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ABSTRACT

Unspecified counting practices used in a data collection may create rounding to certain 

‘based’ number that can have serious consequences on data quality. Statistical methods for 

analysing missing data are commonly used to deal with the issue but it could actually 

aggravate the problem. Rounded data are not missing data, instead some observations were 

just systematically lumped to certain based numbers reflecting the rounding process or 

counting behaviour. A new method to analyse rounded data would therefore be academically

valuable.
The neural network model developed in this study fills the gap and serves the purpose 

by complementing and enhancing the conventional statistical methods. The model detects, 

analyses, and quantifies the existence of periodic structures in a data set because of rounding.

The robustness of the model is examined using simulated data sets containing specific 

rounding numbers of different levels. The model is also subjected to theoretical and numerical 

tests to confirm its validity before being used on real applications. Overall, the model

performs very well making it suitable for many applications.

The assessment results show the importance of using the right best fit in rounding 

detection. The detection power and cut-off point estimation also depend on data distribution 

and rounding based numbers. Detecting rounding of prime numbers is easier than non-prime 

numbers due to the unique characteristics of the former. The bigger the number, the easier is 

the detection. This is in a complete contrast with non-prime numbers, where the bigger the 

number, the more will be the "factor” numbers distracting rounding detection.

Using uniform best fit on uniform data produces the best result and lowest cut-off 

point. The consequence of using a wrong best fit on uniform data is however also the worst. 

The model performs best on data containing 10-40% rounding levels as less or more rounding 

levels produce unclear rounding pattern or distort the rounding detection, respectively. The 

modulo-test method also suffers the same problem.

Real data applications on religious census data confirms the modulo-test finding that 

the data contains rounding base 5, while applications on cigarettes smoked and alcohol 

consumed data show good detection results. The cigarettes data seem to contain rounding 

base 5, while alcohol consumption data indicate no rounding patterns that may be attributed to 

the ways the two data were collected.

The modelling applications can be extended to other areas in which rounding is 

common and can have significant consequences. The modeling development can be refined to 

include data-smoothing process and to make it user friendly as an online modelling tool. This 

will maximize the model's potential use.
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CHAPTER I

INTRODUCTION

1.1. Research Background

Data quality is an important factor in many application areas of data analysis. 

The application areas, in turn, also create an environment with stringent needs for 

reliable data. Most professions and decision makers rely on data for analysing 

information, that is, in the context of managing and decision making. In most cases, 

the results crucially depend on the quality of data used. Therefore, all data must have 

a level of quality appropriate for decisions for which they will be a part (Ballou and

Tayi, 1999).

Implications of data quality have been the subject of various studies in different 

areas. A common case is data quality being sacrificed for a certain purpose such as 

convincing a wrong argument. Huff (1954) provides examples on how data quality 

can be manipulated for certain gains, as well as on statistical deceptions in general. 

Budd and Guinnane (1991) examines the difficulty encountered by pension authorities 

in Ireland in dealing with some discrepancies between the distribution of reported 

ages in the 1901 and 1911 censuses of Ireland, which show that the Irish exaggerated 

their age considerably.

Systematic inaccuracies in social data have recently attracted attention. 

Contemporary micro data in the United States (US) have shown some documented 

errors in reported job tenures. The errors have been shown to create biased estimates 

of the return to changing jobs (Brown and Light, 1989). Such errors can be more than 

just statistical nuisance as these can cause serious problems and policy implication.
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Klesges et al. (1995) show a clear evidence for a digit preference in self- 

reporting of smoking in the 2nd National Health and Nutrition Examination Survey 

(NHANES) in the US. They compare the data of smoking from self-reporting and 

from an objective measure of smoking exposure (i.e., measured by 

carboxyhaemoglobin or COHb level in the blood). The distributions of cigarettes 

consumed per day from self-reporting and from the objective measure of smoking 

exposure were found significantly asymmetrical. Heavier smokers and those less 

educated were more likely to report a digit preference than lighter smokers and those 

more educated. The results suggest that self-reporting data may be biased toward a 

round number, particularly 20 cigarettes per day. There is also a strong digit 

preference (i.e., multiples of 10) in the number of cigarettes smoked. Almost 71% of 

all smokers report smoking in multiples of 10 cigarettes per day, with 20 cigarettes 

per day (typically one pack of cigarettes) being the most common response. In 

contrast to self-reporting data, COHb level data indicate a continuous distribution of 

exposure to smoking. There are no spikes for the number of smoking exposures such 

as multiples of 10. This suggests a pattern of digit preference in self-reporting data 

and the pattern depends on whether the respondents are heavy or light smokers, as 

well as their education.

Demographers have long noted the implications of age misreporting in the 

accuracy of demographic measures such as mortality and fertility indicators. Age 

misreporting, whether systematic or not, can make the census result undercount and 

produce biased demographic measures. Coale and Li (1991) analyse the effect of age 

misreporting on the calculation of mortality rates among the elderly in China. Both 

the Han Chinese (the majority ethnic group of China) and the other minority groups 

have the same perception about the importance of using an accurate calendar to record



the date of birth. The accurate reporting of date of birth is a characteristic of the Hans 

but, unfortunately, this is still not the case for some minority groups. Of the one 

billion persons listed in 1982, about 68 million were minorities. Some of them, such 

as the Mongols and the Koreans, share with the Hans the accurate knowledge about 

date of birth based on the Chinese calendar.1 Other minority groups, however, do not 

have that same level of knowledge. In Xinjiang province, large minority groups have 

no precise knowledge about their respective dates of birth. As a result, mortality rate 

by age calculated from recorded deaths and enumerated population at higher ages 

(elderly) are wrong because of misstated ages. The average value of the deviation 

index at “decal ages”—from 40 to 90 for males—in this province is 1.647, compared 

to 1.018 for all of China. When the male population of Xinjiang is subtracted from the 

all-China population, the average deviation index for these ages is 0.999. They 

conclude that the age heaping in China is divisible by 10, which is a consequence of 

the very strong age rounding in Xinjiang province.

Misreporting and self-reporting to the nearest convenient number and prediction 

of digit preference are “estimated” data. Empirical results show that estimated data 

reduce data quality. The list of cases and their implications can be extended to include 

other areas of applications.

Most methods for analysing such kind of data have been based on statistical 

methods developed originally for analysing missing data (Heitjan and Rubin, 1990). 

Rounded or coarsened data, however, are not missing. They solely have shifts in 

count size in certain observations because of the rounding inherent in the estimation

1 The Chinese calendar consists o f a cycle o f  “animal years” that repeat every 60 years. There are 12 
animals, and each animal has five different qualities. Each year is composed o f  either 12 or 13 lunar 
months. Since a lunar month has 29.5 days, there are about 12.4 such months in a year and a 12-month 
year would become increasingly not synchronised with the solar year o f 365.25 days.



process. Thus, applications of missing data techniques, which seek to replace missing 

data according to probability distributions of sizes, are liable to distort rounded data 

by effectively duplicating the shifted observations at probabilistically determined

“real” sizes.

Crockett and Crockett (2000) developed a modulo-test method to analyse 

estimated data. While the model is sufficient for its original purpose, it has constraints 

(e.g., its limitation in dealing with large data sets and its complexity in the modeling 

application that involves applying a series of statistical tests to identify the significant 

rounding base unit). Therefore, developing a new technique that can overcome these 

drawbacks would be very useful.

1.2. Main Purpose and Objective of the Study

The main purpose of this study is to develop a new methodology for analysing 

rounding data by making use of artificial intelligence (AI) technique. The new method 

will complement and enhance conventional statistical analysis based on missing data. 

More specifically, the main objectives of the modelling development are to detect and

quantify the existence of rounding in a data set.

Therefore, this research aims to develop a new technique that can be used for:

• detecting the presence of periodic structures in data sets;

• analysing periodic structures present in data sets; and

• quantifying the effects of periodic structures present in data sets.

This research focuses on developing an innovative AI technique for detecting 

rounding in a data set and for quantifying the effects of such rounding. The new 

method provides an alternative technique to conventional statistical approaches based 

on missing data.
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The AI technique used in this research is the radial basis function (RBF) 

neural network. This a further development of an earlier study by Turner et al. (2001), 

which has shown that neural networks can be used to detect periodic structures in a 

data set arising from rounding or estimation.

1J . Modelling Development and Analysis

The modelling development is conducted by:

• First, considering the data sets to have “patterns” and employing pattern- 

recognition methods to detect periodic structures in a data set.

• Second, developing Al-based pattern-recognition techniques to recognise the 

characteristics of the patterns of periodic structures in a data set.

• Third, developing a model to quantify the effect/s of periodic structures.

• Fourth, comparing the results with the benchmark of previous research using

modulo test. 

• Fifth, analysing the results based on application in the model of the data 

concerned. 

The neural network model developed in this study is then examined by using 

different kinds of simulated data sets. In addition, calculations of the cut-off point at 

which rounding to a certain base number in a data set can be detected are also 

conducted. The assessments are conducted using different rounding base numbers of 

different rounding levels in the theoretical data sets to also provide a sensitivity 

analysis. All are intended to ensure that the model is robust before implementation on 

real data sets.
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1.4. Organisation of Writing

Chapter I establishes the thesis background, the objective of the study, and the 

methodology used in the modeling development and analysis. The background section 

puts this study in its relevant context, highlighting the rounding issue in a data set and 

modeling application, followed by the main purposes and objective of this study. The 

last section describes the methodological approach used in the analysis.

Chapter II reviews the main features of rounding data, conventional statistical 

analysis to handle such kind of data, and previous work on rounding data analysis. An 

overview about neural networks follows in the last section.

Chapter III highlights the more detailed aspects of neural networks by 

introducing pattern recognition, function approximation, and classification. To help 

explain the modeling design used in this study, issues of neural networks learning and 

architecture are discussed. This forms the basis for choosing radial basis function 

network as a modeling approach in this study.

Chapter IV describes neural network model simulations developed in this 

study, covering aspects such as underlying probability distribution of the data sets 

being investigated, setting training data of the model, developing radial basis Function 

network model, and testing the model.

Chapter V describes the analytical and numerical assessments of the model to 

further clarify the model behaviour in detecting rounding. It also includes the 

development of measurement indicators in the form of detection power and detection 

error. The assessments are based on small random and theoretical data sets.

Chapter VI assesses the robustness of the neural network model by using 

theoretical data sets containing rounding to bases 5, 7, 10, and 11 with each data set

6



containing different levels of rounding, i.e., from 10% to 50% with an interval of 

10%. The data sets are uniformly and normally distributed, while the best-fit 

distributions used in the rounding detection are normal, lognormal, and uniform best

fits.

Chapter VII discusses the calculation of the cut-off points in detecting 

rounding problems to certain base numbers by using the two approaches of direct 

investigation and regression model. Both methods are applied on two uniformly and 

normally distributed data sets with four different rounding bases of bases 5, 7, 10, and 

11. The rounding detections use three best-fit distributions.

Chapter VIII examines the neural network model applications on real data sets. 

First, it is applied on data of cigarettes smoked by secondary schoolchildren (ages 11 

to 15 years) in England, United Kingdom (UK) in 2001 as a result of the first survey 

on smoking, drinking, and drug use. The second application is on data of the amount 

of alcohol consumed by secondary schoolchildren in England in 2001 from the same

survey.

Chapter IX summarizes the findings and conclusions as well as suggestions for 

further research.
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CHAPTER II

OVERVIEWS ON ROUNDED DATA

2.1. The Main Features of Rounded Data

Any data-collection activities (such as census, survey, and other enumeration 

exercise) may include a variety of unspecified counting practices. This includes a 

data-collection system using no clear concepts and definitions. As a result, data sets 

may contain some degree of estimation, such as rounding to the nearest convenient 

number or rounding up or down depending on the system's program. The rounding 

behaviour on the latter can be detected by examining the system's program in detail, 

but it is very difficult for the former since very limited information about their actual 

collection methods exist. Crockett and Crockett (1998) argue that, in general, the 

greater the age of the data source (i.e., longer recall time), the greater the probability 

that the recorded data represents “rounded" estimates as opposed to “exact" counts. 

Also, the greater the number and diversity of the persons involved in the data 

collection, the greater the probability of variation in the counting practices.

The type of data set investigated in this research is coarsened by rounding that 

is apparent from the frequency distribution of the data set as shown in Figure 2.1. 

Data used in this figure is from the Religious Census Data of 1851 for England and 

Wales. The frequency distribution shows that some rounding has been done as the 

graph does not indicate an expected reasonably smooth distribution. It also shows 

obvious excesses of observations at distinct, well-defined sizes that are periodic, with 

intervals—in this instance—of 5, 10, 20, 50, and 100

8



Figure 2.1 Frequency Distribution of Church Attendance in 1851

in England and Wales"

This particular type of periodic structures arises from estimation such that 

some enumerators did not count exactly but instead estimated the numbers of people 

attending the church congregation. In their estimation, the real underlying value is 

returned as a convenient multiple of a base unit, the closeness of the returned “round’ 

number that depends on a variety of factors, including the observation size and the 

ability and diligence of individual enumerators. The base units are generally 

convenient multiples of the number system being used, such as 5 (counting “by 

fives”) and 10 (counting “by tens”) in decimal (base 10) number systems or 6 (half 

dozens) and 12 (dozens) in duodecimal (base 12) systems.

2 Crockett and Crockett (1998)



2.2. Conventional Statistical Analysis

In a conventional statistical analysis, such kinds of data set (i.e., a single series 

of data) can be examined by using time-series analysis. The fluctuations can be 

attributed to four components, namely, trend, seasonal, cyclical, and random 

disturbances (Levine et al., 2002). The disturbance is known as a trend if the data 

follows a general direction with a tendency of upward or downward movement such 

as a change in price, value, or rate. Seasonal movement contains periodic fluctuations, 

such as monthly or quarterly. Cyclical is similar to seasonal but it has a longer period 

of recurrence with a tendency of upward or downward movement through a long 

series, while random disturbance has no clear pattern of fluctuation.

The basic assumption in the time-series method is that any fluctuations 

influencing data pattern in the past and present will be similar in the future. The time- 

series method is intended to identify and isolate the fluctuation factors to get the 

actual values that can be used for forecasting and monitoring purposes. Time-series 

analysis will refine the original data set by using different kinds of smoothing 

methods based on the fluctuations found in the data set. De-trend, auto-regressive 

(AR), moving average (MA), auto-regressive moving average (ARMA), auto-

regressive integrated moving average (ARIMA) are used in smoothing time-series 

data that will be discussed further below.

2. 2.1. De-trend and Stationary Data Series

The purpose of de-trend is to get a stationary series by removing the long-term 

trend contained in the original data set. De-trend is to make the mean, variance, and 

auto-correlation structure of the data constant over time. The resulting data series 

would be a flat-looking series without a trend, with constant variance and auto-

correlation structure over time, and no periodic fluctuations or seasonality. The



stationary process can be conducted by taking the difference of the original data that 

makes the number of observations in the difference data set will be less than the 

original data. For some cases, the difference needs to be calculated more than once to 

get a stationary data series. This will further reduce the number of observations.

For de-trending a data series containing a trend, the corresponding trend curve 

can be fitted to the data series and then the residuals from the fit can be treated as the 

real observations. For a data series with a nonconstant variance, the logarithm or 

square root of the original data series can be used to stabilise the variance (Makridakis 

et. al., 1998). For a negative data series, adding a suitable constant to make all data 

positive can be used before applying any transformation. This constant is then 

subtracted from the new data series to obtain the predicted values. All the techniques 

described in this section are intended to generate a new series with constant location

and scale.

2. 2. 2. Auto-regressive Model

A common approach for modelling univariate time series is to use the AR 

model, which can be defined in the following equation:

Xt =  S +  (fi\Xt.\ +  nXt-2 +  . . .  +  QpXt-p +  A,

where : X, is the time series at time t; A t is the white noise with 0 mean and a constant 

variance; S is a fixed parameter to be estimated from the least-squares regression 

analysis; and ^/, fa, ..., <j)p are auto-regressive parameters.
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As can be seen from the equation, an auto-regressive model is basically a 

linear regression of the current value of the series against one or more prior values of 

the series. The value of p  in the equation is called the order of the AR model, which 

refers to the size of the correlation between values in a time series that are p period 

apart. Application of AR models can use a number of methods—such as the first- 

order auto-regressive model that is similar to a simple linear regression model and the 

second-order to the p-order auto-regressive, which is similar in form to the multiple

linear regression models.

2. 2. 3. Moving Average Model

Another common approach for modelling univariate time-series data is to use 

the MA model, which can be formed as follows:

Xt =p +  At - 9 \At.\ - OjAfJi - SqAt̂ j

where X, is the time series at time /; p is the mean of the series; A H are white noise; 9 

, , . . . ,  0 q are the parameters of the model, and q is the order of the MA model.

The smoothing method of a time series using moving average depends on the 

length of the selected period (L) in calculating the average. In smoothing an annual 

time-series data, L should be an odd number of years (Levine et al., 2002). There will 

be no MA in the first (L-l)/2 years and in the last (L-l)/2 years of the series. The 

higher the length of the period selected for constructing MA, the less observation 

results can be obtained. Therefore, there will be less number of observations than the 

original data. For example, if the length is five, there will be no MA obtained in the 

first and the last two in the time series; if the length is seven, there will be no MA 

obtained in the first and the last three in the time series; and so on.
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2. 2. 4. Auto-regressive Moving Average Model

Box and Jenkins (1970) introduced an approach that combines the moving 

average and ARMA approaches. They refer to the method to respectively identify and 

estimate models by incorporating the two approaches the results in a powerful class of 

models. The model is a combination of AR and MA models, which can be formulated

as follows:

X, = S +  (p\Xt.\ +  (piXt.2 +  . . .  +  (ppXt-p + A, - 0 \At.\ - 62Ai-2 - . . .  - QqAt-q 

where the terms used in the equation have the same meaning and interpretation as

described in the AR and MA models.

The model assumes that the time series must be stationary. A nonstationary 

series is differentiated once or more than once until the stationary data series is 

obtained. The new data series will have characteristics of the ARIMA model. Box- 

Jenkins models can be extended to include seasonal auto-regressive and seasonal 

moving average. The most general Box-Jenkins model includes the use of difference 

operators, auto-regressive model, moving average model, seasonal difference 

operators, seasonal auto-regressive model, and seasonal moving average model.

All methods of time-series analysis described above are meant to smooth the 

original time-series data for forecasting purposes. The data sets examined in this 

research are, however, characterised by systematic rounding. Therefore, the 

fluctuations observed in the data sets are not caused by trend, seasonal, cyclical, or 

random disturbances but by other systematic aspects, including the counting 

behaviour of enumerators following certain base numbers such as half dozens, 

dozens, and the use of decimal and duodecimal (base 12) systems, and machine
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system default. Therefore, the time-series analysis methods cannot, in principle, be 

used in analysing coarsened or rounded data.

In searching for a new method to deal with such kind of data, Poli and Jones 

(1994) introduced a neural network approach to analyse nonlinear time-series data. 

They showed that nonlinearity in time series sometimes exhibits distinctive features 

that can well be described by existing parameterised classes of nonlinear models in 

the neural networks context. Moreover, James (1994) argued that neural networks can 

learn the patterns in complex time-series sequences and produce useful 

internalisations of the patterns.

2.3. Analysing Missing Data

Some research has been conducted on coarsened data, which is similar to 

rounded data. Coarsened data examined in the previous studies are, however, mostly 

randomly coarsened data with no systematic patterns of coarsening. Therefore, the 

problem in this kind of coarsened data can be regarded as a missing data problem. 

Little and Rubin (1987) introduced this concept by delineating a class of missing data 

mechanisms, which allow a statistical analysis to be done “as if the missing pattern 

had been fixed in advance, independently of the underlying complete data."

The missing data used in the previous studies are data sets with some 

unobserved values and therefore missing. For example, in a household income and 

expenditure survey, some respondents may refuse to report income or certain 

expenditures for specific reasons. In an industrial experiment, some results might be 

missing because of mechanical breakdowns, which are unrelated to the experimental
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process. From the examples, it is quite clear that some data might be just missing for 

various reasons.

On the other hand, when there is no clear information about missing data and 

the data series shows a systemic pattern for some specific observations, it should not 

be regarded simply as a missing data problem. The missing observations for certain 

numbers might have been estimated already or counted to the nearest numbers. 

Accordingly, fixing the rounded numbers using the tools for missing data problem 

will cause a duplication in the new data set, as the incomplete observations in certain 

numbers are actually not missing but they have been rounded to the nearest 

convenient numbers. Therefore, the application of missing data problem in this case 

will distort the information of the real data set. The neural networks model developed 

in this study tries to deal with this kind of data, i.e., data coarsened by rounding and

not by missing data.

2.4. Modulo Test Method

Crockett and Crockett (1998) introduced a modulo test method for analysing 

rounding numbers, which are reflected in spikes of the frequency data count. The data 

used in their study are the number of people who attended churches in 1851 in 

England and Wales as part of a religious census. The main purpose of the research 

was to determine whether the data recorded comprised solely exact counts or 

contained a proportion of estimates, which can be a result of rounding to the nearest 

convenient numbers. The method can also help in determining the proportion of 

counts when there were estimated numbers. The frequencies of various round 

numbers can be used to illuminate the methods of rounding used in compiling the 

data, i.e., whether the counting was predominantly carried out using decimal base,



duodecimal base, and so on. It follows that the technique can also be used to estimate 

over or underrepresentations of the data concerned compared to their “real” count

values.

The study defined the count data into five categories, namely, exact count, 

rounding to the nearest base units, accurate approximate, honest estimates with 

varying degrees of accuracy, and dishonest estimates with false over-estimates (or 

under). The last two categories are generally a result of numbers with multiples of 

base units used in the estimation.

A crude version to estimate the probability distribution of exact count is 

simply to assume a constant probability distribution, while the more accurate one is to 

use a smooth curve with a variety of techniques available for smoothing. The better 

the smoothing process, the better the resulting data will conform to the real 

probability distribution.

2.4.1. Identifying Base Units Contained in the Rounded Data

At this stage, the goal is to separate the subset of multiples of a base unit 

which represents exact counts and the subset of multiples of a base unit which 

represent estimates. Value of 60, for example, could be:

i) Exact counts, which is an exact 60, or

ii) An estimated rounding to the nearest multiple of each of 5, 10, or 12 such

as 60s estimated/rounded to 5 will be in the base-5 subsets, 60s 

estimated/rounded to 10 will be in the base-10 subsets, 60s

estimated/rounded to 12 will be in the base-12 subsets.



2.4.1.1 Base-unit Test

First, modulo test is used to quantify the number of counts that are a multiple 

of a suspected base unit. This method involves dividing all counts by the suspected 

base unit and making use of integer division (modulo). If the result yields zero 

remainders, the counts are called exact multiples of the suspected base unit and, 

therefore, said to pass the modulo test. The number of counts that pass the modulo test 

can be compared to modulo test number which would be expected to pass the test 

according to the estimated “real” probability distribution. A binomial test is then used 

to establish the statistical difference between the modulo test passes and the expected 

passes, and to classify whether the base unit is a “potential” base unit or not.

The second stage is intended to test whether all potential base units are 

significant base units by examining the possible interactions among the potential base 

units. The simple way is to compare the excess frequencies at that number with the 

excesses at any lower-potential base units, which are factors of this number. If the 

excess at a higher number is greater than expected after comparing it with those at a 

lower base numbers, then this higher number can be considered a significant base 

unit. Otherwise, it can be discarded.

2 .4.1.2. Subset Model

To estimate the number of cases rounded to each base unit, a simultaneous 

equation method is used. The equation expresses the number passing modulo test in 

terms of the subset sizes, and the probabilities that members of the subsets are 

divisible by the potential base units.

For the study data shown in Figure 1.1, the subsets in base 1 is 52%; base 5 is 

12%; base 10 is 20%; base 20 is 6%; base 50 is 7%; and base 100 is 3%. The model



results were then analysed statistically in relation to the expectation and for factor and

multiple effects. This is conducted to determine the actual estimation base units, i.e.,

the base numbers whose multiples appear statistically significant more frequently in

the data than would be expected.

The accuracy of the model is, however, dependent upon the accuracy in

determining the probability distributions of the various estimation behaviours. The

detail results are therefore data-set dependent. In general, the subset probability

distributions for small base units—such as base 1 (exact counts), base 5 and base

10—follow closely their underlying frequency distributions. On the other hand, the

probability distributions of larger base units show more variations. This is due to a

variation in the counting or estimation behaviour for large observations. This study

resulted in a new model of analysing rounding and similar estimation present in a data

set.

While the model was sufficient for its original purpose, some constraints in its

application exist (such as its limitation in dealing with large data set and its

complexity in the modeling application) since it involves conducting a series of

statistical tests independently to identify the significant base unit. These limitations

call for the development of a new technique that can overcome these constraints. This

study is intended to overcome these drawbacks by applying the neural networks

technique.

18



CHAPTER III

NEURAL NETWORKS MODELLING

3.1. Introduction to Neural Networks

Neural networks are statistical models of real world systems built

by tuning sets of parameters (Swingler, 1996). Neural networks excel at

recognition and classification types of problems and have the capability of

modelling complex nonlinear processes to arbitrary degrees of accuracy

(Picton, 2000). The main feature of neural networks is their ability to

classify patterns based on information learned from examples without

introducing any programme for them to do it (Browne and Picton, 1999).

Trained neural networks are able to decide on outputs for previously

unseen inputs (Argos, 1999).

Training patterns or "examples" in neural networks are represented

as vectors that can take different forms (such as images, speech signals,

sensor data, robotic arm movements, financial data, and diagnosis

Neural recogniser” may then be used as a

modelling framework behind the process, whereby input vectors are

mapped into output vectors. This makes neural networks effective for

various applications.

Neural networks excel at solving problems involving patterns,

such as pattern mapping, pattern completion, and pattern classification.

They can translate images into keywords, financial data into financial

predictions, and map visual images into robotic commands (Dayhoff,

1990). For example, neural networks trained to recall a complete pattern
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can complete a noisy pattern with missing segments, as well as to produce 

a complete vehicle outline from an inputted outline of a partially obscured

vehicle.

Neural networks learn by example. This represents a radically 

different approach to computing that involves developing computer 

programs. In a computer program, every step of computer execution is 

specified in advance by a programmer—a process that takes times and 

human resources. In contrast, neural networks begin with learning 

samples of inputs and outputs to provide the correct output for each input 

supplied without requiring human help in identifying features or 

developing algorithms and programs specific to the problem concerned. 

This suggests that neural networks applications can save valuable time 

and human resources.

The key element of neural networks process is the information 

processing system structure, which is composed of a large number of 

highly interconnected processing elements (neurons) working in unison to 

solve a specific problem.

3.2. Neural Networks for Data Analysis

In the data analysis area, characteristics of neural networks have 

the potential to make powerful modelling tools to detect the presence of 

rounded data in a data set (Turner et al., 2002). In this context, neural 

networks can be trained to recognise periodic “patterns” in the frequency 

distribution of a data set caused by rounding or estimation, as well as to 

approximate any functions within an arbitrary degree of accuracy since



neural networks are also good universal function approximators (Polhill 

and Weir, 2001).

Neural network methods have been used to generalise many 

classical statistical methods involving nonlinear data by modelling the 

interactions among them to perform nonlinear operations on inputs to 

produce the desired outputs.

Neural networks take a different approach to problem solving that 

makes them have no restriction in their problem-solving capability. This 

is in contrast with a computer program that can only solve problems that 

the programmers already understand and know how to solve.

With their remarkable ability to derive meaning from complicated 

or imprecise data, neural networks can extract patterns and detect trends 

that are too complex to be noticed by either humans or computer. They 

have the ability to learn to do the tasks based on information given during 

the training. Neural networks can create their own organisation or 

representation of information received when learning.

Neural networks are general-purpose programs that have 

numerous potential applications, including almost any problems of pattern 

recognition, function approximation, and classification.

3.2.1. Pattern Recognition

Pattern recognition is an important application of neural networks. 

In this application, the networks are trained to associate outputs with input 

patterns, i.e., identifying input pattern and producing its associated output. 

Neural networks can also identify an input pattern that has no output



associated with it by producing output that corresponds to a taught input 

pattern (i.e., it has the least difference from the given pattern). Pattern 

recognition aspects of neural networks have enhanced many important

topics of data analysis.

Statistical pattern recognition offers much more direct and 

significant routes than other approaches. For example, the sum-and- 

threshold model of a neuron arises naturally as the optimal discriminant 

function, which can distinguish two classes of normal distributions with 

equal covariance matrices. Similarly, the logistic sigmoid is the function 

to allow network output to be interpreted as a probability, when the 

distribution of hidden unit activations is controlled by a member of an 

exponential family.

