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ARTICLE INFO ABSTRACT

Keywords: Privacy analysis techniques for mobile apps are mostly based on system-centric data originating from
User Input Identification well-defined system API calls. But these apps may also collect sensitive information via their unstruc-
Mobile Privacy tured input sources that elude privacy analysis. The consequence is that users are unable to determine
Android Malware the extent to which apps may impact on their privacy when downloaded and installed on mobile de-
Android Security vices. To this end, we present a privacy analysis framework for unstructured input. Our approach
Android Privacy leverages app meta-data descriptions and taxonomy of sensitive information, to identify sensitive un-
Mobile Security structured user input. The outcome is an understanding of the level of user privacy risk posed by

an app based on its unstructured user input request. Subsequently, we evaluate the usefulness of the
unstructured sensitive user input for malware detection. We evaluate our methods using 175K benign
apps and 175K malware APKs. The outcome highlights that malicious app detector built on unstruc-
tured sensitive user achieve an average balance accuracy of 0.996 demonstrated with Trojan-Banker
and Trojan-SMS when the malware family and target applications are known and balanced accuracy
of 0.70 with generic malware.

1. Introduction tial to preserve privacy.
When dealing with structured data, well-defined API

calls for system-centric data such as location parameters can
be retrieved using precise API calls such as getLongitude().
However, it is impossible to get such a level of precision for
unstructured data. This is because API calls for user input
through GUIs are generic. For example, if a user’s credit
card and social security number are entered into the EditText
widget (the standard text entry widget in Android), both user
information items are retrieved by the same getText() API
calls. The consequence is that it becomes impossible to iden-
tify the type of data collected (here, whether the data is a
credit card or social security number of the user), its value
and the consequence of disclosure on privacy. One way to
associate semantics with unstructured input is to utilise a
user-centric approach. This involves asking users to assign
sensitivity values to each piece of information disclosed.
This can be based on preference or context of use (Zhou
et al., 2014). Alternatively, a developer may manually spec-
ify content within apps that need to be protected, based on
investigations of prior experience (Zhou et al., 2014; Xu
et al., 2012; Yang et al., 2013). The problem with these
approaches is that they usually entail intensive human in-
tervention, hence increasing the burden on the user or the
developer and can quickly become error-prone. Generally, it
has been demonstrated that placing the responsibility of such
decision-making on users is a key weakness to adequate pro-
tection of privacy (Acquisti et al., 2015).

In this study, we propose a technique that uses meta-
data associated with unstructured input sources to under-
stand privacy-sensitive information disclosure in mobile
apps. First, we generate a taxonomy of the types of sensitive

The analysis of privacy-sensitive disclosure in Android
apps has been studied extensively (Enck et al., 2014; Sun
etal., 2016; Arzt et al., 2014; Huang et al., 2014; Avdiienko
et al., 2015). This is especially useful when identifying pri-
vacy violations, such as insecure information transmission,
sensitive data leakage and malware identification (Fahl et al.,
2012; Lu et al., 2012; Sounthiraraj et al., 2014; Gibler et al.,
2012). Existing research has approached this analysis by
identifying privacy violations in data originating from well-
defined API calls made by mobile applications (Demetriou
et al., 2016; HAN et al., 2013; Enck et al., 2014; Sun et al.,
2016; Arzt et al., 2014; Huang et al., 2014). These are the
so-called system-centric data sources, which only addresses
a source of sensitive user data in a system-centric manner.
In this approach, API calls where sensitive data is involved
are well structured and explicitly represented in the seman-
tics of the data returned by the API invocation. However,
mobile apps frequently request user data input within their
Graphical User Interfaces (GUIs). Such data may be highly
unstructured and contain sensitive information that eludes
privacy analysis. Furthermore, by their unstructured nature,
API invocations are unable to represent the semantics of the
data returned. This makes it impossible to resolve the de-
gree of sensitivity of disclosed data and to what extent this
impacts on user privacy. This alternative source of data in-
put has so far received little research consideration during
privacy analysis. This work is motivated by the view that, as
mobile apps increasingly request a wide range of sensitive
data from users, analysing sensitive disclosure using data
originating from unstructured input sources becomes essen-
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Figure 1: A framework for Exploring Unstructured Input Sources in Android Apps for Malicious Application Detection

on unstructured sensitive user input request are used to de-
termine if the app is benign and privacy-preserving. One
key advantage of our approach is that using app meta-data
to ascribe semantics to unstructured data inputs is a common
practice. For example, it is common to declare unstructured
Ul elements in XML (static layouts) for Android apps. This
allows developers to better separate the presentation of the
application from the code that controls its behaviour. These
UI descriptions are external to the application code, which
means developers can modify or adapt them without having
to modify the source code and recompile. Another advan-
tage is that major mobile operating systems, such as An-
droid, i0OS and Windows provides UI frameworks as part
of their app development APIs. Finally, our approach pro-
vides for automatic determination of the sensitivity of un-
structured user input request, without requiring users or de-
velopers continually to tag sensitivity values.

2. System Overview

Assume a scenario where a user is to disclose personal
information through an unstructured input resource such as
a text input widget on a mobile app. Our objective is to in-
vestigate whether the disclosure behaviour of the app, with
respect to the information being disclosed, would be benign
or malicious. Three steps are required to achieve this objec-
tive. These are: identifying the type and sensitivity of the
information that is being disclosed from the unstructured in-
put resource; determining how benign or malicious the app
is given the derived information type and its sensitivity; and,
finally, establishing the extent to which the user is vulnerable
to privacy violation after disclosure through behaviour iden-
tification. The proposed framework is described in Figure
1.

To identify the type of information and its sensitivity
from an unstructured input resource, the app’s meta-data that
describes the resource is first analysed, then benchmarked
against a taxonomy of sensitive information. Analysing the
meta-data of User Interface (UI) elements is important as
it provides vital insights into the semantic information that

would otherwise be lost because of the unstructured nature
of the input. Furthermore, the taxonomy of sensitive infor-
mation enables us to determine if the semantics derived from
the analysis of resource meta-data relates to any sensitive
personal information. This benchmarking is achieved by us-
ing a word embedding model to annotate the input resource.
The outcome is a sensitivity index that indicates the amount
of sensitive personal information that is being used by the
app. A detailed description of this first step is given in Sec-
tion 5.

During the second step, we investigate the risk intro-
duced by the collaboration of several sensitive user input
type sets. Thirdly, the detection of malware based on sensi-
tive user input types is formulated as a classification problem
and executed by building classifiers. In the final step, to de-
termine the risk caused by sensitive user input type request
and use it to report malware, detection rules are extracted
from malware detectors. We then employ the detection rules
to detect unknown malware. A detailed description of this
second step is given in Section 6.

In summary, the proposed framework has two major
components - the identification of information type and sen-
sitivity phase, which annotates input resources; the malware
detection phase, which builds detectors for malware using
sensitive user inputs. The main contributions of this work
are summarized below:

1. Validated Taxonomy of Sensitive User Information

o A taxonomy model of unstructured input sources
that can be used to generate a sensitivity spec-
trum that indicates the level of privacy risk that
mobile app users are exposed to. The relevance
of the fine-grained stratification of user inputs
was validated for identifying mobile threat for
data inputs.

e A technique for the semantic resolution of un-
structured user inputs based on the type of infor-
mation request. The proposed approach infers
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sensitive Ul items in Android apps. Other pri-
vacy analysis of mobile apps based on GUI data
can incorporate our approach for robust analysis.

e The proposed technique of annotating privacy-
sensitive unstructured inputs in apps could be
developed into a tool that helps developers un-
derstand the significance of the data they request
from users. The proposed approach is built on
the idea of measuring the distance to an exist-
ing taxonomy, and the approach can generalize
to other, including customized taxonomies.

2. Deep Insights about Unstructured User Inputs

e An approach, towards a vision of detecting
generic and known malware family based on
using sensitive user input requests. Informa-
tive features were reported from unstructured
user input requests that can detect unknown
and known malware. The proposed technique
achieved a balanced accuracy of 99.6% distin-
guishing between Trojan-Banker and legitimate
mobile banking applications and a 99.8% accu-
racy detection with Trojan-SMS and benign ap-
plications with similar functionalities based on
unstructured user data request alone. The deci-
sion rules from unstructured user input request
provide a promising vision with regards to a re-
liable measure of distinguishing between a legit-
imate mobile banking application and a Trojan-
Banker based on an unstructured data request.
The approach can detect generic malware with a
detection accuracy of 70%.

e The proposed technique demonstrates a strong
association between malicious behaviour and
the use of unstructured inputs, in certain cate-
gories of malware. The technique can comple-
ment state-of-the-art systems. Permission-based
malware detection approach can incorporate our
technique for "zero-permission" apps who do not
require user-granted permissions for their func-
tionalities. The analysis is based on a large
dataset of malware for the evaluation to demon-
strate the effectiveness of the approach. User in-
put vectors extracted from the dataset and asso-
ciated experimental results are published as a po-
tential benchmark data for the research commu-
nity!. To the best of our knowledge, ours is the
largest dataset for malware analysis in published
studies.

The rest of the manuscript is organised as follows. Sec-
tion 3 details an analysis of relevant existing work. This is
followed by Section 4 where the motivation for the study,

1 https://www.dropbox.com/sh/itvs2itwukboqlk/AAAO@OBDJ_
0S1H3YBRLeeut2Ga?d1=0

research problem and the importance of the research is ex-
plained. Section 5 discusses the first step in the proposed
privacy analysis framework which is concerned with identi-
fying the nature and the sensitivity of the information being
requested through unstructured user input sources. Section
6 presents the methodology of using the proposed privacy
analysis framework for malware detection. The evaluation is
presented in Section 7, where we investigate research ques-
tions associated with the accuracy of the semantic resolu-
tion of unstructured user inputs, the relevance of the tax-
onomy of sensitive user information for identifying mobile
threats, the effectiveness of unstructured input for malware
identification and detection in cases of known malware fam-
ily with target applications and generic malware. Section
8 highlights the major advantages and contributions of the
proposed approach by providing a comparative analysis with
the state-of-the-art techniques. In section 9, the feasibility
of the proposed technique is discussed with its strength and
limitations. Section 10 concludes the study by presenting an
overview of the study, main contributions, key findings and
avenues for future work.

