝑇𝐴𝑖
two alternative specifications for generating this variable.

Our first step is to define the average temperature over the growing season for each district 

between 1956 and 2009. For any given district, CDD is estimated as:

𝐶𝐷𝐷𝑖𝑡 =

𝑀∑𝑚= 1

𝐷∑𝑑= 1

(𝐷𝑇𝑖𝑚𝑑― 𝐷𝑇𝐴𝑖)
Our long-term average CDD is then calculated as follows:

𝐿𝑇𝐴𝐶𝐷𝐷𝑖 =
1

54

𝑇= 2009∑𝑡= 1956

𝐶𝐷𝐷𝑖𝑡
where d and m represent a given day and month included in the growing season and D and M 

respectively represent the total numbers of days in a given month and the total number of 

months in the growing season; DT denotes the average daily temperature in district i in day d 

of month m; and, DTA represents the average growing season daily temperature for a given 

district over the 1956-2009 period. Next, we create , which is simply the average 𝐿𝑇𝐴𝐶𝐷𝐷𝑖
cumulative degree days above the mean daily temperature experienced by district i over the 

1956-2009 period.

Generating drought indices

Crucial to our analysis is the construction of a novel drought index. For our purposes, we 

develop three drought indices. Below we describe the steps we carry out for each one.
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Yu-Babcock index

We denote: total rainfall over the growing season ; the mean of total rainfall over the 𝑇𝑅𝑖𝑡
growing season over 1956-2009 ; and, the standard deviation of  as . We then 𝐿𝑇𝐴𝑅𝑖 𝑇𝑅𝑖𝑡 𝑠𝑑𝑇𝑅𝑖
obtain the standardized variable using the following formula:

𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡 =
𝑇𝑅𝑖𝑡― 𝐿𝑇𝐴𝑅𝑖𝑠𝑑𝑇𝑅𝑖

We proceed analogously for our  measure. Let:  be cumulative cooling degree days 𝐶𝐷𝐷𝑖𝑡 𝐶𝐷𝐷𝑖𝑡
above the long-term mean temperature of a district during the growing season;  be 𝐿𝑇𝐴𝐶𝐷𝐷𝑖
long-term average cumulative cooling degree days in the growing season; and,  be the 𝑠𝑑𝐶𝐷𝐷𝑖
standard deviation of . We compute the standardized variable:𝐶𝐷𝐷𝑖𝑡

𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡― 𝐿𝑇𝐴𝐶𝐷𝐷𝑖𝑠𝑑𝐶𝐷𝐷𝑖

Following this, we use the following to compute the Yu-Babcock index:

𝐷𝐼𝑖𝑡 = [―max (0,𝐶𝐷𝐷𝑠𝑡𝑎𝑛𝑑𝑖𝑡 )] ∗ [min (0,𝑇𝑅𝑠𝑡𝑎𝑛𝑑𝑖𝑡 )]                   (1)

Normalized indices 

We start by defining a variable that captures the deviations vis-à-vis the long term means of 

CDD and rainfall. Specifically, we calculate the deviations of CDD from the long-term 

averages by estimating: 𝐷𝐶𝐷𝐷𝑖𝑡 = 𝐶𝐷𝐷𝑖𝑡― 𝐿𝑇𝐴𝐶𝐷𝐷𝑖
Similarly, we calculate deviations of cumulative rainfall by estimating:𝐷𝑇𝑅𝑖𝑡 = 𝑇𝑅𝑖𝑡― 𝐿𝑇𝐴𝑅𝑖
In contrast to the Yu-Babcock index, for the remaining indices we use a variable normalized 

between 0 and 1, rather than a standardized value. We construct a variable, , which is 𝑀𝑇𝑅𝑖𝑡
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simply the negative of  (i.e. ). The following is estimated to obtain  𝑇𝑅𝑖𝑡  𝑀𝑇𝑅𝑖𝑡 =―𝑇𝑅𝑖𝑡 𝑁𝑇𝑅𝑖𝑡
and :𝑁𝐶𝐷𝐷𝑖𝑡

