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Abstract

The nonlinear modeling capabilities of artificial neural networks (ANN's) are 
renowned in the field of artificial intelligence (AI) for capturing knowledge that can 
be very difficult to understand otherwise. Their ability to be trained on representative 
data within a particular problem domain and generalise over a set of data make them 
efficient predictive models.
One problem domain that contains complex data that would benefit from the 
predictive capabilities of ANN's is that of optical emission spectra (OES). OES is an 
important diagnostic for monitoring plasma species within plasma processing. 
Normally, OES spectral interpretation requires significant prior expertise from a 
spectroscopist. One way of alleviating this intensive demand in order to quickly 
interpret OES spectra is to interpret the data using an intelligent pattern recognition 
technique like ANN's. This thesis investigates and presents MLP ANN models that 
can successfully classify chemical species within OES spectral patterns.
The primary contribution of the thesis is the creation of deployable ANN species 
models that can predict OES spectral line sizes directly from six controllable input 
process parameters; and the implementation of a novel rule extraction procedure to 
relate the real multi-output values of the spectral line sizes to individual input process 
parameters. Not only are the trained species models excellent in their predictive 
capability, but they also provide the foundation for extracting comprehensible rules. 
A secondary contribution made by this thesis is to present an adapted fuzzy rule 
extraction system that attaches a quantitative measure of confidence to individual 
rules. The most significant contribution to the field of Al that is generated from the 
work presented in the thesis is the fact that the rule extraction procedure utilises 
predictive ANN species models that employ real continuously valued multi-output 
data. This is an improvement on rule extraction from trained networks that normally 
locus on discrete binary outputs.
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Chapter 1

Introduction

1.1 Evaluation of Problem

The main question posed by this thesis is: "Can artificial intelligence (AI) techniques 

be used to interpret optical emission spectra (OES) to identify chemical species within 

the spectra?".

This question has been answered in the thesis in three distinct ways.

Firstly, by applying the pattern recognition properties of artificial neural networks

(ANN) and incorporating some expert knowledge into a rule-based system (RBS) to

classify individual spectral patterns representative of a single chemical species. The

OES fingerprint consisting of spectral lines at known wavelength points for individual

species within single gas and mixed gas spectra were the extracted features used to

train a multilayer perceptron (MLP) backpropagation (BP) network. This method is

very useful for the non-expert to rapidly classify species for accurate spectral

interpretation, and has the capability for extension to automation. The rule-base

advises the user on verifying species' presence or absence within typical mixed 

spectra.

Secondly, to achieve a more flexible and robust identification system than that of the 

classifier it was sought to incorporate certain controllable plasma process variables 

into the equation of species identification. The problem domain consisted of a 

representative OES data set of up to four-gas plasmas. Identifying the nonlinear 

relationship between six controllable process parameters and the spectral lines for 

individual chemical species was one of the aims of this method. Since MLP networks 

are excellent nonlinear models, the topology was suitable for identifying the nonlinear

relationship that would predict the size of spectral lines for a particular species solely 

trom the process parameters.



For this project, using the MLP network created individual species models that could 

predict the size of spectral lines for seven different species. The seven chemical 

species are atomic argon (Ar), atomic hydrogen (II), molecular hydrogen (H2), 

molecular nitrogen (N2), ionic nitrogen (N2 ), methyl fragment (CM) and methyl ion 

(CFT). The inputs to the network were the six process variables - radiofrequency (RF) 

power; pressure; and flow rates of argon, hydrogen, nitrogen and methane. The 

outputs for each of the seven species ANN models were the prominent spectral lines 

for that species; three spectral lines for Ar, H, H2, CM. and two spectral lines for N2, 

N2+, CH+.

The plasma chemistry and physics of the plasma deposition process from which the 

OES spectra were obtained was not a consideration for this project as the aim here is 

to apply intelligent techniques to spectral interpretation without requiring the in-depth 

process chemistry knowledge of an expert spectroscopist. However, expert 

spectroscopists were consulted throughout the project to confirm results.

I here are a selection of ANN applications in plasma etching and deposition processes 

to date that incorporate intensive process practices for the building of ANN models. 

For example, Huang et. al. (1994) compared ANN models with classical regression 

models to predict process behaviour at various operating conditions during plasma 

etching. Even within the epitome of expert knowledge in plasma chemistry, the 

fundamental plasma chemistry and physics in plasma etching reactors are still not 

easy to model. Hence reliable empirical models for such a process are desirable for 

investigating the process behaviour and realising real-time control. One main 

difficulty encountered in this endeavour is that very limited experimental data are 

available in practice for model development for any particular system. Despite this 

difficulty, Huang et. al. (1994) were able to construct satisfactory ANN models for a 

plasma etching reactor using limited experimental data. Their results showed that the 

process behaviour predicted from the ANN's were better in terms of lower prediction 

error, smoothest prediction and simpler model topology than the regression models. 

Using ANN's as empirical models for the plasma etching process provided more 

model reliability for predicting process variables when compared with the regression 

models. I his is due to the fact that the plasma process is highly nonlinear with



multiple inputs and outputs as well as limited experimental data and so the nonlinear 

modeling ability of ANN's is superior in this particular case. Huang el. a/.'s work 

supports the standpoint of this thesis, in that having a limited input data set can still 

produce reliable ANN models. Several studies into intensive plasma processing will 

be discussed in more depth in chapter 2.

By creating ANN species models to predict the size of spectral lines solely from input 

flow rates, power and pressure, it was possible to pursue a subsequent approach of 

extracting information from the trained species models. The aim of this approach was 

to identify which controllable process variables affected the size of the spectral lines 

for individual species. This could provide rules to suggest or advise the user during 

the plasma deposition process to identify which of the six process parameters would 

increase or decrease the size of spectral lines and hence effectively the amount of that 

particular species. It would produce a way of linguistically providing rules to 

determine how the amount of a particular species could be varied. The rules 

generated were empirically tested on a separate validation data set with a high score.

Thirdly, since the potential of the species models achieved from training on a 

representative data set lent itself to attaching linguistic terms' to the input and output 

variables, fuzzy membership functions were used to train an ANN to generate a set of 

tuzzy rules. I he aim of this method was to explore a more generic way of extracting 

rules within a tuzzy logic [Zadeh 1994] context such that each rule had a weighted 

value associated with it that determined its accuracy. This fuzzy system was adapted 

lrom Blanco et. al.'s (1995) work into developing a learning procedure for extracting 

weighted rules from ANN's. An adaptation of their technique was used to fuzzify the 

input and output parameters to train the ANN species model, thus implementing a 

neuro-fuzzy system that generated a set of fuzzy rules. This project extended Blanco 

el. al.'s work by applying the fuzzification of both multi-input and multi-output 

parameters on a more complex OES spectral domain problem. Each tested fuzzy rule 

had a consistence level (CE) or accuracy value associated with it. The accuracy of the

l inguistic terms refer to qualitative measures associated with adjusting input process parameters to alter spectral line sizes lor 
a particular species; e g. "(power) is LARGE" refers to an Increase in the power input.



rule suggested to the user which combination of process parameters would 

predominantly affect the size of the spectral line.

This method was implemented on one spectral line (the most prominent of the spectral 

lines) which was the atomic argon spectral line size at the 750 nm wavelength location 

(i.e. Ar750). This technique generated sensible rules of the format:

IF (argon flowrate) is LARGE, and (hydrogen flowrate) is SMALL, and (nitrogen 

flowrate) is SMALL, and (methane flowrate) is LARGE, and (power) is LARGE, and 

(pressure) is LARGE, THEN (Ar750) is LARGE; with CL =1.0 .

The comprehensibility of the rule relates the process parameters to the most prominent 

spectral line size for a particular species with a given level of confidence. This neuro- 

fuzzy system identifies accurate rules that indicate, within a parameter space range, 

which process parameters will alter the size of the spectral line. Hence it provides an 

intelligent technique for controlling the species.

Three triangular fuzzy membership functions (i.e. Large. Medium and Small) were 

implemented for the fuzzification of input-output parameters. All the fuzzy rules 

obtained had a level of accuracy. Highly accurate rules had a CL value near to 1; 

alternatively rules with low accuracy had a CL value near to zero. Each fuzzy rule 

can be defuzzified into pre-specified parameter ranges thus identifying the parameter 

space range lor the six controllable process variables that contribute towards the size 

of the Ar750 spectral line. This defines the process parameter range for achieving a 

particular spectral line size which can be used for the control of the plasma deposition 

process. Hie results were correlated with some of the rules generated from the rule 

extraction procedure discussed in chapter 4.

Of most notable importance with regards to this neuro-fuzzy system, was the hybrid 

implementation of fuzzy logic and ANN's into a learning paradigm that not only 

produces a set of fuzzy rules, but provides the user with a confidence measure in the 

rule. 1 he most confident rules generated a high level of accuracy and suggested 

which process variables would affect the size of the Ar750 spectral line and hence the 

quantity of atomic argon. The least confident rules could be cross-correlated to 

determine which process variables had little effect on the quantity of atomic argon. 

1 he extension of this method to the other six species, as well as multi-output variables

4



with different properties, was unique to the transferability of this fuzzy rule extraction 

method.

The rule extraction method implemented in this thesis uses real continuously valued

apart from other techniques for rule extraction from ANN's which are predominantly 

restricted to discrete binary or nominal output data in classification problem domains.

1.2 Importance of OES as a Diagnostic

OES data characterise chemical species by providing the spectral lines emitted at 

specific wavelength locations that represent individual species. A simple OES 

spectrum from the atom argon is shown in Fig. 1.1 . Atoms or atomic ions will emit 

lines of characteristic wavelengths in the ultraviolet and visible regions of the 

electromagnetic (light) spectrum. Excited molecules or molecular fragments (radicals) 

will emit a band spectrum which tends to consist of a series of lines that get 

progressively closer to a limit called the head of the band.

The most distinctively novel result obtained from the three responses to the question 

posed by this thesis, and the primary contribution to the field of A1 is:

multi-input and multi-output data in a predictive ANN model. This sets the method
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chemical species that can exist in a given plasma system. A plasma, which is 

essentially an ionised gas. may contain high concentrations of reactive and ionised 

species that are not generated in any other way and this creates a unique plasma 

chemistry. The difficult problem of species detection arises from this unique plasma 

chemistry whereby the unusual chemical species that exist in a mixed gas plasma need 

to be identified in order to assist in monitoring the plasma process. OES spectroscopy 

provides a non-intrusive diagnostic for monitoring plasma species.

Since individual chemical species ultimately have a unique spectral fingerprint, 

spectral pattern recognition techniques can be used to identify unknown species. For 

this to work, a spectrum database of standard species needs to be identified. 

Searching large spectral databases can be time-consuming, and differentiating 

amongst very similar spectra can be inadequate or inconclusive. This has prompted 

the adoption of ANN technology for automating the spectral pattern recognition 

process. 'Ihe ANN learns OES spectral patterns and once training is completed, the 

trained network can then be deployed to identify individual species by recognising 

their spectral patterns.

The plasma system targeted for characterisation in this thesis is a low-pressure, low- 

temperature plasma typically used in plasma deposition processing. For example, 

diamond-like carbon (DEC) deposition is one type of plasma deposition process that 

otters a hard-wearing, chemical resistant and high thermal conductivity coating. The 

ability to identity plasma species directly from their OES data non-intrusively 

provides intelligent data that can be useful for process control.

1.3 Definition of Approach to Solve Problem

I he thesis has been divided into five chapters.

C hapter 2 begins with a brief introduction of the OES background from which all the 

spectral data utilised in this research project was obtained. It is then followed by an 

extensive review of works incorporated in three main areas -

(i) OES applications

6



(ii) ANN applications and their use in spectral interpretation

(iii) ANN technology for rule extraction

Chapter 3 is the species classification section which deals with the suitability of the 

MLP ANN for spectral pattern recognition, particularly highlighting the use of the 

vector length property.

Previous work by Picton et. a l (1995), demonstrated how the OES fingerprint for 

species within a mixed pattern is different from the single species pattern. Picton et. 

al used Kohonen learning to separate each pattern into each class - boundaries are set 

up to cluster the classes by putting a vector through the pattern space. The network 

was trained on single weights of that learning class. This is due to the fact that the 

mixed pattern of two classes such as A and B. is not just a sum of pattern A and B. but 

rather the mixed pattern is an entirely different pattern C. Therefore, extracting the 

relevant features at known wavelength bands can pull out a normalised pattern from 

the entire spectrum of the mixed gas to train the network to identify species in entirely 

dilferent spectra (not seen in training). The normalisation of spectral lines using the 

vector length property, explained in detail in chapter 3, defines the spectral patterns 

used in training the ANN. The normalised intensities, which represent individual 

species, should obviate any possibly reduced intensities at the selected bandwidths 

that on a visual scale may not be apparent in the entire spectrum. This was the 

methodology employed to good effect in the classification of species. It was deemed 

necessary to always have a representative training pattern set of the types of single

and mixed patterns for the performance of the network to attain 100% accuracy each 
time on testing.

The first part of chapter 4 introduces the simple RBS implemented for verification of 

the presence or absence of seven particular species (Ar, II, H2, N2, N2+, C'l I. CH+).

I his system was limited to the preprocessed spectral data of normalised spectral lines.

I he RBS was developed in the multi-paradigm software environment available using 

the Al programming language Prolog that was easy to implement on the LPA WIN- 

Pro/og™ platform. The RBS was effectively hand-crafted to the rules used for

7



interpretation and so was well suited to the species classification here. However, it 

would require further work to extend this RBS to an automated system. The 

automation of the species classification would require extensive in-situ plasma 

processing data retrieval and would have limited the extent of the project presented 

here. Hence, the intention was to strive for a more robust and generic method 

whereby the interpretation of the spectral data for a particular species could provide 

the user with more information with regards to not just detecting species, but having 

some measure of its quantity.

The second and more novel development of chapter 4 describes the process of relating 

the size of spectral lines to the controllable process variables of power, pressure and 

flow rates. Seven trained species models were obtained that performed very well in 

predicting spectral line sizes on a separate validation set. The portability of this 

method has been demonstrated by modeling the spectral line sizes of seven different 

species solely on the process parameters (power, pressure and llow rates). There were 

two prominent aims for creating these species models. The first aim was to fit the 

nonlinear relationship between the process parameters and spectral line sizes to 

predict the size of lines accurately. To achieve this aim the MLP ANN model with a 

minimum number ol hidden units was feasible. An ANN with a minimum number of 

hidden units will give better generalisation, which means that it does not overfit the 

data. 1 his made it a good predictive model for the nonlinear process to be modeled in 

this project. I he second, and more important aim was to extract relevant information 

Irom the trained network. This aim was implemented from the start by adopting the 

smallest achievable ANN architecture i.e. the smallest number of hidden units. All 

the models had three hidden units, with highly accurate predictive properties, 

from the trained models, sensitivity analysis combined with a new extraction 

procedure called backtracking was implemented to generate a set of rules that were 

tested empirically on the validation data set. The rules were general to individual 

species, since the testing was not extended to a practical plasma process setup. 

Therefore, Irom the rules obtained, suggested courses of action could be provided for 

both the non-expert and expert to indicate which variables should be adjusted in order 

to most effectively alter the amount of a given species.



Chapter 5 presents a neuro-fuzzy rule extraction system that consists of an MLP 

architecture constructed from fuzzified training examples using BP learning to 

develop fuzzy rules with optimal input-output membership functions. The bonus 

feature of this system is that for every fuzzy rule tested, a value of accuracy is 

generated. This identifies the rules that are feasible and can provide useful 

suggestions for altering the size of spectral lines solely from the controllable process 

parameters.

Only one spectral line (the most prominent) for atomic argon, i.e. Ar750, was set as 

the output, in order to generate comprehensible rules. The fuzzy system was an 

adaptation of Blanco et. al.'s (1995) method of assigning a learning procedure to 

obtain weighted rules. A large set of fuzzy rules (2187 to be exact) were obtained and 

grouped into their levels of accuracy. These rules did not only suggest a set of 

confident rules for process control, but also partitioned the processing range for each 

of the six controllable process parameters. This partitioning can suggest how to alter 

the size of spectral lines (thus altering the amount of species) by specifically 

identifying the process parameter space range in which to operate.

The most confident rules had CL levels of 1 and near 1. These were the notably 

important rules to correlate with previous rules from the rule extraction because of 

their high levels of confidence. I he low CL values were cross-correlated with 

confident ones to determine any anomalies.

The novelty of this method was that it was transferable to multi-input and particularly 

multi-output data. Its multi-dimensional approach lent itself to other possible 

problems where the input variables are being related to several output variables. The 

choice of fuzzy membership functions was important, and the fuzzification procedure 

needed to be implemented correctly for the method to work accurately.

Chapter 6 is the concluding chapter of the thesis which summarises the three distinct

areas of work presented here. Suggestions for future work are presented. Also.

certain requirements needed for the successful implementation of the direct rule

extraction and fuzzy rule extraction procedures discussed in this thesis will be 
emphasised.

9



Chapter 2

Background

2.1 Introduction to OES Data Acquisition

With regards to the plasma processing diagnostic of OES, current spectrometer 

technology is capable of identifying certain species by a process of picking out the 

first most identifiable spectral peak that represents individual chemical species. This 

process is based on the characteristic fingerprint of spectral lines that represent a 

particular species. However, an expert spectroscopist is needed to monitor the data 

processing of the entire spectrum received, in order to clearly identify the patterns for 

individual chemical species.

The OES data for this project were obtained ex-situ to the actual plasma processing 

environment from which it was collected. The typical plasma deposition process set 

up is shown in Fig. 2.1 . The plasma deposition unit situated at the Oxford Research 

Unit (Open University) was in operation for a project into the plasma deposition of 

thin films onto the surface of materials, e.g. diamond-like carbon (DLC).

l-igure z.l is a schematic ol the plasma deposition system linked to a SUN Sparc 

Station 10 which runs a rule-based software system called ARBS (Algorithmic Rule- 

Base System). The hardware link is via an A/D (analogue/digital) D/A 

(digital/anaiogue) board in the SUN and a TTL (transistor-transistor logic) control box 

(built for this specific process). This allows direct control of the process parameters - 

Rf power, pressure, temperature, flow rates and gas compositions. The OES 

spectrometer has been integrated into the ARBS system. There is also a mass/energy 

analyser which provides information on atom, molecule and ion concentrations and 

the energy distribution of ions sampled from the plasma.

To analyse the contents of the plasma for effective plasma deposition, the ability to 

classify the spectrum of light that is emitted from the plasma species is very

important. Therefore, to effectively identify these plasma species requires the 

utilisation of their OES spectral data.

I0



Sun Sparc Station 10

Fig . 2.1 The  plasm a deposition process set-up

All the OES data analysis was carried out within the limits of the available spectral 

data as plasma runs were not widely accessible, and were a costly venture for this 

particular project. However, within these restrictions, a characteristic wide-ranging 

set ol OES spectra was collected from ten different plasma systems altogether.

I he OES data consisted of numeric data bins of 4201 intensity value points for a 

wavelength range of 200-900 nanometres (nm) for each of the 123 spectra obtained 

lrom real plasmas. The plasma process parameters of flowrate(s), power and pressure 

were included with the 123 spectral data. There was also an initial set of 19 spectra 

that solely consisted ol the extracted spectral lines for the two chemical species Al-

and H. This was the only OES data available for the project.



Heater and 
sample holder

Sun Sparc Station 10

Fig. 2.1 The plasma deposit ion process set-up

All the OES data analysis was carried out within the limits of the available spectral 

data as plasma runs were not widely accessible, and were a costly venture for this 

particular project. However, within these restrictions, a characteristic wide-ranging 

set of OES spectra was collected from ten different plasma systems altogether.

The OES data consisted of numeric data bins of 4201 intensity value points for a 

wavelength range of 200-900 nanometres (nrn) for each of the 123 spectra obtained 

from real plasmas. The plasma process parameters of flowrate(s), power and pressure 

were included with the 123 spectral data. There was also an initial set of 19 spectra 

that solely consisted of the extracted spectral lines for the two chemical species Al-

and H. This was the only OES data available for the project.
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The optical monitoring of the plasmas were carried out using a Rees Instrument 

Monolight 6800 series Optical Spectrum Analyser (OES spectrometer). The analyser 

comprises a scanning grating monochromator, a photomultiplier tube (PMT) detector 

and a system controller interfaced to a computer. The grating combination was 

optimised for emissions in the 200-900 nm wavelength range and the system had a 

resolution of 0.167 nm. A single scan takes typically 12 to 12.5 Hz (cycles per 

second) controlled by a 6800 unit (scanning speed of microprocessor). There is a 

nominal 95 millisecond scan repetition period if the 6800 motor control is 

disconnected. The light from the plasma is transmitted to the spectrometer using a 

fibre optic bundle. I he spectrometer is a portable device that consists of the 

complete scanning monochromator (including the electronics) which is integrated into 

a housing measuring only 135 x 96 x 67 cubic millimetres, and it weighs 900 grams. 

The actual recommended monochromator/detector combinations can cover a 

wavelength range ol 200 to 5000 nm. The OES spectra were collected from RF 

plasmas through a quartz window in the plasma chamber wall.

Although OES is generally not quantitative in nature, unless in the special

configuration known as actinometry [Parten 1991], it is possible to correlate the

existence or intensity of individual peaks to plasma deposition/etch film quality. Thus

OES can be used as an in-situ diagnostic to identify key process parameters of the

plasma process that will either improve or diminish the quality of the deposited/etched 
film.

Since OES instruments can collect data directly from the plasma into instant

numerical data bins, the idea of interpreting the spectra directly from this data with the

use of intelligent techniques like ANN's was an attractive option. With the pattern

recognition capability of ANN technology, an ANN model could be trained to

recognise spectral patterns for individual species by identifying the unique fingerprint 
for that species.

Hie first choice of ANN for implementing this idea was the MET, simply because it 

can be easily trained on a wide range of continuously-valued data as inputs, and the 

target outputs can be either discrete (binary) or continuous. MLP's are also powerful 

non-linear modeling tools that are ideally suited to model the non-linear OES spectral
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data relationships. The trained model could then be used to identify particular species 

without needing prior OES expertise.

Before the work that was implemented to characterise species in this way is described 

in detail in chapter 3, a review of several works that have used OES to specifically 

monitor species in plasma processing will be presented first.

2.2 OES Applications 

2.2.1 General Overv iew

OES is one ol the most commonly used measurement techniques applied to several 

plasma processing systems [Gifford 1990], [Malchow 1990], [Weiler 1992], [Mehdi 

199j]. It is considered to be a bulk measure ot the optical radiation of plasma species, 

and is most often used to provide an average intensity at a particular wavelength 

above the semiconductor wafer being processed [White 1995]. The approach in OES

currently is to spatially resolve intensities across the wafer by using multiple beams 

[Splichal 1991], [Anderson 1993].

OES has been primarily used to determine the endpoint of wafer etches in plasma etch 

processing, and some efforts to measure in-situ conditions during etching has been 

examined by Shadmehr et. al. (1992). Since OES is currently used to monitor process 

conditions during etch. White et. al. (1995) have developed a real-time estimation 

approach which correlates multivariable sensor data during plasma etch to estimate 

two wafer state characteristics, namely line width reduction (LWR) and etch time.

I heir approach combined principal component analysis (PCA) of OES measurements 

with linear regression and MLP ANN function approximation algorithms. Their 

approach was verified for an experimental design of an aluminium etch. PCA was 

applied to reduce the large number of OES measurements to a more manageable 

number. I his reduction suggested which sensor data variables were more significant 

during the plasma etch. Indications were that there was a significant correlation 

between the measured spectra and primary control variables - top coil power and
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feedgas composition. White et. al then mapped spectral measurements to the true 

control setting in the reactor which provided a real-time process diagnostic. A direct 

correlation between LWR and average aluminium intensities from wafer to wafer was 

identified.

Conclusions from White et. al.'s work, determined that their method only provided

recommendations that were dependent upon the operation of the process and the

variables to be estimated. Their results indicated that if the etcher was to be tightly

operated around a central range then the linear regression network offered both

increased simplicity and better accuracy than the MLP network. However, if large

design variations were to be expected then the MLP approach offers better accuracy,

with a trade-oil in training complexity. Widely varying process conditions (like

control parameters) in manufacturing environments will require the development of

flexible estimation and diagnostic approaches, hence the attractiveness of the PCA-

network estimator. It should be noted that White et. al.'s use of the MLP network was

not to diiectly interpret the OES data, but was rather used as a comparison study with

the linear regression technique for characterising the wafer properties. They also used

PC A to reduce a large number of OES measurements. In the thesis presented here

however, PCA was not required in the OES spectral interpretation because extracting

relevant features directly from the spectrum through a normalisation process was the

key to training a network to identify particular species. This will be discussed in 
detail in chapter 3.

Since OES is a simple non-intrusive method for determining the relative concentration 

of exate(J species in a plasma, the emission intensities alone will not provide a 

measure of the emissive species concentration [Parten 1991]. An excited species is 

one that has an electron elevated into a higher energy orbit, which is usually an 

unstable state. When the electron returns to its original, stable orbit (i.e. it relaxes) it 

emits a characteristic wavelength of light (simple schematic shown in figure 2.2). The 

emission intensity of the atomic or molecular species will depend upon the species 

density, electron density and energy. This is why the emission intensity alone does 

not provide a measure of the species concentration. In a special configuration referred 

to as actinometry, however, a relative measure of the species with respect to a non- 

reactive reference can be provided. For example, argon (Ar) actinometry is a
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spectroscopic technique used to estimate the concentration of ground state fluorine (F) 

atoms from the relative emission intensity of F and Ar. Therefore, current 

spectrometers cannot automatically calculate the quantity of a species directly from 

their emissive intensities in a plasma, unless a specific set up like actinometry is 

implemented.

It is also important to emphasise that a plasma can contain chemical species that are 

not normally existent at room temperature, hence there are varying atomic/molecular 

ions and radicals/fragments within a given plasma environment. In simple terms, this 

happens because of the unstable conditions that exist in a plasma environment. 

Therefore, normally stable atoms or molecules can lose or gain electrons thus 

becoming charged particles (ions), and in effect they emit (electron loss) or absorb 

(electron gam) radiation at particular wavelengths. In other cases, they may split up 

into fragments referred to as radicals, also characterised by light emissions (or 

absorption) at particular wavelengths. Emitted radiation (or intensities) at particular 

wavelength locations is essentially what an optical emission spectrometer measures, 

and the graphic plot of intensity (measured in arbitrary units, a.u., as it is only a 

relative intensity measure) against wavelength is referred to as the OES spectrum.

/7,h ionisation level

2nd ionisation level

Fig. 2.2 Schematic  diagram o f  light emission for OES
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2.2.2 OES as a Diagnostic for Plasma Processing

To pose the question "To what extent has OES been used as a plasma diagnostic, and 

what have been the extent of its use in characterising plasma processes, particularly 

plasma deposition?", the following reviews will provide a suitable response.

Pappas et. aVs (1994) study into the deposition of diamond-like carbon (DLC) is of 

particular interest tor setting the scene of a typical plasma environment since the low 

temperature, low pressure plasma process for depositing DLC was the initial source of 

the OES data used in the work ol this thesis. DLC is typically deposited by plasma 

decomposition of a hydrocarbon gas in a RF parallel plate reactor. Pappas et. al.'s

(1994) investigation employed a planar RF inductively coupled plasma (RFICP) for 

the preparation of DLC thin films.

Several properties ol the deposited films were examined. This included hardness,

stress, optical transmittance, and hydrogen concentration which were observed to vary

with the substrate bias, gas flow rate, and RF induction power. The dilution of

methane (CH4) flowrate with argon (Ar) was seen to influence the film properties as

well. Also, OES was used to monitor the plasma species. It was determined that

atomic hydrogen, H. is important for the synthesis of DLC, particularly when

incorporated into the film predominantly as CH or CH . Pappas et. al.'s investigation

used a different type of plasma deposition setup, i.e. a planar RFICP, and monitored

selective species with the in-situ OES diagnostic. This study did not address the

problem ol automatic OES spectral interpretation, but highlighted species (i.e. PL CH.

CH ) worthy ol characterisation in the OES spectrum from the DLC plasma

deposition process. These chemical species were notable inclusions in the research 
project study presented here.

Barankova et. al. (1993) have investigated OES from the plasma channel in an RF 

plasma jet system during the deposition of diamond and glassy carbon films, for 

different deposition parameters. The influence of the gas pressure, RF power, ratio of 

gas flowrates, and the substrate were related to the properties of the deposited films. 

The wavelength region of 400-500 nm exhibited the most interesting features for their 

investigation. From this wavelength (A,) region they observed the following emission 

lines and bands: strong atomic hydrogen lines (Hp, X = 486 nm; H X = 434 nm; and
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Hg, A, — 410 nm), H2 molecular spectrum, CH 430 nm band system. CH band system, 

and C2 band system.

Barankova et. al.'s method essentially compared the radial distributions of the optical 

emission from the plasma jet channel with the radial distributions of the diamond film 

growth to indicate a theoretical threshold value of CH to H ratio. From their study 

into the effect of three different methane contents (0. 2.5%, 12.5% CH4) introduced in 

the hydrogen gas mixture, it was determined that the threshold value of CH to H 

intensities ratio was four. 1 he growth of diamond films was observed only for CH to 

H ratios lower than lour. It was determined also that CH+ emissions are closely 

connected to diamond film deposition. Some of the species identified in Barankova 

et. al. s OES study provided supportive evidence for selecting species to identify 

within a particular plasma system, fhe work presented in this thesis employed ANN

technology as a different approach to characterise species and interpret the OES 

spectra obtained from several plasma systems.

In a similar vein to Barankova et. a/.'s (1993) work, Hemel et. al. (1996) have applied 

OES to investigate the local distribution of active species in reactive hollow cathode 

arc discharge plasmas, during the deposition of hard carbon films. The hydrogenated 

carbon films were deposited on silicon (Si) substrates by the introduction of 

hydrocarbon gases (methane, ethene) into helium (He) and argon (Ar) plasmas. They 

employed a specially adapted form of OES called space resolved OES which uses an 

in-situ linear translation mechanism of an optical fibre to measure the local 

concentrations of CH-radicals, carbon ions, and excited He-neutral species. They 

identified excited species in the spectral range of 280-670 nm, and selected specific 

spectral lines and bands which assisted in the measurements of the local distribution 

of the excited species. It was found that the ratio of the emission of the excited 

species differed depending upon the reactive gas (i.e. methane or ethene) applied.

Cui et. al. (1996) have also used spatially resolved OES in characterising species in 

the direct-current biased (i.e. dc-bias) hot filament growth of diamond. Emission lines 

Irom H, CH, CH , H2, and Ar were observed in the visible spectral range. They 

determined from their method that the emission intensity of all the observed lines 

decreased rapidly as the probe distance from the hot filament centre increased, and the 

emission intensity increased when the probe was near the substrate surface. Thus the
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intensity of optical emission changes dramatically with the detection position. This 

point is very important in that it proves that it is the location of spectral lines in an 

OES spectrum that identifies species, and not necessarily the height (i.e. actual 

intensity) of the spectral lines. This also highlights the reason why the concentration 

or quantity of species cannot be determined directly from the line intensity in a 

spectrum, unless using the special configuration of actinometry1.

Cui et. al. estimated the relative concentration of H by using the emission line of Ar at 

750 nm as an actinometer [Parten 1991]. The concentration of H decreased from 

lilament to the substrate and dropped sharply at the substrate surface. They also 

measured the emission spectra and distribution of H along the substrate surface to 

determine that it is closely related to the homogeneity of diamond film growth.

Lower H concentrations (found at the edge of the substrate) resulted in worsening of 

the diamond film quality.

Bockel et. al. (1996) employed two types of spectroscopy to study active species in

direct current (DC) and high frequency (HF) flowing plasma discharges. The two

diagnostic techniques were OES and laser-induced fluorescence (LIF). The flowing

discharges and post-discharges were connected with plasma reactions for surface

tieatments. for example, hydrogen (ff2) gas was introduced with nitrogen (N2) to

expel native oxides during the surface nitriding of iron. A N2-H2 plasma system is

used in classical ion nitriding processes; and the same nitriding effects were generated

using flowing Ar/N2/H2 HF post discharges. The dominant active species in these

plasmas were the ground state free atoms or radicals. Information from the densities

ol these species was ol interest in modeling plasma kinetics, and also to adjust the

discharge conditions to the desired treatment. LIF in N2-H2 DC flowing discharges

have determined the densities of atomic nitrogen (N), atomic hydrogen (FI), and Ni l 
ground state atoms and radical.

I he intensity of the excited species obtained by OES were compared with the ground 

state densities obtained by LIF in both Nr H2 and Ar/N2/H2 flowing discharge and 

post-discharge systems. Bockel et. al. effectively determined the conditions needed 

for maximum density of N and H species by relating to the plasma kinetics. Their

Actinometry is a simple non-intrusive OES spectroscopic technique for determining the relative concentration o f excited 
species in a plasma with respect to a non-reactive reference [Parten 1991],
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results also indicated that the NH radical was not observed in the post-discharge 

regions, thus indicating the NH radical does not contribute to the nitriding process. 

This review demonstrated some of the complexities involved in plasma processing 

when in-situ studies are performed. It also suggested that quantifying species within a 

plasma environment is difficult to achieve even with practical comparison studies.

Clay et. al (1996) have also used OES to characterise the deposition from 

methane/nitrogen (CH4/N2) RF plasmas. This plasma system deposits amorphous 

hydrogenated carbon films which possess unique "diamond-like" chemical, electrical, 

optical and mechanical properties.

With regards to plasma deposition, the gas phase composition (i.e. the nature and

concentration ol various species, fragmentation of ions, degree of ionization, and gas

phase collisions) plays a part in determining the nature of the resultant films.

Therefore, OES provides a convenient and effective technique to detect and monitor a

number ot transient species like excited atoms, ions, and molecules, with varying

plasma parameters. Clay et. al. generated the RF plasmas (CH4, N2, CH4/N2 gas

mixtures) in a 13.56 MHz capacitively coupled parallel plate electrode reaction

chamber. A similar RF plasma (i.e. 13.56 MFIz) configuration was used in DEC

deposition by the plasma working group which supplied the OES data used in the 

research presented in this thesis.

Emission spectra in the range 300-900 nm were collected for different plasma

generated by varying the plasma parameters as follows: (1) 30-210W power, at fixed

1 OOmTorr pressure and 0.25 N2/CH4 ratio; (2) 0.1-2 N2/CH4 ratio at fixed 30W power

and 1 OOmTorr pressure; (3) lOO-lOOOmTorr pressure at fixed 30W power and 0.25

N2/CH4 ratio. From the OES spectrum, Clay et. al. observed emission peaks assigned

to atomic nitrogen (N) derived from higher energy transitions resulting from specific 

N2 molecule dissociation.

In C H4/N2, the suggestion was that the radical CN was important in the growth of the 

amorphous hydrogenated carbon films. Variations in optical emission intensities of 

the observed plasma species that are induced by changes in the plasma processing 

parameters (i.e. power, N2 partial pressure, total pressure) were explained in terms of 

the chemical physics of the reactive species (e.g. electron temperature, density and 

species concentration). These properties were correlated to film growth rates. In
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particular, it was shown that film growth rate decreases with increasing power (bias 

voltage) to a point where there is no film growth. This was considered to be due to 

the increasing energetic N2+ ion acting as an efficient chemical/physical sputter 

agent3. Since the relationship between plasma parameters and emission spectra are 

complex, Clay et. al.'s observations were all qualitative in nature. This demonstrates 

that alternative techniques lor relating controllable plasma process parameters to OES 

spectra would be a welcome and useful practical contribution.

Hong et. al (1995) have studied the effects of nitrogen addition on diamond synthesis 

in a methane/carbon dioxide gas mixture using OES. There was clear improvement in 

the surface morphology and quality of the diamond films when nitrogen was added to 

the plasma. Atomic nitrogen's (N) dominant role in the plasma chemical vapour 

deposition processes showed that at low concentrations it encouraged the growth of 

quality diamond films, yet at higher concentrations it generally depleted film growth 

altogether. Once again the OES diagnostic is used to monitor species' unique function 

to the deposition process, however it did not yield an automatic interpretation of the 

OES spectra which this research project endeavours to achieve.

Bousrih et. al (1995) have used OES in measuring the spatial distribution of plasma

parameters for a H2/Ar plasma jet with CH4 addition. Their study yielded useful

information on CH4 decomposition processes and molecular radical behaviour in

close-to-thermal plasmas. Its applicability in the development and optimisation of

plasma processes for methane pyrolysis and carbon layer deposition was also 
demonstrated.

Pereiro et. al. (1995) have evaluated another type of plasma discharge called gas-

sampling glow discharge (GSGD) using OES. Radiation from the plasma source is 

\iewed axially and the method was used to study the effects of plasma operating 

parameters (such as power and pressure), and emission lines of C, F, Cl, S (from non- 

metals in gas phase samples) measured. Essentially, Pereiro et. al.'s (1995) results

showed the potential ol their method to use as a gas chromatographic detector for 
detecting gaseous species.

During plasma processing of thin films, energetic ion bombardment of the film surface causes sputtering. The ion that 
promotes this surface bombardment is called a sputter agent.
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Barholm-Hansen et. al. (1994) have employed OES to investigate the effects of CH4 

flowrate on the emission intensity of the CH radical, during the growth of DLC. The 

wave bands of interest were 190-315 nm and 378-503 nm. The intensity of the CH 

430.9 nm line was found to be proportional to an effective current (i.e. power per self-

bias voltage), and also proportional to the atomic deposition rate per unit area. Thus, 

the deposition rate was scaled to the effective current. One other conclusion drawn 

was that there are relatively larger amounts of H in CH4 plasma compared to a 

plasma. I his was another piece of supporting evidence for the selection of certain

chemical species to identify within the OES spectra of the plasma systems used in this 

research project.

Thus in answer to the question "To what extent has OES been used as a plasma 

diagnostic, and what have been the extent of its use in characterising plasma 

processes, particularly plasma deposition?" :

There have been numerous studies of which only a selection has been portrayed to

demonstrate the widely used diagnostic of OES in plasma processing. However, it is

predominantly observed in the field that the problem of automatic spectral

interpretation is a difficult one. Because of the complex nature of the plasma

deposition process itself, there is one primary as yet unanswered question which is

can the nonlinear relationship between OES spectra and certain plasma process

parameters be suitably modeled with ANN's, and not require the conditional input o f

complex underlying physical properties of the plasma itself?". This question holds 

the essential argument for this thesis.

2.3 ANN Applications on Data Interpretation

Hie automatic interpretation ol spectral data is a long-standing problem, particularly

lor OES spectral data. Recent research in ANN's have had successful applications in

different types of spectral interpretation, and yet ANN's have been rarely applied to

OES spectral interpretation. It therefore seemed appropriate to review what ANN

applications have been used to analyse different types of spectra to determine some 
useful techniques.
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Image processing techniques [Itoh 1994]; ultraviolet (UV) OH band spectrum 

[Pellerin 1996]; mass spectroscopy with OES [Schonemann 1996]; inductively 

coupled plasma atomic emission spectroscopy ICP-AES [Cabalin 1997]; Fourier 

Transform Infrared (FTIR) spectroscopy [Learner 1995], [Mosebach 1995], [Tanner 

1996]. [McNesby 1997); near infrared (IR) spectroscopy [Lin 1996) are just some of 

the types of spectroscopic diagnostic methods that are frequently used.

A body of relevant work that uses ANN's to interpret these and other types of spectra 

will be individually reviewed and the underlying techniques employed will be 

clarified.

2.3.1 Classification of Spectra using ANN’s

I he classification ol different types of spectra using AI techniques such as ANN's has 

been explored in various ways particularly for pattern recognition purposes.

Anand et. al. (199j>) addressed the problem of analysing images containing multiple 

sparse overlapping patterns from nuclear magnetic resonance (NMR) spectra. It is a 

naturally occurring problem in the analysis of the composition of organic 

macromolecules using data gathered from their NMR spectra. By using a feedforward 

MLP BP [Rumelhart 1986] network approach, they were able to achieve accurate 

classification in discriminating between pairs of feature classes. Their results were 

excellent in analysing the presence of various amino acids in protein molecules. They 

achieved high correct classification (~ 87%) for images containing as many as five 

substantially distorted overlapping patterns.

Boger et. al. (1994) used ANN's to derive quantitative information from Ion Mobility 

Spectra (IMS). Unlike conventional methods where areas or heights of known and 

identified peaks are used for calibration, employing ANN's does not require detailed 

knowledge of ion chemistry of the measured system. There were limitations with 

regards to long training times incurred when there was a large ^-dimensional input 

data space. This was rectified with specific data preprocessing, and usually about 

80% °* l,le data was randomly chosen for the training set and the remaining 20% was 

left lor testing the trained ANN. The conjugate gradient error BP method was
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employed to train the network. The network was able to interpret the mobility spectra 

and concentration for three chemicals in air, at concentrations in the parts per billion 

to the parts per million ranges. The agreement between calculated concentration and 

the 'known values determined from the parameters of the dynamic flow system was 

within a few percent in all cases.

Once the learning set had been processed by the ANN. correlated measured test points 

with the real concentration of the chemical was straightforward and rapid. 

Application ol ANN online was deemed a distinct possibility for IMS instruments.

Lohninger et. al. (1992) have compared the performance of ANN's to well-established 

methods ot multivariate data analysis in classifying mass spectral data. They 

employed the popular BP MTP network and matched its performance with linear 

discriminant analysis. MLP's can be converted to linear discriminant classifiers by 

introducing linear output functions on the processing units. It was noted that there 

was little difference in classification performance which could be attributable to the 

fact that all of the mass spectra data sets were linearly separable. If the data sets were 

non-linearly separable then MLP networks would have certainly given better results. 

Lohmnger et. al. noted from experience, that with regards to mass spectra, they 

suspected that only few instances with non-linearly separable classes actually exist, 

future work was aimed to shed light on this linear separability of mass spectral data.

Glick et. al. (1991) constructed ANN's for classifying metal alloys based on their 

elemental constituents. Glow-discharge atomic emission spectra (GD-AES) obtained 

with a PDA (photodiode array) spectrometer were used in a multivariate calibration of 

seven elements in 37 different nickel-based (Ni-based) alloys and 15 iron-based (Fe- 

based) alloys. Subsets of the two major classes (i.e. Ni-based and Fe-based alloys) 

lormed calibration sets for multiple linear regression (MLR). The remaining samples 

were used to validate the calibration models.

The input units consisted of the seven elemental concentrations of the sample alloy, 

the number of output units was nine (each representing a single class of alloy). The 

ANN was trained by BP using reference elemental concentrations from a training set 

of 32 alloys. The final architecture of the feedforward network was 7:20:9 (i.e. 7
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input, 20 hidden and 9 output units). A nonlinear sigmoidal function was used as the 

transfer function in the hidden and output layers.

Once training of the network was completed, the trained ANN functioned as a pattern 

classifier. The MLR with a selection of diodes demonstrated a superior ability over 

conventional calibration to construct useful calibration models even for complex 

spectra and in the presence of spectral interferences. T his is called a limited-variable 

approach and is more practical in this setting than a whole-spectrum approach since 

the spectra are relatively sparse and are composed of only a few analytical lines. With 

the addition ot noise to the input patterns during network training, the network was 

still able to generalise and assign unknown alloys to the appropriate class.

The classification ot metal alloys is not necessarily a problem that requires this feature 

ol ANN's, but in this report by Glick et. al., it demonstrates some of the characteristics 

ot ANN s applied to sample classification problems' whether linearly separable or 

not. Here, the ANN approach performed better than K-nearest neighbour (K-NN), 

with k=l, which misclassified three of the testing-set alloys with the determined 

values, and performed better than linear discriminant analysis [Bishop 1995]. The 

advantage ot the ANN is that it can generalise from a limited set of examples which 

was demonstrated by the small data set used in Glick et. al.'s study. Since the network 

training process is empirical, any application with ANN's must undergo several 

training runs to create a more robust classifier.

Automatic analysis of JET charge exchange spectra (CXRS) using a MLP network

was carried out by Bishop et. al. (1993). Their aim was to reduce or exclude human 

supervision as well as produce rapid processing.

CXRS is a powerful technique for analysis of ion temperatures, densities, and rotation 

velocities in plasma physics experiments. The spectral lines exhibit Doppler 

broadening due to finite temperature and wavelength shift caused by bulk plasma 

rotation, resulting in overlapping spectral lines. The conventional analysis of CXRS 

involves a least-squares fitting process which although yielding a good accuracy, has 

two drawbacks namely (i) it needs computationally intensive iteration; and (ii) it 

cannot be used in real-time feedback applications. In the light of these shortcomings, 

the MLP network proves much faster in processing new data once the network 

training (on a suitable set of training data) is complete. The data set of CXRS needs
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to be sufficiently large to account for new spectra likely to be encountered during 

processing and allow for division into training and test sets. Also, the network 

training must be 'overdetermined' i.e. the number of training examples should be 

sufficiently large in relation to the number of degrees of freedom in the network.

Two key issues that Bishop et. al addressed by applying ANN's were:

1. I he need to preprocess data to reduce its dimensionality (dimensional space) - a 

technique called feature extraction. They split the large dimensional data space 

into subsets of input data, and used several networks each dealing with sub-

sections of the spectrum. This provided an alternative to standard PCA. The 

values ol the features were taken as inputs to the network which was then trained in 

the usual fashion. Selection of the most appropriate feature was the important 

problem as it had a direct bearing on the performance of the complete system.

2. The capability of the network to adequately deal with data which was significantly 

different from that on which it had been trained i.e. generalisation. For an 

automatic system it would have been necessary to provide some form of validation 

to ensure that the network outputs were satisfactory.

Bishop et. al. s ANN approach to CXRS JET plasma analysis was a complementary

tool to conventional iterative techniques and could be used for high speed and very 

high accuracy analyses.

Having illustrated the varied automated interpretation of different types of spectra 

using ANN's, there are a selection of applications that have used ANN's in attempts to 

emphasise the use of the MLP feedforward network as a successful analytical tool. 

Also, comparisons of other machine learning algorithms to the popular BP algorithm 

will illustrate some of the reasons that have prompted research into the explanation of 

the internal distributed representation of a trained ANN.

2.3.2 Specific Applications of the MLP ANN

Sundgren et. al. (1991) extended the use of pattern recognition techniques to 

analysing gas sensor signals by implementing ANN models to quantify the individual 

components within a gas mixture. They compared conventional multivariate analysis 

techniques based on a partial least squares (PLS) approach with the ANN technique.
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Selection of an ANN approach was reasoned as being due to its adaptability to almost 

any mathematical function. A three layer MLP BP network was selected due to its 

history of suitability for sensor signal processing. The gas mixtures contained four 

component gases (hydrogen, ammonia, ethanol and ethylene) with low concentrations. 

At lower gas concentrations the probability of chemical reactions in the gas phases are 

reduced, and also Sundgren et al. asserted that it avoided saturation effects of the

sensors even though the sensor signals are still nonlinear in the concentration range 

selected.

The results indicated that both hydrogen and ammonia concentrations were predicted

even better with ANN models. However, predictions for ethanol and ethylene

concentrations were poor lor both the ANN and PLS models. In a two-component

mixture it was determined that hydrogen and acetone concentrations were best 

predicted from an ANN model.

For the improvement ot the sensitivity and selectivity of the gas sensors in quantifying

the gas components the ANN approach was suitable. Three main issues to consider in

order to guarantee that the ANN analysis was the better approach to conventional PLS

multivariate analysis were (i) the sensor array must be sensitive to the gases of

interest, (ii) the distribution of calibration data set is important, and (iii) the design of

network and the values of different learning parameters need to be thoroughly 
investigated.

Similarly, Moore et. al (1993) investigated the ability of ANN's to quantify the

concentrations of individual gases and gas mixtures in air from patterns generated by

an array of chemically modified sintered tin oxide sensors. There were four gases

selected whose detection and control is of import in many manufacturing industries.

I hese four gases are hydrogen, methane, carbon monoxide and carbon dioxide. They

effectively designed a system that could predict the concentration of gases within a

mixture. It was determined that a fully connected MLP network produced very poor

performance results mainly due to data overfitting. The final network employed was a

partially connected network with six input units connected to nine hidden units which 
reduced overfitting.

There were only three output units (for hydrogen, methane and carbon monoxide; 

carbon dioxide was excluded). Only three elements each in the hidden layer were
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connected to one output element. This was determined to compensate for relatively 

smaller signals for carbon monoxide compared with hydrogen and methane. It was 

also thought that this separated the learning characteristics and obviated poor data for 

one gas affecting another that had better data.

Overall, the hydrogen data gave the best prediction at all concentrations. The methane 

data was predicted reasonably, however, carbon monoxide concentrations were not 

predicted well. Therefore, it was surmised that in order to quantify the proportions of 

gas accurately, the ratio of gases present within a mixture was very important.

Henson et. al. (1992) addressed the feasibility aspects of applying ANN technology to 

complex data-driven systems. I hey studied the convergence of the BP learning 

algorithm for the MLP network by applying an optimisation scheme called simulated 

annealing. Simulated annealing [Levine 1991] is based on the analogy of annealing in 

solids from the theory of statistical mechanics. The simulation is a stochastic 

optimisation technique that utilises a descent algorithm modified by random ascent 

moves to escape local minima. Henson et. a l 's simulated annealing enhanced BP 

algorithm has been implemented in a neural network software package called ANNIE 

(Artificial Neural Network Integrated Environment).

An empirical evaluation performance of this new algorithm was applied to a multiuser 

signal detection problem in a spread communication system. The results were 

compared with extensive practical studies in this pattern classification problem (i.e. 

multiuser signal detection) in order to validate the ANNIE implementation and 

evaluate the enhanced learning algorithm. The results demonstrated that it was 

possible to obtain a better sub-optimal solution than that obtained using standard BP.

A problem that chemists have utilised a MLP network model to solve is the prediction 

of naturally occurring and man-made elements. The ionization potential (IP) is a 

property that cannot be measured for short-lived elements. Using multiconfiguration 

Dirac-Fock (MC'DF) calculations to predict the first few ionization potentials of heavy 

elements are so computationally intensive as to be impractical for some elements. It 

was therefore presented by Sigman et. al (1994) that a simple three-layer BP ANN 

can learn the complex relationship between the electronic structure and the first three 

ionization potentials of 222 atoms and ions for which spectroscopic data have been
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determined. The network predictions were in very good agreement with experimental 

values not included in the training data set and with values previously calculated by 

much more sophisticated quantum mechanical methods (like MCDF).

The advantages of utilising ANN outlined in their study include the rapid prediction 

of a large number of previously unmeasured ionization potentials, better estimation of 

the error associated with predictions due to larger training set, and ANN's being much 

less computationally intensive than other techniques. These advantages can outweigh

the fact that ANN's do not offer physical insights which a quantum mechanical 

approach does.

Io produce a classification model that can classify trained patterns to a specified

degree ot accuracy. Yeung (1993) employed the MLP network architecture. The

objective was to produce constructive ANN's as estimators for Bayesian discriminant

functions [Bishop 1995]. The generalisation capability of the trained classification

model was measured by the classification performance of the model on a separate

testing set and was considered as an inductive inference process. The MLP network

used a hyperbolic tangent (tanh) as the transfer function with BP learning.

Thiee issues were addressed, namely (i) slow learning in deep networks; (ii) network

size determination; and (iii) learnability. Allowing as few as only one layer of

adjustable weights at each learning stage is a simple yet effective technique for

speeding up learning in the network. An error-minimization learning algorithm works

such that in the class of single-hidden-layer networks the network output values

approximate the Bayesian discriminant functions in the minimum mean square-error

sense. A Bayesian discriminant function is defined as the ‘a posteriori probability of

the event that a pattern in a particular class occurs given the input feature vector’.

The usefulness ot the constructive ANNs for supervised learning were demonstrated

with the tour example domains used in the classification experiments (i) mushroom

classification; (ii) thyroid disease diagnosis; (iii) waveform recognition and (iv) mirror

symmetry detection. The ANN models used are inspired by the cascade-correlation

algorithm which uses sigmoidal units for approximating Bayesian classifiers with 
Bayesian a posteriori probabilities.

I or pattern classification, determining the appropriate network size is of utmost 

importance; and learning results in the dynamic construction process involving the
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adjustment of both network weights and the topology. The addition of new hidden 

units corresponds to extracting higher-level features from the original input features 

for reducing the residual classification errors. It was noted that each network 

approximates a Bayesian classifier that implements the Bayesian decision rule for 

classification.

Bishop et. al. (1990) have employed MLP ANN's to the task of repetitive nonlinear

curve fitting as they provide a fast solution to the problem. ANN's are used to

determine the optimal parameter values of the function directly from raw data. The

MLP network was used to determine spectral line parameters from measurements of

boron (IV) impurity radiation in the COMPASS-C tokamak. A tokamak is the

favoured magnetic confinement system for research into producing controlled nuclear 
fusion.

ANN

iegression lor predicting amino acid levels in six feed ingredients (namely corn: 

wheat; soybean meal; meat and bone meal; fish meal). Since amino acid 

determination incurs high costs due to the chemical analysis and laboratory turnover 

required lor the analysis, they sought to reduce this expense in time and money by

I he complex relationship between ingredientANN

composition (the inputs) and nutrient level (the outputs) could be more effectively

described with the use ol ANN's. 1 he two ANNs used were a three-layer BP network 

and a general regression network (GRNN).

The GRNN network outperformed the BP ANN and linear regression in predicting

ammo acid levels. Roush et. a/.'s methods highlighted that data preprocessing in the

lorm of sorting, scaling and normalising raw data would improve the ANN

predictability, particularly lor the BP network. It was suggested that customising each

individual amino acid in each feed ingredient would maximise the predictive abilities

ot the neural network. I his suggestion was successfully supported in this thesis, by

the implementation of chemical species ANN models that predicted the spectral line

sizes lor individual species accurately. Hence, each trained ANN model produced is

customised to individual species to maximise the predictive capability of the network 
model.
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Most researchers have employed the MLP network for classification problems that 

use discrete data. Those that have exploited the MLP's predictive capabilities still 

retain a discrete response for the network's predicted output. The work presented in 

this thesis will emphasise the fact that not only does the trained MLP network have 

excellent predictive capabilities, but it also uses real continuously-valued multi-input 

and multi-output data. This makes the extraction procedure presented in this thesis 

particularly useful lor extracting rules from trained ANN models with real 

continuously-valued multi-output data units.

2.3.3 Importance of ANN Learning Algorithms over Symbolic Methods

There are many symbolic and ANN learning algorithms [Sestito 1994] that address 

the same problem of learning from a classified set of examples, and yet to categorise 

the strengths and weaknesses of them all would not be possible here.

However, Shavlik et. al. (1991) have compiled an experimental comparison of three 

algorithms that have been performed on five large, real world data sets. Shavlik et. al. 

compared the ID3 [Quinlan 1996] symbolic learning algorithm with the perceptron 

[Hecht-Nielsen 1989], [Picton 1994] and BP [Rumelhart 1986] learning algorithms. 

All three systems were tested on five large data sets, namely soybean, chess, 

audiology, heart disease, and NETtalk data. Four of these data sets were previously 

used to test different symbolic learning systems, and one was used to test BP. Shavlik 

et. al determined that BP performs slightly better overall than the other two 

algorithms in terms ol classification accuracy on new examples, but it takes much 

longer to train. One encouraging suggestion from their experiments indicated that BP 

performs slightly better on data sets containing continuous (i.e. numerical) data. This

was a key point that supported the selection of a BP MLP network in the chemical 

species modeling in the first place for the work of this thesis.

Shavlik et. al. performed an empirical analysis to address three issues, namely (i) the 

amount of training data; (ii) imperfect training examples; and (iii) encoding of the 

desired outputs. BP was only slightly superior to the other two systems when given a 

relatively small training data set. It was also able to cope with noisy or incomplete 

data better than ID3. Also, BP is best at utilising a 'distributed' output encoding.
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Towel 1 et. al (1994) have employed Knowledge Based Artificial Neural Networks 

(KBANN) as a more effective hybrid learning system built on top of connectionist 

learning techniques. The essence of a KBANN is that it maps problem-specific 

domain theories that are represented in propositional logic into ANN's, and then 

refines the reformulated knowledge using BP. It effectively combines a hybrid of 

learning algorithms. Towell et. al. successfully evaluated KBANN via empirical 

testing on two molecular biology problems. The rules extracted from their empirical 

test were more accurate, more superior and more humanly comprehensible to those

rules generated from refining symbolic methods or techniques that extracted rules 

from trained ANN's.

Piechelt (1995) has provided some benchmarks for ANN learning algorithms since 

new rule extraction learning algorithms are being developed to explicitly extract 

knowledge embedded in trained network models. There are four essential 

requirements that will improve how new learning algorithms can be categorised. 

Namely, (1) volume - must use several problems to broaden its applicability; (2) 

validity: common errors invalidating the results must be avoided; (3) reproducibility - 

propei documentation to make it reproducible (4) comparability - have a direct 

comparison with the results achieved by others using different algorithms if possible. 

These are important points that have been addressed in this thesis where it was

feasible. The lour essential requirements are the premise for categorising recent rule 

extraction techniques developed later in this review.

Recent techniques to improve the generalisation performance of ANN's has been 

explored by Agyepong et. al. (1997) and Setiono et. al. (1997). Their techniques 

aimed to enhance the capabilities of the trained networks to either classify data in a 

different data set, or to provide a premise for rule extraction.

Agyepong et. al. (1997) have investigated the effects of including selected lateral 

connections in a feedforward ANN architecture in an attempt to control the hidden 

layer capacity of the network. Their method facilitated the controlled role assignment 

and specialisation of hidden layer units. Essentially the network behaved like a 

network growing algorithm without the explicit need to add hidden units, and acted 

like soft weight sharing [Hinton 1986] due to functionally identical units in the centre
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of the hidden layer. The selective specialisation of hidden units properties were 

illustrated using one classification and one function approximation problem. The 

improved generalisation of the network was illustrated through a simple function 

approximation example and with a real world data set (yearly sun spot data set).

Some learning algorithms will employ a feature selection process as an integral part of 

their makeup. A machine learning method is likely to have a higher predictive 

accuracy it it can select only the relevant data attributes from a data set that contains 

irrelevant and redundant attributes. I his is the essence of feature selection in that it 

can screen out redundant information. As the dimensionality of the input data space 

grows, the difficulty of building effective pattern recognition or nonlinear mapping

systems increases significantly. I here fore, pre-processing of a large input data space 

to extract relevant features can be very useful.

There are many advantages involved in using only relevant features of the data to be

classified. These include (i) overfitting of data is reduced and so the classifier has

bettei predictive capabilities; (ii) once relevant features are identified, the cost of

future data collection can be reduced; (iii) excluding irrelevant attributes means a

simpler classifier is obtained, and the time required to classify new patterns can be 
reduced.