3. Related Work

3.1. Privacy Analysis of Mobile Apps

There is considerable work on the privacy analysis of
mobile apps that are focused on the Android platform (Au
etal., 2012; Enck et al., 2014; Sun et al., 2016; Gibler et al.,
2012; Grace et al., 2012b; HAN et al., 2013; Lu et al., 2015).
In the identification of information sources, these works have
predominantly focused on system-centric input points that
usually have clearly defined permissions. Indeed, Rasthofer
et al.(Rasthofer et al., 2014) proposed a machine learning
approach that automatically identified and categorised the
system-centric Android sources and sinks frequently used in
program code. However, our work is focused on sensitive
information from unstructured input sources which do not
have well-defined API points on the Android platform.

Taint analysis has been used in software engineering to
improve the design and implementation of mobile apps (Li
et al., 2016; Arzt et al., 2014; Gordon et al., 2015; Sun
et al., 2016; Wei et al., 2014; Huang et al., 2014; Lu et al.,
2012; Yang and Yang, 2012; Li et al., 2015). Practically
this involves labelling (tainting) sensitive data from certain
sources and monitoring propagation through the program
code. FlowDroid(Arzt et al., 2014), IccTA(Li et al., 2015),
AmanDroid(Wei et al., 2014) and DroidSafe(Gordon et al.,
2015) are the most prominent static taint analysis for An-
droid applications. FlowDroid(Arzt et al., 2014) is a flow-,
context-, field, and object-sensitive static analysis for An-
droid applications. It precisely models the Android lifecycle
and handles data propagation via callbacks of UI objects.
IccTA(Li et al., 2015) extends FlowDroid with the analy-
sis of inter-component communications (ICC) to detect pri-
vacy leaks in Android apps. AmanDroid(Wei et al., 2014)
implements a flow- and context-sensitive intra-component
data flow analysis. On top of an inter-procedural control
flow graph and data flow graph, Amandroid builds a data-
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dependency graph for each component and then generates a
summary table documenting possible component communi-
cation connections. DroidSafe(Gordon et al., 2015) imple-
ments an object-sensitive and flow-insensitive analysis. It
builds a comprehensive Android execution model that con-
tains analysis stubs for most of the Android framework and
native methods. TaintDroid(Enck et al., 2014) is a notable
dynamic taint analysis system for identifying Android appli-
cations that leak private information, such as device iden-
tifiers. This generic labelling technique has also been used
for malware detection (Yan and Yin, 2012; Tam et al., 2015;
Fuchs et al., 2009). Other approaches(Wang et al., 2014; ?,
2018; ?) have extracted a large number of features from apps
to detect their malicious behaviours. While the traditional
taint approach focuses on labels that originate from program
code, our work is centred on information type that originates
from user input widgets, identified by analysing the mobile
app metadata.

3.2. User Input Identification in Mobile Apps

The most similar studies to our own in the area of
semantic resolution of user input are BIDTEXT(Huang
et al.,, 2016), SUPOR(Huang et al., 2015), AppsPlay-
ground(Rastogi et al., 2013), UiRef (Andow et al., 2017) and
UlPicker(Nan et al., 2015). SUPOR, AppsPlayground and
UlPicker aims to identify and detect sensitive user input in
Android apps by analysing semantic information within the
app resources. BIDTEXT detects sensitive data disclosure
via bi-directional text correlation analysis that propagates
the variable sets through forward and backward data flow.
While SUPOR focuses mainly on a specific type of UI el-
ements (EditText), UIPicker considers limited categories of
Ul data. BIDTEXT focuses on identifying sensitive data that
is not generated by specific API calls and reports potential
disclosures when data is recognized only after the sink op-
erations. UiRef improved upon SUPOR by addressing am-
biguity in the semantic resolution of user inputs. The com-
mon denominator among these works is the application of
semantic resolution of user inputs in Android applications
to understand what information Android apps are requesting
through their GUIs. Specifically, these papers focus more
on detecting user inputs than on the nature and type of in-
formation (sensitivity of information). Hence, it is difficult
to examine the privacy-preserving ability of an app without
knowing the type of information the app collects and the de-
gree of its sensitivity.

3.3. Privacy Taxonomy

The concept of privacy taxonomy has been studied in
software systems. Solove(Solove, 2005, 2008) proposed a
taxonomy of privacy violations that are broadly applicable
to software systems. Thomas et al.(Thomas et al., 2014)
as a follow up from previous empirical studies of identify-
ing privacy violations related to the use of mobile applica-
tions(Mancini et al., 2009), proposed a taxonomy of privacy
threats and associated harms that can arise due to inappropri-
ate information flow to the end-user. Our approach involves
the use of a taxonomy of predefined degrees of sensitivity.

This is based on the observation that some data are more
sensitive than others. This builds on the philosophy, that not
all data is created equal. Hence, separating information into
distinct categories or levels by which different requirements
or protection applies is an important step in adequately pro-
tecting privacy in mobile applications. It is difficult to de-
termine if the privacy requirements guiding the information
flow is satisfied if the question of the value of the information
has not been answered. Likewise, it is difficult to answer the
question of the value of information, without the type and
nature being known. By having a taxonomy, we can analyse
the sensitive information flow for mobile privacy. In this
work, we propose a privacy taxonomy for mobile settings to
help inform privacy risks, rather than ask end-users to cate-
gorise data.

In conclusion, from our review of past literature, we observe
some interesting patterns and gaps: Firstly, existing research
has approached this analysis by identifying privacy viola-
tions in data originating from permissions and well-defined
API calls made by mobile applications. These are the so-
called system-centric data sources. In this approach, API
calls where sensitive data is involved are well structured and
explicitly represented in the semantics of the data returned
by the API invocation. However, mobile apps frequently re-
quest user data input within their Graphical User Interfaces
(GUIs). Such data may be highly unstructured and contain
sensitive information that eludes privacy analysis. For ex-
ample, zero-permission apps do not request any permission
to be functional, hence, such apps may evade privacy anal-
ysis. Also, state-of-the-art approaches have been focused
on malware analysis using the system-centric sources, this
study is motivated with the potential of providing a comple-
mentary solution to the malware detection problem.

4. Motivation for Analysing Unstructured
User Input

Android permission is the major security mechanism
for the operating system. Security analysis of mobile apps
should, therefore, include analysis of the privileges a smart-
phone has access to. Furthermore, at the core of every basic
security concept is access control models. In providing a
complementary solution to the detection problem, we adopt
the access control model for the context of mobile software
systems as shown in Figure 2. The core elements of a typ-
ical access control model are identification, authentication
and authorization. Identification and Authentication often
require graphical user inputs, while the Authorization aspect
is an example of smartphone privileges e.g. Android permis-
sions. While using permissions for analysis recognises the
security problems of mobile software systems as an access
control problem, we propose a complementary approach that
analyses the privacy and security of mobile apps based on
data inputs that relate to Identification and Authentication.
In the context of mobile software systems, user inputs asso-
ciated with Identification may involve username, e-mail ad-
dress, user id, passport number etc, while those associated
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with authentication may include PIN, password, fingerprint
etc.

This study is focused on exploring more informative fea-
tures like those related to identification and authentication,
out of which we have recognised graphical user input as
the main source. We believe that the combination of fea-
tures associated with identification, authentication and au-
thorization in mobile software systems can improve the per-
formance of the detection of malapps. We argue that if the
goal is to improve the security of Android, its identifica-
tion, authentication and authorization features needs to be
explored and investigated. Majority of state-of-the-art sys-
tems have approached privacy problems in mobile apps from
authorization, i.e. the smartphone privileges aspect of it,
and that is why user-granted permissions are often used for
analysing mobile systems security. The proposed technique
is focused on the unstructured user input mainly from the
GUI as the basis for analysis because, at its core, smartphone
privileges and GUI inputs form access control elements for
mobile software systems.

By privacy analysis of unstructured user input, this study
is not concerned with the end-users’ input at runtime, but
more about using the app resources extracted from the
reverse-engineering of the APKs to semantically resolve the
user input request from the graphical user interface. Some
of the metadata for inferring the unstructured user input re-
quest includes the GUI widgets, string resources, layout files
etc. This work is concerned with the user input request from
the GUI at design-time. While there are other approaches for
analysing privacy and security in the Android ecosystem, the
proposed approach is motivated by the possibility of comple-
menting state-of-the-art structured static techniques with un-
structured static features. Since unstructured static features
often elude privacy analysis, this paper demonstrates the fea-
sibility of incorporating structured and unstructured static
features for robust privacy analysis in the Android ecosys-
tem.

S. Information Types and their Sensitivity

The first step in our privacy analysis framework is to
identify the nature of the information that is being requested
via unstructured input sources and its sensitivity. There are
three key processes involved. These are the analysis of app
metadata to extract semantic information about unstructured
inputs; the construction of a taxonomy of sensitive infor-
mation; and finally the use of machine learning to annotate
unstructured inputs that are benchmarked against the taxon-
omy. This section describes each process.

5.1. App MetaData Analysis

One way to analyse unstructured input data in a mobile
app is to understand the semantics of the layout metadata
description. These are typically expressed in an extensi-
ble markup language (XML). Specifically, the objective of
metadata analysis is to determine whether a layout file con-
tains widgets that accept user inputs. This is achieved by a
two-stage app extraction process.