𝑁𝑇𝑅𝑖𝑡 =
𝑀𝑇𝑅𝑖𝑡―𝑀𝑇𝑅𝑚𝑖𝑛𝑖𝑀𝑇𝑅𝑚𝑎𝑥𝑖 ―  𝑀𝑇𝑅𝑚𝑖𝑛𝑖

𝑁𝐶𝐷𝐷𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡― 𝐶𝐷𝐷𝑚𝑖𝑛𝑖𝐶𝐷𝐷𝑚𝑎𝑥𝑖 ―  𝐶𝐷𝐷𝑚𝑖𝑛𝑖

We differ from Yu and Babcock (2010) in creating a normalized version of the rainfall and 

CDD variables such that they vary strictly between 0 and 1, with 1 indicating the most extreme 

value (the highest CDD and lowest rainfall) and 0 indicating the lowest value. From these two 

variables, we then create a normalized index , which is simply a product of these 𝑁𝑅𝑇𝐼𝑖𝑡
variables: 𝑁𝑅𝑇𝐼𝑖𝑡 = 𝑁𝑇𝑅𝑖𝑡 ∗ 𝑁𝐶𝐷𝐷𝑖𝑡
From this, we obtain two additional indices. First, our Type 1 drought index:

𝐷𝐼1𝑖𝑡 = {𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝐷𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝐷𝐶𝐷𝐷𝑖𝑡 > 0  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is equivalent to a normalized version of the Yu-Babcock (2010) index. It only takes a non-

zero value for events where rainfall deficiency and CDD are above average.

Second, we create our Type 2 drought index analogously using the following:

𝐷𝐼2𝑖𝑡 = {𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝐷𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝐷𝐶𝐷𝐷𝑖𝑡 < 0  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is the category omitted by Yu and Babcock. It only takes a non-zero value for events 

where rainfall deficiency is above-average and CDD is below average.
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Determining the sample and generating trends

After developing the drought indices, we create a data file which includes only the observations 

between 1966 and 2009, i.e. our sample period. This choice is purely driven by data availability. 

Prior to 1966, our dependent variables (production and yields) are missing from the ICRISAT 

dataset and hence, would have resulted in districts being dropped. Prior to starting our analysis, 

we also dropped any districts for which at least one observation is missing in order to keep a 

balanced panel. We then generate district-specific quadratic trends using the following:

𝑡𝑟𝑒𝑛𝑑= 𝑡 ― 1965

𝑡𝑟𝑒𝑛𝑑_𝑠𝑞= 𝑡𝑟𝑒𝑛𝑑2

where t denotes the year.

(B) – Estimating Economic Impact

As is made clear in the main text, the cost estimates generated in this paper are based purely 

on yield losses, without taking into account any potential changes in the cultivated area. 

Specifically, our cost estimates are derived using a series of seven steps. We detail all the 

assumptions and steps used throughout and discuss their relative strengths and weaknesses. 

Step 1 - Obtain a national estimate of rice prices for each year:

Crop prices: We generate a national weighted average of crop price by year (using the egen 

command and the user-written option wtmean), where the weight is determined by area of land 

under cultivation. As a result, we first generate, for each year, a weighted average of millet 

prices at the district-level. 

We then use 2008 crop prices to estimate prices (and costs) in USD: Rice prices are estimated 

at 29.947 USD/quintal. These prices are obtained by obtaining the weighted average of rice 

prices in India for 2008 (in Rupees) and converting this using the averages of the 2008 monthly 
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exchange rates extracted from: http://www.x-

rates.com/average/?from=USD&to=INR&amount=1&year=2008.

All of the tables are also constructed using nominal yearly prices in Rupees and are available 

from the authors upon request. 

Weaknesses and strengths of the assumptions: 

National rice prices. For any given year, there are large differences in prices across districts. 