Setiono et. al. (1997) have developed a network pruning algorithm that performs

feature selection using a three layer feedforward ANN. By adding a penalty term to

the error function of the network (i.e. their augmented error function), the redundant

connections can be distinguished from the relevant connections by their small

weights, once network training is completed. A simple criterion (based on the

network accuracy rate) was developed to remove a redundant attribute. After removal

of the attribute, the network was retrained, and the selection process was repeated 

until no attribute meets the criterion for removal.

I he method was tested on four real world problems and two artificial problem data 

sets. The experimental results showed that the algorithm removed a large number of 

attributes from the original attribute sets, and improved the predictive accuracy of the 

ANN's. This suggested that Setiono et. aVs method works very well on a variety of 

classification problems. Their method was not suitable, however, for the spectral 

modeling of OES data to process parameters presented in this thesis, since the number 

°f input attributes employed were already relatively small. The small vector of input
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attributes were significant data to incorporate into training of the ANN model. Once 

the network had been trained then the extraction of information would ultimately 

relate OES spectral line size to all six input process parameters. Extracting definitive

relationships from the trained species ANN model was the most discernible technique 

implemented in this thesis.

2.3.4 Predictive ANN Modeling in Plasma Processing

The advantages in using ANN's that make them attractive complements or alternatives 

to more traditional statistical modeling techniques are:

• ANN s have the capacity to learn arbitrary mappings of complex nonlinear data.

• They deal effectively with noisy data.

• 7 hey have the ability to predict simultaneous output processes parameters.

• They have the capacity to handle large data sets with small input variable vectors.

• In general, they do not require the strict distribution assumptions of their statistical 
counterparts.

Mere are specific references to plasma processing diagnoses that have employed ANN 

as predictive models.

Several previous studies [Himmel 1993], [Kim 1994], [Lee 1995] directly compare 

ANN models for predicting process quality given a set of process variables with 

statistical procedures such as regression. The results from these studies showed that 

the ANN models were successful in modeling the complex nonlinear plasma etch 

process. Thus indicating that an ANN model is well-suited to handling prediction of 

many highly correlated input parameters. This was a premise that was exploited in 

the drive in this thesis for relating the size of OES spectral lines to the process 

variables of the plasma from which the OES data was obtained.

In Card et. al.'s (1997) work, certain output parameter target values were maintained 

by adjusting continuous controllable parameters such as RF power or process gas 

flows, as well as periodic equipment calibration procedures and/or parts replacements. 

The input parameters were time-dependent and so preprocessing to extract features of 

significance to input to the network model was essential. This allowed off-line 

sensitivity analysis to be performed in order to determine the required action for a
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quality target achievement. The dynamic controller for the plasma etch process 

consisted of three components (i) a real time system update; (ii) ANN prediction 

model that predicts quality metrics; and (iii) optimisation routine (i.e. least cost/least 

corrective action). Their use of binary input variables representing tool part 

replacements and/or tool calibration added a new functionality to the procedure. The 

method was yet to be incorporated in an actual fabrication facility in order to achieve 

real-time control of an etching process.

Although, the use ot the ANN model was successful in predicting key input variables 

that assisted the controller, the method still required binary data for the network.

Nami et. al. (1997) have presented a semi-empirical metal-organic chemical vapour 

deposition (MOCVD) model based on hybrid ANN's. The model is constructed by 

characterising the MOCVD ol titanium dioxide (Ti02) films through the measurement 

ot deposition rate over a range ot deposition conditions. The range of deposition 

conditions were obtained trom a statistically designed experiment in which 

temperatures, flowrates and chamber pressure were varied.

A shortcoming ot' using ANN based process models is that their empirical derivation

otters little insight into the underlying physical understanding of the process being

modeled. Nami et. al. trained a modified BP ANN on their experimental data in order

to determine values ot the adjustable parameters in an analytical expression for the

Ti0 2 deposition rate. This method essentially provided a way of deriving semi-

empirical ANN process models that take into account the prior knowledge of the

underlying process physics. Their semi-empirical approach was able to offer more

insight into the process and retain the advantages of accuracy and robustness that 
come with employing ANN's.

Their 'hybrid' model incorporated partial knowledge representing first principle 

relationships inherent in the plasma deposition process. This information involved 

three unknown physical constants which were implemented into an expression for 

calculating the deposition rate. The computed deposition rate was compared to the 

predicted deposition rate to determine an error signal. Comparing a derivative of the 

error signal with the standard BP error produced a direct association for estimating the 

three physical constants. Explicit values were thus obtained for the three fitting 

parameters for the Ti02 MOCVD process. Once these three parameters have been
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estimated, the physical expression can be used to predict deposition rates over a wide 

range of operating conditions.

The advantage of this method was the interpolation and extrapolation of the hybrid 

model over other experimental techniques whenever approximate physical models are 

available. Nami et. al.'s technique, however, predominantly requires the practical 

experimental plasma environment. This limits its use to an ex-situ problem domain. 

The techniques presented in the work of this thesis have provided a way of 

interpreting OES spectral data without the need of the underlying physics of the 

experimental plasma process environment.

Baker et. al. (1995) have trained an ANN to model the correlation between dc bias 

and etch rate in order to predict the time required to remove a specified thickness of 

silicon dioxide (Si02) in a trifluoromethane/oxygen (CHF3/0 2) plasma (chloroform 

based plasma). The method predicts the in-situ reactive ion etch (RIE) end-point by 

using a BP ANN. A real-time data acquisition system was used to transmit the 

process conditions from the RIE plasma system to monitor the dc bias during etching. 

1 he inputs to the ANN included elapsed time during etch run, desired etch depth, gas 

flow rates, chamber pressure, and RF power. The network achieved a 26 second RMS 

(root mean square) error on the training data, and predicted the process end-point on a 

set of test etch recipes with an average error of less than two minutes for a process

time ot 25 minutes. This performance was appreciable within the bounds of real time 

control of the etch process.

Lee et. al (1995) have employed empirical models based on real-time equipment 

signals to predict the outcome (such as etch rates and uniformity) of each wafer during 

and after plasma processing. They investigated three regression models and one ANN 

model. The models were verified on data that had been collected several weeks after 

the initial experiment. This demonstrated that the models constructed with real-time 

data survive small changes in the machine due to normal operation and maintenance.

I he main reason for this study was to combat the ever increasing world-wide 

competition and escalating factory costs in companies that need improvements in 

manufacturing skills to maintain high yield, increase throughput, and reduce 

equipment costs. The ability to maintain the quality of semiconductor wafers at each 

processing stage by equipment monitoring is the key to achieving these goals.
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However, the costs incurred in measuring each wafer after it completes each step, 

prohibits large scale production factories to adopt this method. Present practices of 

periodical measurement of monitor wafers can present some inadequacies. Thus, Lee 

et. al.'s empirical method for predicting the outcome of each wafer immediately after 

processing by each piece of equipment, attempts to reduce the need for costly and 

time-consuming wafer measurements. Their wafer prediction system uses 

noninvasive chamber state signals collected automatically from the tool while the 

wafer is processing. Important yield information is obtained on a run-to-run basis 

which makes it possible to ensure that only wafers worth processing continue down 

the manufacturing line. The chamber state signals are also used to qualify whether 

equipment is operating properly.

Once again, these reviewed insights into predictive modeling of the plasma process 

demonstrates that the fundamental plasma chemistry and physics in plasma etching 

reactors are difficult to model accurately. Hence, reliable empirical models for such a 

process are desirable for investigating the process behaviour and attaining real-time 

control. The main dilficulty encountered was that there is frequently very limited 

experimental data available for model development. However, Huang et. al. (1994) 

have succeeded in constructing reliable ANN models for a plasma etching process 

using limited experimental data. The method was aimed at constructing a model

which can satisfy the criteria of minimum training error, maximum smoothness, and 

simplest network architecture.

I wo specific plasma chemistries [Butler 1990] were investigated, namely 

tetrafluoromethane/oxygen (CF4/0 2) and tetrafluoromethane/hydrogen (CF4/H2), for 

etching silicon/silicon dioxide (Si/Si02). Two ANN's were developed for each 

plasma system. One for the relationship between a set of manipulated variables and a 

set of controlled variables; and the other for the relationship between a set of 

manipulated variables and a set of performance variables. Huang et. al. (1994) 

compared the predictions of their ANN models with predictions from regression 

models [McLaughlin 1990]. All models were developed using the same experimental 

data. I he simulations showed that the ANN models predicted the process behaviour 

better than regression models at both the normal operating conditions and at the upper 

or lower limits of the process operating range. Valid generalisation of the predictive
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capability of the models derived from limited data was ensured by the application of a 

modified predicted squared error (MPSE) criterion. This MPSE method was aimed at 

identifying the tradeoffs among the most promising ANN models so that the selected 

model provides a balance between the lowest prediction error, the smoothest 

prediction and the simplest model topology.

1 his work highlights another premise that accounts for the extension of the spectral 

interpretation focus of this thesis to obtaining species models from their process 

parameter variables, as well as acquiring rules from the trained models since small 

network topologies were achieved.

Kim et. al. (1994) have also employed ANN models in modeling a plasma etch

process in order to take advantage of their superior accuracy and predictive ability

compared to traditional statistical methods. They have addressed the complication

arising from the fact that feedforward BP ANN's contain several adjustable parameters

whose optimal values are initially unknown. These parameters include learning rate,

momentum, initial weight range, training tolerance, as well as the network 

architecture itself.

To determine how these factors impact on network performance, and derive a set of 

parameters to optimize performance based on several criteria was their aim. 

Pol> silicon etching in a carbon tetrachloride-(CCl4)-based plasma was the process 

modeled. The effects of network structure and feedforward error BP (FFEBP) 

learning parameters were investigated by means of a D-optimal experiment. D- 

optimal designs provide the best quality of design when an experiment contains both 

qualitative and quantitative factors. Since Kim et. al.'s method involves both 

quantitative learning and qualitative structural parameters, the D-optimal design was 

suitably ideal. The number of layers and number of units per hidden layer described 

the network structure; whilst error tolerance, initial weight distribution, learning rate 

and momentum described the FFEBP learning algorithm. Effectively, the ANN 

process models were optimised for learning, generalisation, convergence speed, and a 

combination of all three. Their results provided generally applicable 'rules of thumb' 

lor ANN modeling with BP learning. This was especially applicable to independently 

optimised parameter sets based on a single performance measure.
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For a polysilicon etch in a CCl4/He/02 plasma, Himmel et. al. (1993) have modeled

six adjustable input parameters to four etch responses. The etch rate, uniformity,

selectivity to silicon dioxide (Si02) and selectivity to photoresist have been modeled

as a function of RF power, pressure, electrode spacing, and the three gas flows. Their

ANN process models were compared with models derived by response surface

methodology (RSM) for the same data. They demonstrated that the ANN models

exhibited significantly superior performance; plus deriving accurate ANN models

requires fewer training experiments. It was noted though that statistical experimental

design played a crucial role in determining the proper type and sequence of

experiments to perform in order to generate an ANN model. The ANN process

models provided a more efficient and less costly method of process characterisation

than the RSM models. I his study demonstrated that ANN modeling of certain input

\aiiables onto specific target features can be achieved. However, the results obtained

were dependent upon in-situ experimentation within the plasma environment yet 
again.

Plasma modeling from a fundamental physics standpoint has had limited success.

Therefore, using data from OES which can be used to characterise species from a

plasma and relate the species quantity to the controllable process variables with

productive results, without addressing the complex physics of the plasma chemistry 

itself, is very useful indeed.

The predictive ability ol ANN's, so far, have been to semi-empirically or empirically

model plasma processing in terms of properties such as equipment tools [Lee 1995],

wafer dimensions [Lee 1995], processing times (like etch endpoint - [Baker 1995]).

and in predicting thickness of etch depth [Baker 1995], [Himmel 1993]. Even though

OES is one ol the noninvasive diagnostics for monitoring species in plasma

processing, there appears to be a distinctive lack in employing ANN’s to directly

interpret OES spectra in order to characterise the plasma in some way. This was the

most prominent deficiency in most of the plasma processing methods that have

utilised ANN's. Therefore, the work of this thesis has addressed this issue in more 
depth.
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2.4 Rule Extraction

There are limitations with the ANN's reviewed so far, in that though the ANN's have

been successful classifiers, they do not provide an explicit explanation of the process

being modeled. Traditionally, to provide an explanation capability to ANN's, hybrid

rule-based and knowledge-based systems have been generated. However, this still

provides only a 'rigid explanation' capability because the nature of the information in

the rule or knowledge base will ultimately be limited, as it depends on expert input 

knowledge.

Now, with recent exploits in data mining and the past ten or twelve years of machine 

learning algorithms and implementations to explain the ‘hidden parallel nature’ of 

learning in ANN's, the ability to extract rules from a trained network has been found 

to be most useful in data interpretation.

Fig. 2.3 A typical ANN topology showing weight connections

I he ANN topology represented in figure 2.3 shows the units (i.e. inputs, hidden and 

outputs) of a multi-layer feedforward network which are linked together by 

connecting weights. The complexity of such a model makes its operation much more 

difficult to explain. The difficulty in network interpretation lies within the non-
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linearity ot the ANN model whereby the weights act through nonlinear activation 

functions during learning. The rule extraction system implemented in this thesis 

generates direct interpretations from trained MLP networks to relate the multi-output 

values to the input data. I he multi-output values are the OES spectral line sizes for 

individual species and the inputs are the controllable process variables. These 

controllable plasma process variables are gas flow rates, power and pressure.

2.4.1 ANN Technology in Rule Extraction

As an introduction to the 'current state of the art' of rule extraction, the following 

review will detail some ol the pertinent issues that are currently being addressed.

Craven et. al. (1997) have compiled an extensive study into using ANN's for data

mining. Normally, ANN's are widely successful in supervised and unsupervised

learning applications; and yet due to the incomprehensible models and long training

times involved with network learning they are not commonly used in data-mining 
tasks.

Craven et. al. have presented certain ANN learning algorithms that can produce 

comprehensible models and do not involve excessive training times to induce models 

from large data sets. They employed two approaches - (i) rule extraction, which 

extracts symbolic models from trained ANNs, and (ii) direct learning of simple, easy- 

to-understand (i.e. comprehensible) ANN's.

Conventionally, machine learning techniques [Towell 1993] are applied to the task of

data-mining to inductively construct models of the data. The target of data mining is

to gain insights into large data collections. The ANN methods that Craven et. al. have

described, have learned models that are able to perform in certain applications

problem domains like recognising genes in uncharacterised DNA sequences, steering

motor vehicles, predicting payloads for the space shuttle, and predicting exchange 
rates.

ANN learning methods represent their learned solutions using real-valued parameters 

m a network of simple processing units rather than in a language that is based on or
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related to logical formulae. Hence their suitability for data mining has been 

categorised under two key issues:

(i) ANN's have a more suitable inductive bias than other competing algorithms for 

certain tasks i.e. the network can use its hidden units to learn derived features 

relevant to the task which provides the most appropriate hypothesis space for 

representing a class of problems; or

(ii) ANN's can simply induce hypotheses that generalise better than those of other 

competing algorithms i.e. in some problem domains ANNs provide superior 

predictive accuracy to commonly used symbolic learning algorithms.

Defining the hypothesis represented by a trained ANN involves the following-(i) the 

network topology; (ii) transfer functions used for the hidden and output units ; and

(iii) real-valued parameters associated with the network connections (i.e. the weights)

and units (for e.g. the bias of tanh units, where the bias is a weight or function offset).

This representation makes the trained network's hypotheses difficult to comprehend.

particularly since typical networks have a large number of parameters (i.e. weights).

Also, in multi-layer networks these parameters may represent nonlinear nonmonotonic

relationships between input features and target values. Thus, the effect of a given

feature on the target value is not possible to determine in isolation, since this effect

will most certainly be affected by the values of other features. The nonlinear

nonmonotonic relationships are represented by hidden units, and since hidden units

learn in a distributed fashion, understanding hidden units can be difficult. It is

therefore important to consider the patterns of activation across all hidden units.

Translating the represented hypothesis by a trained ANN makes the trained network

more comprehensible, and the process of achieving this is termed rule extraction. The

strategy of rule extraction includes various methods such as conjunctive inference (if-

then) rules, m-of-n rules Powell 1993], fuzzy rules, decision trees, and finite state 

automata extraction [Omlin 1996].

A full documentation of all these methods and others can be found in Craven et. a/.'s 

(1997) paper and also in Tickle et. al. (1997, ed. Browne). Only the rule extraction 

methods relevant to setting the scene for the advanced work presented in this thesis 

lor extracting rules from the trained species ANN models are covered in depth.
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2.4.2 Symbolic Rule Extraction

A simple one layer network (i.e. no hidden layer) with discrete output classes and

discrete-valued input features can be exactly described by a finite set of symbolic if-

then lules. This is because there is a finite number of possible input vectors. The

symbolic rules extiacted from the trained network specify conditions on the input

features that guarantee a given output state when the rule is satisfied. The validity of

a rule, will accurately describe the behaviour ol the network for the instances that

match the antecedent of the rule. This is referred to as the maximally general property 
of the rule.

This method has not been explicitly extended to extracting rules from networks that 

have continuous transfer functions, hidden units, and multiple output units. It has 

been more successful on classification problems with discrete inputs and outputs, plus 

one hidden layer of units. I he activation threshold on the output layer units can then 

be set at say 0.5 if there is one output unit; and if there are multiple output units then 

the decision procedure could be to predict the class with the greatest activation.

The level of description of the rule extraction method can be categorised into two

types i.e. global rules and local rules. Global rules characterise the output classes

directly from the whole trained network in terms of the inputs. Local rules

decompose the multi-layer network into a collection of single-layer networks. This

extracts a set of rules for each individual hidden and output unit in terms of their

weighted connections. 1 hen the individual unit rules are combined into a set of rules 

that describe the network as a whole.

Other rule extraction algorithms employ a search-based approach. This involves 

exploring a space of candidate rules and testing individual candidates against the 

network [Andrews 1995], [Craven, 1997] to check their validity. Both local and 

global methods have been employed for the rule extraction task. Most algorithms 

conduct their search through a space of conjunctive rules, particularly with Boolean 

features. The rule extraction search procedure continues to search for all or most of 

the maximally general rules, even after the first general rule has been found, unlike 

other search processes which stop at the first goal node. Each input is described as a
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literal (due to its discrete input value) and imposing an ordering of the literals allows 

the search procedure to avoid visiting the same node multiple times. The rule search 

space is normally depicted as a search tree, with nodes in the space representing a 

possible rule antecedent.

The problem that arises from this method is that the size of the rule space can be very 

large. For example, for a problem with in binary features, there are 3"' possible 

conjunctive rules as each feature can occur as a positive or negative literal in the 

antecedent, or absent from a rule antecedent. Several heuristics have been employed 

to limit the size of the rule search space and references to this effect can be found in 

Craven et. cd.'s (1997) paper.

The testing of candidate rules against the network is the other part of the search-based 

rule-extraction method. Gallant (1993) developed a method that operates by 

propagating activation intervals through the network. This idea is based on the 

assumption that input units whose activations are not specified by the rule could take 

on any possible value that is allowed. This means that the intervals of the activations 

are propagated to the units in the next layer.

Effectively, the network computes the range of possible activations in the next layer 

for the examples covered by the rule. This algorithm guarantees to accept only valid 

rules, however, it may fail to accept maximally general rules and return overly 

specific rules instead. This deficiency was explained to result from the fact that the 

procedure - of propagating activation intervals from the hidden units onward - 

assumes that the hidden unit activations are independent of one another. Of course, in 

most multi-layer feedforward ANN's this assumption will not hold.

Ihrun (1995) extended Gallant's technique into a more generalised and more powerful 

version called validity interval analysis (VIA). The VIA algorithm tests rules by the

propagation of activation intervals through the network after constraining some of the 

input and output units, just like Gallant's method.

I he difference in Thrun's VIA algorithm to that of Gallant's is that the problem of 

determining valid activation ranges for each unit (i.e. the validity intervals) is 

implemented as a linear programming routine. This highlighted the importance of the 

VIA procedure in allowing activation intervals to be propagated backward as well as
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forward through the network. It also allows arbitrary linear constraints to be 

incorporated into the computation of validity intervals. The backward propagation of 

activation intervals enables the calculation of tighter validity intervals than the 

forward propagation alone. This means that Thrun's technique detects valid rules that 

Gallant's algorithm is not able to confirm.

Having the ability to incorporate arbitrary linear constraints into the extraction process 

allows the method to be used to test rules that specify very general conditions on the 

output units (e.g. it can extract rules that describe when one output unit has a greater 

activation than all other output units).

Once again, even though the VIA algorithm is better at detecting general rules than 

Gallant's method, it may still tail to confirm maximally general rules as it also 

assumes that the hidden units in a layer act independently [Craven 1997].

Local rule extraction methods for ANN's that employ sigmoidal transfer functions for 

their hidden and output units assume that the hidden and output units can be 

approximated by threshold functions. I his means that each unit is described by a 

binary variable indicating whether it is on (activation ~ 1) or off (activation ~ 0). The 

extracted rule set thus describes each hidden and output unit in terms of the units that 

have weighted connections. The rules for each unit are then combined into a single 

rule set describing the whole network. This approach significantly simplifies the rule 

search space. It also makes the process of testing candidate rules simpler.

Research work by Fu (1991) has developed a local rule-extraction method that 

searches for conjunctive rules. More detail and references on rule learning by 

searching on adapted networks can be found in Fu (1991) and Craven (1997).

Other learning based rule-extraction algorithms like TREPAN [Craven 1993]. [Craven

1997] has a similarity to conventional decision-tree algorithms like C4.5 [Quinlan

1996] which learn directly from a training set. The C4.5 machine learning algorithm

builds decision trees by recursively partitioning the input space. The TREPAN

algorithm can be applied to a wide class of networks since it does not require a special

network architecture or training method. In actual fact, it does not even require that

the model be an ANN, since its interaction is by answering membership queries to 
classify an instance of a rule.
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Extraction ol finite state automata methods from recurrent ANN's is a specialised case 

of rule extraction. Recurrent networks [Omlin 1996], [Craven 1997] have links from 

a set ot its hidden or output units to a set of its input units. These links enable 

recurrent networks to maintain state information from one input instance to the next. 

Recurrent networks are usually trained on ordered sequences of input vectors that 

represent a temporal order, just as in finite state automata where grammatical strings 

are encoded as temporal sequences [Omlin 1996].

I his approach has been applied successfully to the task of exchange-rate prediction.

for this, there were three components lor the task of predicting five foreign exchange

rates, namely an ANN, a recurrent network, and the third major part - the rule-

extraction algorithm [Craven 1997]. A self-organising map (SOM) ANN that trains

with an unsupervised learning algorithm was employed. The art of learning in a SOM

was needed in that the mapping from input space to output space preserves the

topological ordering ol points in the input space. This procedure clusters the unit

activations. The recurrent network had connections between all hidden units and its

input was a three-dimensional vector consisting of the last three discrete-value outputs

by the SOM. The output was the upward or downward predicted probability trend of

the next daily movement of the exchange rate. Omlin et. al.'s work extracted the finite

state automata from the recurrent network. I hese states corresponded to regions in

the space ol activations ol the state units which were labelled by the corresponding

network prediction ol up or down. This mapped the unit activation clusters into an 
automaton.

It has been noted that there are three primary dimensions along which rule extraction

methods differ, namely (i) representation language, (ii) extraction strategy and (iii)

network requirements. The most prominent limitation highlighted by most references

to rule extraction methods and applications was that the methods were designed for

problem domains that have mainly discrete-valued features. This may simplify the

rule extraction process, but it definitely reduces the generality of the extraction 
method.



2.4.3 Direct Learning of C omprehensible Networks

I he alternative to symbolic rule extraction methods is direct learning of 

comprehensible hypotheses by producing simple ANN's. The methods employed in 

this category learn networks that have a single layer of weights. This alternative is not 

applicable to multi-layer networks which are more complex in terms of learning the 

distributed representation of learning in the hidden unit layer.

Once again, most research has focused on algorithms that deal with Boolean features.

One particular learning algorithm, called Boosting-Based Perceptron (BBP) [Craven

1997] incorporates the inputs into a hypothesis which represents Boolean functions

that map to (-1, +1), i.e. the inputs are binary units with an activation of either -1 or

+ 1. These inputs can represent either Boolean, nominal (e.g. colour = blue),

numerical (e.g. Xj > 0.8) or logical combination (e.g. [colour = blue] a  [shape =

square]) features. The BBP algorithm measures the correlation of each input with the

target function being learned, and then selects the input whose correlation has the 
greatest magnitude.

BBP is unlike traditional ANN methods in that it does not involve training with a

gradient based optimisation method like the BP algorithm. There are two primary

limitations to using the BBP algorithm. It is designed for learning binary

classification tasks; and can be applied to multi-class problems but uses a perceptron 
for each class.

BBP assumes that the network inputs are Boolean functions, and so it handles 

problem domains with real valued features by discretising the features.

The BBP method aligns with the idea that a set of weak hypotheses are boosted into a

•strong hypothesis. From comparisons of this algorithm with multi-layer networks and

C4.5 [Quinlan 1996], it was surmised that applying BBP algorithm in data mining

tasks (specific recognition application of three problem domains in molecular biology)

provides good predictive accuracy and simple hypotheses which facilitates human 
comprehension of the learning.

Competitive learning (closely related to K-means clustering, Bishop 1995) was the 

unsupervised learning procedure discussed in depth in Craven et. a/. (1997) for 

attaching comprehensibility to simple networks. Its most prominent applicability was
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the fact that it works as an on-line algorithm. This means that during training it 

updates the network's weights after every presented example. This on-line property 

makes it suitable lor very large data sets, as it has a faster convergence to a solution, 

thus eliminating excessive training times.

Craven et. al.'s (1997) paper effectively summarised some of the reasons for bringing 

comprehensibility to trained ANN's and diluting the 'black box' conception of ANN's 

as a whole. I here are still limitations incurred with each approach described here in

the review, but the two most important points that have been extended in the research 

presented in this thesis are:

(i) using real continuous-valued input and output data in a multi-layer feedforward 

network (rather than discrete or nominal attributes); and

(ii) presenting a novel extraction procedure that can be applied to adequately small

trained network models in order to extract rules relating the multi-input features to 
target outputs.
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Chapter 3

Intelligent OES Classification

3.1 Argument for Employing AI Techniques in OES Interpretation

During a plasma deposition/etching process, the plasma environment will consist of as

many species as it is possible to generate from the mixture of input gasses to the

process chamber. This means that there could be numerous species that could be

identified at any given moment within the plasma. It would be impossible to

conceivably attempt to identify and measure all these numerous species within a given

plasma, particularly since the aim of this project is not to broach an intensive in-situ

plasma physics study (tor this there are several plasma physics studies by several 

authors, e.g. Baker et. al. 1995).

This project rather poses the question of : "given the nature of OES as an important 

plasma diagnostic, can the OES spectral pattern be interpreted using a different

require extensive expertise in the field of
spectroscopy?"

Io address this question, the application of intelligent techniques like ANN's have

been used and found to be capable of interpreting OES data successfully for a specific 
problem domain.

In plasma processing applications, OES is a simple non-intrusive method for 

determining the relative concentration of excited species in a plasma. Excited species 

are created by the elevation of an electron into a higher energy orbit. This usually 

causes an unstable state and is the reason why some of the species monitored in OES 

spectra from plasmas do not necessarily exist at normal room temperature. When the 

electron returns to its original, stable orbit (i.e. it relaxes), it emits a chanac ten st ic
wavelength of light. The emission intensity of the atomic or molecular species of 

interest thus depends on the species density, the electron density and energy. 

1 herefore the emission intensities alone will not provide a measure of the emissive 

species concentration. The plasma physics of the plasma processing environment will
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not be explored in this project as the aim here is geared towards an ex-situ 

interpretation of OES spectra that may be useful to the expert (plasma physicist or 

spectroscopist) or more predominantly for non-expert usage.

Io automate in some way the identification of a finite number of species within a 

Plasma, and then suggest a useful way of relating the size of the spectral lines to their 

process variables is the predominant aim of this research. This will promote the 

intelligent analysis ol OES spectra from the 'plateau' of human expert spectral analysis 

to non-expert spectral interpretation. It also provides a relative measure of species 

quantity via the relation ol spectral line size to plasma process variables without 

having to use costly and intensive plasma processing experimentation.

Normally, without automation, the tasks of plasma process optimisation and adaptive 

control have to rely on the judgements ot well-trained, experienced process engineers. 

Previous work to automate a semiconductor manufacturing process [Cheng 1991] has 

employed a knowledge-based approach that combines expert system technology and 

machine learning methods with statistical process control techniques to handle process 

optimisation and adaptive control of the plasma process. The result was a real-time 

expert system for process monitoring and control that performed consistently and 

predictably. This method did not, however, employ OES data as one of their 

controlling diagnostics. Neither did the method employ ANN technology.

Tiaditionally, automated classification of spectra have employed computer programs 

to aid the interpretation of spectra. Heuerding et. al (1993) have employed simple 

computer programs as analytical tools to aid the interpretation of low resolution mass 

spectra. It allowed the inexperienced mass spectrometer user to identify simple 

compounds by supplying suitable starting points (e.g. estimates of molecular mass and 

elemental composition of important peaks) for further interpretation.

Affolter et. al. (1993) have also addressed the ever increasing need for automatically 

processing spectral data by testing tabulated frequency ranges for large organic 

molecular fragments against infra red (IR) spectra collected in a spectroscopic 

database. For IR spectra prediction, the chemical structures were represented as 

vectors ol length based on the fragments, topology and geometry that span an n- 

dimensional space called the structure space. The spectroscopic reference database
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mapped all structures into this structure space. To predict a spectrum, the structure to

werebe identified was projected into the structure space and its nearest neighbours 

selected. When the spectra of these nearest compounds were identified in the spectra 

space, they were used as the basis for predicting the actual spectrum of interest. This 

structure similarity search provided a reliable estimate that is suitably applicable to 

interpreting the structure of IR spectra. Its use for interpreting OES spectra, however, 

is limited as the method focuses primarily on the whole structure of the spectrum.

For OES spectral interpretation, it is better to pick out the emission lines or bands that 

identify a particular species' unique spectral fingerprint.

Fig 3. 1 OES spectrum for a CH4/H2/Ar plasma

I ig. 3.1 shows the whole OES spectrum of a methane/hydrogen/argon plasma from 

the OES data obtained for this project. The spectral lines i.e. intensities at known 

wavelength locations are the features that are selected for training the network to 

identify particular species. For example, Ar is identified at 750 nm, H is identified at 

656 nm and CH is identified at 430 nm (wavelength locations shown in Fig. 3.1). 

This matches a spectroscopist's process of identifying species, and also provides a 

smaller data set of spectral lines for training an ANN to identify the unique fingerprint 

of particular species. The use of the entire spectrum pattern for training is therefore 

relinquished, thus removing the need for a very large number of OES spectral patterns 

to train on. With this form of feature extraction, the ^-dimensional space is reduced
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and so training an ANN to learn the spectral pattern becomes feasible and provides an 

intelligent technique for interpreting OES spectra.

I he approach taken in this research is to employ ANN technology and a simple rule- 

based system to accurately identify species from OES data taken from different 

plasmas. The aim being to produce an intelligent tool of analysis that does not require 

access to all the prior knowledge of an expert spectroscopist or plasma physicist.

ANN's appear to be used extensively in interpreting different types of spectra [Weigel

1992], [Affolter 1993]. [Bishop 1993], [Meyer 1993], [Boger 1994], [Klawun 1994],

[Mittermayr 1994], [Schulze 1994], IR spectra in particular, and yet there is a

resounding lack ot research into interpreting OES spectral patterns using ANN's.

Perhaps this may be as a result ol attempting to train ANN's on the actual intensities

of the lines in a spectrum or even on the whole OES spectrum pattern. Emission line

intensities will vary from spectrum to spectrum even for the same chemical species.

depending upon factors such as (i) the amount of the species within the plasma, (ii)

how much light (radiation) emitted reaches the spectrometer (optical analyser) and (iii)

the mixture of gases present at the time of OES data collection. These three factors

are the extent to which the research study strays into the realms of considering 

physical plasma properties.

As far as the work of this project is concerned, introducing intelligent techniques to

interpret OES data excluded the need for extensive plasma physics studies. This is

because all OES data that has been 'analysed' was obtained externally to the actual

plasma environment (i.e. ex-situ); and the research work was purposely independent of 

cost intensive plasma processing experimentation.

One relevant source of work that interprets OES spectra obtained from a plasma used

in the processing of DLC is now presented. It will set the premise for some of the 
work presented in this thesis.
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3.1.1 Previous Work by Picton et a!.

Using OES spectral data obtained from a plasma deposition process of DLC, Picton et.

al. (1996) identified selected chemical species within the spectra using an ANN.

Since spectral data analysis involves the identification of individual patterns from an

initial mixture ot patterns, the ability of ANN's to act as pattern classifiers was

utilised. I he intensities ot the individual chemical species at specified wavelength

points were obtained from OES spectra. The data set evolved from plasmas with only

argon (Ar), only hydrogen (atomic hydrogen, H), and mixtures of argon and hydrogen 

(Ar/H).

Two networks were considered, namely the MLP ANN and a linear associative 

memory (LAM) ANN. The MLP was a simple two-layer ANN (i.e. no hidden layer) 

where the input layer received weighted inputs which were modified appropriately to 

produce the correct output ([1,0] for detecting Ar; [0,1] for detecting H) for the two 

desired patterns. It was noted that even for linearly separable problems, two patterns 

in a mixed pattern can produce unpredictable results. The LAM ANN used the 

Penrose pseudo-inverse4 matrix for training and setting the weights, and under its 

formulation (with the precondition that the stored patterns are linearly independent) it 

gave the values lor the weights to be stored in a single-layer network. Therefore, when

a mixed pattern was presented as the input, the output values were the proportions of 

each of the trained patterns in the mixed pattern.

For the spectral analysis involved here, the Penrose pseudo-inverse was an 

unnecessarily complex procedure, whilst the MLP appeared unable to identify 

individual patterns in a mixed pattern. The most effective ANN was a simple one, 

consisting of a single layer of units - each trained, using Kohonen learning, on 

individual normalised vectors produced by sampling the OES spectra at specific 

wavelengths. I he ANN was trained on single patterns only (i.e. Ar and H only). The 

trained ANN identified each species, i.e. Ar and H, correctly both in their individual 

(smg/e) spectra and in the mixed spectra patterns. It was also able to ascertain the

svstlSmn!brrf - t0 ^  thC M°0re' Penr0Se ° r simply Pseudo-inverse in most linear algebra/matrix theory texts. In general for a 
: T X r t,0nS AX = bi A; iS ,he P ™ * * " ™ *  ofA - Hence, A'b is either the least squares solution the absolute 

independent pattems'^ VeC,<>r EUCHdean 'eng,h The Ps^o-inverse  rule is only applicable to linearly
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presence of hydrogen (due to residual water) in the argon spectra, where it was 

initially assumed that only argon was present.

3.1.2 Introduction to Vector Length Property

I he ANN will receive as inputs values sampled at a set of wavelength points for a

given OES spectrum which are then normalised. This procedure immediately reduces

the dimensionality (dimensional space) of the OES spectrum which results in rapid

training times. Selection of the most appropriate feature is very important as it has a

direct bearing on the performance of the complete system, and so for this case the

feature selection extracts the set of unique peak patterns (at characteristic wavelength 

bands) for a particular species.

In order to obtain the normalised intensity values, the vector length needs to be 

calculated. This is the Euclidean length or vector length for the set of spectral line 

intensities denoting a single species' spectral pattern (the unique fingerprint). 

Individual species can be represented by a set of lines (referred to as spectral lines) 

which form a vector. The spectral lines are normalised by dividing each line by the 

vector length, so that in effect, the resulting vector has a length of one. The vector 

length is calculated as the square root of the sum of the intensity squares. For 

example, the vector length for atomic hydrogen, H (veclen) is:

veclen = ( ( I1)2 + (I2)2 + (l3)2)1/2 [1 ]

11 = intensity at 434 nm location;

12 = intensity at 486 nm location;

13 = intensity at 656 nm location.

The normalised intensities for H would then be I,/veclen, I2/veclen, and I3/veclen.

This is the normalisation process used for the network classifiers developed in this 
research project.



There are altogether seven species considered for the research study presented in this

thesis. The normalisation process uses the following set of spectral line intensities: Ar

has ten spectial lines; I I has three spectral lines (example shown above); I T has four

spectial lines, N2 has seven spectral lines; N2 has three spectral lines; CM has three

spectral lines, and CH has three spectral lines. These are the selected spectral lines

that repiesent the unique fingerprint ol the individual species' presence in an OES

spectrum. See Table j .l  lor the known wavelength locations for the spectral lines of 
individual species.

(Species Wavelength point in nanometres
Ar
7T
h 2

in 7

'N

415.8 420

434 486 656
484.8 549.5 603 696.5 706.7 750 763.5

CH

406.7 417.7 420.5 602

~  337 389 537 580.4 646.9 759.1
254.3 391.4 427.8

314.5 387 43L4

395.4 422.5

Table 3.1 Wavelength points for seven individual species

3.1.3 Premise for Development of Species Classification using MLP

2 points

ANN a

vectorbetter way of splitting pattern classes in a parameter space using the normalised 

length. This would allow single patterns, e.g. A and B, to be classified from within a 

mixed pattern, e.g. C, that contained properties of both single patterns A and B. This 

method allows for the fact that in OES spectra, a mixed pattern of say A and B is not a 

simple combination of A + B patterns, but rather a different pattern C. The 

explanation which follows, with supporting evidence in figures 3.2 to 3.6 below, will 

accentuate the fact that OES spectral interpretation is not a linearly separable problem.
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wavelength/nm

Fig. 3.2 Optical Emission Spectrum of Ar/H2 plasma (20/20)

wavelength/nm

Fig. 3. 3 Optical Emission Spectrum of Ar/H2 plasma (35/5)

wavelength/nm

Fig. 3.4 Optical Emission Spectrum of Ar/H2 plasma (39/1)
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Fig. 3. 5 Optical Emission Spectrum of Ar/H2 plasma (5/35)

Fig. 3. 6 Optical Emission Spectrum of Ar/FE plasma (1/39)

Figures 3.2 to 3.6 depict the inherent nonlinear separability property of OES spectral 

patterns. The intensity scale (in arbitrary units, a.u.) is the same in all five diagrams 

lor a direct comparison. Ar is identified at 750 nm, 763 nm and 420 nm wavelength 

locations; and H is identified at 656 nm, 486 nm and 434 nm wavelength locations. 

For Ar the most prominent emission line is identified at the 750 nm location i.e. Ar750; 

similarly 656 nm is the location for the most prominent emission line for H i.e. Ff^- 

These characteristic groups of emission lines or bands are what are termed the OES 

spectral pattern of a particular species. It is normally described as the unique 

fingerprint that identifies individual chemical species to an expert spectroscopist.

I he OES spectra in figures 3.5 and 3.6 demonstrate clearly, for a mixed plasma 

system (Ar/H2), that a low argon composition (ratio of 5 Ar to 35 H2; and 1 Ar to 39 

H2) m hydrogen shows the spectral pattern fingerprint of Ar (Ar750) having lower
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intensities than in a spectra where there is a larger argon composition (i.e. Figs. 3.3 
and 3.4).

With equal gas compositions of argon and hydrogen (20/20), the prominent emission 

peaks ot Ar750 and H656 are distinctly observed in Fig 3.2 . It can be observed that 

despite the changes in the height ot the lines (i.e. the actual intensities), the pattern 

fingerprint with regards to the relative size of the lines remain relatively the same. 

I his is why using the vector length property should extract this feature of the spectral 

lines that represent a particular species for training a MLP ANN.

In a totally different spectrum (i.e. from a different plasma system) there can be

variations in the heights ol spectral lines that will not produce the same relative line

sizes foi individual species. This changes the fingerprint of the particular species even

though the location ol the spectral lines are identifiable. Therefore, an expert

spectioscopist will identify species from the location of prominent lines rather than the

height ol the lines i.e. actual intensity level, a.u. This property was the basis for the

feature extraction process for locating spectral pattern fingerprints of individual

species. The normalised intensities of these patterns were then used in the network 
training.

Therefore, the premise for the analysis into whether an ANN can classify chemical

species from a mixture of gasses within a plasma is based on the sole interpretation of

its OES spectral data. By extracting relevant features from the OES spectral pattern of

chemical species, an ANN can be trained to recognise spectral patterns of species.

The initial choice ol the MLP ANN was made in order to prove whether the MEP

architecture can interpret individual {single) spectral patterns from mixed patterns

once it has been appropriately trained. Also, since the MLP is a feedforward network

that employs a supervised learning strategy and can be easily trained on a limited

number of input features to produce specified target outputs it was deemed a suitable

choice. I hus, the species identification process employed a BP MLP ANN to identify 

species within mixed gas plasmas.
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3.2 Choice of Network Topology

I he initial attempt at species classification employed 19 OES spectral patterns, 14 of 

which were used in training. I his data was used to produce a two species detector and 

the iesults were compared with Picton et. al.'s (1996) work. Another set of spectral 

patterns were used for testing a four-species detector. These network detectors 

employed a single layer ANN, i.e. no hidden layer. For accurate classification of 

different species, these network detectors had to be trained on single patterns of the 

different species. Also, the ANN had to be partially connected i.e. the units in the 

input layer that teceived as inputs the normalised spectral line intensities representing 

single species were solely connected to the output unit that classified that species.

Fig. 3.7 Partially Connected Network - Two Species Classifier

Figure 3.7 demonstrates a partially connected single layer network for the two species 

detector (lor the two gas plasma argon/hydrogen). When the partially connected 

network architecture is extended to three or four gas plasmas (i.e. more complex 

mixed plasmas) the detection of species is noticeably reliant on having trained the
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network on enough single species patterns for it to be able to interpret mixed patterns 
correctly.

1 he next step was to have one hidden layer in a fully connected feedforward MLP

architecture. It was demonstrated that this type of network was excellent in

identifying species within mixed gas plasmas as long as the network had been trained

on the mixture types that the network would be deployed to interpret. So for specific

plasma systems this type of network works very well and can identify species quickly 
from the OES spectra.

The limitations stemmed from certain inherent factors within interpreting OES spectra 

obtained from mixed gaseous species in a mixed plasma. These factors could involve 

the absorption of normally emitted lines, and doppler shift effects that in combination 

may not yield a spectral line intensity at a particular wavelength location. Thus, 

however well the normalisation process uses the vector length property to optimise the 

response to relevant spectral lines for a particular species, there may not always be a 

spectral line at those relevant locations. This will mean that even though the 

normalisation assists in 'pulling out' the spectral line pattern for a particular species, 

the pattern will not necessarily be the same in all types of mixed gas plasma 

conditions (see Figs 3.2 to 3.6 for spectral pattern variations in the same plasma). This 

is where the limitations ol the trained network became more apparent.

Not having the luxury of an extensive collection of OES patterns for numerous mixed

plasma systems, it was much more worthwhile to contemplate a more definitive way

of using some previous knowledge in the more accurate classification of the chemical

species. This step is explored further in chapter 4 and involves the implementation of 
a simple rule-based system.

3.3 Partially Connected Single Layer Network

3.3.1 I wo Species Netw ork

I he first network was customised to identify two token chemical species in the two 

gas-plasma argon/hydrogen system. The species to be identified were Ar and H. The
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single layei (no hidden layer) ANN employed was partially connected as displayed in 
Fig. 3.7 .

Using the same spectial data from Picton el. cil. (1996), the ANN was trained on 14 

single spectral patterns, and then tested on five mixed spectral patterns. The ANN was 

also tested on the 14 single spectral patterns; this tested the learning ability of the 

netwoik. The single patterns consisted of seven Ar and seven I I spectral data; and the 

mixed patterns consisted of five Ar/H spectral data. I he ANN was trained on single 

species patterns to determine whether once it had learnt the pattern of the single 

species it could identify it within a mixture of patterns. Hence, the training was 

carried out on seven argon only plasmas and seven hydrogen only plasmas.

Table 3.2 Two Species Classification from ANN trained on single species patterns

The results in Table 3.2 show that the partially connected single layer architecture was 

successful in recognising Ar and H species in a mixed spectral pattern of argon and 

hydrogen. Note that the threshold value for classification is 0.5, and so values above 

0.5 classify that species. Also, the network output determined the presence of 

hydrogen (values highlighted in bold) in the spectra from argon plasmas. The 

presence of H in the aforethought argon only plasmas, was confirmed to have been a 

by-product ol water (II20) which was present in the chamber at the time of OES 

collection providing a useful determination of errant species.

These results corroborated Picton el. al.'s (1996) classification results. They also 

leflected the ability of a single layer feedforward ANN architecture to identify two 

individual spectral patterns from a mixed pattern once it had been appropriately
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trained to convergence. Ibis ability can be attributed to the partially connected nature 

of the network whereby the relevant species' normalised spectral line inputs are only 

connected to the output unit that classifies that species.

Modifying an ANN model into a partially connected topology was adopted by Moore 

et. al. (199j ) to analyse mixtures ol test gases (H2, CH4, 0 2) quantitatively. The 

partially connected network had six input units all connected to nine units in a single 

hidden layer, and three output units (lor H2, CH4, 0 2). Only three hidden units were 

connected to each output. I his set up produced the best results with a maximum 

prediction enoi of 10% lor each gas. The predictive capability of the ANN 

aichitecture can therefore be enhanced by assuming a partially connected topology.

In the case ol the preliminary work presented in this thesis, a simpler partially 

connected single layer (i.e. no hidden units) network topology was utilised. With the 

single layer network, the inputs trained on normalised intensities for a particular 

species are connected to the single output unit for detecting that species. For example, 

during training, only the weights associated with the three normalised intensity input 

values tor identifying H were connected to the H output unit detector.

To test the robustness ol the two species detector's partially connected architecture the

number of individual patterns to be trained on was increased to four in the next 
experiment.

3.3.2 Four Species Network

A similar network topology was trained on spectra from three individual plasmas - 

hydrogen, argon, and methane. The partially connected single layer ANN was trained 

on the single spectral patterns of Ar, H, CH, and CH+ species. The four species ANN 

performance is compared with results from testing the two species ANN on new 

spectral patterns (still obtained from argon/hydrogen plasmas).
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|files NI 93 NI 95 NI 9 7 NI 9 9 N19 1 1
Ar 0.92 0.90 0.92 0.93 0.93
H 0.94 0.94 0.93 0.94 0.94
CH 0.92 0.93 0.85 0.95 0.93

ICH 0.96 0.89 0.89 0.91 0.91
(5 mixed methane/hyd rogen/argon plasmas )

Table j .j> Four Species classification with Four Species Detector

Table j .4 One Species classification with Two Species Detector

The four species ANN was trained on 15 Ar, 10 H. 5 CM and 5 CH+ spectral patterns.

Training converged quickly with RMS error — 0.1, having used learning rate of 0.8

and momentum of 0.2 during BP learning. The trained network was tested on five

different mixed spectral patterns. The accurate classification of the four species Ar. H,

CH, CH shown in I able 3.3 identifies the presence of these species in the mixed 

spectral patterns of CH4/Ar/H2.

table 3.5 Two Species classification with Two Species Detector
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Tables j>.4 and j .5 show results from an arbitrary testing of the two species network

(desciibed in section j .j .1) on a different set of single and mixed (two-gas) spectral

patterns. It detected H in all seventeen single plasmas; and also detected H and Ar in

fifteen mixed plasmas. The highlighted values (in bold) show values below the 0.5 

threshold for four of the fifteen Ar/H2 spectra.

3.3.3 Conclusions from Two and Four Species Classifiers

The performance of the partially connected single layer feedforward ANN has 
determined the following:

• Limitations of the ANN occurred when it had not been introduced to a particular 

type ot mixture (i.e. a wholly different mixed spectral pattern) during training.

• When the ANN had been trained on a combination of single species spectral 

patterns (and mixed patterns) it could indicate the presence of errant species that

may not have been known to be present initially. An example was the detection of 

H from water present in the argon only plasma.

• This method can be successfully applied to specific plasma processes that contain 

a similar number of gases within the plasma mixture. The method can then not 

only identify which species are present, but also those that are not present, as well 

as whether some errant species (impurities) are present too.

• The vector length approach for normalising spectral lines in order to pull out the

unique fingerprint of optical emission spectral lines from an entire spectral pattern

was adopted. This helped to extract relevant features from the OES spectra

without losing relevant information (for example, very small spectral lines that

locate some species compared with other lines which are relatively large are not 
#
ignored in the overall spectral search for extracting relevant information).

I U N IV E R S IT Y  G O l L..:i c e  N o r t h a m p t o n !
) L IB fiA R Y  |
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• The ANN is robust enough when it comes to the recognition of individual patterns

in mixed patterns as long as the network has been trained on a sufficient number of 
single spectral pattern types.

• The ANNs determination ol the absence of species otherwise known to exist in 

the plasma is based on the spectral patterns that it has learnt. OES spectral 

patterns that do not contain emission lines at known wavelength locations as a 

lesult of possible re-absorption ol species within different types of plasma can 

contribute to this loss in characterisation of species. A feasible way to reduce this 

shortcoming was to not only train a network on single spectral patterns but also on 

a sufficient number of mixed spectral patterns for a more robust species classifier.

Employing a lull) connected MLP ANN to learn the different spectral patterns was the 

most appropriate next step to determine a more robust species classifier.

3.4 Fully Connected MLP Network

To incorporate all prior information available with each spectral pattern to train a fully 

connected MLP ANN to identify seven selectively chosen chemical species was the 

appropriate next step in the development and testing of the ANN's ability to identify 

chemical species within more complex spectral patterns.

I he inputs to the ANN were the normalised spectral line intensities for seven species 

lrom a representative set of all the spectral patterns collected (for single and mixed uas 

plasmas), plus the plasma process parameters of gas flow rates, RF power and 

pressure. All these input parameters provided a total of 38 inputs for the MLP 

network. The target outputs were the classification for the seven individual species. 

So *or example, the target output for a methane/hydrogen/argon spectra would be 

[ f l ,  1,0,0,1,1] representing the classification for [Ar, FI, Fl2, N2, N2+, CPI. CH+] i.e. Ar,

H, H2, CH, GET present, and N2, N2+ absent.
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Fig. 3.8 Fully Connected Network - Seven Species Classifier

Fig. 3.8 shows a fully connected ANN representing the seven species classifier.

104 representative OES spectral patterns from real plasmas were selected to train a

MLP architecture of 38:7:7 i.e. 38 input, 7 hidden, and 7 output units (each output unit

recognises one of the seven species: Ar, H, H2, N2, N2+, CH. CH+). After several

training schedules, with an RMS error of near zero, network optimisation at seven

hidden units was obtained. The network was fully connected; for the purposes of

clarity the architecture portrayed in Fig. 3.8 shows only the first two unit connections

(for both input and hidden layers). After successful training on 104 different spectral

patterns of single and mixed species, the network was tested on a different set of 19 
real spectra.



1 plasma type | Ar H h 2 [ n T NT CH | CH' Accuracy
1 Ar only | 1 0™ 0 | o 0 0 1 0 | 100% ~~
1 H2 only 1 T" 1 1 0 0™1 0 0 1 Ar present
1 H2 only | 1 1 1 1 | 0 0 I 0 1 0 Ar present
I N2 only [ 0 | 0 0 | l I 1 1 0 1 0 | 100% ~
1 CH4 only ] 1 1 1 1 1 0 1 0 1 1 1 1 1 Ar present
1 Ar/H2 | i 0 0 1 0 1 0 1 0 0 1 H2 absent
| Ar/H2 1 1 1 1 i 1 0 1 0 1 0 1 0 | 100% 1
1 Ar/H2 f 0 i l 0 0 0 0 Ar absent
| Ar/N2 * i i j * 1 0 0 H2 present 1
1 h 2/n 2 | 0 | l |̂  l | 1 1 0 1 0 | 100% ~|
|A r/H 2/N2 0 l 1 l | l | 1 1 0 1 0 1 Ar absent

Ar/H,/N~i i i i i 0 1 0 100%
| Ar/H2/CH4 [ i I l | l 1 0 o I” 1 * 100%
1 Ar/H2/CH4 [ l | i | i | o 1 o | 1 1 i 100%
[ Ar/H2/CH4 f~ \ |~1 |~  f 0 0 ' I 100%
Ar/H2/CH4/N2~ | ~ \ l | ~ l 1 l 1 l | 1 1 1 1 100% |
Ar/H2/CH4/N2 J l ~ i 1~1 | l 1 l 1~ i 1 1 100%
Ar/H2/CH4/N2 | i l | ~ i  1 l l | ~ i 1 1 100% |
Ar/H2/CH4/N2 f l “1  | ~i | ~ \ | " 1  | l i I 100%

Table 3.6 Accuracy of Seven Species Classifier

The results from the test set of 19 spectra are shown in Table 3.6, with the output 

\ allies rounded to the nearest decimal, i.e. 0 or 1, for viewing ease.

3.4.1 Results from Table 3.6

The following three points are confirmed:

1. A three-layer MLP ANN trained using the BP algorithm can identify the presence 

of individual species within a mixed pattern of species (spectra from mixed gas 

plasmas) when trained on a sufficient set of both single and mixed patterns.

2. 1 he trained network can detect other species that were existent within the plasma at

the time ol OES data collection but not necessarily known to be present in that

specific system, therefore the interpretation is that the network can detect impurities 
or contaminant species.
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3. On the occasions where the network has determined the absence of a particular 

species that should be present in the plasma (bold highlights in Table 3.4) it 

occurred predominantly in the argon/hydrogen case. To explore this particular 

phenomenon in-depth would require an in-situ plasma study of the OES spectra 

from varying mixed gas compositions. This was a suggestion for future work as its 

implementation involves intensive on-site plasma processing.

3.5 Conclusions

In so lar as using ANN's to interpret OES spectral patterns to classify chemical species

are concerned, some knowledge about locating prominent line(s) within OES patterns

to identify a given species is important. I his consideration has been implemented in

the extraction of relevant spectral lines from the entire OES spectrum, to calculate the

\ector length lor normalising the spectral line intensities for each of the seven 
chemical species.

However, a way to verify the species' identity within a given plasma system from the

most prominent spectral peaks has not been considered. Incorporating the normalised

intensity values that represent the prominent spectral lines for the targeted seven

species into a knowledge-base of a simple expert rule-based system in order to verify

the presence or absence of species within mixed gas plasmas will now be introduced 
in the first part of chapter 4.
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Chapter 4

Rule Generation via ANN Species Models

A brief overview of the implementation of a RBS that was mainly used as a

verification tool is presented. It can accurately classify the presence or absence of

seven individual chemical species within mixed OES spectra, however, the system is

not fully automated for on-line recognition. The major part of the work presented in

this chapter focuses on the creation of a set of predictive ANN species models which 

were the primary tools for rule extraction.

4.1 Rule-Based System Implementation

A simple prototype RBS was developed for the explicit characterisation of seven 
different chemical species.

4.1.1 Background

The unique fingerprint that represents a particular species pattern in an OES spectrum

will be referred to as the unique peak pattern (UPP). This UPP consists of partial

components within a given spectrum that represent individual species. If an OES

spectrum from a plasma containing several gases is considered to contain a set of

UPPs that make up the spectral pattern observed in the entire spectrum, then by

selecting partial components that make up the UPP it can assist the accurate 

identification of the particular species.

Using the normalisation process (as explained in chapter 3) extracts the UPP of the 

species that the ANN has been trained on. For the instances where there are no 

emissions at particular wavelength locations in the OES spectrum, there will be no 

UPP present, thus eliminating the search to identify its partial components.

This is the premise for providing a rule base that can interpret normalised intensities 

from spectral data to be able to 'judge' the presence or absence of species. The partial
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components ol the UPP are the minimally selected normalised intensities at

predominant!) known wavelength locations that an expert would use to confirm the

presence of a particular species. I here are three normalised intensities for each of the

individual species - Ar, H. H2 and CH ; and two tor each of the individual species -

N2, N2 an(  ̂CH . The older ol confirming the presence or absence of a species relies
■ +

on categorising normalised intensities into primary, secondary and tertiary peaks that

correspond to whether prominent, supportive and confirmatory spectral lines are

identified within an OES spectrum lor a particular species. This is the knowledge that

is inserted into the knowledge base of the RBS developed here. The rules consist of

target thresholds that will determine the presence or absence of species from the input

data. The input data is inserted as normalised spectral data directly from OES data. It

is the same data used previously for testing the trained ANN.

4.1.2 Process Implementation and Discussion

Fig. 4.1 Principal components of the Rule-Based System

The RBS consists ol three distinct components, depicted in Fig. 4. 1

E User Interlace - lor access to query and response schedules

2. Inference engine it collects/searches/reads the knowledge data base for
inferences

3. Knowledge base - includes a peak search (UPP) procedure and the rule set for

determining a species' presence or absence.

69



The rule-based programming schedule was incorporated within a simple expert

system shell (C allear 1994] that was adapted for the purposes of accurately

interpreting species within the OES spectra from real plasmas. The software. LPA

WIN-Prolog™, is the flexible hybrid expert system toolkit that uses the AI language,

Prolog, to provide a multi-paradigm programming system needed for the task. The

Prolog compiler provides a 32-bit programming environment with access to a large

number of graphical user interface (GUI) functions that allows the creation of

polished Windows applications. One of the main reasons for selecting this software

tool was its portability between Windows applications. Also, with Prolog being an

interpretative AI language with no type declarations, it was very useful for the 
prototyping required.

The final program (listed in Appendix A) is very simple in conception and performs

well on the spectral data used. The knowledge base accepted the spectral data (UPP's)

in the normalised intensity format i.e. values that lie between 0 and 1. The rule base

was hand ciafted to select spectral data in the annotated spectral peak order of primary

peaks (Ar_Pline), secondary peaks (Ar_Sline) and tertiary peaks (Ar_Cline). The

threshold setting for the rules were determined arbitrarily for a known set of spectral

patterns. Normalised values above the threshold limit would confirm the presence of

the particular species, whilst values below the threshold confirmed the species' 
absence.

Ten random sets of spectral data were introduced into the knowledge base for 

analysis. Each set consisted ol normalised intensity values for the prescribed UPP 

pattern. The rule base was able to accurately identify which species were present and 

those that were absent. The responses were quickly received at the user interface. 

This rule-base implementation was designed to identify seven particular species alone 

and hence the simplicity of its structure. However, the current knowledge base can be 

readily modified to include further expert knowledge and rule assertions, by simply 

adding to the 'peak search'; 'rules' and 'replies' sections of the Prolog program.

I he simple RBS system was implemented for the sole reason of confirming the 

presence and absence of seven particular chemical species within OES spectra. The 

system was not automated due to the arbitrary nature of the rule threshold settings. It
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provided a simple verification system for species classification, yet even with

automation would not yield particularly novel avenues of pursuit for addressing the

other essential question posed by the thesis which is - "can the amount of species be

deteimined horn the controllable plasma process parameters using intelligent 
techniques?"