First, the app is parsed to identify its constituent folders.
For Android, extraction of an apk file will generate a number
of folders including assets, res, 1ib and certificates. Rele-
vant to metadata analysis is the res folder since it is the par-
ent of Layout which contains the front-end XML files, me-
dia files, etc., and value which contains string resources and
other resource identifiers. App resources such as images,
strings etc. are externalised so that they can be maintained
independently and accessed using generated resource identi-
fiers. Resources in the Layout folder defines the architecture
for the UI; whereas, a string resource which is contained in
value provides text strings for the application.

The next stage is to determine if an app resource requests
unstructured sensitive user input. One approach could be
to identify resource widgets that explicitly defines user in-
puts in Android, we parse the XML describing the resource
and automatically inspect all the child tags against the prede-
fined common user controls. Some of the common user wid-
gets include EditText (standard text entry widget in Android
Apps), TextView and its subclasses (AutoComplete, Mul-
tiAutoComplete, CheckedTextView), Pickers (Date Picker,
Time Picker), Spinner, Switch, CheckBox, RadioButton,
ToggleButton, ListView, GridView, ImageView, and Cus-
tom widgets (customised controls created by extending an
existing widget). Such techniques have been investigated in
SUPOR (Huang et al., 2015), UIPicker (Nan et al., 2015),
and AppsPlayground (Rastogi et al., 2013).

Identifying resource widgets that explicitly define user
input is straightforward since they can easily map to known
Android-defined native widgets. But this is not the case
for implicit custom widgets which extends native widgets,
and developers can freely name their customised widgets
without any conventional approach. Such customised wid-
gets potentially contain sensitive user information. This
might be the reason why these approaches do not consider
customised user widgets. Also, mobile platforms like An-
droid offers options to efficiently reuse completed layout
which could potentially contain user input widgets. Embed-
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ding a reusable layout is achieved by using the <include/>
and <merge/> tags. Furthermore, not all sensitive informa-
tion can be characterised by text entry widgets - sensitive
information through voice, facial recognition, fingerprint,
voice note; unstructured user input not provided by user e.g
sensitive information obtained by interacting with intercon-
nected apps through linked accounts, sensitive information
displayed on non-editable widget resource etc. Another lim-
itation of this approach is that not all app layouts can be anal-
ysed for input widgets. Specifically, hybrid layouts use both
native and HTML-based user interfaces; such layout inter-
acts with each other using WebView. Furthermore, there are
also dynamically generated layouts that are instantiated at
runtime depending on the usage context. It becomes unclear
the sensitive user inputs that this alternative layout may con-
tain. To identify all UI pages, a purely static approach may
miss parts of Uls that are dynamically rendered, whereas a
pure dynamic approach(Chen et al., 2018; Su, 2016; Su et al.,
2017) may not be able to reach all pages in the app, especially
those requiring authentication.

Existing techniques are insufficient in detecting sensitive
user input. Our approach is to analyse unstructured user in-
put at the category level as opposed to the widget level. The
aim is to analyze the string resources which are a represen-
tation of the UI textual description in the apps. We leverage
the string resources because these provides text strings for
the application. The string resources provide textual seman-
tics for input resources.

The output of the app metadata analysis is an aggregation
of the string resources used for the semantic resolution of
user inputs. Another rationale for using the string resources
is that they already provide explicit property descriptions for
input fields. These include the android. id that uniquely iden-
tifies the resource; android:hint to give information about
the input required from the user; android. inputType to spec-
ify the type of characters allowed for the input widget; and
android.text to give the text description or content of user
interface control.

The advantage of our approach of using the string re-
sources for semantic resolution of user inputs is that it pro-
vides an accurate textual description of the sensitive user in-
put requests in the app that is not subject to developer in-
consistencies. For example, a username edittext resource is
likely to have a username label resource. Hence, assuming
the properties of the edittext username resource are inappro-
priately specified, it can still be semantically resolved based
on the textual description of the username label. The out-
put of the app metadata analysis are sentences describing
sensitive operations pertinent to unstructured user input. As
an illustration, we present a sample UI of a ticket booking
application as shown in Figure 3. Extracted UI strings in-
clude text labels: "Billing Address", "Payment Details",
"Contact Information", "Card Expiration", "CVC"; Android
widget text hint resource: "Name on Card", "Street Address
1", "Card Verification Code", "Card Number", "Phone Num-
ber", "Street Address 2", "Post Code" etc. Furthermore, the
app metadata analysis does not rely on program code analy-

BILLING ADDRESS PAYMENT DETAILS

CARD EXPIRATION

cvc

United Kingdom

CONTACT INFORMATION

Figure 3: Sample Ul screen of a Ticket Booking App

sis, hence, it is not inhibited by anti-analysis techniques such
as obfuscated (packed apps).

5.2. Taxonomy of Sensitive Information

We utilise a taxonomy of sensitive information to iden-
tify the sensitivity of personal data entered into user input
widgets. The advantage of a taxonomy is to eliminate the
need to depend on users and/or developers to tag personal
data with their degrees of sensitivity before disclosure. Gen-
erally, a taxonomy organises and classifies information in
a hierarchical format. Often this corresponds to categories
(aka concepts), attributes and relations between categories
(Nickerson et al., 2013; Gregor, 2006). Building a taxonomy
for sensitive information, therefore, involves first identifying
information types that could be disclosed as categories and
their attributes; then organising the categories based on their
sensitivity.

We leveraged two main data sources to identify the cat-
egories in our taxonomy. These are repositories of vocab-
ularies that define information exchange in socio-technical
setting and privacy laws. We first used the core vocabularies
from ISA - Interoperability Solutions for European Public
Administrations (European-Commission, 2015). The main
objective of ISA is to promote the interoperability of soft-
ware specifications. They achieve this by sharing reusable
linked data models that capture the fundamental character-
istics of the data entity in a context-neutral fashion. Using
ISA, we extracted a subset of categories and their attributes
related to person and location core vocabularies. These two
vocabularies have been validated in Cwalina et.al.(Cwalina
et al., 2013), and further referenced in practice guides for
mobile app developers provided by the UK and Australian
Information Commissioners (UK ico; OAIC). To validate
the effectiveness of resulting categories in a mobile context,
we matched identified categories with COPPA - Children’s
Online Privacy Protection Act (Robins, 2000), PCI DSS -
Payment Card Industry Data Security Standard (Morse and
Raval, 2008), GDPR - General Data Protection Regulation
(Carey, 2018) and HIPAA - Health Insurance Portability and
Accountability Act (Annas, 2003) privacy laws. This also
enabled us to identify additional categories that were not pre-
viously stated in ISA. The resulting categories and their at-
tributes based on this process are as shown in the middle and
last column of Figure 4.

The next step is to specify the sensitivity of captured cat-
egories in the taxonomy. We first classified categories into
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Attributes

accountNumber
accountType
accountStatement
routingNumber
balance
creditCardNumber
cardHolderName
cwv
expiryDate
directMessage
conversation
dateOfIssue
identifierNo
identifierType
issuingBank
pincode
password
securityQuestion
securityAnswer
retinascan
photograph
fingerPrints
xray
onlineContact
emailAddress
phoneNumber

screenName
handle

username
symptom
bloodGroup
disease
prescription
platformSpecificIdentifier
networkIdentifier
hardwareIdentifier
patronyonicName
alternativeName
birthName
familyName
fullName
givenName
postName
postcode
thoroughfare
locatorDesignator
geographicName
geographicIdentifier
addressArea
addressIdentifier
adminUnitLevell
adminUnitLevel2
geometry
TocatorName
pobox
dateOfBirth
countryOfDeath
citizenship
countryOfBirth
dateOfDeath
jurisdiction
placeOfBirth
placeOfDeath
residency
homeListing
homeLeasing
rentallLeasing
deviceBrand
browserType

Figure 4: A taxonomy of Sensitive Information

four levels to achieve a balance in the sensitivity spectrum.
Having more levels would further reduce the spectrum such
that the distance between the most sensitive and the least-
sensitive would be too small, making it impossible to distin-
guish disclosure behaviour with more critical privacy con-
sequences. Having fewer than four levels is also not optimal
since it leads to a lesser degree of freedom during sensitivity
assignment. For example, a binary spectrum suggests that
information is either sensitive or is not, whereas, protected
attributes in privacy laws highlight scenarios where two at-
tributes may be identified as sensitive, but with one being

P
String 1 Resource Type 1 Optimal Textual Feature

Mobile APb | Resoutces, ; . String L Somantios o] Word | vector
Resources | ii. String Array VX T

1 iii. Quantity Strings(Plural) y Model

Category annotation of
textual semantics

Xa

Figure 5: Category annotation of an unstructured string re-
source

more sensitive than the other. However, using just three cat-
egories will inhibit the distinction of user input widgets that
collect the whole set of attributes associated with a category
from widgets that only collect a subset.

To assign categories to sensitivity levels, we combined
information provided by privacy laws about protected cate-
gories with their worth in underground economies (Holt and
Lampke, 2010; Motoyama et al., 2011; Ablon et al., 2014).
By combining these two sources, our sensitivity assignments
can reflect the impact on user privacy loss when the informa-
tion is disclosed inappropriately. The outcome of sensitivity
assignments is as shown in Table 1. Overall, the likelihood
of identifying an individual if the information is disclosed
inappropriately reduces with decreasing levels. More sensi-
tive categories denote that the law requires stricter guidelines
for its handling. This may also be an indication of a higher
impact of privacy loss, a higher value of associated informa-
tion, and potentially an increased risk to the individual when
inappropriately disclosed.