It could be argued that prices at the district- or state-level may be more appropriate. However, 

there are issues with missing price data at the district-level and, to a lesser extent, at the state-

level even for cases where there is a non-zero quantity reported. This is the main reason why 

we opt for national prices. 

Using fixed rice prices in USD: Using a fixed price throughout the sample period implies that 

the estimates of costs will vary depending on the chosen year since the choice of the year will, 

by definition drive both the exchange rate and the price level. Yet, output losses in the early 

periods are made comparable to losses in later periods since they are given the same value. 

Using nominal prices could lead to the economic cost of drought artificially increasing over 

time as nominal prices have trended upwards over the sample period. In any case, we have also 

performed this exercise using nominal prices in rupees and the results are available from the 

authors upon request.

Step 2 - Estimate the regression of interest:  

We estimate a fixed-effects model per (3) in the main text. 

Step 3 - Estimate the yield losses: 

After Stata has generated the output for the regression in Step 2, we operationalise the following 

steps:
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 Step 3.1 – Predict the yield for drought when  or  (i.e. when the  𝐷𝐼1𝑖𝑡 > 0  𝐷𝐼2𝑖𝑡 > 0

given district is drought affected). We do this by using the levpredict command 

following the estimation of the regression before replacing observations not affected by 

drought with an empty observation. We denote this variable . Note, to limit 𝑦ℎ𝑎𝑡𝑑
potential biases in the estimates of overall costs, we remove districts with implausible 

predicted yields, which we define as yields below 100 kg/ha and above 5 tonnes/ha). 

This assumption, however, affects very few observations (less than 0.01% of total 

events). 

 Step 3.2 – Predict the yield variable under no drought (i.e. when  or  𝐷𝐼1𝑖𝑡 = 0  𝐷𝐼2𝑖𝑡 = 0

). We rename the original variables  and , and create two 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡
new temporary variables:  and . We then use the 𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 = 0  𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 = 0

levpredict command to obtain predicted yield and a variable denoted . The 𝑦ℎ𝑎𝑡𝑛𝑑
variables and are deleted, and and  𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡
are, respectively, renamed and . We replace  with an empty 𝐷𝐼1𝑖𝑡 𝐷𝐼2𝑖𝑡 𝑙𝑦ℎ𝑎𝑡𝑛𝑑
observation for every case where (non-drought 𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 = 0  𝑎𝑛𝑑 𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 = 0 

affected case). 

 Step 3.3 – Obtain predicted yield losses by simply subtracting the predicted yield under 

no drought (Step 3.2) by the actual predicted yield (Step 3.1) for all cases when  𝐷𝐼1𝑖𝑡
 or . Formally, we calculate  .> 0  𝐷𝐼2𝑖𝑡 > 0 𝑦𝑙𝑜𝑠𝑠𝑒𝑠= 𝑦ℎ𝑎𝑡𝑛𝑑―𝑦ℎ𝑎𝑡𝑑

 Step 3.4 – Obtain predicted yield losses by drought type by simply subtracting the 

predicted yield under no drought by the actual predicted yield for each type of drought 

separately. Thus, we estimate: ; and, 𝑦𝑙𝑜𝑠𝑠𝑒𝑠1 = 𝑦ℎ𝑎𝑡𝑛𝑑―𝑦ℎ𝑎𝑡𝑑 𝑖𝑓 𝐷𝐼1𝑖𝑡 > 0 𝑦𝑙𝑜𝑠𝑠𝑒𝑠2

. Note the two types of drought are mutually exclusive = 𝑦ℎ𝑎𝑡𝑛𝑑―𝑦ℎ𝑎𝑡𝑑 𝑖𝑓 𝐷𝐼2𝑖𝑡 > 0

(i.e. it is impossible for a district to simultaneously have a Type 1 and a Type 2 drought).
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Step 4 - Estimate district-level production losses: 

This requires three further steps:

 Step 4.1 - Convert land area to ha. As highlighted in the supporting documentation,1 the 

land-use data is in 000’s of ha. As a result we simply multiply cereal area by 1,000 to 

derive the cereal area in ha. 