Answering this question is the novel pursuit that has prompted the rest of the wwk 
presented in this thesis.

4.2 Introduction to Nonlinear Modeling

The aim of the work presented here is twofold.

The first is to predict the size ol spectral lines lor individual species solely from six

controllable process variables i.e. gas How rates - argon, hydrogen, nitrogen and

methane Hows; and RF power and pressure. This is achieved by using a three layer

MLP ANN to model each ol the seven particular species concerned i.e. Ar, H. IT. N2, 
N2+, CH and CH+.

Secondly, a system for extracting rules from the trained ANN models is proposed and

implemented. This generates useful rules that can be used for controlling the amount 

ol species within different plasma processes.

4.2.1 Overview of ANN’s for Nonlinear Modeling

1 he modeling of nonlinear relationships statistically (e.g. using regression analysis or 

PCA) has proven popular in the past. ANN's in nonlinear modeling offer an 

alternative approach to statistical regression techniques for predicting continuously 

valued outputs. ANN based process models offer some advantages over statistical 

models such as providing better accuracy and robustness. Himmel et. al. (1993) have 

used an adaptive learning technique which applies ANN's to modeling the growth of 

polysihcon by a low-pressure chemical vapour deposition (LPCVD) process. Their

Study showed that ANN process models exhibited less experimental error than their 

statistical counterparts, even when created from less experimental data.
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ANN s have previously demonstrated the capability of learning complex relationships 

between groups of related parameters. This learning ability is attributed to the fact 

that ANN s essentially possess many simple parallel processing units. These 

ludimentary processots are interconnected in such a fashion that knowledge is stored 

in the weight of the connections between them. Each processing unit contains the 

weighted sum of its inputs filtered by a suitable 'squashing' function (such as the 

exponential sigmoid function, or the tanh function). It is the 'squashing' function that

endows ANN's with the ability to generalise with an added degree of freedom that is 

not available in statistical regression techniques.

As reviewed previously in chapter 2, numerous OES studies ([Barankova 1993], [Itoh

1994], [Pappas 1994], [Bousrih 1995], [Hong 1995], [Bockel 1996], [Clay 1996], [Cui

1996], [Hemel 1996]) have been explored diagnostically to monitor species in plasma

deposition or etching, however the nonlinear relationship between OES data and

plasma process variables are deemed far too complex to model. The nonlinear

relationship between OES spectra and specific controllable (i.e. independent) process

variables has therefore been tackled in this thesis by using ANN technology to

provide a set of rules that can relate the relative size of spectral lines for a particular

chemical species to individual plasma process variables. This method creates ANN

models of seven particular species that can be used as a novel test-bed for identifying

these species solely from six process variables, in ten different plasma systems. The

small topology of the trained species models provides a platform from which rules can

be suggested via a simple new extraction procedure. The nature of the rules that are

generated will be predominantly useful for the process control within a specified 
plasma domain.

The entire procedure can be extrapolated for rule generation in data sets that have a

small number of inputs and outputs. To reiterate the most important feature of this

technique is that it can be applied to continuously valued multi-input-output data 
within a real problem domain.
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4.3 Predictive ANN Models for Chemical Species

The ANN models were created using software from NeuralWare called NeuralWorks 

Predict™ which interfaces directly with Microsoft (MS) ExcePM. Predict
automatically integrates all the components required to effectively solve prediction

(and classification) problems using MLP ANN technology, and runs from the Excel 
platform.

Process Variable
Argon flowrate
Hydrogen flowrate
Nitrogen flowrate
Methane flowrate
RF Power 
Pressure

Range / units 

0 - 4 0  seem
0 - 80 seem
0 - 4 0  seem
0 - 1 0  seem
50 - 250 W

80 - 800 mTorr

Table 4.1 Parameter range (controllable process variables)

Plasma Type

argon
hydrogen
nitrogen
methane

argon/hydrogen
argon/nitrogen
hydrogen/nitrogen
argon/hydrogen/n itrogen
methane/hydrogen/argon

methane/hydrogen/argon/n itrogen

Symbolic 
Representation

Ar
H
N

c h 4
Ar/H
Ar/N
H,/N

Ar/H,/N
CH4/H2/Ar

CHj/IT/Ar/N

fable 4.2 Ten different plasma systems

Number of Input
Gases

?

I he process parameter ranges of the plasmas, from which the OES spectral patterns 

used in the ANN model building were obtained, are stated in Table 4.1 . These 

parameter ranges cover all ten different plasma systems listed in Table 4.2 .
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ANN The

selection ol training, test and validation data patterns is very important as there needs

to he a sufficient number ol representative patterns of the problem domain to train and

test the netwoik model in the first instance, and in the process reserve an independent

data set for validating the final trained network model. A total of 123 OES data were

split into 72 tiaining patterns, 24 test patterns and 27 validation patterns using the data 

selection procedure indicated in Table 4.3 .

Validation Data 
Validation set

Problem Type prediction 1
\J\oise Level noisy data
1 Data Transformation scale data only (i.e. linear transform)
I Variable Selection comprehensive |
\ Network Search exhaustive
\ Evaluation correlation |
\Output layer activation function / inear (
Hidden layer activation function 

(Train, Test and Validation Sets
tanh

Modeling Data 

Primary not validation data
|Secondary all primary |
Train set first 75% o f primary
Test set not training data

last 22% of all data

I able 4.3 Predict Template of Generic settings

The inputs to the network models are displayed in Table 4.4; and the target outputs 

the spectral line intensities at particular wavelength locations that represent the
are

unique
peak pattern characteristic for the individual species, displayed in Table 4.5 . In Table

4.5, the number in brackets represents the wavelength point or band head in the OES

spectrum at which spectral lines are located to characterise a particular species.

These tabulated inputs and outputs relate each customised species ANN model 
topology to figure 4.2 below.



Species (Network
models (input 1

Atomic (Argon
Argon | flowrate

Atomic | Argon
Hydrogen | flowrate

Molecular Argon
Hydrogen flowrate

Molecular Argon
Nitrogen flowrate

Ionic 
Nitrogen

Methyl 
fragment 

Methyl 
ion

Parameter
range

Argon 
flowrate

Argon 
flowrate

Argon 
flowrate

0 - 4 0  seem

Input 2

Hydrogen
flowrate

Input 3

Nitrogen
flowrate

Input 4

Methane
flowrate

Hydrogen Nitrogen Methane
flowrate flowrate flowrate

Hydrogen Nitrogen Methane
flowrate flowrate flowrate

Hydrogen Nitrogen Methane
flowrate flowrate flowrate

Hydrogen [Nitrogen Methane
flowrate flowrate flowrate

Hydrogen |Nitrogen Methane
flowrate flowrate flowrate

Hydrogen Nitrogen Methane
flowrate flowrate flowrate

0 - 80 seem (o - 40  seem i0 - 1 0  seem
(seem - standard cubic centimetres per minute)

Table 4.4 Network inputs in process parameter range

Input 5

Power

Power

Power

Power

Power

Power

Power

Input 6

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

50 - 250 W 180 - 800 mTorr
(Watts) (milliTorr)

Ionic
Nitrogen

Methyl */
fragment 

Methyl
ion

H(434)

Species 
models 

Atomic 
Argon 

Atomic 
Hydrogen

Molecular | h 2(406) 
Hydrogen

Molecular |n 2(337) 
Nitrogen

Network Outputs 
Output 1

Ar(420)

N2 (391)

CH(314)

CH (395)

Output 2

Ar(750)
Output 3

Ar(763)

H(486) 11(656)

H2(4 17) |h 2(420)

N2(389)

N2+(427)

CH(387) CH(43 1)

CH (422)

Spectral line intensities in 
arbitrary units (a.u.)

fable 4.5 Network outputs
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Inputs
Variable Selection Frequency 
(on input data for species models)

Ar |H |h 2 n 2 |N f fCH ClT
<Ar> ~1  i 0.08 0.08 0.08 0.25 o i
<h 2> 1 i 1  ' 1 * i 0.83 083 i

|<N2> 1 ' 1 i 1 1 i 1 ' i i
<c h 4> 0.67 1 i 1 i i I ® 1 0 i
Power | i 1 i 1 i 0.92 0.58 i i
Pressure ( i 0.83 1 i 0.75 0.25 i i

Table 4.6 Variable selection frequency on input data for creating ANN models

A comprehensive variable selection procedure was carried out on the scaled input data 

field by using a genetic algorithm to identify input variable sets in the data population 

with a high enough frequency (usually greater than 50%). See Table 4.6 which shows

ANN
model.
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Since all six input fields were needed in the building of the network architecture, the 

usefulness of the genetic variable selection algorithm highlighted which inputs were 

not considered relevant based on the distribution of the training data population to 

optimise the network model. I his is denoted by a lower frequency of occurrence in 

the total data population. I his feature can enable a pruning of network connections - 

a procedure that is useful in the extraction of rules from trained ANN's when there is a 

\eiy laige set of input features; and which also helps prevent over-fitting.

I 01 the puipose of these species models, no connections or units are pruned, since 

theie is a relatively small number of inputs (six) already; and more importantly, once

the network is tiained, the ellects of all six inputs on the outputs (spectral line sizes) 

need to be considered for rule extraction.

A three layer network with six inputs, three hidden units, and three (sometimes two) 

outputs pioved to be the best network architecture on convergence time. Figure 4.2 

shows the final 6-3-3 topology for the atomic argon, atomic hydrogen, molecular 

hydrogen, and methyl fragment species models; molecular nitrogen, ionic nitrogen, 

and methyl ion species models had two outputs so the topology was 6-3-2. The 

network was able to fit the nonlinear tanh activation function of three hidden units to 

linear activation functions on the output units to obtain excellent predictive models for 

all seven species. The small architecture of the final trained models provided the 

topology for the pedagogical rule extraction technique proposed in this thesis. The 

cost function used was correlation which evaluates the model on the test set during 

training so as to determine a suitable number of hidden units that need to be added to 

the hidden layer, and minimises the BP error on the training set. It also determines 

when the network is no longer improving on the training set and stops the network's 

adaptive learning procedure to avoid overtraining the network.
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Atomic argon 6-3-3/0.9355
Ar(420)

I Train
R Acc Ar(750) R Acc
0.73 0.88 Train 0.86 0.92

I Test 0.92 I Test 096 092
Valid

I Atomic Hyc

0.82 

Jrogen i

0.96

6-3-3/0.9.

Valid

397

0.86 093

H(434)

Train
R Acc H(486)

Train
R Acc

0.82 0.96 0.85 0.94
Test 095 r Test 095 r

Valid 0.82 0.96 Valid 086 096

Ar(763) 
T ra i n 
Test 

Valid

Molecular Hydrogen 6-3-3/0.9577

H(656) 

Train 

Test 

Valid

R Acc Records 1
0.84 0.90 72
097 0 9 6 24

085 093 27

R Acc Records 1
0.82 0.89 72
0.93 1 24

0.84 0.96 27

H2(406)

Train
Test

Valid

R Acc H2(417) R Acc H2(420) R Acc Records 1
0.86 0.93 Train 0.85 0.92 Train 0.88 0.90 72
0.97 1 Test 095 1.00 Test 096 r 24
0.91 0.96 Valid 090 0.93 Valid 090 0.96 27

Methyl fragment 6-3-3/0.9302
CH(3I4) R Acc CH(387) R Acc

Train 0.84 0.83 Train 0.8J, 0.82
Test 0.96 1 Test 0.89 0.83

Valid 0.89 0 9 3 | Valid 0.79 0.85

CH(431)
Train
Test

Valid

R

0.80

Records

Table 4.7 Correlation (R) and Accuracy (Acc, 20% tolerance) of ANN Species Models
for Ar, H, H2, CH species

Molecular Nitrogen 6-3-2/0.942 
N,(337)

T ra i n

Test

Valid 0.91 0.93

Ionic Nitrogen 6-3-2/0.9664 
Nz+(391)

N2(389) 

Train

Test

R

0.94
0.99

7 
7

Records

72

24

27

T ra i n

Test

Valid

CH (395)

Train

Test

Valid

R Acc N /(427) R Acc Records
0.95 0.99 T ra i n 0.91 0.96 72
0.99 1 Test 0.92 0.96 24

n 6-

0.96

3-2/0.950*

r
*

Valid 089 096 27

R Acc C H (422) R Acc Records 1
0.91 0.94 Train 0.86 0.88 72
0 9 8 1 Test 0.93 096 24
0 8 8 093 Valid 083 096 27

Table 4.8 Correlation (R) and Accuracy (Acc, 20% tolerance) of ANN Models
for N2, N2+, CH' species
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The test results of the final trained species models are shown in Tables 4.7 and 4.8

whieh show the excellent correlation and accuracy of each network, particularly on 

the test and validation data sets (bold highlights).

4.3.1 Generalisation Ability of Trained Species Models

The graph plots in figs. 4.3 to 4.20, display the predicted intensity for each spectral 

line against the actual target intensity, i.e. three Ar, three H. three H2, two N?. two

N2 , three CH, two CH spectral lines. Intensity is an arbitrary measure normally 

represented as a.u. (denotes arbitrary units).

Figuies 4.3 to 4.20 demonstrate the excellent generalisation capabilities of the trained

species models on the test and validation data, observed by the linear trend of the

predicted versus target intensities. This accentuates the fact that the model's

predictive capabilities on independent data (i.e. data it has not been trained on) is very

good, therefore each model can be deployed to predict the size of spectral lines for

that particular chemical species from entirely new data, set within the process 
parameter range in Table 4.1 .

The capability of the species models for modeling the nonlinear relationship between 

the spectral line size of a particular species and six controllable plasma process 

parameters accurately over a representative data set of patterns, immediately begged

the question of: "Could information be extracted from these trained models to relate 

the size of the spectral lines to the process parameters in some way?".

To answer this question, a new rule extraction procedure has been implemented to 
address the issue.

4.4 Introduction to Rule Extraction Methodology

The foundation for the next set of experiments has resulted from inadequate practices

m explaining or acquiring knowledge from ANN's that use supervised learning 
procedures.
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Improving the explanation capability ol ANN's is a comparatively new and ongoing 

field ot iesearch, and the process ol extracting knowledge embedded within a trained 

ANN is piedominantly termed rule extraction. Most research in rule extraction 

attempts to abolish or perhaps dilute the idea that ANN's are 'black boxes' that are 

sufficiently competent in their parallelism, but are not explicit in their functioning, 

unlike expert or fuzzy logic systems. ANN's have been used as part of hybrid systems

to support many processes, such as in plasma monitoring for process optimisation 

([Butler 1990], [Kim 1994], [Card 1997], [Kim 1997]).

For example, Baker et. al. (1995) have employed a BP ANN model to predict the 

process time required to etch a surface film (silicon dioxide) in a plasma 

(trifluoromethane/oxygen) to a specified depth, as part of developing an intelligent, 

real-time control system for the plasma process known as reactive-ion etch (RIE). 

The network was based on the correlation that exists between two specific process 

parameters and the trained model was able to predict process end-points in timely 

fashion and so has been implemented as part of the real-time RIE control system.

This work highlighted the fact that the ANN-based models offer advantages in both 

accuracy and robustness over statistically-based models and so have been applied to 

systems that are inherently multivariate in nature.

When it comes to characterising a process like a plasma deposition/etching process, a 

series of experiments can be carried out that involve various machine set points, the 

time to complete the process, and then measurements on the processed substrate to 

determine parameters of interest to the process engineer. By then applying a 

mathematical approach such as response surface methodology (RSM), the 

relationship between machine settings and process results can be approximated from 

these series of experiments. However, since RSM assumes that the process will be 

fully characterised and controlled solely from the machine settings explored in set 

experiments, then it is prescribing to a consistent and repeatable behaviour in the 

process. This is realistically not so, since many unfortunate factors like leaks in the 

gas delivery to the plasma chamber or build up of contaminants can contribute to non-

repeatability and so alternative techniques for characterising the process would be 
beneficial.
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One way of achieving better process control is to control the properties of the

reactions. Process leactions are affected primarily by the concentrations and energies

of ionised chemical species in the plasma which can depend on the rate of gas flow,

power and pressure which are controllable process variables. Since OES characterises

the gas phase chemical species, the MLP ANN models for seven chemical species

detectable in the OES patterns (from different plasmas) have provided the network

aichitecture from which some rules can be extracted. The knowledge generated about

the size of spectral lines for individual species is solely based on the controllable 
process variables.

4.4.1 Summary of Hybrid Rule Extraction Systems

To demonstiate the breadth of current rule extraction techniques in use, here are some

reviews of pertinent 'hybrid systems' developed for the extraction of rules from trained 
ANN's.

Fu (1994) has presented an interpretation of ANN knowledge in symbolic form with 

the aim of generating comprehensible rules. Fu’s method uses the KT algorithm [Fu 

1991], which exploits a basic principle of biological neural networks i.e. if the sum of 

its weighted inputs exceeds a certain threshold, then the neuron fires.

The K1 method can handle an ANN using a smooth activation function, like the BP

network using the sigmoid function. Employing a smooth activation function (rather

than a neuron with a hard-limiting threshold function) creates more 'states' for the

network (due to graded response generated from neuron with smooth activation

function). The algorithm searches through the rule space heuristically distinguishing

between positive and negative attributes that confirm a rule. The performance of the

rule set generated by KT from an ANN will not necessarily equal that of the network's 
embedded knowledge.

Performance results on three data sets from machine learning depositories in the 

public domain were reported by Fu. One of these data sets was Fisher's Iris data, 

probably the most widely used data set in pattern recognition literature. The iris data 

set contains three classes of 50 instances each, where each class refers to a type of iris 

Plant (i.e. setosa, versicolor, virginica). One class is linearly separable from the other



two, the othei two are not linearly separable from each other. Each instance is 
described by four continuous features.

The second data set consisted of hepatitis prognosis prediction into two categories - 

live 01 die. This problem domain contained 155 instances, each described by 19 

features (six continuous and thirteen nominal features).

The third problem domain concerned hypothyroid diagnosis - 3163 instances, 150 of 

which wete hypothyroid cases, the rest were negative. Each case was described by 25 

features (seven continuous and eighteen nominal features).

After the comparison study of the KT method with a typical machine learning

algorithm method (C4.5 - Quinlan 1996), the KT algorithm performed better than

C4.5 with or without noisy data. The implementation of a validity constraint

significantly reduced the number of rules generated by KT. Empirical validation of

the performance of the K I method in these three distinct domains was achieved. The

method is also superior to the decision tree approach to rule learning in noisy 
conditions.

Setiono et. al. (1997) have proposed an algorithm for extracting rules from a standard 

three layer feedforward network by first pruning redundant input network connections 

and then splitting the hidden units. The pruning strategy effectively identified the 

relevant inputs in the trained network. This process formed a new network by treating 

each hidden unit as a new set of output units. The aim of the network pruning was to 

achieve hidden units that had a small number of input units connected to them. 

Setiono et. al.'s proposal worked on the assumption that the network was a standard 

feedforward BP network with a single hidden layer which had been trained to meet a 

pre-specified accuracy requirement. Reducing the complexity of the network by 

pruning still maintained the pre-specified accuracy rate. Fewer connections resulted 

in more concise rules; and no initial knowledge of the problem domain was required. 

When the number of inputs connected to a hidden unit was sufficiently small, the 

rules were readily generated to describe how each activation value was obtained. If 

there were too many inputs connected to a hidden unit, then the hidden unit was split 

and treated as output units with each output unit corresponding to an activation value. 

Next, a hidden layer was inserted and a new sub-network was formed which was 

trained, and pruned. This repetitive process terminated when every hidden unit in the



network had a relatively small number of input units connected to it. Rules that

described the network outputs in terms of the clustered activation values were

generated with the last rule generator - X2R - an algorithm invented by Liu (1995).

Setiono ct. al. s rule extraction algorithm was tested on a pruned network trained on

DNA patterns to solve the splice-junction problem (a real world problem domain

arising in molecular biology). The results suggested that the extracted rules were able 
to mimic the trained network perfectly.

The geneiated rules covered all possible instances without having to compute the

activation values of patterns not already present in the training data. This was owed to

the tact that a relatively large number of patterns were used during training and the

small number ot inputs that were found relevant determined the hidden unit activation

values. This premise highlighted the fact that with fewer original inputs to the hidden

units in the trained network it is possible to determine an extraction procedure not

only from learning with discrete attributes, but also with continuous attributes. This

was an important premise tor the rules obtained from the trained species models in 
this thesis.

Vaughn (1996) and Vaughn et. al. (1997, 1998) have opened up the black box nature 

of ANN's slightly by interpreting the outputs from a MLP by identifying significant 

data. Their method ranked the significant inputs which enabled the knowledge 

learned by the network during training to be presented in the form of data 

relationships. The induced rules showed that the network learned sensibly and 

effectively when compared with the training data set. The explanation facilities and 

data relationships could be used for network validation and verification during 

network development. After development it provided a potential tool for knowledge 

discovery in databases, data mining and rule induction. Vaughn et. al. (1997, 1998) 

successfully applied their method to the problem domain of life assurance risk 

assessment. Most of their work concentrated on the knowledge learned by the MLP 

trained to perform this specific classification task. Although the rule extraction 

technique presented in this thesis ranks significant inputs in order to provide 

comprehensible rules, it has the versatility of being applicable to predictive ANN 

modeling of continuously-valued multi-input and multi-output data.
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Alexander et. al. (1995) have implemented a principled approach to symbolic rule

extraction based on the idea ol weight templates. The weight templates were

described as parameterised regions of weight space corresponding to specific

symbolic expressions. I he symbolic rules were extracted on a unit-by-unit basis from

connectionist network architectures that employed product activation and sigmoidal

output functions. The language describing the extracted rules was the m-of-n type 
expression.

A three step procedure was implemented in Alexander et. al.'s work to extract an m- 
of-n rule from a unit's weights:

(i) A minimal set of candidate templates were generated, where each template was 

parameter ised to represent a given m-of-n expression.

(ii) Each template's parameters were instantiated with optimal values.

(iii) The symbolic expression whose instantiated template was nearest to the actual 
weights was chosen.

Dependent upon the requirements of the application domain, this template based 

algorithm could accommodate arbitrary disjunctions and conjunctions (i.e. OR and 

AND Boolean operators) with one-dimensional complexity; simple m-of-n 

expressions with two-dimensional complexity; or a more general class of recursive m- 

°f-n expressions with three-dimensional complexity. The effectiveness of this 

connectionist rule extraction was successfully simulated on a variety of problem 

domains including MONK's problem, and breast cancer diagnosis [Towell 1993],

Sestito et. al. (1993) have widened the bottleneck in developing knowledge-based 

systems (which use higher level knowledge representations) with regards to 

knowledge acquisition. Even with traditional machine learning algorithms providing a 

loute to automating the knowledge acquisition process, there is still room for 

techniques that extract embedded lower level knowledge in trained ANN's. Sestito et. 

al. have proposed a technique that automatically allows the extraction of conjunctive 

rules from lower-level representation used in ANN's. Their method enables the use of

multi-layered networks as the basis for the automation of the knowledge acquisition, 

and can be applied to noisy, real world problem domains.

Due to the fact that in a multi-layered network information stored in the links 

(connection weights) is more distributed across the network, then extracting



information from the network is not as simple as in single-layered networks.

Essentially, foi a multi-layer network consisting of n inputs, rn outputs, and z hidden

units, to induce direct associations between the inputs and outputs the input set was

extended to include all the desired outputs, rhus, the new network configuration

consisted of (n + /;/) inputs, m outputs and z hidden units. This new configuration was

then trained using the appropriate learning algorithm (like BP), and once the network

had reached a solution, the various links were examined to determine the direct

contribution of an input to an output. A sum of squared error (SSE) criterion (which

allows foi noise immunity) was adopted for determining the closeness between the

weights from the original inputs and the additional inputs to the hidden units. This

measurement can be a problem, however, if there are a small number of examples for

one output, as SSE would not truly reflect the correct distribution of the information.

This and other related problems can be nullified by using an approach that uses

inhibitory links (connection weights). This involves the use of an inhibitory single-
layered ANN.

The concluding result of Sestito et. al.'s knowledge acquisition procedure was that it

produced one conjunctive rule for each output. The technique was suitably illustrated

in a clean and noise free subset of the animal world domain. It produced 27 correct

rules. Comparison with one machine learning algorithm (ID3) showed that although

the rules obtained from IDS are correct, there is some redundant information. Thus

Sestito et. aVs ANN approach showed superiority in that the rules were obtained after 
only one pass and they were clear and concise.

Sestito et. al.'s application of the ANN approach to a real world problem domain -

LED (light emitting diode) digit data set - displayed a propensity in extracting ten

correct rules which represented the position of the ten digits (zero to nine). The ANN

approach was superior when compared to the 1D3 algorithm as the rules were clear,

concise and comprehensible; whilst the ID3 rules were not clear to the human 
observer.

Holte (1993) carried out an empirical investigation of the accuracy of rules that 

classify examples on the basis of a single attribute. The 1R program developed by 

Holte basically learned very simple rules from a set of examples. A comparison study 

° f 1R with machine learning systems [Sestito 1994] was carried out on sixteen



different real woild data sets. It was found that on most data sets, the best of the very 

simple rules generated from IR were as accurate as the rules induced by the majority 

ol the machine learning systems. This implied that very simple classification rules 

can perform well on commonly used data sets based on real world problem domains.

Towell et. al. (1993) described two methods for extracting rules from ANN's. One

was the subset algorithm [Fu 1991] which would search for subsets of connections to

a unit whose summed weight exceeded the bias of that unit. The other was, the m-of-n

algorithm which clustered the weights of a trained network into equivalence classes.

The netwoiks complexity was reduced by eliminating unnecessary clusters and by

setting all weights in each remaining cluster to the average of the cluster's weight.

Rules with weighted antecedents were obtained from the simplified network by

translation of the hidden and output units. Towell et. al. have applied both the subset

and m-of-n algorithms to KBANN's that have been trained to recognise genes in DNA

sequences. Problem specific a priori information were used to determine the topology 
and initial weights of the KBANN.

This list ot several problem specific rule extraction algorithms, demonstrate the 

current state of affairs regarding implementable rule extraction techniques that tend to 

require discrete data (i.e. bipolar or nominal attributes). Those methods that can 

employ continuous data are generally learning algorithm specific in that they need a 

specified network architecture and training scheme.

For current research practices into the acquisition of knowledge from trained ANN's 

(i.e. rule extraction) that employ discrete or binary data as the inputs and outputs, 

there are three categories [Andrews 1995] into which they can be summarised. These 

three categories are decompositional, pedagogical and eclectic.

4.4.2 Decompositional approach

The distinguishing feature of the decompositional approach is that the focus is on 

extracting rules at the level of individual units, i.e. hidden and output units, within the 

trained network. Normally, the basic requirement for rule extraction techniques in 

this category is that the computed output from each hidden and output unit in the



trained network must be mapped into a binary response which corresponds to a rule
consequent.

This rule extraction technique treats the ANN as a black box, simply meaning that the

\ iew of the underlying trained network is opaque. It is normally a search based

appioach ([Fu 1991], [Fu 1994], [Opitz 1997]) which tends to extract propositional if- 
then rules from a trained network

4.4.3 Pedagogical approach

The basic idea views tule extraction as a learning task, where the target concept is the 

function computed by the trained network and the input patterns are simply the 

network s features. This technique extracts rules that map inputs directly into outputs. 

These techniques usually involve a symbolic learning algorithm, with the trained 

network generating examples for the learning algorithm.

Ciaven et. al. 1997, as well as Flowes et. al. 1996, have developed a rule extraction

routine that views the problem as a supervised learning task - the algorithm repeatedly

generates new examples, randomly or from the training data set, which are then

classified by the network. II the new examples are not covered by extracted rules, 

then they form the basis of a new rule.

The new rule is initialised as the conjunction of all the input features and is

generalised by repeatedly dropping an antecedent and checking its validity. If the new

rule remains valid then it remains without the dropped antecedent, otherwise the

antecedent is restored. The stopping criterion for this method is varied - it can depend

on attaining a certain threshold of accuracy or after a specific number of iterations that 

produce no rules, then the procedure halts.

Another pedagogical approach developed hy Thrun (1994) is the VIA technique

which extracts rules that map inputs directly into outputs. The algorithm uses a

generate-and-test procedure to extract symbolic rules from standard BP ANN's which

have not been specifically constructed to facilitate rule extraction. Thrun's method

can be likened to sensitivity analysis in that it characterises the output of the trained

network by systematic variations in the input patterns, and examines the changes in 
the network classification.
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4.4.4 Eclectic approach
In brief, this category assigns membership to techniques that utilise knowledge about 
the internal architecture and/or weight vectors in the trained neural network to
complement a symbolic learning algorithm. This approach essentially combines 
decompositional and pedagogical techniques.

I he work of this thesis will illustrate a rule extraction method for trained networks
that have multi-inputs and multi-outputs which employ numeric data with a 
continuously-valued range.

4.5 The Problem

One of the most apparent limitations with the rule extraction techniques observed so 
far is that within problem domains that use a trained MLP architecture most of the 
trained networks have a single output that is normally a classification and so consist 
of a binary data representation. There are some rule extraction techniques from 
trained networks that use a continuously valued data range, such as TREPAN [Craven 
1994], However, there are not many rule extraction techniques that employ trained 
ANN's that utilise a continuously valued data range on the input and output units. 
Due to the confining nature of needing discrete or binary attributes for rule extraction, 
those rule extraction techniques that have been applied to continuously valued data 
only have values in the [0,1] range i.e. a normalised data range between 0 and 1.
In order to extend work in the field of rule extraction a bit further, the work presented 
here will endeavour to produce a rule extraction technique from trained MLP 
networks that utilise continuous valued multi-inputs and continuous valued multi
outputs. The trained ANN species models obtained earlier in section 4.2 are the basis 
for extracting relevant rules that can be useful in suggesting how to monitor the size 
of a spectral line from its controllable process parameters. Fig. 4.21 portrays the MLP 
architecture for atomic argon model showing the bias unit/threshold. The most
important facet of the ANN model presented in this thesis is that it utilises 
continuously-valued multi-output data.
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4.6 Customised Species Models

The MLP architecture was an ideal choice in that the network only requires a single 
hidden layer during training in order to fit a number of hidden units to a nonlinear 
function that can model the controllable process variables to the spectral line size for 
individual species. The data is continuously-valued within the parameter range, as set 
out in 1 able 4.1, with the input layer receiving six variable inputs and spectral line
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sizes at three (or two) wavelength locations within given OES spectra as the target 
outputs for the output layer.
The network models for the seven different species, Ar, H, H2, N2, N2+, CH, CH+, 
were achieved in this way with similar topologies.

As tabulated previously in Iables 4.7 and 4.8, the topology, correlation and accuracy 
(standard 20% tolerance) for each ANN species model is shown.
The linear correlation (R) value is between the target output spectral line size (i.e.
intensity value in arbitrary units, a.u.) and the predicted outputs. Accuracy is the
percentage ot predicted outputs that are within the specified tolerance (20%) of the 
corresponding target outputs.
The evaluation function (correlation/RMS error) is used to evaluate the model on the
test set during training so as to identify the better candidates that add hidden units to
the network structure during training. It is also used to determine when the network is
no longer improving. The accuracy measure counts the fraction of records whose
predicted output is within a certain tolerance of the target output, in this case the 
tolerance is 20% of the output range.

To adopt a trained network for the extraction of rules, the smallest network topology
needed to be identified. After trial experimentation, the maximum limit of three
hidden units was set in order to obtain a network with the minimum viable hidden
units tor the trained network to generalise well on the test set and also on independent 
data in a validation set.
The customisation of ANN for individual chemical species maximises the model's
predictive capabilities. This has been achieved in each of the seven species models 
obtained (Figs 4.3 to 4.20).
The rules that will be generated apply to the ten different plasma systems (listed in
Table 4.2) and should be relevant to plasma systems that contain a mixture of these 
input gas types.

Sensitivity analysis of each trained network model was implemented in order to
determine which input variables have a 'significant' effect on the output spectral line 
size, induced by a small change in an input variable.



Average sensitivity of Ar(420) spectral line to inputs 
Validation data
Ar

0.07
Ha_____ Nz_____ ch 4 Pwr

0.30 -0.05 -0.16 (P39
Prs

0.01

Average sensitivity of N2(337) spectral line to inputs 
Validation data
Ar

-0.08
H

- 0.01
Nz_____ ch4 Pwr Prs |

0.91 -0.25 (ToT 0.111

Average sensitivity of Ar(750) spectral line to inputs 
Validation data
Ar

0.70
H,

0.00
N,

-0.08
CH4 

-0.04
Pwr

0.16
Prs

- 0.01

Average sensitivity of N2(389) spectral line to inputs 
Validation data
Ar H N. CU4 pAvr Prs

-0.17 -0.02 0.92 -0.05 0.43 0.15

Average sensitivity of Ar(763) spectral line to inputs 
Validation data
Ar H

-0.13
N

-0.16
CH4-0.10 Pwr

0.10 Prs
0.08

Average sensitivity of N2’(391) spectral line to inputs 
Validation data
Ar

-0.16
Hz________ N z________

-0.06 1.11 ______
0 .0 2

Pwr I Prs 
0.261 0.14

Average sensitivity of H(434) spectral line to inputs 
Validation data
Ar

0.14
H

0.33
N-

- 0.12
CH4

-0.17 Pwr
0.48

Prs
- 0.02

Average sensitivity of N,*(427) spectral line to inputs 
Validation data
Ar

-0.07
H z_______ N z________ c h 4 Pwr |

0.02 0.71 0.07 (K39
Prs

0.17

Average sensitivity of 11(486) spectral line to inputs 
Validation data
Ar

0.07
H,

0.25 -0.18
ch 4

- 0.21
Pwr

0.51
Prs

-0.09

Average sensitivity of CH(314) spectral line to inputs 
Validation data

- 0.10
H z________ N Z________.|c h 4 Pwr

0.12 0.88 -0.33 0~46
Prs

0.23

Average sensitivity of 11(656) spectral line to inputs 
Validation data
Ar

0.24
Hz________ N z________ ch 4 Pwr

0.41 -0.08 -0.11 (P54 -0.03

Average sensitivity of CH(387) spectral line to inputs 
Validation data
Ar

-0.17
Hz________ N z_______ T—u__ Pwr

0.07 0.46 0.11 (K57 0.19

Average sensitivity ol M2(406) spectral line to inputs 
Validation data
Ar

-0.10 H z_______ N z________ ch 4 Pwr
0.25 -0.14 -0.13 iu o

Prs
- 0.01

Average sensitivity of CH(431) spectral line to inputs 
Validation data
Ar

-0.19 H z________ N z________ £ 1 , ______ Pwr
0.30 -0.20 -0.05 (U4

Prs
0.13

(Average sensitivity of H2(417) spectral line to inputs 
Validation data
Ar

-0.07
H

0.21
N

-0.08
CH4

- 0. 11
Pwr

0.36
Prs

- 0.01

Average sensitivity of CM’(395) spectral line to inputs 
Validation data
Ar

-0.07
H

-0.09
N- ch4 Pwr Prs |

-0.01 -0.18 (K43 -0.07|

Average sensitivity of H2(420) spectral line to inputs 
Validation data
Ar

- 0.02
H z________ N z ________ ch 4 Pwr

0.16 0.03 -0.09 (K33 -0.03

Average sensitivity of Cl 1'(422) spectral line to inputs 
Validation data
Ar

-0.09
^ z ________ N z________ £ [ 4 ______ Pwr

-0.06 0.15 -0.08 o Tg T -0.03
I able 4.9 Average Sensitivity on Validation Data

94



4.7 Extraction of Rules by Sensitivity Analysis

Sensitivity analysis on the seven trained species models was performed automatically 
using the Predict software. Each network model's output (i.e. spectral line size) 
sensitivity to a small change in input values was monitored.

Appendix B contains the entire listing ol the sensitivity analysis results (from Predict)
on the seven individual species models. Each value represents the sensitivity of a
paiticular output variable (i.e. spectral line size) with respect to a particular input
variable (i.e. process variable). I he sensitivity analysis statistics were generated
across the entire data set to give an overall indication of the influence of the individual
input fields on the output fields. The analysis ranks the input fields according to the
e ^ c t  that a small change in an input value has on the output value. Therefore, the
output of the sensitivity analysis is a matrix of partial derivatives of output variables 
with respect to input variables.
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Table 4.10 Ranked input variables effect on spectral lines over the sensitivity scale

For the sensitivity measure, all the six input fields (i.e. the six controllable process 
variables) are taken into account, and so the partial derivatives obtained can be ranked 
for each input pattern obtained and related to the output values.



I he sensitivity ol the trained network models are empirically tested on the 
independent validation data set (data not used in network training). The sensitivity 
\ allies from the validation data sets are listed in Appendix C; the average sensitivity 
for each input field denoted is shown in Table 4.9 .
B\ tanking the sensitivities lor each input variable effect on spectral line size over the
sensitivity scale obtained in the sensitivity of the model on the validation data (see
Table 4.9). the following ranked order ol input variables in descending order was 
obtained. This is shown in Table 4.10.

I he finst two ranked variables are the two most positive sensitivities, meaning an
increase in these input variables will increase the size of the spectral line. For
example, an increase in both hydrogen flowrate (H2) and power (Pur) will increase
the size of the H656, H486, H434 spectral lines, thus increasing the amount of atomic 
hydrogen species.
I he last two ranked input variables are the two most negative sensitivities, meaning

i 1  < •  •that an increase in these input variables will decrease the size of the spectral line. For
example, increasing nitrogen (N2) and methane (CH4) flowrates in the presence of
hydrogen will decrease the amount of H-species i.e. the size of the spectral lines of FI • « « •will decrease.

These two examples were chosen to highlight the results of testing the sensitivity of
the trained species model on the validation data set, because they demonstrate the
most consistently ranked order sequence of input variable effects on the size of
spectral lines. In these particular examples, the predominant inputs that affect the size 
of atomic hydrogen spectral lines have been demonstrated.

A negative sensitivity value indicates that a decrement in that input variable will 
increase the size of the spectral line; also, a positive sensitivity value indicates that an 
increment in the input variable will increase the size of the spectral line. Conversely, 
a negative sensitivity value indicates that an increment in that input variable will 
decrease the size of the spectral line; also, a positive sensitivity value indicates that a 
decrement in the input variable will decrease the spectral line size.
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Hence, the sensitivity scale as depicted in Table 4.10, has been divided into a 
linguistic range of high positives for positive sensitivity values, and low negatives for 
negative sensitivity values; with near zero sensitivity values for variables that have 
very little effect on the size of the spectral line size.

On the basis of this simple empirical analysis, the following qualitative rules, have 
been derived. Only the most consistent input variable effects, obtained directly from 
Table 4.10. have been considered in deriving the rules.
Fiom testing the sensitivity ol the species models on an independent validation data
set, sensitivity ranking alone suggests that the following rules are applicable to the 
following plasma systems.

CH4/H2/Ar/N2 plasma system
1. Increasing (argon flowrate and power) and decreasing (nitrogen and methane

flowrates) will increase the Ar spectral line sizes. Decreasing (argon flowrate and
power) and increasing (nitrogen and methane flowrate) will decrease the size of 
the spectral lines.

2. Increasing (hydrogen flowrate and power) and decreasing (nitrogen and methane
flowrates) will increase the size of the H and H2 spectral lines. Decreasing
(hydrogen flowrate and power) and increasing (nitrogen and methane flowrates) 
will decrease the size of the H and H2 spectral lines.

j . Increasing (nitrogen flowrate and power and pressure) and decreasing (methane
flowrate) will increase the N2 and N2+ spectral line sizes. Decreasing (nitrogen
flowrate and power and pressure) and increasing (methane flowrate) will decrease 
the size ol the N2 and N2 spectral lines.

4. Increasing (power and nitrogen flowrate) and decreasing (methane flowrate) will
increase the size of CH and CH* spectral line sizes. Decreasing (power and
nitrogen flowrate) and increasing (methane flowrate) will increase the size of CH 
and CH" spectral lines.
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Ar/H2 plasma system:
1. Incieasing (hydrogen flowrate and power) will increase the size of the H and Hi

spectral lines. Decreasing (hydrogen flowrate and power) will decrease the size of 
the H and H2 spectral lines.

2. Increasing (argon flowrate and power) will increase the Ar spectral line sizes.
Decieasing (argon flowrate and power) will decrease the size of the Ar spectral
lines.

Ar only plasma system:
1. Increasing (argon flowrate and power) will increase the Ar spectral line sizes.

Decieasing (argon flowrate and power) will decrease the size of the Ar spectral
lines

Ar/H2/N2 plasma system
1. Inci easing (argon flowrate and power) and decreasing (nitrogen flowrate) will 

increase the Ar spectral line sizes. Decreasing (argon flowrate and power) and 
increasing (nitrogen flowrate) will decrease the size of the Ar spectral lines.

2. Increasing (hydrogen flowrate and power) and decreasing (nitrogen flowrate) will
increase the size of the H and H2 spectral lines. Decreasing (hydrogen flowrate
and power) and increasing (nitrogen flowrate) will decrease the size of the H and 
H2 spectral lines.

Ar/N2 plasma system:
I- Increasing (argon flowrate and power) will increase the Ar spectral line sizes.

Decreasing (argon flowrate and power) will decrease the size of the Ar spectral 
lines.

2. Increasing (nitrogen flowrate and power) will increase the N2 and N2+ spectral line
sizes. Decreasing (nitrogen flowrate and power) will decrease the size of the N. 
and N2f spectral lines.

H2/N2 plasma system:
!• Increasing (hydrogen flowrate and power) and decreasing (nitrogen flowrate) will 

increase the size of the H and H2 spectral lines. Decreasing (hydrogen flowrate
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and powei) and increasing (nitrogen flowrate) will decrease the size of the H and 
H2 spectral lines.

2. Increasing (nitrogen flowrate and power) will increase the N2 and N2+ spectral line

sizes. Decieasing (nitrogen flowrate and power) will decrease the size of the 
and N2+ spectral lines.

N2 only plasma system:

1. Increasing (nitrogen flowrate and power) will increase the N2 and N2+ spectral line 

sizes. Deci easing (nitrogen flowrate and power) will decrease the size of the N-,
and N2+ spectral lines.

H2 only plasma system

1. Increasing (hydrogen flowrate and power) will increase the size of the H and H7

spectral lines. Decreasing (hydrogen flowrate and power) will decrease the size of 
the H and H2 spectral lines.

(  H4 only plasma system

1. Increasing (power) and decreasing (methane flowrate) will increase the size of CH

and CH spectral line sizes. Decreasing (power) and increasing (methane 

flowrate) will increase the size of CH and CH+ spectral lines.

C H4/H2/Ar plasma system:

1

2

3.

Increasing (argon flowrate and power) and decreasing (methane flowrate) will

increase the Ar spectral line sizes. Decreasing (argon flowrate and power) and

increasing (methane flowrate) will decrease the size of the spectral lines.

Increasing (hydrogen flowrate and power) and decreasing (methane flowrate) will

increase the size of the H and H2 spectral lines. Decreasing (hydrogen flowrate

and power) and increasing (methane flowrate) will decrease the size of the H and 
H2 spectral lines.

Increasing (power) and decreasing (methane flowrate) will increase the size of CH

and CM* spectral line sizes. Decreasing (power) and increasing (methane 

flowrate) will increase the size of CH and CH+ spectral limes.



These qualitative rules indicate which significant inputs affect the spectral line 

within the specified parameter range and domain of the ten plasma systems.

I Rule No. IF - THEN Conjunctive Rules
Rule I IF (INCREASE Argon flowrate) AND (INCREASE Power) 

THEN (INCREASE Ar-species).

Rule 2 IF (DECREASE Argon flowrate) AND (DECREASE Power) 
THEN (DECREASE Ar-species).

Rule 3 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) 
THEN (INCREASE H-species).

Rule 4 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) 
THEN (DECREASE H-speeies).

Rule 5 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) 
THEN (INCREASE Hr species).

Rule 6 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) 
THEN (DECREASE H2-species).

Rule 7 IF (INCREASE Nitrogen flowrate) AND (INCREASE Power) 
THEN (INCREASE N2-species).

Rule 8 IF (DECREASE Nitrogen flowrate) AND (DECREASE Power) 
THEN (DECREASE N:-species).

Rule 9 IF (INCREASE Nitrogen flowrate) AND (INCREASE Power) 
THEN (INCREASE N2+-species).

Rule 10 IF (DECREASE Nitrogen flowrate) AND (DECREASE Power) 
THEN (DECREASE N2+-species).

Rule 11 IF (INCREASE Power) AND (DECREASE Methane flowrate) 
THEN (INCREASE CH-species).

Rule 12 IF (DECREASE Power) AND (INCREASE Methane flowrate) 
THEN (DECREASE CH-species).

Rule 13 IF (INCREASE Power) AND (DECREASE Methane flowrate) 
THEN (INCREASE CH -species).

Rule 14 IF (DECREASE Power) AND (INCREASE Methane flowrate) 
THEN (DECREASE CH+-species).

Rule 15 IF (INCREASE Argon flowrate) AND (INCREASE Power) AND 
(DECREASE methane flowrate) THEN (INCREASE Ar-species).

Table 4. II Parti



Rule 16 IF (DECREASE Argon flowrate) AND (DECREASE Power) AND
(INCREASE methane flowrate) THEN (DECREASE Ar-species).

Rule 17 IF (INCREASE Argon flowrate) AND (INCREASE Power) AND 
(DECREASE Nitrogen flowrate) THEN (INCREASE Ar-species).

Rule 18 IF (DECREASE Argon flowrate) AND (DECREASE Power) AND 
(INCREASE Nitrogen flowrate) THEN (DECREASE Ar-species).

Rule 19 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) AND 
(DECREASE Nitrogen flowrate) THEN (INCREASE H-species).

Rule 20 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) AND 
(INCREASE Nitrogen flowrate) THEN (DECREASE H-species).

Rule 21 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) AND 
(DECREASE Nitrogen flowrate) THEN (INCREASE H2-species).

Rule 22 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) AND 
(INCREASE Nitrogen flowrate) THEN (DECREASE H2-species).

Rule 23 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) AND 
(DECREASE methane flowrate) THEN (INCREASE H-species).

Rule 24 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) AND 
(INCREASE methane flowrate) THEN (DECREASE H-species).

Rule 25 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) AND 
(DECREASE Nitrogen flowrate) AND (DECREASE Methane flowrate) 
THEN (INCREASE H-species).

Rule 26 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) AND 
(INCREASE Nitrogen flowrate) AND (INCREASE Methane flowrate) 
THEN (DECREASE H-species).

Rule 27 IF (INCREASE Hydrogen flowrate) AND (INCREASE Power) AND 
(DECREASE Nitrogen flowrate) AND (DECREASE Methane flow rate) 
THEN (INCREASE H2-species).

Rule 28 IF (DECREASE Hydrogen flowrate) AND (DECREASE Power) AND 
(INCREASE Nitrogen flowrate) AND (INCREASE Methane flowrate) 
THEN (DECREASE H2-species).

Rule 29 IF (INCREASE Nitrogen flowrate) AND (INCREASE Power) AND 
(INCREASE Pressure) AND (DECREASE Methane flowrate) 
THEN (INCREASE N2-species).

Rule 30 IF (DECREASE Nitrogen flowrate) AND (DECREASE Power) AND 
(DECREASE Pressure) AND (INCREASE Methane flowrate)
THEN (DECREASE N2-species)._______________________________ ________

Table 4.1 1 Part 2
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Rule 31

Rule 32

Rule 33

IF (INCREASE Nitrogen flowrate) AND (INCREASE Power) AND
(INCREASE Pressure) AND (DECREASE Methane flowrate) 
THEN (INC REASE N2 -species).

IF (DECREASE Nitrogen flowrate) AND (DECREASE Power) AND 
(DECREASE Pressure) AND (INCREASE Methane flowrate)
THEN (DECREASE N2+-species).

IF (INCREASE Argon flowrate) AND (INCREASE Power) AND
(DECREASE Nitrogen flowrate) AND (DECREASE Methane flowrate) 
THEN (INCREASE Ar-species).

Rule 34 IF (DECREASE Argon flowrate) AND (DECREASE Power) AND
(INC REASE Nitrogen flowrate) AND (INCREASE Methane flowrate) 

_________ THEN (DECREASE Ar-species).

Rule 35 IF (INC REASE Power and Nitrogen flowrate) AND 
_________ (DECREASE Methane flowrate) THEN (INCREASE CH-species).

Rule 36 IF (DEC REASE Power and Nitrogen flowrate) AND 
_________ (INCREASE Methane flowrate) THEN (INCREASE CH-species).

Rule 37 IF (INCREASE Power and Nitrogen flowrate) AND 
_________ (DECREASE Methane flowrate) THEN (INCREASE CH+-species)

Rule 38 IF (DECREASE Power and Nitrogen flowrate) AND
(INCREASE Methane flowrate) THEN (INCREASE CH+-species). 
Table 4.11 Part 3

fable 4.11 Rules generated from sensitivity of trained network models

Plasma System Applicable Rule No. of applicable 
rules

Ar Rule 1, 2 2
h 2 Rule 3, 4, 5, 6 4
n 2 Rule 7, 8, 9, 10 4
c h 4 Rule 11, 12, 13, 14 4
Ar/H2 Rule 1,2,3, 4 4
Ar/N, Rule 1,2,7, 8, 9, 10 6
h 2/n 2 Rule 7, 8, 19, 20,21,22 6
Ar/H2/N2 Rule 17, 18, 19, 20,21,22 6
CH4/H2/Ar Rules II, 12, 13, 14, 15, 16, 23, 24 8
CH4/H2/Ar/N2 Rules 27, 28, 29, 30, 33, 34, 35, 36 8

Table 4.12 Applicable Rules for ten different plasma systems

The qualitative rules are listed in Table 4.11 into a set of 38 conjunctive if-then rules, 

and those rules applicable to the different plasma systems are specified in Table 4.12 . 

These rules suggest how the size of the spectral line can be altered by varying
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particular process variables within the specified plasma system. Therefore, it can 

advise the user as to which controllable variables will produce an increase or decrease 

in the size ol a spectral line, thus adjusting the amount of the particular species.

4.8 Rule Confirmation by Weight Analysis

The first part ot the rule extraction procedure has involved checking the sensitivity of 

the trained models in order to identity the significant input parameters that will have 

some effect on the predicted network outputs i.e. the spectral line size.

During network training, a variable selection technique implements a genetic 

algorithm that is able to select the most relevant input data fields and will reject the 

not so relevant ones. I he rejected inputs will show a lower frequency of occurrence 

(less than 50%) on the input data fields which could indicate to the user that ignoring 

that data field could produce a more accurate predictive model with a smaller 

architecture. The genetic variable selection technique is essentially a form of feature 

selection that will be very useful for pruning very large input data sets. Thus, making 

it easier to adopt the rule extraction procedure presented in this thesis for problem 

domains with larger input data sets.

As discussed before, since the final trained ANN species models were able to fit the 

complex nonlinear relationship between the controllable process variables and spectral 

line sizes with a minimum of three hidden units, an assessment of the weighted 

connections within the network architecture was a feasible consideration.

Extracting rules from single weight connections between units in an ANN can be 

dangerous due to the fact that network training involves arbitrary weight initialisation 

and modification within the context of the distributed learning that occurs within 

ANN's. Ultimately, unless the extraction procedure is based on discrete data with a 

single binary output (examples in Sestito 1993 and Shavlik 1997), then obtaining 

rules directly from single weight connections between units in the network 

architecture can be deceptive.
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The weight assessment of the units in each trained ANN species model here employs

a summed weight to individual network units backtracking approach rather than 
assessing only the individual weight connections.

By assessing the summed weights to individual hidden units in both the hidden layer 

and output layer, the network multi-outputs (i.e. spectral line sizes) were related 

directly to their input data. Testing the summed weights for each output unit by 

backtracking to the those inputs that contribute towards the weighted sum of the 

hidden units identifies a direct inputs-outputs relationship. The bias weights are 

particulaily significant as they act as the activation threshold which the summed 

weights to hidden units should exceed. It this condition is satisfied then contributory 

or inhibitory input effects on the network outputs can be determined.

The summed weight to a single hidden unit represents all the contributions from each 

input variable to that unit. I he summed weights at each hidden unit in the hidden 

layer are transformed by an appropriate transfer function. Each hidden unit represents 

a basis function whereby the weights to that unit correspond to the steepness of the 

basis function and the bias weight is the shift along the x-axis direction (of a two- 

dimensional x-y plot) ol the basis function. If the summed weight of the hidden units 

exceed their bias threshold via the nonlinear activation function, then the positive (and 

negative) weight contributions from inputs to that hidden unit are significant to 

relating specific input variables to the spectral line size.

4.8.1 Extraction Procedure by Backtracking

All seven species models have three hidden units in the hidden layer. The transfer 

(activation) function for the hidden layer is tanh. whilst the linear activation function 

acts on the output layer. The summed weights to individual units in the hidden and 

output layers are listed in Table 4.13 . The bias weights are listed for direct 

comparison with the summed weights to individual units in the hidden layer and 

output layer. The summed weights to hidden units that exceed the bias threshold, 

shown in bold, identify the hidden unit(s) to assess in terms of positive and negative 

weights (i.e. contributory or inhibitory) for determining the most significant inputs.
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Once the hidden units whose summed weights exceed their bias threshold have been

identified, then their contribution to the linear activation of the weighted sum outputs

should relate the sizes of the spectral lines to the most significant inputs. This method

of relating the outputs to the inputs via the hidden units is termed here as 
backtracking.

(Individual units

(Hidden I
Hidden 2 
Hidden 3 

Ar(420) 
Ar(750)

| Ar(763)
1 |  f  * |  « f

Activation sum wts. Bias (Individual units Activation sum wts. Bias (

0.29 
-0.03 
0 57 
0.46 
0.26 
0.251

tanh
tanh
tanh
linear
linear
linear

•

(U6
-0.15 
-0.31 
0.07 

- 1 .04  

0.03

' -0.08 Hidden 1 
-0.09 Hidden 2 
-0.15(Hidden 3 
0.29 CH(314) 
0.26 CH(387) 
0.231 CH(431)

tanh
tanh
tanh
linear
linear
linear

-1.40
0.02
0.44 

-0.13 
0.46 

- 1 .62
(Hidden 1 tanh -0.23 -0.03(Hidden 1 tanh -0.03 0.27
iHidden 2 tanh -1.48 -0.20|Hidden 2 tanh -0.20 -0 13
(Hidden 3 tanh -0.37 -0.08 Hidden 3 tanh -0.89 0.73

H(434) linear -0.88 0.23 CH+(395) linear 0.65 0.20
H(486) linear -0.01 0.20 CH+(422) linear - 1 .48 0 37

I H(656) linear - 1 .4 7 0.26|Hidden 1 tanh oTT 0.68
(Hidden 1 tanh 029 -0.28 Hidden 2 tanh 0.63 -0.34
(Hidden 2 tanh -1.62 0.53 Hidden 3 tanh -1.77 -0.23
(Hidden 3 tanh 0.05 -0.05 N2(337) linear 3 .0 5 0 33

H2(406)
I f  / i t  * 7 \

linear 
1 •

0 .2 9 0 .16| N2(389) linear -1.37 Q.30|
H2(417) linear -0.45 0.17 Hidden 1 tanh -0.40 -0.49

1 H2(420) linear -1.63 0.19 Hidden 2 tanh 0.31 0.07
(Hidden 3 tanh -1.24 -0.21
I N2+(391) linear - 0 .3 2 0.29
| N2+(427) linear -1.36 0 33

fable 4.13 Weighted sum to hidden units and output units

I he tanh activation function acting on the hidden layer is expressed as follows:

hidden output activation = tanh (X w ikXj + 0k) (2)

wik: value of weight connection from input to hidden unit 
(from i = 1 to n , n = no. of inputs)

Xj : input value (from i=l to n, n = no.of inputs)
0k : bias to hidden unit (from k=l to z, z = no. of hidden units)

I his method is effectively dealing with the summed weight, X w jkXj, to the hidden 

units as the premise for rule activation. The summed weight to at least one unit in the 

hidden layer must exceed the threshold bias weight for this rule activation. This 

condition is satisfied for Ar, H2, CM, N2 and N2+. Bold highlights in Table 4.13, show
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this for Hidden 1 tor Ar; Hidden3 for H2; Hidden2 for CH; Hidden2 for N2; and

Hidden2 tor N2 . I he most positive and negative input contributions to these 
significant hidden units are as follows:

Ar : Power - positive ; Methane flow rate - negative

Hydrogen flow rate. Power - positive ; Methane flow rate - negative 

: Methane flow rate and Power - positive ; Hydrogen flow rate - negative 

Hydiogen flow rate , Pressure - positive ; Nitrogen flow rate - negative 

. Flow rates ot Methane, Hydrogen . Pressure - positive ;

Nitrogen flow rate - negative

H2 :

CH

N, :

N

These contributory (positive) and inhibitory (negative) input parameters were 

determined by backtracking to the input layer from the summed weights of the most 

significant hidden units, identified in I able 4.13, for each trained ANN species model.

Hidden 1 | Hidden 2 Hidden 2
1 Ar(420) 0.63 N2(337) 1.22 CH(314) -0.42

Ar(750) 0.22| N2(389) -0.60 CH(387) 0.27
| Ar(763) 0.12| Hidden 2 CH(431) -1.07

Hidden 3 N2+(391) 0.59
H2(406) 0.8 91 N2+(427) -0.32
H2(417) 0.63

| H2(420) -0.781

Table 4.14 Output weights from Significant Hidden Units

The output weights from the significant hidden units are shown in Table 4.14 . The 
• •

activation of these output weights have contributed to the summed weight of the 

multi-output units which determines the relative spectral line sizes.

Alter the backtracking process of determining the positive and negative input 

parameters directly from weighted values of the significant hidden unit connections to 

the summed weight outputs, the following rules were determined from the relation 

between output spectral line sizes and input process parameters.

I- IF (Increase Power) AND (Decrease Methane How rate) THEN (Increase Ar420, 

Ar750, Ar763 spectral 1 ine sizes)

106



II. IF (Decrease Power) AND (Increase Methane flow rate) THEN (Decrease Ar420, 
Ar750, Ar763 spectral line sizes)

III. IF (Increase Hydrogen flow rate AND Power) AND (Decrease Methane flow 

rate) THEN (Increase H2406. H2417, H2420 spectral line sizes).

IV. IF (Decrease Hydrogen flow rate AND Power) AND (Increase Methane flow 

rate) THEN (Decrease H2406, H2417, H,420 spectral line sizes).

V. IF (Increase Methane flow rate AND Power) and (Decrease Hydrogen flow rate) 

THEN (Increase CHS 14, CH387, CH431 spectral line sizes).

