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Abstract 

Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and 

reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. 

However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis 

resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which 

is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, 

chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing.  

Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is 

a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress 

and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against 

vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as 

promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway 

has also been linked to tumorigenesis, which highlights the requirement for further understanding of 

pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. 

Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities 

of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and 

calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and 

non-pharmacological Nrf2 therapeutics. 
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1. Introduction 

1.1. The Nrf2 signaling pathway 

Redox homeostasis, comprising a balance between a pro-oxidative reactive oxygen species (ROS) 

production and concomitant antioxidant defenses, is a crucial process for protecting against oxidative stress 

known to be associated with a number of pathologies related to burden of life style diseases [1]. This balance  

is a determinant of physiological processes that ensure the maintenance of healthy cellular function in 

multiple organs, including the cardiovascular system [2]. Increasing evidence indicates that Nuclear factor 

erythroid 2-related factor 2 (Nrf2) acts as a key player in this process and that modulation of its action could 

facilitate   both control  of cellular redox homeostasis and  physiological  homeostasis in pathways related 

to the maintenance  of cardiovascular health [3, 4]. 

Nrf2 is encoded by the nuclear factor erythroid-derived 2-like 2 (NFE2L2) gene, which is a basic-leucine-

zipper (bZIP) like transcription factor consisting of seven NRF2-ECH homology (Neh) domains (Neh1-

Neh7), belonging to the cap'n'collar (Cnc) subfamily.  Its spectrum of action is very broad, regulating the 

expression of >250 genes [5]. Although Nrf2 is a stress-responsive transcription factor with anti-

inflammatory and neuroprotective effects, its major function is to maintain cellular homeostasis by 

activating genes that encode cytoprotective, antioxidant and phase II detoxifying enzymes, such as 

NAD(P)H dehydrogenase (quinone)1 (NQO1), heme oxygenase (HO-1) and (HO-2), tryptophan 

hydroxylase-1 (TPH-1) and  glutathione-S-transferase (GST) [6, 7].  

Nrf2 is expressed ubiquitously and localized to the cytoplasm under basal conditions. Its expression is 

maintained at low levels through repression by Kelch-like ECH associated protein1 (Keap1) that functions 

like a molecular dimmer switch. The interaction between Keap1 and Nrf2 is mediated through the Neh2 

domain [8]. Nrf2 activity can be induced by cellular stress, triggering nuclear translocation of Nrf2 and 

binding to antioxidant response elements (AREs) to orchestrate the transcription of target genes associated 

with a number of cellular functions including protein homeostasis, redox regulation, iron metabolism, DNA 

repair and prevention of apoptosis [9, 10].  

 

Nrf2 activity can also be regulated via Keap1 independent, or other pathways (Fig 1) [11]. Under basal 

conditions, Keap1 homodimerizes, and together with the ubiquitination-ligase Cullin-3 (Cul3), inhibits the 

transcriptional activity of Nrf2 via ubiquitination and proteasomal degradation [12, 13]. Cysteine-rich 

elements in the protein structure of Keap1 account for its stress sensing activities. In particular, the cysteine 

C151, C273 and C288 are involved in post-translational modifications, such as oxidation or conjugation to 
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electrophiles [14]. These cysteine-modifications occurring at its cysteine-thiolate bridge, alleviate the 

interaction with the Cul3 ligase and therefore diminish Nrf2 proteasomal degradation. Oxidative stress, or 

Nrf2 activators, enable translocation of Nrf2 from the cytoplasm into the nucleus, where it heterodimerizes 

with small Maf proteins and transactivates an ARE battery of genes [15].  

 

Recent evidence supports a Keap1 independent mechanism of Nrf2 regulation, whereby the Neh6 domain 

of Nrf2 plays a crucial role through binding via DSGIS and DSAPGS motifs to β-transducin repeat-

containing protein [16]. Another line of evidence suggests a non-canonical pathway for p62-dependent Nrf2 

activation, where p62 sequesters Keap1, leading to transactivation of Nrf2-dependent genes [17]. Glycogen 

synthase kinase 3β (GSK-3β) has also been indicated to modulate the Nrf2 mediated oxidative stress 

response by promoting Keap1 independent degradation of Nrf2 [18]. In addition, recent evidence show that 

Nrf2 signaling links endoplasmic reticulum oxidative protein folding and calcium homeostasis in health 

and disease [19].   

    

Currently, several experimental approaches have evaluated the capacity of Nrf2 to enhance the expression 

of oxidative stress defense genes and maintain vascular health [3]. However, the role and mode of action 

of Nrf2 within the complex phenotype of early vascular ageing (EVA) is not well understood. How Nrf2 

expression is modulated in response to the structural and functional changes in the cardiovascular system 

as allostatic load accrues [20], remains to be determined.  

 

For several decades oxidative stress has been recognized as a contributing factor to ageing and ageing-

associated pathophysiology [21]. At the cellular level, features of vascular ageing include endothelial cell 

abnormalities, increased vascular smooth muscle cell (VSMC) growth, vascular inflammation, changes in 

the quantity and quality of extracellular matrix composition and calcification [22, 23]. Cellular senescence 

has also been implicated as a hallmark for age related disease [24]. The comprehensive involvement of 

calcification and senescence in EVA and the role of Nrf2 are discussed below.  

1.2. Protective effects of Nrf2 

Studies have shown that activation of Nrf2 prior to disease onset maintains general health [25, 26]. 