Finally, we define the App Sensitivity Index (ASI) as a
measure of privacy sensitive information type that an app
collects via its user input resources. Hence, a characterisa-
tion of the sensitivity index should, therefore, be a spectrum
from where an app does not require any input in each level of
sensitivity to when it requires all input type in the sensitivity
levels. The characterisation of the ASI is along 4 levels of
sensitivity - Very Low, Moderate (distinguishing apps that re-
quire less-sensitive input); High and Extreme (distinguishing
between apps that require sensitive information) as shown in
Table 2. N; represents the number of information type re-
quested in Level i, while G,,,,(;; is the maximum number of
information type that can be requested in each Level i.

5.3. Annotation of Sensitive User Inputs

Our taxonomy of sensitive information provides a conve-
nient classification system for automated tagging of unstruc-
tured data. Specifically, we utilise this taxonomy to identify
whether sentences describing sensitive information are con-
tained in the string resources. Our approach is highlighted
in Figure 5. For each string resource, we aggregate the value
provided in the name attribute and combine the string values
to derive its optimal textual semantics. The aggregation are
a set of sentences for the input resources and the UI textual
descriptions. These are then used as input to an unsuper-
vised machine learning algorithm for obtaining a distributed
vector representation for words(Bengio et al., 2003), which
combined with feature vectors from the taxonomy, annotates
the textual semantics with category attributes and sensitivity
levels.
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Table 1
The Rationale for Categorisation of Sensitivity Levels
Level | Description
1 The category is protected by privacy laws and its attributes can uniquely identify an individual
without any additional attribute or category
2 The category is protected by privacy laws but associated individual attributes are unable to

uniquely identify an individual except it is combined with one or more attributes in Level 2 or 1.

3 This category is not protected by privacy law. Its attributes can only be used to uniquely identify
if combined with one or more attributes in Levels 2 or 1.

4 Non-Personal Identifiable Information (Non-PlIl)

Table 2
ASI spectrum and Characterization

ASI Characterization Interpretation
N,=N,=N,;=N,=0
VERY LOW OR No sensitive inputs
N,=N,=N,;=0; N,=1
N,=N,=N,=0;N; > 1
MODERATE OR Requests Level 3 inputs ONLY.
N,=N,=0, N;,N, > 1
N]<:M
2 Requests inputs in Level 1
— Gax[2]
HIGH N,<= 2 or Level 2 or both
(Ny>10rRN,>1)
N, > Coall
1 . .
; Requests large sensitive inputs
Gmax[2]
EXTREME N, > === in Level 1 AND/OR Level 2
(N, 21 0rRN, > 1)

5.3.1. Deriving Textual Semantic from String
Resources

The next stage is to determine if an app’s resources re-
quest unstructured sensitive user input. To identify informa-
tion types and sensitivity levels the app requests, we parse
the XML resource describing the string resources and ex-
tract the values provided for each name attribute. We propose
Natural Language Processing (NLP) techniques for semantic
resolution of app string resources to alleviate the shortcom-
ings of keyword-based searching.

Deriving textual semantics involves accepting as input
natural language UI textual description and processing the
sentences for optimal textual semantics which comprises
a set of logically-dependent phrases. The NLP module is
made up of two components. The sentence boundary de-
tection is a way of segmenting the sentences of the string
resources to find appropriate boundaries specified by sen-
tence breaks. The NLP parser accepts each sentence and
annotates every sentence using standard NLP techniques.
From an implementation perspective, we chose the Stan-
ford CoreNLP(Manning et al., 2014) to annotate the sen-
tences with enhanced typed dependencies using neural net-
works(Chen and Manning, 2014). The typed dependencies
are a simple description of the grammatical relationships in
a sentence and are targeted towards the extraction of textual
relationships. We leveraged the python wrapper (Lynten,
2018) for Stanford CoreNLP that provides a simple API for
text processing such as Tokenization, Part of Speech Tag-
ging, Dependency Parsing, etc. The pruning module takes
as input the logically-dependent pairs and processes them to

generate the optimal textual semantics. Next, we use an ex-
ample to illustrate the annotations added by the NLP parser.
Consider the example string value, - '"The username or
password you entered is not correct.", that indirectly refers
to unstructured data resource type Authentication. Examples
of logically-dependent pairs that make up the optimal textual
semantics are - "username password, "username entered",

"username correct", "password correct".

5.3.2. Semantic Correlation

The attributes of categories in our taxonomy can be used
in different forms of textual semantics from a string resource.
The goal of the semantic correlation is to use the word em-
bedding model to find the similarity between the result-
ing textual semantics (set of phrase pairs) from the string
resources and sensitive attributes in the taxonomy (set of
phrase pairs). Word embedding is state-of-the-art in NLP
and its model uses pre-defined vector space to present every
word. The proposed methodology for finding phrase simi-
larity considers the phrase as a sequence of words and deals
with all the words in the phrase separately according to their
semantic and syntactic structure based on a word embedding
model. For every token in Phrase 1, it is compared to the to-
kens in Phrase 2 to find the word similarity by using a corre-
sponding and transverse word pair similarity. The aggregate
word pair similarity is the mean of the word pair similarity
measures that give the maximum similarity value. The fi-
nal phrase similarity is the mean of the maximum similarity
word pairs.

To find the similarity between two phrases, we use distri-
butional and word embedding models - a state-of-the-art ap-
proach for representing text in natural language processing.
The most commonly used models are word2vec (by Google),
fastText (by Facebook) and Glove (by Stanford)(Pennington
etal., 2014) which are unsupervised approaches based on the
distributional hypothesis (words that occur in the same con-
texts tend to have similar meanings). Based on the context
and our domain, we investigated the word embedding mod-
els preferable for the context and domain of the work. Se-
lecting three well-known pre-trained models and leveraging
gensim to load those models. We use gensim(Rehurek and
Sojka, 2010), a well-known NLP python library, that already
implements an interface to deal with these three models. We
downloaded pre-trained word vectors learned on different
sources trained using these three models. Since there are
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Table 3
Similarity Results for Phrase Pairs using Glove, word2ec (W2V)
and fastText(fT)

First Word Pair Second Word Pair | Glove | W2V | fT

credit card debit card 0.82 0.65 | 0.81
thumb print finger print 0.88 0.82 | 0.84
email address contact email 0.80 0.66 | 0.78
buy necklace purchase jewellery | 0.74 0.68 | 0.72
memory card phone number 0.62 0.20 | 0.42
scan barcode barcode scanner 0.88 0.78 | 0.85
device location device location 1.00 1.00 1.00
photo gallery picture gallery 0.87 0.80 | 0.90
save document save file 0.85 0.71 | 0.81
contain ads display ads 0.76 0.57 | 0.77
find place search location 0.72 0.37 | 0.62
plan vacation plan holiday 0.87 0.78 | 0.88
your voice your speaking 0.82 0.62 | 0.76
flight mode airplane mode 0.89 | 0.81 | 0.86
schedule appointment | plan meeting 0.65 0.32 | 0.55
geographical location | device battery 0.37 0.17 | 0.42
logic gate passport number 0.30 0.57 | 0.38
ip address home address 0.71 0.13 | 0.74

several pre-trained vectors trained using fastText and Glo Ve,
we evaluated the suitability of each model using a stan-
dard dataset which has 65 noun pairs originally measured by
Rubinstein and Goodenough(R&G)(Rubenstein and Goode-
nough, 1965). In the comparisons, the 50-dimensional vec-
tor of the Stanford Glove is preferable. Furthermore, we com-
pare these models on sample word pairs and evaluate the
similarity for the given phrases (cf Table 3).

Working with the 50-dimensional vectors (glove 6B.50d)
trained on Wikipedia data with 6 billion tokens and a
400,000-word vocabulary, we can find the similarity of the
phrases. Given two phrases X and Y originating from the
textual semantics of the string resources and taxonomy re-
spectively, where X = [X; X,]andY = [Y; Y,]. X,
and X, are tokens from X, while Y] and Y, are the sequences
of words from Y. The final similarity which involves find-
ing the aggregated similarity, Sim(X, Y), of the phrases is
calculated as shown in Equation 1.

Sim(Xl, [Yl’ Yz]) + Slm(Xz, [Yl’ Y2]
2
Sim(X,,[Y;, Ys]) = max[Sim(X,, Y,), Sim(X,, Y,)] (D
Sim(Xy, [Y;, Y,]) = max[Sim(X, Y,), Sim(Xy, Yy)]

Sim(X,Y) =

According to Rubinstein 1965(Rubenstein and Goode-
nough, 1965), the benchmark synonymy value of two words
is 0.8025. We set the threshold to 0.80, such that if the se-
mantic similarity equals or exceeds the threshold, the col-
lected information can be mapped to the corresponding in-
formation type and sensitivity level in the taxonomy. If
Sim(X,Y) < 0.80, the textual semantic is mapped to Non-
Personal Identifiable Information (Non-PII data).

6. Malware Detection

Unstructured user input is requested within an app’s
Graphical User Interface (GUI). Malware are basically dif-

ferent from benign apps on interacting with unstructured
user input. Malware may perform malicious activities once
it gains access to the device to steal user credentials or it may
disguise itself as a benign app to request sensitive PII from
the users, often choosing popular apps to repackage or in-
fect(Zhou et al., 2012), so that victims will download their
rogue version. Malware may attack the system from a system
level, like Ransomware, or spyware that monitors and records
information about user’s actions on their devices, without
their knowledge or permission. Malware comes in different
categories based on their mode of operation and may have
different characteristics e.g. different distribution of unstruc-
tured user input requests. The aim is to detect features that
are characteristic of the dataset in defining a class variable
as benign or malicious. The focus is to characterize malware
behaviour using unstructured user inputs. We are motivated
to detect malware with varied characteristics with a set of de-
tection rules extracted from four features with Decision Tree
presented. The four features are highlighted below:

6.1. Identifying ASI Patterns

The relevance of the ASI feature is to establish a mea-
sure of user input request that is characteristic of the dataset.
A strong correlation between the ASI characterization and
the class variable establishes this relevance. This involves
defining rules with respect to the ASI request patterns.