 Step 4.2 - Convert yield losses to 1,000t/ha. Currently, our yield losses are in t/ha. We 

thus convert the yield losses to 1,000t/ha by dividing   by 1,000.𝑦𝑙𝑜𝑠𝑠𝑒𝑠
 Step 4.3 – Get the total district production losses (in 1,000t). Obtain the product of the 

variable obtained in Step 4.1 by that obtained in Step 4.2.

Step 5 - Estimate the district-level cost of production losses: 

To do this we perform two further steps:

 Step 5.1 – Convert price data to million USD/1,000t.  For the results shown in the paper, 

our price data are in USD per quintal (as explained in Step 3.1) and our production loss 

data (estimated in Step 4.3) are in 1,000t. To obtain the price data in million USD per 

1,000t we divide our price level by 100. Note, a quintal is 100kg. To convert it into 

1,000t (1,000,000kg) we multiply the price data by 10,000. However, since we want 

the data in million USD rather than USD, we divide this by 1,000,000. Thus, 

price*10,000/1,000,000 = price/100

 Step 5.2 – Obtain total value of production losses. After obtaining prices in million 

USD/1,000t we multiply the variable derived in Step 5.1 by the variable derived in Step 

4.3 to obtain the total value of production losses in USD millions. Note, for our 

estimates in Rupees, we apply the exact same procedure using yearly nominal prices.

1 See: http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf 
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Step 6 - Estimate total yearly production losses: 

To obtain this measure in 1,000t we sum estimated total production losses of each affected 

district in a given year. We use the total function of the egen command. Note that the value in 

the table represents the unweighted average yearly loss. 

Step 7 - Estimate total yearly production costs: 

To obtain this measure in millions of Rupees, we simply sum the estimated total value of the 

production losses of each affected district in a given year. We use the egen command with the 

total function. Note again that the value in the table represents the unweighted average yearly 

loss. 

(C) – Estimating Forecasting Accuracy

For the results in Appendix table 8, we estimate the forecasting accuracy of five different 

models, namely:

 Model 1: DI1 + DI2 separate 

 Model 2: DI1 (normalized Babcock index)

 Model 3: DI1 + DI2 in a unique index

 Model 4: Rainfall index (proportion of rainfall below normal)

 Model 5: CDD index – CDD above long-term average growing-season daily 

temperature for the district 

We define 2000 as the main cut-off point to evaluate the forecasting accuracy of our model. In 

addition, we also test the sensitivity to the choice of cut-off point by using alternative cut-off 

points (1990, 1995, and 2004). For each cut-off point, we carry out the following steps:
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1. For each model and evaluation period, we estimate the following model (in levels) up 

to the last year of the evaluation period (e.g. up to 2000), using a fixed effects 

regression:𝑦𝑖𝑡
= 𝛼𝑖 +  𝛾𝑡 + 𝛿𝑖1 ∗ 𝑡+ 𝛿𝑖2 ∗ 𝑡2 +  𝛽1𝑞 𝐷𝐼𝑖𝑡𝑞 + 𝛽2𝑞 𝐷𝐼2𝑖𝑡𝑞 + 𝛽3𝑞 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑡+ 𝛽4𝑞 𝐷𝐼2𝑖𝑡𝑞 ∗ 𝑡+ 𝛽5𝑞

 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽6𝑞 𝐷𝐼2𝑖𝑡𝑞 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝜖𝑖𝑡
Note, for models 1-3 we use our drought indices. For model 4, DI becomes the rainfall index. 

For model 5, DI becomes the CDD index. 

2. Once the relationship is estimated, we predict yields for the six years following the last 

year included in the regression (i.e. if 2000 is the last year, then we estimate predicted 

values for 2001-2006) using the coefficients from the model estimated up to the year 

2000. 