Kobayashi et al. [27] show that Nrf2 opposes transcriptional upregulation of pro-inflammatory cytokine 

genes. Calvert et al. [28] have demonstrated that hydrogen sulfide (H2S) mediated Nrf2  expression induces 

cardioprotective effects, while overexpression of Nrf2 in endothelial cells decreases expression of 

Interleukin-1 beta (IL-1β), Tumor necrosis factor (TNF), Vascular cell adhesion protein 1 (VCAM1), and 

Monocyte chemoattractant protein 1 (MCP-1) [29, 30]. Reduced Nrf2 activity leads to higher expression 
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of pro-inflammatory chemokines and adhesion molecules in endothelial cells [31]. Additionally, activation 

of Nrf2 has been shown to neutralize oxidative stress in T-lymphocytes, and prevent ischemia-reperfusion 

(IR) induced acute kidney injury (AKI) [32]. As Nrf2 dampens IR-induced AKI through its protective 

effects on resident renal epithelial cells [33], this suggests a novel protective mechanism against AKI. 

Moreover, supplementation of the Nrf2 agonist sulforaphane reduce environmental nephrotoxicity caused 

by arsenic in rats [34]. Furthermore, in mice with IR injury, activation of the Nrf2 signaling pathway 

arrested renal interstitial fibrosis [35]. Zheng et al. [36] show that natural products isolated from broccoli 

and cinnamon activate Nrf2 and reduce diabetic renal damage.  

 

Electrophiles derived from polyunsaturated fatty acids, or other organic acids, activate the Nrf2 pathway, 

predominantly via reversible covalent nucleophile-electrophile modifications on key cysteines in Keap1. 

Electrophilic nitro-fatty acids inhibit VSMC growth via the activation of the Keap1/Nrf2 pathway [37]. 

Similar activities have been shown for 15-deoxy-∆12,14-PGJ2, a pro-resolving prostaglandin metabolite [38] 

and the lipid electrophile 4-hydroxynonenal (4HNE), which protected against ischemia-reperfusion injury 

in rodents and cell culture via Nrf2 activation [39, 40]. Another study show that overexpression of 

thrombomodulin domain-1 in diabetic mice improved renal function via enhancing the Nrf2 antioxidant 

pathway, resulting in decreased oxidative stress [41]. Additionally, anti-inflammatory effects can 

ameliorate diabetic nephropathy (DN) in db/db mice through downregulation of the NF-κB mediated 

pathway [42]. The liver protects itself from harmful chemicals and their potentially damaging metabolites 

through several defense mechanisms, including the Nrf2/ARE pathway. Moreover, Nrf2 has a protective 

influence on survival rates and lung integrity in mice [43-45]. Taken together, as the balance between 

oxidants and antioxidants are crucial for maintaining normal cell signaling and function, Nrf2 has emerged 

as a major modulator of oxidant stress and implicated in a “Nrf2 diseasome” of chronic burden of life style 

diseases that are characteristically associated with oxidative stress and inflammation [46, 47]. 
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Figure-1: Overview of the role of Nrf2 to regulate the cellular senescence and calcification. Balance of downstream 

genes of Nrf2 is crucial for the maintenance of cellular homeostasis. Under normal physiological conditions, the cell 

senses oxidative and inflammatory stress and releases Nrf2 which protects the cell from calcification and cellular 

senescence via the activation of protective signaling pathways including NQO1, HO-1, HO-2, TPH-1, GST and 

miRNAs. On the contrary, if the Nrf2 pathway is dysregulated imbalance of Nrf2 response genes occurs and the cell 

is no longer protected from pro-inflammatory and oxidative stress promoting the development of vascular pathologies. 

The Nrf2 pathway can be modulated in several steps of the signaling cascade (▲ cysteine modification in Keap1, • 

p62 activation, ▼ ARE activation, *GSK inhibition). Abbreviations: Nrf2, nuclear factor erythroid 2-related factor 

2; Keap1, kelch-like ECH associated protein1; ROS, reactive oxygen species; H2S, hydrogen sulfide; NQO1, 

NAD(P)H dehydrogenase (quinone) 1; HO-1, heme oxygenase-1; HO-2, heme oxygenase-2; TPH-1, tryptophan 

hydroxylase-1; GST, glutathione-S-transferase; GSK-3, glycogen synthase kinase 3; SASP, senescence associated 

secretory phenotype; Cul-3, cullin 3; Ub, ubiquitination; Ph-phosphorylation.   

 

2. Nrf2 in pathological conditions 

 

Insufficient Nrf2-dependent gene expression is associated with a number of distinct pathologies associated 

with ageing. The development of genetically engineered mouse models of human disease has improved our 

understanding about the importance of Nrf2 signaling in health and disease. Below in Table 1 we present 

examples of common diseases associated with EVA and status of Nrf2. 

 

Table-1: Nrf2 impacts on various early vascular ageing associated diseases. 