6.2. Individual Unstructured Input Categories

We also measure the relevance between individual un-
structured input category and class label, where each cate-
gory is a feature. Measuring the relevance of a feature and
class variable is known as a feature ranking in machine learn-
ing, which has a goal of selecting the most informative fea-
tures. The aim is to select the most relevant unstructured in-
put category for distinguishing malware from benign apps.
Mitigation rules are formed for single unstructured input cat-
egories.

6.3. Identifying Sensitive Unstructured Input Set

We identify the sensitive unstructured user input cate-
gory subsets that are risky either because of their combina-
tions or their interaction with each other. An interesting set
should be useful for reporting malware. Therefore, we must
define rules with respect to multiple unstructured user input.
Multiple unstructured inputs are set of single unstructured
inputs.

6.4. ASI and Unstructured Inputs

On their own, neither unstructured user input nor ASI
may be enough to characterize malware behaviour. This fea-
ture considers the combination of ASI and unstructured in-
put categories value as a single feature for reporting mal-
ware. The outcome is the combination of the characterisa-
tion of ASI request patterns with single and/or multiple un-
structured user input category that is relevant to a class label.
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Table 4
Feature Categories For Classification

Features of Behaviour Characterization
ASI
Single Unstructured Input Category
Multiple Unstructured Input Category
ASI and Sensitive Unstructured Category

6.5. Building Detectors of Malware Using
Sensitive User Input

In building detectors, we: i) obtain the ASI characterisa-
tion that is most relevant to a class label of apps. ii) obtain
the top n-categories that are most relevant to a class. iii)
identify sets of unstructured inputs which might interact to
make an app risky. We can then build a classifier on these
features. We build mitigation rules based on the ASI charac-
terisation, single unstructured user input security rules, and
multiple sensitive user input detection rules.

6.6. Detection Rules for Explicitly Outlining
Malware

Rules represent the knowledge in the form of IF-THEN
structure, i.e. IF condition, THEN conclusion, which is easy
for users to interpret. The rules make reasoning explicitly
where the condition is a conjunction of feature-value pairs
and the conclusion is the class label (1 for Benign, O for ma-
licious). We are interested in rules because rules with sensi-
tive user inputs as condition and malware as the class label
explicitly define the profile of malware. Our extracted rules
are from an empirically quantitative analysis of sensitive
user inputs requested by a very large app sets and are thus
more comprehensive on a larger scale. Due to its easiness
of interpretation, the rules can be further used for reporting
malware in a straightforward manner with no requirement on
the user’s classification expertise. Rules are extracted from a
well-founded decision tree classification. The main features
that help in malware identification in this study are presented
in Table 4.

7. Evaluation

We have presented a framework that detects when sensi-
tive information is disclosed by users via unstructured input
resources of mobile apps. The framework takes an app and
determines whether it is likely to be benign or malicious.
This depends on the usage of unstructured input sources en-
tered by the user. To achieve this, we proposed a technique
that relies on reverse-engineering an app to identify its un-
structured user input resources. We then presented a tax-
onomy that can be used to detect if an app requests sensi-
tive information through its input resources. The tagging of
the resource pertaining to sensitive information based on the
taxonomy was achieved using a word embedding model. De-
termining whether an app is likely to be benign or malicious
then depends on the privacy risk that a tagged resource may
pose to the user. We computed this risk by identifying the
sensitive information requests for malware detection.

This section reports the results of unstructured user in-
put category ranking, unstructured user input category sub-
sets identified, malware detector performance evaluation,
and the extracted explicit decision rules. Our first aim is to
ensure the validity of our design choices. Hence, we eval-
uate whether string resources can infer sensitive informa-
tion from user inputs. We also validate the typed depen-
dencies and word-embedding approach against key phrase
matching on the input widget properties as proposed in SU-
POR(Huang et al., 2015), AppsPlayground(Rastogi et al.,
2013), and UIPicker(Nan et al., 2015). To evaluate the effec-
tiveness of our approach and using unstructured input usage
to detect malware, we have conducted four evaluations. We
seek to answer the following research questions:

RQ1: How accurate is our semantic resolution of user inputs
using string resources? How does our approach compare to
the approach using input widgets?

RQ2: How relevant is the taxonomy for identifying mobile
threat with respect to data inputs?

RQ3: How does unstructured sensitive user inputs request
contribute to the effectiveness of malware identification?
RQ4: How effective is our approach of using unstructured
user input requests in identifying malware? These research
questions are important to be considered because they pro-
vide insights about unstructured user inputs usage and its
significance.

7.1. RQ1: How accurate is our semantic
resolution of user inputs using string
resources? How does our approach compare
to the approach using input widgets?

To validate the accuracy of our learning model, we first
select 1400 apps from six app groups on GooglePlay: Events,
House&Homes, Social, Medical, and Shopping. We then car-
ried out a manual inspection of the results generated by the
model based on selected apps. This was to determine the ef-
fectiveness of our approach in detecting unstructured sensi-
tive input request from the semantic resolution of the app’s
string resources. Furthermore, we wanted to investigate if
the knowledge of UI context may affect our results. For
example, a simple warning such as "Never disclose your
password to untrusted third parties.” might be misunder-
stood as an input request for a password, without knowledge
of the context. We also compared the accuracy of our se-
mantic resolution of user inputs using string resources com-
bined with a word embedding model against the combination
of input widget property resolution and key phrase match-
ing proposed in SUPOR(Huang et al., 2015), AppsPlay-
ground(Rastogi et al., 2013), and UIPicker(Nan et al., 2015).
The manual inspection is the ground standard for making the
comparison of the two approaches. The files of the manual
inspection are available as part of our efforts towards repro-
ducibility research. The accuracy of each approach hinges
on the number of times the vector of the unstructured user
input using the manual inspection and that of the approach
are equal. The outcome is shown in Table 5.

From Table 5, it can be inferred that our approach gen-
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Table 5
Comparison of Semantic Resolution Approaches against Man-
ual Inspection of Apps

App Group # TP, | FP, | FN, | TP, | FP, | FN,
Events 59 56 3 0 30 6 23
Business 161 157 3 1 80 24 57
Finance 137 135 2 0 75 35 27
House & Homes | 113 109 2 2 60 20 33
Medical 238 228 7 3 100 26 112
Shopping 228 225 2 1 150 33 45
Social 331 325 4 2 100 45 186
Travel & Local 133 133 0 0 50 20 63
> 1400 | 1368 | 23 9 645 | 209 | 546

TP = True Positive, FP = False Positive, FN = False Negative. 1 -
Semantic Resolution using String Resources, 2 - Semantic Resolution
using User Input Widgets

erated an average precision of 98.35% and recall of 99.34%.
The alternative approach of identifying unstructured input
request type using input widget properties resulted in an av-
erage precision of 75.53% and recall of 54.16%. Observed rea-
sons for the comparative advantage our approach has over
the resolution of input widget properties proposed by SU-
POR, UlPicker and AppsPlayground are identified below:

1. Key Phrase Matching - SUPOR, AppsPlayground
and UlPicker each used key-phrase matching for the
semantic resolution of input widget properties. This
approach suffers some limitations such as the inability
to specify a threshold for the semantic resolution. For
instance, if a user has an app installed on the phone,
which has a text entry widget for entering input, there
is no way to categorise the widget if it doesn’t con-
tain the expected key-phrase.The proposed approach
is built on the idea of measuring the distance to an
existing taxonomy, and the approach can generalize
to other, including customized taxonomies. Also, the
approach is limited by semantic inference. Input wid-
get properties may often describe a sensitive user input
without actually referring to the keyword. For exam-
ple, "Enter your security question and answer". This
sentence fragment describes the request for an "Au-
thentication" information; however, the "password"
keyword is not used. Using our approach, one of
the typed dependencies extracted from the sentence
is "security question" and this maps to the follow-

ing attributes: "secret key", "login security", "security
phrase", "security answer", "security code" of the Au-
thentication class with similarity values of 0.71, 0.81,
0.81, 0.81, 0.96, 0.81 respectively. Furthermore, the
approaches view UI strings individually. However,
strings may mean completely different things, based
on the context of the Ul in which they are instanti-
ated. For example, "address” may mean email ad-
dress, physical address, or IP address, based on the
screen in which the string is instantiated. With the
proposed taxonomy and word embedding model, the
strings are correctly classified as contact, address and
asset information respectively.

2. Scope and Type of Input Widgets - The state-

of-the-art approaches either only consider an Edit-
Text as the input widget to be analysed or focus
solely on Android-defined widgets. Upon inspection,
at least 30% of the input widgets containing sensi-
tive resources are developer-defined widgets(custom-
widgets). For instance, 94% of sensitive inputs
from com.avuscapital.trading212 are not via the Edit-
Text tag. Also, 95% of sensitive inputs request by
com. facebook . katana are accounted for by custom wid-
gets.

. The Unreliability of Input Widget Properties:

From our sampling of Android layouts from the App
Store, we also observed that programmers do not al-
ways adhere to best practices in initialising these prop-
erties. For example, the android.inputType property
does not necessarily reflect the type of information a
widget collects and so a developer could inappropri-
ately specify an input type of "textVisiblePassword”
for a field that collects a user’s full name. We
also observed scenarios where android. inputType and
android:hint properties conflicted with each other.
For instance, we identified an app with a layout file
with the attribute android.inputType specifying that
the associated resource is an email address field,
while the android:hint indicates that the resource ac-
cepts the full name of a recipient. This shows that
developer-defined properties cannot be relied upon
alone for the semantic resolution of user inputs.