VI. IF (Decrease Methane flowrate AND Power) AND (Increase Hydrogen flow rate) 

THEN (Decrease CH314, CH387, CH431 spectral line sizes).

YTI. IF (Increase Hydrogen AND Pressure) AND (Decrease Nitrogen flow rate)

THEN (Increase N2337, N2389 spectral line sizes).

% H I-IF (Decrease Hydrogen AND Pressure) AND (Increase Nitrogen flow rate) 

THEN (Decrease N2337, N2389 spectral line sizes).

IX. IF (Increase Methane and Hydrogen flow rates AND Pressure) AND (Decrease 

Nitrogen flow rate) THEN (Increase N2+391, N2+427 spectral lines).

X. IF (Decrease Methane and Hydrogen flow rates AND Pressure) and (Increase 

Nitrogen flow rate) THEN (Decrease N2+391, N2+427 spectral lines).

These are the rules extracted directly from the backtracking procedure. For the same 

controllable input process parameters these rules provide conditions for increasing or 

decreasing the spectral line size. Cross relation with the rules, in Table 4 . 11. 

generated from the sensitivity analysis of the network models suggest the following:

Rule I correlates to Rule 15 ;

Rule II correlates to Rule 16 ;

Rule III correlates to Rule 25 ;

Rule IV correlates to Rule 26 ;

Rules V to X are new rules extracted from the trained network architecture.

This section concludes that the extraction of rules from the trained network 

architecture using the backtracking procedure is feasible on small network topologies.
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The rules obtained were empirically tested on independent data not employed in

network training. The extracted rules from the backtracking approach have validated

some of the rules generated from monitoring the sensitivity of the species models. It 
has also provided six new rules.

Summary of Rule Extraction using the Backtracking Procedure

1. Fix the nonlinear activation functions on the input and hidden layers.

2. Train the MLP network to achieve a small network topology of three hidden units;

use correlation or RMS error to determine the network's accuracy or generalisation 
capabilities.

3. Sum the weights to each hidden unit.

4. If the weighted sum of at least one of the three hidden units, i.e. significant hidden

umt(s), exceeds the bias weight threshold, then proceed to step 5. If not, restart 
from step 1.

3. The most positive weighted inputs and most negative weighted inputs to the

significant hidden unit(s) are identified as the most contributory and inhibitory, 
respectively, input variables.

6. Backtrack from output units to the significant hidden units that identified the input

variables, to determine the weight contributions to the summed weight of the 
outputs.

7. The contributory inputs are related to the output variables as having a positive 

el feet on the output; whilst the inhibitory inputs have a negative effect on the 

output. Thus generating simple conjunctive if-then rules for the relationship.

Although this method works for a small input data set with multi-output targets using 

continuously valued data, it does not generate the full set of possible rules. Also, the

method does not attach any quantitative measure to the test strategy for confirming 

any new rules that are generated.

In order to obtain a system that not only generates all the possible rules in a defined

problem domain, but can also attach a quantitative measure of accuracy to the rules

obtained, a fuzzy system using the MLP network architecture has been implemented 
in Chapter 5.



Chapter 5

Development of Fuzzy Rule Generation

5.1 Overview of Current Fuzzy Hybrid Systems

The generalising capabilities of ANN's are attributed to information being encoded 

among the various connection weights in a distributed manner. To extract the 

embedded information from a trained network in a direct linguistic fashion there has

ANN

that can generate fuzzy rules. Most of the fuzzy systems reviewed here have
i ANN

engineering applications.

Benitez et. al. (1997) provided an interpretation of ANN's that reformulated rules

from MLP networks into a fuzzy rule based system (FRBS). This made the

interpretation of the ANN more human-friendly. They defined a concept of /-duality

to describe fuzzy logical operators [Yager 1994] that enabled a set of more

comprehensible and suitable fuzzy rules to describe the knowledge embedded in the 
trained network.

In a similar vein, Mealy et. al. (1997) formalised the semantics of rule learning into 

the mathematical language of two-valued Boolean predicate logic. This allowed the 

learned rules to be symbolically visualised. They illustrated their technique 

theoretically with two network architectures that employed fairly logical models. A 

Lateral /Timing Adaptive Resonance Theory (LA PART) ANN was one architecture 

employed. It had a functionally similar architecture to a fuzzy adaptive resonance 

theory map (ARTMAP) network which learns maps between multidimensional spaces 

represented in real as well as binary patterns. LAPART was designed to learn rules as 

logical inferences from binary data patterns. The second architecture was the stack 

interval network which converted real-valued data into binary patterns that preserve 

the order semantics of numbers.

Wong et. al. (1997) used genetic algorithms (GA’s) in fuzzy modeling to 

automatically extract fuzzy rules to identify a system that had only input and output



data available. GA's are search algorithms based on the mechanics of natural

selection and natural genetics. GA’s basically run repeatedly using three fundamental

operators which are reproduction, crossover and mutation. They use a fitness function

to evolve better solutions in the search space. They do not need derivative

information or complete knowledge of the problem structure, and so this makes them

applicable to a wide range of practical problems [Goldberg 1994], Wong et al.'s

method determined a fuzzy system with fewer fuzzy rules by using their chosen

fitness function, and also determined the antecedent and consequent parameters of the

fuzzy rules at the same time. The fuzzy system successfully identified an actual plant 
from gathered data.

Thawonmas et. al. (1996) delineated a method for extracting fuzzy rules based on 

partitioned hyperboxes (box-shaped regions) for approximating class regions. A 

controlled partitioning of the hyperboxes was performed to achieve a high accuracy in 

approximating the class regions. The aim of Thawonmas et. al.'s method was to 

resolve the problem of underfitting of data due to large hyperboxes, while at the same 

time preventing overfitting of data due to small hyperboxes. They achieved both aims 

b\ implementing a termination criterion for the partition of hyperboxes. The 

partitioned hyperboxes plus the inference mechanism of the fuzzy rule extraction 

method was applied to the popular iris data set and Japanese hiragana data on 

Japanese license plates. Thawonmas et. al. compared the "fuzzy rule extraction plus 

hyperbox partitioning" method with "fuzzy rule extraction without hyperbox 

partitioning" and with "multi-layered ANN's". Overall indications were that the

partitioning method significantly improved the recognition rate in both problem 

domains (i.e. iris and hiragana data).

Mitra et. al. (1994) proposed a fuzzy layered ANN for classification and rule 

generation using logical processing units. The logical operators were namely t-norm 

and t-conorm which are essentially the MIN and MAX operators (i.e. AND and OR) 

respectively. For the network construction, the AND operator replaced the weighted 

sum and the OR operator replaced the sigmoid functions in conventional MLP 

networks. Effectively, this built-in AND/OR structure of the network enabled the 

generation of appropriate rules expressed as the disjunction of conjunctive classes. 

The model functioned as a fuzzy connectionist expert system and could handle 

uncertainty and/or imprecision in the input and output representations. From the
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performance of the algorithm on real and artificial data sets, the model was deemed

likely to suit data-rich environments. After studying the effectiveness of fuzzification

at both the input and output, it was discerned that the model remained robust with
respect to variations in input overlaps.

M.tra (1994) has also developed a fuzzy MLP model that is used as a connectionist

expert system for medical diagnosis of hepatobiliary5 disorders. The fuzzy MLP

based expert system could handle uncertainty and/or imprecision in the input as well

as in the output. The combination of the computational power of ANN's and the

uncertainty handling capabilities of fuzzy logic is embodied into the design of fuzzy
ANN

----------------------- --------------- ---------  w u u i  y  i i l l i

properties ot Low, Medium and High (the fuzzy membership distribution). The
fuzzy MLP was essentially used for classification and rule generation. It was
determined that the fuzzy MLP model performed more accurately than using other

fuzzy connectionist expert system models that used logical operators based on
AND/OR functions.

Kasabov et. al. (1997) invented a FuNN/2 (second generation Fuzzy Aeural Network

Architecture) for adaptive learning, rule extraction and insertion, and neural/fuzzy

reasoning. One unique aspect ot the FuNN architecture is that it combines several

paradigms in one system, i.e. ANN's, fuzzy logic, and genetic algorithms. FuNN uses
a MLP ANN and a modified BP training algorithm. The FuNN/2 architecture

provided different training and adaptation strategies to be tested before the most

suitable strategy was selected for a certain application. The fundamental issues

involved in their adaptation involved the following: initialisation; membership

function insertion; rule insertion; training; and adaptation through a GA. Kasabov et.

al. identified two main areas for application of the FuNN system, namely data

approximation (as in standard feedforward ANN's) or for fuzzy rule interpretation and

adaptation. Specific applications areas include signal processing (speech recognition

in particular), time series modeling and prediction, adaptive control, data mining and

knowledge acquisition, and image processing.

In previous work, Kasabov (1996) used fuzzy rules as a framework for knowledge

representation. The algorithm REFuNN for fuzzy rule extraction from adaptive

Nu n n 's was proposed. This method considered the two major tasks of contemporary

Hepatobiliary disorders are symptoms associated to the liver. In particular, it refers to liver disorders ol the bile (the bitter 
Huid secreted by the liver to aid digestion); a common disorder being indigestion.
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research in knowledge engineering which are (i) knowledge acquisition or knowledge

refinement; and (ii) knowledge interpretation. Although these tasks are two separate

steps, they are inevitably connected within the domain of building knowledge-based

systems. There are different representation schemes that influence the type of

approximate reasoning technique that can be used. Essentially, Kasabov implemented

a hybrid of Fit,A'.Vs and approximate reasoning that used connectionist methods (the

REFuNN algorithm) for learning fuzzy rules. A knowledge engineering environment

based on five modules (rule extraction, fuzzy inference, ANN, data processing,

production system) called Fuzzy CO PE (a Fuzzy COnnectionist Production system

Environment) facilitated different rule extraction methods useful for learning fuzzy 
mles. Fuzzy rules can be learned based on:

fuzzified data and pre-defined membership functions, i.e. the data used for training 

is fuzzified by using pre-defined membership functions for the fuzzy predicates.

• crisp data and pre-defined membership functions, i.e. data used for training are not 

fuzzified but the membership functions are pre-defined; this allows for tuning 

membership functions during further training or adaptation of the system.

• crisp data and not pre-defined membership functions, i.e. the number and the 

shape of the membership functions are learned during training.

Since the approach of AI research is to provide systems that can operate like humans,

then it is obviously desirable to work with fuzzy or linguistic information which have

some reference to crisp or precise data. The goal is to attain a system that gives

precise responses to imprecise data inputs. Therefore, creating fuzzy models can 
achieve this.

A knowledge representation procedure applied by Blanco (1998) created a classic 

ANN model that worked with fuzzy information. The classic model was a LAM 

which worked directly with linguistic information represented in a linguistic linear 

associative memory (LLAM). Working with linguistic labels that are founded in 

fuzzy sets theory [Munakata 1994], [Yager 1994], [Zadeh 1994], [Xu 1997] allows the 

use of a codification method (i.e. cause and effect rules) that is able to work with other 

types of systems. The LLAM was successfully implemented into a brake control
system.
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Yuan al. (1996) developed a fuzzy GA to generate fuzzy classification rules. Since 

GAs are based on the principles of natural evolution and global searching, their 

efficiency and effectiveness can be improved by several techniques including multi 

valued logic coding, composite fitness function, viability check and rule extraction. 

ANN's can be used as fuzzy rule generators because of their functional equivalence to 

fuzzy logic systems. It was determined that any continuous, layered, feedforward
ANN 

versa. Yuan et. al. compared the performance of classical machine learning
ANN

------- ^  ' * a v  a  a  v  A 1 V  A  A  A  1 1 /  /  V

GA (FGA). The effective performance of the FGA was demonstrated on two sample 

classification problems - the Saturday Morning Problem6 and the Multiplexer Problem 

- where it generated a better set of rules than the other two learning algorithms. 

However, the FGA would need to be improved to extend to a more general problem 

domains, particularly where numerical (continuously-valued) inputs and outputs are
involved.

Halgamuge et. al. (1994) employed a special MLP architecture called FuNe I to

successfully generate fuzzy systems for a number of real world applications. The

network trained with supervised learning and was used to extract fuzzy rules from a

given representative input/output data set. The optimisation of the knowledge base

was possible and included the tuning of membership functions. The generated fuzzy

system could be implemented in hardware very easily. Their method of rule

extraction employed BP learning for positioning membership functions appropriate to

the predetermined conjunctive rule structure. Each rule contained all the inputs in the

premise and only the parameters of the membership functions were trained. Fast

learning was gained by this method, but the loss of transparency due to the proposed

rule structure could not be avoided, especially when the number of rules or the 

number of inputs was high.

Horikawa et. al. (1992) also produced a fuzzy modeling method using gradient 

descent learning. Identification of the premise and the consequence part for three

I lie Saturday Morning Problem is a sample classification problem that deals with a data set of weather outlook conditions 
(temperature, humidity, wind) to match a particular sporting activity (volley ball, swimming, weight-lifting) [Yuan 1996],



different fuzzy models were the main features of their work. Their new method

identified rules from an initial rule-base, which could be created by using either the

expert knowledge or allowing for all the possible combinations. If the number of

inputs were high, then allowing all possible combinations in creating the initial rule

base would not be possible. Rule selection was based on accuracy and the causal

generality. Accuracy was determined by the summed squares of error, and the

generality was evaluated by the summed squares of error obtained by cross validating

the tram and test data sets. Halgamuge et. al.'s (1994) fuzzy model used in FuNe I

was similar to Horikawa et. al.'s (1992) method of premise evaluation and to the

creation of antecedent membership functions. Due to the unique architecture of FuNe

I, the initial rule base was not required. Thus, the absence of expert knowledge or a

higher number of inputs did not cause difficulties in generating a fuzzy system. FuNe

I basically identified rule relevant nodes and tuned the antecedent membership

functions using the training data. It had been succesfully applied in real world

problems in the area of image classification and state identification (e.g. classification 
of Iris species, handwritten digit recognition).

A direct fuzzy inference procedure using ANN's has been produced by Blanco et. al.

(1993). Their basic idea was to construct a suitable ANN to learn the information

contained in rules, as well as the required embedded knowledge (metaknowledge)

from a specifically determined set of examples. The inference from the ANN output

directly interpolated facts to rules. This fuzzy reasoning model was tested on very

simple examples that satisfied rule inference from the fuzzy data, without the need for

constraints in the form of AND/OR operators. The extension to more complex data

sets would need to be demonstrated before confidence in the method was guaranteed.

This was implemented in their follow-on work into relational fuzzy systems 

identification [Blanco 1995],

Okada et. al. (1993) proposed a KB ANN system based on fuzzy logic. This enabled 

easy conversion between ANN's and fuzzy systems. The ANN was initialised on 

existing knowledge which reduced the number of learning steps and provided better 

generalisation than conventional layered ANN's. This enhanced learning facility was 

used to automatically tune rules and fuzzy membership functions. The neurofuzzy
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system converted between fuzzy and ANN models which maximised the advantages 

of both. The seven layered structured network (shown in figure 5.1) operated as a 

fuzzy inference system, incorporating fuzzification of inputs and defuzzification of 

outputs. The technique was applied to the bond-rating problem where indicators of 

the degree of certainty of bond redemption and interest payment as simple symbolic 

investment information are used by investors to make decisions.

y0

input
variable

membership 
function 
for input

membership
antecedent consequent function

for output

Defuzzification

Fig. 5.1 Seven-Layer Structured ANN similar to FIS [Okada 1993]

5-2 I he Basis for Fuzzy Rule Generation

Using a much simpler network topology to those reviewed so far was more 

appropriate lor implementing the fuzzy rule extraction system presented in this 

project, as it eliminated the need for inserting a priori knowledge to the ANN.

A method developed by Blanco et. al. (1995) was capable of extracting fuzzy rules 

lrom a trained three-layer feedforward ANN, whereby the correct description of a



system was given by a finite set of rules with a weight assessing the accuracy of the

rule. The system was based on fuzzy rules which were characterised by a finite set of

fuzzy If-Then rules, where the inputs to the network were the rules and the accuracy

associated with any rule was the weighted accuracy level of that rule. This method

involved discretising any continuous data in order to identify fuzzy membership sets 
for the data range.

This idea was adapted to implement a fuzzy rule extraction system that provided a

quantitative measure of the importance of a rule from a trained network, in this thesis.

The outstanding feature of the fuzzy system implemented in this research is that it

utilises multi-dimensional continuously valued input-output data, and provides useful 
rules tor the plasma deposition process controller.

Since the aim of this thesis was to identify the important variables affecting the

spectral line size of a particular species, it was appropriate to model the inputs on a

single spectral line to elicit a value of confidence in that rule. Using just one spectral

line (the most prominent spectral line for the species) was important for ultimately 

generating sensible or comprehensible rules.

The fuzzy rule extraction method presented in the thesis involved the training of a 

feedforward MLP ANN on a set of discretised training patterns of crisp and fuzzified 

input-output data. The method was then tested on a set of fuzzy rules to determine 

the most confident rules quantitatively. The method presented here was performed on 

a data set for one chemical species (atomic argon, Ar) only, for clarity. The procedure 

can be extrapolated to all the other six chemical species. The original six process 

parameters and one spectral line size selected as the most prominent emission (i.e. 

Ar750 spectral line size) were used as the inputs to train the network. The target 

output was the consistence level (i.e. weighted value of confidence) assigned in the 

discretising phase for training the network.

This fuzzy rule extraction procedure provided one factor not obtained before, which 

was that it provided a quantitatively weighted value representing rule accuracy for all 

possible fuzzy rules, for a 3-fuzzy triangular membership class set of seven inputs, i.e.

3 or 2187 possible fuzzy rules.
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5.3 Fuzzy Rule Extraction System

5.3.1 Discretising Phase

Flow rales of argon (Ar). hydrogen (H2), nitrogen (N,). and methane tC H jt power, 

pressure and A,750 spectral line size were the seven inputs to the network. These
were the antecedent data. The target output was the consistence level for each 

discretised pattern in the training set. This was the consequent data.

A simple method was employed for the discretising phase - called 'equal-width- 

intervals' [Kerber 1992], This divides the line number between the minimum and 

maximum values into N  intervals of equal size. The value of TV was a user supplied 

parameter, and in this case 9 intervals were used. Therefore, each input data range 

consisted of nine discrete intervals. Since the objective of network training here, was 

to predict a confidence level in a fuzzy rule set, then as long as the correct data range

was used for the interval boundaries in discretising the training patterns, then this 

lorm of discretisation was appropriate and very easy to implement.

ANN

model was based on a (w+u)-dimensional vector, where m represents the original six 

inputs (i.e. four flow rates, power and pressure) and n is the target output for a single 

spectral line, in this case it was the Ar750 spectral line intensity. It was necessary to 

use only one set of spectral line intensities so that the rules obtained would make more 

sense linguistically. This meant that the relationship between the size of one spectral 

line intensity and its process parameters would be comprehensible.

I he systems tor training were:

/. All the original discretised patterns were the crisp rules that represented the 

system and were given a target output confidence of 1 (i.e. set consistence level, 

fL  = 1). I he original fixed discretised position which represented the numeric 

value in the parameter range had a T  in that position, and 'O' in all other eight

positions.
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//. Moved one position to the left and +u • w ^lert, and one to the right from original fixed discretised
position, i.e. a small decrement, and a small i

numeric value. CL was set to 0.4
increment respectively, in the original

///.Moved positions the left, and two positions the right, i , .  a „0, s0 smal, 

decrement and a no, so small i„creme„,. in the „ iginal numeric va|ue 
CL was set to 0 .

/F.To fuzzify the input patterns, had the T  in the fixed position representing the

original numeric value, and then a placement of T  on either side of this original. 
CL was set to 1 .

F. Moved three positions to the left and three positions to the right i.e. a large 

decrement and large increment in the original numeric value. CL was set to 0 .

VL F° r 3 llegative set of fozzified inputs, implemented the placement of T  at the 

second, third and fourth positions (from the original location) to the left, and a

placement ot T  at the second, third, and fourth positions from original to the right. 
CL was set to 0 .

fable 5.1 Example of discretisation in all six systems
for Pressure input of 400 mTorr

Table 5.1 demonstrates the training pattern of a single discretised input (for 400 

mlorr pressure) for all six systems used in training the network model.
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Fig. 5.2 Fuzzy Set Membership for nine data point discretisation

Three fuzzy sets - Small, Medium, Large - of triangular fuzzy membership functions

were selected, as shown in Fig 5.1 . The association of these three membership

functions to nine discrete data points for the discretised input parameter ranges are

shown in Table 5.1 . The numeric values of the input data for training were therefore

represented as a series of zero’s and one's, whereby the placement of I in a nine data

representation identified which location in the parameter range it belonged. This was 
the set-up for system /.

Table 5.2 Discretisation of parameter range into nine discrete data points

Using lables 5.2 and 5.3 along with figure 5.2 as a reference, an example for the 

discretisation of one variable in the input training pattern was implemented as follows.
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10 seem argon flow is discretised into the nine data representation of 001000000

The placement of the T  indieates the parameter range to which 10 seem argon flow

belongs. It also indicates the representative fuzzy membership set to which it belongs, 
i.e. (0.5, 0.5, 0) in fuzzy set (Small, Medium, Large).

Table 5.3 also highlights the fuzzy set membership for all the input parameters used in 
training the system.

Table 5.3 Fuzzy set membership for each of the numeric values in parameter ran-e
used in trainingo

5.3.2 Network Model and Testing

Wit’1 each of the seven input data discretised into nine discrete data points there were

63 lnputs alt°gether in the input layer of the network. One hidden layer with a tanh 

activation function and a sigmoid activation function on the output layer were 

implemented. 1 he target output was the confidence value or consistence level (CL). 

From a carefully selected 72 data set, 290 training patterns that represented the six 

training systems were generated to train the network model. The final trained network 

had a 63-7-1 architecture (i.e. 63 inputs, 7 hidden, 1 output) with a RMS error of 

0.006. 1 his network was then tested on the 2187 possible fuzzy rules.

J he luzzy system was interpreted as follows:

• the inputs are the rules

1 the output associated with the rule is the weight or accuracy or confidence val 

the rule, coined as the consistence level (CL) [Blanco 1995]
ue m



Once the weighted rules were obtained, those rules with a large CL were considered to

be the most important in terms of accuracy. The lower CL rules could be used to 

cross-check the validity of some of the more confident rules.

5.3.3 Fuzzy Rule Extraction Results

Appendix D contains a list of the defuzzified rules. The proportion of rules split in 

terms of their accuracy consists of the following. Out of 2187 fuzzy rules, 778 of 

these rules have a confidence or consistence level (CL) greater than 0.45 . The most

highly confident rules were selected as those with a CL of between 0.95 to 1.0; rules 

with C L values less than 0.45 were considered to be of a very low accuracy.

Rounding the CL values to one decimal place for all rules obtained, provided the 
following:

635 rules with CL = 1.0 ; 48 rules with CL = 0.9 ;

32 rules with CL = 0.8 ; 22 rules with CL = 0.7 ;

21 rules with CL = 0.6 ; 20 rules with CL = 0.5 ;

17 rules with CL = 0.4; 28 rules with CL = 0.3;

-i5 rules with CL = 0.2; 76 rules with CL = 0.1 ; and 

1253 rules with CL = 0.0 .

The fuzzy rules have been defuzzified into the parameter range space. Hence the

defuzzified rules in lables Dl, D2, D3, in Appendix D, list the highly confident rules

lor obtaining Large Ar750, Medium Ar750 and Small Ar750 spectral lines,

respectively. I hey show the distinct parameter ranges, from testing the fuzzy

membership sets (Small, Medium, Large), that will describe the size of the Ar750 
spectral line.

I he 635 possible rules that were highly confident (i.e. CL > 0.95) consisted o f :

134 rules lor obtaining a Large Ar750 spectral line 

205 rules lor obtaining a Medium Ar750 spectral line 

296 rules lor obtaining a Small A750 spectral line.
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To demonstrate how the fuzzy rales obtained from the fuzzy system implemented here 

ean be represented, here is an example using one of the highly eonftdem rales
A  ^obtained. The example is rule 1. taken from Table Dl. The rule is expressed in a 

lmguist.c format using a conjunctive If-Then rule. This is the representation 
language for this fuzzy rule extraction system.

Fuzzy rule:

IF (Large argon flowrate) AND (Small hydrogen flowrate) AND (Small nitrogen

flowrate) AND (Laige methane flowrate) AND (Large power) AND (Large pressure) 
THEN (Large Ar750 spectral line) with CL = 1.0

A CL value of 1 indicates a measure of rule accuracy, hence the accuracy of this rule 

is very high. When the fuzzy set membership for the input parameters are defuzzified 

into the relevant data range, the set of conjunctive antecedents with the consequent 

rule accuracy can be expressed as the following comprehensible rule:

Defuzzified rule:

IF argon flowrate is between 30 to 40 seem, AND

hydrogen flowrate is between 0 to 20 seem. AND

nitrogen flowrate is between 0 to 10 seem, AND

methane flowrate is between 7.5 to 10 seem. AND

power is between 200 to 250W. AND

pressure is between 620 to 800 mTorr,

THEN Ar750 spectral line size is LARGE (i.e. between 1200 to 1600 a.u.); 
with accuracy of 1.0

This rule subsumes that of Rule 1 and Rule 17 in Table 4.11 (chapter 4, section 4.7)

obtained from sensitivity analysis. The fuzzy rule and these two rules extracted from 
• • •

sensitivity data indicate that increasing argon flowrate and power will increase the 

size ol Ar750 spectral line, and hence the amount of atomic argon species.

Conversely, one of the confirmatory rules in Table 5.4 shown in bold highlights states
that:
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IF argon flowrate is between 0 to 10 seem, AND 

hydrogen flowrate is between 60 to 80 seem, AND 

nitrogen flowrate is between 0 to 10 seem, AND 

methane flowrate is between 0 to 2.5 seem. AND 

power is between 50 to 100W, AND 

pressure is between 620 to 800 mTorr,

THEN Ar750 spectral line size is SMALL (i.e. between 400 to 1200 a.u.); 
with accuracy of .  .

This suggests that decreasing argon flowrate and power will reduce the amount of 

atomic argon species as it decreases the size of the Ar750 spectral line. This rule
subsumes that of Rule 2 from Table 4.11.

fable 5.4 Confirmatory Rules (validation data)

Ar
|0 - 10

^2_____
'2 0 -6 0

n 2
|o - io  
|0 - 10

|c h 4
j7.5 - 10

Power 
' 200-250

Pressure
[260-620

Ar750
Small

[CL | 
1 0|0 - 10 ' 60 - 80 |0 - 2.5 200-250 [260-620 Small
I . v/ 1

1 , 0 I10 - 10
■ A 1 A

|20 - 60 |o - 10 [0 - 2.5 ' T00-200 (80-260 Small 1 1 -°l|U - 10
1A i r\

0 - 20 |o - 10 J o -7 5 200-250 [80-260 Small 1 1 °l10 - 10 
In i a

20 - 60 |0 - 10 J o -2.5 200-250 [80-260 Small 1 * °l|u - K) 60 - 80 |o - 10 jo - 2.5 50-100 [620-800 Small 1 , 0 I10 - 10
1 / \ I <1

60 - 80 |o- 10 [0-2.5 200-250 1260-620 Small 1 1.0|10-10 0-20 |o - 10 [7.5 - 10 100-200 [80-260 [small 1 i.o|10-10
•In i s\ 0-20 |0 - 10 17.5 - 10 100-200 180-260 [small 1 , 0 |10 - 10 0-20 |o - 10 (7.5- 10 100-200 [80-260 [small 1 1 °|10 - 10 0-20 |0 - 10 \2.5 - 7.5 4 00-200 180-260 [small 1 1 °|10-10 
Ia  i a

0 - 20 ~ 1 10-30 Jo - 2.5 100-200 [80-260 [small 1 10|10 - 10 i0 - 20 
A a

|30 - 40 Jo - 2.5 100-200 [80-260 I Medium 1 I()|I 10 -30 i0 - 20 | o - 10 [0 - 2.5 100-200 180-260 [small 1 1 °|JIU-DU |z0 - 60 ~~ |o - 10 2.5 - 7.5 I100-200 J80-260 I Medium 1 °-9|10 -30 0 - 20 |o - 10 7.5-TO [i 00-200 [80-260 [Medium 1 1 °l10 -30 20 - 60 |o- 10 7.5-10 100-200 [80-260 [small 1 1 °l| 10-30 |0 - 20 " | 10-30 12.5-7.5 f;200-250 [ 260-620 IMedium 1 1 °|| 10-30 |0 - 20 |o- 10 2.5-7.5 :200-250 260-620 I Medium 1 1 °|30 - 40 [0 - 20 |o - 10 |0-2.5 \100-200 [80-260 [small 1 1 °|30 - 40 |0 - 20 |o- 10 0 - 2.5 :>00-250 [80-260 I Medium 1 1 °|30 - 40 C
2  A  A  f \

1-20 |o- 10 I0-2.5 |l100-200 [80-260 Medium I l.()|
30 - 40 (]i - 20 0- 10 |2.5-7.5 >00-250 260-620 I Medium I 10

I he 23 confirmatory rules shown in Table 5.4 tested on a totally independent data set 

ol known confident rules, has achieved high accuracy for all. This validates the fuzzy
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rule extraction system; with good correlation between the rules obtained from direct 
rule extraction from the trained species models.

fhe simple procedure presented here, in effect, means that rules which provide a set

of process parameter space range conditions that can determine what the size of the 

Ar750 spectral line will be. with a level of confidence, can be procured.

This fuzzy rule extraction method has a genericity that can be applied to each spectral

line that has been utilised in this project, to relate the multi-input variables to spectral 
line sizes with a degree of accuracy.

It has been sufficiently demonstrated on the Ar750 spectral line, without having to

generate fuzzy rules for all the seventeen spectral lines, as that would have generated

-187x17 rules i.e. 37.179 rules - a very large rule set to assess. By using the Ar750

spectral line in this first instance allowed for easily comprehensible rules and allowed 

for establishment of the feasibility of the technique.

The fuzzy system worked very easily, and so the method can be easily extrapolated to 
the other spectral lines.

In conclusion, the fuzzy rule extraction system implemented here provides the ability

to attach a quantitative measure in the form of rule accuracy to the rules obtained.

The language that describes the rules are easily transferable for stating the parameter

space that will determine how to alter the size of a spectral line and hence the amount

of a particular species. It will be noticed, however, that for the case used to

implement this system only one of the outputs was used. This made the rules more

comprehensible and easy to understand by the human user, for process control of this 
problem domain.

Nonetheless, the method is extensible to multi-variable outputs if a direct relationship 

between the multi-inputs and the multiple output variables needs to be determined.



Chapter 6

Conclusions

6.1 Relevance to OES Problem Domain

There were three specific areas covered in this research work. They were
1. Data classification via ANN recognition.

2. Nonlinear predictive modeling to relate multi-input variables to multi-output data

m a continuously-valued problem domain providing a viable rule extraction 
technique.

3. Neuro-fuzzy approach to generate accurate rules.

The results obtained from these three areas answered two essential questions that 

formed the basis of the entire research project. From an overall view point of this 

project, here are the two essential questions and the responses attained.

• How well does the MLP network characterise OES patterns to identify species 
intelligently?

The MLP's performance on characterising species was very good. A fully connected 

leedforward BP MLP network was trained on a sufficient number of different OES 

spectral pattern types. The trained network had excellent generalising capabilities in 

distinguishing between spectral patterns to identify different chemical species.

Hie OES data set used was relatively small, yet once the MLP model had been 

successfully trained on approximately 80% of the patterns, it was able to generalise 

well without overfitting the data set, in order to classify seven different species. A 

performance level of 100% was achieved for the plasma system CH4/H2/Ar/N2 in 

identifying all seven species accurately within an independent test set. The network 

classifier determined the presence of Ar, H, H2, N2, N2+, CH and CH+ accurately 

which demonstrated its ability to distinguish between a mixture of species. 

Prerequisite normalisation of the spectral lines was implemented for network training



and testing. The simple rule-based system was used as a verification tool of ,he 
network's performance.

Can the MLP network identify a relationship between the controllable proces;

parameters and the size of the spectral lines of species in order to generate rule; 
that aie useful for monitoring species quantities?

This second and more important question was of primary concern in terms of its direct 

applicability to the practical problem domain from which the OES data used here was
obtained.

To answer it, three stages of work were implemented:

Stage 1 . the creation of the ANN species models;

Stage 2 : the extraction of rules from the trained species models;

Stage 3 : a fuzzy rule extraction system to ensure accuracy or confidence in rules.

As a result of these three stages presented and discussed throughout the thesis, the 
following goals were achieved:

Predictive MLP species models were created.

These ANN models were successful in modeling the complex nonlinear

relationship between the controllable plasma process variables (flow rates, power

and pressure) and the spectral line size of seven different chemical species, 
without overfitting the data.

The excellent generalisation capabilities of the ANN models and their small 

network topology, provided the premise for extracting embedded knowledge from 

the trained networks in the form of comprehensible if-then rules.
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The new rule extraction technique was based on a combination of sensitivity 
analysis and a backtracking procedure on the trained models.

38 specific rules were generated which 

from which the OES data was obtained.
were applicable to the ten plasma systems

The rules suggested which process variables could alter the si 

spectral lines thus providing a very useful process control tool.
size oi individual

The rules were tested empirically on independent data in the validation dataset.

Extracting rules by monitoring the sensitivity of the trained network models i 
pedagogical rule extraction technique.

The rule confirmation procedure using the backtracking method relies 

summed weighted input contributions to significantly identified hidden
on the

units.

The weight contributions of the significant hidden units to the summed weight of 

the outputs provided a direct relationship between input variables and output units.

The set of rules generated from backtracking matched those from the sensitivity
analysis.

The backtracking procedure also introduced a set of new rules

I he rules obtained are categorised as global rules.

The novelty of the rule extraction technique is its ability to efficiently cope with 

continuous-valued multi-output data.

I he rules extracted directly from the trained MLP networks tested very well on the 

validation data set. The method did not, however, generate all the possible rules for
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,he SPeClral PIOblem d0mai"- No measure of ,„e r„,es was provided
ertlrer. The „u,o-fi,„y  approach has provided an adaptive.f e y  rote extraction

sysren, which has competent,,, addressed these two issues. The goals achieved are as
follows

The adapted fttzzy rule extraction system used the MLP architecture.

Prerequisite discretisation of the input-output data fuzzified the adapti
process.

ve learning

A large set of all the possible rules for a system based on the six controllable input

process variables and one spectral line size (the predominant spectral line, for 
Ar750) were generated.

Each fuzzy rule generated had an accuracy value (CL).

There was a large set ol 635 highly accurate rules (out of the 2187) which

determined the process conditions for obtaining a Small. Medium or Large Ar750 
spectral line size.

Selective rule sets were found to subsume rules with fewer antecedent data.

The rule sets performed very well on the separate test data in the validation set.

In summary, this system can be deployed to predict the size of spectral lines for seven 

particular species for the purposes of generating useful process rules. The rule 

extraction procedure can be applied to problem domains consisting of multi-

dimensional continuously-valued input and output data. The representation language 

of the rule extraction technique constitutes If-Then linguistic rules.

he fuzzy rule extraction system extended the precise extraction method (in chapter 4) 

by Pr°viding the set of all possible rules for the problem domain. More importantly,

UNIVERSITY COLLEGE NORTHAMPTON
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the fuzzy system attached an accuracy value to the generated rule instantly. This

provided the quantitative measure for determining the relevance of inputs to outputs 
The process was also transferable to ntulti-di,data.

These results have effectively answered the second query addressed i
which was:

in this thesis

"Can the trained MLP network relate the controllable process parameters to the size of

the spectes spectral lines in order to generate useful rules for monitoring species 
quantities?"

The answer is yes - the techniques developed have been very successful in 

implementing MLP networks that can model the complex nonlinear relationslup 

between the controllable process parameters and the size of the spectral lines of 

species. The extraction method generates useful rules to suggest to the process 

controller for monitoring species quantities via the size of the spectral lines.

6.2 Relevance to AI

Not only is the ANN capable of classification, but the MLP ANN model is also 
useful tool tor nonlinear predictive modeling.

a

The MLP ANN can train on multi-input and multi-output data with a continuously 
valued data range.

Most ANN applications are embodied into discrete output classification problems. 

I he techniques presented in this thesis can also be used for multi-output prediction 

problems, and more importantly the multi-dimensional nature of the rule 

extraction process provides the ability to utilise real continuously valued data in a 

practical problem domain.

I ransferabi 1 ity of the techniques, presented in the thesis, to progressively larger 

data sets is feasible.



The conjunctive IF-THEN representation language of the extracted rule sets 

provides comprehensible as well as concise rules for interpretation.

6.3 Future Work

6.3.1 Future AI Study

I he major suggestion for future work is to test the techniques developed, in this

thesis, primarily on another real problem domain e.g. signal processing. Since the

fuzzy system can be adapted to other multi-dimensional problem domains then it 

could be usefully exploited by traditional data compression methods.

By testing on other types of continuously valued data sets would promote more

generic uses of the rule extraction system. For the fuzzy system implementation, it is

very important to know the input and output ranges of the problem domain initially, or 
else the system will perform inadequately.

Two suggestions to extend the research done so far are:

The application of GA's in the input variable selection for very large input data 

fields during ANN model build. The ultimate scheme would need to be robust 

enough so as not to eliminate important variables, because extracting rules fr 

unsuitably pruned network could make the rule generation technique redundant.
om an

A more comprehensive comparison of the trade-off between having a harge
number of rules with low comprehensibility or a small number of rules which an 
more comprehensible.



6.3.2 The OES Platform

Any other research work into relating the importance of OES data to other plasma

process variables would have to involve the practical plasma experimentation

environment to ensure any process limitations are taken into consideration.

The current state of the art of plasma diagnostics will be a compelling factor into

whether or not the use of intelligent techniques will advance into the plasma

manufacturing environment. Software for automated and/or remote control of plasma

diagnostics are currently in use in the process manufacturing industries. The hardware

allows for automated data acquisition and statistical process control. This makes it

attractive to the plasma process engineer to acquire current analytical 
instrumentation.

In order to make soft computing and intelligent techniques an attractive proposition

for the process engineer to utilise as part of the spectral diagnostic would involve a

concerted effort of both expense and time for in-situ plasma studies. The major

suggestion for any extended future work from the premise of using ANN's for OES

spectral interpretation and plasma process monitoring would be to have a quick 
response on-line automated system.
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Abstract

Rule-based programming with Prolog has been 
incorporated within an “expert system” which has 
been developed to interpret optical emission 
spectra for identification of the individual 
chemical species contained within the spectra.

In this research work, the optical emission 
spectral data are collected from gas plasmas, 
typically of the kind engineered for industrial 
semiconductor coatings. An optical emission 
spectrometer measures the optical radiation of the 
plasma species and provides an average intensity 
at a particular wavelength for a given species 
present in the plasma. Optical emission 
spectroscopy is a convenient and effective 
technique to detect and monitor a number of 
transient species in plasmas' such as excited 
atoms, ions and molecules; therefore it can 
provide in-situ estimates of process parameters 
and plasma conditions. For a given spectral 
emission pattern (spectrograph), a human expert 
(spectroscopist) can interprete what species are 
present without having any prior knowledge of 
what gases are contained in the plasma. This is 
due to the fact that in optical emission 
spectroscopy, individual species
(element/ion/radical) emit light at specific 
wavelengths and thus have a distinctive 
fingerprint of emission lines that are discernible 
to the expert. On the basis of this, the rule-based 
system is developed by a process of knowledge 
representation via the incorporation of rules and 
facts, wherein Prolog has been utilised.

This work will be able to meet some of the ever 
increasing demands for automatically processing 
spectral data for the elucidation and/or 
confirmation of individual chemical species. The 
identification of unknown chemical species by 
library searches are possible only if their emission 
spectra have been recorded in a spectroscopic 
database2.
Ihus, the approach followed here is to have a 
flexible system that can be adapted for spectral 
interpretation of unknown species as well as a

sufficiently robust knowledge-base that contains 
transferable rules.

Introduction

The problem that has been identified and is being
O

addressed in this project is how to automatically 
identify the chemical species of a given plasma 
by direct interpretation of optical emission 
spectral (OES) data. This study is specifically 
targeted at low-pressure, low temperature gas 
plasmas that are used in plasma deposition such 
as that which occurs in the semiconductor 
coatings industry.
Typical optical emission spectrometers used 
today can generally identify certain chemical 
species contained within a given plasma once the 
spectrometer is connected to the processing 
system as a diagnostic. To further develop a 
system that has the capability to automatically 
interpret OES data ex-situ in order to identify the 
known species within a given plasma, particularly 
in a mixed gas plasma, is one of the aims of this 
work. Applying a rule-based system to 
encapsulate the knowledge of an expert 
spectroscopist to interprete OES data is one of the 
artificial intelligence (AI) techniques being 
incorporated in the system. The AI language - 
Prolog - is appropriate for this analysis simply 
due to the fact that the software applications 
environment from which this work has evolved 
required a platform whereby a suitable 
combination of both an expert system toolkit and 
AI language could be incorporated effectively. 
Therefore, a flexible hybrid expert system toolkit 
called FLEX and the Al language Prolog provide 
the multi-paradigm programming systemJ needed 
for this task.
The unique features of Prolog4 5 6 (Logic 
Programming) that made it the preferred tool for 
this task include

1. Its in-built inference engine - this allowed the 
programming required to involve mainly the 
incorporation of the knowledge base.
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2. Knowledge representation into the 

knowledge base via sets of clauses (facts or 
rules) i.e. a tact about the given information, 
oi a iule about how the solution may relate or 
be inferred from the given facts.

3. Easy incorporation of mathematical logic and 
logic conditions.

4. The ability to instantiate a variable at any 
given step by way of a predicate statement 
made it ideal for inserting factual knowledge 
at given instances.

5. Backtracking which is used to effect in this 
rule-based system without slowing the 
response.

6. Prolog is portable as an applications 
language and it also lends itself readily to 
structured programming and modularisation.

7. Most of all because Prolog is an 
interpretative language and has no type 
declarations it is useful for the prototyping 
that is being done in this work.

Fig. 1 Typical Optical Emission Spectrum

Optical Emission Spectrum - 4 component

w ave length /nm

Experimental

LPA (Logic Programming Associates) WIN- 
Prolog is the available software in use. The 
Prolog compiler provides a 32-bit programming 
environment and has access to a large number of 
GUI (Graphical User Interface) functions that 
allows the creation of polished Windows 
applications.
The adaptation of an available expert system 
shell was used as an initial experiment for the 
Prolog programming required for this task.
After several trials, the final rule-based system 
was based on a user interface and inference 
engine separated from the knowledge base. Any 
access to relevant external knowledge databases 
are via consultation into the final system. An 
optical emission spectrum of a mixed gas plasma 
will contain emission line peaks of the individual 
chemical species that exist within that plasma (see 
Fig. I for a typical OES spectrum). The 
individual chemical species are therefore 
represented as a finite set of peaks. In order to 
identify the species within a spectrum, the rule- 
based system follows a peak search that aims to 
identify the finite set of peaks representing a 
particular species. A section of the peak search 
knowledge base is shown in Fig. 2. The 
conditional rules, demonstrated in Fig. 3, that are 
applied in the peak searches in order to elicit a 
response from the system are dependent on 
setting a threshold factor for each selected 
emission line (i.e. the normalised line intensity 
output). This threshold can be adapted for each 
chemical species that is being searched for. The 
rule-based system prototype developed here can 
characterize seven different chemical species. 
However, the future aim is for a larger number of 
species characterisation for further extension of 
the knowledge base.



Results and Discussion
Fig. 2 Portion of knowledge base - p«ak searcb

/•peak search*/

peak_search('Input the normalised 
intensity value at the 750-nm 
bandhead '.read(Ar Pline))

peak_search('Input the normalised 
intensity value at the 656-nm 
bandhead Vead(H PIme))

peaksearchflnput the normalised 
intensity value at the 406 7-nm 
bandhead \read(H2_Pline))

peaksearchflnput the normalised 
intensity value at the 337-nm 
bandhead \read(N2_Pline)).

peak_search('Input the normalised 
intensity value at the 391 4-nm 
bandhead '.read(N2ion_PIine)).

peaksearchflnput the normalised 
intensity value at the 314 5-nm 
bandhead ,.read(CH_Pline)).

peak searchflnput the normalised 
intensity value at the 422.5-nm 
bandhead \read(CHion_Pline)).

Fig. 3 Part of Knowledge base - Ruleset which contains
thresholds to establish presence or absence of a species

/* Rules, incorporating threshold for normalised intensity values 
for a given emission line •/

rule( 1 ,atomic_argon_present)>
emission_line(Ar_Pline > 0 6, Ar_Sline > 0  3. Ar_Cline >0 1). 
emission_Iine(Ar_Pline > 0 6, Ar_Slme > 0 3) , 
emission_line(Ar_Pline > 0 6)

rul e( 2 ̂ to  mi c _hy dr ogen_p resen t):-
emission_Iine(H_Pline > 0 7. H_Sline > 0 4, H_Cline >0.1), 
emission_line(H_Pline > 0 7, H Sline > 0 4 ), 
emission_line(H_Pline > 0.7)

rule<3,molecular_hydrogcn_present):- 
emission_line(H2_Pline > 0.3. H2_Sline > 0.3, H2 Cline >

0 4)

rule(4,molecular_nitrogen_present) - 
emission_line(N2_Pline > 0  6, N2_Sline > 0 5 ) ,  
emission_line(N2_Pline > 0  6)

rule(5,ionic_mtrogen_present) - 
emission_line(N2ion_Pline > 0  8, N2ion_Sline > 0 2 ), 
emission_line(N2ion_Pline > 0  8)

rul e( 6,methy 1 _ fragm en t _present):- 
emission_line(CH_Pline > 0  5. CH_Pline > 0  1, CH_Cline >

01)

rule(7,methyl_ion_present):- 
emission_line(CHion_Plme > 0  7. CHion Sline > 0  1)

A randomly selected test set (known species 
present) of ten spectral outputs has been analysed 
using this rule-based system and has elicited ten 
sets of correct statement responses to indicate 
which chemical species are present. Since this 
prototype is a limited spectral search database, a 
suggestion for a further search is incorporated in 
the knowledge base and will be stated when none 
of the seven species are identified by the system. 
The prolog descriptor for identifying seven 
different chemical species is portrayed in Fig. 4 
and this knowledge base can be readily modified 
to include further expert knowledge. The basic 
components of the final rule-based expert system 
are portrayed in Fig. 5.
The advantages of programming with Prolog 
within the context of this work are

1. The transferable nature of the ruleset makes it 
convenient to adopt in another rule-based 
system which follows a similar format of 
species identification. This supports rules 
that are transferable within the context of 
programmable logic.

2. Introducing a conflict resolution to prune the 
size of very large conflict sets until a smaller 
set of enabled rules is obtained.

3. With further pursuits to increase the 
knowledge base, the application of parallel 
processing techniques for searching the 
Prolog database will be implemented, 
however, strictly in the case of this system the 
'cut' mechanism,"!", available in Prolog 
programming is used for better control of the 
execution of the final program.

4. Using Prolog's built-in predicates to define 
new operators and give them meaning is a 
key feature of Prolog that has been used to 
effect in this rule-based system.

Fig. 4 Prolog descriptor for OES analysis
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Conclusions

This Prolog database consists of facts and rules 
which are the set of knowledge representations 
declared into the knowledge database. The 
Prolog interpreter acts on these facts and rules on 
response to a user goal input where a variable is 
instantiated with a value which is associated to 
the spectral inputs selected from a given OES 
spectrum. This provides the knowledge base with 
the peak search data for analysis. The execution 
flow of this 'expert system’ and the trace 
properties are key features of WIN-Prolog that 
present a window panel for the user to observe the 
'reasoning process' of the rule-base.
The rule-based emphasis of the Prolog language 
will assist in the further developments of this work 
to produce a more robust and extensive expert 
system.

/  /£  5 Component parts o f the rule-based expen system

Basic Paris of the 'Expert System*

User Interface 
• provides accessible 
expert knowledge to 

non-experl

......— .......-  1----------------— — . I
j Inference Engine

Collects/searches/reads 
knowledge database for 

inferences

Knowledge Base 
- Peak Search 

| - Rule set 
- Spectral data/qualrtative information

References

1

2 .

3.

4.

5.

6.

7.

8 .

S. Bockel, J. Amorim, G. Baravian, A. 
Ricard, P. Stratil, A spectroscopic study» of 
active species in DC and HF flowing 
discharges in N2-H2 and Ar-N2-FI2 mixtures, 
Plasma Sources Sci. Technol., 1996, 5, 567- 
572
C. Affolter, K. Baumann, J.-T. Clerc, H. 
Schriber, E. Pretsch, Automatic interpretation 
o f infrared spectra, Mikrochimica Acta, 
1997, S14, 143-147.
P. Vasey, D. Westwood, T396 Block 1: Alfor 
Technology’- WIN-Prolog & Flex, d i -
version, LPA Ltd., 1994.
A.D. Lunardhi, K.M. Passino, Verification o f 
Qualitative Properties o f Rule-Based Expert 
Systems, Applied Artificial Intelligence, 
1995, 9,587-621.
K.A. Bowen, Prolog and Expert Systems, 
McGraw-Hill, 1991.
I. Bratko, Prolog Programming for A I, 
Addison-Wesley, 1986.
F. Guerrin, Qualitative reasoning about an 
ecological process: interpretation in 
hydroecology», Ecological Modelling, 1991, 
59, 165-201.
D. Callear, Prolog programming for students, 
ACP,GB, 1994.



Hybridization techniques in Optical Emission Spectral
Analysis

C.S. Ampratwum1, P.D. Picton1, A.A. Hopgood2, A. Browne1

'Nene College, Northampton, NN2 6JD. UK 
cecilia.ampratwum@nene.ac.uk

I he Open University, Faculty of Technology, Milton Keynes, MK7 6 A A, UK

Abstract. The utilisation of formal artificial intelligence (AI) tools has been 
implemented to produce a hybrid system for optical emission spectral analysis that 
combines a multilayer perceptron neural network with rule-based system techniques. 
Even though optical emission spectroscopy is extensively used as an in-situ diagnostic 
for ionised gas plasmas in manufacturing processes, ways of interpreting the spectra 
without prior knowledge or expertise from the user's stand-point has encouraged the 
use of AI techniques to automate the interpretation process. The hybrid approach 
presented here combines a modified network architecture with a simple rule-base in 
order to produce explicit models of the identifiable chemical species.

1 Introduction

Optical emission spectroscopy (OES) is typically implemented as a non-intrusive 
plasma process monitor and diagnostic instrument in semiconductor manufacturing 
[I], [2], [3], For example, in semiconductor wafer etch processes a plasma is created 
that contains gaseous ions that bombard the surface of the material that is to be etched 
in order to fabricate an end product such as integrated circuits. To be of greatest use 
to the manufacturer, the OES system must be able to provide both dynamic 
information about the plasma process and specific information about the identity of 
trace impurities or etch by-products [4], One of the goals behind this research is 
therefore to not just automate the identification of chemical species within a given 
plasma from its optical emission spectrum but to apply certain artificial intelligence 
(AI) techniques that will be able to identify species both accurately and efficiently. 
The aim is to produce a hybrid architecture that utilises some of the key advantages of 
certain AI techniques and can be used as a quick preliminary measurement tool in the 
automatic control of plasma processes that use OES.

2 Experimental and Discussion

To merely confirm what would be obvious to the eye of an expert spectroscopist when 
interpreting an optical emission spectrum (portrayal in Fig. 1) may be interesting but 
not particularly useful. The first step was to identify the chemical species that have 
prominent peaks in the optical emission spectrum of a mixed gas plasma. This is 
mainly done by recognising the unique patterns of optical emissions associated with 
most atomic and molecular species. Recognition is mainly a function of experience,
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and can be aided by comparison with reference spectra of common plasma species that 
have already been catalogued in spectral library databases [5], [6]. This process of 
identification can be implemented by applying the recognition capabilities of neural 
networks in order to automate that first species identification step that is part of the 
spectral interpretation process. Unfortunately, optical emission from many species 
overlap, and many emission lines of a species can vary or disappear, depending on 
how much and by what method energy is coupled into its chemical structure, therefore 
care must be taken when using spectral libraries to generate data. To overcome some 
of these problems associated with more complex spectral classifications particularly in 
mixed plasma spectra, a combination of a trained neural network with a rule-based 
system has been developed to enhance the accuracy and speed of species recognition.

Hg. 1. Optical Emission Spectrum of a 4-gas plasma
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2.1 Neural Network analysis

2.1.1 Previous Work. Picton et al [7] showed that the architecture that worked for 
the spectral analysis of a mixed pattern (i.e. to be able to recognise the species within a 
mixed spectral pattern) was one that trained individual neurons on individual species 
using Kohonen learning. Each neuron is trained on normalised data since the presence 
of a peak within an optical emission spectral pattern is not reliant on the height of the 
peak but rather its peak location in the optical emission spectrum. Thus by sampling at 
specific wavelengths each neuron will receive a vector of unit length in order to be 
able to identify individual target species within a mixed spectral pattern. The network 
successfully recognised atomic argon (Ar) and atomic hydrogen (H) within the spectra 
from mixed argon and hydrogen plasmas. Advantages of this method are the quick 
training times and its adaptability to a specific plasma process and so it has been 
implemented into the preliminary stages of a diamond-like carbon deposition process 
which uses an optical emission spectrometer as a diagnostic integrated into a rule- 
based plasma control system [8].

2.1.2 Multilayer Perceptron. Since the multilayer perceptron (mlp) is still a 
plausible candidate for spectral analysis due to the cited references [6], [9], [10] that
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have applied its feedforward backpropagation network in quite successful
1 * 1  > — _ ̂ magnetic resonance (NMR),

mass, ultra-violet (UV) and ion mass spectrometry (IMS) to name but a few,
apparently very little has been documented in applying the mlp to OES in particular.
Therefore, three sets of experimentation on optical emission spectral analysis have
been implemented to address this issue and identify the clear advantages as well as the 
shortcomings of the mlp architecture.

Experiment 1. The neural network implemented is a feed forward network based on
the multilayer perceptron with no hidden layer of neurons. Thus it consists of an input
layer and output layer only and employs the error backpropagation algorithm [10] in
learning. The input layer receives as inputs normalised intensity values sampled at a
set of wavelength points for a given optical emission spectrum. This procedure
immediately reduces the dimensionality (dimensional space) of the OES spectrum
resulting in rapid training times. The preprocessing of the data by normalisation to
reduce the dimensionality is an inherent form of feature extraction. The values of
these features are the inputs to the network. Selection of the most appropriate feature
is veiy important as it has a direct bearing on the performance of the complete system.
and so tor this case the feature selection extracts the set of unique peak patterns (at
wavelength bands) for a particular species. The same set of optical emission spectra
from Picton et al's work [7] were used in this first experiment. The architecture
adopted was a two-species detector (i.e. Ar and H detector) and was trained on the
spectra from seven argon plasmas and seven hydrogen plasmas. Spectra from five
mixed argon/hydrogen plasmas were then tested on the trained neural network and the 
results are shown in Table 1.

files
Table 1. Results from experiment 1 - species identification 

Ar 1 A r2  Ai~3 A r4  A r5  A r6  ~  ( i ? ^
Ar 
H

files

0.96 0.97 0.97 0.97 0.97 0.97 0.97 plasmas)
0.54 0.92 0.91 0.95 0.96 0.94 0.96
H 1 H 2 H 3 H 4 H 5 H 6 H 7

Ar
H

0.29
0.96

0.21
0.97

0.23
0.97

0.27
0.96

0.24
0.96

0.18
0.96

0.19
0.96

(hydrogen
plasmas)

Ar/H 3 Ar/H 4 Ar/H 5 (mixed Ar/H2 plasmas)
Ar
H

0.97 0.97 0.97 0.96 0.93
0.94 0.94 0.95 0.94 0.90

The results show that this architecture is successful in recognising the atomic argon, 
Ar, and atomic hydrogen, H, species in a mixed spectral pattern of argon and 
hydrogen. Also, it determined the presence of hydrogen (values highlighted in bold 
italics) in the spectra from argon plasmas. A value of 0 or near 0 represents ‘Species 
Absent', 1 or near 1 represents ‘Species P re se n tthe threshold is 0.5, so a value less 
than 0.5 is ‘Species Absent' and greater than 0.5 is ‘Species Present'.
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These results reflect the ability of a modified multilayer perceptron neural network
architecture to identify two individual spectral patterns from a mixed pattern once it
has been appropriately trained to convergence. To test for the robustness of this
architecture the number of individual patterns to be trained on has been increased to 
four in the next experiment.

| recognition of two individual species from their
mixed patterns, the modified mlp architecture was trained on spectra from three
individual plasmas - hydrogen, argon, and methane. The individual patterns that the 
network is being trained on represent the species - Ar, H. CH. CH+.

Table 2. Results from experiment 2 - species identification

Ar
H

Ar 0.37 0.24 0.24 0.25 0.28 0.28 0.29 0.26
H 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.97
files sp14 sp18 sp19 hydr4 hydr5 hydr6 hydr7 hydr8
Ar 0.30 0.27 0.27 0.18 0.20 0.22 0.18 0.13
H 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
files hydr9

0.17
0.97

(17 hydrogen plasmas)

(5 mixed plasmas
Ar 0.92 0.90 0.92 0.93 0.93 methane/hydrogen/argon)
H 0.94 0.94 0.93 0.94 0.94
CH 0.92 0.93 0.85 0.95 0.93
CH+ 0.96 0.89 0.89 0.91 0.91

The spectra from a new batch of seventeen hydrogen plasmas, six argon plasmas and 
fifteen mixed argon/hydrogen plasmas were tested on the trained network, and once 
again from the results shown in Table 2, the neural network recognises both argon and 
hydrogen in the mixed spectra.
The argon plasmas did contain atomic hydrogen (bold italic highlights). However, 
with the threshold value of 0.5 the output values from four of the fifteen Ar/H2 test set 
(bold italic highlights) would be interpreted as ‘Atomic argon, Ar, Absent’. The main 
conclusion drawn from these results is -
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The network is not robust enough when it comes to the recognition of individual 
patterns m mixed patterns due to the change in the peak pattern of certain chemical 
species within the emission spectrum from a mixed plasma. This is addressed more 
clearly in experiment 3, indicating the next steps to apply a simple rule-based system 
with qualitative reasoning principles, some of which have been implemented at the 
training ot the neural network and can be incorporated into the rule-base.

Experiment 3. 104 optical emission spectral patterns from real plasmas have been 
selected to tram a different architecture of 38:7:7 i.e. a network with 38 input neurons, 
7 hidden, and 7 output neurons (each output neuron to recognise one of the seven 
species: Ar, H, H2, N2, N2+, CH, CH ). All selected features are used as inputs to train 
the network. These features are the normalised intensities at the relevant wavelength 
bands that represent the unique peak pattern of the seven individual species plus die 
plasma parameter conditions tor each spectra. After successful training for 104 
epochs, the network is tested on a different set of 19 real spectra.