Pathological 

condition 

Mechanism Findings Refs 

https://en.wikipedia.org/wiki/NAD(P)H_dehydrogenase_(quinone)
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Ageing Process of becoming 

older 

• Nrf2 dysfunction underlying impaired 

angiogenesis and microvascular rarefaction in 

aging 

• Nrf2 levels decrease with age 

• Exposure to nano particles induce Nrf2 regulated 

detoxifying enzymes in young but not older mice 

cerebellum, liver, and lung 

• Loss of Nrf2 activity in intestinal stem cells 

accelerates age-related degeneration of the 

intestinal epithelium in Drosophila  

[48] 

 

 

[49] 

[50] 

 

 

[51] 

  

Renal disease  Progressive loss of 

renal function  

• Nrf2 knockout mice showed a greater sensitivity 

to renal damage compared to wild-type mice 

• Uremic toxin Indoxyl sulfate decrease Nrf2 

transcriptional activity in rats 

• Nrf2 deficiency associated with hypertensive 

kidney 

• Impaired Nrf2 activation leads to progression of 

renal fibrosis 

• Nrf2 hyperactivation in Keap1 deficient mice 

showed a bilateral hydronephrosis as indicated by 

severe bladder swelling 

[52] 

 

[53] 

 

[52] 

 

[54] 

 

[55] 

Atherosclerosis Narrowing the artery 

lumen due to build up 

plaque 

• Nrf2 signaling pathway is related with 

atherosclerosis development 

• Nrf2 exhibits both pro- and anti-atherogenic 

effects in experimental animal models 

[56] 

 

[56]  
 

Hypertension  Elevated blood 

pressure  

• Selective Nrf2 gene deletion in the rostral 

ventrolateral medulla (RVLM) evokes 

hypertension and sympathico-excitation in mice 

• Impaired Nrf2 regulation of mitochondrial 

biogenesis in RVLM on hypertension induced by 

systemic inflammation  

[57] 

 

 

[58] 
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Diabetic 

Cardio-

myopathy 

Disorder of the heart 

muscle in diabetes 

• Reduced Nrf2 expression observed in the left 

ventricle of diabetic patient 

• Nrf2 and its downstream target genes are 

downregulated in cardiomyocytes from diabetic 

(db/db) mice 

[59] 

 

[60] 

Cancers Uncontrolled cell 

proliferation 

• Nrf2 has both tumors suppressive and tumor-

promoting effects in cancers 

[61] 

Renal cancer Uncontrolled renal 

cell proliferation  

• Modifications of the Nrf2, Keap1-Cul3 complex 

allow the activation of Nrf2 to aid the survival of 

tumor 

• In renal cell cancer, mutations in fumarate 

hydratase results uncontrolled upregulations of 

Nrf2 target genes via Keap1 

[62] 

 

 

[63] 

[64] 

 

3. Nrf2 in early vascular ageing 

Vascular ageing develops as a progressive modification of vascular function and structure towards 

increased arterial stiffening. Early vascular ageing can be described as accelerated or aberrant ageing [65], 

and is a process associated with impairment of physiological functions and an increased risk of further 

morbidity and mortality [66]. If undetected, EVA leads to vascular stiffening and earlier development of 

cardiovascular disease (CVD) [65]. The free radical theory of ageing, developed by Harman in the 1950s 

[67], states that excessive oxidative stress results in ageing through an accumulation of cellular damage. 

However, since overexpression of antioxidant enzymes, including zinc superoxide dismutase and catalase, 

does not extend life span in mice [68], oxidative stress might not be a unique mechanism for triggering the 

vascular ageing process. Increased ROS production induces macromolecular oxidative modifications that 

promote oxidative damage. With increasing age, oxidative stress accrues, both in humans and animals [69-

71] and is closely associated with vascular aging resulting from a failure to activate ARE-driven gene 

expression and dysregulation of the Nrf2-ARE pathway [72]. In EVA, increased production of ROS 

promotes endothelial dysfunction, a pathological phenotype associated with the development of stroke, 

hypertension, atherosclerosis, myocardial infarction and vascular dementia [73].  
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As a partner in crime, chronic, low grade inflammation (“inflammaging”) is strongly linked with oxidative 

stress [74]. Most age-related ‘burden of life style’ diseases share an underlying inflammatory component 

[47, 74]. Although inflammaging correlates with reduced health span [66], its etiology remains to be fully 

determined. Reducing systemic inflammation and associated oxidative stress has been suggested as a means 

of  mitigating  the progression of  premature ageing processes [75]. Chronic kidney disease (CKD) is a 

common condition with underlying  premature ageing, due to a complex of toxic alterations in the internal 

milieu [66]. Kooman et al. [75] have proposed four major mechanisms underlying premature ageing in 

CKD; increase in allostatic load, activation of the stress resistance response, activation of age-promoting 

mechanisms and impairment of anti-ageing pathways. Patients with CKD are especially vulnerable to EVA 

associated with cellular senescence, vascular calcification (VC) and depressed Nrf2 expression  [76]. 

3.1. Nrf2 and vascular calcification 

Vascular calcification is a pathophysiological process characterized by the deposition of calcium-phosphate 

crystals in the arteries, typically developing in the intima and media of the vascular wall. The presence of 

vascular calcification is often detected in CKD, diabetes, atherosclerosis, heart failure and other disorders 

characterized by changes in vascular structure (i.e. stiffening). The development of calcification is 

considered to be an active response to the environmental stimuli, such as oxidative stress, inflammation, 

and changes in passive elements of vascular wall, together with increased phosphate and calcium levels 

[77]. The role of Nrf2 in the calcification process has been increasingly appreciated due to its regulatory 

function in the antioxidant and anti-inflammatory pathways [27].  