. Non-unique widget identifiers - Finally, we observed

rare cases where an app used the same widget identi-
fier for more than one sensitive input field. The con-
sequence is that the same input resource could be as-
signed different degrees of sensitivity. A typical ex-
ample is when an app uses the same text entry widget
ID for user messages, via direct messaging service to a
friend, and for receiving feedback about the app from
the user.

While we have shown the comparative advantage of our
approach, we also highlight some threats to the validity of
the approach:

1. Language - Our dataset contains applications whose

descriptions and text resources are not in English. The
UI text of some apps in the string resource folder was
written in languages other than English, so the classi-
fier could not predict them accurately.

. Global concepts - We observed the lack of regional

interoperability in specific apps, such that not all typed
dependencies extracted from the string resources are
global concepts. For example, words like USREOU code
(a bank account information used in Russia) could
only be operationalised within their respective re-
gions.
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Table 6
Most Impersonated Brands for Phishing Attacks
Category Brands # Apps
Microsoft, Google, Netflix,
Cloud Docusign, DropBox, Adobe, 26
Google, WeTransfer
Paypal, Chase, Wells Fargo,
Financial Services USA.A' Ba.nk of Ameri_ca, 11
Credit Agricole, American
Express, CIBC, RBC, UBS
E-commerce/ DHL, Apple, AliBaba, 3
Logistics Amazon,Ebay
Orange, Comcast, Yahoo!,
Internet/Telecom | AT&T, NBC, UK Gov, 22
Fox News
Facebook, LinkedIn,
Social Media WhatsApp, Facebook 4
Messenger

3. Hybrid Apps: Another limitation to our resource
metadata analysis is that not all app-layout can be anal-
ysed. Specifically, our technique does not consider hy-
brid apps that use both native and HTML user inter-
faces.

In conclusion, the high detection results of the proposed
approach with manual verification indicate that UI textual
descriptions can be counted upon for semantic resolution of
unstructured user input request in mobile settings.

7.2. RQ2: How relevant is the taxonomy for
identifying mobile threat with respect to data
inputs?

To validate our taxonomy, we investigate the useful-
ness of using the unstructured user input request in detect-
ing attacks based on data input. Wandera’s 2019 Mobile
threat(Wandera, 2019) landscape report revealed that phish-
ing is still the number one mobile threat. Since the goal of
phishing is to make unsuspecting users click a link or run
files to launch malicious code to start an attack of stealing
data. We investigate the unstructured user input request of
the app of such reputable brands for many reasons. First, it
provides some ground truth for what constitutes a sensitive
unstructured input request. Secondly, this unstructured user
request would also give insights into associated risks with
respect to information disclosure.

To leverage the ground truth of apps, we download the
services in forms of apps offered by these reputable brands
that are most impersonated in (Wandera, 2019) and (Hadley,
2019), making a total of 66 apps for evaluation. The unstruc-
tured user input request of the top phishing brands is pre-
sented in Figure 6, with contact information (email address,
phone number etc.) and digital identity (username, user id
etc.), Personal User Message (user message e.g. text mes-
sages, SMS-related transactions, chats, messages inbox for
emails) and Authentication (passwords, login credentials),
Address Information (physical address information) being

the top requested unstructured user input with 85%, 74%,
68%, 66% and 53% respectively. This result presents a form
of validation for the proposed taxonomy of sensitive unstruc-
tured user input as the top 5 requested unstructured user in-
put by popular brands often impersonated by phishing have
sensitivity Level 1 and Level 2 in our taxonomy - most sen-
sitive (cf Fig 4). Hence, unstructured data input is relevant
in identifying a mobile threat. We argue that our findings
have contributed to redefining what sensitive user informa-
tion means. Finally, privacy risk and vulnerability has been
measured in terms of permissions and API usage, we argue
that our taxonomy of sensitive information presents an ad-
ditional step of evaluating privacy risk, based on sensitive
unstructured user input request and usage. Finally, the ap-
proach of annotating privacy-sensitive unstructured inputs
in apps could be developed into a tool that helps develop-
ers understand the significance of the data they request from
users.

7.3. RQ3: How do unstructured sensitive user
inputs request contribute to the effectiveness
of malware identification?

RQ3 evaluates the effectiveness of unstructured input
type requests in identifying malicious behaviour. Investigat-
ing the usage of unstructured user input between malware
and benign apps opens directions for malware detection re-
search, which seek reliable app features to use in machine-
learning processes. To answer RQ3 we investigate the fea-
sibility of building classifiers from the ASI, single unstruc-
tured inputs and sets of unstructured input types. This in-
volves selecting attributes that are most relevant to the class
label of apps. Rules are constructed using the sensitivity in-
dex of the app and the 17 relevant unstructured inputs using
the malicious and benign dataset with the decision tree. Each
of such IF-THEN rules has a condition as a conjunction of
unstructured input values and consequence as a class label,
which is 1(Benign) and 0 (malicious) in our case. In a rule,
the conjunction of unstructured input sets forms a sufficient
condition for detecting malware. To extract the rule sets, we
divided our study subjects into training and testing sets as
shown in Table 7.

7.3.1. App Sensitivity Index Rule Sets

We extract rule sets from the ASI characterisation of the
training set in order to describe some kinds of malicious be-
haviour. The technique of building decision rules from sen-
sitive unstructured user input is motivated by the study in
Kirin(Enck et al., 2009) and permission-induced risks(Wang
et al., 2014), where decision rules were constructed from
risky permission requests to detect malicious behaviour in
Android apps. Based on the extracted rule sets, benign apps
tend to request more sensitive data for their normal operation
(indicated by Rule o1, Rule 02 and Rule 03). The extracted
rules and its likelihood show that the app sensitivity index
has relevance with the class label. However, with a 70% and
60% probability (Rule 02 and Rule @3), there is the need for
further abstraction into what type of sensitivity user inputs
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Figure 6: Unstructured User Input Request of Apps of Frequently Impersonated Brands

Table 7
Splitting Study Subjects into Training and Testing Sets
Label Training Set Size % | Testing Set Size %
Malware | VirusShare(Roberts, 2011) | 13.2K Argus(Wei et al., 2017) 480
Drebin(Arp et al., 2014) 2691 45 AMG(Jiang and Zhou, 2012) | 449 50
Contagio(Parkour, 2018) 245 AndroZoo(Allix et al., 2016) | 157K
Koodous(Project, 2018) 114
Benign GooglePlay 20K 55 AndroZoo(Allix et al., 2016) 156K 50
GooglePlay 370
Total 36.2K 315K

the class label of apps actually request. This is done with
a view to increasing the relevance of unstructured data re-
quest for distinguishing benign apps from malware based on
the presence or absence of sensitive user information.

7.3.2. Unstructured Input Rule Sets

Here, we extract single and multiple unstructured inputs
that are relevant to the class label. First, we rank the un-
structured input type request for each class label. The rank
provides validation for our classification of sensitive inputs
such that 5 out of the top 5 relevant input type relevant to be-
nign apps and malware have sensitivity Level 1 and Level 2.

These are relevant to extracting the rules because of the fact
that the Authentication information (A&V) is higher than
every other input type in benign apps suggests that apps col-
lecting sensitive information should provide a form of au-
thentication, however, in the malicious dataset, A&V is not
the most requested unstructured input type despite sensitive
information requests. As a result of investigating single un-
structured user inputs and multiple unstructured inputs that
are relevant to the class label, we discovered that Authentica-
tion information type is relevant to the benign apps described
by Rule 4. Rule 04 can be interpreted as follows - An app
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Table 8
Unstructured User Input Ruleset

(a) App Sensitivity Index Rules
Rule 01

IF (ASI = MODERATE)
THEN Class = 1 [85.38%]

Rule 02
IF (ASI = HIGH)
THEN Class = 1 [70%]

Rule 03
IF (ASI = EXTREME)
THEN Class = 1 [60%]

(b) Hybrid Rule Sets.

Rule 04

IF (ASI = HIGH OR EXTREME)
AND AUTHENTICATION =1

AND CONTACT INFORMATION =1
OR DIGITAL IDENTITY =1

THEN Class = 1 [98.55%]

Rule 05

IF (ASI = HIGH OR EXTREME)

AND AUTHENTICATION =0

AND PERSONAL USER MESSAGE =1
OR NAME =1

OR LINKABLE INFORMATION =1
OR ADDRESS INFORMATION =1
THEN Class = 1 [99.33%]

with a High or EXTREME ASI that does not require any form
of authentication is indicative of malicious behaviour. This
means that an app is requesting sensitive unstructured input
in Level 1 and Level 2 without any form of user authentica-
tion in terms of passwords, security questions, user account
authentication etc., while the reverse when an app with High
or EXTREME ASI that provides some form of authentication is
a benign behaviour. The rule is also supported by the result
of investigating the most popular type of unstructured data
requested by apps of frequently impersonated brands (cf Fig.
6).

However, we also needed a flip side to it, as the results
does show that some malicious apps request authentication
information, hence, there needs to be a further abstraction
to reduce false negatives. A malicious app with ASI value
of HIGH or EXTREME may not request authentication yet
requests its dependency alongside it because of their unique-
ness such as contact (email addresses, phone numbers), and
Digital Identity (for unique online identity). To achieve a
further distinguishing factor, we investigate the combina-
tions of information type that often go along with authentica-
tion request in benign apps. The information type that is dis-
tinguishing in this regard is other personal information such
as Address Information, Linkable Information, Name, Asset
Information, Financial Transaction and Personal User Mes-

sage. For instance, the ratio of benign to malicious apps that
request address information with authentication information
is 54:1. Hence we say that an app that requires authentica-
tion, with the rarely requested information type in the mal-
ware testing set is likely to be malicious. In summary benign
apps that request sensitive unstructured data often requires
some form of user authentication and they request a wider
range of other unstructured data, whereas a malicious data
may request sensitive user data without providing a form of
user authentication and often requires a focused set of sen-
sitive data and not wide-range.