3. We then calculate the difference between the estimated values obtained in step 2 against 

the observed data

4. We then calculate the Mean Absolute Error (MAE) by computing the average absolute 

deviation between the predicted values and the observed values for the evaluation 

period.

5. We then calculate the Root Mean Squared Error (RMSE) by estimating the average 

squared-error and then taking the square root of this value.

6. For the False positives (FP) and false negatives (FN), we start by defining a ‘normal’ 

yield. We do this by calculating the district-specific median yield in the last 5 years 

included in the regression in step 1 (i.e. if 2000 is the last year included, a normal yield 

will be the median yield for the 1995-2000 period).

7. We then define a ‘large’ deviation from normal as a 10% negative deviation.
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8. We then generate a FP dummy variable which takes the value of 1 if our model predicts 

a yield below 90% of normal (i.e. a yield lower than a 10% negative deviation) and the 

observed value is above this threshold. The dummy takes a value of 0 otherwise.

9. We then generate a FN dummy variable which takes a value of 1 if our model predicts 

a yield above 90% of normal when the observed yield was lower than 90% below-

normal. The dummy takes a value of 0 otherwise.

10. Finally, we run 100 bootstrap iterations and report the bootstrap standard errors for the 

RMSE, the MAE, the FN rate and the FP rate.

For the results in Appendix table 10, the procedure is identical to the one described for model 

1 (which is the DI1 + DI2 separate model, as before). For the other models, the procedure 

differs very slightly because the differences in yields are predicted. For the results in Appendix 

table 10, we estimate four alternative models, namely:

 Alt1: Dependent variable in first-differences and DI1+ DI2 in a separate index. 

Specifically, we estimate the following model:∆𝑦𝑖𝑡
= 𝛼𝑖 +  𝛽1 𝐷𝐼1𝑖𝑡 + 𝛽2 𝐷𝐼12𝑖𝑡 + 𝛽3 𝐷𝐼1𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +  𝛽4 𝐷𝐼2𝑖𝑡 + 𝛽5 𝐷𝐼22𝑖𝑡 + 𝛽6 𝐷𝐼2𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽7

 𝑄𝐼3𝑖𝑡 + 𝛽8 𝑄𝐼4𝑖𝑡 + 𝛽9 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽10𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖2𝑖𝑡 + 𝜖𝑖𝑡
Where   is the first-difference in rice yields (levels) DI1 is the index for type 1 ∆𝑦𝑖𝑡
droughts, DI2 is the index value for type two droughts,  denotes the proportion 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖
of rice area under irrigation.  and QI4 are the non-drought values analogous to DI1 𝑄𝐼3
and DI2 (i.e. they represent the index values for years when rainfall was above average 

and temperature was below- (QI3) and above-average (QI4), respectively). Note, 

however, that the inclusion of QI3 and QI4 has only a marginal effect on the 

performance of the forecasting models.
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 Alt2: Dependent variable in first-differences and DI1+ DI2 in a unique index. 

Specifically, we estimate the following model:∆𝑦𝑖𝑡
= 𝛼𝑖 +  𝛽1 𝐷𝐼12𝑖𝑡 + 𝛽2 𝐷𝐼122𝑖𝑡 + 𝛽3 𝐷𝐼12𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽4 𝑄𝐼3𝑖𝑡 + 𝛽5 𝑄𝐼4𝑖𝑡 + 𝛽6 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽7𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖2𝑖𝑡 + 𝜖𝑖𝑡

 Alt3: Dependent variable in first-differences and DI1 + DI2 in separate indices and 

disaggregated by month (choice of interactions was defined by experimenting with 

different specifications). The following model is estimated:

o ∆𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽1 𝐷𝐼1𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽2 𝐷𝐼1𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽3 𝐷𝐼1𝑗𝑢𝑙𝑦𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽4 𝐷𝐼1𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽5 𝐷𝐼1𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽6 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽7 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟2𝑖𝑡 + 𝛽8 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽9 𝐷𝐼2𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽10 𝐷𝐼2𝑗𝑢𝑛𝑒𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽11 𝐷𝐼2𝑗𝑢𝑙𝑦𝑖𝑡
+ 𝛽12 𝐷𝐼2𝑗𝑢𝑙𝑦𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽13 𝐷𝐼2𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽14 𝐷𝐼2𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽15 𝐷𝐼2𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽16 𝐷𝐼2𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽17 𝑄𝐼3𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽18 𝑄𝐼3𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽19