 

The H2S donor, sodium hydrosulfide (NaHS) ameliorates calciprotein particles-induced calcification in 

vitro via Keap1/Nrf2 activation system [78]. This inhibitory effect on calcification was achieved by 

increased expression of the downstream NQO1 gene, and the calcification inhibiting effect was lost and 

NQO1 expression was reduced when Nrf2 was silenced (Fig 1) [78]. Whereas silencing of Keap1 alone 

does not have a strong impact on calcification, NaHS treatment mediated a significant decrease of TNF 

mRNA in VSMCs, suggesting anti-inflammatory effects for NaHS [78]. An upregulation of Nrf2 and 

subsequent increase of HO-1 and -2 expressions was reported in rat aorta upon H2S treatment [79]. Cell 

culture experiments show that overexpression of Nrf2 attenuates the process of cellular bone differentiation 

by interfering with runt-related transcription factor 2 (Runx2) [80]. Thus, Nrf2 deletion results in an 

increased expression of Runx2 [80]. Since in vitro assays using VSMCs treated with the Nrf2 agonist 

resveratrol show a significantly reduced mineralized matrix deposition, the protection against oxidative 

stress-induced mitochondrial damage and reduced intracellular calcium deposition could be achieved via 

Nrf2 and Sirtuin1 signaling [81]. As resveratrol increases the mRNA levels of klotho and Nrf2 in VSMCs 
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after calcification, this drug may improve the anti-oxidative effect of Nrf2 against hyperphosphatemia-

induced calcification [81]. Considering that hyperphosphatemia reduces both mRNA and protein 

expression of Nrf2 in VSMCs culture [81], high phosphate levels may impair the anti-oxidative role of 

Nrf2. Indeed, elevated phosphate (even within the normal range) has been associated with poorer outcome 

[82] with coronary atherosclerosis in young healthy adults [83] and microvascular dysfunction [84]. As 

tertbutylhydroquinone alleviates high phosphate-induced calcification in VSMCs by suppressing ROS 

production [85] it is evident that the salutary effects of Nrf2 agonists on VC is not restricted to H2S and 

resveratrol and may be a class-effect. Indeed, the classic Nrf2 activator, dimethyl fumarate (DMF) 

significantly attenuated VC in  an in vitro ring culture system using mouse thoracic aorta and rat carotid 

artery [86] under hypercalcemic and hyperphosphatemic conditions. DMF inhibited VC by activating Nrf2 

and downregulating osteogenic marker expression in VSMCs [86]. Since Yao et al. [87] demonstrated that 

the Nrf2-ARE signaling pathway enhance the autophagy of VSMC to reduce hyperphosphatemia-induced 

VC, several mechanisms contribute to the beneficial effects of Nrf2 agonists. It has been proposed that 

hydrogen peroxide (H2O2) can efficiently guard VSMCs against oxidative stress by preventing development 

of VC triggered by ROS production through Nrf2-ARE pathway [88]. More studies are warranted to 

understand the complexity of how Nrf2 contribution could be linked to VC and if pharmacological and/or 

nutraceutical activation of Nrf2 could have beneficial therapeutic effects in groups with high risk of EVA. 

3.2. Nrf2 and Senescence 

Senescence is characterized as a state of cellular growth arrest, in which the cells are resistant to apoptosis. 

In essence, senescence acts as an anti-oncogenic mechanism [89]. Although senescent cells are 

metabolically active they are not positively physiologically contributory to the tissue or organ in which they 

reside [90]. External stimuli like ROS, high glucose, fatty acid, DNA damage, oncogenes, inflammation 

and proteotoxic environment act as triggers to render healthy cells senescent [89]. Senescent cells secret a 

pro-inflammatory senescence associated secretory phenotype (SASP), which is enriched in pro-

inflammatory, pro-fibrotic and matrix degrading factors, consisting of chemokines, cytokines, proteases 

and growth factors that poison the surrounding tissue and contribute to organ dysfunction [91]. One 

noticeable feature of the SASP is its capacity to activate senescence in neighboring cells via a bystander 

effect [89]. We have reported that VC in uremic arteries is characterized by increased 

CDKN2A/p16INK4a expression indicating senescence [92].  

Numerous studies have investigated the mechanisms behind the age-associated decline in Nrf2 expression 

in number of different cell types, including bronchial epithelial cells [93], vascular cells [94] and 

cardiomyocytes [95]. Kuosmanen et al. [96] demonstrated that miRNAs derived from senescent cells (most 
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notably miR-126, miR-21 and miR-100) modulate Nrf2 expression in aged endothelial cells; a process 

mediated by directly targeting on Nrf2 mRNA (Fig 1). It is likely just one of many mechanisms that drive 

Nrf2 depletion. Moreover, Nrf2 deficiency triggers the development of cellular senescence, as aged Nrf2 

double knockout (KO) mice present with increased expression of senescence markers p16INK4a 

(CDKN2A) and p21 (CDKN1A) compared to wild-type aged mice [97]. Additionally, well-established 

components of the SASP, such as IL-1β and TNF, are elevated in Nrf2 KO mice [97]. Furthermore, Zhou 

et al. [98] have reported that activation of Nrf2 protects VSMCs against angiotensin II-induced senescence, 

which was achieved via increased expression of downstream antioxidant genes like HO-1 and NQO1 (Fig 

1). Although this suggest a bidirectional relationship between Nrf2 expression and senescence [99], further 

research is needed to fully elucidate how the repression of this adaptive response is induced and regulated 

during the ageing processes. The effects of Nrf2 deficiency and its relationship with senescence remain to 

be comprehensively studied in vascular cells [100], in order to asses possible interplay in diseases 

characterize by EVA.  