Overall, we have shown that characterisation of the sen-
sitivity index and unstructured user input request can be used
as static features for categorizing class labels of apps. The
app distribution platform benefits from these findings as a
measure of risk analysis that can be used to determine the
type of checks that should be carried out and the degree of
compliance that is required for an app exhibit such request
pattern to gain approval that could prove useful during cer-
tification. The expectation is that unstructured user input
request identifiable with a malware suggests the need for a
more rigorous check before certification. App distribution
platforms frequently provide users with information such as
frequency of downloads, likes, references and other related
apps. This does not provide insight into the privacy risk
posed by an app. To improve user privacy awareness, the
characterisation of the user input request can be provided as
a piece of additional app information by the distribution plat-
form, such that users are informed about unstructured user
input request in the same way they are aware of the permis-
sions an app request. This additional awareness informa-
tion can be vital in establishing trust in privacy preservation
when determining which app to download. Specifically, it
is now common practice to design an app to inform users
when it requires structured input sources such as location,
address book, microphone, etc. to execute its functional re-
quirements. But this does not include the sensitive informa-
tion it collects from unstructured input sources. The result
is that users are still unsure of the actual privacy risk posed
by an app even after being informed of the structured input
resources it depends on. Overall, users could then build their
privacy expectations and decide to download an app based
on not only the app’s functionality but also on potential pri-
vacy risk as a result of its user input request.

7.4. RQ4: How effective is our approach of using
unstructured user inputs request in
identifying malware?

The identification of security-sensitive input is an essen-
tial building block for investigating the privacy of applica-
tions. However, its suitability alone for detecting malware
needs to be investigated, as malware have different fam-
ily and therefore exhibit different behaviour in relying on
security-sensitive input to be malicious. To answer RQ4,
we measure the performance of the extracted rules in iden-
tifying generic malware and known malware family by an-
swering the following questions:
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1. RQ4-1: How effective is the approach when the mal-
ware family and target application are known?

2. RQ4-2: How effective is the approach when the mal-
ware and target application are unknown and random
i.e. generic?

7.4.1. RQ4-1: Known Malware Family and Target
Applications Analysis
We focus on the benefit of assessing security-related in-
put by demonstrating the capabilities of the proposed method
in a narrower application setting. We investigate two mal-
ware types that dominated the AMD dataset(Wei etal., 2017)
because of the accessibility of their negative counterparts.
The malware family types are:

e Trojan-Banker: Trojan-Banker programs are generic
detection name for trojans that are designed to steal
user account data relating to online banking systems,
e-payment systems and plastic card systems from cus-
tomers of these services and send the data to the author
or 'master’ of the trojan.

e Trojan-SMS: These Trojans use the SMS (text) mes-
saging services of a mobile device to send and inter-
cept messages. Programs of this type are used to send
text messages from infected mobile devices to pre-
mium rate numbers that are hard code into the Trojan’s
body.

The rationale for choosing the negative samples is to
gather benign apps that actually exhibit similar behaviour
as the associated family of each malware type. For instance,
the most usual target of Android banking Trojans is, unsur-
prisingly, banking apps. All the associated families of the
Trojan-Banker and Trojan-SMS malware dataset are gath-
ered from the AMD Dataset(Wei et al., 2017). The negative
samples that consist of legitimate mobile banking apps and
messaging apps were downloaded from GooglePlay. As the
official app store for Android, Google Play is the main An-
droid app distribution channel. Thus, its sample set could
reflect the unstructured input patterns used by mainstream
developers.

The results in Table 9 show that our approach can dis-
tinguish between trojan banker and legitimate banking apps
with a balanced accuracy of 0.995; also differentiate between
Trojan-SMS and legitimate SMS text messaging apps with
a balanced accuracy of 0.998. The implication of these re-
sults is that all the malware variants in the malware families
correlate with the decision rules proposed. The behaviour is
such that they request sensitive information without authen-
tication information, and when they do, they do not request
the other combination of information that often goes with
it in the benign counterpart. For example, a Trojan-Banker
app may just request payment card information with finan-
cial bank details alone without any form of authentication
or other linkable information, while an SMS trojan might
just request contact information and digital identity which
is not the standard request pattern of legitimate SMS apps.

Table 9
Detection Results on Associated Family of Trojan-Banker and
Trojan-SMS with Corresponding Benign (Negative) Samples

Malware Type | Negative Samples | Family # TP | FP | FN
Bankbot 93 |93 |3 0
313 mobile Bankun 20 20
Trojan-Banker banking apps SlemBunk | 5 5
for Android SvPeng 4 4
Zitmo 7 7
Boxer 7 7
Cova 14 14
Erop 1 1

Fakelnst 54 54

FakePlayer | 2 2

Gumen 130 | 129
mSeZsin?ét::[th Leech 7 7
Trojan-SMS . Ogel 4 4
for Android on Opfake 7 7

GooglePlay

RuMMS 8 8

SmsKey 99 99

SpyBubble | 2 2

O OO0 O OO0 O0O0O0O0OO O wwww
OO OoOO0O OO o oo o oo oo o oo

Stealer 10 10
Tesbo 4 4
Vidro 2 2

The conclusion is that the decision rules are a reflection of
the behaviour of malicious Trojan SMS and Trojan-Banker
with their legitimate target applications. This suggests an in-
teresting correlation between an app’s maliciousness and its
request of sensitive user input.

7.4.2. RQ4-2: Towards Detecting Generic Malware

So far, we have investigated known malware family and
target applications. One could argue that the testing data
is not representative of the reality of apps in the Android
ecosystem which may lead to the model having a very high
false alarm rate in reality. We wanted to investigate how the
model would fare with a large subset of benign and mali-
cious apps, which have a wide range of goals and behaviors
with their corresponding malicious counterparts. To achieve
this, we investigated the effectiveness of our approach on An-
drozoo - a repository of benign and malware samples from
2008 - 2019, to investigate if the presence or absence or sen-
sitive user input fields is enough to perform malware detec-
tion. Samples from a fresh dataset containing 300000 apks
with 156638 being malware apks and 155850 being benign
apks malware were used to test the accuracy of the newly
built hybrid classifier on an independent dataset.

By using strictly the rule set (cf Table 8b) for malware
classification, our approach identifies malware with a bal-
anced accuracy of 70% and an F-measure value of 80%,
which shows that our approach returned substantially more
correct identifications than incorrect ones. We could have
also used Support Vector Machines (SVM)(Steinwart and
Christmann, 2008) and Random Forest(Breiman, 2001) for
feature classification as opposed to Decision Tree(Quinlan,
1986) but that would not improve the accuracy of detection.
This is because the accuracy was inhibited by benign apps
in our dataset that do not request a rich set of sensitive user
information. This is a limitation on our features and not the
type of classifier used. In this case, relying only on unstruc-
tured user input request alone is limited by benign apps that
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Table 10
Identification of Generic Malware Using Unstructured input
Rule Set

Performance Measures Generic Malware
F-Score(%) 0.80
Accuracy(%) 0.71
Balanced Accuracy (bACC)(%) 0.70

do not request sensitive unstructured data for generic mal-
ware detection. This is similar to the problem faced with
permission-based malware detection, a challenge often re-
ferred to as "zero-permission” apps - a scenario where an
app does not declare any permission for its functionality.

8. Comparative Analysis

This section aims to provide in details the difference be-
tween the proposed approach and techniques found in the lit-
erature to highlight our contribution. This is to demonstrate
the major advantages of the proposed approach and how it
can complement state-of-the-art detection systems.

1. Malware analysis technique for unstructured user
input: Existing research has approached this analy-
sis by identifying privacy violations in data originat-
ing from permissions and well-defined API calls made
by mobile applications. These are the so-called struc-
tured system-centric data sources. In this approach,
API calls where sensitive data is involved are well
structured and explicitly represented in the semantics
of the data returned by the API invocation. How-
ever, mobile apps frequently request user data input
within their Graphical User Interfaces (GUIs). Such
data may be highly unstructured and contain sensi-
tive information that eludes privacy analysis. Table 11
shows the features used in 23 state-of-the-art malware
detectors with none of the approach built on unstruc-
tured user input features. The proposed technique has
provided a complementary approach to analysing pri-
vacy and security issues in the Android ecosystem.
While malicious application detection is not a new
topic, this paper presents a new perspective to view
the problem.

2. Informative features for malware detection: Mod-
ern detection systems e.g. DREBIN(Arp et al., 2014),
approaches using an ensemble of classifiers e.g.Wang
etal. (2018), or techniques built on the combination of
string and structural static features e.g. DroidEnsem-
ble(?) are exploring more informative features to
better characterize the behaviour of apps. The pro-
posed approach can complement these endeavours by
demonstrating a strong association between malicious
behaviour and the use of unstructured inputs, in cer-
tain categories of malware. In conclusion, the pro-
posed technique has shown that the privacy analysis
of unstructured user input is an important feature for
characterizing stealthy behaviour of Android apps.

3. A technique for analysing zero-permission apps:

Furthermore, as shown in Table 11, majority of the
state-of-the-art malware analysis tools often require
permissions as one of their key features. However,
zero-permission apps do not request any permission
to be functional, hence, such apps may evade privacy
analysis. For example, Table 12 shows the number
of zero permission apps in the malware families anal-
ysed in the AMD dataset - a dataset that provides an
up-to-date picture of the current landscape of Android
malware with malware families ranging from 2010 to
2016. In such cases, unstructured user input request
can be used for such analysis (e.g. BankBot in Table 9)
and vice-versa or the approaches can be used in stages
depending on the elements in the app.