 𝑄𝐼3𝐴𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽20 𝑄𝐼3𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽21 𝑄𝐼4𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽22 𝑄𝐼4𝑗𝑢𝑙𝑦+ 𝛽23 𝑄𝐼4𝐴𝑢𝑔𝑢𝑠𝑡+𝛽24 𝑄𝐼4𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟+ 𝛽25 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽26𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖2𝑖𝑡 + 𝜖𝑖𝑡
 Alt4: Dependent variable in first-differences and DI1 + DI2 in a unique index and 

disaggregated by month (choice of interactions was defined by experimenting with 

different specifications). The estimated model is given by:

o ∆𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽1 𝐷𝐼12𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽2 𝐷𝐼12𝑗𝑢𝑛𝑒𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖_𝑖𝑡+ 𝛽3 𝐷𝐼12𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽4 𝐷𝐼12𝑗𝑢𝑙𝑦𝑖𝑡∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽5 𝐷𝐼12𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽6 𝐷𝐼12𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽7 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 +𝛽8 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟2𝑖𝑡 + 𝛽9 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽9 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽10𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖2𝑖𝑡
 + 𝛽17 𝑄𝐼3𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽18 𝑄𝐼3𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽19 𝑄𝐼3𝐴𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽20 𝑄𝐼3𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽21 𝑄𝐼4𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽22 𝑄𝐼4𝑗𝑢𝑙𝑦+ 𝛽23 𝑄𝐼4𝐴𝑢𝑔𝑢𝑠𝑡+ 𝛽24 𝑄𝐼4𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟+ 𝜖𝑖𝑡

The main reason why these changes are likely to improve forecasting accuracy is that the 

original model was not originally intended for forecasting and addressing our research question 

required a large number of interactions, which may actually harm forecasting performance. 

Also, adding intra-annual drought index values is likely to be important as the month in which 

the drought occurs may have important yield implications. 

For each of these models, we define 2000 as the main cut-off point to evaluate the forecasting 

accuracy of our model. In addition, we also test the sensitivity to the choice of cut-off point by 
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using alternative cut-off points (1990, 1995, and 2004). For each cut-off point, we carry out 

the following steps:

1. For each model and evaluation period, we estimate the models described above (Alt1-

Alt4) up to the last year of the evaluation period (e.g. up to 1999 if 2000 is the evaluation 

period) using fixed effects.

2. Once the relationship is estimated, we predict yields for the six years following the last 

year included in the regression (i.e. if 1999 is the last year, then we estimate predicted 

values for 2000-2005) using the coefficients from the model estimated up to the year 

1999. To predict yields, we first predict the difference in yields (which we now denote 

as ). For the first period of the forecast, we then compute predicted yield as follows:𝑑𝑦𝑖𝑡 𝑦𝑖𝑡 = 𝑦𝑖𝑡 ― 1 +  𝑑𝑦𝑖𝑡
For all other periods, we add the predicted  to the previous year predicted y ( ). 𝑑𝑦𝑖𝑡 𝑦𝑖𝑡
For example for year t+1:𝑦𝑖𝑡+ 1 = 𝑦𝑖𝑡 +  𝑑𝑦𝑖𝑡+ 1 = 𝑦𝑖𝑡 ― 1 +  𝑑𝑦𝑖𝑡 +  𝑑𝑦𝑖𝑡+ 1

And so on for all periods.

3. Steps 3-10 are the same as the steps to obtain the estimates in Appendix table 8. Results 

are shown in Appendix table 11.
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