It is important to stress that the effects of Nrf2 in CVD  and other age-related diseases may be cell-specific 

[100], as exemplified by a discrepancy in gene expression patterns downstream of Nrf2 in different cell 

types, when comparing young and old Drosophila [51]. This is particularly pertinent, given that drivers of 

the ageing process are subject to antagonistic pleiotropy. In keeping with this consideration, Nrf2 activation 

in fibroblasts promote re-epithelialization of skin wounds, as well as gene expression profiles associated 

with tumorigenic activity also stimulated [101]. Taken together, therapeutic targeting of the Nrf2 pathway 

should be treated with caution, due to potential antagonistic pleiotropic effects. 

4. Clinical implications/ therapeutics/interventions 

In the multiple disease entities constituting a ‘diseasome of ageing’ [47, 102], with oxidative stress, 

mitochondrial dysfunction and persistent inflammation as common underlying features, the Nrf2-Keap1 

signaling pathway is frequently disrupted. For example, Ruiz et al. [103] demonstrated that CKD-associated 

diminished antioxidant regulation, was largely caused by impaired activation of Nrf2. Natural Nrf2 

activators, such as polyphenols, phytosterols and terpenoids (e.g. Baicalein), mitigate the effects of 

oxidative stress and reduce inflammation in pre-clinical models of kidney disease, while conversely Nrf2 

deletion exacerbated disease pathogenesis and led to autoimmune nephritis [104]. Consequently, restoration 

and modulation of Nrf2 mediated signaling networks may be effective in retarding CKD progression and 

EVA [86, 87, 99].  
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Multiple approaches, such as non-calcium phosphate binders, calcium containing phosphate binders [105, 

106], statins [107-109] and vitamin D [110] targeting VC in CKD have been used with varied results and 

are not curative [111]. A novel approach has been the targeting and removal of senescent cells by senolytic 

compounds. The use of a senolytic combination (Dasatinib and Quercetin) to specifically remove senescent 

cells, has been shown to increase the lifespan and improve health span for normatively aged mice [112]. 

The chronic clearance of senescent cells by combined treatment with Dasatinib and Quercetin has also been 

shown to alleviate vasomotor dysfunction in normatively aged mice and in mice with established 

atherosclerosis [113]. This strategy reduced markers of osteogenesis in advanced intimal plaques and 

ultimately reduced intimal plaque calcification [113]. A recent clinical trial has also reported that treatment 

with a combination of Dasatinib and Quercetin reduced adipose tissue senescent cell burden in diabetic 

kidney disease [114]. 

Specific targeting of the SASP has also proven beneficial. Hegner et al. [115] reported that the 

pharmacological blocking of pro-inflammatory cytokines reduces uremia-induced calcification in vascular 

progenitor cells in vitro. However, several safety and efficacy issues around the removal of senescent cell 

needs to be addressed. These include the potential for an acceleration of stem cell exhaustion, a hallmark 

of ageing. In keeping with this, Jeon et al. [116] have demonstrated that senescent cells reappeared after 

the cessation of senolytic treatment in a model of osteoarthritis. This is intuitive, as senescent cells are 

expected to be generated continuously over the life course in response to exposome stress. Additionally, 

there is also the possibility that removal of senescent cells without targeting the causes of their accumulation 

might limit the longer-term benefits of senolytics. The clinical population in which senolytics are targeted 

also needs to be considered, as it will necessarily include aged and or infirm patients with limited 

physiological reserve. Without clearance of apoptotic bodies, secondary necrosis could result in the release 

of pro-inflammatory, signals, further exacerbating the underlying chronic inflammation that occurs in such 

a population [24]. Another consideration is when in the life-course senolytics can be used. Under the aegis 

of antagonistic pleiotropy, removal of senescent cells may be appropriate in the later stages of the life-

course, but not in the early stages where their requirement for wound healing processes may be desirable 

[112, 117]. 

Exploring alternative approaches to target the detrimental effects of senescence without resorting to 

senolytics therefore need to continue. One such approach would be targeting the SASP. Candidates to 

suppress or modulate the SASP include rapamycin, NF-κB, or p38 inhibitors [118-121]. Side effects of this 

approach could include blunting the senescent response, immunosuppression or exacerbation of the 

accumulation of senescent cells [24]. 
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With the growth in the discovery of Nrf2 activators and regulators, the pharmacological targeting of the 

regulation of the Nrf2-Keap1 pathway however remains one of the most promising areas of research with 

multiple drugs or nutraceuticals currently in different stages of clinical trials, (table 2) most notably DMF, 

bardoxolone-methyl, sulforaphane and curcumin.  

Table-2: Nrf2 Modulators in clinical development  

Compound Class Modulatory 

effect 

Clinical Trial Clinical Trials.gov 

identifier 

Dimethyl fumarate Fumaric acid ester Activator I, II, III NCT02784834 

NCT02546440 

NCT00810836 

Bardoxolone-methyl Synthetic 

triterpenoids 

Activator I, II, III NCT00550849 

NCT00811889 

NCT01351675 

Oltipraz Organosulfur 

compound 

Activator I, III NCT00006457 

NCT02068339 

Ursodio Biliary acid Activator I, II, III, IV NCT02033876 

NCT00200343 

NCT01510860 

Sulforaphane Isothiocyanate Activator I, II, III, IV NCT01008826 

NCT02880462 

NCT02801448 

NCT03220542 

Curcumin Stilbene Activator I, II, III, IV NCT02104752 

NCT01225294 

NCT01052025 

Resveratrol (E)-Stilbene 

derivative 

Activator I, II, III, IV NCT01677611 

NCT01504854 

NCT00743743 

NCT02475564 
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Sulforadex Sulforaphane/alpha 

cyclodextrin 

complex 

Activator I, II NCT01228084 

Ebselen - Activator I, II NCT03013400 

Complexa/ CXA-10 - Activator I, II NCT02248051 

NCT03449524 

NCT03422510 

4.1. Nrf2 pharmacological agonists and inhibitors, the “drugome” 

The activation of Nrf2 has been demonstrated to be effective in inhibiting VC in animal models [86, 87, 