Table 3. Results of experiment 3 - accuracy in species identification
plasma type Ar H H2 N2 N2+ CH CH+ Accuracy
Ar only r ~ 0™ o ” o ’ 0 ~ o " 5" 100%
H2 only 1 1 1 0 0 0 0 Ar present
H2 only 1 1 1 0 0 0 0 Ar present
N2 only 0 0 0 1 1 0 0 100%
CH4 only 1 1 1 0 0 1 1 Ar present
Ar/H2 1 0 0 0 0 0 0 H2 absent
Ar/H2 1 1 1 0 0 0 0 100%
Ar/H2 0 1 1 0 0 0 0 Ar absent
Ar/N2 1 1 1 1 1 0 0 H2 present
H2/N2 0 1 1 1 1 0 0 100%
Ar/H2/N2 0 1 1 1 1 0 0 Ar absent
Ar/H2/N2 1 1 1 1 1 0 0 100%
Ar/H2/CH4 1 1 1 0 0 1 1 100%
Ar/H2/CH4 1 1 1 0 0 1 1 100%
Ar/H2/CH4 1 1 1 0 0 1 1 100%

Ar/H2/CH4/N2 1 1 1 1 1 1 1 100%
Ar/H2/CH4/N2 1 1 1 1 1 1 1 100%
Ar/H2/CH4/N2 1 1 1 1 1 1 1 100%
Ar/H2/CH4/N2 1 1 1 1 1 1 1 100%

The results from the test set of 19 spectra shown in Table 3 confirm three points. Note 
that the output values are rounded up to the nearest decimal i.e. 0 or 1 for viewing 
ease.
1. A 3-layer multilayer perceptron neural network trained using the back-propagation 

algorithm can identify the presence of individual species within a mixed pattern of
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species (spectra from mixed gas plasmas) when trained on a sufficient set of both single and mixed patterns.
It can detect other species that were existent within the plasma at the time of OES
data collection but not necessarily known to be present in that specific system
therefore the interpretation is that the network can detect impurities or contaminant species.
The network output results from two of the mixed pattern set from spectra of 
argon hydrogen plasmas (bold italic highlights), show that occasionally the 
network may fail in species detection. This has raised the issue of other external 
parameters affecting the network's performance and so it is important to 
incorporate some expert knowledge of optical emission spectroscopy to correctly 
inteipret the OES data. This is addressed in the rule-based system.

2.2 Rule based System
A prototype rule-based system has been developed to explicitly characterise seven 
diffeient chemical species by using sections of the unique peak pattern feature 
extraction process (implemented in the neural network architecture) to identify a 
database ol spectral peak searches. The database consists of facts and rules expressed 
as knowledge representations that are declared into the knowledge base, the inference 
engine searches the knowledge base for species presence or absence and can respond 
to the user via the user interface (see Fig. 2 for the component parts of the rule-based 
expert system). Figures j  and 4 show portions of the knowledge base peak search, 
and part of ruleset containing thresholds to establish presence or absence of a species.

 i . 2. Component parts of the rule-based expert system

User Interface 
-provides accessible 
expert knowledge to 

non-expert

Inference Engine 
Collects/searches/reads 
knowledge database for 

inferences

Knowledge Base 
- Peak Search 

- Rule set
- Spectral data/qualitative information

The knowledge base accepts spectral data in a normalised format and the rule base is 
hand-crafted to pick out any primary peaks (e.g. H Pline), secondary peaks (e.g. 
H_Sline) and/or tertiary peaks (e.g. I I Cline) by setting arbitrary threshold values, in 
order to confirm the presence or absence of species. A randomly selected test set of 
ten spectral outputs has been analysed using this rule-based system with successful 
responses to the user i.e. ten correct responses to each of the ten spectral data sets 
explicitly indicating which chemical species are present. The current knowledge base
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can be readily modified to include further expert knowledge to incorporate a wider and 
quicker spectral search and identification of more chemical species for automating the 
process. In the process of achieving this, the implementation of qualitative reasoning 
to interpret inconclusive or ambiguous responses from the neural network and address 
an incomplete ruleset within the rule-based system is being applied.

Fig. 3. Portion of knowledge base - peak search
/* peak_search*/

peak_search('Input the normalised
intensity value at the 750-nm 
bandhead:', read(Ar_Pline)).

peak_search('Input the normalised
intensity value at the 656-nm 
bandhead:', read(H_Pline)).

f  ig. 4. Part of Knowledge base - Ruleset which contains 
thresholds to establish presence or absence of a species

/* Rules, incorporating threshold for normalised 
intensity values for a given emission line */

ruled, a t omi c_a rgon_p resent) : -
emission_line(Ar_Pline > 0.6, Ar_Sline > 0.3,

Ar_Cline > 0.1);
emission_line(Ar_Pline > 0.6, Ar_Sline > 0.3); 
emission_line(Ar_Pline >0.6) .

rule (2 , atomic_hydrogen_present)
emission_line(H_Pline >0.7, H_Sline > 0.4,

Ar_Cline > 0.1);
emission_line(H_Pline > 0.7, H_Sline > 0.4); 
emission_line(H_Pline >0.7) .

2.  inal Hybrid Approach
However well-trodden the work-path of combining rule-based systems, neural network 
approaches and several other techniques for data classification, prediction or 
retrieval/detection may be, this work deviates from what has gone before in so far as 
its compelling end-result uses successfully trained ANN models of individual chemical 
species (from optical emission spectra) to generate a prolific set of semantic rules 
(portion of a set list in Table 4). The ANN models for each species was created by 
utilising the plasma process parameters which consist of gas flowrates, pressure and 
power as the inputs to the network and the target outputs were the actual emission 
intensities at the unique peak positions for the particular species being modeled. Fig. 5 
shows the neural network architecture of the species model (for atomic argon) which 
consists of a 3-layer fully connected feedforward network using a linear output



function to cater tor the large intensity range, and the typical sigmoidal function on the
hidden layer. A selection of several varying plasma spectra were used in the training
of the network models. The seven species models have been tested on different sets of
spectra for verification with very good performance results (Table 5 shows excellent
performance on testing the argon species model). ork continues to produce a generic
In bud system which adopts the premise that a trained neural network model that
accepts continuous valued inputs can produce explicit relationships between input patterns and trained responses.
f able 4. Portion of condition set list from trained ANN models

Condition 1. f (Pressure and rgon flowrate are H H) then atomic argon ( r) is detected.r42  is  r  is H H  r  is .
Condition 2. f  (Power and Hydrogen flowrate are H H) then atomic hydrogen (H) isdetected.

ll three H-lines are present  4 4 is  H4  is  H  is H H 

Condition 4. f (Nitrogen flowrate is H H) then molecular nitrogen (N f is detected.N2( ) is H H  N2( ) is .

Table 5. Results from a test set of the ANN model for atomic argon, Ar

target output network output
Plasma Ar(420) Ar(750) Ar(763) Ar(420) Ar(750) Ar(763)
M2 654 41 23 900 146 90
Ar/H2 510 227 100 512 217 121

679 212 123 693 224 130
Ar 214 433 240 241 653 387
Ar/H2/N2 178 270 184 87 236 129
Ar/N2 179 356 194 91 313 182
Ar/H/CH4 182 519 326 163 471 265
Ar/H/N/CH 272 299 131 199 359 198



2.  uture or
Various multivariate techniques including principal component analysis (PCA) and 
partial least squares (PLS) [11] are currently employed to analyse spectral data which 
are typically renowned for the inherent difficulties in their prediction due to the large 
number of variables involved. Therefore, the goal of this work was not to reiterate the 
application of such multivariate techniques to optical emission spectral analysis but to 
apply artificial intelligence techniques instead. The work to follow from the results 
obtained will incorporate qualitative reasoning [12], [13] principles to address some of 
the external parameters that influence complex optical emission spectral analysis.
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Conclusions
ie AI techniques employed have been successfully incorporated into a hybrid system

of neural networks and rule-based system that has produced a semi-automated
ciemical species detection unit that provides simple and fast interpretation of ex-situ
optical emission spectra stored in a digitised format. Future work will adapt the hybrid
system by extraction of its generic properties to make it transferable to a much wider knowledge base of spectral data.
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Abstract. Recent explorations in the field of knowledge acquisition for symbolic 
artificial intelligence (AI) systems have incorporated techniques for extracting symbolic 
rules from trained artificial neural networks which can be directly imported to a 
knowledge base. The idea of modeling part of the practical plasma deposition of 
diamond-like carbon from its optical emission spectral data to extract generic rules for 
the automatic control of the process would be a useful contribution to fundamental 
process control and hence is one of the aims of this work. Although optical emission 
spectroscopy (OES) gives insights into plasma processes and is extensively used as an 
in-situ diagnostic of ionised gas plasmas, ways of interpreting the spectra without prior 
knowledge or expertise from the user's stand-point has encouraged the use of AI 
techniques to automate the interpretation process. This paper addresses how to extract 
rules from neural networks trained on continuous valued inputs with specific results 
from neural network models created by training on the external parameters from real 
plasma processes. The neural network used is the well-known multilayer perceptron 
(mlp) consisting of three layers and employs a supervised learning algorithm. The input 
data consists of the plasma process conditions, and the actual peak intensities for a 
particular chemical species at certain wavelength positions (from the OES data) are 
assigned as the desired output data. The inherent knowledge stored in the connection 
weights elicit a set of rules or knowledge representations that are useful for efficient 
spectral interpretation.
1 Introduction
To effect a more robust and consistent system of interpretation of optical emission 
spectral data, previously tested on a hybrid neural network and rule-based system, 
certain existent rule extraction techniques have been adapted to extract knowledge/rules 
from trained neural network models. Much work has been done on rule extraction from 
neural networks but most have provided solutions for data that have discrete values i.e. 
input vectors are limited to binary or bipolar data. Currently in evidence from various 
journal papers [1,2,3] is the fact that various techniques exist for extracting rules from 
various problem domains using pedagogical, decompositional and a hybrid of both 
approaches to do so. Of note were the BRAINNE system by Sestito and Dillon [4,5], 
Craven, Towell and Shavlik's subset function for rule-extraction-as-learning [4,6,7] and 
Tickle et al's DEDEC which incorporates a coefficient reduction approach to identifying 
causal factors and functional dependencies during weight vector analysis [4,8]. Another 
technique is Thrun's validity interval analysis (VIA) [4,6] which tests rules by 
propagating activation intervals through a network after constraining some ol the input 
and output units. Thrun sets the validity interval as valid activation ranges for each unit 
and so this allows the activation intervals to be propagated backward as well as torwaid
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through the network, and allows arbitrary linear constraints to be incorporated into the 
computation ot validity intervals. This allows for the confirmation of valid rules that 
have been detected. Some ot these traits have been adopted within the final extraction 
algorithm implemented here, however, the alternative to this could be to decompose the 
network into a collection ot smaller models and then extract a set of rules describing 
each ot the constituent models. The former instance of adapting Thrun's method for this 
research was more appropriate because the problem domain of spectral interpretation is 
concerned with continuous-valued multi-output values, to determine the relation 
between the inputs and their relative output ranges.
2 Trained Neural Net or  Model
2.  Neural or s Predict Template
Neural or s Predict [9] software package was used for the first stage to produce the
most generalised neural network model architecture via a train, test and then validation 
cycle. Predict works from the Microsoft Excel1 N1 worksheet platform. Traditionally, 
during neural network learning there are separate training and test sets. The training set 
is used to train the network until the error of this data set is minimised. The test set is 
then used to determine the performance of the network on data that are not trained 
during learning. Learning is normally stopped when the test set error is at a minimum. 
It is at this point that the network generalises best. hen learning is not stopped then 
overtraining occurs causing the performance of the entire data set to degrade, despite the 
fact that the error on the training set still gets smaller. In Predict, not only does the 
network learning involve a train and test set but also has a third data set called the 
validation set which checks the overall performance of the trained network. Since the 
test set is indirectly used in the building of the model, the validation data provides a 
totally independent data set which gives a better analysis of the model's generalisation 
capabilities.
Real plasma parameter conditions were the inputs to the network - this consisted of the 
gas flows for argon, hydrogen, nitrogen and methane, power and pressure - six input 
variables altogether. The target output values were the emission line intensities from 
specific wavelength positions for each of the seven species (i.e. Ar, H, H2, N2, N2\  CH, 
CH+)' to be modeled. Data from 123 optical emission spectra are used in the creation 
of the neural network models. The data set was selectively divided into a 72 train set, 
24 test set and 27 validation set. This provided a representative set of training patterns 
for network learning as well as a separate set for testing the model in order to avoid 
overfitting the data. The validation set is independent of the train/test set and represents 
data that has not been seen before by the model. The performance on this validation set 
gives a better indication of the deployed model's predictive ability and verifies the 
species models ability to generalise. During the building of a network (mlp) in Predict,

' For Ar. H, II2 and CH there are three identifiable emission peak positions that are used for the target outputs 
in the ANN model, e.g. for Ar they arc Ar(420), Ar(750) and Ar(763) - the number in brackets identifies the 
wavelength position in optical emission spectra. Similarly, for N2, N2 and C II there are two identifiable
peak positions.



a variable selection process is carried out on the input data field using a genetic 
algorithm to find good subsets of the full set of input variables created' from data 
analysis and transformation. In the case of the species models created here, all the input 
data was scaled into the data analysis field with the typical tanh (hyberbolic tangent) 
squashing function acting on the hidden units. Since the neural network (ANN) is 
modeling a highly nonlinear multi-input multi-output identification process, a linear 
activation function is applied to the network output in order for the ANN model to 
predict feasible real-valued output intensity values.
Table  Species models 

Ar model 6 / . 55 H model 5 / . 5Ar(420) 
R H(434)

cy
20%

Conf. Intvl 
95 %|

R Accuracy
20%

Conf. Intvl
95%

Records
0.92 253.46 0.85 0.94 163.89 1230.88 293.59 0.85 0.93 178.68 721.00 186.95 0.93 1 101.94 240.96 205.01 0.79 0.93 181.69 27Ar(750)

R Accuracy
20%

All 0.93 0.98
Train 0.93 0.99
Test 0.97 0.96
Valid 0.92 1.00

Conf. Intvl 
95%

H(486)
R Accuracy Conf. Intvl

20% 95%
230.92 
222.40 
226.33 
280.19

Ar(763)
R Accuracy Conf. Intvl

20% 95%

0.88
0.88
0.92
0.85

301.64
323.09
248.18
315.41

H(656)
R Accuracy Conf. Intvl

20% 95%
0.91
0.90
0.97
0.88

150.98 
157.01 
105.82 
181.44

0.87
0.87
0.90
0.84

0.89
0.88
0.96
0.89

505.36
544.03
425.14
513.65

Records
123

Records

The final template identified in Predict, used the following generic settings for the 
creation of each of the seven species models - 
Problem Type - prediction
Noise Level - noisy data (associated with spectral data)
Data Transformation - scale data only (i.e. no data transformation; using the raw input 
variables)
Variable selection - comprehensive (finds good subset from the set of raw input 
variables)
Network search - exhaustive (finds best network, constraints taken into account) 
Maximum number of hidden units - 3
Evaluation - correlation (root mean power error alternatively)
Output activation function - linear



Hidden activation function - tanh (used sigmoid initially)

Table 2 Species models 
N2-model 4-3-2/0.9567

N2(337)
CH model 5-3-2/0.9612

R Accuracy Conf. Intvl 
20% 95%

R

088" 0.92 873.80 " 0.92
0.85 0.88 1034.13 0.91
0.98 1.00 399.39 0.99
0.91 0.96 771.55 0.90

CH (395)
Accuracy Conf. Intvl Records 

20% 95%
147.64
167.09
82.28

150.06

R
N2(389)

Accuracy Conf. Intvl 
20% 95%

R
CH (422)
Accuracy Conf. Int Records 

20% 95%
All 0.94 1 359.73 0.87 0.90 147.97 123
Train 0.94 1 393.26 0.87 0.89 154.07 72
Test 0.95 1 330.96 0.93 0.96 131.85 24
Valid 0.94 1 323.41 0.81 0.89 160.14 27

Table 3 Species models
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From this generic template, the trained ANN models for seven species were obtained
The architecture of the models are listed in Tables 1, 2, 3 and 4 with their test results 
showing
R - the linear correlation value between the target output intensity values and the 
predicted outputs (real-world value produced by the model);
Accuracy - the percentage of predicted outputs that are within the specified tolerance 
(20%) of the corresponding target outputs.
Confidence Interval - the range [target output +/- confidence interval] within which the 
corresponding predicted output occurs 95% of the time.

Table 4 Species models
N2 model 5-3-2/0.9633

All
T ra i n
Test
Valid

N/(391)
R Accuracy Conf. Intvl

20% 95%
Records

0.96 0.99 470.28 
0.96 0.99 511.21 
0.98 1 420.91 
0.96 I 442.74

123
72
24
27

All
Train
Test
Valid

N/(427)
R Accuracy Conf. Intvl

20% 95%
Records

0.93 0.98 158.97 
0.93 0.97 169.59 
0.94 I 142.44 
0.92 1 159.73

123
72
24
27

Hie maximum limit of three hidden units was set, after several trials to find the most 
generalising network with the minimum possible hidden units. All, but one model, have 
three hidden units; the H2-modeI works well with two hidden units.

Fig. 1 Ar(750)' predict vs Ar(750) target
1500 _______________________________

-500 ___________________________
Ar(750) target intensity

Fig. I demonstrates a typical scatter plot of the predicted Ar(750)' intensity versus the 
Ar(750) target intensity (for the line emission in the spectrum at 750-nm). Similarly,
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Fig 2 shows the scatter plot of predicted versus target intensities for N2+ (at the 391 -nm
peak). Both plots show that the outputs follow a linear path, i.e. close io a straight line 
thus demonstrating that the model generalises well.

Fig. 2 N2*(391)’ predict vs N/(391) target

2.2 Results for all Species Models (shown in Tables l, 2, 3 and 4)

Ar model
The three output values have produced train, test, validation results that demonstrate that 
the network model generalises well. It indicates that Ar(750) produces the best set of 
test/validation results in terms of very good correlation (high R-value) between the target 
and predicted outputs i.e. 0.97 on test set and 0.92 on validation set, and so the model 
can make accurate predictions on data it has never seen before. Since the prominent 
peak location for identifying the presence of atomic argon is at the 750-nm wavelength 
position in optical emission spectra (OESf this result also verifies that the model works 
well for detection of primary emission line peaks in OES.

H model
The variable selection algorithm in Predict analyzes the input field and skips the argon 
flow input variable i.e. in this instance, argon gas flowrate has no effect on whether 
atomic hydrogen is present and is not included in the given set of input variables. This 
also means that there are no connection weights from the argon flow input unit. All 
three H-lines give good correlation (high R-values) between the train and test set thus 
the network generalizes very well. The validation set produces good correlation's that 
are close enough to l .

H2 model
On analysis of the input field, the Ar flow input is ignored indicating once again that 
argon gas How is not a contributory factor to whether H2 is detected or not. The H2-

“ To identify the presence of a chemical species within OES spectra, there are a characteristic set of emission 
lines that classify that species. Inherently there will always be prominent emission lines within a spectral 
pattern for a given species and these are well-known to expert spectroscopists. So for example, atomic argon 
is detected when the emission line is present at the most prominent peak position ot 750-nm.
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model generalises well from the correlation's obtained from all three output line 
intensities and tests well on the validation set.
The other four species models for N2, N2+, CH, CH+ all generalise well too.

Please note that the validation set is an entirely separate data set that the network has not
seen, therefoie correlation (R) values well above 0.75 are considered to be trustworthy
since data sets are inherently noisy (a typical feature of optical emission spectra).
Theiefoie, the multi-outputs of the trained neural network architecture obtained are 
describing a good nonlinear relationship.
The minimum number of hidden units are adopted for the final trained ANN model.
Theie are 3 hidden units in six of the seven species models, and 2 hidden units in one 
species model.

Having completed the model creation, testing and validation, the next stage was to
extract rules from the trained ANN using an adaptation of Thrun's [4,6] validity interval
algorithm (VIA). I his is an ensemble technique which uses the valid connection
weights from the trained models of each of the species models as the basis functions for 
the activation of multi-output values.

3. Rule Extraction

3.1 Symbolic Relationships

A mechanism in Predict that analyses the input and output fields from the ExcelIM 
worksheet lists any data transformations associated with each field. This enables a 
visual display to indicate which input fields have had all the transforms associated with it 
rejected by the variable selection algorithm. This can quickly indicate to the user the 
input Helds that appear to have no effect on the target output field(s). It effectively 
prunes the number of inputs to the network model which assists network optimisation. 
Hie molecular nitrogen (N2) species model demonstrates this in the 4-3-2 architecture 
that is achieved; note that argon flowrate and pressure are rejected in the final model.
I his means that the dependence of N2(337) and N2(389) emission intensities on argon 
flow and pressure are negligible. This is a sound premise to accumulate any initial 
symbolic knowledge from the trained ANN model. This acts as a preliminary stage of 
pruning weights from the network architecture and will assist in the final assessment of 
the connection weights from the trained model.

3.2 Basis of Rule extraction algorithm

Thrun's VIA algorithm [4,6] has been adapted using a combination of sensitivity 
analysis to monitor the sensitivity of the network outputs to small changes in input, and 
assessing the connection weights in the trained ANN model.
Using Predict’s sensitivity analysis in determining the effect that a small change (10%) 
in an input value will have on the output values (the multi-output intensity values) has 
defined explicitly the input variables that characterise the rules generated from the 
trained ANN.
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Note that the ANN models have these set validity intervals for the input variables as 
follows:

The initial validity range for the input variables are:
Argon flowrate Ar> 0 to 40 seem (standard cubic centimetre per minute)

0 to 80 seemHydrogen flowrate <H2> 
Nitrogen flowrate <N2> 
Methane flowrate <CH4> 
Power <Pwr>
Pressure <Prs>

0 to 40 seem 
0 to 10 seem 

50 to 250 W (Watts)
80 to 800 mTorr (milliTorr)

at 10% increase in input range for Power and Pressure only (used for sensitivity test): 
Power <Pwr> 55 to 275 W
Pressure <Prs> 88 to 880 mTorr

at 10% decrease in input range for Power and Pressure only (used for sensitivity test) 
Power <Pwr> 45 to 225 W
Pressure <Prs> 72 to 720 mTorr
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Correlation between target and predicted
outputs for Ar(750)

'i .

2 3 4
five sensitivity intervals

□  all data 
set
train set 

test set

validation 
set

The sensitivity analysis is carried out with a 10% change in a single input variable to 
ascertain whether there is a significant effect on the output variables. For this sensitivity 
measure, the 10% change was only applied to two of the input variables, namely power 
and pressure. Relating the optical emission intensity for a given species to the power 
and pressure variables are more useful for generating qualitative rules for plasma process 
control. Therefore, out of the six input variables in use, power and pressure are the only 
two that are altered for the sensitivity analysis. So for each ANN model, a sensitivity 
measure is carried out on (l) the original, i.e. no changes in input variables, (2)10% 
increase in power, (3) 10%) decrease in power, (4) 10%) increase in pressure and (5) 
10% decrease in pressure (these are the five sensitivity intervals whose resultant tests on 
the trained ANN model are depicted in Figs. 3 and 4).

From testing the argon model (from Ar-750 output), results displayed in Figs. 3 and 4, it 
is determined that a 10% change in one input variable does not have a very significant 
change in the output values. Thus comparing the ANN model test results for all five
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sensitivity intervals show that the correlation (of predicted to output value) does not 
change from the original. Similarly, the accuracy values do not change very much. 
This means that the network models sensitivity to 10% changes in the inputs (for power 
and pressure) do not have any marked effect on the values of the outputs. This is a 
good sign which verifies that the model's predictive capabilities are sound.

100%
Fig. 4 Accuracy measure of Ar(750) output

a
CTJ

3OO
<

40%

20%

0%

□  all data 
set
train set 

test set

validation
set

1

five sensitivity intervals

Table 5 Sensitivity analysis for Ar-model
(mean sum of squares and variance for each input-output 
relationship)
[A.ve. Square Ar h 2 N2 c h 4 Pwr

Ar(420) 0.01 0.08 0.00 0.03 0~P7
Ar(750) 0.70 0.01 0.02 0.02 0.02

Ar(763) 0.49 0.02 0.02 0.02 0.01

Variance Ar h 2 N2 c h 4 Pwr
Ar(420) 0.01 0.00 0.00 0.00 (L00

Ar(750) O.ll o.oi 0.00 O.OI 0.01
Ar(763) 0.08 o.oi 0.00 O.OI 0.01

The actual sensitivity data obtained' from each model indicates which input variables 
are the most likely factors that will control whether a species will be detected within 
OES spectra. For example, the input values for <Ar> and <Prs> have the most effect on 
the output in the argon model, see Table 5. This relative measure of input variable to 
output value is expressed in terms of the linguistic quantity of HIGH (LOW would be 
the alternative). From this premise, the following conjunctive rules have been extracted 
from input-output relationship inferences:

l. If (Pressure and Argon flowrate are HIGH) then (atomic argon, Ar, is detected).

The output sensitivities to the variations in inputs from the trained model produces a matrix of 6 x 123 for 
each output value. There are seven species models with live sets of sensitivity intervals carried out on each 
model. This produces a very large table of results which has not been included in the paper.
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If (Power and Hydrogen flowrate are HIGH) then (atomic hydrogen, H, and 
molecular hydrogen, H2, are detected).
If (Power and Nitrogen flowrate are HIGH) then (molecular nitrogen, No, and ionic 
nitrogen. N2 , are detected).
If (Power and Methane flowrate are HIGH) then (methyl fragment, CM, and 
methyl ion, CH , are detected).

3.2.1 Extraction algorithm

1.

The weights expressed from each trained ANN model is as follows (example in Table 
6):

Sum all the weights for a given unit/node in the architecture. The processing
units/nodes are the two or three hidden units and the three or two output units.
Since weights are generated randomly in the building of the network model,
assessment of the individual weight connections between two units was avoided as
this does not always truly represent the relationship between those two units. The
summed inputs to individual units are more representative for explanation 
purposes.
Hie individual weights to each of the hidden units represents the slope of the 
activated transfer function - tanh (the non-linear squashing function used during 
model training) at particular points in the weight space and the bias is the shift of 
tanh along the axis of the weighted input space. Summed weights to individual 
hidden units will thus determine whether that hidden unit contributes to or inhibits

2.

the occurrence of the output.

hidden output activation = tanh
( i

WikXi + ( 1)

w ik: value of weight connection from input to hidden unit (from i=l to n , n=no 
of inputs)

Xj : input value (from i=l to n, n=no.of inputs)
9 k : bias to hidden unit (from k=l to z, z=no. of hidden units)

3 .

4 .

5 .

Check which summed weight values representing individual units exceeds the bias 
weight/threshold value for both hidden and output units.
If at least one summed weight value exceeds the bias threshold in the hidden layer 
then that unit is contributory towards the occurrence of the output.
If at least one summed weight value exceeds the bias threshold in the output layer 
then that unit is contributory to a positive output i.e. in this case, the species is 
present.

Results in Table 6 indicate from the weighted hidden and outputs via the extraction 
algorithm that the argon model can detect the presence of argon species.

A further step has been included to classify the individual emission line intensities for 
each species in terms of their relative strengths. The symbolic classifications have been 
assigned from a relative proportion of the summed weight quantities between the multi-
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output values for each model. Therefore, in the case of atomic argon (Table 6),
Ar(750) has the most positively weighted sum, followed by Ar(763) and then Ar(420).
These three values are expressed in the characteristic linguistic ranges of HIGH.
MEDIUM and LOW respectively. Where there are only two outputs for the emission 
line intensity values, the ranges are HIGH and LOW.

Table 6 Summed weights to individual units - for atomic argon model

Bias 
Weight (sum of)

Hidden 1 Hidden 2 Hidden 3 Output 1 Output 2 Output 3

-0.018 (f 564
Ar(42Q) Ar(750) Ar(763)

-0.224 -0.044 -0.101 -0.152
-0.082 -0.564 0.585 -7.412 0.826 0.629

The consistency in the algorithm has been applied to the other six trained models and
altogether generates these set of symbolic classifications for the multi-output values, 
assigned as follows:
Atomic argon species model - Ar(420) - LOW, Ar (750) - HIGH ,

Ar(763)-MEDIUM.
Atomic hydrogen species model - H(434) - MEDIUM, H(486) - LOW,

H(656) - HIGH.
Molecular hydrogen species model - H2(406) - MEDIUM, H,(417) - HIGH,

H2(420) - LOW.
Molecular nitrogen species model - N2(337) - HIGH, N2(389) - LOW.
Ionic nitrogen species model - N2+(391) - HIGH, N ,f(427) - LOW.
Methyl fragment species model - CH(314) - MEDIUM," CH(387) - LOW,

CH(43 1) - HIGH.
Methyl ion species model - CH (395) - LOW, CH+(422) - HIGH.

I his two/three class ruleset can be used to interpret a new set of spectra in order to
classify the relative proportions of the characteristic set of emission lines for a given 
species.

4 Conclusion

Seven distinct chemical species namely - atomic argon (Ar), atomic hydrogen (H), 
molecular hydrogen (H2), molecular nitrogen (N2), ionic nitrogen (N2), methyl fragment 
(CH), and methyl ion (CH ) - have been modeled. The performance of the trained 
models on different data sets have been very good. The knowledge or rules are 
extracted from the neural network models via an assessment of all the connection 
weights between the inputs to hidden units and the hidden units to outputs. This work 
has shown that excellent trained artificial neural network models can be created using 
specific plasma parameters linked to intensity emission lines from OES data for a given 
set of chemical species. The trained ANN models have good predictive capabilities and 
have also provided a set of procedures to extract robust rules. The assessment of the 
connection weights for extracting rules is not obtained in isolation but involves the prior 
data field analysis of Neural Works Predict to prune negligible input weights. The



simple implementation of the extraction algorithm makes it useful for the non-expert to
interpret spectra both accurately and quickly. The extracted rule set has effectively
generated a generic set of linguistic or fuzzy conditions that are useful for process 
control purposes.
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Appendix A

/* Simple Rule-Based System*/

/* Search for emission lines at relevant wavelength band heads *I

go:-collect_emission lines, 
ruIe(Number, Species), 
reply(Species, Reply), 
write(Reply),nI,
write('The rule used was number '),write(Number),nl,nl, 
retractall(emissionline).

/* USER INTERFACE
Data inputs for the normalised intensity values will be read from an Excel file that 
automatically calculates the normalised intensity values at known wavelength points 
for particular chemical species (a database of known single species) obtained from any 
given OES spectrum that is being interpreted for what species it contains (from the plasma)

Peak Search - P represents most prominent peak; S represents supportive peak and 
C represents confirmatory peak. */

initialise:-put(12),nl,
write('****CHEMICAL SPECIES IDENTIFICATION****'),nl,nl, 
writeO ***FOR OPTICAL EMISSION SPECTRUM***'),nl,nl, 
write('A value will be inserted at each input.'),nfnl.

/* inserting data from external source */

emission
emission
emission
emission
emission
emission
emission
emission
emission
emission
emission
emission
emission
emission

ine(ar Pline,0.64). 
ine(ar_Sline,0.33). 
ine(ar Cline,0.56). 
ine(h Pline,0.85). 
ine(h_Sline,0.48). 
ine(h_Cline,0.20). 
ine(h2 Pline,0.21). 
ine(h2_Sline,0.77). 
ine(h2_CIine,0.60). 
ine(n2 Pline,0.61). 
ine(n2_Sline,0.77). 
ine(n2ion Pline,0.97) 
ine(n2ion_Sline,0.26) 
ine(ch Pline,0.56).



emission line(ch_SIine,0.83). 
emission _line(ch_Cline,0.10). 
emission_line(chion_Pline,0.97). 
emission_line(chion Sline.0.23).

collectemissionlines:-

peak_search(Peak_search,Emission line),write(Peak_search),vvrite(Emission line).nI, fail.
assertz(Emission_line,_). 
collect emission lines.

/* fi rstpeaksearch  */

peak_search('Input the normalised intensity value at the 750-nm bandhead:',write(ar-Pline)). 

peak_search( Input the normalised intensity value at the 656-nm bandhead:',write(h Pline)). 

peak_seaich( Input the normalised intensity value at the 406.7-nm bandhead:',write(h2)Pline)). 

peak_search('Input the normalised intensity value at the 337-nm bandhead:',write(n2_Pline)). 

peak_search('Input the normalised intensity value at the 391.4-nm bandhead:',write(n2ion_Pline)). 

peak_search('Input the normalised intensity value at the 3 14.5-nm bandhead:',write(ch_Pline)). 

peak_search('Input the normalised intensity value at the 422.5-nm bandhead:\write(chion_Pline)). 

/*second_peak_search*/

peak_search('Input the normalised intensity value at the 763-nm bandhead:',write(ar_Sline)).

peak_search('Input the normalised intensity value at the 486-nm bandhead:',write(h Sline)).

peak_search('Input the normalised intensity value at the 417.7-nm bandhead:',write(h2_Sline)).

peak_search('Input the normalised intensity value at the 389-nm bandhead:',write(n2 Sline)).

peak search('Input the normalised intensity value at the 427.8-nm bandhead:',vvrite(n2ion Sline)).

peak search('Input the normalised intensity value at the 387.1-nm bandhead:',vvrite(ch Sline)).

peak search('Input the normalised intensity value at the 395.4-nm bandhead:',write(chion_Sline)).
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/*third_peak_search*/

peak_search('Input the normalised intensity value at the 420.1-nm bandhead:',write(ar_Cline))

peak_search('Input the normalised intensity value at the 434-nm bandhead:',vvrite(h Cline)).

peak_search('Input the normalised intensity value at the 420.5-nm bandhead:',write(h2_Cline))

peak_seaich( Input the normalised intensity value at the 43 1.4-nm bandhead:',write(ch Cline)).

Rules, incorpoiating threshold tor normalised intensity values for a given emission line */

rule( 1 ,atomic_argon_present)>
(ar Pline > 0.5, ar_Sline > 0.4, ar_Cline > 0 .1 ); (arPline > 0.5, ar Sline > 0.4); (arPline > 0.5)

ruIe(2,atomic_hydrogen_present)>
(h_Pline > 0.5, h_Sline > 0.4, h_Cline > 0.1); (h_Pline > 0.5, h_Sline> 0.4); (h Pline > 0.5).

rule(3,molecular hydrogen present):- 
(h2_Pline > 0.3 , h2_Sline > 0.3, h2_CIine > 0.4).

rule(4,molecular_nitrogen_present)>
(n2_Pline > 0.5, n2_Sline > 0.5); (n2 Pline > 0.9).

rule(5,ionic_nitrogen_present):-
(n2ion_pline > 0.8, n2ion Sline > 0.2); (n2ion Pline > 0.8).

rule(6,methyl fragment present):-
(ch Pline > 0.5, ch Sline >0.1, ch Cline >0.1).

rule(7,methyl ion_present):-
(chion Pline > 0.7 , chion Sline > 0.1); (chion Pline > 0 .3).

rule(8,atomic argon absent):- 
ar Pline < 0.5 .

rule(9,atomic hydrogen absent):- 
h Pline < 0.5 .

rule( 10,molecular_hydrogen_absent):-
(h2 Pline < 0.3 , h2_Sline < 0.3, h2 Cline < 0.4).
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rule( 1 1,molecular nitrogenabsent):- 
(n2_Pline < 0.5, n2_Sline < 0.5); (n2_Pline < 0.9)

rule( 12,ionic_nitrogen absent):- 
n2ion_pline < 0.8 .

rule( 13,methyl_fragment_absent):-
(ch PIine < 0.5, chSline <0.1, ch Cline < 0.1)

rule( 14,methyl Jonabsen t):- 
chion Pline < 0.3 .

/* Replies */

reply(atomic_argon_present,('Atomic argon is present within this OES spectrum because there is a
strong emission line at the 750-peak, and emission peaks are identified at the 763-nm and 420.1-nm
band heads. ),nl,nl,( Therefore, the plasma from which this OES data was collected contains the atomic 
argon, Ar, species.')).

reply(atomic_hydrogen_present,('Atomic hydrogen is present within this OES spectrum'),nl,('because 
there is a strong emission line at the 656-peak, and emission peaks are'),nl,('identified at the 486-nm 
and 434-nm band heads.'),nl,nl,('Therefore, the plasma from which this OES data was 
collected'),nl,('contains the atomic hydrogen, H, species.')).

reply(molecular_hydrogen_present,('Molecular hydrogen is present within this OES 
spectrum'),nl,(’because there is a strong emission line at the 406.7-peak, and emission peaks 
are ),nl,( identified at the 417.7-nm and 420.5-nm band heads.'),n 1.nI,('Therefore, the plasma from 
which this OES data was collected'),nl,('contains the molecular hydrogen, H2, species.')).

reply(molecular_nitrogen_present,('Molecular nitrogen is present within this OES
spectrum'),nl,('because there is a strong emission line at the 337-peak, and the emission peak 
at'),nl,('the 389-nm band head is identified.'),nl,nl,('Therefore, the plasma from which this OES data 
was collected'),nl,('contains the molecular nitrogen, N2, species.')).

reply(ionic_nitrogen_present,('Ionic nitrogen is present within this OES spectrum'),nl,('because there is 
a strong emission line at the 391.4-peak, and the emission peak at'),nl,('the 427.8-nm band head is 
identified.'),nl,nl,('Therefore, the plasma from which this OES data was collected'),nl,('contains the 
ionic nitrogen, N2+, species.')).

reply(methyl_fragment_present,('Methyl fragment, CH, is present within this OES
spectrum'),nl,('because there is a strong emission line at the 314.5-peak, and emission peaks 
are'),nl,('identified at the 387.1-nm and 431.4-nm band heads.'),nl,nl,('Therefore, the plasma from 
which this OES data was collected'),nl,('contains the methyl fragment, CH, species.')).

reply(methyl_ion_present,('Methyl ion is present within this OES spectrum'),nl,('because there is a 
strong emission line at the 422.5-peak, and the emission peak at'),n!,('the 395.4-nm band head is
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identified.'),nl.nl,(Therefore, the plasma from which this OES data was collected'),nl,('contains the 
methyl ion, CH+, species.')).

reply (atom ic_argon_absent,('Atomic argon is not present within this OES spectrum because there is no
strong emission line at the 750-nm band.'),nl,nl,(Therefore, the plasma from which this OES data was 
collected does not contain the atomic argon, Ar, species.1)).

reply (atom ic_hydrogen_absent, (’Atomic hydrogen is not present within this OES
spectrum'),nl,('because there is no strong emission line at the 656-nm band.'),nl,nl,('Therefore, the
plasma from which this OES data was collected'),nl,('does not contain the atomic hydrogen H 
species.')).

reply(molecular_hydrogen_absent, ('Molecular hydrogen is not present within this OES
spectrum'),nl,('because there are no strong emission lines at the 406.7-nm, 417.7-nm or 420.5-nm band
heads. ),nl,nl,( Therefore, the plasma from which this OES data was collected'),nl,('does not contain the 
molecular hydrogen, H2, species.')).

reply(molecu!ar_nitrogen_absent,('Molecular nitrogen is not present within this OES
spectrum'),nl,('because there are no strong emission lines at the 337-nm band head in
particular.'),nl,nl,('Therefore, the plasma from which this OES data was collected'),nl,('does not contain 
the molecular nitrogen, N2, species.')).

reply(ionic_nitrogen_absent,('Ionic nitrogen is not present within this OES spectrum'),nl,('because 
there is no strong emission line at the 391.4-peak in particular.'),nl.nl,('Therefore, the plasma from 
which this OES data was collected'),nl,('does not contain the ionic nitrogen, N2+, species.')).

reply(methyl_fragment_absent,('Methyl fragment, CH, is not present within this OES 
spectrum'),nl,('because there are no prominent emission lines at the 314.5-nm, 387.1-nm or 431.4-nm 
band heads.'),nl,nl,(’Therefore, the plasma from which this OES data was collected'),nl,('does not 
contain the methyl fragment, CH, species.')).

reply(methyI_ion_absent,('Methyl ion is not present within this OES spectrum'),nl,('because there is no 
strong emission line at the 422.5-nm band head in particular.'),nl.nl,('Therefore, the plasma from which 
this OES data was collected'),nl,('does not contain the methyl ion, CH+, species.')).
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APPENDIX B
sensitivity analysis 
atomic argon model 6-3-3/0.9355
sensitivity of Ar(420) spectral line to inputs 
Training data

Pwr|Ar |H2 |N2 ] CH4
01r  o.cf ~ n -0*2
0.1 0.2I -0.1 -0.2

I 0.1 O.c> -0.1 -0.2
0.1 0.2» -0.1 -0.2
0.1 0.3. -0.1 -0.2
o.cI 0.2 o.ci -0.1
0.1 0.3 0.0I -0.1
0.1 0.3 0.0' -0.2
0.1 0.3 0.0 -0.1
0.1 0.2 0.0 -0.1
0.1 0.3 -0.1 -0.2
0.1 0.3 0.0 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 0.0 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 0.0 -0.1
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 0.0 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 0.0 -0.1
0.1 0.3 -0.1 -0.2
0.0 0.2 0.0 -0.1
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.0 0.2 0.0 -0.1
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0 1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2
0.1 0.3 -0.1 -0.2

sensitivity analysis
atomic argon model 6-3-3/0.9355_______
sensitivity of Ar(750) spectral line to inputs 
Training data

[Ar H2 N2 CH4 Pwr Prs
0 0 -0.1 oo 0 2 OO

0 7

0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.1 0.0

0 7

0.0 -0.1 0.0 0.1 0.0
0 7

0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.1 0.0

0 7

0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0
0 5 0.1 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0 5 0.1 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0
0 5 0.1 -0.1 0.0 0.2 0.0
0 5 0.1 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.1 0.0
0.6 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0 I
0.8 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.1 0.0
0.8 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.1 0.0
0 6 0.0 -0.1 0.0 0.2 0.0

0 7 0.0 -0.1 -0.1 0.2 0.0
0 5 0.1 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 0.0 0.2 0.0
0 6 0.0 -0.1 0.0 0.2 0 0
0 5 0.0 -0.1 0.0 0.2 0.0

0 7

0.0 -0.1 0.0 0.2 0 0
0 8 0.0 -0.1 0.0 0.2 0.0
0 8 0.0 -0.1 -0.1 0.2 0.0
0 6 0.0 -0.1 0.0 0.2 0.0

| 0.8 0.0 -0.1 -0.1 0.2 o.o |
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sensitivity of Ar(420) spectral line to inputs 
Training data

(At H2 N2 CH4 Pwr Prs
0 1 0.3 -0.1 -0.2 0 4 OO
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1

0.3 -0.1 -0.2 0.4 0.0
0.0 0.3 0.0 -0.2 0.4 0.0
0 1 0.3 0.0 -0.2 0.4 0.0
0 1 0.3 0.0 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1

0.3 -0.1 -0.2 0.4 O.Oj
0 1 0.3 I -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0 1 0.3 -0.1 -0.2 0.4 0.0
0.0 0.2 0.0 -0.1 0.3 0 0
0.1 0.3 0.0 -0.1 0.3 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0
01 0.3 -0.1 -0.2 0.4 o . o |

sensitivity of Ar(750) spectral line to inputs 
Training data

Test data

|Ar H2 N2 CH4 Pwr Prs |
0 8 OO -0.1 o o 0 2
0.8 0.0 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 0.0 0.2 0 0
0.8 0.0 -0.1 0.0 0.2 0 0

0 7

0.0 -0.1 0.0 0.2 0 0
0.7 0.0 -0.1 0.0 0.2 0 0
0 7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 0.0 0.2 0 0
0 7 0.0 -0.1 -0.1 0.2 0.0
0.7 0.0 -0.1 -0.1 0.2 0.0
0 7 0.0 -0.1 0.0 0.2 0 0
0.7 0.0 -0.1 0.0 0.2 0.0
0.6 0.0 -0.1 0.0 0.2 0.0
0 6 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 -0.1 0.2 0 0
0.7 0.0 -0.1 0.0 0.2 0 0
0 7 0.0 -0.1 0.0 0.2 0.0
0 7 0.0 -0.1 0.0 0.1 0.0
0 7 0.0 -0.1 0.0 0.1 0.0
0 7 0.0 -0.1 0.0 0.2 0.0

I  0 7
0.0 -0.1 0.0 0.2 o . o |

Test data
H2 N2 CH4 Pwr Prs | |Ar H2 N2 CH4 Pwr Prs

0.1 0.3 -0.1 -0.2 0.4 0.0
0 7

0.0 -0.1 0.0 0.2 0.0
0.1 0.3 0.0 -0.1 0.4 0.0 0.7 0.0 -0.1 0.0 0.1 0.0
0.1 0.2 0.0 -0.1 0.3 0.0 0.7 0.0 -0.1 0.0 0.1 0.0
0.1 0.2 0.0 -0.1 0.3 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.1 0.2 0.0 -0.1 0.3 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.0 0.2 0.0 -0.1 0.2 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.1 0.2 0.0 -0.1 0.3 0 0 0 7 0.0 -0.1 0.0 0.1 0.0
0.1 0.3 0.0 -0.1 0.4 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0 0 7 0.0 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0 0 7 0.0 -0.1 0.0 0.2 0.0
0.0 0.2 0.0 -0.1 0.3 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.0 0.2 0.0 -0.1 0.3 0.0 0 7 0.0 -0.1 0.0 0.1 0.0
0.0 0.2 0.0 -0.1 0.3 0 0 0 7 0.0 -0.1 0.0 0.1 0.0
0.0 0.2 0.0 -0.1 0.3 0 0 0 7 0.0 -0.1 0.0 0.1 0.0
0.1 0.3 -0.1 -0.2 0 4 0 0 0 6 0.0 -0.1 0 0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0 0 7 0.0 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0 0.8 0.0 -0.1 -0.1 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0 0 5 0.1 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0 0 8 0.0 -0.1 -0.1 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0 0 0 7 0.0 -0.1 0.0 0.2 O . O j

0.1 0.3 -0.1 -0.2 0.4 0 0 0 7 0.0 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0 0.8 0.0 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 0.0 0.8 0.0 -0.1 0.0 0.2 0.0
0.1 0.3 -0.1 -0.2 0.4 o . o | | 0.8 0.0 -0.1 0.0 0.2 0.0



sensitivity analysis 
atomic argon model 6-3-3/0.9355
sensitivity of Ar(763) spectral line to inputs 
Training data

sensitivity analysis
atomic hydrogen model 6-3-3/0.9397

H2 N2 CH4 |Pwr
^02

~> -0.1 -0.2 -0.1 0.1
> -0.1 -0.2 -0.1 0.1
> -0.1 -0.2 -0.1 0.1
i -0.1 -0.2 -0.1 0.1
. -0.2 -0.1 -0.1 0.1
. -0.1 -0.2 -0.1 0.1
i -0.1 -0.2 -0.1 0.1

-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.2 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.1 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.2 -0.1 0.1
-0.1 -0.1 -0.1 0.1

| -0.1 -0.2 -0-1 0£
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Isensitivity of Ar(763) spectral line to inputs
Training data

[At____ H2 |N2 CH4 Pwr Prs
0 6 ^02 1 ^02 o7 o"T
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 4 -0.1 -0.1 -0.1 0.1 0.1
0 4 -0.1 -0.1 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1

| 0 6 -0.1 -0.2 -0.1 0.1 0.1
iTest data

lAr H2 N2 CH4 Pwr Prs

0 5 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 4 -0.1 -0.1 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 3 -0.1 -0.1 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1

| 0 6 -0.2 -0.2 -0.1 0.1 0.1

sensitivity of H(434) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs |

0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.2 0.5 -0 1
0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.1 0.5 -0 1
0.1 0.2 -0.1 -0.1 0.5 -0 1
0.1 0.3 -0.1 -0.1 0.5 -0 1
0.1 0.3 -0.1 -0.2 0.5 -0 1
0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.2 0.5 0.0
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.5 -0.1 -0.3 0.5 0 2
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.5 -0.1 -0.3 0.5 0.1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.4 -0.1 -0.2 0.5 0 1
0.2 0.5 -0.1 -0.3 0.5 0.1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.4 -0.1 -0.3 0.4 0 1
0.1 0.2 -0.1 -0.1 0.5 -0 1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.4 -0.1 -0.2 0.5 o .o |

Test data |
Ar H2 N2 CH4 Pwr Prs |

0.1 0.1 -0.1 0.0 0.4 -0 2
0.1 0.1 -0.2 0.0 0.5 -02
0.1 0.1 -0.2 0.0 0.4 -0 2
0.1 0.1 -0.2 -0.1 0.4 -0 2
0.1 0.2 -0.1 -0.1 0.4 -0 2
0.0 0.1 -0.2 0.0 0.4 -0 2
0.1 0.1 -0.2 0.0 0.4 -02
0.1 0.1 -0.2 0.0 0.5 -02
0.1 0.1 -0.1 0.0 0.4 -02
0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.1 -0.2 0.0 0.4 -0 3
0.1 0.1 -0.2 0.0 0.4 -0 3
0.1 0.1 -0.2 0.0 0.4 -0 3
0.1 0.1 -0.2 0.0 0.4 -0 3
0.1 0.3 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.2 0.5 0.0
0.2 0.4 -0.1 -0.2 0.5 0.0
0.2 0.5 -0.1 -0.3 0.5 0.1
0.2 0.5 -0.1 -0.3 0.5 0 1
0.2 0.4 -0.1 -0.2 0.5 0 1
0.2 0.4 -0.1 -0.2 0.5 0.0
0.1 0.3 -0.1 -0.1 0.5 -0 1
0.1 0.3 -0.1 -0.1 0.5 -0.1
0.1 0.3 -0.1 -0.2 0.5 -0 .1|



sensitivity analysis
atomic hydrogen model 6-3-3/0.9397

(sensitivity of H(486) spectral line to inputs 
(Training data

[At____ H2 N2 CH4
~

Pwr Prs
OO OO o T ^03
0.2 0.5 -0.1 -0.4 0.5 0.2
0.1 0.3 -0.2 -0.2 0.5 -0.1
0.2 0.5 -0.1 -0.3 0.5 0.2
0.1 0.4 -0.2 -0.3 0.6 0.1
0.0 -0.1 -0.2 0.0 0.5 -0.4
0.1 0.3 -0.2 -0.3 0.5 0.0
0.0 0.2 -0.2 -0.2 0.5 -0.2
0.1 0.3 -0.2 -0.3 0.5 0.0
0.0 0.1 -0.2 -0.2 0.5 -0.2
0.2 0.5 -0.1 -0.4 0.5 0.2
0.0 0.2 -0.2 -0.2 0.5 -0.2
0.1 0.4 -0.2 -0.3 0.5 0.0
0.1 0.3 -0.2 -0.3 0.5 0.0
0.1 0.4 -0.2 -0.3 0.6 0.0
0.1 0.4 -0.2 -0.3 0.6 0.1
0.1 0.4 -0.2 -0.3 0.6 0.0
0.1 0.3 -0.2 -0.2 0.5 0.0
0.1 0.4 -0.1 -0.3 0.5 0.1
0.1 0.3 -0.2 -0.3 0.5 0.0
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.3 -0.2 -0.2 0.5 -0.1
0.0 0.2 -0.2 -0.2 0.5 -0.2
0.1 0.3 -0.2 -0.2 0.5 -0.1
0.1 0.3 -0.2 -0.3 0.5 0.0
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.0 0.2 -0.2 -0.2 0.5 -0.2
0.1 0.3 -0.2 -0.2 0.5 0.0
0.0 -0.1 -0.2 0.0 0.4 -0.4
0.1 0.3 -0.2 -0.2 0.5 0.0
0.2 0.5 -0.1 -0 4 0.6 0.1
0.0 0.0 -0.2 0.0 0.5 -0.4
0.2 0.5 -0.1 -0.4 0.6 0.1
0.1 0.4 -0.2 -0.3 0.5 0.1
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0.3 -0.2 -0.2 0.5 -0.1
0.2 0.5 -0.1 -0.4 0.6 0.1
0.2 0.5 -0.1 -0.4 0.6 0.2
0.2 0.5 -0.1 -0.4 0.6 0.2
0.2 0.5 -0.1 -0.4 0.6 0.2
0.1 0.4 -0.2 -0.3 0.5 0.0
0.1 0.2 -0.2 -0.2 0.5 -0.1
0.1 0 3 -0.2 -0.3 0.5 0.0

sensitivity analysis
atomic hydrogen model 6-3-3/0.9397
sensitivity of H(656) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs |

0.2 0.3 -0.1 0.0 0.5 -0.1
0.3 0.5 -0.1 -0.2 0.5

0 1

0.2 0.4 -0.1 -0.1 0.6 0 0
0.3 0.5 -0.1 -0.2 0.5 0.1
0.3 0.5 -0.1 -0.2 0.6 0.0
0.2 0.3 -0.1 0.0 0.5 -0 2
0.2 0.4 -0.1 -0.1 0.5 0.1
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.2 0.4 -0.1 -0.1 0.5 0.1
0.2 0.4 -0.1 -0.1 0.5 0.0
0.3 0.5 -0.1 -0.2 0.5 0.1
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.3 0.5 -0.1 -0.2 0.6 0.0
0.3 0.5 -0.1 -0.1 0.6 0.0
0.3 0.5 -0.1 -0.2 0.6 0.0
0.3 0.5 -0.1 -0.2 0.6 0.0
0.3 0.5 -0.1 -0.2 0.6 0.0
0.2 0.4 -0.1 -0.1 0.5 0.0
0.2 0.5 0.0 -0.2 0.5 0.1
0.3 0.5 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.2 0.4 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.3 0.4 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.5 -0.1
0.2 0.4 -0.1 -0.1 0.6 0.0
0.3 0.5 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.2 0.4 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.6 -0.1
0.2 0.4 -0.1 -0.1 0.6 0.0
0.2 0.4 -0.1 -0.1 0.5 -0.1
0.3 0.4 -0.1 -0.1 0.6 0.0
0.2 0.2 -0.1 0.0 0.5 -0.2
0.2 0.4 -0.1 -0.1 0.5 0.0
0.3 0.5 -0.1 -0.2 0.5 0.1
0.2 0.3 -0.1 0.0 0.5 -0.2
0.3 0.5 -0.1 -0.2 0.6 0.1
0.3 0.5 -0.1 -0.2 0.6 0.1
0.2 0.4 -0.1 -0.1 0.5 0.0
0.2 0.4 -0.1 -0.1 0.5 0.0
0.3 0.5 -0.1 -0.2 0.5 0.1
0.3 0.6 0.0 -0.2 0.5 0.1
0.3 0.6 -0.1 -0.2 0.5 0.1
0.3 0.6 -0.1 -0.2 0.5 0.1
0.3 0.5 -0.1 -0.2 0.5 0.0
0.2 0.4 -0.1 -0.1 0.5 0.0
0.3 0.5 -0.1 -0.1 0.5 a o ^
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sensitivity of H(486) spectral line to inputs 
Training data

CH4[Ar |H2 N2
oT 0 3 ô"2 |
0.1 0.2 -0.2
0.1 0.2 -0.2
0.1 0.3 -0.2
0.0 0.2 -0.2
0.0 0.2 -0.2
0.0 0.2 -0.2
0.1 0.2 -0.2
0.1 0.2 -0.2
0.1 0.3 -0.2
0.1 0.4 -0.2
0.2 0.5 -0.1
0.1 0.4 -0.2
0.1 0.5 -0.1
0.1 0.4 -0.2
0.1 0.5 -0.1
0.1 0.4 -0.2
0.1 0.4 -0.2
0.1 0.4 -0.2
0.1 0.5 -0.2
0.1 0.4 -0.1
0.0 0.2 -0.2
0.2 0.5 -0.2
0.1 0.3 -0 .2 |

sensitivity of H(656) spectral line to inputs 
[Training data

Test data

}wr Prs
0 5
0.5 - 0.1
0.5 - 0.1
0.5 - 0.1
0.5 - 0.2
0.5 - 0.2
0.5 - 0.2
0.5 - 0.1
0.5 - 0.1
0.5 - 0.1
0.6 0.1
0.6 0.1
0.6 0.1
0.6 0.1
0.6 0.1
0.6 0.1
0.6 0.0
0.6 0.1
0.6 0.0
0.6 0.1
0.5 0.1
0.5 - 0.2
0.6 0.1
0.5 o . o |

|Ar H2 N2 CH4 Pwr Prs I
0.0 0.0 -0.2 -0.1 0.5 -0 3
0.0 0.0 -0.2 -0.1 0.5 -0 3
0.0 0.0 -0.2 0.0 0.5 -04
0.0 0.0 -0.2 -0.1 0.5 -0 3
0.0 0.0 -0.2 -0.1 0.5 -0 3
0.0 -0.1 -0.2 0.0 0.5 -0 4
0.0 0.0 -0.2 0.0 0.5 -0 4
0.0 0.0 -0.2 -0.1 0.5 -04
0.0 0.0 -0.2 -0.1 0.5 -0 3
0.1 0.2 -0.2 -0.2 0.5 -0 1
0.0 -0.1 -0.2 0.0 0.4 -0 4
0.0 -0.1 -0.2 0.0 0.4 -04
0.0 0.0 -0.2 0.0 0.5 -0 4
0.0 0.0 -0.2 0.0 0.5 -0 4
0.1 0.3 -0.2 -0.2 0.5 -0 1
0.1 0.3 -0.2 -0.2 0.5 -0 1
0.1 0.3 -0.2 -0.3 0.5 0 0
0.1 0.4 -0.1 -0.3 0.5 0 1
0.1 0.5 -0.1 -0.3 0.5 0 1
0.1 0.4 -0.2 -0.3 0.5 0.0
0.1 0.3 -0.2 -0.2 0.5 -0 1
0.0 0.2 -0.2 -0.2 0.5 -0 2
0.0 0.2 -0.2 -0.2 0.5 -0 2
0.1 0.2 -0.2 -0.2 0.5 -0 l |

|Ar H2 N2 CH4 Pwr Prs I
0 2 0.4 -0.1 ~ 0 5 0^
0 2 0.4 -0.1 -0.1 0.5 -0 1
0 2 0.4 -0.1 -0.1 0.5 0.0
0 2 0.4 -0.1 -0.1 0.5 0 0
0 2 0.4 -0.1 -0.1 0.6 -0 1
0 2 0.4 -0.1 -0.1 0.6 -0 1
0 2 0.4 -0.1 -0.1 0.6 -0.1
0 2 0.4 -0.1 -0.1 0.6 -0 1
0 2 0.4 -0.1 -0.1 0.6 0.0
0 2 0.4 -0.1 -0.1 0.5 0.0
0 3 0.5 -0.1 -0.2 0.6 0.1
0 3 0.5 -0.1 -0.2 0.5 0.1
0 3 0.5 -0.1 -0.2 0.6 0 1
0 3 0.5 -0.1 -0.2 0.5 0 1
0 3 0.5 -0.1 -0.2 0.6 0 1
0 3 0.5 -0.1 -0.2 0.5 0 1
0 3 0.5 -0.1 -0.2 0.6 0 0
0.3 0.5 -0.1 -0.2 0.6 0 1
0 3 0.5 -0.1 -0.2 0.6 0 0
0 3 0.5 -0.1 -0.2 0.6 0 1
0 2 0.5 0.0 -0.2 0.4 0.1
0 2 0.4 -0.1 -0.1 0.5 -0 1
0 3 0.6 -0.1 -0.2 0.6 0.1

| 0.3 0.5 -0.1 -0.1 0.6 o .o |

Test data

|Ar H2 N2 CH4 Pwr Prs I
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -02
0 2 0.3 -0.1 0.0 0.5 -0 1
0 2 0.2 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0 0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.4 -0.1 -0.1 0.6 0 0
0 2 0.2 -0.1 0.0 0.5 -0 2
0 2 0.2 -0.1 0.0 0.5 -02
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.3 -0.1 0.0 0.5 -0 2
0 2 0.4 -0.1 -0.1 0.5 0.0
0 2 0.4 -0.1 -0.1 0.5 0 0
0 2 0.4 -0.1 -0.1 0.5 0.0
0 3 0.5 -0.1 -0.2 0.5 0 1
0 3 0.5 -0.1 -0.2 0.5 0 1
0 3 0.5 -0.1 -0.2 0.5 0.0
0 2 0.4 -0.1 -0.1 0.5 0.0
0 2 0.4 -0.1 -0.1 0.5 -0 1
0 2 0.4 -0.1 -0.1 0.6 -0 1

| 0 2 0.4 -0.1 -0.1 0.5 o .o |
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sensitivity analysis
molecular hydrogen model 6-3-3/0.9577
sensitivity of H2(406) spectral line to inputs 
Training data