Pattern recognition is a research area intended to examine the 

operation and design of systems that recognise patterns in data. It includes 

subdisciplines of statistical and syntactical pattern recognition. The 

former covers discriminant analysis, feature extraction, error estimation, 

and cluster analysis, while the latter consists of grammatical inference and 

parsing. Important application areas include image analysis, character 

recognition, speech analysis, and diagnostics analysis.

From the perspective of pattern recognition, neural networks can 

be regarded as an extension of conventional techniques by using feed-

forward network architectures such as the multilayer perceptron and the 

radial-basis function network. The latter approach is employed in this 

study to get the best result.



3.2.2. Function Approximation

Neural networks have been shown to have good function 

approximation capabilities which can ease modelling development effort. 

In many application areas, describing data often contains an analytical 

function. This includes function approximation of curve fitting and 

regression analysis to find a smooth-curve best fit to the data distribution 

without necessarily passing through all data points. The best fit is 

essentially minimising the sum-squared error given the data points and 

curve.

3.2.3. Classification

The classification concept involves learning about similarities and 

differences in patterns, which are abstractions of instances in a population 

of non-identical objects. This is different from identification, which is 

essentially recognizing an individual object as a unique singleton class. 

Classification is a process of grouping objects into classes according to 

their perceived similarities by learning from a set of population classes 

from a sample of patterns. Classification is a process conducted after 

pattern recognition is completed since it is impossible to classify without 

recognising the pattern. Classification method is applied in this research 

to classify data patterns associated with certain rounding base number 

present in a data set.



33. Artificial Neural Networks

Artificial neural network is a system loosely modelled after a 

human brain. This can be seen from the terms used, such as 

connectionism, parallel distributed processing, neuro-computing, natural 

intelligent systems, machine learning algorithms, and artificial neural 

networks. Artificial neural networks try to simulate the multiple layers of 

simple processing elements called neurons. Each neuron is linked to its 

neighbours with varying connectivity coefficients to represent the 

connection strengths. Learning is carried out by adjusting these strengths 

to ensure that the networks produce the intended results.

As mentioned, neural networks excel in problems ot recognition 

and classification. The basic units of neural networks are artificial 

neurons, which simulate four basic functions of natural neurons. Figure 

3.1 shows the schematic representation of an artificial neuron.
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As can be seen from the figure, various inputs to a network are 

represented by a mathematical symbol xn. Each of these inputs is 

multiplied by a connection weight, which are represented by wn. In the 

simplest case, the multiplication is simply a summation, fed through a 

transfer function to generate output.

3.4. Neural Network Learning Algorith

neural

processing capability arising from interconnected networks of simple 

computational elements. The networks differ in their architectures and 

learning or training methods. The architecture depends on the number and 

types of layers, while there are many types of learning that includes 

perceptron, adaline or madaline, hebbian learning, competitive learning, 

and back propagation. Back propagation is employed in this study given 

the characteristics of the data used and the main purpose of the study. 

Neural networks can use a combination of learning methods such as 

perceptron learning in the first layer and competitive learning in the 

second layer.

3.4.1. Perceptron

A perceptron is a neural network that offers the first algorithmic 

training procedure to solve linearly separable problems only (McCulloch 

and Pitts, 1943). The processing element of perceptron is still being used 

as a basis for most neural networks today. The processing computes the 

weighted sum of input signals and compares that net-weighted input to a

25



threshold value T. If the net input is greater than or equal to the threshold, 

the processing output is +1 and if not, the output is -1. Therefore, the 

perceptron uses a transfer function as follows:

n

i=1

where, y = +1, i f / >  T and, y = -1, if /<  T.

In this case, I is the net weighted input to the processing, w, and x, 

are the weight vector and input vector respectively. The threshold value T 

is the minimum activity required for processing to generate a positive

output.

McCulloch and Pitts (1943) defined a simple model of a neuron

using Frank Rosenblatt’s training procedure that has become the first 

trainable neural network and a standard today. Rosenblatt’s perceptron 

training algorithm was introduced in 1958, providing the first procedure 

to allow a network to learn a task. The perceptron is used to separate 

pattern into two categories. It adapts the weight change proportional to the 

difference between the desired output and the actual output as follows:

W/iew — W0ld +  PyX

where ft = +1, if the perceptron answer is correct, and P = -1, if the 

perceptron answer is wrong. The perceptron is indistinguishable from the 

processing used, and since input patterns may change from time to time, it 

is useful to have a system that can adapt to the changing problem.

3.4.2. Adaline or Madaline

Adaline or madaline measures the network’s overall performance. 

The system uses a minimum learning error for an adaptive linear element



(Widrow and Hoff, 1960). It uses a learning system that minimises an 

entire system's error. Since the system cannot always categorise each 

pattern correctly, some errors are associated with the system’s overall 

performance. The idea is to find a system with the smallest error. A good 

measure of such error is the mean square error that shows how far, on the 

average, the system’s response is from the correct answer.

Adaline has a simple bipolar output. It generates an output 

+lwhen its net weighted input is greater than 0, and -1 when its net 

weighted input is less than or equal to 0. Adaline computes its total input 

stimulus by taking a simple weighted sum as follows:

n

i =X w,x.
1=1

where, y = +1, if I > 0 and, y = -1, if I < 0.

The outputs can be classified as +1 output, meaning that the input 

pattern belongs to the first category, and -1 output for the input pattern 

corresponding to the second category or class. These output categories are 

compared to the desired outputs to compute the adaline error as follows:

Error = (Desired Output) -  (Actual Output)

Given the output constraints, the error can only have values of +2, 

-2, or 0. Once the error is computed, it can be used to adjust the weights in 

the input connections to the adaline. This is done by using a learning rule 

called delta rule that computes the changes in weights as follows:

H w  = Wold + fiEx(x) -2

where /? is a learning constant between 0 and 1; E is the error computed

above; jc is the input vector and w is the weight vector.



The supervised training procedure here is more complex than 

perceptron training because of the way in which weight changes are 

performed. When the first pattern is applied to adaline, it either gives the 

correct or wrong response. Suppose it is a wrong response, the delta rule 

must then be applied repeatedly to the adaline’s connections weights until 

the correct answer is given. The next pattern is then tried and if it gives 

the correct answer, no weights are changed and the third pattern is used. If 

the second pattern still gives the wrong answer, however, the delta rule is 

again applied until the correct answer is given.

In the process for adjusting pattern two, it is possible that pattern 

one may no longer be recognised. Thus, before continuing to the third 

pattern, the weights for pattern one need to be adjusted again. This 

constant process of making weight adjustments and then rechecking to 

confirm that the previous patterns are retained makes the process 

complex.

3.4.3. Hebbian Learning

Hebb (1949) described the changes that occurred in a cellular level 

of learning process known as the Hebb’s Law. It says that when a neuron 

stimulates another neuron when the receiving cell is actively firing, the 

connection from the first cell to the second is strengthened. For example, 

if neuron A is stimulated repeatedly by neuron B when neuron A is active, 

then neuron A will become more sensitive to stimuli from neuron B.

The first attempt to model Hebbian learning was in 1950, 

involving synaptic input strengths adjustments leading to the



incorporation of adjustable synaptic weights on input lines to excite 

incoming signals.

The Hebbian learning principle becomes influential in the 

biological model of learning. An input vector x = (x /, X2, xj, ..., is 

linearly combined with the weight vector w = {w/, W2, wj, ..., w/v) through 

inner product to form the sum:

N

n=\

If the sum s is greater than the given threshold T, then the output is 

one; otherwise, it is zero. This threshold function is unipolar since the 

outputs are non-negative values of zero or one.

3.4.4. Competitive Learning

Most neural networks are trained using supervised learning. This 

means that most networks have to be told to get the desired response or 

they must be given feedback on their performance. Competitive learning 

uses unsupervised learning called self-organising that modifies connection 

strengths based only on the characteristics of input patterns presented to 

them. The simplest self-organising system is the Kohonen feature map.

A Kohonen feature map may exist as a layer within a larger 

network or two-layer networks in which the input layer is fully connected 

to the Kohonen layer. The input layer acts as a collection of fan-outs, 

distributing input pattern to each neuron in the Kohonen layer, which acts 

as output layer. In addition, this layer has a large number of connections 

linking neurons within a layer and to each other. This connection is a 

critical part of the feature map’s self-organising property.



The connection within a layer is to create a competition between 

neurons in the layer to determine which neuron has the strongest response 

to input pattern. Once the Kohonen layer has stabilised and the wining 

neuron is determined, the output from the layer is a simple binary +1 

response and no output from any other neuron.

Determining the winning neuron is the key to training the 

networks. Unlike most other neural networks, in a Kohonen network only 

the winning neuron and its neighbours modify the weights in their 

connections. The remaining neurons experience no learning. The training 

procedure used by the networks is:

oldAw, = P(Xi -  w/ )

where /? is the learning constant or gain, and x, is the input signal 

along the z'-th weighted connection. The /? is the range 0.0 < ft < 1.0 but 

mostly less than 0.2.

3.4.5. Back Propagation

Back propagation is a training process to adjust weight values to 

ensure that network behaviour matches the desired behaviour. The 

network learns by observing an ever-changing stream of data produced by 

some dynamic process, and producing a set of outputs. The difference 

between network outputs and the actual desired outputs is the network

error,” and the back-propagation training is to minimize the error.

Suppose there is a pair of training data (x, d) consisting of input

vector x = (xj, xi, x3, ..., xN ) and a desired output vector d = (di, d2, d3,

..., d\i). For a given set w of weight values, the network produces the



output vector y(w) = (yi(w), ..., y \fM ). The error e(w) is expressed as

follows:

e(\v) = Z2 \\d -y(w ) \\2 = Z2 ^  (dk—ykfw))

The goal is to find w that makes this error 0, but this is rarely 

achieved so that the actual goal is to minimise the value of w within some

tolerance.

training called steepest descent

algorithm, which is an iterative approach that moves downward or moves 

some amount in the negative derivative direction from a starting point. 

Given its desirable characteristics, back-propagation approach is used in

this study.

3.5. Neural Network Architectures

A neural network is a nonlinear interpolator and extrapolator. It 

needs only adjusting the weights appropriately to train a neural network to 

map exemplar feature vectors into the desired identifier output vectors, or 

to approximate function.

3.5.1. Feed Forward Network

The most commonly used neural networks are feed forward neural 

networks. The networks are layered networks representing a certain class 

of nonlinear regression or classification models relating a set of input 

variables (covariates, independent variable, and predictors) to one or more 

output variables (target variables, dependent variables, and response 

variables). The networks also include one or more layers of hidden units
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that add flexibility to the model. Normally, outputs from a hidden unit are 

logistic (sigmoid) functions of linear combinations of inputs to that node,

and the final outputs are linear combinations of outputs from the final 

layer of hidden units. This is known as multilayer perceptron and back- 

propagation network since the error back-propagation algorithm is used to 

train the network.

Feed forward neural networks include multiple layer perceptrons 

(MLPs) and radial basis function (RBF) which are powerful to perform 

nonlinear pattern discrimination. In this case, any network failures are not 

attributable to the neural network paradigm, but to inadequate training, 

inappropriate architecture for the problem at hand, or noise power that is 

non-separable to the data (Looney, 1997).

Figure 3.2. A Three-Layered Feed Forward Network

V1 y  M
Output Layer

Output Weigh

Hidden Layer

Input Weights

Input Layer

3.5.2. Multiple-Layered Perceptron

MLPs consist of input and output layers, with a number of hidden 

layers in between. Figure 3.2 shows a three-layered architecture including 

input, hidden, and output layers.
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The input layer nodes correspond to input variables and the output 

layers are to output variables. Hidden neurons have no physical meanings 

and the neurons between adjacent layers are fully connected by branches. 

Transfer or activation functions describe each neuron in the hidden layer.

Some feed forward neural networks use a sigmoidal function as

follows:

fix )= \/\+ e -X

J(x) transfers an input x to neuron in the range of [0.0, 1.0] as 

shown in Figure 3.3 (a). Some other activation functions can also be used 

as shown in Figure 3.3 (b) and (c). However, for a specific feed forward 

neural networks structure, the neurons in the hidden and output layers are

fixed.

Each connection branch is described by weight, representing the 

connection strength between two linked nodes. The training process is the 

procedure to adjust the weights. A bias neuron supplying an invariant 

output is connected to each neuron in the hidden and output layers. The



bias provides a threshold to force an activation of neuron, and is essential 

to classify networks input patterns into various categories.

3.5.3. Radial Basis Function Network

The structure of radial basis function (RBF) network is the same 

as that of the MLPs. The main difference is the hidden layer transfer 

function used. In RBF, the hidden layer used a radial basis (Kernel)

function as follows:

fix) = exp(-r)

This function responds only when the input stimulus falls within a 

certain area. Figure 3.4 below shows a Gaussian Kernel function centred

at x = 0.

Figure 3.4. A Gaussian Kernel Function

Centred on x = 0

As the input approaches the function centre, the output approaches 

unity. This function is symmetric, and its centre is determined by input
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weight vector to the node. Therefore, RBF can be used to approximate a 

function. The function adds neurons to the hidden layer of RBF network

until it meets the specified mean squared error (MSE) goal.

RBF network creates a three-layered network with radial basis

function in the hidden layer and product function of competitive learning 

algorithm in the output layer. An adaptive RBF network has been able to 

introduce confidence limits on output data (Leonard et al., 1992). This 

information is unavailable with MLP. This is one of the main reasons 

RBF is used in this study.



CHAPTER IV

DETECTING AND QUANTIFYING ROUNDING USING RADIAL BASIS

FUNCTION NETWORKS

4.1. Introduction

This chapter discusses radial basis function neural networks for detecting and 

quantifying rounding base numbers in a data set. The radial basis function (RBF) is a 

unique type of neural networks. The main areas of RBF application are function 

approximation and classification. Initially, RBF was used for sorting problems of 

multivariate interpolation. RBF is very effective as it is quick to train and accept full 

training algorithms (Looney, 1997).

RBF has a structure that can produce strong links with various areas of 

statistics. It has been motivated by a statistical pattern recognition theory, regression 

and regularisation, biological pattern formation, and analysis of ‘'noisy” data. 

Therefore, RBF has a wide range of applications. The learning system is to find a 

surface in a multidimensional space that best fits the training data.

Based on the properties of RBF above, which is suitable to classify patterns of 

the case study data in this research and to enhance the conventional statistical method 

in dealing with nonlinear data, RBF was therefore selected and used for developing 

the model.

4.2. Radial Basis Function

The basic principles of RBF are discussed in this section, concentrating on the 

theory behind the use of RBF pattern recognition for classification problems and not 

for function approximation.



4.2.1. Theoretical Fundamentals

RBF was first introduced to the problems of multivariate interpolation to deal 

with irregularity of the data points' positions. According to Looney (1997), the 

general form of RBF is as follows:

x —*yi ~fi(x;v<l>)  ... x - > y M = fM(x;vm )

where,

ym = f m(x;v(m))  -  exp[-\\x-v(m)\f/(2(jm2)] and m  = 7, 2 ,.. . ,  M

v(m) is the centre of the function and y m is maximum when * = v(m).

am is the width or receptive field used to control the RBF spread so that its

values decrease more slowly or more rapidly as x moves away from the centre

vector v(m). The bias b, at each output neuron (rj) assures nonzero mean values

of the sums

rj = w ijy i + w 2jy2 + ... + *>MjyM + h

4.2.2. RBF Structure

The RBF structure is relatively simple. It consists of three layers as shown in 

Figure 4.1. The first layer consists of a number of input neurons with the dimension of 

N  of the input vector x.

The second or hidden layer consists of nonlinear neurons connected directly to 

all linear output neurons. The number of hidden neurons is equal to the number of 

sample M. The role of an input layer in RBF networks is to distribute all inputs to 

each hidden layer nodes. The weights linking the input and hidden layers are all set to 

unity and maintained during training. The biased term normally seen in feed-forward 

networks is not required in RBF networks.



The activated values ofy m are summed to yield a network output Zj and determined by

Zj = ('Z"'„yJ/( f JyJ or Zj = ( i /M ) (  Y J wm / y m)
m=\ m=1 m=l

Figure 4.2 shows an RBF activation function at the mth neuron for which the 

horizontal axis is the distance ||*V m>|| (see Looney, 1997). The region in the feature 

space where f m(Xi;v(m>)  is high is called receptive field of that neuron (Wasserman, 

1993).
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4.2.3. RBF Initialisation and Learning

Each RBF is influential only on its receptive field, which is a small region of a 

feature space shown in Figure 4.2. The important regions of the feature space, where 

exemplars are clustered, are covered jointly by the M  RBFs. These functions are 

centred on the clusters of exemplar feature vectors representing subclasses.

The training of RBF consists in:

(i) assigning each neuron parametric vector \ (m) as a centre of an exemplar

vector -  x^>;

(ii) selecting a parameter am for the spread of the receptive field;

(iii) drawing an initial weight set {»vmj(0)}for the output layer of neurons; and

(iv) performing supervised training of the weights {wmj\ in the output layer to

force the total sum square error (E) to decrease as much as possible, where

E = ± ±  ( 4 * - 4 « ) \
<7=1 j= \

This research adopts a supervised training. Therefore, the corresponding 

sample of exemplar pairs of input feature vectors and output target vectors of {at<<? ]/ q)} 

is given. Each RBF depends on its centre v(m), where it takes its maximum value and 

is activated by any input x  near v(m). It has essentially no response when x  is far from 

yfm). The main advantages of RBF networks are they are simple and trained extremely 

quickly. Moreover, they have no local minima and have reduced sensitivity to the 

order of the training exemplar (Bianchini et al., 1995).

There are three different concepts of RBF networks that determine how 

training is done (Wasserman, 1993). First, there is no training for the simplest model. 

The weights at the hidden and output neurons remain fixed. Second, the more flexible



model conducts training only on the weights at the output neurons. Third, the most 

flexible model allows training of all weights at the hidden and output neurons.

RBF uses a method of steepest descent (derivative steepest descent) to adjust 

the initial weights at the neurons in the output layer. It is a quick training algorithm,

which uses the gradient as follows:

-Ae =  -(de/dwn9,..9 de/dw^).

Suppose the neuron’s centre vectors or the neuron centre {v(m)} is set equal to 

the exemplar {x(n)}. There are n neurons in the hidden layer as every exemplar input 

x(n) has a hidden neuron. The neurons in the hidden layer may be too many tor a large 

N. Looney (1997) defines that if N > 200, then the network uses a smaller M, which 

is smaller than N, and then uses the full training algorithm.

4.3. Comparison RBF and Multilayer Perceptron

Comparison of RBF with MLP is inevitable since they are universal 

approximators and used for similar applications. This comparison leads to a better 

understanding of these two artificial neural network architectures. The differences 

between the two architectures are both structural (concerning the topology of the 

network) and functional (concerning the operation and use of the network).

RBFNs have a single hidden layer while MLPs can have more than one hidden 

layer. Hidden units in RBFNs are different from the output units. MLP hidden units 

are similar to the output units. The functional differences can be summarised as 

follows:

RBF constructs local approximation to nonlinear input-output 

mappings, while MLPs construct global approximations.



The output layer of an RBF is always linear, while the MLP output 

layer can be nonlinear depending on the application.

RBF hidden units calculate the Euclidian norm between the input 

vector and their centre, while MLP hidden units compute their inner 

product of the input vector and their synaptic weight vector.

MLPs exploit the logistic nonlinearity to create combinations of 

hyperplanes to dissect pattern space into separable regions. RBF 

dissect pattern space by modelling clusters of data directly and, 

therefore, are more concerned with data distribution.

4.4. Suitability of RBF for Detecting and Estimating Rounding Data

The use of RBF in the modelling development to detect rounding in this study 

is based on the properties of RBF mentioned above. As part of classification 

problems, this research goal is to recognise and classify the rounding pattern in a data 

set. RBF is used to find networks that can explain and observe the data set. The 

classifiers are trained using orthogonal least square algorithm in the Matlab Neural 

Network Toolbox (Chen et al., 1991).

As mentioned, the general model of RBF is:

ym = fJ x ;J m)) = expl-\\x-v,m>\\2/(2om2)l

where, m = 1, 2, ..., M.

Here, the input layer x  is the input training data, which is connected to M 

hidden neurons v(m) in the centre of the function. The training data set is created 

according to the structure or pattern of the data set that contains rounding to a certain 

base number—i.e., discussed in more detail in the next section. It follows that ym is 

the basis function output from the hidden layer, which is then summed up in the
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output layer to yield a network output Zj This output is a probability density function 

(PDF), which represents the probability that corresponding to the desired output ym. 

PDF is a measure on how well the classifier accounts for the data.

4.5. Simulating the Model

Developing a neural network model for analysing rounding base numbers 

requires a complete understanding of the data set under investigation, including the 

pattern with which the data is most likely associated. As one of objectives in this 

research is to detect a periodic structure in a data set, a simulation on the training 

using specific data sets is therefore very important. This is to ensure that the neural 

network model developed subsequently can detect and recognize the different patterns 

in a data set due to different kinds of the rounding errors.

4.5.1. Underlying Probability Distribution of the Data Sets

Three most common best-fit probability distributions of the underlying data 

sets are used in this research, namely normal, uniform, and lognormal distributions. 

These probability distribution functions are intended to shape the training data sets to 

enable the model to conduct a classification.

The first approach is using normal distribution to examine a pattern in a data 

set. Based on the Central Limit Theorem' of statistics, a pattern of a data set with a 

large number of observations can always be approached with a normal distribution 

function.

3 In its simplest form, the theorem states that the sum of a large number of independent observations from the same 
distribution has, under certain general conditions, an approximate of normal distribution. Moreover, the 
approximation steadily improves as the number of observations increases.
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The second approach is to use a uniform distribution function to represent the 

case if there is no rounding pattern or if the data set is random data. In this case, data 

distribution is expected to have a “flat” uniform distribution with respect to the data's 

rounding pattern. In other words, the underlying probability distribution of random 

data or data set without rounding is expected to follow a uniform distribution.

>
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F i g u r e  4 .4 .  U n i f o r m  D i s t r i b u t i o n  F u n c t i o n

The third approach is to use a lognormal distribution. This approach is for data 

sets with a very large range, containing high frequencies at the lower class and low 

frequencies at the upper class. The data scatter diagram fits a lognormal distribution 

function as can be seen from Figure 4.5.
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4.5.2. Developing Training Data

Training data is needed to develop a network that can subsequently generalise 

the tasks for which the network is trained. A successful training will enable the 

network to provide the correct answer for a new input, including a new input different 

from the training inputs. Therefore, to develop a successful network capable of 

producing a generalisation, the training data sets must include a variety of examples to 

prepare the network doing the generalisation task. In this case, constructing training 

data sets and training presentations must be maximised to ensure that the neural 

network can do an effective generalisation.

4.5.2.I. Training for Recognising Data Patterns

The initial assumption in this research is that the data set under examination 

contains rounding to a certain base number that is reflected in a certain pattern. 

Therefore, the training data set must be created according to the data-set structure or 

pattern that contains rounding to certain base numbers. This could be rounding to 

bases 2, 3, 4, 5, and so on. Accordingly, the data pattern will look like a coarsening 

pattern specific to those particular base numbers. The training of data sets should



therefore recognise each base-number pattern as a potential rounding base unit being 

investigated in this study.

It then follows that if the data set contains rounding to base 2, the frequencies 

of number 2 and the multiple of number 2 will have higher observations than other 

numbers. The frequencies of number 3 and the multiple of number 3 will have higher 

frequencies than other numbers when the data set contains rounding to base 3, and so

on.

Following these rounding patterns, the training data sets are simulated using 

“dummy” frequency distributions, comprising appropriate patterns of Os and 1 s such 

as patterns of 0-1-0-1 for base 2, patterns of 0-0-1-0-0-1 for base 3, and patterns of 0 

0-0-1-0-0-0-1 for base 4, and so on. Notice that the patterns are shaped according to 

the underlying probability distributions of the rounding patterns in the data sets and 

are scaled down to follow the data total frequencies. For example, a data set with 30% 

rounding to base 5, size of count 10 and total frequency 99 will have possible base 

numbers of {1, 5, 8, 5, 28, 11, 15, 7, 3, 16}. The probability distribution of base 

numbers are {0.0161, 0.0373, 0.0720, 0.1162, 0.1565, 0.1760, 0.1653, 0.1296, 

0.0848, 0.0464}, respectively. Therefore, the training data set is as follows:

T a b l e  4 .1 .  E x a m p l e  o f  T r a i n i n g  D a t a  S e t  w i th  3 0 %  R o u n d i n g  to  B a s e  5 ,

S iz e  o f  C o u n t  10  a n d  T o t a l  F r e q u e n c y  9 9

b a s e l b a se 2 b a se 3 b a se 4 b a se 5 b a s e 6 b a se 7 b a se 8 b a se 9 b a se 1 0

0.0161 0 0 0 0 0 0 0 0 0

0 0373 0  0373 0 0 0 0 0 0 0 0
0 072 0 0 0 7 2 0 0 0 0 0 0 0

0.1162 0 .1162 0 0 .1162 0 0 0 0 0 0
0 .1565 0 0 0 0  1565 0 0 0 0 0
0.176 0 .176 0 .176 0 0 0 .176 0 0 0 0

0 .1653 0 0 0 0 0 0  1653 0 0 0
0 .1296 0.1296 0 0 .1296 0 0 0 0 .1296 0 0
0.0848 0 0  0848 0 0 0 0 0 0  0848 0
0 0464 0  0464 0 0 0 .1565 0 0 0 0 0  0464



4.5.3. An RBF Network Model for Diagnosing Coarsened Data

To examine how the probability value of a base number may be contained in a 

data set, a classification neural network to optimise this type of analysis is developed. 

A pair of training-data input and classification output is required for each base 

number, such as using a potential estimation of submultiple base units and a 

combination of possible base numbers.

The method used in this classification is Newpnn function of Matlab. This 

function uses an RBF suitable for a classification problem. Newpnn designs a 

probabilistic neural network and the process of designing network is very quick. The 

function takes two or three arguments: the first argument is a matrix of input vectors, 

the second is a matrix of target class vectors, and the third argument is a spread 

which, in statistics, is called a standard deviation. When the function uses only two 

arguments, it uses a default spread, which is 1.0, and will return a probabilistic neural 

network. If the spread is near zero, the network will act as the nearest neighbour 

classifier. As the spread becomes larger, the designed network will take several 

nearby design vectors into account.

The EnewpnnCP is a further development of the Newpnn function of Matlab. It 

creates a two-layer network. The first layer has radial basis function, calculating its 

weighted inputs to its distance. This layer outputs are used as inputs for the next layer. 

The second layer has a competitive function that calculates its weighted input. This 

network only has a bias in the first layer.

EnewpnnCP sets the first layer weights to a transpose of the training input data, 

and the first layer biases or spread are all set to 0.8326, resulting in radial basis 

functions that cross 0.5 at weighted inputs of around the spread (Demuth et.al., 2006).



The second layer weights are set to the targets output class using a competitive 

function. The codes of EnewpnnCP are presented in Appendix 1.

The classification process is iterative. The iterations progressively identify 

potential estimation base units that can be summarised as follows:

(i) In the first iteration, each potential estimate of base unit has an individual 

training data set corresponding to it. A ranking of base numbers is then 

produced, i.e., the pattern associated with the top-ranked base number is 

recognised as being the most significant pattern in the frequency 

distribution.

(ii) In the second iteration, the highest ranked base number from the first 

iteration is considered in a combination with other base numbers. Thus, 

each training data set consists of a pair of training data sets from the first 

iteration combined. A refined ranking of base numbers is produced: the 

pattern associated with the top-ranked pair of base numbers is recognised as 

being the most significant pattern in the frequency distribution.

(iii) For the third iteration, the highest ranked pair of base numbers from the 

second iteration is considered in a combination with other base numbers. 

Thus, each training data set consists of triplets of training data sets from the 

first iteration combined. A more refined ranking of base numbers is 

produced, i.e., the pattern associated with the top-ranked triplets of base 

numbers is recognised as being the most significant pattern in the frequency 

distribution.

(iv) The process is then repeated, adding one base number per iteration, while 

the probability of the top-ranked combination continues to increase from
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the previous iteration. The iteration is stopped when this probability ceases 

to increase or starts to decrease.

Functions of Enormal (presented in Appendix 2), Eln (Appendix 3), and 

Euniform  (Appendix 4) are employed to do classification by developing Newpnn of 

Matlab. Enormal is a function to classify the data pattern using normal best-fit 

distribution. Eln is a function to classify the pattern using lognormal best-fit 

distribution, while Euniform  is a function using uniform best-fit distribution.

The underlying assumption in this case is that in each iteration, the 

combination of base units best fit the real frequency distribution is selected and the fit 

is improving as the probability of the top-ranked combination continues to increase 

with each successive iteration. Once this probability value either stops increasing or 

starts to decrease, this means the goodness of the fit stops improving (Triastuti et. al., 

2000). Thus, the combination yielding the highest probability should contain all 

estimation base units plus, possibly, some base numbers which are factors and 

multiples or multiplicative combinations of the base units selected.