. An alternative approach for monitoring app be-

haviour: Secondly, the state-of-the-art approach to
privacy analysis of mobile apps majorly revolves
around Android program code analysis which often
depends on Android reverse engineering tools. Sys-
tems that make use of features extracted by these tools
are prone to errors because the state-of-the-art An-
droid reverse engineering tools have been shown not
to work properly in all cases(Mirzaei et al., 2019). For
instance, tools which extract control flow graphs are
not perfect, especially when apps adopt advanced anti-
analysis techniques. Such advanced code obfuscation
techniques in Android may use a combination of trans-
formations(Dalla Preda and Maggi, 2017) that makes
malware analysis systems built on code analysis inef-
fective. Also, static analysis malware detection tools
based on API calls can be evaded if malware authors
learn what API calls are used as signatures for detec-
tion. For example, they could use a combination of
different API calls that allow them to achieve the same
function. Moreover, the Android framework is con-
stantly changing with the addition and deprecation of
API calls with new API releases, which has led to ad-
vanced evasion techniques by malware authors. The
implication is that program code analysis cannot be
extracted sometimes for behaviour analysis due to its
limitations. Therefore, our approach is contributing
to this area by proposing an app behavioural analy-
sis devoid of program code inspection. This can aug-
ment state-of-the-art detection systems for robust be-
havioural monitoring of apps.

We investigated AMD Dataset as the ground truth for
investigating the benefit of our approach in known
malware family and target applications (cf Table
9). The dataset are labelled based on several be-
havioural criteria, including the presence of differ-
ent anti-analysis techniques such as identifier renam-
ing (IR), string encryption (SE), dynamic loading
(DL), native payload (NP), evade dynamic analysis
(EDA)(Check Device Info (CDI), Encrypt Communi-
cation (EC), Check Installed App (CIA)) in the apps of
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Table 11
Features Used in the State-of-the-art Malware Analysis Techniques
S/N | Detector Features
. platform-level exploits, sensitive behaviours without user interaction,

1 Riskranker(Grace et al., 2012a) Encrypted native code execution, Unsafe Dalvik code loading

2 Droidmat(Wu et al., 2012) Manifest (e.g requested permissions, Intent messages passing,etc.) & API calls

3 Droidapiminer(Aafer et al., 2013) API-Level Behaviour

4 Peiravian and Zhu (2013) Permission and API Calls

5 Yerima et al. (2013) API calls, system commands and permissions
Hardware components, Requested permissions, App components, Filtered

6 Drebin(Arp et al., 2014) intents, Restricted API calls, Used permissions, Suspicious API calls,
and Network addresses

7 Zhang et al. (2014) weighted contextual API dependency graph as program semantics

8 Wang et al. (2014) Requested Permissions

9 Droid-sec(?) required permission, sensitive APl and dynamic behavior.

10 Apposcopy(Feng et al., 2014) Inter-component callgraph, control and dataflow properties.

11 Afonso(Afonso et al., 2015) Predefined list of APl and system calls

12 Chen et al. (2015) App’s Ul structure and method's control flow graph

13 MamaDroid(Mariconti et al., 2016) API Calls

14 Droiddetector(?) Required permissions, sensitive APIs, and dynamic behaviors

15 DroidSieve(Suarez-Tangil et al., 2017) | API calls, code structure, permissions and the set of invoked components

16 McLaughlin et al. (2017) Raw opcode sequence

17 o Features in Arp et al. (2014), Certification Information, Payload information

: ,code patterns,Strings - URLs, IP Addresses, File Paths, Numbers
18 o method opcode, method API, Shared library function opcode, String,
' permissions, components and environmental information

19 RevealDroid(?) APIs, native code and reflection

20 DroidEnsemble(?) Features in Arp et al. (2014) & Structural Features (function call graph)

21 Wang et al. (2018) Features in Arp et al. (2014), Code-related Information

2 DroidSpan(?) LongitL_JdinaI characterization study of Android app with a focus on their
dynamic behaviours

23 Olukoya et al. (2019) Permissions and Ul textual descriptions

Table 12 9. Discussion

Malware Families in the AMD Dataset(Wei et al., 2017)

. S In this section, we discuss two major questions for
with zero permissions

the detection and analysis of malware using user input re-

S/N Malware Family | Apps with Zero Permissions quests. We discuss the feasibility and the main limitations

; g'rpESh i; behind the empirical results. While our results show a

3 J,t ei 3 high balanced accuracy detection performance on the de-
Gl tection of known malware and corresponding target appli-

4 DroidKungFu 1 . . .. . .

5 BankBot 1 cations (Trojan-Banker vs legitimate mobile banking apps

and Trojan-SMS vs benign messaging apps), we carefully in-
vestigate in detail the false negatives it produces for generic
each family of one particular variety. Table 13 shows ~ Mmalware detection.

the selected app families with anti-analysing tech- In particular, a balanced accuracy of 70% was reported
niques investigated for RQ2 (cf Section 7.4.1) where in detecting generic malware. The limitation of this ap-
the proposed technique achieved an average balanced proach in detecting generic malware without target appli-

accuracy of 0.995. To demonstrate that the proposed cations is benign apps that do not request a rich set of un-
structured user input data. By thorough investigation, we

are aware that only considering unstructured input requests
as features may have difficulties to improve the current de-

approach of using unstructured user input request is
obfuscation-resilient, we show the obfuscation tech-
niques used for the malware family and its variants

used in Table 13, where 85% of the investigated mal- tection accuracy for generic malware detection. Therefore,
ware used anti-analysis techniques. Furthermore, we additional information is required to reduce false positives.
demonstrated in our previous work(Olukoya et al., ~ One way to reduce the false positive rate could be the anal-
2019) that extracting features from the UI textual de- ysis of known malware families with corresponding benign

applications with similar behaviours and functionalities in a

scriptions is obfuscation resilient.
narrower application setting, as shown by the high accuracy
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Table 13
Anti-analysis Malware Behaviours of Apps From AMD
Dataset(Wei et al., 2017) investigated in Section 7.4.1

Anti-Analysis Technique
IR | SE | DL | NP | EDA
BankBot v |/ v CDI
Bankun CDI
SlemBunk v v v
Svpeng CDI
Zitmo
Boxer
Cova
Erop
Fakelnst
FakePlayer
Gumen
Leech
Trojan-SMS Ogel
Opfake v
RuMMS
SmsKey
SpyBubble
Stealer
Tesbo
Vidro

Malware Type | Family

Trojan-Banker

NN O INYN NSNS
N

NN NS

of detection of Trojan-SMS and Trojan-Banker in Table 9.

Focusing only on unstructured user inputs miss a lot of
information, and it does not seem to be enough when the be-
nign applications are of different behaviours and goals in a
way that they are not target applications for malicious ap-
plications. An alternative approach could be investigating
the system-call runtime behaviour of such apps(Tam et al.,
2015; Yan and Yin, 2012; Yang et al., 2013). Another way of
handling such complexities could be the use of an enhanced
feature set. One of such could be combining unstructured
input with permission request and API usage to form a large
feature space vector. However, since not all applications re-
quest permission also, approaches built on permission de-
tection can use the proposed unstructured user input request
for robust analysis. Another area of future work that has a
huge potential of improving the performance detection rate
of the proposed approach with generic malware is incorpo-
rating the structured static features in (Wang et al., 2014; ?,
2018; ?) with the unstructured static features in an ensemble
for a comprehensive robust privacy analysis in the Android
ecosystem.

10. Conclusion

We have presented a framework for analysing unstruc-
tured input in mobile apps towards a vision of detecting ma-
licious behaviour. Our framework first combines a taxonomy
of sensitive information with a word embedding model. This
is to analyse the app’s meta-data and identify unstructured
input request from users. The outcome is used to realise a
sensitivity spectrum that indicates the level of unstructured
input request pattern of apps. Meta-data analysis is then fol-
lowed by a combination of identifying subsets of unstruc-
tured input types and rule sets with a decision tree to deter-

mine malware with different characteristics. We have evalu-
ated our approach using apps downloaded from the Google
Play Store. In a narrow application setting where malware
share similar functionalities with benign applications, our
approach is 99% accurate, while yielding a 70% with random
benign and malware apps. In particular, we show that our
approach is very feasible for distinguishing Trojan SMS and
Banking Trojan from their legitimate benign targets. The ap-
proach of annotating privacy-sensitive unstructured inputs
in apps could be developed into a tool that helps develop-
ers understand the significance of the data they request from
users. The proposed approach demonstrates a strong asso-
ciation between malicious behaviour and the use of unstruc-
tured inputs, in certain categories of malware. The study
has also shown that analysing unstructured user input may
also be effective in scenarios other than malware detection
e.g. in the design of anti-phishing mechanisms. The insight
that there is a pattern of unstructured user input usage in fre-
quently impersonated brands may be the first step in such
endeavours.

We found utilities for our approach, the first is in distin-
guishing with high accuracy between malware families and
target applications. The second is that with generic malware
detection, the use of unstructured input request can be incor-
porated in other detection systems as an initial step, espe-
cially when processing a very large set of samples. Thirdly,
applications that evade permission-based malware detection
approaches because they are "zero-permission” apps can be
analysed based on unstructured user input request. Overall,
our analysis thus provides a vision regarding the use of user
input data for the identification and detection of malware. In
future work, we will explore combining user input data with
permission request and API usage for enhanced feature set.
Another promising area for future work is investigating the
information flow of the most requested unstructured user in-
put of apps of frequently impersonated brands. This area of
research would be particularly useful in identifying a phish-
ing app from a benign app.

As malicious apps are at an arms race with their benign
counterparts, more features need to be explored in order to
improve the capacity of detectors for the detection of generic
malware. It is beyond doubt that mobile devices will con-
tinue to be an attractive target for cybercriminals, we argue
that analysing unstructured user input request contributes to
taking extra measures for mobile apps privacy and security.
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