H2 N2 CH4 Pwr Prs
-0.1 o r i ~ -0"3i 0 7 ' o"7
-0.1 0.6i -0.1 -0.3 0.7 0.1
-0.1 0.2: -0.1 -0.1 0.3 0.0
-0.1 0.6i -0.1 -0.3 0.7 0.1
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.1 -0.2 -0.1 0.3 -0.1
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.5 -0.1 -0.2 0.6 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.2 -0.2 -0.1 0.4 0.0
-0.1 0.6 -0.1 -0.3 0.7 0.1
-0.1 0.5 -0.1 -0.2 0.6 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.2 -0.2 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0 0
-0.1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0 0
-0.1 0.3 -0.1 -0.1 0.4 0 0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.2 -0.1 -0.1 0.3 0 0
-0.1 0.1 -0.2 -0.1 0.3 0.0
-0.1 0.1 -0.2 -0.1 0.3 0 0
-0.1 0.2 -0.2 -0.1 0.3 0.0
-0.1 0.2 -0.1 -0.1 0.4 0.0
-0.1 0.1 -0.1 0.0 0.2 0.0
-0.1 0.3 -0.1 -0.1 0.4 0 0
-0.1 0.5 -0.1 -0.2 0.6 0 0
-0.1 0.1 -0.1 0.0 0.2 0 0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.5 -0.1 -0.3 0.7 0 1
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.6 -0.1 -0.3 0.7 0 1
-0.1 0.6 -0.1 -0.3 0.7 0 1
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.4 -0.1 -0.2 0.5 o .o |

sensitivity analysis
molecular hydrogen model 6-3-3/0.9577
sensitivity of H2(417) spectral line to inputs 
Training data

lA r H2 N2 CH4 Pwr Prs |
-0.1 0.6 -0.1 -0.3 0.8 0 1
-0.1 0.6 0.0 -0.3 0.7 0.1
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.6 0.0 -0.3 0.7 0 1
-0 1 0.3 -0.1 -0.2 0.5 0.0
-0 1 0.0 -0.1 0.0 0.2 -0.1
-0.1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.5 -0.1 -0.2 0.6 0.0
-0 1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.6 0.0 -0.3 0.7 0.1
-0.1 0.5 -0.1 -0.2 0.6 0.0
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.0 -0.1 0.0 0.2 -0 1
-0 1 0.3 -0.1 -0.1 0.4 0 0
-0 1 0.3 -0.1 -0.2 0.5 0 0
-0 1 0.0 -0.1 0.0 0.2 -0 1
-0 1 0.3 -0.1 -0.2 0.5 0 0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.0 -0.1 0.0 0.2 -0.1
-0 1 0.1 -0.1 0.0 0.2 -0 1
-0 1 0.1 -0.1 -0.1 0.3 0 0
-0.1 0.1 -0.1 0.0 0.2 -0.1
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.1 -0.1 0.0 0.2 -0.1
-0 1 0.0 -0.1 0.0 0.2 -0 1
-0.1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.1 -0.1 0.0 0.2 -0.1
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.1 -0.1 0.0 0.2 -0 1
-0 1 0.0 -0.1 0.0 0.2 -0 1
-0 1 0.1 -0.1 -0.1 0.3 -0 1
-0 1 0.2 -0.1 -0.1 0.4 0.0
0.0 0.0 -0.1 0.0 0.1 -0 1

-0 1 0.3 -0.1 -0.1 0.4 0.0
-0 1 0.5 0.0 -0.2 0.6 0 0
0.0 0.0 -0.1 0.0 0.1 -0 1

-0 1 0.3 -0.1 -0.1 0.4 0.0
-0 1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.0 -0.1 0.0 0.2 -0 1
-0 1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.5 0.0 -0.3 0.7 0 1
-0 1 0.4 -0.1 -0.2 0.5 0.0
-0 1 0.6 0.0 -0.3 0.7 0 1
-0 1 0.6 0.0 -0.3 0.8 0.1
-0 1 0.4 -0.1 -0.2 0.5 0.0
-0 1 0.1 -0.1 -0.1 0.2 0.0

I -0.1 0.4 -0.1 -0.2 0.5 o .o |
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sensitivity of H2(406) spectral line to inputs 
Training data

|Ar |H2 ] N2
0 3

-0.1 0.2
-0.1 0.2
-0.1 0.3
-0.1 0.2
-0.1 0.2
-0.1 0.2
-0.1 0.3
-0.1 0.3
-0.1 0.3
-0.1 0.3
-0.1 0.4
-0.1 0.3
-0.1 0.4
-0.1 0.3
-0.1 0.3
-0.1 0.3
-0.1 0.5
-0.1 0.5
-0.1 0.3
-0.1 0.1
-0.1 0.1
-0.1 0.5
-0.1 0.5

Test data

|CH4 Pwr
r  ~ 0 4
1 -0.1 0.4
I -0.1 0.4
I -0.1 0.4
I -0.1 0.3
I -0.1 0.4
I -0.1 0.4

-0.1 0.4
-0.1 0.4
-0.2 0.5
-0.2 0.5
-0.2 0.6
-0.1 0.4
-0.2 0.5
-0.1 0.4
-0.2 0.4
-0.2 0.5
-0.2 0.6
-0.2 0.6
-0.2 0.5
-0.1 0.3
-0.1 0.3
-0.3 0.7
-0.2 0.6

sensitivity of H2(417) spectral line to inputs 
Training data

|Ar H2 N2 CH4 Pwr Prs |
0 2 ~ ~ 0 4 am

-0.1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.4 0 0
-0.1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.4 0 0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0 1 0.3 -0.1 -0.2 0.4 0 0
-0 1 0.3 -0.1 -0.2 0.5 0 0
-0 1 0.4 -0.1 -0.2 0.5 0.0
-0 1 0.3 -0.1 -0.1 0.4 0 0
-0.1 0.3 -0.1 -0.2 0.5 0 0
-0 1 0.2 -0.1 -0.1 0.4 0 0
-0 1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.5 0.0 -0.2 0.6 0 1
-0 1 0.5 -0.1 -0.2 0.6 0 1
-0 1 0.3 -0.1 -0.2 0.5 0.0
-0 1 0.0 -0.1 0.0 0.2 -0 1
-0.1 0.1 -0.1 0.0 0.2 -0 1
-0.1 0.5 0.0 -0.3 0.7 0 1

I -0.1 0.5 -0.1 -0.2 0.6 o.o |
Test data

H2 |N2 CH4 Pwr Prs | lAr H2 N2 CH4 Pwr Prs |
-0.1 o7 0 6 o"m -0.1 0.4 -0.1 -0.2 0.6 0.0
-0.1 0.2 -0.2 -0.1 0.5 0.0 -0 1 0.2 -0.1 -0.1 0.4 0.0
-0.1 0.1 -0.2 -0.1 0.3 -0.1 -0 1 0.1 -0.1 -0.1 0.3 -0 1
-0.1 0.2 -0.2 -0.1 0.4 -0.1 -0 1 0.1 -0.1 -0.1 0.3 -0 1
-0.1 0.2 -0.2 -0.1 0.4 0.0 -0 1 0.1 -0.1 -0.1 0.3 -0 1
-0.1 0.1 -0.2 -0.1 0.3 -0 1 -0 1 0.0 -0.1 0.0 0.2 -0 1
-0.1 0.1 -0.2 -0.1 0.3 -0 1 -0 1 0.1 -0.1 -0.1 0.3 -0 1
-0.1 0.3 -0.2 -0.1 0.5 0.0 -0.1 0.2 -0.1 -0.1 0.4 0.0
-0.1 0.4 -0.1 -0.2 0.6 0.0 -0 1 0.4 -0.1 -0.2 0.6 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0 -0 1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.1 0.0 0.2 0.0 0.0 0.0 -0.1 0.0 0.1 -0 1
-0.1 0.1 -0.1 0.0 0.2 0.0 0.0 0.0 -0.1 0.0 0.1 -0 1
-0.1 0.1 -0.1 0.0 0.2 0.0 0.0 0.0 -0.1 0.0 0.1 -0 1
-0.1 0.1 -0.1 0.0 0.2 0.0 0.0 0.0 -0.1 0.0 0.1 -0 1
-0.1 0.2 -0.1 -0.1 0.3 0.0 -0 1 0.1 -0.1 -0.1 0.3 0 0
-0.1 0.2 -0.1 -0.1 0.3 0.0 -0 1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.3 -0.1 -0.2 0.5 0 0 -0 1 0.3 -0.1 -0.2 0.4 0.0
-0.1 0.2 -0.1 -0.1 0.4 0.0 -0 1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.5 -0.1 -0.2 0.6 0 1 -0 1 0.5 0.0 -0.2 0.6 0 1
-0.1 0.3 -0.1 -0.1 0.4 0 0 -0 1 0.2 -0.1 -0.1 0.4 0.0
-0.1 0.2 -0.1 -0.1 0.4 0.0 -0 1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0 -0 1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.2 -0.1 -0.1 0.4 0.0 -0 1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.2 -0.1 -0.1 0.4 o .o | I -0 1 0.2 -0.1 -0.1 0.3 o .o |



sensitivity analysis
molecular hydrogen model 6-3-3/0.9577
sensitivity of H2(420) spectral line to inputs 
Training data

|Ar H2 N2 CH4
~

Pwr Prs
0 7 o T 0 9 o"T

-0.1 0.8 0.1 -0.4 0.9 0.1
0.0 0.0 0.0 0.0 0.2 -0.1

-0.1 0.8 0.1 -0.4 0.9 0.1
0.0 0.3 0.1 -0.2 0.5 0.0
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.2 0.0 -0.1 0.4 0.0

-0.1 0.6 0.1 -0.3 0.7 0.1
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.1 0.0 -0.1 0.3 -0.1

-0.1 0.8 0.1 -0.4 0.9 0.1
-0.1 0.6 0.1 -0.3 0.7 0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.3 0.0 -0.1 0.4 0.0
0.0 0.3 0.0 -0.2 0.5 0.0
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.3 0.1 -0.2 0.5 0.0
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.2 0.0 -0.1 0.3 0.0
0.0 0.0 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.1 0.0 -0.1 0.3 0.0
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 0.2 0.0 -0.1 0.4 0.0

-0.1 0.5 0.1 -0.3 0.7 0.1
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.3 0.0 -0.2 0.5 0.0
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.2 0.0 -0.1 0.3 0.0

-0.1 0.6 0.1 -0.3 0.8 0.1
0.0 0.4 0.1 -0.2 0.5 0.0

-0.1 0.7 0.1 -0.3 0.8 0.1
-0.1 0.8 0.1 -0.4 0.9 0.1
0.0 0 4 0.1 -0.2 0.5 0.0
0.0 0.0 0.0 0.0 0.1 -0.1
0.0 0.4 0.1 -0.2 0.5 0.0

sensitivity analysis
molecular nitrogen model 6-3-2/0.942
sensitivity of N2(337) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs |

-0.1 -0.2 0.9 -0.4 -0.1 -0 1
-0.2 -0.1 1.4 -0.4 0.1 0 1
-0.3 -0.2 1.9 -0.5 0.2 0 1
-0.2 -0.1 1.5 -0.4 0.1 0 1
-0.2 -0.1 1.7 -0.4 0.2 0 2
-0.3 -0.2 1.8 -0.5 0.2 0.1
-0.1 -0.1 1.1 -0.3 0.0

0 1

-0.1 -0.1 1.4 -0.4 0.1 0.1
-0.1 -0.1 1.1 -0.3 0.0 0.1
-0.1 -0.1 1.2 -0.4 0.0 0.1
-0.2 -0.1 1.4 -0.4 0.1 0.1
-0.1 -0.1 1.4 -0.4 0.1 0.1
-0.2 -0.1 1.7 -0.4 0.3 0.2
-0.2 0.0 1.7 -0.4 0.3 0.2
-0.2 -0.1 1.7 -0.4 0.2 0.2
-0.2 -0.1 1.7 -0.4 0.2 0.2
-0.2 0.0 1.6 -0.3 0.3 0.3
-0.2 -0.2 1.6 -0.5 0.1 0.0
-0.2 -0.1 1.7 -0.4 0.2 0.1
-0.2 0.0 1.7 -0.4 0.3 0.2
-0.3 -0.2 2.0 -0.5 0.3 0.1
-0.2 -0.2 1.1 -0.3 0.1 0.0
-0.1 -0.2 0.7 -0.2 0.0 -0.1
-0.3 -0.2 1.9 -0.5 0.3 0.1
0.0 -0.1 -0.1 -0.1 -0.2 -0.2

-0.3 -0.2 2.0 -0.5 0.3 0.1
-0.2 -0.2 1.8 -0.4 0.2 0.1
-0.1 -0.2 0.9 -0.3 0.0 0.0
-0.1 -0.2 0.8 -0.3 0.0 0.0
-0.1 -0.2 0.6 -0.2 0.0 -0.1
-0.3 -0.2 1.9 -0.5 0.2 0.0
0.0 -0.1 0.0 -0.1 -0.2 -0.1

-0.2 -0.2 1.6 -0.4 0.2 0.0
-0.1 0.1 1.1 -0.2 0.2 0.3
0.0 0.0 0.4 -0.2 -0.1 0.1

-0.1 0.0 0.8 -0.3 0.0 0.1
0.0 0.2 0.7 -0.1 0.1 0.3

-0.1 0.1 1.3 -0.3 0.2 0.2
-0.1 0.1 1.0 -0.2 0.1 0.2
0.0 0.3 0.5 -0.1 0.1 0.3
0.0 0.1 0.6 -0.2 0.0 0.2

-0.1 0.0 1.1 -0.3 0.0 0.1
-0.1 0.0 1.0 -0.3 0.0 0.2
-0.1 0.0 1.0 -0.3 0.0 0.1
-0.1 0.0 1.0 -0.3 0.0 0.1
0.0 0.0 0.5 -0.2 -0.1 0.1
0.0 0.1 0.2 -0.1 -0.1 0.1
0.0 0.0 0.5 -0.2 -0.1 0.1
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sensitivity of H2(420) spectral line to inputs 
Training data

lAr |H2 N2 CH4 Pwr Prs
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.1 0.0 0.0 0.2 -0.1
0.0 0.1 0.0 -0.1 0.3 0.0
0.0 0.2 0.0 -0.1 0.3 0.0
0.0 0.1 0.0 0.0 0.2 -0.1
0.0 0.1 0.0 0.0 0.3 -0.1
0.0 0.1 0.0 -0.1 0.3 0.0
0.0 0.2 0.0 -0.1 0.3 0.0
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.3 0.0 -0.1 0.4 0.0
0.0 0.3 0.0 -0.2 0.5 0.0
0 0 0.4 0.1 -0.2 0.6 0.0
0 .0 , 0.2 0.0 -0.1 0.4 0.0
0.0 0.3 0.1 -0.2 0.5 0.0
0.0 0.2 0.0 -0.1 0.4 0 0
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.3 0.0 -0.1 0.4 0.0

-0.1 0.5 0.1 -0.3 0.7 0.1
- 0.1 0.6 0.1 -0.3 0.7 0.1
0.0 0.3 0.0 -0.2 0.5 0.0
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1

-0.1 0.6 0.1 -0.3 0.8 0.1
-0.11 0.5 0.1 -0.3 0.7 0.1

Test data

Ar H2 N2 CH4 Pwr Prs

-0.1 0.5 0.1 -0.2 0.7 0.0
0.0 0.2 0.0 -0.1 0.4 0.0
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.2 0.0 -0.1 0.4 0.0

-0.1 0.5 0.1 -0.2 0.7 0.0
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 -0.2 0.0 0.1 0.0 -0.1
0.0 0.0 0.0 0.0 0.2 -0.1
0.0 0.1 0.0 0.0 0.2 -0.1
0.0 0.3 0.1 -0.2 0.5 0.0
0.0 0.1 0.0 -0.1 0.3 0.0

-0.1 0.6 0.1 -0.3 0.7 0.1
0.0 0.2 0.0 -0.1 0.3 0.0
0.0 0.1 0.0 -0.1 0.3 0.0
0.0 0.0 0.0 0.0 0.2 -0.1
0 0 0.1 0.0 -0.1 0.3 -0.1
0.0 0.1 0.0 -0.1 0.3 0.0

sensitivity of N2(337) spectral line to inputs I 
Training data
Ar H2 N2 CH4 Pwr Prs |

-0.1 0.0 1.2 -0.3 0.1 0 1
-0.1 0.0 0.9 -0.3 0.0 0.1
-0.1 0.0 1.2 -0.3 0.1 0.1
-0.1 0.0 1.0 -0.3 0.0 0.1
0.1 0.1 -0.2 0.0 -0.2 0.0
0.1 0.0 -0.4 0.0 -0.3 -0 1
0.1 0.1 -0.2 0.0 -0.2 0.0
0.0 0.1 0.2 -0.1 -0.1 0.1

-0.1 0.1 0.8 -0.2 0.0 0.2
-0.1 0.0 1.2 -0.3 0.1 0.2
0.0 0.0 0.5 -0.2 -0.1 0.0

-0.1 -0.1 1.2 -0.4 0.0 0.1
0.0 -0.1 0.6 -0.2 -0.1 0.0

-0.1 -0.1 1.2 -0.4 0.0 0.1
-0.1 -0.1 1.1 -0.3 0.0 0.1
-0.1 -0.1 1.2 -0.3 0.0 0.1
0.0 -0.3 -0.3 -0.2 -0.4 -0.4
0.0 -0.2 -0.2 -0.1 -0.3 -0.3
0.0 -0.3 -0.3 -0.2 -0.4 -0.4
0.0 -0.3 -0.3 -0.2 -0.4 -0.4
0.0 -0.2 -0.2 -0.1 -0.3 -0.3
0.0 -0.1 -0.1 -0.1 -0.2 -0.2
0.0 -0.3 -0.3 -0.2 -0.4 -0.4
0.0 -0.3 -0.3 -0.2 -0.4 -0.4

Test data

Ar H2 N2 CH4 Pwr Prs

-0.2 -0.2 1.2 -0.4 0.0 -0.1
-0.2 -0.2 1.4 -0.4 0.0 0.0
-0.2 -0.2 1.6 -0.5 0.1 0.0
-0.2 -0.2 1.5 -0.4 0.1 0.0
-0.2 -0.2 1.4 -0.4 0.1 0.0
-0.3 -0.2 1.8 -0.5 0.2 0.0
-0.2 -0.2 1.6 -0.4 0.1 0.0
-0.2 -0.2 1.4 -0.4 0.0 0.0
-0.2 -0.2 1.1 -0.4 0.0 -0.1
-0.1 -0.2 0.5 -0.2 0.0 -0.1
-0.1 0.1 1.1 -0.2 0.2 0.3
-0.1 0.1 1.1 -0.2 0.2 0.3
0.0 0.2 0.7 -0.1 0.1 0.3
0.0 0.2 0.7 -0.1 0.1 0.3
0.0 0.1 0.2 -0.1 -0.1 0.1
0.0 0.0 0.3 -0.1 -0.1 0.1
0.0 0.0 0.5 -0.2 -0.1 0.1
0.0 0.1 0.5 -0.2 -0.1 0.1

-0.1 0.0 0.8 -0.3 0.0 0.1
0.0 0.0 0.4 -0.2 -0.1 0.1
0.0 0.0 0.3 -0.2 -0.1 0.1
0.0 0.0 0.3 -0.1 -0.1 0.1
0.0 0.1 0.3 -0.1 -0.1 0.1

-0.1 0.0 0.9 -0.3 0.0 0.1



sensitivity analysis
molecular nitrogen model 6-3-2/0.942

sensitivity of N2(389) spectral line to inputs 
Training data

H2 N2 CH4 Pwr Prs
-0.1 0 2 0 9 o"T 06 04
-0.2 0.0 1.1 0.0 0.5 0.2
-0.1 -0.1 0.6 -0.1 0.2 0.0
-0.2 0.0 1.0 0.0 0.5 0.2
-0.2 -0.2 0.8 -0.1 0.3 0.0
-0.1 -0.1 0.6 -0.1 0.2 0.0
-0.2 0.0 1.2 0.0 0.6 0.2
-0.2 0.0 1.1 -0.1 0.5 0.2
-0.2 0.0 1.2 0.0 0.6 0.2
-0.2 0.0 1.1 0.0 0.5 0.2
-0.2 0.0 1.1 0.0 0.5 0.2
-0.2 0.0 1.1 -0.1 0.5 0.2
-0.2 -0.2 0.8 -0.2 0.2 -0.1
-0.2 -0.3 0.7 -0.2 0.1 -0.1
-0.2 -0.2 0.8 -0.1 0.2 0.0
-0.2 -0.2 0.8 -0.1 0.3 0.0
-0.2 -0.3 0.8 -0.2 0.2 -0.1
-0.1 0.0 0.7 0.0 0.4 0.1
-0.2 -0.1 0.8 -0.1 0.3 0.0
-0.2 -0.3 0.7 -0.2 0.1 -0.1
-0.1 -0.1 0.6 -0.1 0.2 0.0
-0.1 0.0 0.4 0.0 0.2 0.1
0.0 0.1 0.3 0.0 0.2 0.1

-0.1 -0.2 0.6 -0.1 0.2 -0.1
0.0 0.2 0.2 0.1 0.3 0.3

-0.1 -0.2 0.6 -0.1 0.1 -0.1
-0.1 -0.1 0.7 -0.1 0.2 0.0
-0.1 0.1 0.4 0.0 0.2 0.1
-0.1 0.1 0.4 0.0 0.2 0.1
0.0 0.1 0.3 0.0 0.2 0.1

-0.1 -0.1 0.5 -0.1 0.2 0.0
0.0 0.2 0.3 0.1 0.3 0.3

-0.1 0.0 0.6 0.0 0.2 0.1
-0.2 -0.2 0.9 -0.2 0.3 -0.1
-0.2 0.1 1.0 0.0 0.6 0.3
-0.2 0.0 1.2 0.0 0.6 0.2
-0.2 -0.2 1.0 -0.2 0.3 0.0
-0.2 -0.2 1.0 -0.1 0.4 0.0
-0.2 -0.1 1.1 -0.1 0.4 0.1
-0.2 -0.2 1.1 -0.1 0.4 0.0
-0.2 0.0 1.2 -0.1 0.5 0.2
-0 2 0.0 1.2 -0.1 0.6 0.2

-0.2 0.0 1.2 -0.1 0.5 0.2

-0.2 0.0 1.2 0.0 0.6 0.2

-0.2 0.0 1.2 0.0 0.6 0.2

-0.2 0.1 1.0 0.0 0.6 0.3

-0.2 0.1 1.1 0.0 0.6 0.3

-0.2 0.1 1.0 0.0 0.5 0.3

sensitivity analysis
ionic nitrogen model 6-3-2/0.9664
sensitivity of N2+(391) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr

-0.1 0.0 0.9 0.1 0.3 0.2
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.4 -0.1 0.3 0.1
-0.1 -0.1 1.0 0.0 0.2 0.1
-0.2 -0.1 1.1 0.0 0.3 0.1
-0.2 -0.1 1.3 0.0 0.2 0.1
-0.2 -0.1 1.1 0.0 0.3 0.1
-0.2 -0.1 1.1 0.0 0.2 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.3 0.0 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.3 0.1
-0.2 -0.1 1.4 -0.1 0.3 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.1 1.5 -0.1 0.3 0.1
-0.2 -0.2 1.5 -0.1 0.3 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.1 -0.1 1.1 0.0 0.2 0.1
-0.1 0.0 0.7 0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.1 0.2 0.0 0.2 0.1 0.2
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.1 -0.1 0.9 0.0 0.2 0.1
-0.1 -0.1 1.0 0.0 0.2 0.1
•0.1 0.0 0.7 0.1 0.2 0.1
-0.2 -0.2 1.4 -0.1 0.2 0.1
-0.1 0.1 0.1 0.2 0.2 0.2
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.1 0.0 0.8 0.0 0.2 0.1
-0.2 -0.1 1.2 0.0 0.3 0.1
-0.2 0.0 1.1 0.1 0.3 0.2
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.3 0.0 0.3 0.2
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.2 0.0 1.0 0.1 0.3 0.2
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.3 0.0 0.3 0.1
-0.2 -0.1 1.1 0.0 0.2 0.1
-0.1 0.0 0.9 0.0 0.2 0.1
-0.1 0.0 0.9 0.0 0.2 0.1
-0.1 0.0 0.8 0.0 0.2 0.1



Training data

CH4

- 0.1

Test data

le to inputs I

|Pwr Prs |

1 05 021
• 0.5 0 2

0.5 0 2
0.6 0 2
0.5 0 3
0.5 04
0.5 0 3
0.5 0 2
0.5 02
0.5 02
0.6 0 3
0.6 0 2
0.6 0 3
0.6 0 2
0.6 0 3
0.6 0 2
0.6 0.6
0.6 0 5
07 06
0.6 0.6
0.5 04
0.3 0 3
0.7 06
0.6 0.6|

sensitivity of N2+(391) spectral line to inputs 
Training data

|Ar

~

H2 N2 CH4 Pwr Prs
~ 1.5 ~ 0 2 a ?

-0  2 - 0 .2 1.5 - 0.1 0 .2 0.1
-0  2 - 0 .2 1.5 - 0.1 0 .2 0.1
-0  2 - 0.1 1.2 - 0.1 0 .2 0.1
-0  1 0 .0 0 .7 0.1 0 .2 0.2
-0  1 0.1 0 .4 0 .2 0 .2 0 .2
-0  1 0 .0 0 .8 0.1 0 .2 0.2
-0  2 - 0.1 1.2 0 .0 0 .2 0.1
-0  2 - 0 .2 1.5 - 0.1 0 .2 0.1
-0  2 - 0 .2 1.5 - 0.1 0 .2 0.1

-0  2 - 0.1 1.2 0 .0 0 .3 0 .2

-0  2 - 0.1 1.5 - 0.1 0 .3 0.1

-0  2 0 .0 1.1 0 .0 0 .3 0.2

-0  2 - 0.1 1.5 0 .0 0 .3 0.1

-0  2 - 0.1 1.4 0 .0 0 .3 0.1

-0  2 - 0.1 1.5 0 .0 0 .3 0.1

- 0.1 0 .2 - 0.1 0 .3 0 .2 0 .2

-0  1 0 .2 0 .3 0 .2 0 .3 0 .2

- 0.1 0 .3 - 0 .2 0 .3 0 .2 0 .2

-0  1 0.2 - 0 .2 0 .3 0 .2 0 .2

-0  1 0 .2 - 0.1 0 .2 0.1 0 .2

- 0.1 0 .2 0 .0 0 .2 0.1 0.2

-0  1 0 .3 - 0 .2 0 .3 0 .2 0 .2

I - 0.1 0 .2 - 0 .2 0 .3 0 .2 0 . 2 ,

Test data
H2 N2 CH4 Pwr Prs | lAr H2 N2 CH4 Pwr Prs |

- 0.1 0 2 0 8 o T 0 5 o - 0.1 0 .0 0 .9 0.1 0 .2 0  1
- 0.1 0.1 0 .8 0 .0 0 .4 0  2 -0  1 - 0.1 1.0 0 .0 0 .2 0  1
- 0.1 0 . 0 0 .7 0 .0 0 .3 0.1 - 0.1 - 0.1 1.0 0 .0 0 .2 0 1
- 0.1 0 .0 0 .8 0 .0 0 .4 0  1 -0  1 - 0.1 1.0 0 .0 0 .2 0.1
- 0 .2 0 . 0 0 .9 0 .0 0 .4 0 2 -0  1 - 0.1 1.0 0 .0 0 .2 0  1
- 0.1 - 0.1 0 .6 - 0.1 0.2 0 .0 -0  1 - 0.1 1.0 0 .0 0 .2 0.1
- 0.1 0 .0 0 .7 0 .0 0 .3 0 1 -0  1 - 0.1 1.0 0 .0 0 .2 0.1
- 0.1 0.1 0 .7 0 .0 0 .4 0 .2 -0  1 0 .0 0 .9 0 .0 0 .2 0 1

- 0.1 0 .2 0 .8 0.1 0 .5 0 .3 -0  1 0 .0 0 .9 0.1 0 .2 0 1

0 .0 0.1 0 .4 0.1 0 .3 0 2 -0  1 0 .0 0 .8 0.1 0 .2
0 1

- 0 .2 - 0 .2 0 .9 - 0 .2 0 .3 - 0.1 -0  2 - 0.1 1.2 0 .0 0 .3 0 2

- 0 .2 - 0 .2 0 .9 - 0 .2 0 .3 -0  1 -0  2 - 0.1 1.2 0 .0 0 .3 0 2

- 0 .2 - 0 .2 1.0 - 0 .2 0 .3 0  0 -0  2 0 .0 1.1 0.1 0 .3 0 2

- 0 .2 - 0 .2 1.0 - 0 .2 0 .3 0 0 -0  2 0 .0 1.1 0.1 0 .3 0  2

- 0 .2 0.1 1.1 0 .0 0 .6 0  3 -0  1 0 .0 0 .9 0 .0 0 .2 0  1

- 0 .2 0.1 1.1 0 .0 0 .6 0 .3 -0  1 0 .0 0 .9 0 .0 0 .2 0 1

- 0 .2 0.1 1.0 0 .0 0 .6 0  3 -0  1 0 .0 0 .8 0 .0 0 .2 0 1

- 0 .2 0 .0 1.2 0 .0 0 .6 0 2 - 0 2 - 0.1 1.2 0 .0 0 .3 0 1

- 0 .2 0.1 1.1 0 .0 0 .6 0 .3 -0  1 - 0.1 1.0 0 .0 0 .2 0  1

- 0 .2 0.1 1.1 0 .0 0 .6 0 3 -0  1 0 .0 1.0 0 .0 0 .2 0 1

- 0 .2 0.1 1.0 0 .0 0 .6 0 .3 -0  1 0 .0 0 .9 0 .0 0 .2
0 1

- 0 .2 0.1 1.0 0 .0 0 .6 0 3 -0  2 - 0.1 1.1 0 .0 0 .2 0  1

- 0 .2 0.1 1.0 0 .0 0 .5 0  2 -0  2 - 0.1 1.2 0 .0 0.2 0  1

- 0 .2 0 .0 1.1 - 0.1 0 .5 0  2 | |  - 0 .2 - 0 .2 1.5 - 0.1 0 .2 0 . 1 l
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sensitivity analysis
ionic nitrogen model 6-3-2/0.9664

sensitivity of N2+(427) spectral line to inputs 
Training data
|Ar H2 N2

a ? 0 6
-0.1 0.0 0.9
-0.1 -0.1 1.0
-0.1 0.0 0.9
-0.1 0.0 0.9
0.0 -0.1 0.7

-0.1 0.0 0.7
-0.1 0.0 0.8
-0.1 0.0 0.7
-0.1 0.0 0.7
-0.1 0.0 0.9
-0.1 0.0 0.8
-0.1 -0.1 1.0
-0.1 -0.2 1.0
-0.1 -0.1 0.9
-0.1 0.0 0.9
-0.1 -0.2 1.0
-0.1 0.0 0.9
-0.1 -0.1 0.9
-0.1 -0.2 1.0
-0.1 -0.1 1.0
0.0 -0.1 0.7
0.0 -0.1 0.5

-0.1 -0.1 1.0
0.0 0.0 0.2

-0.1 -0.2 1.0
-0.1 -0.1 1.0
0.0 -0.1 0.7
0.0 -0.1 0.7
0.0 -0.1 0.5
0.0 -0.2 0.9
0.0 0.0 0.2

-0.1 -0.1 0.9
-0.1 0.1 0.7
0.0 0.0 0.6

-0.1 0.0 0.7
-0.1 0.1 0.7
-0.1 0.0 0.9
-0.1 0.1 0.8
-0.1 0.1 0.8
-0.1 0.1 0.6
-0.1 0.0 0.9
-0.1 0.0 0.9
-0.1 0.0 0.8
-0.1 0.0 0.7
0.0 0.0 0.6

-0.1 0.0 0.6
0.0 -0.1 0.6

CH4 Pwr

189

sensitivity analysis
methyl fragment model 6-3-3/0.9302
sensitivity of CH(314) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr

-0.1 0.1 1.1 -0.4 0.6
-0.1 0.1 1.1 -0.4 0.6
0.0 0.0 1.3 -0.6 0.3

-0.1 0.2 1.1 -0.4 0.6
-0.1 0.1 1.2 -0.5 0.4
0.2 -0.1 1.5 -0.9 -0.2
0.0 0.1 1.2 -0.6 0.3
0.0 0.0 1.4 -0.6 0.2
0.0 0.1 1.2 -0.6 0.3
0.0 0.0 1.3 -0.6 0.2

-0.1 0.1 1.1 -0.4 0.6
0.0 0.0 1.3 -0.6 0.3
0.1 0.0 1.5 -0.8 0.0
0.2 -0.1 1.5 -0.9 -0.2
0.0 0.1 1.3 -0.6 0.3
0.0 0.1 1.3 -0.5 0.4
0.2 -0.1 1.4 -0.8 -0.2

-0.2 0.2 1.0 -0.2 0.8
0.0 0.1 1.3 -0.6 0.3
0.2 -0.1 1.5 -0.9 -0.2
0.1 0.0 1.4 -0.7 0.1
0.1 0.0 1.1 -0.7 0.0
0.1 0.0 0.9 -0.6 -0.1
0.1 0.0 1.5 -0.8 0.0
0.0 0.0 0.4 -0.3 0.0
0.2 -0.1 1.5 -0.8 -0.1
0.0 0.1 1.3 -0.6 0.3
0.1 0.0 1.0 -0.6 0.0
0.1 0.0 1.1 -0.6 0.0
0.1 0.0 0.9 -0.5 -0.1
0.1 -0.1 1.3 -0.8 -0.1
0.0 0.0 0.5 -0.4 0.0
0.0 0.0 1.3 -0.6 0.2

-0.2 0.2 0.4 0.0 0.7
0.1 0.0 0.7 -0.4 0.0
0.0 0.1 1.1 -0.5 0.4

-0.3 0.2 0.4 0.0 0.8
0.0 0.1 1.3 -0.6 0.3

-0.2 0.2 0.9 -0.2 0.9
-0.2 0.2 0.9 -0.2 0.7
-0.1 0.1 0.8 -0.3 0.4
-0.2 0.2 1.0 -0.2 0.8
-0.2 0.2 1.0 -0.3 0.8
-0.1 0.1 1.1 -0.4 0.5
0.0 0.0 1.2 -0.6 0.1
0.1 0.0 0.8 -0.5 0.0
0.0 0.1 0.8 -0.4 0.2
0.1 0.0 0.7 -0.4 -0.1

Prs



Isensitivity of N2+(427) spectral line to inputs
Training data

\Ar____ H2 N2 CH4 Pwr Prs
TO ~ 03 ~

-0 1 -0.1 0.9 0.0 0.3 0.1
-0 1 -0.1 1.0 -0.1 0.3 0.1
-0 1 -0.1 0.8 -0.1 0.3 0.1
-0 1 0.1 0.5 0.1 0.4 0.2
0.0 0.1 0.3 0.2 0.4 0.2

-0.1 0.0 0.5 0.1 0.3 0.2
-0 1 0.0 0.8 0.0 0.3 0.1
-0 1 -0.1 1.0 -0.1 0.3 0.1
-0 1 -0.1 1.0 -0.1 0.3 0.1
-0 1 0.1 0.7 0.1 0.5 0.2
-0 1 0.0 0.9 0.0 0.4 0.2
-0 1 0.1 0.7 0.1 0.5 0.2
-0.1 0.0 0.9 0.1 0.4 0.2
-0.1 0.0 0.9 0.1 0.5 0.2
-0 1 0.0 0.9 0.1 0.4 0.2
0.0 0.1 0.0 0.2 0.3 0.2

-0 1 0.2 0.3 0.2 0.4 0.2
0.0 0.2 0.0 0.2 0.3 0.2
0.0 0.2 0.0 0.2 0.3 0.2
0.0 0.0 0.1 0.1 0.1 0.1
0.0 0.0 0.1 0.1 0.2 0.1
0.0 0.2 0.0 0.3 0.4 0.2

I 0.0 0.2 0.0 0.2 0.3 0.2

iTest data

lAr H2 N2 CH4 Pwr Prs

-0 1 0.0 0.6 0.1 0.4 0.2
0 0 0.0 0.6 0.0 0.3 0.1
0.0 -0.1 0.7 -0.1 0.2 0.1
0 0 -0.1 0.7 0.0 0.2 0.1
0 0 0.0 0.7 0.0 0.3 0.1
0 0 -0.1 0.7 -0.1 0.1 0.0
0 0 -0.1 0.7 -0.1 0.2 0.1
0.0 0.0 0.6 0.0 0.3 0.1

-0 1 0.0 0.6 0.1 0.4 0.2
0 0 0.0 0.6 0.0 0.2 0.1

-0 1 0.1 0.7 0.1 0.5 0.2
-0 1 0.1 0.7 0.1 0.5 0.2
-0.1 0.1 0.7 0.1 0.5 0.2
-0 1 0.1 0.7 0.1 0.5 0.2
0.0 0.0 0.6 0.0 0.3 0.1
0.0 0.0 0.6 0.0 0.3 0.1

0.0 -0.1 0.6 0.0 0.2 0.1

-0 1 0.0 0.8 0.1 0.4 0.2

0.0 0.0 0.7 0.0 0.3 0.1

-0 1 0.0 0.7 0.0 0.3 0.1

0.0 0.0 0.6 0.0 0.3 0.1

-0.1 0.0 0.7 0.0 0.4 0.1

-0 1 0.0 0.8 0.0 0.3 0.1

I -0.1 -0.1 0.9 -0.1 0.3 0.1

sensitivity of CH(314) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs I

0.1 0.0 1.2 -0.7 0.0 0 1
0.1 0.0 1.4 -0.7 0.1 0 2
0.1 0.0 1.2 -0.6 0.1 02
0.1 0.0 1.0 -0.6 0.0 0 1
0.0 0.1 1.2 -0.5 0.4 0 2

-0.1 0.1 1.0 -0.4 0.4 02
0.0 0.0 1.3 -0.6 0.2 0.2
0.1 0.0 1.4 -0.7 0.1 0.2
0.1 0.0 1.4 -0.7 0.0 0.2
0.1 0.0 1.2 -0.7 -0.1 0.1

-0.2 0.2 0.9 -0.2 0.8 0.3
-0.1 0.1 1.2 -0.4 0.5 0.3
-0.3 0.2 0.8 -0.1 0.9 0.3
-0.1 0.2 1.1 -0.4 0.6 0.3
-0.2 0.2 1.0 -0.2 0.8 0.3
-0.2 0.2 1.0 -0.3 0.8 0.3
0.0 0.1 0.2 -0.2 0.1 o .o l

-0.3 0.3 0.3 0.1 0.8 0.3
-0.1 0.1 0.1 0.0 0.3 0.1
0.0 0.1 0.2 -0.2 0.1 0.1
0.0 0.0 0.2 -0.2 0.0 0.0
0.0 0.0 0.4 -0.3 0.0 0.0

-0.1 0.2 0.0 0.0 0.3 0.1
-0.1 0.1 0.1 -0.1 0.3 0.1

Test data

Ar H2 N2 CH4 Pwr Prs

-0.2 0.2 1.0 -0.2 0.8 0.3
-0.1 0.1 1.2 -0.5 0.4 0.3
0.1 0.0 1.4 -0.8 0.0 0.2
0.1 0.0 1.4 -0.7 0.1 0.2
0.1 0.0 14 -0.7 0.1 0.2
0.2 -0.1 1.5 -0.9 -0.1 0.1
0.1 0.0 1.4 -0.8 0.0 0.2

-0.1 0.1 1.2 -0.5 0.5 0.3
-0.2 0.2 1.0 -0.2 0.8 0.3
0.1 0.0 1.0 -0.5 0.0 0.1

-0.2 0.2 0.4 0.0 0.7 0.2
-0.2 0.2 0.4 0.0 0.7 0.2
-0.3 0.2 0.4 0.0 0.8 0.3
-0.3 0.2 0.4 0.0 0.8 0.3
0.0 0.0 0.8 -0.4 0.1 0.1
0.0 0.0 0.8 -0.4 0.1 0.1
0.1 0.0 0.7 -0.4 0.0 0.1

-0.2 0.2 0.9 -0.2 0.7 0.3
0.1 0.0 1.0 -0.5 0.0 0.1
0.0 0.1 0.9 -0.4 0.2 0.2
0.1 0.0 0.8 -0.4 0.0 0.1
0.0 0.0 1.3 -0.6 0.3 0.2
0.1 0.0 1.4 -0.7 0.2 0.2
0.1 0.0 1.4 -0.7 0.1 0.2



sensitivity analysis
methyl fragment model 6-3-3/0.9302
sensitivity of CH(387) spectral line to inputs 
Training data

-0.2
|H2

~

N2

0 6
CH4

o T
Pwr

08
Prs

0 3
-0.2 0.1 0.6 0.1 0.7 0.2
-0.1 0.0 0.8 -0.1 0.4 0.2
-0.2 0.1 0.6 0.1 0.8 0.3
-0.1 0.0 0.7 0.0 0.6 0.2
0.1 -0.1 1.0 -0.4 0.0 0.1

-0.1 0.0 0.8 -0.1 0.4 0.2
-0.1 0.0 0.9 -0.1 0.4 0.2
-0.1 0.0 0.8 -0.1 0.4 0.2
0.0 0.0 0.8 -0.2 0.3 0.2

-0.2 0.1 0.6 0.1 0.7 0.2
-0.1 0.0 0.9 -0.1 0.4 0.2
0.0 -0.1 1.0 -0.3 0.1 0.1
0.1 -0.1 1.0 -0.4 -0.1 0.1

-0.1 0.0 0.8 -0.1 0.4 0.2
-0.1 0.0 0.8 0.0 0.5 0.2
0.1 -0.1 1.0 -0.4 0.0 0.1

-0.3 0.2 0.5 0.3 1.0 0.3
-0.1 0.0 0.8 -0.1 0.4 0.2
0.1 -0.1 1.0 -0.4 -0.1 0.1
0.0 -0.1 1.0 -0.3 0.2 0.1
0.0 -0.1 0.7 -0.2 0.1 0.1
0.0 -0.1 0.5 -0.1 0.0 0.1
0.0 -0.1 1.0 -0.3 0.1 0.1
0.0 0.0 0.1 0.0 0.1 0.0
0.1 -0.1 1.0 -0.4 0.0 0.1

-0.1 0.0 0.8 -0.1 0.4 0.2
0.0 -0.1 0.6 -0.2 0.0 0.1
0.0 -0.1 0.6 -0.2 0.1 0.1
0.0 -0.1 0.5 -0.1 0.0 0.1
0.1 -0.1 0.9 -0.3 0.0 0.1
0.0 0.0 0.2 0.0 0.1 0.0
0.0 0.0 0.8 -0.2 0.3 0.2

-0.3 0.2 0.0 0.4 0.8 0.2

0.0 -0.1 0.4 -0.1 0.1 0.1
-0.1 0.0 0.6 0.0 0.5 0.2
-0.3 0.2 0.0 0.4 0.9 0.2
-0.1 0.0 0.8 -0.1 0.5 0.2
-0.3 0.2 0.4 0.3 1.0 0.3

-0.3 0.1 0.5 0.2 0.9 0.3

-0.2 0.1 0 4 0.1 0.5 0.2

-0.3 0.2 0.5 0.3 1.0 0.3

-0.3 0.2 0.5 0.2 0.9 0.3

-0.2 0.1 0.6 0.1 0.6 0.2

0.0 0.0 0.7 -0.1 0.2 0.1

0 0 -0.1 0.5 -0.1 0.1 0.1

-0.1 0.0 0.4 0.0 0.3 0.1

0.0 -0.1 0.4 -0.1 0.0 0.0

sensitivity analysis
methyl fragment model 6-3-3/0.9302
sensitivity of CH(431) spectral line to inputs I 
Training data |
Ar H2 N2 CH4 Pwr Prs |

-0.3 0.4 -0.4 0.1 0.6 0 2
-0.2 0.4 -0.3 0.0 0.6 0.1
-0.2 0.3 -0.2 -0.1 0.3 0 1
-0.3 0.4 -0.3 0.1 0.6 0.2
-0.2 0.3 -0.3 0.0 0.5 0.1
0.0 0.2 0.0 -0.3 0.0 0.0

-0.1 0.3 -0.2 -0.1 0.3 0.1
-0.1 0.3 -0.2 -0.1 0.3 0.1
-0.2 0.3 -0.2 -0.1 0.4 0.1
-0.1 0.3 -0.1 -0.2 0.3 0.1
-0.3 0.4 -0.3 0.0 0.6 0.2
-0.1 0.3 -0.2 -0.1 0.3 0.1
-0.1 0.2 -0.1 -0.3 0.1 0.1
0.0 0.2 0.0 -0.4 0.0 0.0

-0.2 0.3 -0.2 -0.1 0.4 0.1
-0.2 0.3 -0.3 0.0 0.4 0.1
0.0 0.2 0.0 -0.4 0.0 0.0

-0.3 0.4 -0.5 0.2 0.8 0.2
-0.2 0.3 -0.2 -0.1 0.4 0.1
0.0 0.2 0.0 -0.4 0.0 0.0

-0.1 0.2 -0.1 -0.2 0.2 0.1
0.0 0.2 0.1 -0.3 0.1 0.1
0.0 0.2 0.2 -0.4 0.0 0.0

-0.1 0.2 -0.1 -0.3 0.1 0.1
0.0 0.1 0.3 -0.5 0.0 0.0
0.0 0.2 0.0 -0.3 0.0 0.0

-0.2 0.3 -0.2 -0.1 0.4 0.1
0.0 0.2 0.1 -0.4 0.0 0.0
0.0 0.2 0.1 -0.3 0.1 0.1
0.0 0.2 0.2 -0.4 0.0 0.0
0.0 0.2 0.1 -0.4 0.0 0.0
0.0 0.1 0.2 -0.4 0.0 0.1

-0.1 0.3 -0.1 -0.2 0.3 0.1
-0.2 0.3 -0.3 0.1 0.6 0.2
0.0 0.1 0.1 -0.3 0.0 0.0

-0.2 0.3 -0.2 -0.1 0.4 0.1
-0.3 0.3 -0.3 0.1 0.6 0.2
-0.2 0.3 -0.2 -0.1 0.4 0.1
-0.3 0.4 -0.4 0.2 0.8 0.2
-0.3 0.4 -0.4 0.1 0.7 0.2
-0.2 0.3 -0.1 -0.1 0.4 0.1
-0.3 0.4 -0.5 0.2 0.8 0.2
-0.3 0.4 -0.4 0.2 0.8 0.2
-0.2 0.3 -0.3 0.0 0.5 0.1
-0.1 0.2 -0.1 -0.2 0.2 0.1
0.0 0.2 0.1 -0.3 0.0 0.0

-0.1 0.2 -0.1 -0.1 0.2 0.1
0.0 0.1 0.2 -0.4 0.0 0.0
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sensitivity of CH(387) spectral line to inputs 
Training data

|Ar H2 N2 CH4 Pwr Prs
0^ • “ 0 8 -0.2 o"T o i l
0.0 0.0 0.9 -0.2 0.3 0.2
0.0 -0.1 0.8 -0.2 0.2 0.1
0.0 -0.1 0.6 -0.2 0.1 0.1

-0 1 0.0 0.7 0.0 0.5 0.2
-0 1 0.1 0.5 0.1 0.5 0.2
0.0 0.0 0.8 -0.1 0.3 0.2
0.0 -0.1 1.0 -0.3 0.2 0.1
0 1 -0.1 1.0 -0.3 0.1 0.1
0 1 -0.1 0.8 -0.3 0.0 0.1

-0 3 0.2 0.4 0.3 1.0 0.3
-0 2 0.1 0.7 0.0 0.6 0 2
-0 3 0.2 0.3 0.3 1.0 0.3

I o N) 0.1 0.6 0.1 0.8 0 3
-0 3 0.2 0.5 0.3 1.0 0 3
-0 3 0.1 0.5 0.2 0.9 0 3
-0 1 0.0 -0.1 0.2 0.1 0.0
-0 3 0.2 -0.1 0.5 0.9 0 2
-0 2 0.1 -0.2 0.3 0.4 01
-0 1 0.0 -0.1 0.2 0.2 0 0
0.0 0.0 0.0 0.1 0.0 0.0
0.0 0.0 0.1 0.1 0.1 0.0

-0 2 0.1 -0.2 0.3 0.4 0.1
I -0.1 0.1 -0.2 0.3 0.3 0 11
iTestdata I

lAr H2 N2 CH4 Pwr Prs |

-0 3 0.2 0.5 0.2 1.0 0 3
-0 1 0.0 0.7 0.0 0.6 0 2
0 0 -0.1 1.0 -0.3 0.1 0 1
0.0 -0.1 0.9 -0.3 0.2 0 1
0 0 -0.1 0.9 -0.2 0.2 0 1
0 1 -0.1 1.0 -0.4 0.0 0 1
0.0 -0.1 1.0 -0.3 0.2 0 1

-0 1 0.1 0.7 0.0 0.6 0 2
-0 3 0.2 0.5 0.3 1.0 0 3
0.0 -0.1 0.6 -0.1 0.1 0 1

-0 3 0.2 0.0 0.4 0.8 0 2
-0 3 0.2 0.0 0.4 0.8 0 2
-0 3 0.2 0.0 0.4 0.9 0 2
-0 3 0.2 0.0 0.4 0.9 0 2
0.0 0.0 0.4 0.0 0.2 0 1
0.0 0.0 0.5 -0.1 0.2 0 1
0.0 -0.1 0.4 -0.1 0.0 0.0

-0 3 0.1 0.4 0.2 0.9 0 3
0.0 -0.1 0.6 -0.1 0.1 0 1

-0 1 0.0 0.5 0.0 0.3 0.1
0 0 0.0 0.4 -0.1 0.1 0 1

-0 1 0.0 0 8 -0.1 04 0 2

0.0 0.0 0.9 -0.2 0.3 0 2

| a o -0.1 0.9 -0.3 0.2 0 11

sensitivity of CH(431) spectral line to inputs I 
Training data |
Ar H2 N2 CH4 Pwr Prs |

0.0 0.2 0.0 -0.2 0.1 0 1
-0.1 0.2 -0.2 -0.1 0.2 0 1
-0.1 0.2 -0.1 -0.2 0.2 0 1
0.0 0.2 0.0 -0.3 0.1 0 1

-0.2 0.3 -0.2 -0.1 0.4 0 1
-0.2 0.3 -0.2 -0.1 0.4 0 1
-0.1 0.3 -0.2 -0.1 0.3 0 1
-0.1 0.2 -0.1 -0.2 0.2 0 1
-0.1 0.2 -0.1 -0.2 0.1 0 1
0.0 0.2 0.0 -0.3 0.1 0.0

-0.3 0.4 -0.4 0.1 0.8 02
-0.2 0.3 -0.3 0.0 0.5 0 1
-0.3 0.4 -0.4 0.2 0.8 0 2
-0.3 0.4 -0.4 0.1 0.6 02
-0.3 0 4 -0.5 0.2 0.8 0 2
-0.3 0.4 -0.4 0.1 0.7 0 2
0.0 0.1 0.3 -0.4 0.0 0.1

-0.3 0.4 -0.2 0.0 0.7 0 2
-0.1 0.2 0.2 -0.3 0.2 0 1
0.0 0.1 0.3 -0.4 0.0 0 1
0.0 0.1 0.3 -0.5 -0.1 0.0
0.0 0.1 0.3 -0.5 -0.1 0.0

-0.1 0.2 0.1 -0.3 0.2 0 1
-0.1 0.2 0.2 -0.3 0.2 0 l |

Test data |

Ar H2 N2 CH4 Pwr Prs |

-0.3 0.4 -0.5 0.2 0.8 0 2
-0.2 0.3 -0.3 0.0 0.5 0.1
-0.1 0.2 -0.1 -0.2 0.1 0.1
-0.1 0.2 -0.1 -0.2 0.2 0 1
-0.1 0.2 -0.1 -0.2 0.2 0 1
0.0 0.2 0.0 -0.3 0.0 0 0

-0.1 0.2 -0.1 -0.2 0.2 0 1
-0.2 0.3 -0.3 0.0 0.5 0 1
-0.3 0.4 -0.5 0.2 0.8 0 2
0.0 0.2 0.1 -0.3 0.1 0 1

-0.2 0.3 -0.3 0.1 0.6 0 2
-0.2 0.3 -0.3 0.1 0.6 0 2
-0.3 0.3 -0.3 0.1 0.6 02
-0.3 0.3 -0.3 0.1 0.6 0 2
-0.1 0.2 0.0 -0.2 0.2 0.1
0.0 0.2 0.0 -0.2 0.1 0.1
0.0 0.1 0.1 -0.3 0.0 0.0

-0.3 0.4 -0.4 0.1 0.7 0 2
0.0 0.2 0.1 -0.3 0.1 0 1

-0.1 0.2 -0.1 -0.2 0.3 0.1
0.0 0.2 0.1 -0.3 0.1 0 1

-0.2 0.3 -0.2 -0.1 0.4 0 1
-0.1 0.3 -0.2 -0.1 0.3 0 1
-0.1 0.2 -0.1 -0.2 0.2 0 11
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sensitivity analysis 
methyl ion model 6-3-2/0.9508

sensitivity of CH+(395) spectral line to inputs 
Training data

|Ar |H2 N2 CH4 Pwr
cTo OO o"o

-0.1 14 -0.1 - 1.2
-0.1 0.1 0.0 -0.4
-0.1 1.4 -0.1 - 1.1
-0.2 1.1 -0.1 - 1.1
- 0.1 -0.7 0.0 0.0
-0.1 -0.3 0.0 -0.2
-0.1 0.1 0.0 -0.4
-0.1 -0.3 0.0 -0.2
-0.1 -0.5 0.0 0.0
-0.1 1.4 -0.1 -1.2
-0.1 0.1 0.0 -0.4
-0.1 0.2 0.0 -0.5
-0.1 -0.4 0.0 -0.1
-0.2 0.9 -0.1 -1.0
-0.2 1.1 -0.1 - 1.1
-0.1 -0.3 0.0 -0.1
0.0 0.1 0.0 -0.2
0.0 0.0 0.0 -0.1

-0.1 -0.4 0.0 -0.1
-0.1 -0.2 0.0 -0.2
-0.1 -0.1 0.0 -0.2
-0.1 -0.3 0.0 -0.1
-0.1 0.0 0.0 -0.3
-0.1 -0.2 0.0 -0.1
-0.1 -0.3 0.0 -0.1
-0.2 0.6 0.0 -0.8
-0.1 -0.2 0.0 -0.2
-0.1 -0.1 0.0 -0.3
-0.1 -0.3 0.0 -0.1
-0.1 -0.3 0.0 -0.1
-0.1 -0.2 0.0 -0.1
-0.1 0.5 0.0 -0.7
0.0 -0.4 0.0 0.0
0.0 -0.3 0.0 0.0

-0.1 0.1 0.0 -0.3
-0.1 -0.4 0.0 0.0
-0.1 0.1 0.0 -0.4
-0.1 0.2 0.0 -0.4
-0.1 -0.4 0.0 0.0
-0.1 -0.3 0.0 -0.1
-0.1 0.6 -0.1 -0.6
-0.1 0.1 0.0 -0.3
-0.1 0.7 -0.1 -0.7
-0.1 1.0 -0.1 -0.9
-0.1 -0.2 0.0 -0.1
0.0 -0.2 0.0 0.0

-0.11 -0.2 0.0 -0.1

sensitivity analysis
methyl ion model 6-3-2/0.9508
sensitivity of CH+(422) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs |

-0.1 -0.2 0.1 0.0 0.5 -0 1
-0.1 0.9 0.1 -0.7 0.5 0 4
-0.1 0.2 0.1 -0.2 0.6 0 1
-0.1 0.9 0.1 -0.7 0.5 0.4
-0.1 0.9 0.1 -0.7 0.6 0 4
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.0 0.2 -0.1 0.6 0 0
-0.1 0.2 0.1 -0.3 0.6 0.1
-0.1 0.0 0.2 -0.1 0.6 0.0
-0.1 -0.1 0.2 0.0 0.6 -0.1
-0.1 0.9 0.1 -0.7 0.5 0.4
-0.1 0.2 0.1 -0.3 0.6 0.1
-0.1 0.3 0.1 -0.3 0.6 0.1
-0.1 -0.1 0.2 0.0 0.7 -0.1
-0.1 0.8 0.1 -0.6 0.6 0.3
-0.1 0.9 0.1 -0.7 0.6 0.4
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 -0.1 0.1 -0.1 0.6 0.0
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.7 -0.1
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 0.0 0.2 -0.1 0.6 0.0
-0.1 -0.1 0.2 0.0 0.7 -0.1
-0.1 0.1 0.1 -0.2 0.6 0.0
-0.1 -0.1 0.2 0.0 0.6 -0.1
-0.1 -0.1 0.2 0.0 0.7 -0.1
-0.1 0.6 0.1 -0.5 0.6 0.2
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 0.0 0.2 -0.1 0.6 0.0
•0.1 -0.2 0.2 0.0 0.7 -0.1
-0.1 -0.2 0.2 0.0 0.7 -0.1
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 0.5 0.1 -0.4 0.6 0.2
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.0 0.1 -0.1 0.6 0.0
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 0.2 0.1 -0.2 0.6 0.1
-0.1 0.2 0.1 -0.3 0.6 0.1
-0.1 -0.3 0.2 0.0 0.7 -0.1
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 0.4 0.1 -0.4 0.6 0.2
-0.1 0.0 0.1 -0.1 0.6 0.0
-0.1 0.5 0.1 -0.4 0.6 0.2
-0.1 0.7 0.1 -0.6 0.6 0.3
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.3 0.2 0.0 0.6 -0.1