4.5.4. Data Preparation

4.5.4.I. Creating Training Data

A function of Etrainingdata is to create a training data set. This function takes 

three arguments of the data set under investigatioa base unit and p i. Base unit is a 

vector of base number and p i  is the probability of the best-fit distribution. The result 

of this function is a matrix of training data that are to be inputted into the model. The 

procedure below summarises the steps to create a training data:

• Define the dimension of the data set under investigation and the vector of a

base number.



• Define the dimension of dummy data which should be the dimension of a data 

set under investigation by the dimension of the vector of a base number with 

zero values.

• Change the zero values of the dummy data to one if the position is in column j  

and the row indices are multiple base_unit(j) and base_unit(j) less than the 

maximum size of the data under investigation.

• Calculate the values of training data by multiplying the dummy data and the 

probability of the best-fit distribution of p i.

The result is a matrix of training data with the dimension of the size ot the data 

set under investigation by the size of the base number vector. The codes to generate 

training data are in Appendix 5.

4.5.4.2. Creating Underlying Probability Distributions of the Data Set

Functions of Enormfit. Euniform , and Elognormfit are created to get best-fit 

distributions of the data set under investigation. Enormfit is used to create a normally 

best-fit distribution of the data set, Euniform  is used to create uniformly best-fit 

distribution, and Elognormfit is used to create lognormal best-fit distribution. The 

functions take the argument of data set under investigation. For a training experiment, 

the data set under investigation is an artificial data set. An approach to create the 

uniform best-fit distribution is the simplest way in this case. The distribution values 

are the average of the data set under investigation, while the procedure below shows 

how to create the normally and lognormal best-fit distribution:

• Input a data set under investigation in the function and define the dimension of 

the data.



• If the number of data set columns is equal to one, then the maximum size of 

observations is the number of rows of the data set. Otherwise, define the 

dimension of the maximum size, which takes only the first column of the data

set.

• Define or observe a vector of observation size and a vector of observation 

values or the frequencies of the data set.

• Count the mean, variance, and standard deviation of the data set. Count the 

logarithm's size for the lognormal distribution.

• Define the dimension of best-fit distribution, which is maximum size rows by 

three columns.

• Define the first column of best-fit distribution as a vector of base unit being 

investigated.

• Normalise the data set under investigation.

• Calculate percentages/proportions of the normalised data set under 

investigation.

The results of Enormfit function is nl_dist with dimension maximum size of data 

under investigation in the rows by three columns. The first column is a vector base 

unit, the second column is the normalised data, and the third column is the 

probability/proportion of the normalised data set under investigation. The codes to 

generate normal, lognormal, and uniform best fit distribution of the data sets are 

shown in Appendices 6, 7, and 8 respectively.



4.5.43. Creating Simulated Data Sets

The simulated data sets created include data sets to contain various rounding 

to various base numbers as well as various percentages level of rounding. These 

various percentages level of rounding are used to see the sensitivity of the model.

Function of Etestdata is created to get a data set called data jd . There are 2 

functions, namely: Etestdatanorm and Etestdatauni. Etestdatanorm is to create 

normally distributed data set (Appendix 9) and Etestdatauni is to create uniformly 

distributed data set (Appendix 10). The function takes two arguments of r jr a c  and 

rbase.  The r Jra c  is a percentage of data set rounded to r_base> while the rbase  is 

the base unit which contains rounding. The procedure below summarizes how to 

create the data sets:

•  Define a value of r J ra c  that falls starting from 0 up to 100.

• Define a number of observations or total frequencies n.

• Define a maximum of observation size m.

• Calculate a maximum rounding which is a base unit with rounded 

values multiplied by a fix of the maximum observation size divided by the 

base unit with rounded values.

• Define the dimension of all variables used in creating the data set, 

mainly nJd , b J d , and dataJd. The n J d  is random exact data, b J d  is 

rounded data, and dataJd  is the data set created. They are column vectors 

with size of maximum observation size.

• Calculate the number of base units that contain rounded values and 

number of base units with exact values. If the percentage of data set rounded 

to r Jra c  is greater than zero, then the data set contains some rounded values 

in some certain base units of b J d  and some exact values in other base units of
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n_fd . If the percentage of data set rounded in r Jra c  is equal to zero, then all 

the values in the data are exact values of n_fd.

• Finally, the data set created is the total of exact values of n j d  and 

rounded values of b_fd.

4.5.5. Testing the Model

Various simulated data sets are applied to the model to test the robustness of 

the model. These simulated data used are data sets that contain rounding, including a 

various rounding of different base numbers as well as various levels of rounding. If a 

data set contains rounding to base 5, for example, the initial hypothesis is that the 

shared probability values of base number 5 or multiple base number 5 in the data set 

are higher than other base numbers.

Five data sets for every type of data sets above are created—i.e., to be tested 

by the model to see the goodness of the fit and the consistency of the model. The 

pattern can be summarised by testing with many types of data patterns to the model.

4.6. Data for Application of the Model

Some real data sets are investigated and applied to the model. The data sets are

as follows:

1. Religious Census Data 1851. This data set is used to develop the model.

2. Cigarettes Consumption Data for 2001 that include the number of cigarettes 

smoked in a day and a week.

3. Alcohol Consumption Data in 2001 that include the amount of alcoholic drinks 

such as beer, shandy, wine, sherry, spirits and alco-pops consumed in the last 7

days.



CHAPTER V

ASSESSING THE BEHAVIOUR OF THE NEURAL NETWORK MODEL

IN DETECTING THE ROUNDING BASE

5.1. Introduction

Before testing the neural network model (NNM) by using simulated data sets 

containing rounding of specific characteristics and different rounding levels in the next 

chapter, the behaviour of the model in detecting the rounding base is critically examined 

here. The examination concentrates on the relationship between the underlying 

distribution of the data being examined and the best-fit distribution used in the detection. 

In addition, the examination is also intended to come up with some measurements on the 

robustness of the detections that can be applied in each unique case or in comparison 

across the possible combinations of the detection. The measurements are developed from

the NNM results.

First, two types of data sets are examined in this assessment. They are: distributed 

uniformly (DU) and distributed normally (DN). In detecting the presence of rounding 

bases in those data sets, three best-fit distributions are used, namely: best-fit distributions 

of uniform (BU), normal (BN), and lognormal (BL). Table 5.1 shows all possible cases of 

the model's applications in detecting the rounding pattern in data sets.

As can be seen from the table, there will be six possible outcomes because of 

combining two types of data sets and three possible best fits. Out of these six possible 

outcomes, the implementations of correct best fits for the underlying distributions of the 

data sets being examined i.e., BU-DU and BN-DN can provide a benchmark for the other
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results of the same column. It then follows that a measurement of detection power and 

detection error can also be developed from the results produced by the model for each 

possible case summarised in Table 5.1.

Table 5.1. Schematic Representation of All Possible Cases
of Rounding Base Detections

Best-Fit
Distribution

Functions

Distribution of Data Sets

Distributed 
Uniformly (DU)

Distributed 
Normally (DN)

Uniform (BU) BU-DU BU-DN

Normal (BN) BN-DU BN-DN

Lognormal (BL) BL-DU BL-DN

5.2. Theoretical Analysis

Figure 5.1 illustrates the diagrammatic representation of the model's applications 

in detecting rounding to certain base numbers on the uniformly and normally distributed 

data sets using the three different best fits. The six panels from (a) to (0 show the 

relationship between the types of best fits used in the detection and the underlying 

distribution of the data sets being examined. The graphs highlight the robustness of the 

detection, which is shown by the overlapping areas, and the possibility of detections 

errors that are indicated by non-overlapping areas. The problematic areas, which arise 

because of using the wrong best-fit distribution, are shaded in the graphs.
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Figure 5.1. Diagrammatic Representation of Detecting Rounding Base on Uniformly and Normally
Distributed Data Sets Using Three Different Best-Fit Distributions

f(X)

d u -bu

BU-DN
f(X)

BU
DN

(b) BN-DU (c) BN-DN
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From the diagrams, three main outcomes can be summarised as follows:

(i) There should be no detection problem that comes from the use of wrong best 

fit in panels (a) BU-DU (which means that uniform best fit is used on data 

distributed uniformly) and (e) BN-DN (which means normal best fit used on data 

distributed normally). The reason is that the best fits used in both cases are 

consistent with the underlying distribution of the data sets under examination. 

Therefore, any problems in the detection results must be associated with 

something else, including the base number, rounding level, and distribution and 

size of data that would be discussed further in the sensitivity analysis of detection.

(ii) In panels (b) BN-DU and (d) BU-DN, there might be a tendency to overdetect 

or under detect and commit detection errors in the mid-points and two tails of the 

data sets. Panel (b) uses normal best fit for detecting rounding base on uniformly 

distributed data, while panel (d) uses uniform best fit for normally distributed

data.

(iii) In panels (c) BL-DU and (0 BL-DN, the possibilities of problems in the 

detection are in both low and high ends of data distribution. This is due to the 

lognormal best fit used, which assumes that there would be a high frequency at 

the lower end and low frequency at the higher end of the data distribution.

To shed light on this issue, a numerical examination is conducted in the 

succeeding sections. First is by using random data containing no rounding to any base 

numbers. Second is by using data sets containing rounding to a certain base number of a 

certain level— i.e., base 5 of a 30% rounding level. In both cases, two data sets of 

uniformly and normally distributed in combination with the three best-fit distributions are



used. The main purpose is to show how the probability values of detections play an 

important role in identifying the rounding base in a data set as well as in quantifying the 

robustness of the detection. Therefore, some indicators of the robustness of the detection 

can be developed based on the probability values—i.e., the positive difference in the 

probability value. The indicators are valid in the context of a single detection or in a 

comparison across different best fits, base numbers, and rounding levels, because the 

total positive difference in the probability value of detection is comparable across 

different situations (see Table 5.2 and 1 able 5.3).

5.3. Numerical Assessment with Random Data

To conduct the numerical assessment, small data sets are set up so that the 

implementation of the NNM on the data sets can be traced until all the iterations have 

been completed. For this purpose, two random data sets are constructed where each has 

10 counts and a total frequency of 100 with no rounding to a certain base number. One of 

the data sets is distributed uniformly, while the other is distributed normally.

To contrast the results and to see the effects of the detailed data distribution, the 

uniform data is set up as a perfect uniform. This means that each base number or size of 

count has the same 10 frequencies, while normal data is generated by the computer. The 

NNM developed in this study is then implemented on these two data sets to detect a 

rounding pattern to a certain base number, which does not exist in the data, by using the 

three best-fit distribution functions. Tables 5.2 and 5.3 summarise the detection results on 

the uniformly and normally distributed random data, respectively.



Before discussing the results, it is important to know how the summary tables 

describe the detection process. In detecting the rounding pattern, the model starts 

detecting with base number one as the potential rounding base and then moves to other 

base numbers following the data distribution. In each iteration, the model produces the 

probability value. If there is a sign of a spike in the frequency of a particular base 

number, the probability value increases. Otherwise, the probability value will decline. 

This iteration is carried out until the probability value decreases to zero. As can be seen 

in Table 5.2, the zero probability is achieved in the seventh iteration in the normal best fit

and the eighth iterations in the other two best fits.

Looking at the column of difference in the pdf value, positive difference means

that the probability of detection is still increasing. This indicates that the corresponding 

base number is more likely to be the potential rounding base that the model tries to 

identify. On the other hand, the negative difference means that the probability of 

detection is already decreasing, indicating that the corresponding base number is less 

likely to be the potential rounding base number and therefore must be dropped from the 

rounding base potential list. The total values of positive and negative difference must be 

equal to zero for it is the characteristic of a probability density function in indicating that 

all detections have been completed for all base numbers. It then follows that the total 

positive difference in the probability values shows the detection power or an indicator of 

the robustness in the detection. Accordingly, this indicator can be compared across

different best fits or across different data sets.

Table 5.2 shows that using the uniform best fit on the uniformly distributed

random data produces no rounding pattern at all even after completing eight iterations.
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This is because the data is a perfect uniform data so that all the positive differences in the 

probability value are associated only to base one. The uniform results are also 

characterised by the maximum probability values of the detections in the first iteration,

for in the remaining iterations the probability values decrease to zero.

If the normal best fit is used, two adverse impacts emerge from the results: (1) the 

total positive difference in the probability values decreases from 1 to 0.4472; and (ii) 

there is a positive difference in the probability values associated to base number 10 of 

0.0834. As it is very clear from the data set that there is no rounding to base 10, this 

positive detection is clearly a detection error because of using normal best fit. Therefore, 

the consequences of using normal best fit instead of uniform best fit are decreasing the 

detection power to 44.7% and creating detection error of 8.3%, which is calculated from 

positive difference in the probability values associated to base number 10 divided by the 

total positive difference in the probability values of using uniform best fit, hence 0.0834

divided by 1.

On the other hand, if the lognormal best fit is used, the two adverse impacts 

highlighted before are even worse. First, the total positive difference in the probability 

values decreases from 1 to 0.2860; and second, there are positive differences in the 

probability values associated to bases number 10 and 9 of 0.0431 and 0.0481. As it is 

very clear from the data set that there is no rounding to bases 10 and 9, these positive 

detections are clearly detection errors because of using lognormal best fit. Therefore, the 

consequences of using lognormal best fit are decreasing the detection power to 28.6% 

and creating detection error of 12.0%. All percentages are calculated by using the 

uniform best-fit result as the benchmark.



T a b le  5 .2 : T h e  E f fe c t s  o f U s in g  D ifferen t B e s t  F it s  fo r  D e te ctin g  R o u n d in g  to  
C e rta in  B a s e  N u m b e r o n  U n ifo rm ly  D istr ib u te d  R a n d o m  D ata  w ith  N o R o u n d in g

U n ifo rm  
data

R o u n d in g  leve l= 0%
S iz e  o f C o u n tn = 1 0  
F re q u e n cy = 1 0 0  
U n ifo rm ly  D istr ib u te d  R a n d o m  
D ata _______________

B e s t  F it  
D istrib u tio n

U niform

Iteration

T o ta l

N orm al

To ta l

L o g n o rm a l

T o ta l

1 10
2 10

3 1 0

4 10

5
10

6
10

7 10

8 I 1 0

9 1 0
10

P d f
D iffe re n ce  
in th e  p d f

ota  
D iffe re n ce
. L+L l_____

1 1 1.0000  I 1.0000
2 6 0.5000 - 0.5000  f
3 7 0 2 5 0 0 - 0.2500
4 8 0.1250 - 0.1250
5 9 0.0625  1 -0  0625
6 10 0.0313 -0  0312
7 4 0.0020 - 0.0293
8 1 0.0000  1 - 0.0020  ~ |

1 1 0.3638 0.3638
2 10 0  4472 0 0 8 3 4
3 9 0  4137 - 0.0335
4 8 0.1879 - 0.2258
5 7 0.0316 -0  1563
6 6 0.0025 - 0.0291
7 1 0.0000 - 0.0025

1 0000

- 1.0000
0.0000

0  4472

-0  4472 

0.0000

1 1 0.1657 0  1657
2 10 0.2088 0  0431
3 9 0.2569 0.0481
4 8 0  2860 0  0291
5 7 0.2478 - 0.0382
6 6 0.1271 - 0.1207
7 5 0-0270 - 0.1001
8 1 I 0.0000 - 0.0270

0.2860

-0  2860 

0.0000

D etectio n
E rro r

0 .0 %

8 .3 %

12 .0%

Table 5.3 summarises the results using normally distributed random data. The 

table shows that using normal best fit on the normally distributed random data produced 

no rounding pattern at all after the completed eight iterations. As the data set is not

perfectly normal as in the case of uniform data discussed before, the total positive



difference in the pdf value is less than 1, but it is only 0.6250. The normal best-fit results 

are also characterised by highest probability values of the detections in the early

T a b le  5 .3 : T h e  E f fe c t s  o f  U s in g  D iffe ren t B e s t  F it s  fo r D e te ctin g  R o u n d in g  to  
C e rta in  B a s e  N u m b e r o n  N o rm ally  D istr ib u te d  R a n d o m  D ata  w ith  No R o u n d in g

I R o u n d in g  leve l= 0% B a s e
N orm al

S iz e  o f C o u n tn = 1 0 data
F re a u e n c v = 1 0 0 1

1
N o rm ally  D istr ib u te d  R a n d o m

2
6

D ata 3
10

4 10

5
19

6
18

7 21

8
9

9
4

10 1

B e s t  F it D iffe re n ce T o ta l d iff
D istrib u tio n

Iteration B a s e P d f in th e  pdf ( + / - )

i i 0 6 2 5 0 0  6250 0.6250
2 10 0.6115 - 0.0135
3 9 0  5380 - 0.0735

N orm al 4 7 0.3018 - 0.2362
5 8 0  1596 -0  1422
6 5 0.0069 -0  1527
7 6 0.0002 - 0.0067
8 1 0 . 0 0 0 0  I - 0.0002  | -0  6250

To ta l I 0 . 0 0 0 0

1 1 0.1694 0  1694
2 7 0.3516 0 .1822 0.3516
3 10 0.3080 -0  0436

L o g n o rm a l 4 8 0  2589 - 0.0491
5 9 0.2156 -0  0433
6 6 0.0711 - 0.1445
7 5 0  0030 -00681  I

8 I 1 0  0000 - 0.0030 - 0.3516

jTotal |  0.0000

1 1 0.0333 0  0333
2 7 0  0789 0.0456
3 6 0.1226 0.0437 0.1226

U niform 4 8 0.0540 - 0.0686
5 5 0  0139 - 0.0401
6 9 0.0030 - 0.0109
7 4 0  0002 - 0.0028
8 1 0  0000 - 0.0002 - 0.1226

To ta l 0 . 0 0 0 0

D e te ctio n
E rro r

0%

2 9 .2 %

14.3%

iterations .
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If the lognormal best fit is used, the two adverse impacts are: (i) the total positive 

difference in the probability values decreases from 0.6250 to 0.3516; and (ii) there is a 

positive difference in the probability values associated to base number seven of 0.1822. 

As the data set has no rounding to base seven, this positive detection is a detection error 

because of using lognormal best fit. Therefore, the consequences of using lognormal best 

fit instead of normal best fit are: decreasing the detection power to 56.3%—if the normal 

best fit result of 0.6250 is used as the benchmark of 100%—and creating detection error 

of 29.2% (ratio of the probability values associated to base number seven to the total

positive difference of the normal best fit result).

On the other hand, if the uniform best fit is used, the two adverse impacts

highlighted before become: (1) the total positive difference in the probability values 

decreases from 0.6250 to only 0.1226; and (ii) there are positive differences in the 

probability values associated to base numbers seven and six with the probability 

differences of 0.0456 and 0.0437. As the data set has no rounding to these base numbers, 

these positive detections are detection errors caused by using uniform best fit. Therefore, 

the consequences of using uniform best fit instead of normal best fit are decreasing the 

detection power to only 19.6% and creating detection error of 14.3%. All percentages are 

calculated by using the normal best-fit result as the benchmark discussed before.

Moreover, Figure 5.2 shows the diagrammatic representation of applying the three 

different best fits on the two random data sets. The figures are developed based on the 

actual results of the model, which show less smooth graphs than the theoretical graphs in 

Figure 5.1 From the six panels of Figure 5.2, panel (a) BU-DU is the best result, while



the worst is panel (c) BL-DU. The best detection is represented by the most overlapping 

areas of the two best fit and underlying data distribution graphs, and vice versa.
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5.4. Numerical Assessment with Coarsened Data

To further conduct the numerical assessment on data sets containing rounding 

errors, two hypothetical data sets of uniformly and normally distributed containing 

rounding to base 5 with rounding level of 30%, are set up. The model is then 

implemented on these data to detect the rounding pattern by using the three best-fit 

distributions. Results of the detections are summarised in Tables 5.4 and 5.5 for the

uniformly and normally distributed data, respectively.

In both tables, three different measures of detection are summarised, namely, the 

probability ratio, power of detection, and detection error. The measures are developed by 

using results of implementing the correct best fit as the benchmark discussed before. In 

the case of using uniform data, for instance, the total positive difference in the probability 

values of using uniform best fit is used as the denominator in calculating all three

indicators.

The probability ratio is the ratio of total positive difference in the probability 

values of all base numbers to that of using the correct best fit. Accordingly, the 

probability ratio of the result using the correct best fit will always be 100% since all

results of using other best fits are measured against it.

The power of detection is intended to measure the robustness of the model in 

detecting a particular base number. It is calculated by totalling the positive difference in 

the probability values of the base number and its multiples, and then divided by the total 

positive difference in the probability values of all base numbers of using the correct best



Table 5.4: Results of Detecting Rounding Base-5 on Uniformly Distributed Data Sets Containing Rounding Base
5 of 30% by Using Three Different Best Fit Distribution Functions

Rounding Base =5 Base
NumberMagnitude of rounding=30% 

Size of Count=10 
|Total Frequency=100
Uniformly Distributed Data

Best Fit 
Distribution

Uniform

Total

Iteration Base Probability
(Pdf)

0 0487 
0.3896 

0257  
0.1696 
0.0738 
0.0185
0 0046
00001 

0

Difference in 
the Pdf

Frequency

Total
difference

(+/-)

0 0487 
0.3409

-0.1326 
-0.0874 
-0.0958 
-0 0553 
-0.0139 
-0.0045 
- 0 . 0 0 0 1

0.3896

Probability
Ratio

100.0%

-0.3896

Power of 
Detection

87.5%

Detection
Error

Normal

Total

1 00205 0.0205 0.1561
5 0 0984 0.0779
10 0.1561 0.0577 40.1%
9 0.1004 -0.0557
8 0 0069 -0.0935 -0.1561
7 0.0004 -0.0065
1 0 -0 0004

34.8%

Lognormal

Total

1 0 0088 0.0088
5 0.0243 0.0155 0.0598
10 0.0474 0.0231
9 0.0598 0.0124 15.3%
8 00276 -0.0322
7 0.0113 -0.0163 -0.0598
6 0.0009 -0.0104
1 0 -0 0009

9.9% 3.2%

On the other hand, the detection error is geared to measure the error of detecting

other base numbers. It is calculated by summing up all positive differences in the

probability values of a base number that should not be detected by the model, and then
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divided by the total positive difference in the probability values of all base numbers ot 

using the correct best fit.

Table 5.4 shows that the probability ratios of detecting rounding base 5 on the 

uniformly distributed data containing 30% rounding level by using normal and lognormal 

best fits are 40.1% and 15.3%, respectively. This highlights the importance of using the 

correct best fit in detecting the rounding base. Having mentioned this, the power of 

detection using uniform best fit is not a 100%, but it is about 87.5%, which is calculated 

as the ratio of the positive probability value of detecting rounding base 5 to the total 

positive probability value in this best fit. Among others, the power of detection depends 

on the rounding base, level of error, and data distribution. If the normal and lognormal 

best fits are used, the power of detection will drop to 34.8% and 9.9%, respectively. 

Moreover, if the lognormal best fit is used, there will also be a detection error of 3.2% 

because of the model detecting base 9, which is not the multiple of base 5, with a positive

difference in the probability value of 0.0214.

Results of the numerical assessment on the normal data summarised in Table 5.5 

produce similar results but with less variation across different best-fit applications. Using 

the correct normal best fit, for instance, will generate detection power of 85.5%, while 

when using lognormal and uniform best fits, the detection power will decrease to 20.7% 

and 34.3%. The last two best fits produce probability ratios of 33.2% and 40.5% of the 

normal best-fit result. Moreover, if the uniform best fit is used, there will also be a 

detection error of 0.8 % because of the model detecting base 7, which is not the multiple 

of base 5, with a positive difference in the probability value of 0.0026.



Moreover. Figure 5.3 shows the diagrammatic representation of applying the three

different best fits on the two data sets containing rounding base 5 of 30% rounding level

developed based on the actual results of the model. The figures show less smooth graphs

than the theoretical graphs in Figure 5.1. From the six panels of Figure 5.3, panel (a) BU-

DU seems to produce the best result, while the worst is for panel (c) BL-DU. In a

graphical format, this can be seen from the overlapping areas of the two graphs of best fit

used and the underlying data distribution.
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Table 5.5: Results of Detecting Rounding Base-5 on Normally Distributed Data Sets Containing Rounding
Base-5 of 30% by Using Three Different Best Fit Distribution Functions

Rounding Base =5 
(Magnitude of rounding=30% 
Size of Count -10  
Total Frequency =100 
Normallv distributed data

BestFit Iteration Base Probability
Distribution (Pdf)

1 1 0 0452
2 5 0.2318
3 10 0.311

Normal .4 9 0 0 9 9 5

5
7 0.0109

6
8 0.0012

______________  7 6 0

Total

Total

Uniform

Total

0 0 1 6 7  
0.1235 
0.1261 
00736  
0 0245 
00072  
0 0014 

0

Base
Number

Difference 
in the Pdf

0 0452 
0.1866 
0.0792

-0.2115 
-0 0886 
-0 0097 
-0 0012

Frequency

1
1 0 0389

I 2

5 00747

3
10 0.1033

Lognorm al 4 9 0.0597

5
7 0 0341

6
8 0.0157

7 6 0 0009

8
1 0

00389
0.0358
0.0286

-0.0436 
-0.0256 
-0.0184 
-0 0148 
-0.0009

00167
0.1068
0.0026

-0 0525 
-0.0491 
-0.0173 
-0 0058 
-0 0014

Total
difference

(+/-) j

Probability
Ratio

Power of 
Detection

Detection
Error

0.311

100.0% 85.5% 0%

-0.311

0

0.1033

33.2% 20.7% 0%

-0.1033

0

0.1261

40.5% 34.3% 0.8%

-0.1261

0
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Figure 5.3. Diagrammatic Representation of Detecting Rounding Base 5 on Uniform and Normal
Data with Rounding Level of 30% Using Three Different Best Fit Distributions
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CHAPTER VI

ASSESSING THE ROBUSTNESS OF THE NEURAL NETWORK MODEL

This chapter conducts additional assessments to examine the robustness of the 

neural network model. The assessments are carried out by applying the model on the 

simulated data sets containing rounding to specific base numbers and of different 

rounding magnitudes or levels. The main objective is to examine critically how the 

model detects the rounding bases, which are deliberately and systematically 

introduced in the simulated data sets.

6.1. Main Features of the Simulated Data Sets

Altogether, the assessments use 40 simulated data sets. These are a 

combination of two uniformly and normally distributed data sets with four different 

rounding bases and five rounding levels, which are systematically introduced in the 

data sets. Therefore, there are 2 x 4 x 5 = 40 data sets. In more detail, the two data sets 

used in the assessments are uniformly and normally distributed with four different 

roundings—i.e., to bases 5, 7, 11, and 10, each of them containing different level

roundings of 10%, 20%, 30%, 40%, and 50%.

Figure 6.1 shows the schematic representation on how the assessment is

conducted. It illustrates another way of looking at the assessments procedure. First, 

the simulated data sets contain rounding bases of 5, 7, 11, and 10. In each of these 

rounding bases, two data sets are distributed uniformly and normally. Each of these 

data has five different rounding levels introduced in the data sets, i.e., 10%, 20%, 

30%, 40%, and 50%. Then to detect the rounding pattern on each, the model is

applied by using the three best fits of uniform, normal, and lognormal.



The rounding bases of 5, 7, and 11, are chosen for they are prime numbers, 

which by definition can only be divided by one and the number itself. Therefore, the 

primary numbers have no factor numbers that can be associated. Given this unique 

characteristic, their existence in the form ot rounding base in a data set can be 

detected clearly without any risk of attributing the rounding to other base numbers. In 

other words, using non-prime numbers in the assessment, for instance, will increase 

the risk of associating the rounding base number to its factors such as rounding base 6 

with rounding bases 2 and 3.

It can be seen that there is one non-prime number (i.e., 10) introduced as a 

rounding base in the simulated data set. The rounding base 10 is included for mainly

three reasons:

(i) It is arguably the most common rounding base, as counting in 10s is very 

common;

(ii) To examine the factor issue in a rounding base, as 10 can be seen as a 

multiple of five and two in the context of detecting a rounding base; and

(iii) Rounding base 5 was included based on the primary number criterion, to 

see also the effect of rounding base replication which, in this case, is the 

replication of rounding base 5.

Moreover, the different rounding levels of 10% to 50% with the interval 10% 

introduced in the simulated data are to examine further the model performance in 

detecting the rounding pattern, as well as for the sensitivity analysis in the context of 

increasing rounding magnitude in the data sets. The main idea is that as the rounding 

level increases, the model should be able to detect the existence of rounding bases 

more strongly. On the other hand, as the rounding becomes more dominant, the data 

sets can be distorted significantly that makes rounding detection more difficult with
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possibilities of detecting “other” or irrelevant rounding bases. This problem can be 

worse for non-primary numbers as there will also be the issue of factor numbers.