99]. Various Nrf2 agonists (e.g. Bardoxolone–methyl), have anti-atherogenic and reno-protective effects 

[122-125], via the upregulation of Nrf2 responsive genes. The main mechanism regulating Nrf2 activity is 

the control of protein stabilization by Keap1 and most known inducers are electrophilic molecules that 

covalently modify Keap1 cysteine residues [126]. 

A range of clinical regulators are in development or trailing  [127, 128]. These include DMF which is 

currently in Phase III trials for the treatment of Multiple sclerosis (MS)s [129]. Activation of Nrf2 by DMF 

in the central nervous system has been demonstrated in a mouse model of MS. These effects were not 

observed in Nrf2 null mice, suggesting DMF acts exclusively via the Nrf2 pathway [130]. Bardoxolone 

methyl, a potent Nrf2 activator and NF-κB suppressor  has shown promising results in clinical trials [131], 

providing enhanced kidney function and delayed onset of ESRD in patients with type-2 diabetes and stage 

4 CKD.  

Nrf2 has not been considered just a target for treatment, but also for prevention of diseases like cancer thus 

the role of Nrf2 inhibitors are equally important. In laboratory trials many promising Nrf2 inhibitors have 

been tested. Different compounds of natural origin have been described to inhabit Nrf2 activity.  Alkaloid 

trigonelline which can be retrieved from coffee beans, is one of these, which has been demonstrated to 

reduce Nrf2 accumulation into nucleus and ultimately inhibits Nrf2-driven genes transcription [132]. 

Evergreen shrub Brucea javanica extract brusatol is an agent that boosts ubiquitination of Nrf2 and 

accordingly reduces cytoplasmic Nrf2 levels [133]. Another natural compound mycotoxin ochratoxin A 

can prevent Nrf2 translocation [134]. Compared with Nrf2 activators data on Nrf2 inhibitors are still 

preliminary, more basic research and clinical trials are needed to estimate the definite outcome of Nrf2 

inhibition.    
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4.1.1. KEAP1 independent drugs to target Nrf2  

Whilst the vast majority of current drugs have typically focused on the interaction of Nrf2 with Keap1, Nrf2 

is regulated on multiple levels: transcriptional, epigenetic, covalent protein modification and by proteasome 

degradation [135]. Several proteins can regulate the Nrf2-ARE pathway, mainly by phosphorylation, and 

Nrf2 comprises several sites for phosphorylation [136]. Attucks et al. [137] have demonstrated in vitro that 

modulation of the transcriptional repressor broad complex-tramtrack-bric a brac and Cap'n'collar homology 

(BACH) inhibited binding to some ARE-driven genes, independently of Keap1. A failure of redox 

homeostasis is a hallmark of neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s 

disease (PD). Several drugs alter the Keap1 independent regulation of Nrf2 in both PD and AD and have 

been employed in clinical trials with various levels of success [35, 138]. Chen et al.  subsequently 

demonstrated that the overexpression of tryptophan hydroxylase-1 (TPH-1), an enzyme involved in 

metabolite 5-methoxytryptophan, (5-MTP), synthesis, reduced renal injury by attenuating renal 

inflammation and fibrosis, in a mouse model of CKD via the augmentation of Nrf2 independently of Keap1 

[35].   

4.1.2. Repurposing of drugs 

The use of established therapeutics for new indications has been an area gaining recent attention, especially 

in the context of cancer treatment [139]. DMF, previously used as a MS and psoriasis drug has demonstrated 

improvement of MS symptoms in a murine model, via activation of Nrf2 [86, 130, 140]. Metformin, 

sulfuraphane, both involved in glucose metabolism, statins and GSK-3 inhibitors, have all been earmarked 

for the treatment of pathologies linked to Nrf2 [141]. Lithium treatment in adulthood or later in life, has 

been shown to extend lifespan in Drosophila via inhibition of GSK-3 and activation of Nrf2 independently 

of Keap1[142]. Recently Fujiki et al. have reported that Tolvaptan, a vasopressin type 2 receptor antagonist 

can regulate Nrf2 activity via the activation of the Nrf2/HO-1 antioxidant pathway, through 

phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase [143]. 

4.2. Challenges and considerations of potential Nrf2 therapeutics 

4.2.1. The role of Nrf2 in tumorigenesis 

While diminished Nrf2 activity is a hallmark of the diseasome of ageing, its expression is elevated in 

tumors. As such, the biology of Nrf2 in cancer is complex and context dependent, with Nrf2 demonstrating 

both anti and pro-tumourgenic properties. It remains to be established if its activity also exhibits hormesis. 