-0.1 -0.2 0.2 0.0 0.6 -0.1



Isensitivity of CH+(395) spectral line to inputs
Training data

[A t____ H2 N2 CH4 Pwr Prs
0̂ AT2 0.0 ao 03 t TT
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.2 0.0 0.0 0.3 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 -0.1 0.0 0.0 0.1 -0.1
0.0 -0.2 0.0 0.0 0.1 -0.1
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.2 0.0 0.0 0.3 -0.1
0.0 -0.1 0.0 -0.1 0.2 -0.1

-0 1 0.0 0.0 -0.2 0.3 0.0
0.0 -0.1 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 -0.1 0.3 -0.1
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.1 0.0 -0.1 0.3 -0.1
0.0 0.0 0.0 -0.2 0.2 0.0
0.0 0.3 -0.1 -0.3 0.1 0.1
0.0 0.2 0.0 -0.2 0.1 0.1

-0 1 0.1 0.0 -0.3 0.3 0.0
-0 1 -0.2 0.0 -0.3 0.7 -0.1
-0 1 -0.2 0.0 -0.1 0.4 -0.1
0.0 0.2 0.0 -0.2 0.1 0.1

I 0.0 0.1 0.0 -0.1 0.0 0.0
iTest data

lAr H2 N2 CH4 Pwr Prs

0 0 -0.3 0.0 0.0 0.3 -0.1
-0 1 -0.5 0.0 0.0 0.6 -0.2
-0 1 -0.7 0.0 0.0 0.8 -0.3
-0 1 -0.7 0.0 0.0 0.8 -0.3
-0 1 -0.6 0.0 0.0 0.8 -0.3
-0 1 -0.7 0.0 0.0 0.8 -0.3
-0 1 -0.6 0.0 0.0 0.8 -0.3
-0 1 -0.5 0.0 0.0 0.6 -0.2
0.0 -0.3 0.0 0.0 0.3 -0.1

-0 1 0.0 0.0 -0.3 0.6 0.0
0.0 -0.4 0.0 0.0 0.4 -0.2
0.0 -0.4 0.0 0.0 0.4 -0.2

-0.1 -0.4 0.0 0.0 0.5 -0.2
-0 1 -0.4 0.0 0.0 0.5 -0.2
0.0 -0.2 0.0 0.0 0.2 -0.1
0.0 -0.3 0.0 0.0 0.3 -0.1

-0.1 -0.3 0.0 0.0 0.4 -0.1

0.0 -0.2 0.0 0.0 0.3 -0.1

-0 1 0.1 0.0 -0.3 0.4 0.0

0.0 -0.2 0.0 0.0 0.3 -0.1

0.0 -0.3 0.0 0.0 0.3 -0.1

0.0 -0.2 0.0 0.0 0.1 -0.1

0 0 -0.2 0.0 0.0 0.2 -0.1

o o -0.2 0.0 0.0 0.2 -0.1

sensitivity of CH+(422) spectral line to inputs 
Training data
Ar H2 N2 CH4 Pwr Prs |

-0.1 -0.2 0.1 0.0 0.6 -0 1
-0.1 -0.2 0.1 0.0 0.6 -0 1
-0.1 -0.2 0.1 0.0 0.6 -0 1
-0.1 -0.2 0.2 0.0 0.6 -0 1
-0.1 -0.2 0.1 0.0 0.5 -0 1
-0.1 -0.2 0.1 0.0 0.5 -0 1
-0.1 -0.2 0.1 0.0 0.5 -0.1
-0.1 -0.2 0.1 0.0 0.5 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.1 0.1 -0.1 0.6 0.0
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.1 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.1 0.1 -0.1 0.6 0.0
-0.1 0.1 0.1 -0.1 0.5 0.0
-0.1 0.0 0.1 -0.1 0.5 0.0
-0.1 0.0 0.1 -0.1 0.6 0.0
-0.1 0.1 0.2 -0.2 0.6 0.0
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.0 0.1 -0.1 0.5 0.0
-0.1 -0.1 0.1 0.0 0.5 0.0

Test data

Ar H2 N2 CH4 Pwr Prs

-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.1 0.1 -0.2 0.6 o.o !
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.0 0.1 -0.1 0.6 0.0
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.5 -0.1
-0.1 -0.2 0.1 0.0 0.5 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
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APPENDIX C

sensitivity of Ar(750) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs

0.8 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.6 0.0 -0.1 0.0 0.2 0.0
0.5 0.1 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.7 0.0 -0.1 0.0 0.1 0.0
0.5 0.1 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 -0.1 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.8 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 -0.1 0.2 0.0
0.7 0.0 -0.1 -0.1 0.2 0.0
0.6 0.0 -0.1 0.0 0.2 0.0
0.7 0.0 -0.1 0.0 0.2 0.0

0.7 0.0 - 0.1 0.0 0.2 0.0
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[sensitivity of Ar(763) spectral line to inputs 
Validation data

| Ar H2 N2 CH4 Pwr Prs
0 6 ~ ^02 ~ oT o"T
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 3 -0.1 -0.1 -0.1 0.1 0.1
0 3 -0.1 -0.1 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 3 -0.1 -0.1 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0.6 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.2 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 6 -0.1 -0.2 -0.1 0.1 0.1
0 5 -0.1 -0.2 -0.1 0.1 0.1
0 4 -0.1 -0.1 -0.1 0.1 0.1

| 0 6 -0.1 -0.2 -0.1 0.1 0.1

0.6 - 0.1 - 0.2 - 0.1 0.1 0.1





sensitivity of H2(406) spectral line to inputs 
(Validation data

[At H2 N2 CH4 Pwr Prs
0 4 ~ 412 05 OO

-0 1 0.2 -0.2 -0.1 0.4 0.0
-0 1 0.4 -0.1 -0.2 0.5 0.0
-0 1 0.5 -0.1 -0.2 0.6 0.1
-0 1 0.6 -0.1 -0.3 0.7 0.1
-0 1 0.6 -0.1 -0.3 0.7 0.1
-0 1 0.2 -0.2 -0.1 0.4 0.0
-0 1 0.1 -0.2 -0.1 0.3 0.0
-0 1 0.3 -0.1 -0.2 0.4 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.1 -0.2 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.1 -0.1 0.0 0.2 0.0
-0 1 0.1 -0.1 0.0 0.2 0.0
-0 1 0.1 -0.1 0.0 0.2 0.0
-0 1 0.1 -0.1 0.0 0.2 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.4 -0.1 -0.2 0.6 0.0
-0 1 0.2 -0.1 -0.1 0.4 0.0
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.2 -0.1 -0.1 0.3 0.0
-0 1 0.1 -0.1 -0.1 0.3 0.0
-0 1 0.3 -0.1 -0.2 0.5 0.0
-0 1 0.4 -0.1 -0.2 0.5 0.0
-0 1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0

I -0 1 0.3 -0.1 -0.1 0.4 0.0

- 0.1 0.3 - 0.1 - 0.1 0.4 0.0

sensitivity of H2(417) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs |

-0.1 0.3 -0.1 -0.2 0.5 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.5 0.0 -0.2 0.6 0.1
-0.1 0.6 0.0 -0.3 0.7 0 1
-0.1 0.6 -0.1 -0.3 0.8 0.1
-0.1 0.1 -0.1 -0.1 0.3 -0.1
-0.1 0.0 -0.1 0.0 0.2 -0.1
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.1 0.0 0.2 -0.1
-0.1 0.1 -0.1 -0.1 0.3 0.0
0.0 0.0 -0.1 0.0 0.1 -0.1
0.0 0.0 -0.1 0.0 0.1 -0.1
0.0 0.0 -0.1 0.0 0.1 -0.1
0.0 0.0 -0.1 0.0 0.1 -0.1

-0.1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.2 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.1 0.0 0.2 0.0
-0.1 0.1 -0.1 -0.1 0.3 0.0
-0.1 0.1 -0.1 0.0 0.2 0.0
-0.1 0.3 -0.1 -0.1 0.4 0.0
-0.1 0.4 -0.1 -0.2 0.5 0.0
-0.1 0.3 -0.1 -0.2 0.4 0.0
-0.1 0.2 -0.1 -0.1 0.4 o.ol
-0.1 0.2 -0.1 -0.1 0.4 0.0

-0.1 0.2 -0.1 -0.1 0.4 0.0
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sensitivity of H2(420) spectral line to inputs 
Validation data

| A r H 2 N 2 |[ C H 4 P w r P r s

o"o o"3 o i l ^02 0 5 0 0
0.0 0.1 0.0 - 0.1 0.3 - 0.1
0.0 0.4 0.1 - 0.2 0.6 0.0
0.0 0.5 0.1 - 0.3 0.7 0.1

-0 1 0.8 0.1 - 0.4 0.9 0.1
-0 1 0.7 0.1 - 0.4 0.9 0.1
0 0 0.0 0.0 0.0 0.2 - 0.1
0.0 - 0.1 0.0 0.0 0.1 - 0.1
0.0 0.3 0.0 - 0.1 0.4 0.0
0.0 0.0 0.0 0.0 0.2 - 0.1
0.0 - 0.1 0.0 0.0 0.1 - 0.1
0 . 0 I 0.1 0.0 0.0 0.2 - 0.1
0.0 - 0.2 0.0 0.1 0.0 - 0.1
0.0 - 0.2 0.0 0.1 0.0 - 0.1
0.0 - 0.2 0.0 0.1 0.0 - 0.1
0.0 - 0.2 0.0 0.1 0.0 - 0.1
0.0 0.0 0.0 0.0 0.2 - 0.1
0.0 0.4 0.1 - 0.2 0.6 0.0
0.0 0.1 0.0 - 0.1 0.3 0.0
0.0 - 0.1 0.0 0.0 0.1 -0 1
0.0 0.0 0.0 0.0 0.2 -0 1
0.0 - 0.1 0.0 0.0 0.1 - 0.1
0.0 0.3 0.0 - 0.1 0.4 0.0
0.0 0.4 0.1 - 0.2 0.5 0.0
0 0 0.3 0.0 - 0.1 0.4 0.0
0.0 0.2 0.0 - 0.1 0.3 0 0

I 0.0 0.2 0.0 - 0.1 0.4 o . o |

- 0.1
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sensitivity of N2(337) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs

-0.1 0.0 1.1 -0.3 0.0 0.1
-0.1 -0.1 1.2 -0.4 0.0 0.1
-0.2 0.0 1.5 -0.4 0.2 0.2
-0.2 -0.2 1.5 -0.4 0.1 0.0
-0.2 -0.1 1.4 -0.4 0.1 0.1
-0.1 -0.2 0.9 -0.4 -0.1 -0.1
-0.2 -0.2 1.4 -0.4 0.1 0.0
-0.2 0.0 1.7 -0.4 0.3 0.2
-0.2 -0.1 1.5 -0.4 0.2 0.2
-0.2 -0.2 1.6 -0.4 0.2 0.0
0.0 -0.1 0.0 -0.1 -0.2 -0.1

-0.1 -0.2 0.5 -0.2 -0.1 -0.1
-0.1 0.1 1.1 -0.2 0.2 0.3
-0.1 0.1 1.1 -0.2 0.2 0.3
0.0 0.2 0.7 -0.1 0.1 0.3
0.0 0.2 0.7 -0.1 0.1 0.3

-0.1 0.1 1.1 -0.2 0.2 0.3
-0.1 0.1 1.0 -0.3 0.1 0.2
0.0 0.1 0.8 -0.2 0.1 0.2
0.1 0.2 0.3 -0.1 0.0 0.2
0.0 0.2 0.3 -0.1 -0.1 0.2
0.1 0.2 0.1 0.0 -0.1 0.2
0.0 0.0 0.0 -0.1 -0.2 -0.1

-0.1 -0.1 1.0 -0.3 0.0 0.1
-0.1 -0.1 1.1 -0.3 0.0 0.1
-0.1 0.0 1.2 -0.3 0.0 0.1
0.0 -0.3 -0.2 -0.2 -0.4 -0.3

- 0.1 0.0 0.9 - 0.3 0.0 0.1



sensitivity of N2(389) spectral line to inputs 
Validation data

- 0.2 0.0 0.9 0.0

|Ar H2 N2 CH4 Pwr Prs I
^02 OO TT 0 5 02I
-0 2 0.0 1.1 0.0 0.5 0 2
-0 2 -0.2 0.9 -0.1 0.3 0.0
-0.1 0.0 0.8 0.0 0.4 0 2
-0 2 0.0 1.1 0.0 0.5 0 2
-0.1 0.2 0.9 0.1 0.6 04
-0 2 0.0 0.9 0.0 0.4 02
-0 2 -0.3 0.7 -0.2 0.1 -0 1
-0 2 -0.1 0.9 -0.1 0.4 0.0
-0.1 -0.1 0.5 0.0 0.2 0.0
0 .0 ! 0.2 0.3 0.1 0.3 0 3
0.0 0.1 0.4 0.1 0.3 0 2

-0.2 -0.2 0.9 -0.2 0.3 -0 1
-0.2 -0.2 0.9 -0.2 0.3 -0 1
-0.2 -0.2 1.0 -0.2 0.3 0.0
-0.2 -0.2 1.0 -0.2 0.3 0.0
-0.2 -0.2 t o -0.2 0.3 0 0
-0.2 -0.1 1.2 -0.1 0.5 0 1
-0.2 -0.1 1.1 -0.1 0.5 0 1
-0.2 -0.1 1.2 -0.1 0.5 0 1
-0.2 0.0 1.2 -0.1 0.6 0 2
-0.2 0.0 1.2 -0.1 0.5 0 2
-0.1 0.2 0.9 0.1 0.6 04
-0.2 0.0 1.1 0.0 0.6 0 3
-0.2 0.1 1.1 0.0 0.6 0 3
-0.2 0.0 12 0.0 0.6 0 2

I  0 0

0.5 0.4 0.3 0.6 0 5 |
0.4 0.1

sensitivity of N2+(391) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs

-0.1 -0.1 1.2 -0.1 0.2 0.1
-0.2 -0.1 1.1 0.0 0.2 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.5 0.0 0.3 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.1 0.0 0.9 0.1 0.3 0.2
-0.1 -0.1 1.0 0.0 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.2 0.1
-0.2 -0.2 1.5 -0.1 0.3 0.1
-0.2 -0.2 1.4 -0.1 0.2 0.1
-0.1 0.1 0.1 0.2 0.2 0.2
-0.1 0.0 0.7 0.1 0.2 0.1
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.2 0.0 1.1 0.1 0.3 0.2
-0.2 0.0 1.1 0.1 0.3 0.2
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.2 -0.1 1.2 0.0 0.3 0.2
-0.2 0.0 1.1 0.1 0.3 0.2
-0.1 0.0 0.9 0.1 0.2 0.2
-0.1 0.0 0.9 0.1 0.3 0.2
-0.1 0.1 0.7 0.1 0.3 0.2
-0.2 -0.1 1.5 0.0 0.3 0.1
-0.2 -0.1 1.4 0.0 0.3 0.1
-0.2 -0.1 1.5 0.0 0.3 0.1
-0.1 0.2 -0.1 0.3 0.2 0.2

- 0.2 - 0.1 1.1 0.0 0.3 0.1
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sensitivity of N2+(427) spectral line to inputs 
Validation data
Ar |H2 N2 CH4 Pwr Prs

) ~ 0 8 02 o T
0.0 0.7 0.0 0.3 0.1
0.0 0.9 0.0 0.4 0.2
0.0 0.9 0.1 0.5 0.2
0.0 0.9 0.1 0.5 0.2
0.1 0.6 0.2 0.4 0.2
0.0 0.7 0.0 0.3 0.1

-0.2 1.0 -0.1 0.2 0.0
0.0 0.9 0.0 0.4 0.2

-0.1 0.9 -0.1 0.3 0.1
0.0 0.2 0.0 0.2 0.1
0.0 0.5 0.0 0.3 0.1
0.1 0.7 0.1 0.5 0.2
0.1 0.7 0.1 0.5 0.2
0.1 0.7 0.1 0.5 0.2
0.1 0.7 0.1 0.5 0.2
0.0 0.9 0.0 0.4 0.2
0.1 0.7 0.1 0.5 0.2
0.1 0.7 0.1 0.5 0.2
0.1 0.7 0.1 0.5 0.2
0.1 0.6 0.1 0.4 0.2
0.1 0.6 0.1 0.4 0.2
0.1 0.5 0.2 0.5 0.2
0.0 0.9 0.1 0.4 0.2
0.0 0.9 0.1 0.5 0.2
0.0 0.9 0.1 0.5 0.2
0.1 0.0 0.1 0.2 0.1

0.0 0.7 0.1 0.4 0.2

sensitivity of CH(314) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs

0.1 0.0 0.9 -0.6 -0.1 0.1
0.0 0.0 1.3 -0.6 0.2 0.2

-0.1 0.1 1.2 -0.5 0.5 0.3
-0.2 0.2 1.0 -0.3 0.8 0.3
-0.1 0.1 1.1 -0.4 0.6 0.3
-0.1 0.1 1.1 -0.4 0.6 0.3
0.1 0.0 1.4 -0.7 0.1 0.2
0.2 -0.1 1.5 -0.9 -0.1 0.1
0.0 0.1 1.2 -0.5 0.4 0.2
0.1 0.0 1.3 -0.7 0.0 0.2
0.1 0.0 0.5 -0.4 0.0 0.1
0.1 0.0 0.9 -0.5 0.0 0.1

-0.2 0.2 0.4 0.0 0.7 0.2
-0.2 0.2 0.4 0.0 0.7 0.2
-0.3 0.2 0.4 0.0 0.8 0.3
-0.3 0.2 0.4 0.0 0.8 0.3
0.0 0.0 1.3 -0.6 0.3 0.2

-0.2 0.2 0.9 -0.2 0.7 0.3
-0.2 0.2 0.8 -0.1 0.9 0.3
-0.2 0.2 0.6 -0.1 0.8 0.3
-0.1 0.1 0.7 -0.3 0.3 0.2
-0.1 0.1 0.6 -0.2 0.4 0.2
-0.3 0.3 0.6 0.0 0.9 0.3
-0.2 0.2 1.1 -0.3 0.7 0.3
-0.2 0.2 1.0 -0.3 0.8 0.3
-0.2 0.2 1.0 -0.2 0.8 0.3
0.0 0.1 0.2 -0.2 0.1 0.0

- 0.1 - 0.3
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sensitivity of CH(431) spectral line to inputs 
Validation data
Ar H2 N2 CH4 Pwr Prs

0.0 0.1 0.1 -0.3 0.0 0.0
-0.1 0.3 -0.1 -0.2 0.3 0.1
-0.2 0.3 -0.3 0.0 0.5 0.1
-0.3 0.4 -0.4 0.1 0.7 0.2
-0.2 0.4 -0.3 0.0 0.6 0.1
-0.3 0.4 -0.4 0.1 0.6 0.2
-0.1 0.2 -0.1 -0.2 0.2 0.1
0.0 0.2 0.0 -0.4 0.0 0.0

-0.2 0.3 -0.2 -0.1 0.4 0.1
0.0 0.2 0.0 -0.3 0.1 0.1
0.0 0.1 0.3 -0.5 0.0 0.0
0.0 0.2 0.1 -0.3 0.1 0.1

-0.2 0.3 -0.3 0.1 0.6 0.2
-0.2 0.3 -0.3 0.1 0.6 0.2
-0.3 0.3 -0.3 0.1 0.6 0.2
-0.3 0.3 -0.3 0.1 0.6 0.2
-0.1 0.3 -0.2 -0.1 0.3 0.1
-0.3 0.4 -0.3 0.1 0.6 0.2
-0.3 0.4 -0 4 0.2 0.8 0.2
-0.3 0.4 -0.3 0.1 0.7 0.2
-0.1 0.2 0.0 -0.2 0.3 0.1
-0.2 0.3 -0.1 -0.1 0.4 0.1
-0.3 0.4 -0.4 0.1 0.8 0.2
-0.3 0.4 -0.4 0.1 0.7 0.2
-0.3 0.4 -0.4 0.2 0.7 0.2
-0.3 0.4 -0.5 0.2 0.8 0.2
0.0 0.1 0.3 -0.4 0.0 0.1

- 0.2 0.3 - 0.2 - 0.1 0.4 0.1
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sensitivity of C H +(4 2 2 ) spectral line to inputs 
Validation data
Ar H2 N2 C H 4 Pwr Prs

-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.1 0.2 0.0 0.6 -0.1
-0.1 0.9 0.1 -0.7 0.6 0.4
-0.1 0.1 0.1 -0.2 0.6 0.0
-0.1 0.9 0.1 -0.7 0.5 0.4
-0.1 -0.2 0.1 0.0 0.5 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 -0.1 0.1 0.0 0.6 -0.1
-0.1 0.0 0.2 -0.2 0.6 0.0
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 0.1 0.1 -0.2 0.6 0.0
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.3 0.2 0.1 0.7 -0.1
-0.1 -0.1 0.2 0.0 0.6 -0.1
-0.1 0.4 0.1 -0.4 0.6 0.2
-0.1 -0.1 0.2 -0.1 0.6 0.0
-0.1 -0.3 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.3 0.2 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.1 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.1 0.0 0.6 -0.1
-0.1 -0.2 0.2 0.0 0.6 -0.1
-0.1 -0.1 0.1 0.0 0.6 0.0
- 0.1 - 0.1 0.1 - 0.1 0.6 0.0
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Appendix I) Defuzzified Rules
Table 1)1 - Large Ar750

Rule No . A r________ H2________ N2________ C H 4 Power P re ssu re A r750 C L  I
|30 - 40 0 - 2 0 0 - 10 7.5 - 10 200 - 250 620 - 800 1200-1600 Tom

2 |30 - 40 0 - 2 0 0 - 10 2 .5 - 7.5 200 - 250 620 - 800 1200-1600 1.00
3 |30 - 40 O'- 20 0 - 10 7 .5 - 1 0 100-200 620 - 800 1200-1600 1.00
4 |30 - 40 0 - 2 0 0 - 10 7.5 - 10 5 0 -1 0 0 620 - 800 1200-1600 1.00
5 |30 - 40 0 - 2 0 0 - 10 0 - 2.5 200 - 250 620 - 800 1200-1600 1.00
6
VMM

|30 - 40 0 - 2 0 0 - 10 0 - 2.5 100-200 620 - 800 1200-1600 1.00
7 |30 - 40 0 - 2 0 0 - 10 2 .5 - 7.5 100-200 620 - 800 1200-1600 1.00
8 |30 - 40 0 - 2 0 0 - 10 2 .5 - 7.5 5 0 - 100 620 - 800 1200-1600 1.00
9 |30 - 40 0 - 2 0 0 - 10 0 - 2.5 5 0 -1 0 0 620 - 800 1200-1600 1.00

10 |30 - 40 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 620 - 800 1200-1600 1.00
11 |30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 620 - 800 1200-1600 1.00

|30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 620 - 800 1200-1600 1.00
13 |30 - 40 0 - 2 0 10-30 0 - 2.5 200 - 250 620 - 800 1200-1600 1.00

14 |30 - 40 2 0 - 6 0 0 - 10 0 - 2.5 100 - 200 620 - 800 1200-1600 1.00

15
|30 - 40 2 0 - 6 0 0 - 1 0 0 - 2.5 5 0 - 100 620 - 800 1200-1600 1.00

16 I
|3 0 - 4 0 2 0 - 6 0 0 - 10 7.5 - 10 200 - 250 620 - 800 1200-1600 0.97

17
|30 - 40 0 - 2 0 10-30 0 - 2.5 5 0 -1 0 0 620 - 800 1200-1600 0.97

18 |30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 100 - 200 620 - 800 1200-1600 0.97

19
|30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 100 - 200 620 - 800 1200-1600 0.96

20
pO - 40 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 -1 0 0 620 - 800 1200-1600 0.96

21
|30 - 40 6 0 - 8 0 0 - 1 0 0 - 2.5 100-200 620 - 800 1200-1600 0.96

22
pO - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 620 - 800 1200-1600 0.96

2 3

pO - 40 0 - 2 0 0 - 10 7 .5 - 10 200 - 250 260 - 530 1200-1600 1.00

24
30 - 40 0 - 2 0 0 - 10 7.5 - 1 0 100- 200 260 - 530 1200-1600 1.00

25
3 0 - 4 0 0 - 2 0 0 - 1 0 2 .5 - 7.5 200 - 250 260 - 530 1200-1600 1.00

26
30 - 40 0 - 2 0 0 - 1 0 7.5 - 10 5 0 - 100 260 - 530 1200-1600 1.00

27
3 0 - 4 0 0 - 2 0 0 - 10 0 - 2.5 1 0 0 - 200 260 - 530 1200-1600 1.00

28
30 - 40 0 - 2 0 0 - 10 0 - 2.5 200 - 250 260 - 530 1200-1600 1.00

29
30 - 40 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 260 - 530 1200-1600 1.00

30
30 - 40 2 0 - 6 0 0 - 1 0 0 - 2.5 200 - 250 260 - 530 1200-1600 1.00

3 1

3 0 - 4 0 0 - 2 0 0 - 10 2 .5 - 7 5 100-200 260 - 530 1200-1600 1.00

3 2

3 0 - 4 0 0 - 2 0 0 - 1 0 2 .5 - 7 5 5 0 - 100 260 - 530 1200-1600 0.99

3 3

3 0 - 4 0 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 260 - 530 1200-1600 0.98

3 4

3 0 - 4 0 60 -80 0 - 1 0 0 - 2.5 200 - 250 260 - 530 1200-1600 0.97
35 3 0 - 4 0 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 260 - 530 1200-1600 0.96

38
3 0 - 4 0 0 - 2 0 0 - 10 2.5 - 7.5 200 - 250 80 - 260 1200-1600 t o o ]

37
3 0 - 4 0 0 - 2 0 0 - 1 0 7 .5 - 1 0 1 0 0 - 200 80 - 260 1200-1600 1.00

3 8 3 0 - 4 0 0 - 2 0 0 - 10 7 .5 - 10 200 - 250 80 - 260 1200-1600 1.00
39 3 0 - 4 0 0 - 2 0 0 - 1 0 7 .5 - 10 5 0 - 100 80 - 260 1200-1600 1.00
40 3 0 - 4 0 0 - 2 0 0 - 10 2.5 - 7.5 100-200 80 - 260 1200-1600 1.00
41 3 0 - 4 0 0 - 2 0 0 - 10 0 - 2.5 100-200 80 - 260 1200-1600 1.00

42 30 - 40 0 - 2 0 0 - 1 0 ,0 - 2.5 200 - 250 80 - 260 1200-1600 1.00

4 3 30 - 40 0 - 2 0 0 - 10 2.5 - 7.5 5 0 -1 0 0 80 - 260 1200-1600 1.00

44 30 - 40 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 1200-1600 1.00

4 5 30 - 40 2 0 - 6 0 0 - 1 0 0 - 2.5 200 - 250 80 - 260 1200-1600 1.00

46 30 - 40 0 - 2 0 10-30 0 - 2.5 200 - 250 80 - 260 1200-1600 1.00

47 30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 80 - 260 1200-1600 Tom

4 8 30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 80 - 260 1200-1600 1.00

49 30 - 40 2 0 - 6 0 0 - 10 0 - 2.5 100-200 80 - 260 1200-1600 1.00

50 30 - 40 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 1200-1600 1.00

51 30 - 40 0 - 2 0 10-30 0 - 2.5 100-200 80 - 260 1200-1600 0.97

52 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 100-200 80 - 260 1200-1600 0.96

53 3 0 - 4 0 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 - 100 80 - 260 1200-1600 0.96

54 3 0 - 4 0 0 - 2 0 | 1 0 -3 0 0 - 2.5 5 0 - 100 pO - 260 1200-1600 0.96|
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Appendix I) Defuzzified Rules
Table 1)1 - Large Ar75750
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Appendix D Defuzzified Rules
Table 1)1 - Large Ar 750

Rule No A r________ H2_______ N2_______ C H 4 Power P re ssu re A r750 C L ____
109 |o - 1Q 2 0 - 6 0 0 - 10 0 - 2.5 100-200 620 - 800 1200-1600 0.97
110 |0 - 1 0 0 - 2 0 0 - 10 7.5 - 1 0 200 - 250 260 - 620 1200-1600 1.00
111 |0 - 10 0 - 2 0 0 - 1 0 7 .5 - 1 0 100- 200 260 - 620 1200-1600 1.00
112 |0 - 1 0 0 - 2 0 0 - 10 7.5 - 1 0 5 0 - 100 260 - 620 1200-1600 1.00
113 |o - 10 0 - 2 0 0 - 10 0 - 2.5 100-200 260 - 620 1200-1600 1.00
114 |o - 1Q 0 - 2 0 0 - 10 0 - 2.5 200 - 250 260 - 620 1200-1600 1.00
115 | o - 1Q 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 260 - 620 1200-1600 1.00
116 |o - 1Q 0 - 2 0 0 - 10 2 .5 - 7 5 200 - 250 260 - 620 1200-1600 1.00
117 |0 - 1 0 20 - 60 0 - 10 0 - 2.5 200 - 250 260 - 620 1200-1600 0.98
118 |0 - 1 0 0 - 2 0 0 - 10 2 .5 - 7.5 100 - 200 260 - 620 1200-1600 0.97
119 |o - 1Q ~0 - 2 0 0 - 10 2 .5 - 7 5 5 0 - 100 260 - 620 1200-1600 0.96
120 | o - 10 0 - 2 0 0 - 10 7 .5 - 10 200 - 250 80 - 260 1200-1600 1.00
121 |0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 200 - 250 80 - 260 1200-1600 1.00
122 |o - 1Q 0 - 2 0 0 - 10 7 .5 - 1 0 100- 200 80 - 260 1200-1600 1.00
123 

■ ^
| o - 10 0 - 2 0 0 - 10 7 .5 - 10 5 0 - 100 80 - 260 1200-1600 1.00

124 |o - 1Q 0 - 2 0 0 - 10 0 - 2.5 100-200 80 - 260 1200-1600 1.00
125 |0 - 10 0 - 2 0 0 - 10 0 - 2.5 200 - 250 80 - 260 1200-1600 1.00
126 |o - 1Q 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 1200-1600 1.00
127 |o - 10 0 - 2 0 0 - 10 2 .5 - 7.5 1 0 0 - 200 8 0 - 260 1200-1600 1.00
128 |o - 10 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 80 - 260 1200-1600 1.00
129 |0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 5 0 -1 0 0 80 - 260 1200-1600 1.00
130 |o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 80 - 260 1200-1600 0.99
131 |o - 1Q 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 80 - 260 1200-1600 0.99
132 |0 - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 80 - 260 1200-1600 0,98
133 |o - 10 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 1200-1600 0.98
134 l|o - 10 2 0 - 6 0  I0 - 10 0 - 2.5 1 0 0 - 200 80 - 260 1200-1600 0.98

T a b le  D 1 Defuzzified rules with associated  accuracy  (C L ), C L  > 0.95 ; L A R G E  A r750
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Appendix D
Table 1)2 - Medium A r 750

Rule No A r_______ H2 N2 C H 4 Power P re ssu re A r750 C L
1 |30 - 40 |0 - 20 0 - 1 0 2 .5 - 7.5 200 - 250 620 - 800 400-1200 1.00
2 |30 - 40 ~|0 - 20 0 - 10 2 .5 - 7.5 100-200 620 - 800 400-1200 1.00
3 |30 - 40 |0 - 20 0 - 10 2 .5 - 7.5 5 0 - 100 620 - 800 400-1200 1.00
4

I f
|30 - 40 |0 - 20 0 - 10 7 .5 - 1 0 200 - 250 620 - 800 400-1200 1.00

5 |30 - 40 |0 - 20 0 - 1 0 7.5 - 1 0 100-200 620 - 800 400-1200 1.00
6 |30 - 40 |p - 20 0 - 10 7.5 - 1 0 5 0 -1 0 0 620 - 800 400-1200 1.00
7 |30 - 40 |o - 20 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
8 |30 - 40 |o - 20 0 - 10 0 - 2.5 100-200 620 - 800 400-1200 1.00
9 |30 - 40 |0 - 20 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00

To |30 - 40 |0 - 20 3 0 - 4 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
11 |30 - 40 |2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
12 |30 - 40 |60 - 80 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
13 |30 - 40 |0 - 20 1 0 -3 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
14 |30 - 40 |20 - 60 0 - 10 0 - 2.5 100-200 620 - 800 400-1200 1.00
15 |30 - 40 |20 - 60 0 - 10 7 .5 - 10 200 - 250 620 - 800 400-1200 1.00
16 |30 - 40 |20 - 60 0 - 1 0 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
17 |30 - 40 |0 - 20 1 0 -3 0 0 - 2.5 100-200 620 - 800 400-1200 1.00

|30 - 40 |60 - 80 0 - 10 0 - 2.5 100-200 620 - 800 400-1200 1.00
19 |30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 1 0 0 - 200 620 - 800 400-1200 1.00
20 |30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 -1 0 0 620 - 800 400-1200 1.00
21 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 5 0 -1 0 0 620 - 800 400-1200 1.00
22 |30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
23 |30 - 40 0 - 2 0 3 0 - 4 0 7.5 - 10 200 - 250 620 - 800 400-1200 1.00

24
|30 - 40 0 - 2 0 1 0 -3 0 7.5 - 10 200 - 250 620 - 800 400-1200 1.00

25
|30 - 40 6 0 - 8 0 0 - 10 7 .5 - 10 200 - 250 620 - 800 400-1200 1.00

26 |30 - 40 2 0 - 6 0 0 - 10 7 .5 - 1 0 100- 200 620 - 800 400-1200 0.99

27
|30 - 40 2 0 - 6 0 0 - 1 0 7 .5 - 10 5 0 -1 0 0 620 - 800 400-1200 0.98

28 pO - 40 0 - 2 0 0 - 1 0 2 .5 - 7.5 200 - 250 260 - 620 400-1200 1.00
29 |30 - 40 0 - 2 0 0 - 10 7 .5 - 10 100-200 260 - 620 400-1200 1.00
30 |30 - 40 0 - 2 0 0 - 10 7 .5 - 10 200 - 250 260 - 620 400-1200 1.00
31 |30 - 40 0 - 2 0 0 - 1 0 7 .5 - 10 5 0 - 100 260 - 620 400-1200 1.00
32 |30 - 40 0 - 2 0 0 - 10 2 .5 - 7 5 1 0 0 - 200 260 - 620 400-1200 1.00
33 |30 - 40 0 - 2 0 0 - 10 0 - 2.5 100-200 260 - 620 400-1200 1.00

34
|30 - 40 0 - 2 0 0 - 10 2 5 - 7.5 5 0 - 100 260 - 620 400-1200 1.00

35 |30 - 40 0 - 2 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
36 |30 - 40 0 - 2 0 0 - 1 0 0 - 2.5 5 0 - 100 260 - 620 400-1200 1.00

37
|3 0 - 4 0 2 0 - 6 0 0 - 1 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00

38 |30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
39 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
40 |30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00

4 1

|30 - 40 2 0 - 6 0 0 - 1 0 0 - 2.5 1 0 0 - 200 260 - 620 400-1200 1.00

4 2

30 - 40 2 0 - 6 0 0 - 1 0 0 - 2.5 5 0 -1 0 0 260 - 620 400-1200 1.00
43 30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 260 - 620 400-1200 0.99
44 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 100-200 260 - 620 400-1200 0.99

45 |30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 - 100 260 - 620 400-1200 0.99

46 pO - 40 6 0 - 8 0 0 - 10 0 - 2.5 5 0 - 100 260 - 620 400-1200 0.99

47 30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 100-200 260 - 620 400-1200 0.99

48 30 - 40 2 0 - 6 0 0 - 1 0 7 .5 - 1 0 200 - 250 260 - 620 400-1200 0.99

49 |30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 260 - 620 400-1200 0.98

50 pO - 40 0 - 2 0 0 - 10 2 .5 - 7.5 200 - 250 80 - 260 400-1200 1.00

51 pO - 40 0 - 2 0 0 - 10 2 5 - 7.5 100-200 80 - 260 400-1200 1.00

52 |30 - 40 0 - 2 0 0 - 10 7.5 - 1 0 100- 200 80 - 260 400-1200 1.00

53 \30 -  40 0 - 2 0 0 - 10 7 .5 - 10 200 - 250
r  A  /4 A A

80 - 260 
O A  A A A

400-1200
A  A A  *1 A A A

1.00 
A  A  A

l  54 |30 - 40 0 - 2 0 0 - 10 2.5 - 7.5 50 - 100 80 - 260 400-1200 1.00

207



Appendix D

Rule No. lA r 
55 |30"- 40

3 0 - 4 0

Table D2 - Medium A r750
C H 4_____ Power
7.5 - 10 5 0 - 100
0 - 2.5 1100 - 200

57 |30 - 40 0 - 2 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
58 |30 - 40 ~~ 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
59 |30 - 40 ~ 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00
60 |30 - 40 ~ 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
61 |30 - 40 ~ 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
62 |30 - 40 ~ 2 0 - 6 0 0 - 10 0 - 2.5 100-200 80 - 260 400-1200 1.00
63 |30 - 40 ~ 0 - 2 0 30 - 40 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
64 |30 - 40 ~~ 2 0 - 6 0 0 - 10 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
65 |30 - 40 ~ 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 80 - 260 400-1200 1.00
66 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 100-200 80 - 260 400-1200 1.00
67 [30 - 40 ~ 2 0 - 6 0 0 - 10 7 .5 - 1 0 200 - 250 80 - 260 400-1200 1.00
68 |30 - 40 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
69 |30 - 40 6 0 - 8 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00

70
|30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 100-200 80 - 260 400-1200 1.00

71
[30 - 40 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00

72
|30 - 40 6 0 - 8 0 0 - 10 7 .5 - 10 200 - 250 80 - 260 400-1200 0.99

73
|30 - 40 0 - 2 0 1 0 -3 0 7 .5 - 10 200 - 250 80 - 260 400-1200 0.98

74
|30 - 40 0 - 2 0 3 0 - 4 0 7.5 - 1 0 200 - 250 80 - 260 400-1200 0.98

75 |30 - 40 2 0 - 6 0 0 - 10 7 .5 - 10 100-200 80 - 260 400-1200 0.97

73~ "
1 0 - 3 0 0 - 2 0 0 - 10 2 .5 - 7.5 200 - 250 620 - 800 400-1200 1.00

77
| 1 0 - 3 0 0 - 2 0 0 - 10 7 .5 - 1 0 175 - 250 620 - 800 400-1200 1.00

7 8

I 1 0 - 3 0 0 - 2 0 0 - 1 0 7 .5 - 1 0 100-200 620 - 800 400-1200 1.00

7 9

| 1 0 - 3 0 0 - 2 0 0 - 1 0 2 .5 - 7.5 100-200 620 - 800 400-1200 1.00
80 | 1 0 - 3 0 0 - 2 0 0 - 1 0 7 .5 - 1 0 5 0 - 100 620 - 800 400-1200 1.00
81 I 1 0 - 3 0 0 - 2 0 0 - 10 2 .5 - 7 5 5 0 - 100 620 - 800 400-1200 1.00
82 | 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
83 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 1 0 0 - 200 620 - 800 400-1200 1.00
84 | 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
85 | 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
86 1 0 - 3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00

87
| 1 0 - 3 0 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00

88 I 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
89 I 1 0 - 3 0 2 0 - 6 0 0 - 1 0 0 - 2.5 100 - 200 620 - 800 400-1200 1.00
90 | 1 0 - 3 0 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
91 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 100-200 620 - 800 400-1200 1.00
92 | 1 0 - 3 0 2 0 - 6 0 0 - 10 7 .5 - 10 200 - 250 620 - 800 400-1200 1.00
93 | 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
94 I 1 0 - 3 0 6 0 - 8 0 0 - 10 0 - 2.5 100-200 620 - 800 400-1200 1.00
95 | 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 620 - 800 400-1200 1.00

96 I 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 -1 0 0 620 - 800 400-1200 1.00

97 1 0 - 3 0 6 0 - 8 0 o-“io 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00

98 I 1 0 - 3 0 0 - 2 0 3 0 - 4 0 7 .5 - 10 200 - 250 620 - 800 400-1200 0.99

99 I 1 0 - 3 0 6 0 - 8 0 0 - 1 0 7 .5 - 10 200 - 250 620 - 800 400-1200 0.98

100 | 1 0 - 3 0 0 - 2 0 1 0 -3 0 7 .5 - 10 200 - 250 620 - 800 400-1000 0.98

101 | 1 0 - 3 0 0 - 2 0 0 - 10 2 5 - 7.5 200 - 250 260 - 620 400-1200 1.00

102 I 1 0 - 3 0 0 - 2 0 0 - 1 0 7 .5 - 10 200 - 250 260 - 620 400-1200 1.00

P re s s u re
8 0 - 260 
8 0 - 260

Ar750
400-1200
400-1200

1.00
1.00

10 - 30 
1 0 - 3 0  
1 0 - 3 0  
1 0 - 3 0

107
108

1 0 - 3 0
1 0 - 3 0

1 0 0 -  200 
5 0 -1 0 0  
200 - 250 
100 -200 
100-200  
5 0 - 100

260 - 620 
260 - 620 
260 - 620 
260 - 620 
260 - 620

400-1200
400-1200
400-1200
400-1200
400-1200
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Appendix I)
Table D2 - Medium A r

|Rule  No. A r H2 N2_______ C H 4 Power P re ssu re A r750 C L ____
109 I 1 0 -3 0 0 - 2 0 0 - 10 2 .5 - 7.5 5 0 - 100 260 - 620 400-1000 1.00
110 I 1 0 - 3 0 ' 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
111 I 1 0 -3 0 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
112 | 1 0 - 30 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
113 I 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
114 I 1 0 -3 0 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 260 - 620 400-1200 0.99

I 115 I 1 0 - 3 0 2 0 - 6 0 0 - 10 0 - 2.5 100-200 260 - 620 400-1200 0.99
116 I 1 0 -3 0 0 - 2 0 0 - 1 0 2 .5 - 7.5 200 - 250 80 - 260 400-1200 1.00
117 | 1 0 - 3 0 0 - 2 0 0 - 1 0 2 .5 - 7.5 100 - 200 80 - 260 400-1200 1.00
118 | 1 0 - 3 0 0 - 2 0 0 - 10 7 .5 - 10 100-200 80 - 260 400-1200 1.00
119 | 1 0 -3 0 0 - 2 0 0 - 10 7.5 - 10 200 - 250 80 - 260 400-1200 1.00
120 | 1 0 - 3 0 0 - 2 0 0 - 1 0 2 .5 - 7.5 5 0 -1 0 0 80 - 260 400-1200 1.00
121 | 1 0 - 3 0 0 - 2 0 0 - 1 0 7 .5 - 1 0 5 0 -1 0 0 80 - 260 400-1200 1.00
122 | 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
123 I 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 100-200 80 - 260 400-1200 1.00
124 | 1 0 - 3 0 0 - 2 0 0 - 10 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
125 1 0 - 3 0 2 0 - 6 0 0 - 1 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
126 I 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
127 | 1 0 - 3 0 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
128 I 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
129 | 1 0 - 3 0 2 0 - 6 0 0 - 1 0 0 - 2.5 100-200 80 - 260 400-1200 1.00
130 ,| 1 0 - 3 0 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00
131 1 0 - 3 0 2 0 - 6 0 0 - 1 0 7 .5 - 10 200 - 250 80 - 260 400-1200 1.00
132 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 80 - 260 400-1200 1.00
133 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
134 1 0 - 3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 100-200 80 - 260 400-1200 1.00
135 1 0 - 3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00
136 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 100-200 80 - 260 400-1200 0.99
137 1 0 - 3 0 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 0.99
138 0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 200 - 250 620 - 800 400-1200 1.00
139 0 - 10 0 - 2 0 0 - 10 7 .5 - 1 0 200 - 250 620 - 800 400-1200 1.00
140 0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 100-200 620 - 800 400-1200 1.00
141 0 - 10 0 - 2 0 0 - 10 2 5 - 7.5 5 0 -1 0 0 620 - 800 400-1200 1.00
142 0 - 10 0 - 2 0 0 - 1 0 7 .5 - 10 100-200 620 - 800 400-1200 1.00
143 0 - 10 0 - 2 0 0 - 1 0 7.5 - 1 0 5 0 -1 0 0 620 - 800 400-1200 1.00
144 0 - 10 0 - 2 0 0 - 1 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
145 0 - 10 0 - 2 0 0 - 10 0 - 2.5 1 0 0 - 200 620 - 800 400-1200 1.00
146 0 - 1 0 0 - 2 0 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00
147 0 - 1 0 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
148 0 - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00
149 0 - 10 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 620 - 800 400-1200 1.00

150 0 - 10 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 620 - 800 400-1200 1.00

151 0 - 1 0 2 0 - 6 0 0 - 10 0 - 2.5 100 - 200 620 - 800 400-1200 1.00

152 0 - 10 2 0 - 6 0 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00

153 0 - 10 2 0 - 6 0 0 - 10 7 .5 - 10 200 - 250 620 - 800 400-1200 1.00

154 0 - 10 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 620 - 800 400-1200 1.00

155 0 - 10 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00

156 0 - 10 6 0 - 8 0 0 - 10 0 - 2.5 100-200 620 - 800 400-1200 1.00

157 0 - 10 6 0 - 8 0 0 - 10 0 - 2.5 5 0 - 100 620 - 800 400-1200 1.00

158 0 - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 100 - 200 620 - 800 400-1200 1.00

159 0 - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 50 - 100 620 - 800 400-1200 0.99

160 0 - 10 0 - 2 0 1 0 -3 0 7 .5 - 10 200 - 250 620 - 800 400-1200 0.99

161 0 - 10 0 - 2 0 3 0 - 4 0 7 .5 - 10 200 - 250 620 - 800 400-1200 0.99

162 0 - 10 6 0 - 8 0 0 - 10 7 .5 - 1 0 200 - 250 620 - 800 400-1200 0.98



Appendix D
Table 1)2 - Medium A r 750

|Rule  No A r________ H2 N2 C H 4 Power P re ssu re A r750 C L
163 | o - i o 2 0 - 5 0 0 - 10 7 .5 - 10 100-200 620 - 800 400-1200 0.97
164 |0 - 10 0 - 2 0 0 - 10 2 5 - 7.5 200 - 250 260 - 620 400-1200 1.00
165 |0 - 10 0 - 2 0 0 - 10 7 .5 - 1 0 200 - 250 260 - 620 400-1200 1.00
166 |o - 1Q 0 - 2 0 0 - 10 7.5 - 10 100-200 260 - 620 400-1200 1.00
167 |o - 1Q 0 - 2 0 0 - 10 7.5 - 1 0 5 0 -1 0 0 260 - 620 400-1200 1.00
168 |o - 1Q 0 - 2 0 0 - 10 0 - 2.5 100-200 260 - 620 400-1200 1.00
169 |o - 1Q 0 - 2 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
170 |0 - 1 0 0 - 2 0 0 - 10 0 - 2.5 5 0 -1 0 0 260 - 620 400-1200 1.00
171 |o - 1Q 0 - 2 0 0 - 10 2 .5 - 7.5 100-200 260 - 620 400-1200 1.00
172 |0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 5 0 - 100 260 - 620 400-1200 1.00
173 |o - 10 2 0 - 6 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
174 |o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
175 |0 - 10 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
176 |o - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 260 - 620 400-1200 1.00
177 |o - 10 2 0 - 6 0 0 - 10 0 - 2.5 1 0 0 - 200 260 - 620 400-1200 1.00
178 |o - 10 2 0 - 6 0 0 - 10 0 - 2.5 5 0 -1 0 0 260 - 620 400-1200 0.99
179 | o - 10 2 0 - 6 0 0 - 10 7 .5 - 10 200 - 250 260 - 620 400-1200 0.96
180 |o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 260 - 620 400-1200 0.96
181 |o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 - 100 260 - 620 400-1200 0.95
182 |o - 10 0 - 2 0 0 - 1 0 2 5 - 7.5 200 - 250 80 - 260 400-1200 1.00
183 |0 - 10 0 - 2 0 0 - 10 7 .5 - 10 100 - 200 80 - 260 400-1200 1.00
184 |o - 10 0 - 2 0 0 - 10 7.5 - 1 0 200 - 250 80 - 260 400-1200 1.00
185 | o - 10 0 - 2 0 0 - 1 0 7.5 - 10 5 0 - 100 80 - 260 400-1200 1.00
186 |0 - 10 0 - 2 0 0 - 10 2 .5 - 7.5 100-200 80 - 260 400-1200 1.00h-00 |o - 10 0 - 2 0 0 - 10 2 5 - 7.5 5 0 - 100 80 - 260 400-1200 1.00
188 |o - 10 0 - 2 0 0 - 1 0 0 - 2.5 1 0 0 - 200 80 - 260 400-1200 1.00
189 | o - 10 0 - 2 0 0 - 1 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
190 |0 - 10 0 - 2 0 0 - 10 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
191 |o - 10 2 0 - 6 0 0 - 1 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
192 |0 - 10 0 - 2 0 1 0 -3 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
193 | o - 10 6 0 - 8 0 0 - 10 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
194 |o - 10 2 0 - 6 0 0 - 1 0 0 - 2.5 100-200 80 - 260 400-1200 1.00
195 |o - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 200 - 250 80 - 260 400-1200 1.00
196 0 - 10 2 0 - 6 0 0 - 10 0 - 2.5 5 0 -1 0 0 80 - 260 400-1200 1.00
197 0 - 10 2 0 - 6 0 0 - 1 0 7 .5 - 10 200 - 250 80 - 260 400-1200 1.00
198 |o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 100 - 200 80 - 260 400-1200 1.00
199 | o - 10 0 - 2 0 1 0 -3 0 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00
200 | o - 10 6 0 - 8 0 0 - 1 0 0 - 2.5 100 - 200 80 - 260 400-1200 1.00
201 | o - 10 6 0 - 8 0 0 - 10 0 - 2.5 5 0 - 100 80 - 260 400-1200 1.00
202 | 0 - 10 0 - 2 0 3 0 - 4 0 0 - 2.5 1 0 0 - 200 80 - 260 400-1200 0.99

203 0 - 1 0 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 100 80 - 260 400-1200 0.99

204 0 - 1 0 6 0 - 8 0 0 - 10 7 .5 - 10 200 - 250 80 - 260 400-1200 0.97

205 0 - 10 0 - 2 0 1 0 -3 0 7.5 - 1 0 200 - 250 80 - 260 400-1200 0.96

Table D2 Defuzzified rules with associated  accuracy  (C L ), for C L  > 0.95
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Appendix 
Table  Small Ar750

Rule  No . Ar H2 | N2 C H 4 Power Pressure A r750 C L
i 130 -  40 |0 -  20 | 0 - 1 0 2 . 5 - 7 5 200 -  250 620 -  800 0 -4 0 0 1.00
2 |30 -  40 |o -  20 | 0 - 1 0 2 . 5 - 7.5 100-200 620 -  800 0 -4 0 0 1.00
3 130 -  40 [0 -  20 | 0 - 1 0 2 . 5 - 7.5 5 0 -  100 620 -  800 0 -4 0 0 1.00
4 [  30 -  40 [o -  20 | 0 -  10 7 . 5 - 1 0 100-200 620 -  800 0 -4 0 0 1.00
3 130 -  40 |0 -  20 | o -  10 7 . 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00

6
|30 -  40 [O -  20 [ o -  10 7. 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00

7 [ 3 0 - 4 0 [ 2 0 -6 0 | 0 - 1 0 7 . 5 -  10 200 -  250 620 -  800 0 -4 0 0 1.00
8 |30 -  40 |0 -  20 1 10 -30 7 . 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
9 [30 -  40 [20 -  60 |o -  10 7. 5 -  10 100 -  200 620 -  800 0 -4 0 0 1.00

10 130 -  40 |o -  20 ]30 -  40 7. 5 -  10 200 -  250 620 -  800 0 -4 0 0 1.00
11 130 -  40 |0 -  20 | o - 1Q 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00

130 -  40 |60 -  80 | o -  10 7 . 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
13 130 -  40 |0 -  20 | o -  10 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
14 130 -  40 |20 -  60 | 0 - 1 0 7. 5 - 1 0 50-100 620 -  800 0 -4 0 0 1.00

130 -  40 |0 -  20 I 10 -30 7 . 5 - 1 0 100 -  200 620 -  800 0 -4 0 0 1.00

16
130 -  40 |0 -  20 |0 -  10 0 - 2.5 5 0 -  100 620 -  800 0 - 4 0 0 1.00

17 130 -  40 |60 -  80 | 0 -  10 7 . 5 -  10 100-200 620 -  800 0 -4 0 0 1.00
18 130 -  40 |0 -  20 130 -  40 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00
19 130 -  40 |0 -  20 I 10 -30 0 - 2.5 100-200 620 -  800 0 -4 0 0 1.00
20 130 -  40 |20 -  60 | o - 10 0 - 2.5 100-200 620 -  800 0 -4 0 0 1.00
21 |30 -  40 |0 -  20 130 -  40 7 . 5 - 1 0 100-200 620 -  800 0 -4 0 0 1.00
22 [ 3 0 - 4 0 |o -  20 130 -  40 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
23 130 -  40 |0 -  20 I 10 -30 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00

24
130 -  40 60 -  80 0 - 1 0 0 - 2.5 100-200 620 -  800 0 -4 0 0 1.00

25 CO 0 1 o 6 0 - 8 0 0 -  10 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
26 130 -  40 j2 0 -6 0 0 -  10 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
27 3 0 - 4 0 0 - 2 0 10 -3 0 7 . 5 - 1 0 50-100 620 -  800 0 -4 0 0 1.00
28 3 0 - 4 0

oCD1oOJ 0 -  10 0 - 2.5 50 -100 620 -  800 0 -4 0 0 1.00
29 3 0 - 4 0 0 - 2 0 10 -3 0 0 - 2.5 50-100 620 -  800 0 -4 0 0 1.00
30 3 0 - 4 0 6 0 - 8 0 0 -  10 0 - 2.5 50-100 620 -  800 0 -4 0 0 1.00

31
3 0 - 4 0 0 - 2 0 3 0 -4 0 0 - 2.5 50-100 620 -  800 0 -4 0 0 1.00

32 3 0 -  40 | 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00
33

oioCO 0 - 2 0 3 0 -4 0 7 . 5 -  10 50 -100 620 -  800 0 -4 0 0 1.00

34
3 0 - 4 0  | 2 0 - 6 0 0 -  10 2 . 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 1.00

35 3 0 - 4 0  I0 - 2 0 10 -3 0 2 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0.98
36 3 0 - 4 0 0 - 2 0 3 0 -4 0 2 . 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0.98

37
3 0 - 4 0 6 0 - 8 0 0 - 1 0 2 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0.97

38 3 0 - 4 0 0 - 2 0 0 -  10 2 . 5 - 7.5 200 -  250 260 -  620 0 -4 0 0 1.00
39 3 0 - 4 0 0 - 2 0 0 -  10 7 . 5 -  10 100 -  200 260 -  620 0 - 4 0 0 1.00

40 3 0 - 4 0 0 - 2 0 0 -  10 7. 5 - 1 0 200 -  250 260 -  620 0 - 4 0 0 1.00

4 1

3 0 - 4 0 0 - 2 0 0 -  10 2 . 5 -  7.5 100 -  200 260 -  620 0 -4 0 0 1.00

42 3 0 - 4 0 0 - 2 0 0 -  10 7. 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 1.00

43 3 0 - 4 0 0 - 2 0 0 -  10 2 5 - 7.5 5 0 -  100 260 -  620 0 - 4 0 0 1.00

44 3 0 - 4 0 0 - 2 0 0 -  10 0 - 2.5 100-200 260 -  620 0 - 4 0 0 1.00

45 3 0 - 4 0 0 - 2 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

3 0 - 4 0

3 0 - 4 0
3 0 - 4 0

2 0 - 6 0

6 0 - 8 0
2 0 - 6 0

0 -  10 7 . 5 - 1 0 200 -  250 260 -  620 0 -4 0 0

0 -  10 
3 0 -4 0  
3 0 -4 0  
0 -  10 
1 0 -3 0  
10 -3 0

5 0 -  100

200 -  250

260 -  620 
260 -  620 
260 -  620 
260 -  620 
260~  620 
260~620

0 -  10 7 . 5 - 1 0 200 -  250 260 -  620 0 -4 0 0

0 -  10 0 - 2.5 200 -  250 260 -  620 0 -4 0 0

1.00

1.00
1.00

2 l l



Appendix 
Table  Small Ar750

Rule  No . A r H2 N2________________________ C H 4 Power Pressure A r750 C L  I
55 ’ 3 0 -4 0 6 0 -8 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 t o o ]

56 3 0 - 4 0 6 0 - 8 0 0 -  10 0 - 2.5 100-200 260 -  620 0 -4 0 0 1.00
57 3 0 -4 0 0 - 2 0 10-30 7. 5 -  10 200 -  250 260 -  620 0 -4 0 0 TOO ]

58 3 0 - 4 0 2 0 -6 0 0 -  10 0 - 2.5 50-100 260 -  620 0 -4 0 0 TOO
59 3 0 -4 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 260 -  620 0 -4 0 0 TOO
60 3 0 - 4 0 0 - 2 0 10-30 0 - 2.5 50-100 260 -  620 0 -4 0 0 t o o ]

61
3 0 - 4 0 2 0 -6 0 0 -  10 7 . 5 -  10 100-200 260 -  620 0 -4 0 0 TOO

62 3 0 - 4 0 6 0 - 8 0 0 -  10 0 - 2.5 50-100 260 -  620 0 -4 0 0 TOO
63 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 - 1 0 200 -  250 260 -  620 0 -4 0 0 TOO
64 3 0 - 4 0 2 0 -6 0 0 - 1 0 7. 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 TOO
65 3 0 - 4 0 6 0 - 8 0 0 -  10 7. 5 -  10 100-200 260 -  620 0 -4 0 0 0.99
66 3 0 -4 0 0 - 2 0 10-30 7. 5 -  10 100-200 260 -  620 0 -4 0 0 0.99