Table 6.1 summarises the descriptions of the complete simulated data sets 

used in the assessments. As mentioned, for each rounding base, the data sets introduce 

five different rounding levels: 10%, 20%, 30%, 40%, and 50%. For further reference,

the name of the data sets are A, B. C, D, and E.

Table 6.1. Summary of the Simulated Data Sets Used in the Assessment

Distribution 
of data sets

Normal

Uniform

Rounding
base

Percentage of rounding in the data sets (%)
Total
Data
Sets

1 0

( D a t a  S e t  A )

2 0

( D a t a  S e t  B )

3 0

( D a t a  S e t  Q

4 0

( D a t a  S e t  D )

Yes

5 0

( D a t a  S e t  E )

Yes5 Yes Yes Yes 5
7 Yes Yes Yes Yes Yes 5
1 0 Yes Yes Yes Yes Yes 5
1 1 Yes Yes Yes Yes Yes 5
5 Yes Yes Yes Yes Yes 5
7 Yes Yes Yes Yes Yes 5

1 0 Yes Yes Yes Yes Yes 5
1 1 Yes Yes Yes Yes Yes 5

ita Sets 8 8 8 8 8 40

6.2. Conducting the Critical Assessments

Having set up the simulated data sets, the model is then applied on each data

to detect the “existing” functional

specifications or best fits about the underlying distribution of the data being examined 

are used although their actual distributions are known already. The best fits used are 

uniform, normal, and lognormal. The main purpose is to get the best detection result 

as well as to examine the relationship between the best fit used in the detection and

the actual distribution function of the data sets.

As mentioned in the previous chapter, an increasing probability value of the 

particular number and its multiples reflects the existence of a rounding base to a



certain number in a data set. In a graphical format, this can be seen as spikes in

otherwise a smooth graph.

Therefore, the increasing probability density function (pdf) of each rounding

base can be used as an indicator of the rounding base present in a data set. It then

follows that a higher increase in the pdf value of a particular base number shows the

more likely that the number is the rounding base. Thus, a higher increase in pdf value

of a potential rounding number shows a better detection of the rounding number.

The positive difference reflects the increasing pdf value of a base number.

This means that the corresponding base number is more likely to be the potential

rounding base that the model tries to identify. On the other hand, the negative

difference in the pdf value means that the detection probability is already decreasing,

indicating that the corresponding base number is less likely to be the potential

rounding base number, and therefore, the base number must be dropped from the

rounding base potential list.

Therefore, the probability values presented in the summary tables (i.e., Tables

6.2 to 6.9) in this chapter are only for the increasing probability values to indicate that

their corresponding base numbers could be the rounding numbers that the model is

trying to identify. This means that all decreasing probability values that leads to the

zero probability value when the iterations completed (see Chapter 5 on numerical

assessment), are excluded from the summary tables. In some cases, stagnant or stable

probability values—not increasing but not decreasing either—are also included in the

summary just to ensure that there is no potential rounding bases left in the detection

process. All potential rounding bases are then scrutinised further to ensure that they

are the actual rounding bases.



Moreover, to further clarify the comparisons of the robustness of the detection 

across different rounding levels, best fits used, and rounding base numbers some 

indicators of the robustness of the detection developed and discussed with some 

examples in the previous chapter are used in this chapter. They are the detection 

power and the detection error. These indicators are calculated from the positive 

difference in the probability value of a particular base number, divided by the total 

positive difference in the probability value of detecting the particular rounding base

number by using the correct/consistent4 best fit.

For instance, the detection power of rounding base 5 on the uniform data with 

20% rounding level is calculated by the positive difference in the probability value of 

detecting base 5 (and its multiples) base numbers on this data set (uniform data with 

20% rounding level) divided by the total positive difference in the probability value of 

detecting rounding base 5 using uniform best fit (the correct best fit). For the 

detection error, the numerator is the positive difference in the probability value of 

rounding base other than base 5 and its multiples (if any), while the denominator is 

the same—i.e., the total positive difference in the probability value of detecting

rounding base 5 using a uniform best fit.

The indicators5 are valid in the context of a single detection or in comparisons

across different best fits, rounding levels, base numbers, and even data sets because 

the total positive difference in the probability value of detection is comparable across 

different situations.

It is important to note that the total positive difference in the probability values 

will decrease as the level of rounding contained in the data set increases. Recall from

4 Using best-fit functional distribution, which is consistent with the underlying distribution of data 
being examined.
5 Although the indicators are unit free, the actual number is more likely dependent on the characteristics of the data 
sets being examined such as the size, unit of measurement, degree of errors in data collection, and so on.
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the random data experiment that in case of no rounding and the data is perfectly

distributed, the pdf value will be equal to one and associated only to base 1. 

Therefore, the total positive difference in pdf value will also be equal to one when 

there is no rounding and the data is perfectly distributed. Hence, the more rounding 

contained in a data set, the lower would be the total positive difference in pdf value as 

the model starts to detect other base numbers. As can be seen from the table, the 

difference in the pdf values associated with the particular base number increases 

following the increase in the levels of rounding to the particular base number in the 

data sets. For instance, the difference in the pdf values of detecting rounding base 5 in 

data set C (at 30% rounding) using normal best fit is only 0.0029, while in the data set 

E (at 50% rounding) the difference is 0.9701. Therefore, more and more decreasing 

probability values are excluded from the total number as the level of rounding

contained in the data sets increase from 10% to 50%.

Tables 6.2 to 6.9 summarise the assessment results of applying the model on 

the uniformly and normally distributed simulated data sets, each of which contains 

rounding to bases 5, 7, 11, and 10 of five different rounding levels. The rounding base 

detection is conducted by using uniform, normal, and lognormal best fits.

In discussing results, the best result of using the correct best fit is used as the 

benchmark so other results are compared to this. In addition, the Modulo test result is 

also used as an additional benchmark. Therefore, the tables also summarise the 

Modulo test results in data sets. In this context, any rounding base detected by NNM 

must also be confirmed by the same rounding base detection by the Modulo test 

method that is reflected in the increasing probability value of the particular base 

number.
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6.3. Assessments Using Uniformly Distributed Data Sets

The first assessment is to use the uniformly distributed data sets that contain 

four different rounding bases with five different rounding magnitudes as described in 

the beginning of this chapter. The results are discussed for each rounding base (i.e., 

rounding bases 5, 7, 11, and 10.

6.3.1. Detecting Rounding Base 5

Results from implementing NNM on the uniformly distributed 

simulated data sets containing rounding base 5 with different rounding magnitudes 

show that NNM can detect the existing rounding base very well. The rounding base 5 

detection is getting stronger as the degree of rounding contained in the data set 

increases from 10% to 50% (i.e., in data sets A to E). The increasing number of 

rounding bases detected and/or the increasing total probability values of the detections 

show this. This result is consistent with the initial expectation on the overall results, 

hence confirming the goodness fit of NNM.

Figure 6.2. Probability Values of Detecting Rounding Base 5 in a Simulated
Data Set Containing Rounding Base 5 at 50% Rounding

5   
a  iform . . .

■— — — m b

.
□  orm . . .
□  o orm . .

Moreover, although NNM can detect the rounding base regardless of the best 

fits used in the detection, the use of a correct best fit of the data set being examined



will guarantee best results. Figure 6.2, for instance, shows the probability values of 

detecting rounding base 5 on data containing rounding base 5 at 50% rounding level 

using the three best fits. The figure clearly shows the crucial role o f using the right 

best fit, as using the wrong best fit will result in a lower probability of detection 

and/or non-detection of some rounding bases. All rounding bases detected by the 

uniform best fit have higher probability values than results of using normal and 

lognormal best fits. Additionally, using the last two best fits will not detect rounding 

bases 15 and 1, respectively.

Furthermore, Table 6.2 summarises the results of detecting rounding base 5 of 

different magnitudes contained in the uniform data by using the three best fits. The 

detailed detection results are discussed in turn as follows:
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Uniform Best-Fit Distribution Function

Detecting rounding base 5 on the uniform data using uniform best fit shows 

that the model detects rounding base 1, which is also an exact count base unit that 

includes base 5, as a potential rounding base in the first iteration on data sets A to D. 

However, in data set E, the model detects rounding base 5 in the first iteration and 

base 1 on the second iteration. In data set E, the model also detects the rounding base 

15. In the second iteration, the model detects rounding base 5 in data sets B to D. The 

model then detects rounding base 10 in the third iteration in data sets D and E.

Normal Best-Fit Distribution

Detecting rounding base 5 in the uniform data using normal best fit produces 

similar results of uniform best fit. The differences are (i) the detection probability 

values are lower, (ii) there is no rounding base 10 detected in data set D, and (iii) 

there is also no rounding base 15 detected in data set E. Therefore, the normal best-fit 

results are less superior to uniform results.

Lognormal Best-Fit Distribution

Detection results using the lognormal best fit shows the least powerful. This 

can be seen n the facts that (i) there is no detection of rounding base 1 in the data sets 

D and E; and (ii) there is no detection of rounding base 5 in data set B. Therefore, the 

results of using uniform best fit are the best.

Modulo Test Method

The rounding base 5 detection in the data sets is further confirmed with the 

Modulo test results, which shows increasing probability values in the base numbers of 

five and its multiples, such as base numbers 10, 15, 20, and 25. Moreover, the 

probability values of each base number keep increasing as the rounding level 

increases from 10% to 50%. For instance, the rounding base 5 probability values in



data set A is 0.2828, while in data set E it increases to 0.6008. This increasing 

probability value is also observed in the base 5 multiples such as bases 10, 15, 20, and

25.

Figure 6.3 shows the rounding base 5 probability values in data containing 

rounding base 5 o f 50% rounding level by using the Modulo test. The graph clearly 

shows the rounding base 5 presence, as indicated by the spikes in the probability 

values of base 5 and its multiples of bases 10, 15, 20, and 25. The base 5 probability 

values and its multiples keep decreasing from 0.6008 for the bases 5 to 0.1239 for 

base 25.

Figure 63. Modulo Test Results of Detecting Rounding Base 5 in a Simulated Data Set
Containing Rounding Base 5 with 50% Rounding

Moreover, to compare the robustness of the model in detecting rounding base 

5 across different rounding levels and best fits used, Table 6.2 also summarises the 

detection power and detection error for each case. The results can be summed up as 

follows:

(i) There is no detection of rounding base 5 in data set A in all best fits used 

and also in data set B using lognormal best fit.
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(ii) Using the correct best fit will produce the highest detection power, 

followed by using normal and lognormal best fits. In data set E, however, 

lognormal best fit produces the second highest, while in data sets A to D, 

lognormal best fit produces very low detection power.

(iii) The detection power jumps significantly in data set E, from a maximum of 

1% to more than 97%. This is because all best fits in data set E detect the 

rounding base 5 in their first iterations.

(iv) There is no detection error identified from the results.

6.3.2. Detecting Rounding Base 7

Detecting rounding base 7 in the uniform data containing rounding base 7 with 

different rounding levels shows that the model can detect the rounding very well. The 

detection shows an increasing magnitude— i.e., more relevant rounding bases are 

detected that result in higher total probability values—as the rounding level contained 

in the data set increases from 10% to 50%. This trend is consistent with the initial 

expectation, hence confirming the goodness fit o f the model.

Furthermore, even though the model can detect rounding base 7 regardless of 

the best fits used, using the correct best fit will guarantee best results. Figure 6.4 

shows the rounding base 7 probability values in data containing rounding base 7 of 

50% by using the three best fits. The figure shows that using the wrong best fit will 

result in lower probability values and non-detection of some relevant rounding bases. 

For all rounding bases detected by the model, the uniform best fit produces the 

highest probability values.



Figure 6.4. Probability Values of Detecting Rounding Base 7 in a Simulated
Data Set Containing Rounding Base 7 of 50% Rounding
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Table 6.3 summarises the results of detecting rounding base 7 in uniform data 

using the three best fits. The detailed detection results are discussed in turn as follows: 

Uniform Best-Fit Distribution

Detecting rounding base 7 using uniform best fit in the uniform data 

containing rounding base 7 shows that the model detects the rounding base 7 in the 

second iteration in data sets A to D, and in the first iteration in data set E. The model 

starts to detect rounding base 14 in data sets C to E, and rounding base 21 in data sets 

D and E. These results are very good, which cannot be obtained by using other best 

fits. If other two best fits are used, rounding base 7 can only be detected in the second 

iteration in data sets B to D for normal while in data sets B and C for lognormal.

Normal Best-Fit Distribution Function

Results of detecting rounding base 7 using normal best fit have similar 

patterns with uniform results. The differences are: (i) normal best fit detects rounding 

base 7 and its multiples with lower probability values; (ii) it can only detect rounding 

base 7 in data sets B to E, while the uniform best-fit distribution can detect rounding

base 7 in data sets A to E; (iii) it detects rounding base 21 in the third iteration and not



rounding base 14 as in the case o f using uniform best-fit distribution; and (iv) detects 

rounding base 14 in data sets D and E.

Detecting Rounding Base 7 Contained in the Uniformly Distributed 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions
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Lognormal Best-Fit Distribution

Lognormal best fit even performs worse, as indicated by its inability to detect 

rounding base 14 in data set C, and rounding base 21 in data set D. The order of 

rounding base detection is also different with uniform and normal best fits results. 

This is true especially in data sets D and E. In data set D, uniform best fit detects 

rounding base 1 in the first iteration, followed by rounding bases 7, 14, and 21 in the 

next iterations, while lognormal detects base 7, followed by bases 1 and 14.

In data set E, uniform best fit detects rounding base 7 in the first iteration, 

followed by bases 14 and 21 in the following iterations, whereas the lognormal

detection order is base 7, followed by bases 1, 14, and 21. Therefore, using incorrect



best fit can also produce different detection order and non-detection of some rounding 

bases. This is in addition to the problems of lower probability values mentioned

before.

Modulo Test Method

The existence of rounding base 7 in the data sets is further confirmed by the 

Modulo test results, which show increasing probability values on the rounding base 7 

and its multiples of bases 14 and 21. The probability values of these rounding bases 

keep increasing as the rounding level increases from 10% to 50%. For instance, the 

rounding base 7 probability values in data set A is 0.2297, while it increases to 0.572 

in data set E. This increasing probability values are also observed in the multiples of

base 7, such as bases 14 and 21.

Figure 6.5 shows the probability values of detecting rounding base 7 using the 

Modulo test on a data set containing rounding base 7 with 50% rounding. The graph 

shows the presence of rounding base 7 as indicated by the spikes in the probability 

values of rounding base 7 and its multiples. The probability values of rounding base 7

is higher than its multiples, i.e., 0.572 for rounding bases 7 to 0.1967 for base 21.

Figure 6.5. Modulo Test Results of Detecting Rounding Base 7 on a Simulated Data Set
Containing Rounding Base 7 with 50% Rounding



Moreover, to compare the model's robustness in detecting rounding base 7 

across different rounding levels and best fits used, Table 6.3 also summarises the 

detection power and detection error for all cases. The results can be summed up as 

follows:

(i) There is no detection of rounding base 7 in data set A using normal and 

lognormal best fits;

(ii) In data sets A to C, uniform best fit produces the highest detection power, 

followed by normal and lognormal best fits. For data sets D and E, however, 

lognormal best fit produces the highest detection power.

(iii) The detection power jumps significantly in data set D using lognormal 

best fit and in data set E using all the three best fits— i.e., from a maximum of 

2% to more than 97%. This is because the model detects rounding base 7 in 

their first iteration on all those data sets.

(iv) There is no detection error identified from the results.

6.3.3. Detecting Rounding Base 11

Detecting rounding base 11 in uniform data containing rounding base 11 with 

different rounding levels shows that the model detects the rounding very well. More 

rounding bases are detected as the degree of rounding contained in the data set 

increases from 10% to 50%. This is consistent with the initial expectation, and hence,

confirming the goodness fit o f the model.

As in the case of previous base numbers, the model can detect rounding base 

11 regardless of the best-fit distribution used, but using the correct best fit will 

produce the best result.



Uniform best fit detects rounding base 11 in the second iteration in data sets A 

to E. Normal best fit will produce similar results but with less probability values,

while the lognormal best fit will detect rounding base 11 only in data sets B to E.

Moreover, Figure 6.6 shows the probability values of detecting rounding base 

11 in the uniform data containing 30% rounding using the three best fits. Uniform 

best fit produces the highest probability values in all rounding bases detected, 

followed by normal and lognormal best-fit results. The probability value of rounding 

base 11 using uniform best fit is 0.9733, while the probability value of using 

lognormal best fit is 0.9644.

Figure 6.6. Probability Values of Detecting Rounding Base 11 in a Simulated
Data Set Containing Rounding Base 11 of 30% Rounding

Table 6.4 further summarises the rounding base 11 detection results in the 

uniform data containing rounding base 11 of different magnitudes by using the three 

best fits.

Uniform Best-Fit Distribution

Detecting rounding base 11 in the uniform data using uniform best fit shows 

that the model detects rounding base 11 in the second iteration in data sets A to E. 

This very good performance cannot be obtained by using other best-fit distributions.



Using normal best fit will produce similar results but with less probability values, 

while using lognormal best fit will only detect rounding base 11 in data sets B to E.

Normal Best-Fit Distribution

Detecting rounding base 11 using normal best fits on data sets A to D, will

produce results similar to using uniform best fit—only with lower probability values. 

In data set E, normal best fit detects rounding base 11 in the first iteration and not in 

the second iteration as in the uniform best fit, but still with lower probability value. 

Bases 1 and 22 then follow the detection.

.4. Results of Detecting Rounding Base 11 Contained in the Uniformly Distributed 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions
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Lognormal Best-Fit Distribution

Lognormal best fit detects rounding base 11 in data sets B to E. However, no 

rounding base 22 is detected in data set B. These results are different with uniform 

and normal best-fit results. In data set D, for instance, the lognormal best fit detects 

rounding base 11 in the first iteration despite a lower probability value, and not in the
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second iterations like in the uniform and normal best-fit results. While in data set E, 

the order of rounding base detection using lognormal is the same with normal best fit

Modulo Test

The Modulo test results also show increasing probabilities in the rounding 

base 11 and its multiple of base 22 that is consistent with the model results. This 

shows that the model can detect rounding base 11. Figure 6.7 shows the strikingly 

higher probability values of rounding bases 11 and its multiple of rounding base 22. 

The probability value of rounding base 11 is 0.5422 while the probability value of 

rounding base 22 is 0.2701.

Figure 6.7. Modulo Test Results of Detecting Rounding Base 11 in a Simulated Data Set
Containing Rounding Base 11 with 50% Rounding
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Furthermore, to compare the robustness in detecting rounding base 7 across 

different rounding levels and best fits used, Table 6.4 also presents the detection 

power and detection error for all cases. The results can be summarised as follows:

(i) There is no detection of rounding base 11 in data set A using lognormal

best fit.



(ii) Uniform best fit produces the highest detection power, followed by normal 

and lognormal in data sets A to C.

(iii) The detection power in data sets A to D using uniform and normal best 

fits increases gradually following a smooth trend while in the model using 

lognormal best fit only happened in the data sets A to C. In data set E, the 

model detects rounding base 11 in the first iteration for all the three best fits, 

which makes the detection power jump very high. This happened to data set D 

using lognormal best fit too.

(iv) No detection error is identified from the results.

6.3.4. Detecting Rounding Base 10

Rounding base 10 is the only base number, which is not a primary number, 

experimented in the assessments. As discussed before, the main reason for including 

rounding base 10 is that it could be the most common rounding base. Base 10 is also a 

multiple of base 5, one of the primary numbers included in the assessment. Therefore, 

number 10 has two factors, 2 and 5. This fact may affect the rounding pattern 

detection since a data set severely distorted by rounding base 10 may also exhibit 

patterns of data sets distorted by rounding bases 5 and 2 due to the significant spikes 

in bases 10, 20, and so on.

Results from implementing the model on uniform data containing rounding 

base 10 with different rounding magnitudes show that the model can detect the 

rounding very well. The rounding base 10 detection shows an increasing intensity, 

which is shown by the detection of rounding base 10 and other relevant rounding 

bases as the degree of rounding the data set increases from 10% to 50%. This result is



consistent with the overall results and model behaviour, confirming the goodness fit

of the model.

Furthermore, although the model can detect the existence of rounding base 10

regardless of the best-fit distributions used, the use of a correct best fit for the data set

being examined will guarantee the best result.

The existence of rounding base 10 is detected in the second iteration in data

sets A to E if the uniform or normal best fits are used, while if the lognormal best fit is 

used, the model can only detect the rounding base 10 in data sets B to E.

Moreover, Figure 6.8 shows the probability values of detecting rounding base 

10 in the uniform data containing 50% rounding using the three best fits. As can be 

seen from the graph, the use of uniform best fit produces the highest probability 

values for all rounding bases detected, followed by normal and lognormal best-fit 

results. The probability value of detecting rounding base 10 using uniform best fit on 

data set E is 0.9418 while if using lognormal best fit, the probability value is 0.9404. 

For rounding base 20, the probability values are 0.9678 and 0.9607, respectively.

Figure 6.8. Probability Values of Detecting Rounding Base 10 in a Simulated
Data Set Containing Rounding Base 10 at 50% Rounding

0.98

0.96

0.94

u.yz
10 2

t
5

i ■ — ' — ■■  ■ ■— — — 1

20
■ — — — — —  ■ ■ ■ ■ » !

■  Uniform 0.9418 0.9594
11 — a

0.9728 0.9768

□  Normal 09414 0.9576 0.968 0.9708

□  Lognormal 0 9404 0.9542 0.9598 0.9607

90



Table 6.5 summarises the results of detecting rounding base 10 on the uniform 

data by using the three best fits. The detailed detection results are discussed in turn as

follows:

Uniform Best-Fit Distribution

Detecting rounding base 10 in the uniform data containing rounding base 10 

by using uniform best fit, shows that the model detects rounding base 10 in the second 

iteration in data sets A to D and in the first iteration in data set E. The model always 

detects rounding base 1 in the first iteration in data sets A to D. The model also 

detects rounding base 5 in data sets D and E, and rounding base 2 in data set E.

.5. Results of Detecting Rounding Base 10 Contained in the Uniformly Distributed 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions
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Normal Best-Fit Distribution

Using normal best fit produces similar results to using uniform best fit. The

difference is only in data set D, in which rounding base 5 is not detected and the
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model detects rounding base 15 instead. In the remaining data sets, the results are the 

same with the uniform best-fit results, only with lower probability values.

Lognormal Best-Fit Distribution

Results of using lognormal best fit are more different. Different such that (i) 

rounding base 10 was not detected in data sets C to E; (ii) no rounding base 20 was 

detected in data set A; (iii) rounding base 2 was detected in data sets C to E, while 

rounding base 2 was detected only in data set E in other best-fit results.

Notice that the pattern of rounding base detection in the data set containing 

rounding base 10 is not as clear as in the data sets containing primary base numbers 

such as bases 5, 7, and 11. As can be seen in the results, as the rounding magnitude of 

base 10 in the data sets intensifies, the model starts to mistakenly detect the presence 

of rounding bases 5 and 2. All three best fits used in this study suffer from this 

problem, including the Modulo test method that will be discussed next. The problem 

of mis-identification of rounding base 10 with its factor numbers will worsen if it is 

combined by using the wrong best fits.

Modulo Test

The Modulo test result also shows increasing probabilities in the rounding 

base 10 and its multiples of base 20 that is consistent with the model results. This 

shows the model's consistency in detecting rounding base 10.

Figure 6.9 shows the higher probability values, especially in the rounding 

bases 10 and 20. Note also the high probability values of bases 2 and 5, as well as of 

the multiples of base 5 (such as bases 15 and 25). This shows the distorting power of 

rounding, which becomes obvious if the rounding contained in the data sets is more

than 30%.



Figure 6.9.Modulo Test Results of Detecting Rounding Base 10 on a Simulated Data Set
Containing Rounding Base 10 with 50% Rounding ____________

Modulo Test Results
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To compare the robustness of detecting rounding base 10 across different 

rounding levels and best fits used, Table 6.5 also details the detection power and 

detection error for all cases. The results can be summarised as follows:

(i) There is no detection of rounding base 10 on data set A using lognormal

best fit.

(ii) Uniform best fit produces the highest detection power, followed by normal 

and lognormal. This finding applies in all data sets A to E;

(iii) The detection power in data sets A to D increases gradually following a 

smooth trend, except that it jumps in data set D using lognormal best fit.

(iv) Detection errors are identified from the results in data set C using 

lognormal best fit, and data sets D and E using all best fits. The detection error 

in data set C using lognormal best fit is very significant at 97.8% due to the 

detection of rounding bases 2 and 5 in the first and second iterations. In the 

other cases, the detection errors range from 0.02% to 3.17%. These are also 

because of detection of rounding bases 2 and 5 (the factor numbers of base 

10). In data set D, lognormal best fit produces the highest detection error at
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1.40%, while uniform best fit produces the highest detection error of 3.17% in 

data set E.

6.4. Assessments Using the Normally Distributed Data Sets

The next assessment is implementing NNM in the normally distributed data 

sets containing four different rounding bases with five different rounding magnitudes 

as described in the early part of this chapter. As in the uniformly distributed data sets, 

the detection is conducted for each rounding base, i.e., bases 5, 7, 11, and 10.

6.4.1. Detecting Rounding Base 5

Implementing NNM on normal data containing rounding base 5 with different 

rounding magnitudes shows that the model detects rounding base 5 very well. The 

detection probability increases as the rounding level increases from 10% to 50%. This 

is consistent with the initial expectation on the overall results, hence confirming the

goodness fit of NNM.

The model detects the rounding bases in normal data very well, regardless of 

the best fits used in the detection. However, using the correct best fit of the data set 

being examined will guarantee the best result. This is shown by most rounding bases

detection with the highest probability values.

Figure 6.10, for instance, shows the probability values of detecting rounding 

base 5 in normally distributed simulated data set containing rounding base 5 at 40% 

rounding level by using the three best fits. The figure shows that using the correct best 

fit will detect the rounding bases with the highest probability and using the wrong best 

fit will result in lower probability. In other words, the normal best fit detects the 

rounding bases with the highest probability values. The probability value of detecting



rounding base 5 using normal best fit is 0.9835, while the probability value becomes 

0.9481 if uniform best fit is used. For rounding base 10, the probability values are 

0.9846 and 0.9486, respectively.

Figure 6.10. Probability Values of Detecting Rounding Base 5 in a Simulated
Data Set Containing Rounding base 5 at 40% Rounding
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Furthermore, Table 6.6 summarises the results of detecting rounding base 5 

contained in the normal data by using the three best fits. The detailed detection results 

are discussed in turn as follows:

Normal Best-Fit Distribution

Detecting rounding base 5 in the normally distributed data set using normal 

best-fit distribution shows that the model detects rounding base 1 in the first iteration 

in data sets A to D, rounding base 5 in the second iteration in data sets B to D, and in 

the first iteration in data set E. Rounding base 10 is detected in the third iteration in 

data sets D and E. In data set E, after detecting rounding base 5 in the first iteration, 

the model detects rounding bases 1, 10, and 15 in the second, third, and fourth

iterations.
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Detecting Rounding Base 5 Contained in the Normally Distributed
Different Best-Fit Distribution Functions
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Lognormal Best-Fit Distribution

Results using lognormal best fit are similar to the ones using normal 

distribution. The differences are: (i) lower probability values and (ii) rounding base 5 

is detected in the second iteration and not in the first iteration in data set E. On the 

first point, using normal best fit in data set C, for instance, the model detects rounding 

base 5 with the probability value of 0.9891, while the probability value will be 

decreased to 0.9861 if the lognormal best fit is used.

Uniform Best-Fit Distribution

If the uniform best fit were used, the results would be the same in data sets A

to D, but with lower probability values. In data set E, there are two different results.
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First, rounding base 5 is detected in the second iteration. Second, no rounding base 15 

is detected in the fourth iteration.

Modulo Test

The existence of rounding base 5 is also shown in the Modulo test results. 

Figure 6.11 shows increasing probabilities in the rounding base 5 and its multiples 

such as bases 10, 15, 20, and 25. This is consistent with the model results, confirming 

the model's consistency in detecting rounding base 5. Moreover, the rounding base 5 

probability value is always higher than those of its multiples. In data see E, for 

instance, the rounding base 5 probability value is 0.5996, while the probability value

in base 25 is only 0.1174.

Figure 6.11. Modulo Test Results of Detecting Rounding Base 5 on a Simulated Data Set
Containing Rounding Base 5 with 50% Rounding

To compare the robustness of detecting rounding base 5 across different 

rounding levels and best fits used, Table 6.6 also presents the detection power and 

detection error for all cases. The results can be summarised as follows:

(i) There is no detection of rounding base 5 in data set A using all best fits.

(ii) Normal best fit produces the highest detection power, followed by 

lognormal and uniform. This finding applies in all data sets A to E;
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(iii) The detection power in data sets A to E increase gradually following a 

smooth trend, except in data set E using normal best fit in which the detection 

power jumps from 2.18% in data set D to 95.12% in data set E. This is 

because of the detection of rounding base 5 in the first iteration.