In non-malignant cells, Nrf2 activation enhances cellular defenses, increasing resistance to oxidant-induced 
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genetic damage and chemical and physical carcinogens. The activation of a Nrf2 response results in the 

maintenance of ROS levels below those for signaling proteins critical for tumorigenesis e.g. PI3K, MAPKs 

and NF-κB. In the early stages of development, due to their enhanced ability to adapt to hostile 

microenvironment, or high ROS levels, malignant cells with constitutively active Nrf2 in conjunction with 

various oncogenic pathways, are positively selected. Somatic loss of function mutations in Keap1 or gain 

of function mutations in NFE2L2 are also common in several tumor types, promoting Nrf2 stability in 

cancer cells and resulting in unrestrained and sustained Nrf2 activation, [139, 144, 145]. The activation and 

augmentation of activity of Nrf2 by therapeutics (both synthetic or naturally occurring compounds), is often 

incongruous with this state of affairs, as such activity is both pulsatile and temporary. Some Nrf2 agonists 

may also have additional targets with anti-tumorigenic effects [146]. It is, however, encouraging that in the 

phase III trial of DMF, no difference in cancer rates between placebo and treatment groups was detected 

[129]. However, it is apparent that any Nrf2 therapeutic treatments will need a safe therapeutic window and 

require careful monitoring in order to assess potential cancer risk [139, 147]. 

4.2.2. Animal models, comparative biology and progeroid syndromes 

Nrf2 may potentially cause or exacerbate age-related pathology [148]. Modeling the dynamics of Nrf2 in 

normative ageing is challenging, though Nrf2 null mice share remarkable similarities to old animals [149], 

including elevated levels of  cellular senescence and features of inflammaging. Much insight into the 

complexity and regulation of the Nrf2 signaling network, can also be gained by research into the structure 

and function of Nrf2 across species, [47, 102, 150]. 

4.3. Non-pharmacological Nrf2 therapeutics 

4.3.1. Nutrition and Nrf2 

Hormesis describes an adaptive, non-monotonic biphasic dose response following an initial disruption in 

homeostasis. Inflammaging, can be regarded as hormetic stress. Evidence suggests that vitamins, minerals 

and phytochemicals can act in a hormetic manner [151-153]. Good nutrition can therefore be regarded as a 

powerful tool to redress the imbalance in pro and anti-inflammatory mediators via the modulation of the 

Nrf2 network (table 3). Martucci et al. [151] have demonstrated this in a project featuring a Mediterranean 

diet rich in poly unsaturated fatty acids and vegetables rich in nitrate and nitrite, which contribute to 

endogenous nitro-fatty acid formation  and containing polyphenolic Nrf2 activators. Participants showed 

decreased inflammatory markers and an improved lipid profile via Nrf2 regulation of vitagene and heat 

shock proteins (Hsp) proteins [151, 154]. These data support growing evidence for the impact of nutrition 
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on Nrf2-Keap1 signaling pathway [151, 155-157]. Since high salt-loading down-regulates Nrf2 expression 

in kidney collecting duct cells [158]  this suggest that high salt diets should be avoided. 

Numerous naturally occurring chemicals derived from plants have anti-inflammatory and antioxidant 

properties regulated via Nrf2 (table 3). Though generally regarded as weaker Nrf2 agonists compared to 

synthetic chemicals, several natural compounds have been shown to be potent activators and can induce 

significant clinical effects [47, 159, 160]. Urolithin A, a metabolite derived from polyphenolics, has been 

demonstrated to upregulate tight junctions and reduced colitis via Nrf2 agonism [161]. Curcumin has also 

been shown to be effective in various chronic ageing diseases [162]. Sulforaphane has similarly been shown 

to have a reno-protective role via Nrf2 activation in diabetic rats subject to oxidative damage, and in Type-

2 diabetes patients where it reduced fasting blood glucose levels [36, 151, 163].  

Table-3: Nrf2 agonists in naturally occurring compounds 

Compound  Class  Mechanism  Food  

Sulforaphane Isothiocyanate Keap1 cysteine modification 

stabilize Nrf2 

Broccoli 

Brussel 

Sprouts 

Cabbage 

Cauliflower 

Curcumin Diferuloylmethane Keap1 thiol modification 

increase in expression of HO-1 

Turmeric 

Epigallocatechin 

gallate  

- Kinase phosphorylation upstream of 

Nrf2 increased HO-1 expression 

Green tea 

Allyl sulfides Organosulfur compounds Keap1 cysteine modification Garlic 

Resveratrol Polyphenol: allyl sulfides Kinase phosphorylation upstream of 

Nrf2 

Grapes 

Red wine 

Lycopene Phytochemical: 

tetraterpene carotenoid 

Increase Nrf2/HO-1 expression Tomatoes 

Carrots 

Caspaicin Phytochemical Inhibition of NQO1 Chilies 

Fisetin Flavonoid Multiple e.g. 

increased glutothione expression 

neutralisation of reactive oxygen species 

disruption of the PI3K/AKT pathway 

Strawberries 

Apples 

Onions 

Cucumber 
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Quercitin Flavonoid Increased HO-1 and NQO1 expression Red kidney 

bean 

Caper 

Radish 

onion 

Cinnamaldehyde Unsaturated aldehyde Increased Nrf2 expression 

Increased Nrf2 nuclear translocation 

Suppressed NF-κB activation 

Cinnamon 

4.3.2. The gut microbiome and Nrf2 activation 

CKD is characterized by an altered gut microbiome, resulting in an accumulation of uremic toxins such P- 

cresyl sulfate (PCS) and indoxyl sulfate (IS) [157, 164]. PCS and IS are uremic toxins that are directly 

related to accelerated progression of CKD, and both are derived from the colonic bacterial fermentation of 

dietary protein, [160]. Mafra et al. [165] have demonstrated that the dysbiosis in the gut microbiome in 

CKD leads to an increase in the bacteria that generate the uremic toxins IS, PCS, Indole-3-acetic acid, 

(IAA), and Trimethylamine (TMA), leading to inflammation. Uremic toxins affect gene expression via NF-

κB and Nrf2 regulated pathways [53]. Lau et al. [166] have demonstrated that uremic toxins from gut 

microbiota accentuate the Nrf2/NF-κB imbalance and  have proposed the use of probiotics, prebiotics and 

symbiotics to reduce toxin levels in CKD patients, and hence their risk of EVA.   