6 7

3 0 - 4 0 6 0 - 8 0 0 - 1 0 7 . 5 -  10 50 -100 260 -  620 0 -4 0 0 0.98
68 3 0 - 4 0 0 - 2 0 10-30 7 . 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 0.97
69 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100-200 260 -  620 0 -4 0 0 0.96

7 0

3 0 - 4 0 0 - 2 0 0 - 1 0 2 5 - 7.5 100-200 80 -  260 0 -4 0 0 TOO

7 1

3 0 - 4 0 0 - 2 0 0 - 1 0 2 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 TOO

72
3 0 - 4 0 0 - 2 0 0 -  10 7 . 5 -  10 100-200 80 -  260 0 -4 0 0 TOO

73
3 0 - 4 0 0 - 2 0 0 -  10 7 . 5 -  10 200 -  250 80 -  260 0 -4 0 0 TOO

74
3 0 - 4 0 0 - 2 0 0 -  10 2.5 - 7.5 5 0 -  100 80 -  260 0 -4 0 0 TOO

75
3 0 - 4 0 0 - 2 0 0 - 1 0 7 . 5 - 1 0 5 0 -  100 80 -  260 0 -4 0 0 TOO

76
3 0 - 4 0 2 0 - 6 0 0 - 1 0 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 TOO

77
3 0 - 4 0 0 - 2 0 0 -  10 0 - 2.5 100-200 80 -  260 0 -4 0 0 TOO

78
3 0 - 4 0 6 0 - 8 0 0 -  10 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 TOO

79
3 0 - 4 0 2 0 - 6 0 0 -  10 7. 5 -  10 100-200 80 -  260 0 -4 0 0 TOO

80 3 0 - 4 0 0 - 2 0 10-30 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 TOO

81
3 0 - 4 0 0 - 2 0 0 - 1 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 TOO

82 3 0 - 4 0 0 - 2 0 3 0 -4 0 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 TOO
83 3 0 - 4 0 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 TOO
84 3 0 - 4 0 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 80 -  260 0 -4 0 0 TOO

85 3 0 - 4 0 0 - 2 0 10 -3 0 0 - 2.5 100-200 80 -  260 0 -4 0 0 TOO

86 3 0 - 4 0 2 0 - 6 0 0 -  10 0 - 2.5 100-200 80 -  260 0 -4 0 0 TOO
87 3 0 - 4 0 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 TOO

88 3 0 - 4 0 0 - 2 0 10 -3 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 TOO

89 3 0 - 4 0 6 0 - 8 0 0 -  10 0 -  2.5 100 -  200 80 -  260 0 -4 0 0 TOO

90 3 0 - 4 0 2 0 - 6 0 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 t o o ]

91 3 0 - 4 0 6 0 - 8 0 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 TOO

92 3 0 - 4 0 6 0 - 8 0 0 -  10 7. 5 - 1 0 100 -  200 80 -  260 0 -4 0 0 TOO

93 3 0 - 4 0 2 0 - 6 0 0 -  10 7 . 5 - 1 0 5 0 -  100 80 -  260 0 - 4 0 0 TOO

94 3 0 - 4 0 0 - 2 0 3 0 -4 0 0 - 2.5 50 -100 80 -  260 0 -4 0 0 TOO

95 3 0 - 4 0 0 - 2 0 10 -3 0 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 TOO

96 3 0 - 4 0 2 0 - 6 0 0 -  10 0 - 2.5 50 -100 80 -  260 0 -4 0 0

97 3 0 - 4 0 6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 TOO

98 3 0 - 4 0 0 - 2 0 10 -  30 7 . 5 - 1 0 100-200 80 -  260 0 -4 0 0 TOO

99 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 - 1 0 100-200 80 -  260 0 -4 0 0 TOO

To o 3 0 - 4 0 6 0 - 8 0 0 -  10 7 . 5 - 1 0 5 0 -  100 80 -  260 0 - 4 0 0 TOO

101 3 0 - 4 0 2 0 - 6 0 0 -  10 2 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 TOO

102 3 0 - 4 0 0 - 2 0 10 -  30 7 . 5 - 1 0 5 0 -  100 80 -  260 0 -4 0 0 TOM

103 3 0 - 4 0 0 - 2 0 3 0 -4 0 7. 5 - 1 0 5 0 -  100 80 -  260 0 -4 0 0 0.99

104 3 0 - 4 0 6 0 - 8 0 0 -  10 2 . 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 0.96

105 1 0 -3 0 0 - 2 0 0 -  10 2 . 5 - 7 5 200 -  250 620 -  800 0 -4 0 0 TOM

106 1 0 -3 0 0 - 2 0 0 -  10 2 . 5 - 7.5 100-200 620 -  800 0 -4 0 0 TOO

107 1 0 -3 0 0 - 2 0 0 - 1 0 2 . 5 - 7.5 5 0 -  100 620 -  800 0 -4 0 0 TOO

1D8 10 -  30 0 - 2 0 0 -  10 7. 5 -  10 100-200 620 -  800 0 -4 0 0 t o o ]
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Appendix 
Table  Small Ar750

Rule  No . Ar H2 N2_______________________ C H 4 Power Pressure A r750 C L  I
109 10 -3 0 0 - 2 0 0 -  10 7 . 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
110 1 0 -3 0 0 - 2 0 0 -  10 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00
r n 10 -3 0 0 - 2 0 0 -  10 0 - 2.5 100-200 620 -  800 0 -4 0 0 iTom
112 |  1 0 -3 0 0 - 2 0 0 -  10 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1 . 0CM
113 I 1 0 -3 0 2 0 - 6 0 0 -  10 7. 5 -  10 200 -  250 620 -  800 0 -4 0 0 i.om
114 1 0 -3 0 0 - 2 0 3 0 -4 0 7. 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
115 1 0 -3 0 0 - 2 0 10-30 7. 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
116 10 -3 0 2 0 -6 0 0 - 1 0 7 . 5 -  10 100 -  200 620 -  800 0 -4 0 0 1.00
117 1 0 -3 0 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00
118 I 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
119 |  1 0 -3 0 2 0 -6 0 0 -  10 0 - 2.5 100-200 620 -  800 0 -4 0 0 1.00
120 |  1 0 -3 0 2 0 - 6 0 0 -  10 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
121 I 1 0 -3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00
122 1 0 -3 0 6 0 -8 0 0 -  10 7. 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00
123 j 1 0 -3 0 0 - 2 0 10 -3 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 1.00

1 2 4

1 0 -3 0 0 - 2 0 10 -3 0 0 - 2.5 100-200 620 -  800 0 -4 0 0 1.00

1 2 5

1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00

1 2 6

1 0 -3 0 2 0 - 6 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00

1 2 7

1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00

128
1 0 -3 0 2 0 - 6 0 0 -  10 7. 5 - 1 0 50-100 620 -  800 0 -4 0 0 1.00

129
1 0 -3 0 0 - 2 0 10-30 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00

130 1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00

131
1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00

1 3 2

1 0 -3 0 0 - 2 0 10-30 7 . 5 -  10 100 -  200 620 -  800 0 -4 0 0 1.00

133
1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100 -  200 620 -  800 0 -4 0 0 1.00

134 1 0 -3 0 6 0 - 8 0 0 - 1 0 7 . 5 -  10 100-200 620 -  800 0 -4 0 0 1.00
135 1 0 -3 0 0 - 2 0 10-30 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00
136 1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00
137 1 0 -3 0 6 0 - 8 0 0 -  10 7 . 5 -  10 50 -100 620 -  800 0 -4 0 0 1.00

138 1 0 -3 0 2 0 - 6 0 0 - 1 0 2 . 5 -  7.5 200 -  250 620 -  800 0 -4 0 0 0.97

139 1 0 -3 0 0 - 2 0 0 -  10 2 . 5 - 7.5 200 -  250 260 -  620 0 - 4 0 0 .661

140 1 0 -3 0 0 - 2 0 0 -  10 7 . 5 - 1 0 100-200 260 -  620 0 -4 0 0 1.00

141 1 0 -3 0 0 - 2 0 0 -  10 7 . 5 - 1 0 200 -  250 260 -  620 0 - 4 0 0 1.00

142 1 0 -3 0 0 - 2 0 0 - 1 0 2 5 - 7.5 100-200 260 -  620 0 -4 0 0 1.00

143 1 0 -3 0 0 - 2 0 0 -  10 7 . 5 - 1 0 50-100 260 -  620 0 -4 0 0 1.00

144 1 0 -3 0 0 - 2 0 0 - 1 0 2 5 - 7.5 5 0 -  100 260 -  620 0 -4 0 0 1.00

145 1 0 -3 0 0 - 2 0 0 -  10 0 - 2.5 100-200 260 -  620 0 -4 0 0 1.00

146 1 0 -3 0 0 - 2 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

147 1 0 -3 0 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 0 -4 0 0 1 . 00 |

148 1 0 -3 0 2 0 - 6 0 0 -  10 7. 5 - 1 0 200 -  250 260 -  620 0 -4 0 0 1.00

149 1 0 -3 0 2 0 - 6 0 0 - 1 0 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

1*50 1 0 -3 0 0 - 2 0 10-30 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

151 1 0 -3 0 2 0 - 6 0 0 -  10 0 - 2.5 100-200 260 -  620 0 -4 0 0 1.00

152 1 0 -3 0 60 -  80 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

153 10 -  30 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 260 -  620 0 -4 0 0 1.00

154 1 0 -3 0 2 0 - 6 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 0 -4 0 0 1.00

155 1 0 -3 0 0 - 2 0 10 -3 0 0 - 2.5 100-200 260 -  620 0 -4 0 0 1.00

156 10 -  30 0 - 2 0 3 0 -4 0 0 - 2.5 100 -  200 260 -  620 0 -4 0 0 1.00

5 7 1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 100-200 260 -  620 0 -4 0 0 1.00

158 1 0 -3 0 0 - 2 0 10 -  30 7 . 5 - 1 0 200 -  250 260 -  620 0 -4 0 0 1.00

159 1 0 -3 0 0 - 2 0 10-30 0 - 2.5 5 0 -  100 260 -  620 0 -4 0 0 1.00

160 10 -  30 6 0 - 8 0 0 -  10 7 . 5 -  10 200 -  250 260 -  620 0 -4 0 0 1.00

161 10 -  30 6 0 - 8 0 0 - 1 0 0 - 2.5 50 -  100 260 -  620 0 -  400 1.00

162 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 260 -  620 0 -4 0 0 i . o o
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Appendix 
Table   Small Ar750

Rule  No . Ar _______________________ H2 N2_______________________ C H 4 Power Pressure A r750 C L
163 I 1 0 -3 0 |0 -  20 30 -4 0 7. 5 -  10 200 -  250 260 -  620 0 -4 0 0 1.00
164 I 1 0 -3 0 |20 -  60 0 -  10 7 . 5 -  10 100-200 260 -  620 0 -4 0 0 1.00
165 I 1 0 -3 0 |20 -  60 0 -  10 7 . 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 0.99
166 |  10 -3 0 |0 -  20 0 -  10 2 . 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 1.00
167 1 0 -3 0 |0 -  20 0 -  10 2 . 5 - 7.5 100-200 80 -  260 0 -4 0 0 1.00
168 I 1 0 -3 0 |0 -  20 0 -  10 7. 5 -  10 100 -  200 80 -  260 0 -4 0 0 1.00
169 I 1 0 -3 0 |0 -  20 0 -  10 7 . 5 -  10 200 -  250 80 -  260 0 -4 0 0 1.00
170 10 -3 0 |o -  20 0 - 1 0 2 . 5 - 7.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
171 I 1 0 -3 0 |o -  20 0 -  10 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 1.00
172 I 1 0 -3 0 |20 -  60 0 -  10 7. 5 -  10 200 -  250 80 -  260 0 -4 0 0 1.00
173 I 1 0 -3 0 [0 -  20 0 -  10 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00
174 |  10 -3 0 |0 -  20 10 -30 7. 5 -  10 200 -  250 80 -  260 0 -4 0 0 1.00
175 |  1 0 -3 0 |0 -  20 0 - 1 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
176 I 1 0 -3 0 |20 -  60 0 -  10 7 . 5 - 1 0 100 -  200 80 -  260 0 -4 0 0 1.00
177 |  1 0 -3 0 |0 -  20 3 0 -4 0 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 1.00
178 I 1 0 -3 0 |60 -  80 0 -  10 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 1.00
179 | 1 0 -3 0 |0 -  20 0 -  10 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
180 1 0 -3 0 |20 -  60 0 -  10 0 - 2.5 100 -  200 80 -  260 0 -4 0 0 1.00
181 1 0 -3 0 |20 -  60 0 - 1 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00

1 8 2

1 0 -3 0 |o -  20 10 -3 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
183 1 0 -3 0 160 -  80 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
184 1 0 -3 0 |0 -  20 3 0 -4 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
185 1 0 -3 0 |0 -  20 10 -30 0 - 2.5 100 -  200 80 -  260 0 -4 0 0 1.00
186 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00

187
1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00

188 1 0 -3 0 2 0 - 6 0 0 - 1 0 0 - 2.5 50-100 80 -  260 0 -4 0 0 1.00
189 1 0 -3 0 0 - 2 0 10 -3 0 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
190 1 0 -3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
191 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
192 1 0 -3 0 2 0 - 6 0 0 - 1 0 7. 5 - 1 0 5 0 -  100 80 -  260 0 -4 0 0 1.00

193
1 0 -3 0 6 0 - 8 0 0 -  10 7 . 5 - 1 0 100-200 80 -  260 0 -4 0 0 1.00

194 1 0 -3 0 0 - 2 0 10 -3 0 7 . 5 -  10 100-200 80 -  260 0 -4 0 0 1.00
195 1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100-200 80 -  260 0 -4 0 0 1.00
196 1 0 -3 0 6 0 - 8 0 0 - 1 0 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 0.99
197 1 0 -3 0 0 - 2 0 10 -3 0 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 0.99
198 1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 0.99
199 1 0 -3 0 2 0 - 6 0 0 -  10 2 . 5 - 7 5 200 -  250 80 -  260 0 -4 0 0 0.98

200 0 -  10 0 - 2 0 0 -  10 2 . 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 1.00

201 0 -  10 0 - 2 0 0 -  10 2 . 5 - 7.5 100-200 620 -  800 0 -4 0 0 1.00

202 0 -  10 0 - 2 0 0 - 1 0 7 . 5 -  10 100 -  200 620 -  800 0 -4 0 0 1.00

203 0 -  10 0 - 2 0 0 -  10 2 . 5 - 7 5 5 0 -  100 620 -  800 0 -4 0 0 1.00

204 0 -  10 0 - 2 0 0 -  10 7 . 5 -  10 200 -  250 620 -  800 0 -4 0 0 1.00

205 0 -  10 0 - 2 0 0 -  10 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00

206 0 -  10 2 0 - 6 0 0 -  10 7 . 5 -  10 200 -  250 620 -  800 0 -4 0 0 1.00

207 0 -  10 0 - 2 0 0 -  10 0 - 2.5 100 -  200 620 -  800 0 - 4 0 0 1.00

208 0 -  10 0 - 2 0 10 -3 0 7 . 5 -  10 200 -  250 620 -  800 0 - 4 0 0 1.00

209 0 -  10 2 0 - 6 0 0 -  10 7 . 5 -  10 100-200 620 -  800 0 -4 0 0 1.00

210 0 -  10 0 - 2 0 3 0 -4 0 7 . 5 -  10 200 -  250 620 -  800 0 -4 0 0 1.00

211 0 -  10 0 - 2 0 0 - 1 0 0 - 2.5 200 -  250 620 -  800 0 -  400 1.00

212 0 -  10 6 0 - 8 0 0 -  10 7 . 5 - 1 0 200 -  250 620 -  800 0 -4 0 0 1.00

213 0 -  10 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 0 -4 0 0 1.00

214 0 -  10 2 0 -6 0 0 -  10 7 . 5 -  10 5 0 -  100 620 -  800 0 -4 0 0 1.00

215 0 -  10 2 0 - 6 0 0 -  10 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00

I 216 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 100 -  200 620 -  800 0 -4 0 0 1.00



Appendix 
Rule  No . Ar

224
0 -  10

Table  D3 -  Small A r750

H2
0 - 2 0  
0 - 2 0  
2 0 -6 0  
0 - 2 0  
6 0 -8 0  
6 0 -8 0  
2 0 -6 0  
0 - 2 0
0 -  20 10 -30 7. 5 -  10

Power

100 -  200 
5 0 -  100 
5 0 -  100
100 -  200

Pressure
620 -  800 
620 -  800 
620 -  800 
620 -  800 
620 -  800 
620 -  800 
620 -  800 
620 -  800

A r750
0 -4 0 0
0 -4 0 0
0 -4 0 0
0 -4 0 0
0 -4 0 0
0 -4 0 0
0 -4 0 0
0 -4 0 0

620 -  800 0 -  400 1.00
226 0 - 1 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 620 -  800 0 -  400 1.00

0 -  10 6 0 -8 0 0 -  10 0 -  2.5 5 0 -  100 620 -  800 0 -  400 1.00
228 0 - 1 0
229 0 - 1 0
230  0 - 1 0

6 0 -8 0 0 -  10
0 - 2 0 10-30
0 - 2 0 3 0 -4 0

7 . 5 -  10 100 -  200 620 -  800 0 -  400
7 . 5 -  10 5 0 -  100 620 -  800 0 -  400
7 . 5 -  10 100 -  200 620 -  800 0 -  400

1.00
1.00
1.00

0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -  100 620 -  800 0 -  400 1.00
232 0 -  10 0 - 2 0 3 0 -4 0 7. 5 -  10 5 0 -  100 620 -  800 0 -  400 1.00
233 0 -  10 2 0 - 6 0 0 -  10 2 . 5 - 7.5 200 -  250 620 -  800 0 -  400 0.99
234 0 -  10 0 - 2 0 0 -  10 7 . 5 -  10 100 -  200 260 -  620 0 -  400 1.00
235 0 -  10 0 -  20 0 -  10 2 . 5 -  7.5 200 -  250 260 -  620 0 -  400 1.00
236
237
238

0 -  10
0 -  10
0 -  10

0 - 2 0 0 -  10
0 - 2 0 0 -  10
0 - 2 0 0 -  10

7 . 5 -  10 200 -  250 260 -  620 0 -  400
7 . 5 -  10
2 . 5 - 7.5

5 0 -  100 260 -  620 0 -  400
100 -  200 260 -  620 0 -  400

1.00
1.00
1.00

239
240

0 -  10 
0 -  10

0 - 2 0
0 - 2 0

0 - 1 0  
0 -  10

0 - 2.5 
2 . 5 - 7.5

100 -  200 260 -  620 0 -  400
50 -  100 260-620  0 -  400

1.00
1.00

241 0 -  10 0 - 2 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -  400 1.00
242 0 -  10 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 260-620  0 -  400 1.00
243 0 -  10 2 0 - 6 0 0 -  10 7 . 5 - 1 0 200 -  250 260 -  620 0 -  400 1.00
244 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 260 -  620 0 -  400 1.00
245 0 -  10 2 0 - 6 0 0 -  10 0 - 2.5 100 -  200 260 -620  0 -  400 1.00
246 0 -  10 0 - 2 0 10-30 0 - 2.5 200 -  250 260 -  620 0 -  400 1.00
247 0 -  10 2 0 - 6 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -  400 1.00

1.00248
249

0 -  10
0 -  10

6 0 - 8 0 0 -  10 0 - 2.5 200 -  250 260 -  620 0 -  400
0 - 2 0 10 -3 0 0 - 2.5 100 -  200 260-620  0 -400 1.00

250 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 100 -  200 260 -620  0 -4 0 0 1.00
251 0 -  10 2 0 - 6 0 0 -  10 0 - 2.5 5 0 -  100 260 -620  0 -4 0 0 1.00

0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 200 -  250 260 -  620 0 -  400 1.00
253 0 -  10 6 0 - 8 0 0 -  10 0 - 2.5 100 -  200 260 -620  0 -  400 1.00
254  0 - 1 0
255 0 - 1 0
256  0 - 1 0
257  0 - 1 0

0 - 2 0 10-30 7 . 5 -  10 200 -  250 260 -  620 0 -  400
0 - 2 0 10-30 0 - 2.5 5 0 -  100 260 -620  0 -  400
0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 260-620  0 -  400
6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 260 -620  0 -  400

1.00
1.00
1.00
1.00

258  0 - 1 0

268
269

0 - 1 0

267 0 - 1 0
0 -  10 
0 -  10

270 0 - 1 0

2 0 - 6 0 0 -  10 -  10 100 -  200 260 -620  0 -  400

0 - 2 0  
2 0 - 6 0  
6 0 - 8 0  
0 -  20
0 - 2 0

7 . 5 -  10 200 -  250 260 -  620
7 . 5 -  10 5 0 -  100 260 -  620
7. 5 -  10 100-200 260 -  620
7 . 5 -  10 100 -  200 260 -  620
7. 5 - 1 0 100 -  200 80 -  260

400
400

200 -  250 
100 -  175 
200 -  250

0 - 2 0 0 -  10 7 . 5 -  10 50 -  100 80 -  260 0 -  400

0 - 2 0  
20 -  60

0 -  10 
0 -  10

2 . 5 -  7.5
7. 5 -  10

5 0 -  100 
200 -  250

260
260

400
400

0 - 2 0 0 -  10 0 - 2.5 100 -  200 8 0 -  260 0 -  400

1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00

2 15



Appendix 
Table  Small Ar750

[Rule No. A r ________________________ H2_______________________ N2________________________ C H 4 Power Pressure A r750 C L ____________

271 0 -  10 0 - 2 0 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
272 0 -  10 0 - 2 0 10-30 7 . 5 -  10 200 -  250 80 -  260 0 -4 0 0 1.00
273 0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 200 -  250 80 -  260 0 -4 0 0 1.00
274 0 -  10 2 0 -6 0 0 -  10 7. 5 -  10 100-200 80 -  260 0 -4 0 0 1.00
275 0 -  10 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
276 0 -  10 0 - 2 0 3 0 -4 0 7. 5 - 1 0 200 -  250 80 -  260 0 -4 0 0 1.00
277 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00
278 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
279 0 -  10 0 - 2 0 10-30 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00
280 0 -  10 2 0 -6 0 0 - 1 0 0 - 2.5 100 -  200 80 -  260 0 -4 0 0 1.00
281 | o -  10 0 - 2 0 10-30 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
282 0 -  10 2 0 -6 0 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
283 0 -  10 6 0 - 8 0 0 -  10 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 1.00
284 0 -  10 2 0 -6 0 0 -  10 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 1.00
285 0 -  10 6 0 - 8 0 0 -  10 0 - 2.5 100-200 80 -  260 0 -4 0 0 1.00
286 0 -  10 2 0 -6 0 0 -  10 0 - 2.5 50-100 80 -  260 0 -4 0 0 1.00
287 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 50-100 80 -  260 0 -4 0 0 1.00
288 0 -  10 0 - 2 0 10-30 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
289 0 -  10 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 -  100 80 -  260 0 -4 0 0 1.00
290 0 -  10 6 0 - 8 0 0 - 1 0 7. 5 -  10 100-200 80 -  260 0 -4 0 0 1.00
291 0 -  10 0 - 2 0 10 -3 0 7 . 5 - 1 0 100 -  200 80 -  260 0 -4 0 0 1.00
292 0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 1.00
293 0 -  10 0 - 2 0 3 0 -4 0 7 . 5 -  10 100 -  200 80 -  260 0 -4 0 0 1.00
294 0 -  10 0 - 2 0 10-30 7 . 5 -  10 5 0 -  100 80 -  260 0 -4 0 0 1.00
295 0 -  10 0 - 2 0 3 0 -4 0 7. 5 - 1 0 5 0 -  100 80 -  260 0 -4 0 0 0.99
296 I0 -  10 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 200 -  250 80 -  260 0 - 4 0 0 0.99

Table  D3 Defuzzified rules with associated accuracy (CL), for CL > 0.95

216



Appendix 
Table 4  Rules ith . 5 C .45

[Rule  No , |  Ar H2 N2 C H 4 Power Pressure A r750 C L
1 |30 -  40 2 0 -6 0 0 - 1 0 0 - 2.5 100-200 260 -  620 1200-1600 0.94
2 |30 -  40 2 0 -6 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 1200-1600 093
3 |30 -  40 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 80 -  260 1200-1600 093
4 |30 -  40 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 80 -  260 1200-1600 090
5 |30 -  40 2 0 -6 0 0 -  10 7. 5 -  10 200 -  250 80 -  260 1200-1600 086
6 |30 -  40 6 0 -8 0 0 -  10 7 . 5 -  10 200 -  250 620 -  800 1200-1600 0 6 ?

7 130 -  40 0 - 2 0 30 -  40 7 . 5 - 1 0 200 -  250 620 -  800 1200-1600 056
8 130 -  40 0 - 2 0 10-30 7. 5 -  10 200 -  250 620 -  800 1200-1600 049
9 |30 -  40 6 0 - 8 0 0 -  10 0 - 2.5 100 -  200 260 -  620 1200-1600 049
10 130 -  40 0 -  20 10 -30 0 - 2.5 100-200 260 -  620 1200-1600 0.48

|30 -  40 2 0 -6 0 0 -  10 7 . 5 -  10 5 0 -  100 80 -  260 400-1200 092

1 2

|30 -  40 6 0 - 8 0 0 -  10 7 . 5 -  10 100-200 620 -  800 400-1200 0.87

1 3

|30 -  40 0 - 2 0 10-30 7 . 5 -  10 100-200 620 -  800 400-1200 0.86
14 | 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100-200 620 -  800 400-1200 0.80

1 5

|30 -  40 6 0 -8 0 0 - 1 0 7 . 5 -  10 5 0 -  100 620 -  800 400-1200 0.76

1 6

|30 -  40 6 0 - 8 0 0 - 1 0 7. 5 -  10 200 -  250 260 -  620 400-1200 0.76

17
|30 -  40 0 - 2 0 10-30 7. 5 -  10 200 -  250 260 -  620 400-1200 0.73

18 [30 -  40 0 - 2 0 10 -3 0 7. 5 -  10 5 0 -  100 620 -  800 400-1200 0.67
19 |30 -  40 0 - 2 0 10 -3 0 7 . 5 -  10 100-200 80 -  260 400-1200 0.63
20 |30 -  40 6 0 - 8 0 0 - 1 0 7 . 5 -  10 100 -  200 80 -  260 400-1200 0.62
21 | 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 200 -  250 260 -  620 400-1200 0.60
22 | 3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 5 0 -  100 620 -  800 400-1200 0.54

23 I
|30 -  40 2 0 - 6 0 0 - 1 0 7 . 5 -  10 100-200 260 -  620 400-1200 0.53

2 4

|30 -  40 0 - 2 0 3 0 -4 0 7. 5 -  10 100-200 80 -  260 400-1200 0.48

2 5

|30 -  40 2 0 - 6 0 0 -  10 2 . 5 - 7.5 200 -  250 620 -  800 400-1200 0.47

26
[30 -  40 0 - 2 0 10 -3 0 7 . 5 -  10 5 0 -  100 80 -  260 400-1200 0.46

27 | 3 0 - 4 0 2 0 - 6 0 10-30 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 0.95

28
|30 -  40 0 - 2 0 10-30 2 . 5 -  7.5 200 -  250 80 -  260 0 -4 0 0 0.95

29
|30 -  40 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 100 -  200 620 -  800 0 -4 0 0 0.94

30
30 -  40 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 200 -  250 260 -  620 0 -4 0 0 0.93

31
3 0 - 4 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 0.93

32
3 0 - 4 0 2 0 - 6 0 0 -  10 2 5 - 7.5 5 0 -  100 620 -  800 0 -4 0 0 0.92

3 3

30 -  40 2 0 - 6 0 3 0 -4 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 0.88

3 4

3 0 - 4 0 2 0 - 6 0 10 -3 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 0.88

3 5

3 0 - 4 0 2 0 - 6 0 0 -  10 2 . 5 -  7.5 100-200 80 -  260 0 -4 0 0 0.87

3 6
3 0 - 4 0 0 - 2 0 3 0 -4 0 2 . 5 -  7.5 200 -  250 80 -  260 0 -4 0 0 0.87

37
30 -  40 2 0 - 6 0 3 0 -4 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 0.75

38
3 0 - 4 0 2 0 - 6 0 0 - 1 0 2 . 5 -  7.5 5 0 -  100 80 -  260 0 -4 0 0 0.74

39
30 -  40 6 0 - 8 0 0 - 1 0 2 . 5 -  7.5 100-200 620 -  800 0 -4 0 0 0.58

40
30 -  40 0 - 2 0 10 -3 0 2 . 5 - 7 5 100-200 620 -  800 0 -4 0 0 0.53

41 30 -  40 6 0 - 8 0 10 -3 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 0 5 ?

42 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 100 -  200 620 -  800 1200-1600 087

43
1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 620 -  800 1200-1600 085

4 4 1 0 -3 0 6 0 - 8 0 0 -  10 ,0 -  2.5 100-200 620 -  800 1200-1600 0.81

4 5 1 0 -3 0 0 - 2 0 10-30 0 - 2.5 200 -  250 260 -  620 1200-1600 0.80

4 6 1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 200 -  250 260 -  620 1200-1600 080

47 1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 1200-1600 079

|  4 8 1 0 -3 0 6 0 - 8 0 0 - 1 0 0 - 2.5 200 -  250 260 -  620 1200-1600 078

f  4 9 1 0 -3 0 0 - 2 0 10 -  30 0 - 2.5 100 -  200 620 -  800 1200-1600 077

50 1 0 -3 0 0 - 2 0 10 -3 0 0 - 2.5 5 0 -  100 620 -  800 1200-1600 077

51 1 0 -3 0 2 0 -6 0 0 -  10 7 . 5 -  10 200 -  250 620 -  800 1200-1600 076

52 1 0 -3 0 0 - 2 0 10-30 0 - 2.5 100-200 80 -  260 1200-1600 074

|  53 1 0 -3 0 0 -  20 10 -3 0 0 - 2.5 5 0 -  100 80 -  260 1200-1600 0.73



Appendix 
Table 4  Rules ith . 5 C .45

[Rule  No . |Ar H2 N2 _______________________ C H 4 P o w er P ressure A r750 CL I
54 10 -3 0 6 0 -8 0 0 -  10 0 - 2.5 5 0 -  100 80 -  260 1200-1600 0.72
55 I 1 0 -3 0 6 0 -8 0 0 -  10 0 - 2.5 100-200 80 -  260 1200-1600 0.71
56 |  1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 80 -  260 1200-1600 0.611

87 I 1 0 -3 0 2 0 -6 0 0 -  10 0 - 2.5 100-200 260 -  620 1200-1600 0.59
58 1 0 -3 0 2 0 -6 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 1200-1600 0.59
59 10 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 5 0 -  100 80 -  260 1200-1600 0 . 57|

60 |  1 0 -3 0 2 0 -6 0 0 -  10 7 . 5 -  10 200 -  250 80 -  260 1200-1600 0 . 48 |

51 I 1 0 -3 0 6 0 -8 0 0 -  10 7. 5 -  10 200 -  250 80 -  260 400-1200 0. 95|

62 |  1 0 -3 0 0 - 2 0 10-30 0 - 2.5 5 0 -  100 260 -  620 400-1200 0. 93|

63 I 1 0 -3 0 0 - 2 0 10-30 0 - 2.5 100-200 260 -  620 400-1200 0.931
64 |  1 0 -3 0 2 0 -6 0 0 -  10 7. 5 -  10 100-200 620 -  800 400-1200 0.93
65 I 1 0 -3 0 0 - 2 0 10 -3 0 7 . 5 -  10 200 -  250 80 -  260 400-1200 0. 93|

66 10 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 400-1200 0.921

6 7

|  1 0 -3 0 6 0 - 8 0 0 -  10 0 - 2.5 100-200 260 -  620 400-1200 0.911
68 |  1 0 -3 0 2 0 -6 0 0 -  10 7. 5 - 1 0 200 -  250 260 -  620 400-1200 0.911
69 1 0 -3 0 2 0 - 6 0 0 -  10 7. 5 -  10 5 0 -  100 620 -  800 400-1200 0.911

7 0

|  1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 200 -  250 80 -  260 400-1200 0 . 88|

71
|  1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 260 -  620 400-1200 0 . 87|

72
1 0 -3 0 0 - 2 0 3 0 -4 0 0 - 2.5 50 -100 260 -  620 400-1200 0. 87|

73 I 1 0 -3 0 2 0 -6 0 0 -  10 7 . 5 -  10 100-200 80 -  260 400-1200 0. 84|

7 4

|  1 0 -3 0 2 0 - 6 0 0 -  10 7 . 5 -  10 50 -100 80 -  260 400-1200 0. 67|

7 5

I 1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100-200 620 -  800 400-1200 0.511

7 6

|  1 0 -3 0 6 0 - 8 0 0 -  10 7. 5 -  10 100-200 620 -  800 400-1200 0.481

7 7

| 1 0 -3 0 6 0 - 8 0 0 - 1 0 7. 5 -  10 100 -  200 260 -  620 0 -4 0 0 0 . 95|

78
1 0 -3 0 0 - 2 0 10 -3 0 7. 5 -  10 100 -  200 260 -  620 0 -4 0 0 0 . 93|

7 9

| 1 0 -3 0 0 - 2 0 3 0 -4 0 2 . 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0.921

80
1 0 -3 0 6 0 - 8 0 0 - 1 0 7 . 5 - 1 0 50-100 260 -  620 0 -4 0 0 0 . 871

81
1 0 -3 0 0 - 2 0 3 0 -4 0 7 . 5 -  10 100-200 260 -  620 0 -4 0 0 0 . 83|

82
1 0 -3 0 0 - 2 0 10 -3 0 7 . 5 -  10 5 0 -  100 260 -  620 0 -4 0 0 0 . 831

83 1 0 -3 0 0 - 2 0 10 -3 0 2 . 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0 . 82|

84 1 0 -3 0 0 - 2 0 0 - 1 0 2 5 - 7.5 200 -  250 620 -  800 0 -4 0 0 0.811

85 1 0 -3 0 0 - 2 0 10 -3 0 2 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 0 . 7o|

86 1 0 -3 0 6 0 - 8 0 0 - 1 0 2 . 5 - 7 5 200 -  250 80 -  260 0 -4 0 0 0 . 7o|

87
1 0 -3 0 0 - 2 0 3 0 -4 0 7. 5 -  10 50 -100 260 -  620 0 -4 0 0 0.681

88 1 0 -3 0 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 200 -  250 260 -  620 0 -4 0 0 0.64

89 1 0 -3 0 2 0 - 6 0 10 -3 0 0 - 2.5 200 -  250 620 -  800 0 -4 0 0 0 . 63|

90 1 0 -3 0 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 100 -  200 620 -  800 0 -4 0 0 0 . 62|

91 1 0 -3 0 0 - 2 0 3 0 -4 0 2 . 5 - 7.5 200 -  250 80 -  260 0 -4 0 0 0 . 591

92 1 0 -3 0 2 0 - 6 0 10 -3 0 0 - 2.5 200 -  250 80 -  260 0 -4 0 0 0 . 54|

93 1 0 -3 0 2 0 - 6 0 0 -  10 2 . 5 - 7.5 100 -  200 80 -  260 0 -4 0 0 0.53

94 1 0 -3 0 2 0 - 6 0 0 -  10 2 5 - 7.5 5 0 -  100 620 -  800 0 -4 0 0 0.48

95 1 0 -3 0 0 - 2 0 3 0 -4 0 2 . 5 - 7.5 100-200 620 -  800 0 -4 0 0 0. 47|

96 0 -  10 0 - 2 0 10 -3 0 0 - 2.5 200 -  250 ~ ~ 260 -  620 1200-1600 0.85

97 0 -  10 2 0 - 6 0 0 -  10 7 . 5 -  10 200 -  250 620 -  800 1200-1600 0. 84|

98 0 -  10 0 - 2 0 0 -  10 0 - 2.5 200 -  250 260 -  620 1200-1600 0 . 82|

99 0 -  10 0 - 2 0 10 -3 0 0 - 2.5 100-200 80 -  260 1200-1600 0.811

100 0 -  10 0 - 2 0 10 -3 0 0 - 2.5 5 0 -  100 80 -  260 1200-1600 0 . 80|

101 0 -  10 0 - 2 0 10-30 0 - 2.5 5 0 -  100 620 -  800 1200-1600 0 . 80|

102 0 - 1 0  l0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 80 -  260 1200-1600 0 . 78|

103 0 -  10 0 - 2 0 10-30 0 - 2.5 100-200 620 -  800 1200-1600 0.78

104 0 -  10 0 - 2 0 0 -  10 0 - 2.5 100-200 80 -  260 1200-1600 0 . 77|

105 0 -  10 0 - 2 0 0 -  10 0 - 2.5 5 0 -  100 620 -  800 1200-1600 0 . 76|

106 0 -  10 0 - 2 0 3 0 -4 0 0 - 2.5 100-200 620 -  800 1200-1600 0 7 6 |

107 0 -  10 0 - 2 0 0 -  10 0 - 2.5 100-200 620 -  800 1200-1600 0. 75|



Appendix I)
Table 1)4 - Rules with 0.95>CL>0.45

|R u le  No |Ar H2 N2 CH4 Power Pressure Ar750 CL
1 0 8 |o  -  10 0 - 2 0 3 0 - 4 0 0 - 2.5 200  -  250 260  -  620 1200-1600 0 T 4
1 0 9 | o - 1Q 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 -  100 6 2 0  -  800 1200-1600 6/74
1 1 0 [0 - 1 0 2 0 - 6 0 0 -  10 0 - 2.5 1 0 0 - 2 0 0 260  -  620 1200-1600 0 6 8
111 | o -  10 2 0 - 6 0 0 -  10 0 - 2.5 5 0 -  100 260  -  620 1200-1600 0 6 7
1 1 2 | o - 1Q 0 - 2 0 3 0 - 4 0 0 - 2.5 1 0 0 - 2 0 0 80  -  260 1200-1600 0 6 6
1 1 3 | o -  10 2 0 - 6 0 0 - 1 0 7 . 5 -  10 200  -  250 80  -  260 1200-1600 0 6 3

| 1 1 4 | o -  10 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 1 0 0 80  -  260 1200-1600 0 6 2

1 1 5 | o -  10 6 0 - 8 0 0 -  10 0 - 2.5 5 0 - 1 0 0 260  -  620 4 0 0 -1 2 0 0 0 9 5
1 1 6 |o  -  10 2 0 - 6 0 0 -  10 7 .5 -  10 5 0 -  100 6 2 0  -  800 4 0 0 -1 2 0 0 0 9 4
1 1 7 | o -  10 6 0 - 8 0 0 - 1 0 0 - 2.5 1 0 0 -  200 2 6 0  -  620 4 0 0 -1 2 0 0 0.94
1 1 8 | o -  10 0 - 2 0 3 0 - 4 0 7 . 5 -  10 2 0 0  -  250 8 0  -  260 4 0 0 -1 2 0 0 0.94
1 1 9 | 0 -  10 2 0 - 6 0 0 -  10 7 . 5 -  10 1 0 0 -  200 80  -  260 4 0 0 -1 2 0 0 0.93
1 2 0 | o -  10 0 - 2 0 3 0 - 4 0 0 - 2.5 1 0 0 - 2 0 0 2 6 0  -  620 4 0 0 -1 2 0 0 0.92

121 | o -  10 0 - 2 0 3 0 - 4 0 0 - 2.5 5 0 - 1 0 0 2 6 0  -  620 4 0 0 -1 2 0 0 0.91

1 2 2 | o -  10 2 0 - 6 0 0 - 1 0 7 .5 -  10 5 0 -  100 80  -  260 4 0 0 -1 2 0 0 0.79

1 2 3 | o -  10 0 - 2 0 1 0 - 3 0 7 . 5 - 10 1 0 0 - 2 0 0 6 2 0  -  800 4 0 0 -1 2 0 0 0.62

1 2 4 | 0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 1 0 0 - 2 0 0 6 2 0  -  800 4 0 0 -1 2 0 0 0.60

1 2 5 | 0 -  10 0 - 2 0 3 0 - 4 0 7 . 5 -  10 1 0 0 - 2 0 0 6 2 0  -  800 4 0 0 -1 2 0 0 0.54

1 2 6 | o -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 2 0 0  -  250 2 6 0  -  6 2 0 4 0 0 -1 2 0 0 0.45

1 2 7 | o -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -  100 2 6 0  -  6 2 0 0 - 4 0 0 0.93

1 2 8 | 0 -  10 0 - 2 0 1 0 - 3 0 7.5 -  10 5 0 -  100 260  -  620 0 - 4 0 0 0.89

1 2 9 | o -  10 0 - 2 0 3 0 - 4 0 7 .5 -  10 1 0 0 - 2 0 0 260  -  620 0 - 4 0 0 0.88

1 3 0 | o -  10 0 - 2 0 1 0 - 3 0 2 . 5 - 7.5 2 0 0  -  250 6 2 0  -  800 0 - 4 0 0 0.87

131 | 0 -  10 0 - 2 0 3 0 - 4 0 2 . 5 - 7.5 200  -  250 6 2 0  -  800 0 - 4 0 0 0.87

1 3 2 | o -  10 6 0 - 8 0 0 - 1 0 2 . 5 - 7 5 2 0 0  -  2 5 0 6 2 0  -  800 0 - 4 0 0 0.84

1 3 3 | o -  10 6 0 - 8 0 0 - 1 0 2 . 5 -  7.5 2 0 0  -  250 80  -  260 0 - 4 0 0 0.82

1 3 4 | o -  10 0 - 2 0 1 0 - 3 0 2 .5 - 7.5 2 0 0  -  250 80  -  260 0 - 4 0 0 0.80

1 3 5 | 0 -  10 0 - 2 0 3 0 - 4 0 7 .5 -  10 5 0 -  100 2 6 0  -  620 0 - 4 0 0 0.77

1 3 6 | o -  10 2 0 - 6 0 0 - 1 0 2 5 - 7.5 1 0 0 -  200 6 2 0  -  800 0 - 4 0 0 0.74

1 3 7 |o  -  10 2 0 - 6 0 0 - 1 0 2 5 - 7.5 2 0 0  -  250 2 6 0  -  620 0 - 4 0 0 0.74

1 3 8 | 0 -  10 2 0 - 6 0 1 0 - 3 0 0 - 2.5 2 0 0  -  250 6 2 0  -  800 0 - 4 0 0 0.71

1 3 9 | 0 -  10 2 0 - 6 0 0 - 1 0 2 . 5 -  7.5 5 0 -  100 6 2 0  -  800 0 - 4 0 0 0.68

1 4 0 | o -  10 2 0 - 6 0 0 -  10 2 . 5 -  7.5 1 0 0 - 2 0 0 80  -  260 0 - 4 0 0 0.63

141 | 0 -  10 0 - 2 0 3 0 - 4 0 2 . 5 -  7.5 2 0 0  -  250 80  -  260 0 - 4 0 0 0.63

1 4 2 | o -  10 2 0 - 6 0 1 0 - 3 0 0 - 2.5 2 0 0  -  250 80  -  260 0 - 4 0 0 0.62

1 4 3 0 -  10 2 0 - 6 0 3 0 - 4 0 0 - 2.5 200  -  250 6 2 0  -  800 0 - 4 0 0 0.52
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3 0 - 4 0
3 0 - 4 0

H2
6 0 - 8 0  
0 - 2 0

Table 1)5 - Rules with 0.KCL<0.45

Power
5 0 -  100 
5 0 -  100

0 ^ 2 0  
2 0 - 6 0

3 0 - 4 0  
0 -  10

0 - 2.5 
7 . 5 -  10

1 0 0 -  200 
1 0 0 -  200

5 |30 - 40 0-20 10-30 7.5- 10 200 - 250 80 - 260 1200-1600 0.20
6 |30 - 40 60-80 0- 10 7.5- 10 200 - 250 80 - 260 1200-1600 0.20
7 130 - 40 0-20 30-40 0-2.5 50- 100 260 - 620 1200-1600 0.18
8 |30 - 40 20-60 0- 10 7.5-10 200 - 250 260 - 620 1200-1600 0.14
9 [30 - 40 0-20 30-40 7.5-10 200 - 250 80 - 260 1200-1600 0.14

10 130 - 40 20-60 0- 10 7.5- 10 50- 100 620 - 800 1200-1600 0.12
11 [30 - 40 20-60 0- 10 7.5-10 100-200 80 - 260 1200-1600 0.10

|30 - 40 60-80 0-  10 7.5- 10 50- 100 80 - 260 400- 1200 0.41
13 130 - 40 60-80 0-  10 2.5-7.5 200 - 250 620 - 800 400- 1200 0.35
14 130 - 40 0-20 30-40 7.5-10 50- 100 80 - 260 400- 1200 0.35

15
|30 - 40 0-20 30-40 25-7 .5 200 - 250 620 - 800 400- 1200 0.35

16 130 - 40 20-60 0-10 7.5- 10 50- 100 260 - 620 400- 1200 0.33
17 130 - 40 0-20 10-30 2.5-75 200 - 250 620 - 800 400- 1200 0.20
18 130 - 40 20-60 0- 10 2.5-7.5 200 - 250 80 - 260 400 - 1200 0.16
19 |30 - 40 0-20 30-40 2.5-7.5 100- 200 620 - 800 0-400 0.43
20 130 - 40 60-80 0-  10 25-7 .5 200 - 250 260 - 620 0-400 0.41

21 130 - 40 60-80 0- 10 2.5-7.5 50- 100 620 - 800 0-400 0.40

22 130 - 40 0-20 10-30 2.5-7.5 50- 100 620 - 800 0-400 0.33

23
|30 - 40 60-80 30-40 0-2.5 200 - 250 620 - 800 0-400 0.31

24 pO - 40 20-60 10-30 0-2.5 100-200 620 - 800 0-400 0.27

25 130 - 40 0-20 10-30 2.5-7.5 200 - 250 260 - 620 0-400 0.26

2 6

|30 - 40 60-80 0-10 2.5-7.5 100-200 80 - 260 0-400 0.26
2 7 pO - 40 60-80 10-30 0-2.5 200 - 250 80 - 260 0-400 0.24

2 8

130 - 40 0-20 30-40 2.5-7.5 50-100 620 - 800 0-400 0.22

2 9

30-40 20-60 10-30 0-2.5 50-100 620 - 800 0-400 0.17

3 0

30 - 40 20-60 0- 10 2.5-7.5 100-200 260 - 620 0-400 0.16

3 1

30-40 0-20 10-30 2.5-7.5 100-200 80 - 260 0-400 0.15

3 2

30 - 40 20-60 30-40 0-2.5 100-200 620 - 800 0-400 0.14

3 3

30 - 40 0-20 30-40 2.5-7.5 200 - 250 260 - 620 0-400 0.14

34
30-40 20-60 10-30 0-2.5 200 - 250 260 - 620 0-400 0.12

35
30-40 60-80 0-  10 25-7 .5 50- 100 80 - 260 0-400 0.11

36 30-40 60-80 30-40 0-2.5 200 - 250 80 -  260 0 - 4 0 0 0.10
37 1 0 - 3 0 6 0 - 8 0 0 -  10 7 . 5 - 1 0 200 -  250 620 -  800 1200-1600 0.40

38
1 0 - 3 0 0 - 2 0 2 5 - 4 0 7 . 5 - 1 0 200 -  250 620 -  800 1200-1600 0.39

39
1 0 - 3 0 0 - 2 0 1 0 - 3 0 7 . 5 - 1 0 200 -  250 620 -  800 1200-1600 0.22

40___________ 1 0 - 3 0 6 0 - 8 0 0 -  10 0 - 2.5 100-200 260 -  620 1200-1600 0.16
41 1 0 - 3 0 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 260 -  620 1200-1600 0.15
42 1 0 - 3 0 6 0 - 8 0 0 -  10 0 - 2.5 5 0 -  100 260 -  620 1200-1600 0.13
43 10 -  30 0 - 2 0 3 0 - 4 0 0 - 2.5 1 0 0 -  200 260 -  620 1200-1600 0.13
44 1 0 - 3 0 0 - 2 0 1 0 - 3 0 0 - 2.5 5 0 -1 0 0 260 -  620 1200-1600 0.10
45 1 0 - 3 0 0 - 2 0 1 0 - 3 0 7 . 5 - 1 0 100-200 620 -  800 4 0 0 -  1200 0.42
46 1 0 - 3 0 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -1 0 0 620 -  800 4 0 0 -  1200 0.35

1 0 - 3 0 6 0 - 8 0 0 -  10 2 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.33
48 1 0 - 3 0 2 0 - 6 0 0 - 1 0 2 . 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.30
49 1 0 - 3 0 6 0 - 8 0 0 -  10 7 . 5 - 1 0 200 -  250 260 -  620 400 -  1200 0.29
50 1 0 - 3 0 0 - 2 0 3 0 - 4 0 2 . 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.26

|  51 1 0 - 3 0 0 - 2 0 1 0 - 3 0 2 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 (T24

8 2

10 -  30 0 - 2 0 1 0 - 3 0 7. 5 -  10 5 0 -  100 620 -  800 4 0 0 -  1200 0.24

I 53 1 0 - 3 0 0 - 2 0 1 0 - 3 0 7 . 5 -  10 175 -  250 260 -  620 4 0 0 -  1200 0.21

Pressure
260 -  620 
260 -  620
260 -  620 
620 -  800

Ar750
1200-1600
1200-1600
1200-1600
1200-1600

0.43
0.35
0.31
0.28
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Appendix D
Table 1)5 - Rules with 0.KCL<0.45

|Rule No. |Ar | H2 N2 CH4 Power Pressure Ar750 CL I
54 |  1 0 - 3 0 |0 -  20 30 -  40 7 . 5 - 1 0 5 0 -1 0 0 620 -  800 4 0 0 -  1200 0.21
55 I 1 0 - 3 0 | 6 0 - 8 0 0 - 1 0 7. 5 -  10 100-200 80 -  260 4 0 0 -  1200 0.17
56 1 0 - 3 0 | 0 -  20 3 0 - 4 0 7. 5 - 1 0 200 -  250 260 -  620 4 0 0 -  1200 0.16
57 1 0 - 3 0 |o -  20 1 0 -3 0 7. 5 -  10 100-200 80 -  260 4 0 0 -  1200 07T3 |

58 |  1 0 - 3 0 [60 -  80 0 -  10 2 . 5 - 7.5 100-200 620 -  800 4 0 0 -  1200 0.12
59 |  1 0 - 3 0 |20 -  60 0 -  10 7 . 5 - 1 0 100-200 260 -  620 4 0 0 -  1200 0.11
60 1 0 - 3 0 |20 -  60 3 0 - 4 0 0 - 2.5 200 -  250 620 -  800 0 - 4 0 0 0.44
61 |  1 0 - 3 0 | 2 0 -6 0 3 0 - 4 0 0 - 2.5 200 -  250 80 -  260 0 - 4 0 0 0.32
62 |  1 0 - 3 0 |60 -  80 0 -  10 2 . 5 - 7 5 100 -  200 620 -  800 0 - 4 0 0 0.31
63 |  1 0 - 3 0 | 0 - 2 0 1 0 -3 0 2 . 5 - 7.5 100-200 620 -  800 0 - 4 0 0 0.29
64 j 1 0 - 3 0 |20 -  60 0 -  10 2 . 5 - 7.5 5 0 -1 0 0 80 -  260 0 - 4 0 0 0728|

65
|  1 0 - 3 0 |0 -  20 3 0 - 4 0 2 5 - 7.5 5 0 -  100 620 -  800 0 - 4 0 0 0.22

66
1 0 - 3 0 |60 -  80 0 -  10 2 . 5 - 7.5 200 -  250 260 -  620 0 - 4 0 0 0.19

67
I 1 0 - 3 0 |60 -  80 1 0 -3 0 0 - 2.5 200 -  250 620 -  800 0 - 4 0 0 0.15

68 I 1 0 - 3 0 |60 -  80 0 - 1 0 2 . 5 - 7.5 5 0 -  100 620 -  800 0 - 4 0 0 0.15

69
1 0 - 3 0 |0 -  20 1 0 -3 0 2 . 5 - 7.5 5 0 -  100 620 -  800 0 - 4 0 0 0.13

70
1 0 - 3 0 |0 -  20 1 0 - 3 0 2 . 5 - 7.5 200 -  250 260 -  620 0 - 4 0 0 0.13

71
1 0 - 3 0 |60 -  80 0 -  10 2 . 5 - 7.5 100-200 80 -  260 0 - 4 0 0 0.12

72
1 0 - 3 0 0 -  20 3 0 - 4 0 2 . 5 - 7 5 200 -  250 260 -  620 0 - 4 0 0 0.11

73
1 0 - 3 0 |20 -  60 0 - 1 0 2 . 5 - 7.5 100-200 260 -  620 0 - 4 0 0 0.10

74
0 -  10 |0 -  20 3 0 - 4 0 7. 5 -  10 200 -  250 620 -  800 1200-1600 0.31

7 5

0 -  10 O) 0 1 CO 0 0 - 1 0 7. 5 -  10 200 -  250 620 -  800 1200-1600 0.30

7 6

0 - 1 0 0 -  20 1 0 - 3 0 7 . 5 - 1 0 200 -  250 620 -  800 1200-1600 0.23
77 0 -  10 0 - 2 0 1 0 -3 0 0 - 2.5 100-200 260 -  620 1200-1600 0.19

7 8

0 -  10 6 0 - 8 0 0 -  10 0 - 2.5 100-200 260 -  620 1200-1600 0.18

7 9

0 -  10 6 0 - 8 0 0 - 1 0 0 - 2.5 5 0 -  100 260 -  620 1200-1600 0.15

8 0

0 -  10 2 0 - 6 0 0 -  10 7 . 5 - 1 0 100 -  200 620 -  800 1200-1600 0.14

8 1

0 - 1 0 0 - 2 0 1 0 - 3 0 0 - 2.5 5 0 -  100 260 -  620 1200-1600 0.13

8 2

0 -  10 0 - 2 0 3 0 - 4 0 0 - 2.5 100 -  200 260 -  620 1200-1600 0.12

8 3

0 -  10 6 0 - 8 0 0 -  10 7 . 5 - 1 0 5 0 -  100 620 -  800 4 0 0 -  1200 0.43

84
0 -  10 0 - 2 0 1 0 - 3 0 7 . 5 - 1 0 200 -  250 260 -  620 4 0 0 -  1200 0.40

85
0 -  10 0 - 2 0 3 0 - 4 0 2 . 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.36

8 6

0 -  10 0 - 2 0 1 0 - 3 0 7. 5 -  10 5 0 -  100 620 -  800 4 0 0 -  1200 0.35

8 7

0 -  10 6 0 - 8 0 0 -  10 7. 5 - 1 0 100-200 80 -  260 4 0 0 -  1200 0.30

88
0 -  10 6 0 - 8 0 0 -  10 2 . 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.29

89
0 -  10 0 - 2 0 3 0 - 4 0 7 . 5 - 1 0 200 -  250 260 -  620 4 0 0 -  1200 0.26

90
0 -  10 0 - 2 0 1 0 - 3 0 7 . 5 - 1 0 100-200 80 -  260 4 0 0 -  1200 0.26

91
0 -  10 0 - 2 0 3 0 - 4 0 7 . 5 - 1 0 5 0 -  100 620 -  800 4 0 0 -  1200 0.25

92 0 - 1 0 2 0 - 6 0 0 -  10 2 5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.24
93 0 -  10 2 0 - 6 0 0 -  10 7 . 5 - 1 0 100-200 260 -  620 4 0 0 -  1200 0.23

94 ~  I0 -  10 0 - 2 0 1 0 -3 0 2.5 - 7.5 200 -  250 620 -  800 4 0 0 -  1200 0.17

95 0 -  10 0 - 2 0 3 0 - 4 0 7 . 5 -  10 1 0 0 -  200 80 -  260 4 0 0 -  1200 0.16

98
0 -  10 0 - 2 0 1 0 - 3 0 7 . 5 - 1 0 5 0 -  100 80 -  260 4 0 0 -  1200 0.13

97 0 -  10 6 0 - 8 0 0 -  10 7 . 5 -  10 5 0 -  100 80 -  260 4 0 0 -  1200 0.12

98 0 -  10 0 - 2 0 3 0 - 4 0 2 . 5 - 7.5 100-200 620 -  800 4 0 0 -  1200 0.10

99 0 -  10 2 0 - 6 0 0 -  10 2 . 5 - 7.5 5 0 -  100 80 -  260 0 - 4 0 0 0A M

100 0 -  10 2 0 - 6 0 3 0 - 4 0 0 - 2.5 200 -  250 80 -  260 0 - 4 0 0 0.40

101 0 -  10 6 0 - 8 0 0 -  10 2 . 5 - 7.5 1 0 0 -  200 620 -  800 0 - 4 0 0 (T35^

102 0 -  10 0 - 2 0 1 0 - 3 0 2 . 5 - 7.5 1 0 0 -  200 620 -  800 0 - 4 0 0 0.33

103 0 -  10 0 - 2 0 3 0 - 4 0 2 . 5 - 7.5 100-200 620 -  800 0 - 4 0 0 0.28

104 0 - 1 0 6 0 - 8 0 0 -  10 2 . 5 - 7.5 200 -  250 260 -  620 0 - 4 0 0 0.25|

105 0 -  10 6 0 - 8 0 0 -  10 2 . 5 - 7.5 5 0 -  100 620 -  800 0 - 4 0 0 0.22

106 0 -  10 0 - 2 0 1 0 -3 0 2 . 5 - 7.5 5 0 -  100 620 -  800 0 - 4 0 0 ~  0.19|
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Appendix I)
Table D5 - Rules with 0.1<CL<0.45

Rule No. Ar H2 N2 CH4 Power Pressure Ar750 CL
107 0 -  10 6 0 - 8 0 10 -  30 0 - 2.5 200 -  250 620 -  800 0 - 4 0 0 0.18
108 0 -  10 6 0 - 8 0 0 -  10 2.5 -  7.5 100 -  200 80 -  260 0 - 4 0 0 0.16
109 0 -  10 0 - 2 0 ~6 0 - 3 0 2.5 -  7.5 200 -  250 260 -  620 0 - 4 0 0 0.15
110 0 -  10 0 - 2 0 30 -  40 2 . 5 - 7.5 5 0 -  100 620 -  800 6 - 4 0 0 0.14
111 0 -  10 2 0 - 6 0 0 -  10 2 5 - 7.5 100-200 260 -  620 0 - 4 0 0 0.11
112 0 -  10 6 0 - 8 0 3 0 - 4 0 0 - 2.5 200 -  250 620 -  800 0 - 4 0 0 0.11
113 0 -  10 2 0 - 6 0 1 0 -3 0 0 - 2.5 100-200 620 -  800 0 - 4 0 0 0.10
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