(iv) No detection error is identified from the results.

6.4.2. Detecting Rounding Base 7

Implementation in the normal data containing rounding base 7 with different 

rounding levels shows that the model can detect the rounding very well. The power of 

detection increases as the rounding level contained in the data set increases from 10% 

to 50%. This result is consistent with the initial expectation, hence confirming the

goodness fit of the model.

Moreover, the model detects rounding base 7 regardless of the best fit used, 

but using the correct best fit will guarantee the best result. This is shown by the 

highest probability values and more rounding bases detected.

Figure 6.12 shows the rounding base 7 probability values in the normal data 

containing rounding base 7 at 50% rounding level by using the three best fits. The 

figure shows that using the wrong best fit will result in lower probability, and vice 

versa. Normal best fit produces the highest probability values for all rounding bases 

detected. The normal best-fit probability value of rounding base 7 is 0.9749 while the 

probability value of uniform result is 0.9378. For rounding base 14, the probability 

values are 0.9812 and 0.9407, respectively.



Figure 6.12. Probability Values of Detecting Rounding Base 7 in a Simulated
Data Set Containing Rounding base 7 at 40% Rounding
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Moreover, Table 6.7 summarises the results of detecting rounding base 7 

contained in the normally distributed simulated data sets by using three different best 

fits. The detailed detection results are summarised as follows:

Normal Best-Fit Distribution

Detecting rounding base 7 using normal best fit in the normal data shows that 

the model detects rounding base 1 in the first iteration in data sets A to D, rounding 

base 7 in the second iteration in data sets B to D, and in the first iteration in data set E. 

This very good performance cannot be obtained by using other best-fit distributions. 

Other best-fit distributions, for instance, always detect rounding base 7 in the second

iteration.

Lognormal Best-Fit Distribution

If the lognormal best fit is used, the model detects rounding base 7 in data sets 

A to E, rounding base 14 in data sets C to E, and rounding base 21 in data sets D and

E.
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Table 6.7. Results of Detecting Rounding Base 7 Contained in the Normally Distributed 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions
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Uniform Best-Fit Distribution

Using uniform best fit will produce similar results to using lognormal best fit,

but with lower probability values.

Modulo Test

Applying Modulo test in data sets also shows increasing probabilities in

rounding base 7 and its multiples of rounding bases 14 and 21. This is consistent with

the NNM results, further confirming that NNM can detect rounding base 7. Moreover,

the rounding base 7 probability value is always higher than those of its multiples. In

instance

probability value for base 25 is only 0.1918 (Figure 6.13).
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Figure 6.13. Modulo Test Results of Detecting Rounding Base 7 in a Simulated Data Set
Containing Rounding Base 7 with 50% Rounding
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Moreover, to compare the robustness of detecting rounding base 7 across

different rounding levels and best fits used. Table 6.7 also summarises the detection

power and detection error for all cases. The results can be summed up as follows:

(i) There is no detection of rounding base 7 in data set A using normal best fit.

(ii) Normal best fit produces the highest detection power, followed by

lognormal and uniform. The exception is in data set A where normal best fit

cannot detect rounding base 7.

(iii) The detection power in data sets A to E increase gradually following a

smooth trend.

(iv) No detection error is identified from the results.

6.43. Detecting Rounding Base 11

Results from detecting rounding base 11 in the normal data containing

rounding base 11 with different rounding levels, show that the model detects the

rounding very well. The detection shows an increasing magnitude as the degree of

rounding contained in the data set increases from 10% to 50%. This result is
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consistent with the initial expectation, confirming the goodness fit of the NNM. In 

addition, the NNM can detect rounding base 11 regardless of the best fit used. 

However, using the correct best fit will guarantee for the best result.

1 he rounding base 11 is detected in the second iteration in data sets A to D 

and in the first iteration in data set E. The patterns of rounding base detection are the 

same for all three best fits distribution, but the normal best fit produces the highest 

probability values, followed by lognormal and uniform best-fit distributions.

Figure 6.14 shows the rounding base 11 probability values on the normal data 

containing rounding base 11 of 40% rounding by using the three best fits. The figure 

shows that the right best fit produces the highest probability values, and vice versa. 

The rounding base 11 probability of normal best fit is 0.9488, while the probability 

value of uniform best fit is 0.9105. For rounding base 22, the probability values are 

0.9591 and 0.9153, respectively.

Figure 6.14. P robability  Values o f Detecting R ounding Base l l i n  a Sim ulated D ata Set
C ontain ing  R ounding Base 11 a t 40%  R ounding

Table 6.8 shows the results of detecting rounding base 11 on the normal data 

using the three best fits. The table also summarises the Modulo test results. The 

detailed detection results are discussed in turn as follows:
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Normal Best-Fit Distribution

Detecting rounding base 11 using normal best fit shows that the model detects 

rounding base 11 in the second iteration in data sets A to D, and in the first iteration in 

data sets E. The model also detects rounding base 22 in the third iteration in data sets

B to E. This is a very good performance that cannot be matched by using other best 

fits.

Lognormal Best-Fit Distribution

The lognormal best-fit results are the same with the normal best-fit results but 

only with lower detection probability. In data set E, for instance, the rounding base 11 

probability of lognormal is 0.8738, which is lower than using normal best fit of 

0.8765.
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>.8. Results of Detecting Rounding Base 11 Contained in the Normally Disti 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions
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0.9105
0 9153

1.0000
05023 
0 3235 
0 2512 
0 1963 
0.1602 
0.1440 
0.1279 
0.1073 
0 0991 
0.2732 
0 0811 
00703 
00745 
0 0658 
0 0640 
00605 
0 0523 
0 0494 
0 0498 
0 0460 
0.1376 
0 0396 
0 0429 
0 0397

on

424

3.83

1.90

0.00

0.00

0.00

50%

Pdf

0.8765 
0.9119 
0 9268

02738
0.9073
0.9212

96.18 0.00

0.8542
02705
0.8771

1.0000
0.5047 
0 33931 
02530 
0 2029 
0.1712 
0.1452 
0.1216 
0.1104 
0.1019 
0.5476 
0 0838 
0 0746 
0 0712 
0 0695 
0 0594 
00621 
0 0560 
0 0516 
00492 
0 0504 
0.2772 
0 0421 
0 0395 
0 0414

95.78 0.00

92.88 0.00
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Uniform Best-Fit Distribution

Using uniform best-fit distribution will produce similar results but with much 

lower probability values.

Modulo Test

The Modulo test results also show increasing probabilities in rounding base 11 

and its multiple of rounding base 22. This result is consistent with the NNM finding, 

which shows that the model can detect rounding base 11. Moreover, rounding base 11 

probability value is always higher than those of its multiples. In data set E, for 

instance, rounding base 11 probability is 0.5476, while the probability for base 22 is 

only 0.2772 (Figure 6.15).

Figure 6.15. M odulo Test Results of Detecting R ounding Base 11 on a Sim ulated D ata Set
C ontain ing  R ounding Base 11 w ith 50%  Rounding

Modulo Test Results

Moreover, to compare the robustness of detecting rounding base 11 across

different rounding levels and best fits used, Table 6.8 also summarises the detection

power and detection error for all cases. The results can be summed up as follows:

(i) There is always a detection of rounding base 11 in data sets A to E using all 

best fits.
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(ii) Normal best fit produces the highest detection power, followed by 

lognormal and uniform.

(iii) The detection power in data sets A to E increase gradually following a 

smooth trend.

(iv) No detection error is identified from the results.

6.4.4. Detecting Rounding Base 10

Implementation in the normal data containing rounding base 10 with different 

rounding magnitudes shows that the model detects the rounding pattern very well. 

The detection shows an increasing number of bases as the rounding level increases 

from 10% to 50%. This result is consistent with the initial expectation on the overall 

results and how the model should behave. Therefore, it is confirming the goodness fit 

of NNM.

Figure 6.16. P robability  Values o f Detecting R ounding Base 10 in a Sim ulated D ata
Set C ontain ing  R ounding Base 10 a t 40%  Rounding

0.95
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□ L o g n o rm a l 0 .9251 0 .9 5 1 7 0 .9 6 2 2 0 .9671
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Even though the NNM can detect rounding base 10 regardless of the best fit 

used, the use of a correct functional distribution for the data set being examined will 

guarantee the best result. Figure 6.16 shows that normal best fit detects rounding base
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10 in data set D with a probability value of 0.9553, while uniform best fit probability 

value is 0.9169. The model detects rounding base 10 in the second iteration in data 

sets containing rounding as low as 10% regardless of the best-fit distributions used.

Table 6.9 summarises the results of detecting rounding base 10 in the normally 

distributed data sets by using three different best-fit distributions of normal, 

lognormal, and uniform. The detailed detection results are discussed as follows:

Fable 6.9. Results of Detecting Rounding Base 10 Contained in the Normally Distributed 
Simulated Data Sets Using Three Different Best-Fit Distribution Functions

Best Fa
D istribution

berstl
on

_____ ____________________ _____________________________  Magnitude o f Rounding Errors
10% I 20% 30% 40% 50%

Base Pdf
Detect!

on
Power

Oetecti
on

Error
Base Pdf

Detec U
on

Power

Oetecti
on

Error
Base Pdf

Detect!
on

Power

Detect!
on

Error
Base Pdf

Detect!
on

Power

Detect
on

Error
Base Pdf

Detect*
on

Power

Detect!
on

Error

H o rn * 1 1 0.9895 0.28 0.00 1 0.9768 1 -38 0.00 1 0.9554 2.64 0.02 1 0.9272 3.43 1.14 2 0.8877 4.69 3.09
2 10 0 9923 10 0.9889 10 0.9759 10 0 9553 10 0.9234
3 20 09902 20 0.9813 5 0.9664 5 0.9511
4 25 0 9815 20 0.9716 20 0.9605
5 15 0 9625
6 25 0 9625

lognorm al 1 1 0.9884 0.29 0.00 1 0.9741 1.30 0.00 1 0.9532 2.50 0.01 1 0.9251 324 1.08 2 0.8849 4.39 2.90
2 10 09893 10 0.9858 10 0.9726 10 0.9517 10 0.9182
3 20 0 9871 20 0.9777 5 0.9622 5 0.9440
4 25 09778 20 09671 20 0.9530
5 15 0 9551
6 25 0 9551

Uniform 1 1 0.9652 0.19 0.00 1 0.9514 0.63 0.00 1 0.9310 1.22 0.00 1 0 9038 1.60 0.54 2 0.8649 2.12 1.36
2 10 09671 10 0.9571 10 0.9405 10 0.9169 10 0.8811
3 20 0 9577 20 0 9430 5 0.9221 5 08934
4 25 0 9430 20 09245 20 0 8976
5 15 0 8964

Modulo Test 1 1.0000 1 1.0000 1 10000 1 1.0000 1 1.0000
2 0 5459 2 0 6004 2 0.6512 2 0 6957 2 0.7520
3 0 3314 3 0 3252 3 0 3286 3 0 3367 3 03373
4 0.2710 4 0 2985 4 0 3244 4 0.3441 4 0.3765
5 0.2827 5 0 3590 6 0.4392 5 0.5293 5 0.5996
8 01776 6 0.1935 8 0.2126 6 02356 6 02555
7 0.1394 7 0 1493 7 0.1482 7 0.1412 7 0 1427
8 0 1370 8 0 1518 8 0.1553 8 0.1734 8 0.1844
9 01089 9 0 1087 9 01099 9 0 1120 9 0 1128

10 0.1928 10 0.2796 10 0.3693 10 0 4668 10 0.5518
11 00863 11 00911 11 0.0947 11 00898 11 0.0924
12 00883 12 0.0969 12 0.1068 12 0.1155 12 0.1232
13 0.0742 13 00777 13 0 0770 13 0 0788 13 00738
14 0.0745 14 0.0915 14 0.0977 14 00985 14 0.1073
15 0.0917 15 0.1198 15 0.1477 15 0.1753 18 0.2032
16 0 0677 16 0 0756 16 0.0815 16 0.0866 16 00944
17 0 0588 17 0 0583 17 0 0577 17 00579 17 0 0599
18 0 0583 18 0.0641 18 0.0714 18 0.0794 18 0.0872
19 0 0545 19 0 0496 19 0 0502 19 0 0526 19 00493
20 0.0926 20 0.1387 20 0.1823 20 0.2314 20 0.2758
21 0 0425 21 0 0478 21 0.0486 21 00476 21 0 0493
22 00471 22 0.0837 22 0.0600 22 0.0631 22 0.0694
23 0 0437 23 00409 23 0.0404 23 00404 23 0 0431
24 00453 24 0.0497 24 0.0563 24 0.0605 24 0.0573
25 0.0584 25 0.0712 25 00903 25 0.1072 26 0.1212

Normal Best-Fit Distribution

Application of normal best fit to detect rounding base 10 in the normally 

distributed data containing rounding base 10 shows that the model detects rounding
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base 10 in the second iteration, followed by other bases, such as bases 20 and 25 in 

data set C, and other bases in other data sets. The model detects rounding base 5 in 

data set D and rounding bases 2 and 25 in data set E. It always detects rounding base 

1 at the first iteration in data sets A to D, but the model in data set E detects rounding 

base 2 first, followed by other rounding bases of 10, 5, 20, 15, and 25.

Lognormal Best-Fit Distribution

Detecting rounding base 10 using lognormal best fit produces similar results to 

using normal best fit but with lower probability density function.

Uniform Best-Fit Distribution

Using uniform best fit in data sets A to D produces similar results of using 

normal and lognormal best fit, only with lower probability values. In data set E, 

however, the results are slightly different. No rounding base 25 is detected when 

using uniform best fit. In fact, there is no significant difference in the detection 

rounding base 25 as compared to the detection of rounding base 15 using normal and 

lognormal best-fit distributions.

Modulo Test

The Modulo test results also show the increasing probability values of 

rounding base 10 and its multiple of rounding base 20. This is consistent with the 

NNM finding which shows that NNM can detect rounding base 10.

Moreover, Figure 6.17 shows the higher probability values in the rounding 

bases 10 and 20. However, note also the high probability values of bases 2 and 5, as 

well as of the multiples of base 5 such as bases 15 and 25. This shows the distorting 

power of rounding, which becomes obvious if the rounding level is more than 30%.
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Figure 6.17. M odulo Test Results o f Detecting R ounding Base 10 on a Sim ulated D ata Set
C ontain ing R ounding Base 10 with 50%  Rounding

Modulo Test Results
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Moreover, to compare the robustness of detecting rounding base 10 across 

different rounding levels and best fits used, Table 6.9 also summarises the detection 

power and detection error for all cases. The results can be summed up as follows:

(i) There is always a detection of rounding base 10 in data sets A to E using all 

best fits.

(ii) Normal best fit produces the highest detection power, followed by 

lognormal and uniform.

(iii) The detection power in data sets A to E increase gradually following a 

smooth trend.

(iv) Detection errors are identified from the results in data set C using normal 

and lognormal best fits and in data sets D and E using all best fits. In case of 

detection error, normal best fit also always produces the highest detection 

error as a result of the model detecting rounding bases 2 and 5, the factor

numbers of base 10.
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CHAPTER VII

DETERMINING THE CUT-OFF POINT 

OF ROUNDING BASE DETECTION

7.1. Introduction

Having conducting comprehensive assessments on the NNM that was developed 

in this study by using simulated data sets containing rounding to specific base numbers 

and different rounding magnitudes, one crucial question remains, i.e., how to determine 

the cut-off point of the rounding level at which the model can no longer detect the 

existent rounding base in the data set. The earlier assessments using five different levels 

of rounding from 10% to 50% with a 10% interval in between cannot provide the answer 

on the cut-off point of the rounding base detection.

To shed light on this issue, this chapter develops two different methods for 

determining the cut-off point. The first approach is by using direct testing by applying 

NNM on different kinds of data sets with different rounding levels until the model can no 

longer detect the existence of a rounding base. The second approach is by maximizing the 

existence detection results to come up with a regression model that can predict the cut-off 

point.

From the results of the previous two chapters, it is very clear that the cut-off point 

cannot be determined for one nor for all, but it will depend on three important factors. 

These are the data distribution, best-fit functional distribution used, and base numbers.

Table 7.1 provides the schematic representation of all combinations used in 

determining the cut-off points of rounding base detection. The cut-off points depend on
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the underlying data distributions, best fits used, and base numbers. Accordingly, this 

chapter would identify 2 x 3 x 4 = 24 cut-off points.

On the other hand. Table 7.1b shows the comparison of results of calculating the 

cut-off points using big and small data sets. Note some differences in the cut-off points’ 

results using the two sizes of data sets. The cut-off points calculated from the smaller data 

sets tend to be lower. This implies that detection rounding base in bigger data sets will 

take longer than on the smaller one.

Table 7.1. Schematic Representation of Determining the Cut-off Points for Different Data
Distributions, Best Fits, and Base Numbers



7.2. Determination of the Cut-off Point Using Direct Testing on the Uniform Data
Set

7.2.1. Determining the Cut-off Point for Rounding Base-5

From the results of detecting rounding base 5 on the simulated uniform data sets 

in the previous chapter, one will discover that the starting point for determining the cut-

off point ot a rounding level on which the model can just detect the rounding base 5 

should be more than 10%. The reason is that there is no detection of rounding base 5 in 

data set A (containing 10% rounding). Table 7.2 shows that at an 12% rounding level, 

there is no detection of rounding base 5. Accordingly, the search moves upward to 

rounding level 13%. At this rounding level, the uniform best fit starts to detect the 

existence of rounding base 5. while normal and lognormal best fits still cannot detect the 

existence of rounding base 5. Moving forward to higher rounding levels, the normal and 

lognormal best fits start to detect the existence of rounding base 5 in the data sets 

containing 19% and 29% of rounding, respectively. Therefore, the cut-off points for the 

three best fits of uniform, normal, and lognormal are 12%, 18%, and 28%.

Table 7.2 Determination of Cut-off Point of Rounding Base 5 on the Uniformly Distributed Data Set

Uniform

Normal

Lognormal

1
2

1
2

1
2

1

1

1

09917

09883

09826

1
5

1

1

0.9914
0.9917

0.9880

09823

1
5

1
10

1

0 9898 
09920

0 9864 
0 9866

09807

1
5

1
5

1

0.9895
0.9920

0 9861 
0.9866

0 9804

1
5

1
5

1
25

0.9856
09914

09822
0.9860

0.9765 
0 9768

1
5

1
5

1
6

09851 
0 9912

09817
0.9859

0 9760 
0.9766
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7.2.2. Determining the Cut-off Point for Rounding Base 7

Results ot rounding base 7 detection in the uniform data in the previous chapter 

shows the detection of rounding base 7 in the data set containing 10% rounding (data set 

A) using uniform best fit. Yet, no rounding base 7 is detected in data set A using normal 

and lognormal best fits. Accordingly, the cut-off points for the uniform best fit should be 

less than 10%, while other best fits should be more than 10% but less than 20% since 

rounding base 7 is detected in other data sets using all three best fits.

Initial detection in the data set containing 8% of rounding still results in no 

detection ol rounding base 7. Moving forward to the data set containing rounding base 7 

with 9% rounding level, the uniform best fit starts to detect the existence of rounding 

base 7. Furthermore, observing data sets containing more than 10% rounding level, the 

normal and lognormal best fits detect the existence of rounding base 7 in the data sets 

containing 13% and 20% rounding levels, respectively. Therefore, the cut-off points for 

detecting rounding base 7 in the uniform data sets with the three best fits of uniform, 

normal, and lognormal are 8%, 12%, and 19%. The complete detection results for 

rounding base 7, together with their probability values, are summarised in Table 7.3.
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Table 7.3. Determination of Cut-off Point of Rounding Base 7 on the Uniformly Distributed Data Set

1 Best Fit Iteration 8% 9% | 12% 13% 19% 20%
base pdf base I pd* I base pdf base pdf base pdf base pdf

Uniform 1 1 0.9925 1 0.9919 1 0.9911 1 0.9907 1 0.9880 1 0.9875
2 7 0.9923 7 0.9926 7 0.9926 7 0.9923 7 0.9922

Normal 1 1 0.9891
1

0.9885 1 0.9877 1 0.9873 1 0.9846 1 0.9842
2 14 0.9878 7 0.9877 7 0.9875 7 0.9874

Lognormal 1 1 0.9834
1

09828 1 0.9820 1 0.9816 1 0.9790 1 0.9785
2 14 0.9795 7 0.9793

7.2.3. Determining the Cut-off Point for Rounding Base-11

Results of detecting rounding base 11 in the uniform data in the previous chapter 

shows no detection of rounding base 11 in the data set containing 10% rounding using 

lognormal best fit. This means that the cut-off point for rounding base 11 using 

lognormal best fit will be more than 10% (but less than 20%); while the cut-off points 

should be less than 10% for other best fits. Initial detection in the data set containing 5% 

of rounding base 11 still results in no detection of rounding base 11 that leads to using 

data sets with a higher rounding level. In the data set containing 6% of rounding base 11, 

the model starts to detect the existence of rounding base 11. Therefore, this is the cut-off 

point for using the uniform best fit in this data set.

Moving to the data set containing rounding base 11 with an 9% rounding level, 

the normal best fit starts to detect the existence rounding base 11. Furthermore, observing 

data sets containing more than 10% rounding level, the lognormal best fit detects the 

existence of rounding base 7 in the data sets containing 13%. Therefore, the cut-off points 

for detecting rounding base 11 in the uniform data sets with the three best fits of uniform.
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normal, and lognormal are 5%, 8%, and 12%. The complete detection results for 

rounding base 11, together with their probability values are summarised in Table 7.4.

7.2.4. Determining the Cut-off Point for Rounding Base-10

Results ot detecting rounding base 10 in the uniform data in the previous chapter 

shows no detection of rounding base 10 in the data set containing 10% rounding using 

lognormal best fit. This means that the cut-off point for rounding base 10 using 

lognormal best fit will be more than 10% (but less than 20%); while the cut-off points 

should be less than 10% for other best fits.

Initial detection in the data set containing 5% of rounding 10 still produces no 

detection of rounding base 10. This leads to the use of data sets with a higher rounding 

level. The model starts to detect the existence of rounding base 10 in the data set with 6% 

rounding level. Therefore, this is the cut-off point for using the uniform best fit in this 

data set. Moving forward to the normal best fit, the model starts to detect the existence of 

rounding base 10 in data sets containing a 10% rounding level.
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Table 7 5 Determination of Cut-off Point of Rounding Base 10 on the Uniformly Distributed Data Set

Moreover, observing data sets containing more than a 10% rounding level, the 

lognormal detects the existence of rounding base 10 in the data sets containing a 13% 

rounding level. Therefore, the cut-off points for detecting rounding base 10 in the 

uniform data sets with the three best fits of uniform, normal, and lognormal are 5%, 9%, 

and 12%. Table 7.5 summarises the complete detection results for rounding base 10, 

complete with their probability values.

7.3. Determination of the Cut-off Points Using Direct Testing on the Normal Data 
Sets

7.3.1. Determining the Cut-off Point for Rounding Base-5

Results of detecting rounding base 5 in the normal data in the previous chapter 

shows no detection of rounding base 5 in the data set containing 10% rounding using all

three best fits. This means that the cut-off point for rounding base 5 in the normal data 

must be more than 10% and less than 20%.



Initial detection in the data set containing 13% of rounding still produces no 

detection of rounding base 5. This leads to using data sets with a higher rounding level. In 

the data set with a 14% rounding level, the lognormal and uniform best fits start to detect 

rounding base 5. Moving forward to the normal best fit, the model starts to detect the 

existence of rounding base 5 in data sets containing a 15% rounding level. Therefore the 

cut-off points for detecting rounding base 5 in normal data sets with the three best fits of 

normal, lognormal, and uniform, are 14% and 13%, respectively. Table 7.6 summarises 

the complete detection results for rounding base 5, complete with their probability values.

13 .2. Determining the Cut-off Point for Rounding Base-7

Results of detecting rounding base 7 in the normal data discussed in the previous 

chapter show that no rounding base 7 is detected in the data set containing 10% rounding 

using normal best fit. This means that the cut-off point for this best fit must be more than 

10% but less than 20%. Initial detection in the data set containing 8% of rounding still 

produces no detection of rounding base 7. But at a rounding level of 9%, the uniform best
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fit starts to detect the existence of rounding base 7. The lognormal best fit starts to detect 

the existence of rounding base 7 in the data set with 10% rounding level.

Table 7.7. Determination of Cut-off Point for Rounding Base 7 on the
Normally Distributed Data Set

Best Fit Iteration 8% 9% 10% 11%
base pdf base pdf base pdf base pdf

N orm al 1 1 0.9914 1 0.9913 1 0.9911 1 0.9901
2 7 0.9913

Lognorm al 1 1 0.9887 1 0.9885 1 0 9882 1 0.9875
2 7 0.9884 7 0.9888

Uniform 1 1 0.9668 1 0.9668 1 0 9 6 6 8 1 0.9654
2 14 0.9672 7 0.9671 7 0.9673 7 0.9663

Moving forward to the data sets containing more rounding bases, the normal best 

fit actually starts to detect the existence of rounding base 7 in the data set containing 11% 

rounding level. Accordingly, the cut-off points for detecting rounding base 7 in the 

normal data sets with the three best fits of normal, lognormal, and uniform are 10%, 9%, 

and 8%. The complete detection results for rounding base 7, together with their 

probability values, are summarised in Table 7.7.

73.3. Determining the Cut-off Point for Rounding Base-11

Results of detecting rounding base 11 in the normal data discussed in the previous 

chapter show that there is always detection of rounding base 11 in all data sets using all 

three best fits. This means that the cut-off point for rounding base 11 must be less than 

10% .
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Initial detection in the data set containing 4% of rounding still produces no

detection of rounding base 11, but at rounding level 5%, the uniform best fit starts to

detect the existence of rounding base 11. The normal and lognormal best fits start to

detect the existence of rounding base 11 in the data set with 6% rounding level.

Table 7.8. Determination of Cut-off Point for Rounding Base 11 on the
Normally Distributed Data Set

B est Fit Ite ra tion 4% 5% 6%
base pdf base pdf base pdf

N orm al 1 1 0.992 1 0.9924 1 0.9914
2 11 0.9915

Lognorm a l 1 1 0.9893 1 0 9896 1 0.9886
2 11 0.9889

U niform 1 1 0 9666 1 0 9672 1 0.9664
2 11 9672 11 0.9668

Accordingly, the cut-off points for detecting rounding base 11 in the normal data

sets with the three best fits of normal, lognormal, and uniform, are 5%, 5%, and 4%. The

complete detection results for rounding base l l ,  together with their probability values,

are summarised in Table 7.8.

7.3.4. Determining the Cut-off Point for Rounding Base-10

Results of detecting rounding base 10 in the normal data discussed in the previous

chapter show that there is always detection of rounding base 10 in all cases using all three

best fits. This means that the cut-off points for rounding base 10 for the three best fits

must be less than 10%.
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Initial detection in the data set containing 5% of rounding still produces no 

detection ot rounding base 10, but at rounding level 6%, the uniform best fit starts to 

detect the existence of rounding base 10. The normal and lognormal best fits start to 

detect the existence of rounding base 10 in the data set with 7% rounding level.

Table 7.9. Determination of Cut-off Point for Rounding Base 10 on the
Normally Distributed Data Set

B est Fit Iteration 5% 6% 7%
base pdf base p d f base pdf

N orm al 1 1 0 9 9 2 5 1 0.9915 1 0.9908
2 20 0 9917 10 0.9914

Lognorm a l 1 1 0.9898 1 0 9 8 8 7 1 0.9882
2 20 0.9889 10 0.9889

Uniform 1 1 0.9673 1 0.9665 1 0.966
2 10 0.9668 10 0.9667

Accordingly, the cut-off' points for detecting rounding base 10 on the normal data 

sets with the three best fits of normal, lognormal, and uniform are 7%, 7%, and 6%. The 

complete detection results for rounding base 10, together with their probability values, 

are summarised in Table 7.9.

73.5. Summary and Conclusion

From the discussions in this chapter, some conclusions emerge that can be 

summarised according to two main issues related to base numbers and best fits used in 

the detection. In addition, Table 7.10 summarises the results of determining cut-off points 

for different data sets, best fits used, and base number.

Base Number



(i) In detecting the cut-off points for different rounding bases of prime numbers, it

seems that the higher the number, the easier would be for the model to detect the

rounding base number. Rounding base 11 is easier to be detected than rounding

base 7, while rounding base 7 is easier to be detected than rounding base 5, and so

on.

(ii) For nonprime numbers, the opposite may be the case. The bigger the number,

the more factors would be associated with the number. Earlier results discussed in

the previous chapter show that the existing factor numbers could distract the

rounding base detection, especially in the data sets containing high rounding

levels.

Table 7.10. Cut-off Points for Detecting Rounding Base for Different Data 
Distributions, Best Fits, and Base Numbers Using Direct Testing

Data
Distributions Best Fits

Rounding Base Number (%)

Base 5 Base 7 Base 11 Base 10

Uniform (U)

Uniform (BU) 12 7 5 5

Normal (BN) 18 12 8 7

Lognormal (BL) 28 19 12 12

Normal (N)

Uniform (BU) 13 8 4 5

Normal (BN) 14 10 5 6

Lognormal (BL) 13 9 5 6
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Best Fits Used

(i) Comparing across different best fits, the use of uniform best fit in the uniform

data produces the lowest cut-off point—indicating it to be the most effective in

detecting the rounding base. In fact, the use of uniform best fit in the normal data

sets also produce second best result, only less superior in the case of using

uniform best fit to detect rounding base 5 in normal data.

(ii) The use of uniform best fit in normal data is even more effective in

determining the cut-off point than using normal best fit in normal data.

(iii) The adverse impact of using wrong best fit in the cut-off point is more severe

in uniform data than in normal data.

These findings bring us to an important conclusion—i.e., once the distribution of

data is known to be uniform, then uniform best fit must be used. In case the underlying

distribution is not known, the safest approach seems to be to use uniform best fit in

detecting the rounding bases.

7.4. Determination of the Cut-off Points Using a Regression Model

The second method to determine the cut-off points for a combination of different

data distribution, best fits, and base numbers is by developing regression models of the

relationship between total positive differences in the probability values of detection with

the level of rounding in the data sets. This relationship captured in the regression must be

linear in nature since it is a process of one to one mapping of the level of rounding exists
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in the data set and its probability values (see figure 7.1. for example). The following 

model shows the relationship of the two:

Yt = a  + /3Xt + e b (1)

Where Yt is the level of rounding contained in the data set, Xt is the positive 

difference in the probability values of detection, and £>, is the error term.

The model is developed for each rounding base to be detected and for best-fit 

distribution to be used. Therefore, following the schematic representation presented in 

Table 7.1, there will be 24 regression modelling estimations. They are for two data sets of 

uniform and normal, three best fits of uniform, normal, and lognormal, and four 

rounding bases of 5, 7, 11, and 10.

In the context of determining the cut-off points, the application of the regression 

model above is purely for forecasting, i.e., estimating what would be the value of Y, 

which is the rounding level contained in the data set when the value of X that is the 

positive difference in the probability value of detection, is equal to zero. The positive



difference in the probability value of detection equals to zero reflects that the model can 

no longer detect the rounding bases. Table 7.11 summarises the estimation results using 

the 24 regression models described in equation (1).

Compared to Table 7.10, there is not much difference between the results of using 

direct investigation and regression models, especially in terms of comparing the results 

across different base numbers and best fits. The conclusion arrived at in the previous 

section is still valid with regard to the regression results. On the actual value of the cut-

off point, however, there are some differences but the maximum difference is less then 

5%. Therefore, all discussions in the previous direct investigation method are, more or 

less, also applicable to the regression results.

Table 7.11. Cut-off Points for Detecting Rounding Base for Different Data 
Distribution, Best Fits, and Base Numbers Using a Regression Model

Data Best Fits
Rounding Base Number (%)

Distributions Base 5 Base 7 Base 11 Base 10

Uniform (BU) 11.75 7.26 5.00 5.21

Uniform (U) Normal (BN) 17.53 11.38 7.54 10.06

Lognormal (BL) 29.50 17.71 11.71 13.91

Uniform (BU) 12.36 8.69 5.05 5.70

Normal (N) Normal (BN) 12.63 9.75 6.10 6.88

Lognormal (BL) 12.35 9.41 5.89 6.73
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CHAPTER VIII

APPLICATIONS OF THE MODEL ON REAL DATA SETS

Having assessed the model's performance using simulated data sets in the 

previous chapter, the model is then implemented on real data sets. The first real data 

set is from the religious census conducted in England and Wales in 1851 that referred 

to the number of congregation attending the Church. The main purpose of this 

application is to emulate what Crockett and Crockett (1998) found in detecting 

rounding base on the data set. By doing so, the application proves that the model 

developed in this study works well as it can emulate what modulo test has done before 

but now in the neural network context. They found that the underlying distribution 

function of the data was log normal and that the data contained rounding base 5.

Table 8.1a summarises the results of applying the model on the religious data. 

A summary of applying the modulo-test on the data set is also included at the end of 

the table for easy reference. The modulo test results clearly show that the data contain 

rounding base 5 as can be seen from the significantly increase probability values on 

rounding base 5 and its multiples from 10 to 25.

The results of applying neural network show that, using the lognormal best fit 

in detecting the rounding will produce the best results, hence the underlying

distribution function of the religious census data is lognormal. More particular, 

probability values of detecting rounding base 5, 10, 20 and 25 in the log normal case 

are the highest among the normal and uniform results. Therefore both findings from 

the previous research were confirmed by the neural network modelling results.
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Table 8.1a. Results of Detecting Rounding Patterns in the Number of
People Attending Churches in Census Data 1851

Best Fit 
Distribution

Iteration Base Pdf

Lognormal 1 1 0.5581
2 10 0 .6857
3 5 0 .774
4 20 0.8121
5 25 0.8231

Normal 1 1 0 .5014
2 10 0.582
3 5 0 .6 3 7 5
4 20 0 .6 6 7 3
5 25 0 6 8 3 1

Uniform 1 1 0 .4128
2 10 0 .4253
3 5 0 .4326
4 20 0 .4364
5 25 0 .4389

Modulo Test 1 1
2 0 .7018
3 0.3452
4 0 .3868
5 0 .5833
6 0 .2427
7 0 .1284
8 0.1934
9 0 .0993

10 0.4734
11 0.0588
12 0 .1269
13 0.0584
14 0 .0 7 8 6
15 0 2 0 2 2
16 0 .0 7 6 7
17 0.0366
18 0.0572
19 0 .036
20 0.271
21 0 0 3 2 4
22 0 .0339
23 0.0256
24 0.0471
25 0 .1905



1 he second sets of real data applications are applying the model on the data of 

the Number of cigarettes smoked and Amount of alcohol consumed by secondary 

school pupils (aged 11-15) in England, United Kingdom, in 2001 as a result of the 

first Survey of Smoking, Drinking and Drug Use among. The model applications aim 

at examining the rounding patterns that might be present in the two data sets.

To examine the rounding patterns in the two data sets, the three best-fit 

distribution functions of normal, lognormal, and uniform are used in the detection. 

The main purpose of using all three best fits is twofold: (i) to have the best results of 

detecting the rounding pattern, and (ii) to examine what would be the underlying 

distribution of the data from concluding that the correct best fit distribution function 

used in the detection will result in the highest probability of detection. For this reason, 

the alternative way of examining first the distribution of the data set being examined 

and then detecting the rounding pattern using the appropriate best-fit distribution 

function based on the examination result, is not conducted in this study for it is also 

inefficient.

8.1. Data Characteristics

Before discussing the application results on the two real data sets, it is 

important to know the characteristics of the data under investigation especially those 

that could affect the data quality.

In collecting data on the number of cigarettes smoked, three different time 

references are used in the survey: everyday, weekdays, and weekends. A close 

examination on the data reveals that the three data are not independently collected 

such that the three data will always be consistent among them. In this case, there is a



kind ot built-in cross-check on the number of cigarettes smoked during the three 

different time periods that make them always consistent.

Moreover, given the three survey reference periods used in the data collection, 

data tor everyday consumption is expected to have the best quality in terms of 

smoothness because the number of cigarettes smoked everyday must be taken as the 

average number of the cigarettes smoked during the weekdays and over the weekends. 

Therefore, there is already a built-in control check on the number of cigarettes 

smoked every day as it can be derived from the weekdays and week-end 

consumptions.

The data quality, including the rounding patterns, would be very different if 

the number of cigarettes smoked, for instance, was asked only for a specific period 

such as everyday without any control on the number of cigarettes smoked during the 

weekdays and weekends. Moreover, if a different survey's reference period such as 

last month were used, it would also have produced different data with different 

quality. In general, the longer the survey's reference period, the worse will be the 

quality of the data set. Ceteris paribus, this is because of the errors in the respondent's 

memory recall.

On the other hand, data on the amount of alcohol consumed are grouped into 

14 different categories, based on the six types of alcoholic drinks covered in the 

survey: from beer to alcopops, and the different units of measurements or packaging 

used: pints, half pints, large can, small can, bottle, and glass. T able 8.2 summarizes 

the 14 different classifications of alcoholic drinks used in the survey and examined in

this chapter.



Table 8.1b: Classifications of the Alcoholic Drinks Consumed by
1 u p n o  1 1 1 J  I I I  C J

X I: Beer in pint

lgirniu, unueu Kingdom in zuui 

X8: Shandy in large can
X2: Beer in half pint X9: Shandy in small can
X3: Beer in large can X10: Wine in glass
X4: Beer in small can X I1: Sherry in glass
X5: Beer in bottle XI2: Spirits in glass
X6: Shandy in pint XI3: Alcopops in can
X7: Shandy in half pint XI4: Alcopops in bottle

Unlike in the number of cigarettes smoked, the reference period used in the 

survey for alcoholic drink consumption is in the last 7 days only. No questions were 

asked on the amount of alcoholic drink consumption for everyday, weekdays, and 

weekends as in cigarette consumption. Therefore, by ignoring other factors, the two 

data sets are collected differently which may affect their qualities, especially with 

regard to their rounding patterns that may contain in the data sets.

Moreover, the use of different units of measurement or packaging in the 

survey on alcoholic drinks provides an opportunity to examine the relationship 

between packaging and consumption patterns, especially in their relation with 

rounding patterns. In this context, the result can show that many factors such as 

gender and age can influence some preferences on size and packaging. This issue 

could be useful for marketing and production management since it has a strategic

value.

Recall that the respondents of the survey are pupils aged 11-15; the survey on

cigarette smoking, for instance, found that prevalence of smoking (defined here as 

smoking at least one cigarette per day) was strongly related to age. Only 1% of 11- 

year-olds were regular smokers compared with 22% of 15-year-olds. As with cigarette

smoking, the consumption of alcoholic drinks was also strongly related to age. Only



6% ot 11-year-olds had drunk alcohol in the last week compared with 52% of 15- 

year-olds (Boreham and Shaw 2002).

Moreover, the use ol detailed types of alcoholic drinks with different kinds of 

measurement or package for each alcoholic drink included in the survey can have a 

positive impact on data quality, including on reducing the possibility that the data may 

contain a rounding error to a certain base number. This is because the six different 

types of alcoholic drink and the different type of packages (see the list in Table 8.1b 

for details) serve as an additional probing method in the data collection. By setting 

the questionnaire in this “multi-layer" way, the respondents will less likely make up 

their answers since there will be a cross-consistency check in data collection and 

processing. For instances, a respondent claiming to drink a lot of bottled alcopops 

tends to drink alcopops in can, too, despite the preference of packaging discussed 

before. According to the latest information available, the types of alcohol drink have 

also changed over time. In 2001, beer, lager, and cider were still the most common 

drink (drunk by 70% of drinkers in the last week), but prevalence of alcopops had 

increased in recent years to reach 68% of drinkers in 2001. The proportion of those 

who had drunk spirits in the last week had increased from 35% in 1990 to 57% in 

2001, whereas prevalence of drinking shandy, wine, or fortified wine in the last week 

have decreased in recent years (Boreham and Shaw 2002).

On the other hand, a respondent claiming to drink a lot of wine in glass is 

unlikely to drink a lot of other alcoholic drinks as well since there is a limit for a pupil 

can drink alcoholic drink in the last 7 days without affecting his health or school 

attendance. Moreover, wine and beer, for instance, are usually not considered as a 

substitute for each other despite both containing alcohol. The same also applies to 

other types of alcoholic drinks.
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This “built-in” consistency check in the questionnaire used in the data 

collection will increase the accuracy and, therefore, quality of the data6. In other 

words, the quality of the data will be very different or less accurate if the question is 

only "how many pint/bottle/glass/can of alcoholic drink did you drink during last 

week?" without detailing the types of the alcoholic drink and packages. Given this 

fact and comparing with the way the number of cigarettes smoked data is collected, 

the quality of data on the amount of alcoholic drink consumed is expected to be more 

accurate than the number of cigarettes smoked, since there are no detailed information 

asked on the kinds of cigarettes and types of package of cigarettes smoked by the 

pupils.

8.2. Applications of the model on Cigarettes Smoked Data

Table 8.2 summarises the results of applying the model on the number of 

cigarettes smoked data, which are grouped into three different time periods, namely, 

for everyday, weekdays, and weekends.

The overall results show that:

(i) Detecting rounding base using a normal best-fit distribution function 

produces the highest probability values compared to other results of using 

other best-fit distribution functions. For instance, detecting rounding base on

the everyday cigarettes consumption using log normal best-fit distribution

6 A classic example on the effects of applying the right probing method can also be found in the labour force 
survey, in which a question of "Are you working" or "Did you work last week" will always produce lower 
employment level and therefore higher unemployment rates than their actual ones. These questions will more 
likely be excluding casual and other low or unpaid jobs since people tend to consider that ‘‘working” in the 
questions is only for a good paying job. In this context, the use of additional probing method—such as asking 
what kind of activities conducted by respondent during the last week and then determining whether the 
respondent is actually working or not based on the list of complete activities during the last week—will produce 
much more accurate employment and unemployment statistics, i.e., not understating and overstating employment 
and unemployment rates.



function will not detect the presence of rounding base 5, while the probability 

ot detecting rounding base 5 using normal best-fit distribution function will be 

0.3206. If uniform best-fit distribution function is used, the probability value 

will be 0.0311. For rounding base 10 of the same data set using the same three 

best fit of normal, lognormal, and uniform distribution functions will result in 

the probability values of 0.4535, 0.1808, and 0.0343, respectively.

The earlier finding of implementing the model using a simulated data set 

(Chapter 5) concludes that the use of the most appropriate best-fit distribution 

will guarantee best results, which are reflected in the most number of rounding 

bases detected with the highest probability values. This finding therefore 

suggests that the data on the number of cigarettes smoked by pupils age 11-15 

in England tends to be distributed normally.

(ii) Rounding base 5 and its multiplication numbers seems very dominant as 

the rounding bases detected by the model. The normal best-fit distribution 

function detects rounding base 1 in the first iteration, followed by rounding 

bases 5, 10, and 20 in the second to four iterations. For the log normal best fit, 

the order of rounding base detected in four iterations is bases 1,10, 20, and 15. 

The use of uniform best fit detects rounding bases 1, 5, and 10 in the first, 

second, and third iterations. This finding is further confirmed by the results of 

applying the modulo test, which shows increasing probability values on 

rounding base 5 and its multiple numbers.

(iii) Comparing the results across columns, consumption of cigarette for 

everyday, weekdays, and weekends and across the three best-fit distributions



of lognormal, normal, and uniform shows that the cigarette consumption for

everyday demonstrates the clearest patterns of rounding base as shown by the

highest probability values of rounding base 5 than the other two data sets. In

the everyday consumption data set, the rounding base 1 is detected in the first

iteration with the significant probability value of 0.1223, rounding base 5 in

the second iteration with the significant probability value of 0.3206, rounding

base 10 in the third iteration with the significant probability value of 0.4535,

and rounding base 20 in the fourth iteration with the significant probability

value of 0.4785. This performance cannot be matched by using other best-fit

distribution functions and on other two data sets of weekdays and weekend

consumption.

(iv) The uniform best-fit distribution performs very weakly in detecting the

rounding pattern. The probability detections on some base numbers are very

small, especially on the weekends and weekdays data. On the everyday

consumption data, uniform best fit detects the least number of rounding bases,

i.e. with only rounding bases 1; 5; and 10 in the first, second, and the third

iterations and with the lowest probability values. This finding may be

attributed to the characteristics of the data set, which is not uniformly

distributed.



Table 8.2. Results of Detecting Rounding Patterns in the Num ber o f Cigarettes
Sm oked Data by Using D ifferent Best Fit D istributions

Best Fit 
Distribution

Norm al

Iteration

I C igarettes Sm oked I
| Everyday | W eekdays I W eekend

Base Pdf Base Pdf Base Pdf

1 1 0.1223 5 0.0065 5 0.0043
2 5 0.3206 10 0.0346 10

1
0.0245

3 10 0.4535 1 0.1008 0.0631
4 20 0.4785 20 0.1377 20 0.1044
5 15 0.1592 15 0.1261

1 1 ~ 0 . 0907" 5 0.0042 5 0.003
2 10 0.1808 10 0.0175 10 0.0131

Lognorm al
3 20 0.2293 2 0.0433 2 0.0279
4 ; 15 0.27 15 0.0659 20 0 0441
5

�  � � �  — —
17

� � �
0.2738 20 0.09 15 0.0691

6 25 0.2749 25 0.0913 25 0.0718
7 23 0.2758

1 1 0.0229 5 0.0007 5 0.0005
2 5 0.0311 10 0.0011 10 0.001

Uniform 3 10 0.0343 1 0.0016 1 0.0013
20 0.0017 20 0.0016

15 0 0016

1 1
� � »

1 0.9999 1 1.0005

2

— ^^^—.———̂^ ———— 

0.5595 2 0.6232 2 0.6485
3 0.2833 3 0.2901 3 0.2878
4 0 2888 4 0.2904 4 0.3273
5 0.4771 5 0.7049 5 0.7682
6 0.1377 6 0.1024 6 0.1167
7 0.0596 7 0.0408 7 0.0295
8 0.057 8 0.0404 8 0.0454
9 0 0415 9 0.0159 9 0.0146
10 0.3054 10 0.4527 10 0.5099

M odulo Test

11 0.0286 11 0.0041
0.0344

11 0.0063
0.031312 0.068 12 12

13 0.0514 13 0.0083 13 0.0084
14 0.0137 14 0.0061 14 0.0066
15 0.1091 15 0.1756 15 0.2004
16 0.0101 16 0.0038 16 0.0047
17 0.0433 17 0.0087 17 0 0084
18 0.0188 18 0.0087 18 0.0087
19 0.0094 19 0 0004 19 0.0004
20 0.1486 20 0.2027 20 0.2546
21 0.0022 21 0 21 0.0004
22 0.0127 22 0.0015 22 0.0011
23 0 0228 23 0.0015 23 0.0022
24 0.0014 24 0.0004 24 0.0004
25 0.0202 25 0.0279 25 0 0437



8.3. Applications of the model on Alcohol Consumption Data

Tables 8.3 to 8.5 summarise the results of applying the model on alcohol 

consumption data, which are grouped into 14 classifications based on the types of 

alcoholic drinks and the different kinds of packages or measurements.

The overall results show that:

(i) The lognormal best-fit distribution detects rounding bases with highest 

probability values, suggesting that the data sets tend to be distributed as 

lognormal. This distribution is different with the cigarettes consumption data 

which is distributed normally.

(ii) The uniform best-fit distribution performs very weak in detecting the 

rounding pattern. The probability detections on some base numbers are very 

small, even close to zero values. This can be observed in all kinds of alcoholic 

drink data of X 1 to X 14.

(iii) The patterns of rounding bases detected by the model for all types of 

drinks using different best fit distribution functions seem very unclear with the 

probability values mostly very small. If the probability values of detection are 

relatively high, the combinations of the base numbers identified are hard to 

believe to represent any rounding pattern. The applications of lognormal best 

fit on the variables XI, X3, X4, X5, X6, X10. X I1, X12, X13, and X14, for 

instance, produce relatively high probability values, i.e. more than 50%, but 

the combinations of the base numbers detected are very inconsistent, making it 

very hard to conclude that there is a rounding pattern in the data sets.

(iv) Further examination using modulo test also shows the unclear pattern of 

rounding bases in all types of alcoholic drinks examined in this study. Only 

alcoholic drinks of X3, X5, X10, and XI2 show a sign of rounding base



detection but again the probability values of the detections are very small and 

the base numbers detected are inconsistent, making these hard to be classified 

as a rounding pattern. For example, it is simply impossible for a data set to 

contain rounding errors to a consecutive series of base numbers such as from 

20 to 25.

The results of detecting rounding base in the alcoholic consumption are, 

therefore, very different with the finding on the cigarettes consumption data, which 

shows a clear and consistent rounding base pattern. The overall finding seems to 

suggest that no rounding pattern that can be identified in the data sets of the alcohol 

consumption.

To some extent, this finding may be attributed to the way the data are 

collected, which is discussed before in Section 8.1. Basically, this is a positive impact 

of using detailed probing method in the data collection that significantly improves the 

quality of the data by primarily avoiding any kinds of “estimation’' from the 

respondents’ side. In addition to the detailed probing method, alcoholic consumption 

was only asked in one reference period of kkthe last 7 days,” unlike in the cigarettes 

smoked everyday, during weekdays, and weekends. Therefore, there must be a kind of 

smoothing process from the respondents’ side, i.e., in the form of “averaging” 

alcoholic drink consumption during the last 7 days. If the question were asked only 

for a specific time such as daily or last weekend or to follow the cigarettes smoked 

everyday, during weekdays and weekends, for instance, the quality of the data and 

therefore the rounding pattern would be very different.

In addition to the general finding above, there is also an interesting finding 

from the applications of the model on alcohol consumption data. Comparing rounding 

detection results of variables XI and X2, variable X3 and X4, variables X6 and X7,



and variables X8 and X9 show that the measures of packages of the alcoholic drink 

have no important role or cannot be examined as mentioned and intended before. The 

different package such as a pint and half pint, and large can and small can for the 

same products, produce the same results of no rounding patterns. Therefore, whether 

respondents may prefer one particular package compared to the others is not clearly 

indicated. In addition to respondents’ income and spending power, respondents' 

preference to one particular size, which is usually related to price, might be related to 

the respondents' characteristics such as age and buying place, etc. As commonly 

observed, young people tend to drink less expensive and sophisticated drink such as 

wine but they drink more popular drinks such as Alcopops and Beer.



Table 8.3. Results of Detecting Rounding Patterns on Variables X1 to X6 of Alcohol Consumption Data by Using
Different Best Fit Distributions

Alcohol Consumed |
Best Fit Iteration x1 x2 | x3 x4

____________________________________________*5 ____________________________________________I
Distribution Base Pdf Base Pdf Base Pdf Base Pdf Base Pdf

- —

1 0839
■  ■ .

r 0.4246 1 ""06293” 1 0.6427 1
■ ■  — •  •  —  ■

0.9451
2 10 0.8426 6 0.4262 8 0 646 8 0 6433 10 0.952

l a w s i M M M a a n ^ M B a a H a a a a H ^ a

3 12 0 8451 8 0.4273 10 0 649 9 0.6437 12 0.955
4 15 0.8455 7 0.4282 18 0.6492 10 06439 15 0.9559

Lognormal 5 17 0.8456 11 0.4282 21 0.6492 12 0.644 20
i  «  ■ "  i  ■  ■ m  ■  --- ■  — —

0.956
6 14 0.8456 10 0.4282 16 0.6493 11 0.644 16 0.9562
7 18 0 6493 22 0.9562
8 18 0.9562
9 21 0.9562

_

1 0.0134 T 0.0002 1 0.0161 1 0.001 1 0.0485
2 10 0.0135 6 0.0002 14 0.0161 8 0.001 12 0.0486
3 12 00135 7 0.0002 15 0.0161 9 0.001 15 0.0486
4 13 0.0135 8 0.0002 16 0.0161 10 0001 14 0.0486

Normal 5 14 0.0135 11 18 0.0161 12 0.001 13 0.0486
6 15 0.0135 10 0.0002 21 0.0161 11 0.001 16 0.0486
7 17 0.0135 9 0.0002 24 0.0161 7 0.001 18 0.0486
8 16 00135 5 0 0002 25 0.0161 6 0.001 20 0 0486
9 11 0.0135 4 0.0002 23 0.0161 22 0 0486
10 22 0.0161 21 0.0486

_

1 0 1 0
■

1 0 1 0 1 00001
2 10 0 6

.

0 21 0 8 0 12 00001
3 12 0 8 0 24 0 9 0 15 0.0001
4 9 0

I  ■  ■  ■ ■ ■  I  ■  ■  I

7 0 22 0 10 0

Uniform 5 15 0 1 0 23 0 12 0
6 13 0

» -  ■ ■ I  ■ ■ B ^ —

25 0 1 0
7 14 0

II ■  ■  -  ■  I  ■

14 0
8 1 0 16 0
9 18 0
10 15 0

_

1 1 1 1 1 1 1 1 1
2 04668 2 0.3109 2 0.5336 2 0.3205 2 0.4882
3 0.1919 3 0.1154 3 0.1766 3 0.141 3 0.25
4 0.128 4 0.0705 4 0.2015 4 0.0641 4 0.1401
5 0 0711 5 0.0224 5“ 0.0672 5 0.0256 5 0.1047
6 0.045 6 0.016 6 0.0557 6 0.0064 6 0.0602

; 7 0.0237 7 0.0096 7 0.025 7 0 7 0.0288
8 00166 8 0.0128 8 0.0461 8 0.0064 8 0.017
9 0 0095 9 0 9 0.0038 9 0.0064 9 0.0092
10 00142 10 0 10

■ ' -  ■  — — ^

0.0192 10
■ ■  —  -  ■  ■

0.0064 10 0.0236
11 0 11 0.0032 11 0.0038 11 0 11 0.0052
12 0.0118

■ ■  “  1
12 0.0077 1

--- ---------------------------- ■ -

12 0.0064_ 12 00118
Modulo Test 13 0 0024 13 0 13 0.0013

14 00024 14 0 0038 14 0.0013
15 0.0047 15 0.0019 15 0.0065
16 0 16 00038 16 0.0026
17 0.0024 17 0 17 0

18 0.0038 18 0.0013
19 0 19 0
20 0.0019

|

■
20 0.0039

21 0.0019
__________________________________________

21 0
22 0

|

-  -  i

22 0.0013
23 0

1 a

24 0.0019
25 0
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Table 8.4. Results o f Detecting Rounding Patterns on Variables X6 to X10 of Alcohol Consumption Data by
Best ________

_______________  Consumed
Best Fit 

Distribution

Lognormal

Normal

Iteration I x6 x7 x8 1 x9 I x io
Base Pdf Base Pdf Base Pdf Base Pdf Base Pdf

- ■ ■  |

1 1 0.7398 1 0.2484 1 0.18 1 0.4768 1 0.6287
2 4 0 7442 7 0.2508 4 0.2035 6 0.4931 10 0.9295
3 7 0.7478 6

U  —  ■  ■
0.2528 5 0.2066 8 0.4975 15 0.9297

4 8 0.7499 8 0.2532 6 0.2076 11 0.498 20 0.9297
5 10 0.7509 7 0.2084 14 09297
6 25 0.9297
7 24 0.9297
8 23 0.9297
9 22 0.9297
10 21 0 9297

1 1 0.0031 1 0 1 0 1 0.0029 1 0.007
2 7 0 0031

■ * * * * * * * » » " " " " * * » ^ * ™ * * J «

6
B ^ —  .  —  —

0 6 0 8 0.0029 13 0.007
3 8

■ ■

0.0031 7 0 7 0 9

O)CN§o

12 0.007
4 10 0.0031 8 0 5 0 11 00029 14 0 007
5 9 0.0031 5 0 4 0

■  ■ ■  ■ ■ ■ ■ ■ ■ ■  - 
10 00029 15 0.007

6
1 ■  ■ ■  I 4 0 3 0 20 0.007

7
_________________

3 0 2 0 ! 21 0.007
8 2 0 22 0 007
9

> ■  —  —  - 1

23 0.007
10 24 0.007

1 1 0 1 0 1 0 1 0 1 0
2 7 0 7 0 4 0 6 0 20 0
3 8 0 5 0 5 0 8 0 16 0
4 10 0 6 0 1

•  B iB B V B ^ B i^ B B ^ iB B B ft^ B I o ; 7 0 17 0
5 1 o 1 0

* * ® * ® , * , —* * * * * *

9 0 18 0
6 1 0 19 0
7

■  ■  ■  ■ ■ ■  4 “  “

21 0
8 22 0
9 23 0
10 24 0

■

■ — ■ ■ ■ ■ ■  - ....................I

1
* * * ^ i

1 1 1 1 1 1 1 1 1
2 4203 2 0.2925 2 0.2868 2 04189 2 0.5076
3 0.1014 3 0 0566 3

'

0 0662 3 0.1486 3 02085
4 0.1014 4 0.0566 4

• --------------- ■ .  ■  ■ ■  ■ ■ ■
0 0809 4 0.1216 4 0.0952

5
------------------------------------ 1

00154 5 0.0189 5 0.0294 5 00473 5 0.0634
6 o I 6 00189 6 0.0147 6 0 0473 6 0.0453
7 001 45 7 0.0283 7 0.0147 7 0.0135 7 0.0287
8 0.0145

------------------------------------------- J
8

* * * *

0 0094 8 0.0203
" B B I B B B B ^ B B B B B B

8 00151
9 0

-  -  -

9
1 — -  —  -  ■ ■  ■ -

0.0068 9 0 0045
10 0.0145 10 0 10 0.0151

Test
11 0.0068 11 0.0015

•  M ^ — B B B B B M .
12 0.0015

r

13 0 0015
■ ^ B B B b ^ b . » ^ b b b b ^ ^ b b b b b

k H  .  ----- — —v —

14 0 003
,  —  -  ■ ----------- ------  -

15 0.0045
-  —  -  'I '  -  —  ■ ■  — | '» * ■ ..................................—  *

16 0
17 0
18 0

r - ™ * * *

19 0
20 0.0045
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22 0
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Table 8.5. Results of Detecting Rounding Patterns on Variables X11 to X14 of Alcohol
Consumption Data by Using Different Best Fit Distributions

Best Fit 
Distribution Iteration

[ Alcohol Consumed I
| x1 1 I______ x12 II X13 II x14

Base Pdf Base Pdf Base Pdf Base Pdf

Lognormal

1 1 0.7087 1 0 9249 1 0.6423 1 0.9342
2 10 0.7093 10 0.9332 10 0.6453 12 09373
3 12 _0.9342 9 0.6474 10 0.939
4 15 0.9346 8 0 6484 15 0.94
5 20 0.9346 12 0.6487 20 0 9401
6 25 0.9346 24 0.9401
7 23 0.9346 23 09401
8 24 0.9346 22 0.9401
9 22 0 9346
10 21 0.9346

Normal

— ■ ■ ■

1 1 ~(M)399_ 1 0.0592 1 0.00 65
65

1 0.0672
2 6 0 0401 12 0.0593 8 0.00 12 0.0674
3 10 0 0401 13 0.0593 9 0.0065 15 0.0674
4 9 0.0401 15

14
0.0593 10 O'• J65 14 0.0674

5 8 0.0401 0.0593 12 0.0065 16 0.0674
6 7 0.0401 20 0.0593 11 0. E 65 17 0.0674
7 22 00593 18 0.0674
8 23 0.0593 20 0.0674
9

.................................. ■  1 1 ■  ■ ■ — ■  ■ ■

24 0.0593 24 0.0674
10 25 0.0593 2 1

0.0674

1 1 0 1 0 1 0 1 0.0001
2 6

10
0 21 0 10 0

-------------------------

15 0.0001
3 0 22 0 8

-  -
0 20 0.0001

Uniform

4 7 0 23 0 9 0 13 0.0001
5 1 0 24 0 12 0
6 25 0 1 0
7 15 0
8 20 0
9 14 0
10 16 0

1 1 1 1 1 1 1 1
"’  ■  ■ -

2 0 4122 2 0.5155 2 0.497 2 0.495
3 0.1757 3 0.2547 3 0.1361 3 0.254
4 0.1081 4 0.1584 4 0.1183 4 0.1538
5 0 0541 5 0.1046 5 0 0533 5 0.1079
6 0.0203 6 0.0569 6 0.0237 6 0.0581
7 0 7 0 0186 7 0 7 0.0337
8 0 8 0.0217

-  ■  ■  ■ - — » ■ ■ ■ ■

8 00268
9 0 9 0.0083 9 0.0107

10 0.0068 10
11

0.0238
0.0062

..................................................................

10
11

00191
00038

12 0.0083
■  ■■

12 0.013
Modulo Test 13 0 0041 

0.001
13 0.0008

14 0.0008
15 0 0052 15 0.0069
16 0 16 0.0008
17 0 17 00008
18 0 18 00008
19 0

— — — — —- — — -— - - —

19
—  —  »  ■  ■  -  m  m j

0
1

20 0.0021 20 0.0031
21 0 21 0
22 0 22 0
23 0 23 J 0
24 0 24 0.0008
25 0



CHAPTER IX

MAIN FINDINGS AND FURTHER RESEARCH

9.1. Summary and Main Findings 

• Rounding Issues

Unspecified counting practices creating rounding to the nearest “convenient” or 

"based" number and “prediction" of digit preference, are basically estimated data that 

can have serious consequences on data quality. This is an important issue that attracts 

research interests.

Statistical methods for analysing missing-data are commonly used for dealing 

with rounded data, but they are not missing data. Rounded data are shifted or lumped 

to certain based number(s) reflected by rounding process or enumerators' counting 

behaviour. The missing-data technique application to replace may therefore further 

distort the rounded data.

Accordingly, a new methodology to deal with rounded data is needed. Crockett 

and Crockett (1998) introduced the modulo test model to detect and analyse rounding 

contained in a data set. Whilst the model was sufficient for its original purpose, it has 

constraints in dealing with large data sets. Its implementation is also complex 

involving a series of statistical tests. Therefore, a new technique that could overcome 

the drawbacks would be useful. The model developed in this study fills this gap and 

serves the purpose.

Modelling Development

The study develops a neural network model to detect, analyse, and quantify the 

periodic structure present in a data set because of rounding. The model is developed



using Artificial Intelligent (AI) technique of Radial Basis Function (RBF) neural

network. The modelling development and applications can be summarised as follows:

(i) considering a data set as having rounding following certain patterns, the main 

concern here is how to employ pattern-recognition method to analyse the data set;

(ii) developing Al based pattern-recognition techniques to recognize and classify 

rounding as a spike in pattern characteristics;

(iii) developing neural network to detect the existence of rounding patterns or 

periodic structure in a data set;

(iv) assessing the model's goodness of fit by applying on simulated data sets 

containing rounding to certain base numbers of different rounding levels, as well 

as comparing with modulo test results; and

(v) applying the model on real data sets of the religious census data and the data 

on cigarettes smoked and alcohol consumed. In all cases, the modeling results are 

also compared with the benchmark of modulo test results;

• Modelling Assessments

Theoretical and numerical assessments using specific and simulated data sets 

are carried out to clarify the model's behaviour in detecting rounding. These include 

developing robustness indicators comparable across different scenarios based on a 

combination of data distribution, best fits used in the detection, and rounding bases 

numbers.

The first assessment using specific data set is to check the model's ‘logical 

framework” or “brain” by emulating the modulo test results. The second assessment is 

for a “positive verification” by detecting different kinds of rounding base numbers 

systematically introduced in uniformly and normally distributed simulated data sets.



In all the assessments, the model performs very well, making it suitable for 

implementations on real data sets. The model detects the existing rounding bases and 

the overall results are consistent with initial expectations, hence confirming the 

model's goodness fit.

• Lessons Learned

The assessment results using simulated data sets show the importance of using 

the right best-fit in detecting rounding. Using the wrong best-fit could result in:

(i) Detecting the correct rounding bases but with lower probability values of

detections;

(ii) Detecting the correct rounding bases but with a different order of detections in

the iterations;

(ii) Detecting the wrong rounding base number such as the factor number. Instead

of detecting the rounding base 10, the model detects rounding bases 2 and 5;

(iii) Failing to detect any rounding base number actually present in a data set; and

(iv) Different combinations of (i) to (iii) above.

Given the importance of using the right best-fit, the suggested procedure for 

real applications is therefore:

(i) Explore the data set to find its underlying distribution function.

(ii) Use the right best-fit consistent with the data exploration results.

(iii) Apply the model to detect rounding base number.

(iv) Correct the data distribution by taking the findings in (iii) into account.

The suggested procedure is however assuming that only a single detection is 

allowed. If one can afford to use various best-fits in the detections, the underlying 

distribution of the data set under investigation will be reflected in the best results.
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Therefore, the exploration to find its underlying distribution function of the data set 

(i.e. the first step) is not really necessary.

Moreover, modeling application on data significantly distorted by rounding 

(i.e. more than 40%) should be carried out very carefully since the results may contain 

inconsistent detection patterns such as detecting not only the actual rounding base 

number but also its factor numbers. On the other hand, a low level of rounding in a 

data set may also create unclear detection patterns. Therefore, determining the cut-off 

points on which the model can no longer detect the existing rounding in a data set is 

important. This study estimates 24 cut-off points of each possible case using direct 

investigation and regression methods. The estimated cut-off points range from 4% to 

28% of rounding levels that depend not only on the data size and distribution but also 

on the best fit used and rounding base numbers.

On the base number, detecting prime base numbers seems easier than non-

prime base numbers because of unique characteristics of the prime numbers. The 

higher the number, the easier is the detection, i.e. detecting rounding base 11 is easier 

than base 7, and so on. For the non-prime number, the opposite is the case, as the 

bigger the number, the more would be the factors associated with the number. 

Detecting rounding base 10, for instance, may also detect its factor numbers of 5 and 

2, especially if the data sets contain significant rounding.

Comparing results across different best fits, applying uniform best fit on 

uniform data produce the best result and the lowest cut-off point, indicating the most 

effective detection. Using uniform best fit on normal data still produces the second 

best result since it is more effective in determining the cut-off point than using normal 

best fit on normal data. Moreover, the consequences of using wrong best fit are more 

severe on uniform data than on normal data. This suggests that for uniform data the



uniform best fit must be used. The uniform best fit can also safely be used in case the 

data distribution is not known.

As a rule ot thumb, the model seems to perform best on data sets containing 

10% to 40% rounding. On the latter, the model can detect the rounding well but the 

pattern might be distorted by its factor numbers. The modulo test method also suffers 

from the same problem.

The summary below provides a result comparison of modelling applications 

on simulated uniform and normal data containing certain rounding bases of different

levels using three different best fits of uniform, normal, and lognormal.

D a ta
D is tr ib u tio n B a s e  5 B a s e  7 B a s e  11 B a s e  10

U n i f o r m

(i) Detecting no 
rounding base 5 on 
data sets A and B 
with lognormal 
best fit;
(ii) Correct best fit 
produces the 
highest detection 
power, followed by 
using normal and 
lognormal best fits;
(iii) Detection 
power increases 
significantly on 
data set E; and
(iv) No detection 
error

(i) Detecting no 
rounding base 7 on 
data set A using 
normal and 
lognormal best fits;
(ii) Uniform best fit 
produces the 
highest detection 
power, followed by 
normal and 
lognormal best fits.
(iii) Detection 
power increases 
significantly on 
data set E; and
(iv) No detection 
error

(i) Detecting no 
rounding base 11 
on data set A using 
lognormal best fit;
(ii) Uniform best 
fit produces the 
highest detection 
power, followed 
by normal and 
lognormal;
(iii) Detection 
power on data sets 
A to E increases 
gradually 
following a 
smooth trend; and
(iv) No detection 
error

(i) Detecting no 
rounding base 10 on 
data set A using 
lognormal best fit;
(ii) Uniform best fit 
produces the best 
results, followed by 
normal and lognormal;
(iii) Detection power on 
data sets A to E 
increases gradually; and
(iv) Detection errors on 
data set C using 
lognormal best fit and 
on data sets D and E 
using all best fits.

N o r m a l

(i) Detecting no 
rounding base 5 on 
data set A using all 
best fits;
(ii) Normal best fit 
produces the 
highest detection 
power, followed by 
lognormal and 
uniform;
(iii) Detection 
power on data sets 
A to E increases 
gradually; and
(iv) No detection 
error.

(i) Detecting no 
rounding base 7 on 
data set A using 
normal best fit;
(ii) Normal best fit 
produces the 
highest detection 
power, followed by 
lognormal and 
uniform;
(iii) Detection 
power on data sets 
A to E increases 
gradually; and
(iv) No detection 
error

(i) Detecting 
rounding base 11 
on all cases;
(ii) Normal best fit 
produces the 
highest detection 
power, followed 
by lognormal and 
uniform;
(iii) Detection 
power on data sets 
A to E increases 
gradually; and
(iv) No detection 
error.

(i) Detecting rounding 
base 10 in all cases;
(ii) Normal best fit 
produces the highest 
detection power, 
followed by lognormal 
and uniform;
(iii) Detection power on 
data sets A to E 
increases gradually; and
(iv) Detection errors on 
data set C using normal 
and lognormal best fits 
and data sets D and E in 
all cases.
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• Modelling Applications on the Real Data Sets

Applying the model on the religious census data confirms the earlier finding 

that the data contain rounding base 5. Other applications on data of cigarettes smoked 

and alcohol consumed by secondary school pupils (aged 11-15) in England (result of 

the first Survey of Smoking, Drinking and Drug use among secondary school pupils 

conducted in England, UK in 2001) show good detection results. The number of 

cigarettes smoked data seems to contain rounding to base 5, while the amount of 

alcohol consumed data contain no rounding.

Given the respondents and enumerators of the two data sets are the same, the 

different results can be attributed to the different ways of collecting the two data sets. 

The number of cigarettes smoked was asked during weekend, weekdays, and 

everyday without any reference to the cigarettes types and their different packages. 

On the other hand, the alcohol consumption was asked for different types of alcoholic 

drinks and different packages such as a pint and half pint, large and small cans, glass, 

and bottle. Therefore, the data quality of the cigarettes smoked is inferior than alcohol 

consumption due to the questionnaire designs.

Using different packages of the same products in a data collection brings to 

important issues of packaging role and that makes some people prefer one particular 

package than others. If people are indifferent about different packages, the rounding 

detection between the two different packages of the same product would not be much 

significant. Unfortunately, no rounding is detected in the data so that this issue cannot

be examined further.



9.2. Further Research

The model developed in this study is useful for analysing rounding patterns in 

a data set. Its applications on real data shows the importance of using the correct best- 

fit and a built-in consistency check in a data collection to increase the data quality.

From a practical point of view, the modelling development and applications 

are still relatively cumbersome. Further refinements would therefore be desirable, 

especially in integrating them in an interactive way of a user-friendly modelling tool. 

The integration could also include data exploratory analysis and smoothing process so 

that the integrated system can examine the rounding patterns and come up with a 

refined data free from rounding. The modeling applications can also be implemented 

in different areas where rounding is common and can have significant effects.
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APPENDICES

Appendix 1:

function net=EnewpnnCP(p,t,spread)

if nargin < 2, errorCNot enough input arguments'), end

% Defaults
if nargin < 3, spread = 0.1; end

% Dimensions 
[R,Q] = size(p);
[S.Q] = size(t);

% Architecture
net = network(l,2,[l;0],[l;0],[0 0;1 0],[0 1]);

% Simulation
net. inputs} 1} .size = R;
net.inputWeights {1,1} .weightFcn = 'disf;
net.layers{ 1} .netlnputFcn = 'netprod';
net.layers{ 1} .transferFcn = 'radbas';
net.layers{ 1 }.size = Q;
net.layers{2}.size = S;
net.layers{ 2}. transferFcn = 'ECompProb';

% Weight and Bias Values
net.b{ 1} = zeros(Q, 1 )+sqrt(-log(.5))/spread;
net.iw {l,l} = p'; 
net.lw{2,l} = t;



Appendix la:

function a = ECompProb(n,b)

if nargin < l.errorCNot enough arguments.'); end 

% FUNCTION INFO
if isstr(n) 
switch (n) 
case 'deriv',

a =
case 'name', 

a = 'Competitive'; 
case 'output', 

a =  [0 maxn]; 
case 'active', 

a =  [-inf inf]; 
case 'type', 

a = 2;

% **[ NNT2 Support ]** 
case 'delta', 

a = 'none';
nntobsu('compet','Use COMPET("deriv") instead of COMPET("delta").')

case 'init', 
a = 'midpoint';

nntobsu('compet','Use network propreties to obtain initialization info.') 

otherwise
error('Unrecognized code.') 

end 
return 

end

% CALCULATION

% **[ NNT2 Support]** 
if nargin =  2

nntobsu('compet','Use COMPEr(NETSUM(Z,B)) instead of COMPET(Z,B).) 
n = n + b(:,ones( 1 ,size(n,2))); 

end

[S,Q] = size(n);
[maxn,indn] = max(n);
b = sparse(indn,l ;Q,maxn,S,Q); %outputs of maximum values
%a=n; %outputs of all values
a = [[vec2ind(b)] [maxn]]; %base number and probability outputs



Appendix 2:

function Y1 = Enormall(DUI,base_unit)

%Arguments
% D U I: a column vector of data under investigation, the values are [0 1 ] 
% pi : a column vector of best fit log normal distribution of the DUI 
% base un it: a row vector of investigated base unit

if nargin < 2, errorCNot enough input arguments'),end
Ind ist = Enormfit(DUI);
pl=ln_dist(:,3);

P=Etrainingdata(DUI,base_unit,pl);
[r,c]=size(P);
s=P;
TcKlilic)';
T=ind2vec(Tc);
net=EnewpnnCP(s,T);
Yl=sim(net,DUI);

%Dimension
%b=size(base_unit,2); %number of base unit 
%n=size(DUI,l); %number of data under investigation 
%d=zeros(n,b); %assingning dummy variable

%Creating dummy variable 
%for j= l:b
% for i=base_unit(j):base_unit(j):n
% d(ij)=l;
% end 
%end

%d = Edummydata(base_unit,DUI);

%Creating training data 
%for i=l:j 
% P(:,i)=pl.*d(:,i);
%end



Appendix 3:

function Y1 = Elnl(DUI,base_unit)

% Arguments
% DUI : a column vector of data under investigation, the values are [0 1 ] 
% pi : a column vector of best fit log normal distribution of the DUI 
% base un it: a row vector of investigated base unit

if nargin < 2, errorCNot enough input arguments'),end 
ln d is t = Elognormfit(DUI); 
pl=ln dist(:,3);

P=Etrainingdata(DUI,base_unit,p 1);
[r,c]=size(P);
s=P;
Tc=(l:l:c)';
T=ind2vec(Tc);
net=EnewpnnCP(s,T);
Yl=sim(net,DUI);



Appendix 4:

function Y1 = Euniforml(DUI,base_unit)

% Arguments
% DUI : a column vector of data under investigation, the values are [0 1 ] 
% pi : a column vector of best fit log normal distribution of the DUI 
% base un it: a row vector of investigated base unit

if nargin < 2, erroK'Not enough input arguments'),end 
uniformdist = Euniformfit(DUI); 
pl=uniform_dist(:,3);

P=Etrainingdata(DUI,base_unit,p 1);
[r,c]=size(P);
s=P;
Tc=(l:l:c)';
T=ind2vec(Tc);
net=EnewpnnCP(s,T);
Yl=sim(net,DUI);



Appendix 5:

function P = Etrainingdata(DUI,base_unit,pl)

%if nargin < 2, errorCNot enough input arguments'),end 

%Dimension
b=size(base_unit,2); %a vector which contains base unit elements
n=size(DUI,l);
d=zeros(n,b);

for j=l:b
for i=base_unit(j):base_unit(j):n

d(ij)=U
PCj)=pl*d(:j);

end
end



Appendix 6:

function n ld is t = Enormfit(DUI)

% Generates best-fit normal distribution.
% Prints logm ean, log stdev & correlation coefT (as goodness-of-fit).
% ...
% Description: normally-random real arrays.
% Call: nl dist = norm fit (fd data)
% Parameters: nl dist is the returned probability vector.
% - col 1 - size(x-axis)
% - col 2 - best-fit normal prob dist (normalised)
% - col 3 - scaled col-2 (same total frequency as fddata))
% fd data is the input (observed freq dist)
% - if one col, assumes frequencies at unit-size steps
% - if two col, assumes size-ffeq x-y pairs
% in order of increasing size
%
% obtain two col-vectors; sizes 1 :max_size, frequencies 
% Author: Robin Crockett (robin.crockett@northampton.ac.uk)

[n_r,n_c] = size(DUI); 
if(n_c—  1) 

m axsize -  n r;
o size = (1 :n_r)'; % size (x-data)
o freq  = DU I; % frequency of size

else
m axsize = DUI(n_r,l); 
o s iz e  = (1 :max_size)'; 
o freq  = zeros(max_size, 1);
f_k = 1;
for s i = 1 :max size 

for f_i = f_k:n_r 
if(s_i=DUI(f_i, 1));

o_freq(s_i) = DUI(f_i,2); %results are the same as fd data 
f_k = f_i;
continue;

end
end

end
end

% normal stuff 

f  tot = sum(o freq);

o mean = sum(o_freq.*o_size)/f_tot; % log mean 
o szmn = o size - o mean;
o varc = sum(o_freq.,|,o_szmn.A2)/f_tot; % log variance



% log stdevosdev  = sqrt(ovarc);

% op stuff

tps = o_sdev*sqrt(2*pi);

n ld is t = zeros(max_size,3);
nl_dist(:,l) = (1 :max_size)'; % all sizes 1 :max_size
for s_i = 1 :max_size
nl_dist(s i,2) = exp(-(((s_i-o_mean)/o_sdev)A2)/2)/tps; 

end
nl_dist(:,2) = nl_dist(:,2)/sum(nl_dist(:,2));
nl_dist(:,3) = nl_dist(:,2)*f_tot;



Appendix 7:

function ln d is t = Elognormfit(DUI)

% Generates best-fit lognormal distribution.
% Prints logm ean, log stdev & correlation coeff (as goodness-of-fit).
% ...
% Description: Lognormally-random real arrays.
% Call: ln dist = lognorm fit (fddata)
% Parameters: ln dist is the returned probability vector.
% - col 1 - size(x-axis)
% - col 2 - best-fit lognormal prob dist (normalised)
% - col 3 - scaled col-2 (same total frequency as fd data))
% fd data is the input (observed freq dist)
% - if one col, assumes frequencies at unit-size steps
% - if two col, assumes size-freq x-y pairs
% in order of increasing size
% obtain two col-vectors; sizes 1 m axsize , frequencies 
% Author: Robin Crockett (robin.crockett@northampton.ac.uk)

[n_r,n_c] = size(DUI); 
if(n_c= l) 

m axsize = n r ;
o size = (1 :n_r)'; % size (x-data)
o freq = DUI; % frequency of size

else
m axsize = DUI(n_r,l); 
o s ize  = (1 :max_size)'; 
o freq  = zeros(max_size, 1);
f_k = 1;
for s_i = 1 m ax size 

for f_i = f_k:n_r 
if(s_i=DUI(f_i,l));

°_freq(s_i) = DUI(f_i,2); 
f_k = f_i;
continue;

end
end

end
end

% lognormal stuff

lgsize = log(o_size); 
f to t  = sum(ofreq);

lg mean = sum(o_freq.*lg_size)/f_tot; % log mean 
lg szmn = lg size - lg mean;
lg varc = sum(o_freq.*lg_szmn.A2)/f_tot; % log variance



% log stdevlgsdev = sqrt(lgvarc);

% op stuff

tps = lg_sdev*sqrt(2*pi);

ln d is t = zeros(max_size,3);
ln_dist(:,l) = (1 :max_size)'; % all sizes 1 :max_size
for s i -  1 :max_size

ln_dist(s_i,2) = exp(-(((log(s_i)-lg_mean)/lg_sdev)A2)/2)/(s_i*tps);
end
ln_dist(:,2) = ln_dist(:,2)/sum(ln_dist(:,2));
ln_dist(:,3) = ln_dist(:,2)*f_tot;

% correlation 

%d_mn = mean(o_freq);
%f_mn = mean(ln_dist(:,3));

% next four lines do the corr. coeff. if'corrcoef not implemented in Matlab 
%c_cdd = sum(o_freq.A2)/max_size - d_mnA2;
%c_cff = sum(ln_dist(:,3)-A2)/max_size - f_mnA2;
%c_cdf = sum(o_freq.* 1 n dist(:,3))/max_size - d_mn*f_mn;
%c_c = c_cdf/sqrt(c_cdd*c_cfO;

%c_c = corrcoef(o_freq,ln_dist(:,3));

%fprintf('log_mean = %f\tlog_sdev = %f\tcorrel = %f\n', lg_mean,lg_sdev, c_c);



Appendix 8:

function uniformdist = Euniformfit(DUI)

% Generates best-fit uniform distribution.
% Prints uniform distribution & correlation coeff (as goodness-of-fit).
% . . .

% Description: uniform arrays.
% Call: uniform dist = uniform fit (fddata)
% Parameters: uniform dist is the returned probability vector.
% - col 1 - size(x-axis)
% - col 2 - best-fit uniform prob dist
% - col 3 - scaled col-2 (same total frequency as fd data))
% fd data is the input (observed freq dist)
% - if one col, assumes frequencies at unit-size steps
% - if two col, assumes size-freq x-y pairs
% in order of increasing size
%
% obtain two col-vectors; sizes 1 :max_size, frequencies 
% Author: Robin Crockett (robin.crockett@northampton.ac.uk)

[ n r . n c ]  = size(DUI); 
if(n_c= l) 
m axsize = n r ;
os ize  = (1 :n_r)'; % size (x-data)
o freq = DUI; % frequency of size

else
m axsize = DUI(n_r, 1); 
os i ze  = (1 :max_size)'; 
of req = zeros(max_size, 1);
f_k = 1;
for s i = 1 :max_size 

for f_i = f_k:n_r 
if(s_i=DUI(f_i, 1));

o freq(s i) = DUI(f_i,2); %results are the same as fd data 
f_k = f_i;
continue;

end
end

end
end

% uniform stuff 

f_tot = sum(ofreq); 

uniformdist = zeros(max_size,3);
uniform dist(:,l) = (1 :max_size)’; % all sizes 1 :max_size
for s i = 1 :max size



uniform dist(s i,2) = f_tot/max_size; 
end
uniform_dist(:,2) = uniform_dist(:,2)/sum(uniform_dist(:,2)); 
uniform_dist(:,3) = uniform_dist(:,2)*f_tot;



Appendix 9:

function datafd  = Etestdatanorm 1 (r_frac,r_base)

%## Makes dummy data sets, uniformly distributed 
%## 10000 integer observations in size range 1-3000.
%## Rounding base and proportion user-defined.
% ##
%## Usage: data fd = normaldata(r_frac,r_base)
%## Arguments: rf ra c  - proportion of data-set rounded (as %, 0-100) 
%## rb a se  - rounding base

%## Author: Robin Crockett (robin.crockett@northampton.ac.uk) 

%if((r_fTac<0)||(r_frac> 100))
% usage("r_frac must be a number between 0 & 100");
%end

n obs = 500; %## preset number of observations, total frequency
max size = 150; %## preset max. observation size
max round = r base * fix(max_size/r_base); %## max rounded value

mu = fix(max_size/2); %## set mean to mid-point of fd

r_fd = zeros(max_size, 1); 
n_fd = zeros(max_size,l); 
b_fd = zeros(max_size,l); 
datafd  = zeros(max_size, 1);

%Counting number of exact values and number of rounding values 
if(r_frac>0)

nround = round((r_frac/100)*n_obs); 
n exact = n obs - n round; 

else
nexact = nobs ;  

end

%Working with exact values
n data = randn(n_exact,l); %## generate unrounded data
n mean = mean(n data); %mean of unrounded data
n data = n_data - n mean; %## centre freq dist
sdata  = round(max_size*n_data); %? 
d max = abs(max(s_data)); %## scaling factor
d mi n  = abs(min(s_data)); 
if(d_max>d_min) 

wf ac  = maxsize*mu/dmax; 
else

w f a c  = max_size*mu/d_min; 
end
n data = w fac * n data + mu;



ndata  = ceil(ndata);
for f_i = 1 :max_size %## do frequency dist.

n_fd(f_i) = sum(n_data(:)=f_i); 
end

%Working with rounding values
if(r_ffac>0) %## if rounding present

rda ta  = randn(n round, 1); %## generate rounded data
rmean  = mean(rdata);
r data = r data - r mean; %## centre freq dist
sda t a  = round(max_round*r_data); 
r max = abs(max(s_data)); %## scaling factor
r m i n  = abs(min(s_data));

if(r_max>r_min) %new editing
rw fac = max round*mu/r_max; %new editing

else
rw fac = max round*mu/r_min; %new editing 

end
r data = rw fac * r data + mu; %new editing 
rda t a  = ceil(rdata);
for f_i = 1 :max_round %## do frequency dist.
r f d ( f i )  = sum(r_data(:)=f_i);
end
r_ i_ P = 1;
for r i = r_base:r_base:max_round %## do rounding in freq. dist. 

b f d ( r i )  = sum(r_fd(r_i_p:r_i)); 
r i p  = r_i_p+r_base; 
end 

end

data fd = n fd + b fd;



Appendix 10:

function data_fd = Etestdatauni(r_frac,r_base)

%Makes dummy data sets, uniformly distributed 
%10000 integer observations in size range 1-3000.
% Rounding base and proportion user-defined.
%
% Usage: data fd = testdatauni(r_frac,r_base)
% Arguments: r frac - proportion of data-set rounded (as %, 0-100) 
% rbase  - rounding base

%Author: Robin Crockett (robin.crockett@northampton.ac.uk)

%if((r_frac<0)||(r_frac> 100)) 
% usage("r_frac must be a ni 
%end

n obs = 10000; % preset number of observations, total frequency
maxsize = 3000; %preset max. observation size
maxround = r base * fix(max_size/r_base);

r_fd = zeros(max_size,l); 
n_fd = zeros(max_size, 1); 
b_fd = zeros(max_size,l); 
data fd = zeros(max_size,l);

if(r_frac>0) 
n round : 
nexact  = _ 

else
nexact  = nobs;

end

round((r_frac/l 00)*n_obs); 
n obs- n round;

ndata  = rand(n_exact,l); 
n data = max size * n data; 
ndata  = ceil(ndata); 

for f_i = 1 :max_size
n f d ( f i )  = sum(n_data(:)=f_i);

end

if(r_frac>0)
rda ta  = rand(n_round,l); 
r data = max round * r_data; 

rda ta  = ceil(rdata); 
for f_i = 1 :max_round 
r f d ( f i )  = sum(r_data(:)=f_i); 
end



= r base:r base:max round 
i) = sum(r_fd(r_i_p:r_i));

= r i+1;
end

end

data fd = n fd + b fd;
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ABSTRACT: A set of data may be ‘coarsened’ as a result of enumerators' or compilers’ efforts to estimate (or 
falsify) observations. This type of coarsening typically results in excesses o f ‘convenient’ numbers (such as 
multiples of 5 or 10 in decimal number systems) in the data sets, apparent as patterns of periodic unit-width
spikes in the frequency distribution.

We report on the development of novel radial basis function neural-network techniques for detecting this type of 
coarsening and quantifying the estimation which generates it. The objective is to provide an alternative to 
conventional statistical approaches based on missing-data techniques: data coarsened thus are not actually 
missing, solely shifted in size. The results show that the neural networks can successfully detect and classify the 
coarsening in data-sets and, hence, yield insights into the ways in which people count when performing 
enumeration or other numerical data-compilation exercises.

KEYWORDS: Data quality, data coarsening, missing data, neural networks, radial basis functions

INTRODUCTION

This research is being carried out at the University College Northampton in collaboration with the University of 
Essex. It is a development of an ongoing research programme originally initiated in response to problems 
encountered in the analysis of data from the Religious Census of 1851 for England and Wales [1], [2]. The initial 
work resulted in a new model for analysing rounding and estimation present in the data-sets but, whilst sufficient 
for the original purpose, the constraints of this model indicated that new techniques would be advantageous.

The general nature of a data-set coarsened by rounding is apparent from the frequency distribution (of 
congregation-sizes in this instance) shown in Figure 1. Instead of the expected reasonably smooth curve, 
indicating a ‘predictable’ distribution of observations, this frequency distribution shows excesses of observations 
at distinct, well-defined sizes which are periodic with intervals (in this instance) of 5, 10, 20, 50 and 100. The 
periodic nature of the coarsening can be confirmed by autocorrelation techniques.

This particular type of periodic structure arises from estimation: certain of the original enumerators did not count 
exactly but estimated the numbers of people attending church. When estimating thus, the real underlying value is 
returned as a convenient multiple of a base-unit, the closeness of the returned ‘round’ number to the real 
underlying value being dependent on a variety of factors including the observation size, as well as the ability and 
diligence of individual enumerators. The base-units are generally convenient numbers within the number system 
being used, such as 5 (counting ‘by fives’) and 10 (counting ‘by tens’) in decimal (base 10) number systems or 6 
(half-dozens) and 12 (dozens) in duodecimal (base-12) systems.

Previously, analysis of such coarsening has been based on statistical methods developed originally for the 
analysis of missing-data problems [3], [4]. Data coarsened by estimation are not missing, solely shifted in size as 
a result of the rounding inherent in the estimation process. Thus, application ot missing-data techniques, which 
seek to replace missing data according to probability distributions of sizes, are liable to distort coarsened data by
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effectively duplicating the shifted observations at probabilistically determined ‘real' sizes. Therefore, techniques 
which analyse the shifts in size, such as those under development by the authors, potentially avoid introducing 
the distortions to which missing-data based techniques can be susceptible, as well as providing information 
regarding the counting behaviour.

Neural networks have been shown to be universal function approximators in that they can approximate any 
function to within an arbitrary degree of accuracy; thus, in theory at least, should be capable of fulfilling the 
user's hope on finding the underlying periodic structure(s) in the data [5]. This property of neural networks, 
particularly Radial Basis Function (RBF) networks potentially makes them unbiased modelling tools capable of 
detecting the presence of rounded data [6], [7]. In essence, the neural networks recognise the periodic ‘patterns' 
created in the frequency distribution by the presence of coarsening due to estimation.

THE CURRENT MODEL

Without other information, it is not possible to distinguish an exact ‘round’ observation from an estimated one. 
for example, an observation (count) of size 65 could be exact or could represent underlying observations of size 
63 or 68 counted ‘by fives’ or one of size 70 could be exact or could represent underlying observations of size 68 
or 73 counted ‘by tens’ or ‘by fives’. However, it is possible to estimate the excesses of ‘round' observations and 
the corresponding deficits o f ‘non-round’ observations resulting from estimation processes and, within this, 
determine the relative importance of, for example, base-5 and base-10 estimation processes.

Our current model of such data-sets assumes that the enumerators can be divided into groups according to the 
base-unit used for estimation: to continue with the foregoing example, the base-5 subset comprises all 
observations counted ‘by five' and the base-10 subset comprises all observations counted ‘by ten’. Thus, for the 
data summarised in Figure 1, there are base-5, base-10, base-20, base-50 and base-100 estimation subsets and an 
exact-count subset (also labelled base-1, noting that 1 is the effective base-unit of exact counts). Whilst it is not 
possible to distinguish individual observations within the whole data-set as being exact or rounded/estimated to a 
particular base-«, we can determine probabilistically how many observations are contained within each subset 
[1]. Figure 2 shows the subset structure of the study data summarised in Figure 1.

The accuracy of the model is dependent upon the accuracy to which the probability distributions of the various 
estimation behaviours can be determined. The details are data-set dependent but, in general, the subset 
probability distributions for the small base-units, such as base-1 (exact counts), base-5 and base-10, closely 
follow the underlying frequency distribution. The probability distributions of larger base-units, however, show 
more variation due to variation of counting/estimation behaviour with size of observation.

RADIAL BASIS FUNCTION NEURAL NETWORK MODELS

A RBF neural network consists of an input layer, an output layer with, usually, one or more hidden layers 
between them. Each of these layers contains nodes which are connected to nodes at adjacent layers. Each node in 
neural network is a processing unit that contains a weight and a summation function. In this case, the input layer 
uses a radial basis transfer function and the (single) hidden layer uses a linear transfer function. For function 
approximation, both layers have biases whereas for classification only the first layer has bias.

A RBF network is a special case of regularisation network. The method solves an interpolation problem by 
constructing a set of linear equations of the basis function. This method constructs a linear function space which 
depends on the positions of the known data points according to an arbitrary distance, d.

n

/ = l

where, d is the distance between input nodes and weights. 
x, are the input nodes.
wji are the weights in layer j ,  transpose ofx, in this case. 
b is the bias, equal to 1 in unbiased layers.
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The method uses the Gaussian basis function (normal distribution,) [8]:

/(</) = e~d2,lai
where, J{d) is the (radial) basis function.

d  is the distance between input nodes and weights. 
a  is a parameter specifying the width of the basis function.

For function approximation, the hidden layer computes a linear transfer function:
n

y j = / ix iwj‘
1=1

where; y, are the output nodes in layer j  (hidden layer). 
x, , Wj, are as above.

For classification, the hidden layer computes the same linear transfer function but feed into a competitive 
function which selects the largest y,-value to yield the classification (the most significant base-number).

NEURAL NETWORK MODELS TO IDENTIFY ROUNDING BASE-UNITS

In these early stages of the research, the neural network modelling has been performed using Mat lab and the 
Neural Network Toolbox. Currently, both function approximation and classification are used in the models. As 
the work proceeds and the models are developed, increasing development of custom neural networks, optimised
for this type of analysis, is being implemented.

For both function approximation and classification, a training data-set for each base-number (i.e. a potential 
estimation subset base-unit) being investigated is required. These training data-sets are ‘dummy frequency 
distributions comprising appropriate patterns of Os and Is (e.g. 0-1-0-1... for base-2, 0-0-1-0-0-1... for base-3, 0- 
0-0-1-0-0-0-1... for base-4, etc.) shaped according to the underlying probability distribution of the data-under-
investigation (DUI) and scaled according to the total frequency of the DUI.

FUNCTION APPROXIMATION

The 'newrbe' function of the Neural Network Toolbox is currently used to approximate data patterns. The 
function approximation process entails iterative investigation of a set of base-numbers. For each base-number.

• the neural network is trained using the base-« training data-set with a training target comprising the 
underlying probability distribution of the data-under-investigation (DUI) scaled according to the total
frequency of the DUI;

• the DUI is then input to the trained network; and
• the degree of recognition for base-M is assessed by evaluating the sum-squared error (SSE) between the 

output from the DUI and the base-/i training output.

The base-numbers which are most recognisable at this stage, i.e. those which yield the smallest SSEs, will 
include the subset base-units. Further analysis is then required to determine which of the base-numbers thus 
identified are ‘real’ subset base-units and which are merely (sub-) multiples of them: resolving these (sub-) 
multiple effects is one of the objectives of the ongoing research.

CLASSIFICATION

The ‘newpnn’ function of the Neural Network Toolbox is currently used to classify data patterns. The 
classification process can be iterated, eliminating the most significant class/base-number at each iteration, 
producing a ranking of base-numbers from the most significant (which will include the subset base-units) to the
least significant. The procedure entails:

• training the new ‘newpnn' neural network function using all the training data-sets as inputs and a vector 
of base-numbers as a target output;

• obtaining the base-w classification (i.e. the most significant of the base-numbers) by inputting the DUI to 
the trained neural network;
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• repeating the above processes, having removed both the previously identified base-/? (from the vector of 
base-numbers) and the base-/? training data-set, until all the base-numbers under investigation have been
ranked.

Alternatively, the competitive function (‘compel’) of the Neural Network Toolbox can be accessed to obtain the 
probability contribution of every base-number at the first iteration above, thus producing a ranking of base- 
numbers without the need for subsequent iterations. Note that the iterative and non-iterative rankings are
identical.

RESULTS

Typical results obtained by applying the models to data-sets are shown in Tables 1 and II. Note that we have 
focused on base-numbers 1-20, 50, 100 on the basis of previous research in regard of the specific data-set 
summarised in Figure 1: the selection of base-numbers may differ with different data-under-investigation.

Table I shows the results from the study-data summarised in Figure 1. Table 11 shows the results from ten 
random data-sets having the same total frequency and underlying frequency distribution as the study-data: The 
left-hand columns of Table II show the neural-network classification results; the right-hand columns show the 
modulo-test results. In both tables, the modulo-test results serve as a de facto reference: a base-/? modulo-test 
directly measures integer (base-/?) divisibility, i.e. the proportion of the observations in the data-set which are 
exactly divisible by base-/?. Thus, the modulo-test ranking indicates the relative significance of base-numbers in
the data-set

It is evident from Table I that the ranking produced by function approximation is the same as that produced by 
classification (the iterative and non-iterative classification rankings are identical), and that both of these show 
some differences compared to the ranking produced by the modulo-test procedure. However, it is clear that 
pattern recognition by the neural-network models produces rankings which are similar to the de facto reference 
produced by modulo-tests, indicating that the neural networks can usefully ‘see’ the patterns resulting from 
coarsening. The differences between the neural-network rankings and the modulo-test rankings are attributable 
to the (sub-) multiple effects amongst the base-numbers and how these interact to produce the patterns which are 
actually being ‘seen’ by the neural network: the detail of this is currently under investigation.

It is evident from Table II that the neural networks are not deceived: when there are no patterns, i.e. no periodic 
structure neural networks produce the rankings which are very similar to those expected. It should be noted that 
for ideal ‘random' data, ignoring the effects of specific probability distributions, one half of the observations will 
be divisible by base-2, one third by base-3, one quarter by base-4, etc.; so that the expected ranking is the reverse 
of that of the base-numbers. The random data-sets in this study are not ideal: they are lognormal ly distributed (as 
are the real data) as well as having random deviations from the ideal. The modulo-test rankings show that all ten 
show some deviation from the ideal at base-numbers greater than base-10, i.e. when the proportion of multiples 
of a base-number falls below ca. 10% of the whole.

It is further evident from Table II that the neural-networks become relatively unreliable in comparison to the 
modulo-test at base-numbers greater than base-7, i.e. when the proportion of multiples of a base-number falls 
below ca. 14% of the whole. This sensitivity of the neural network is currently under investigation.

CONCLUSIONS

The techniques under development by the authors seek to complement conventional statistical approaches by 
detecting, modelling and quantifying the levels of estimation (and/or falsification) present in numerical data-sets. 
The results obtained so far, of which typical examples have been presented, show that suitably configured RBF 
neural networks can be used to detect the presence of estimation in data-sets via the coarsening patterns it 
produces. The results also show that the neural networks can rank base-numbers, i.e. potential subset base-units, 
according to their significance. Development of the neural networks to distinguish the (sub-) multiple eflects 
amongst the base-numbers and, thus, determine the subset base-units, is ongoing. The ongoing work reported 
herein is an important step towards being able to use neural networks to identify and model estimation (andor 
falsification) behaviour present in the compilation of numerical data-sets.
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Figure 1: Study Data Frequency Distribution (detail).
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Figure 2: Study Data Subset Structure
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Table I:. Pattern Recognition Results of Study Data.
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Table II:. Number-Base Rankings from Random Data.

# 1 " #2 # 3  | #4  " #5 #6 #7 #8 #9 #10 #1 #2 #3 #4 #5 #6 #7 #8
1

#9
1

#10

n1 I 1 1 1 1 1 1 1 1 1 T " [ 1 1 1 1 1 1 1
1 1 

2 2 ~ 2 ~ 2 2 2 2 2 2 2
3

2 2 2 2 2 2 ___2 _ __ 2 _ __ 2 _ ___2 _ 2  I

3 3 3 3  3 __ 3 _
4

__ 3 _ ___3 _ 3 3 [ 3 3 3 3 3 3 3 3 3 3 1

4 __ 4 _ 4 4 4 4 4 4 4 4  I 4 __ 4 _ __ 4 _ __ 4 _ ___4 _ ___4_
£•

__ 4_
c

__ 4 _
C

___4_
C

4 1
c

5 5 5 5  5 5 5 5 ___5 _ 5 5  I
6 ~ [

5 5 5 5 5 5 5 b O b

c 6 6 6 6
66  1 6 6  6 6  6 6 6 6 6 6 6 b b

77 __ 7 _ 7 7 7 7 7 7 7 7 r t 7 7 ___7 _ 7 7 ___7 _ ___7 _ __ 7 _ 7 1

8 8 9  8 9  8 9 8 8 ~ ~ 9 ~ | 8
9

8
9

_____8 _ 8 8 __ 8 _ __ 8 _ __ 8 _ 8
9

8 1
~ F |

9 I s 9  8 9 10 10 8 9 10 8 9 9 9 9 9 9

To I  11 10 10 10  \ 10 10 9 1 2  1 10 10 10 10 10 : 10 10 10 10 10

11 10 11 11 11 11 11 12 11 11
1 0

11 11 11 11 11 11 11 11 11
1 2a a H

12 12 12
15

13 12 13 14
I 12

11 12 12
1 4

12 12 12 12 12 12 12 12 12
1 1

13
14

|~ T 3 ~
I 16

12 13 14 13 13 15 11 13 13 13 13 13 13 13 13 13
1 4

13 14 15 15
12

I 13 14 15 13 ~ T 3 ~ |
~ T F l

14
15
16

15 14 14
15

14
15
16

14
15

14
15
16

14
15
16 
17

14
15

13
15
A O15 19 14 I 15 I 14 15 16 14 20 14

16
15

16 15 16 18 18 19 17 18 16 19 ~19~1 16 16 17 16
20

18 I 
' *

17

1 8

I 14
I 17

20 I 19 | 17 
18 16 16

17 
16
18

| 16 
18

15
17

17 
20
18 

I 19

16
14
17
18

15
16 
17
20 |

17 18 18 18 17 16 17

19 20 19 17 19 18 18 18 19
1 7

18 19 17 20 18 19 19 20 17
1 619

20
18 

I 20
19 I 17 I 20 
17 20  19

20 f~nr
I 2020 I 19 | 20 17 | 20 19 20 20 20 19 18 20  |

Presented at EUNITE 2002 (The European Network on Intelligent Technology), Alhufeira-Portugal, 19-21 
August 2002



Appendix 12
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Abstract

A set of data may be ‘coarsened' as a result of enumerators' or compilers’ efforts 
to estimate (or falsity) observations. This type of coarsening typically results in 
excesses of ‘convenient' numbers in the data sets, such as multiples of 5 or 10 in 
decimal number systems, apparent as patterns of periodic unit-width spikes in the
frequency distributions.

We report on the development of novel Radial Basis Function neural-network 
techniques for detecting numerical data coarsened by rounding/estimation (or fal-
sification) and quantifying that rounding/estimation. The objective is to provide an 
alternative to conventional statistical approaches based on missing-data tech-
niques: data coarsened thus are not actually missing, solely shifted in size. The re-
sults show that the neural networks can successfully detect and classify the coars-
ening in data-sets and, hence, yield insights into the ways in which people count 
when performing enumeration or other numerical data-compilation exercises.

Keywords

Data quality, data coarsening, missing data, neural networks, radial basis func-
tions.

Introduction

This research is being carried out at the University College Northampton in col-
laboration with the University of Essex. It is a development of an ongoing re-
search programme initiated in response to problems encountered in the analysis of 
data from the Religious Census of 1851 for England and Wales [1,2]. The initial
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work resulted in a new model for analysing rounding and estimation present in the 
data-sets but, whilst sufficient for the original purpose, the constraints of this 
analysis indicated that new techniques would be advantageous.

The general nature of a data-set coarsened by rounding is apparent from the 
frequency distribution (of congregation-sizes in this instance) shown in Figure 1. 
Instead of the expected reasonably smooth curve, indicating a ‘predictable’ distri-
bution of observations, this frequency distribution shows excesses of observations 
at distinct, well-defined sizes which are periodic with intervals (in this instance) of 
5, 10, 20, 50 and 100. The periodic nature of the coarsening can be confirmed by 
autocorrelation techniques.

This particular type of periodic structure arises from estimation: certain of the 
original enumerators did not count exactly but estimated the congregation-sizes. 
When estimating thus, the returned value is a ‘round’ number, i.e. a convenient 
multiple of a base-unit, with the closeness of the returned value to real observed 
value being dependent on a variety of factors including the observation size, as 
well as the ability and diligence of individual enumerators. The base-units are 
generally convenient numbers within the number system being used, such as 5 
(counting ‘by fives’) and 10 (counting ‘by tens’) in decimal number systems, or 6 
(half-dozens) and 12 (dozens) in duodecimal systems.

Fig. 1. Study Data Frequency Distribution

Conventionally, analysis of such coarsening utilises statistical methods devel-
oped originally for missing-data problems [3,4], Data coarsened by estimation are 
not missing, solely shifted in size as a result of the rounding inherent in the esti-
mation process. Thus, application of missing-data techniques, which seek to re-
place missing data according to probability distributions of sizes, are liable to dis-
tort coarsened data by effectively duplicating the shifted observations at

Study Data Frequency Distribution (detail)
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probabilistically determined ‘real’ sizes. Therefore, techniques which analyse the 
shifts in size, such as those under development by the authors, potentially avoid 
introducing the distortions to which missing-data oriented techniques can be sus-
ceptible, as well as providing information regarding the counting behaviour.

Neural networks have been shown to be universal function approximators in 
that they can approximate any function to an arbitrary degree of accuracy; thus, in 
theory at least, should be capable of fulfilling the user’s hope on finding the un-
derlying periodic structure^) in the data [5]. This property of neural networks, 
particularly Radial Basis Function (RBF) networks potentially makes them unbi-
ased modelling tools capable of detecting the presence of rounded data [6,7]. In 
essence, the neural networks recognise the periodic ‘patterns’ which such coarsen-
ing creates in the frequency distributions.

The Current Model: The Benchmark

Without other information, it is not possible to distinguish an exact ‘round’ obser-
vation from an estimated one: for example, an observation (count) of size 65 could 
be exact or could represent underlying observations of size 63 or 68 counted ‘by 
fives’; or one of size 70 could be exact or could represent underlying observations 
of size 68 or 73 counted ‘by tens’ or ‘by fives’. However, it is possible to estimate 
the excesses o f ‘round’ observations and the corresponding deficits o f ‘non-round’ 
observations resulting from estimation processes and, within this, determine the 
relative importance of, for example, base-5 and base-10 estimation processes.

Our current model of such data-sets assumes that the enumerators can be di-
vided into groups according to the base-unit used for estimation: to continue with 
the foregoing example, the base-5 and base-10 subsets comprise all observations 
counted ‘by fives’ and ‘by tens’ respectively. Thus, for the data summarised in 
Figure 1, there are base-5, base-10, base-20, base-50 and base-100 estimation sub-
sets and a base-1 exact-count subset (1 being the effective base-unit of exact 
counts). Whilst it is not possible to distinguish individual observations within the 
whole data-set as being exact or rounded/estimated to particular base-units, we can 
determine probabilistically how many observations are contained within each sub-
set [1]. For the study data, the subsets are: base-1, 52%; base-5, 12%; base-10,
20%; base-20, 6%; base-50, 7%; base-100, 3%.

The base-units are determined by ‘modulo-testing’ the frequency distribution, a 
procedure entailing investigation of the numbers of observations exactly divisible 
by given base-numbers (integers). The base-number results for the data summa-
rised in Figure 1 are shown in Table I. These results are then analysed statistically 
both in relation to the expectation and for (sub-) multiple effects in order to deter-
mine the actual estimation base-units: these being the base-numbers whose multi-
ples appear statistically significantly more frequently in the data than expected,
independently of (sub-) multiple effects.

The accuracy of the model is dependent upon the accuracy to which the prob-
ability distributions of the various estimation behaviours can be determined. The
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details are data-set dependent but, in general, the subset probability distributions 
for the small base-units, such as base-1 (exact counts), base-5 and base-10, closely 
follow the underlying frequency distribution. The probability distributions of lar-
ger base-units, however, show more variation due to variation of count- 
ing/estimation behaviour with size of observation.

Radial Basis Function Neural Network Model

A RBF neural network consists of input, hidden and output layers, each layer con-
taining nodes which are connected to nodes in adjacent layers and each node being 
a processing unit containing weight and summation functions. The input and hid-
den layers use radial basis and linear transfer functions respectively.

A RBF network is a special case of regularisation network. The method solves 
an interpolation problem by constructing a set of linear equations of the basis 
function. This method constructs a linear function space which depends on the po-
sitions of the known data points according to an arbitrary distance, d:

where, d  is the distance between input nodes and weights. 
x, are the input nodes.
wp are the weights in layer j ,  transpose ofx, in this case. 
b is the bias, equal to 1 in unbiased layers.

The method uses the Gaussian basis function (normal distribution) [8]:

The hidden layer computes a linear transfer function and then feed into a com-
petitive function which selects the largest yr value to yield the classification (the 
most significant base-number).

( 1)

f ( d )  = e - d 2 / 2 ° 2
(2)

where, J{d) is the (radial) basis function.
<j is a parameter specifying the width of the basis function.

n

1=1

are the output nodes in layer j  (hidden layer).

(3)

where;
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RBF Neural Network Diagnosis of Coarsening

In these early stages of the research, the neural network modelling has been per-
formed using Matlab and the Neural Network Toolbox. Although both function 
approximation and classification have been used in the research [9], the model 
now solely uses classification. As the work proceeds and the model is refined, a 
custom neural network, optimised for this type of analysis is being progressively
developed.

A pair of training-data input and classification output is required for each base- 
number (i.e. potential estimation subset base-unit) or combination of base- 
numbers being investigated. The basic training data-sets are ‘dummy’ frequency 
distributions comprising appropriate patterns of Os and Is (e.g. 1-1-1-1... for base- 
1, 0-1-0-1... for base-2, 0-0-1-0-0-1... for base-3, etc.) shaped and scaled according 
to the underlying probability distribution of the data-under-investigation. The tar-
get outputs are classes corresponding to the base-numbers under investigation.

The classification process is iterative, the iterations progressively identifying
(potential) estimation base-units.

• First iteration. Each potential estimation base-unit has an individual training 
data-set corresponding to it. A ranking of base-numbers is produced: the pattern 
associated with the top-ranked base-number is being recognised as being the 
most significant pattern in the frequency distribution at this stage.

• Second iteration. The highest ranked base-number (from the previous iteration) 
is considered in combination with each of the other base-numbers: each training 
data-set comprises a combination of two training data-sets from the first itera-
tion. A refined ranking of base-numbers is produced: the pattern associated 
with the top-ranked pair of base-numbers is being recognised as being the most 
significant pattern in the frequency distribution at this stage.

• Third iteration. The highest ranked pair of base-numbers (from the previous it-
eration) is considered in combination with each of the other base-numbers, each 
training data-set comprises a combination of three training data-sets from the 
first iteration. A further refined ranking of base-numbers is produced: the pat-
tern associated with the top-ranked triplet of base-numbers is being recognised 
as being the most significant pattern in the frequency distribution at this stage.

• Fourth and higher iterations. The process is then repeated, adding one base- 
number to the combination per iteration, until the probability of the top-ranked 
combination ceases to increase from one iteration to the next.

The hypothesis is that at each iteration, the combination of base-units which 
best fits the real frequency distribution is selected and that, whilst the probability 
of the top-ranked combination continues to increase with each successive itera-
tion, the fit is improving. Once this probability stops increasing, the goodness of 
fit stops improving. Thus, the combination which yields the highest probability 
should contain all the estimation base-units plus, possibly, some base-numbers 
which are (sub-) multiples or multiplicative combinations of them. Further analy-
sis is then required to determine which of the base-numbers thus identified are
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‘real' subset base-units and which are merely (sub-) multiples of them: resolving 
these (sub-) multiple effects is one of the objectives of the ongoing research.

Results

The probability assigned to each base-number or combination thereof by the neu-
ral network — and by which these are classified and ranked — is the probability 
that the pattern associated with that base-number (or combination) would be se-
lected as being the frequency distribution of the target data. Thus, this probability 
is a measure of significance of a base-number (or combination) within the data. In 
the first iteration (with individual base-numbers) all base-numbers from 1 to 100 
are used but for subsequent iterations it has proved sufficient to use those base- 
numbers ranking higher than (the higher of) base-11 or base-13 in the first itera-
tion. This criterion is empirical: unless there is other information or it is clearly 
apparent from the first iteration to the contrary, it is highly improbable that num-
bers as ‘inconvenient’ as base-11 or base-13, the first two prime numbers greater 
than ten, would form the basis of estimation processes (baker’s dozens notwith-
standing) and so it is even less probable base-numbers ranking below these would 
form the basis of estimation processes.

The results, for the data summarised in Figure 1, are presented in Tables 1 and 
2. Table 1 shows the results of the first iteration and also shows the results yielded 
by the modulo test (the basis of the current model) as a de facto benchmark. The 
results are restricted to the highest ranked twenty-six in accordance with the crite-
rion described above; base-13 ranks 27 and base-11 ranks 34 in this case. There 
are some differences between the ranking produced by neural network that pro-
duced by the modulo test. However, it is clear that the neural network produces 
rankings similar to that of the modulo test, indicating that the neural network can 
both ‘see’ and identify the patterns which result from coarsening. As described 
previously [9], when there are no patterns (i.e. no periodic structure) in the data 
set, as is the case with random data, the neural network produces the ranking 
which would be expected, e.g. more multiples of base-1 than of base-2, more mul-
tiples of base-2 than of base-3, etc.

Table 2 shows the top-ranked combinations of base-numbers and their prob-
abilities. The increasing trend in probability breaks after the ninth iteration, yield-
ing the best-fit combination (in descending order) of base-1, base-10, base-5, base- 
20, base-50, base-100, base-30, base-40 and base-70. Up to the sixth iteration 
(base-100), the neural network recognises the estimation base-units determined by 
modulo-testing with no spurious results. The probability, however, continues to 
increase for a further three iterations, additionally indicating base-30, base-40 and 
base-70, results which differ from the modulo-test benchmark. These reasons for 
this are not fully understood at present but are due, at least in part, to interactions 
between base-numbers and how these affect the patterns actually being seen by 
the neural network.
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numbers, i.e. potential subset base-units, according to their significance producing

results very sim ilar to the modulo-test benchmark.
The neural network, however, indicates farther base-units in comparison to the 

benchmark and work is ongoing to determine the reasons for this and, hence, pos-
sible modifications to the method to elim inate these ‘ false positives’ . It should be 
noted, however, that i f  the subset model is applied to all nine base-units indicated 
by the neural network, then the three spurious base-units (base-30, base-40 and 
base-70) would yield  subsets o f  zero size and so their elimination would be possi-

ble at this stage.
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