Urolithin A, is a major microbial metabolite which displays anti-inflammatory, anti-oxidative, and anti- 

cellular ageing activities, that has been shown to upregulate gut barrier epithelial tight junction proteins via 

Nrf2 mediated activity [161]. Alteration of the composition of gut microbiota via diet/supplements could 

therefore be an effective non-pharmacological means of modulating the level of oxidative stress via Nrf2 

activation. This has been demonstrated by the restriction of protein in the diet of CKD patients. A low 

protein diet reduce levels of oxidative stress and inflammation via the modulation of Nrf2 expression in 

non-dialysis CKD patients [156, 160, 167], and has been hypothesized to modulate the gut microbiota and 

reduce the generation of uremic toxins, such as PCS and IS [160]. The source of protein within the diet has 

also been shown to be significant, with plant protein intake being associated with lower production of 

uremic toxins and lower serum phosphorus and warrants further exploration, [168, 169]. 

4.3.3. Exercise 

Exercise is an effective modulator of Nrf2. Exercise induces ROS, increasing the level of oxidative stress, 

which results in an increased dissociation of Nrf2 from Keap1 [170]. Several groups have demonstrated an 
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increase in Nrf2 expression in old rats following exercise [171, 172]. Subsequently Abreu et al. [173] have 

demonstrated Nrf2 induction and inhibition of NF-κB following resistance exercise in CKD patients 

undergoing haemodialysis. The Nrf2 response to exercise however varies according to training modality, 

duration and age [95]. Although acute exercise increased Nrf2 protein levels in peripheral blood 

mononuclear cells in young and older men, nuclear accumulation of Nrf2 was observed only in the young 

group. This indicates that ageing per se is accompanied by a reduced nuclear import of Nrf2 [174, 175]. 

Exercise has also been shown to induce epigenetic changes, predominantly altering the methylation pattern 

of the promoters of genes in the adaptive antioxidant response, [176]. Overall, exercise is a realistic 

intervention to improve endogenous antioxidant defenses via Nrf2 activation, though this must be viewed 

in the context of antagonistic pleiotropy to yield maximum benefit. 

5. Conclusions 

Premature vascular aging is a common problem for both general populations and patients with chronic 

inflammatory diseases like CKD or atherosclerosis. Two major factors that drive healthy cells towards early 

vascular aging are calcification and senescence, both arising from oxidative stress and persistent low-grade 

inflammation. These conditions are characterized by a failure to activate ARE-driven gene expression and 

a dysregulation of the Nrf2-ARE pathway. As reviewed here, a multitude of studies suggest that modulating 

Nrf2 activation is beneficial for targeting the burden of lifestyle diseases. Nrf2 activation might be induced 

by pharmacological treatments or non-pharmacological therapeutics such as diet and exercise. Targeting 

Keap1 pharmacologically, thereby controlling Nrf2 protein stabilization, is proposed as the most auspicious 

intervention. Several clinical regulators currently in clinical development or trialing for example DMF and 

Bardoxolone methyl, have shown promising results. Besides the direct interaction with Keap1, Nrf2 is 

regulated on multiple levels, including transcriptional, epigenetic, covalent protein modification and 

proteasome degradation. A few Keap1 independent targets have been described to modulate the Nrf2-ARE 

pathway, including the transcriptional repressor BACH, or TPH-1. Despite the promising results in 

preclinical research and clinical trials, safety concerns regarding overexpression have surfaced in recent 

years, regarding the role of Nrf2 in cancer development and potential side effects of Nrf2 activation in a 

complex tumor environment. These concerns require additional address.  Nevertheless, Nrf2 constitutes a 

powerful target for intervention in premature ageing, whether as sole treatment or as adjuvant treatment in 

combination with selective therapies targeting of senescence or calcification. 
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Figure legends 

 

Figure-1: Overview of the role of Nrf2 to regulate the cellular senescence and calcification. Balance of 

downstream genes of Nrf2 is crucial for the maintenance of cellular homeostasis. Under normal 

physiological conditions, the cell senses oxidative and inflammatory stress and releases Nrf2 which protects 

the cell from calcification and cellular senescence via the activation of protective signaling pathways 

including NQO1, HO-1, HO-2, TPH-1, GST and miRNAs. On the contrary, if the Nrf2 pathway is 

dysregulated imbalance of Nrf2 response genes occurs and the cell is no longer protected from pro-

inflammatory and oxidative stress promoting the development of vascular pathologies. The Nrf2 pathway 

can be modulated in several steps of the signaling cascade (▲ cysteine modification in Keap1, • p62 

activation, ▼ ARE activation, *GSK inhibition). Abbreviations: Nrf2, nuclear factor erythroid 2-related 

factor 2; Keap1, kelch-like ECH associated protein1; ROS, reactive oxygen species; H2S, hydrogen sulfide; 

NQO1, NAD(P)H dehydrogenase (quinone) 1; HO-1, heme oxygenase-1; HO-2, heme oxygenase-2; TPH-

1, tryptophan hydroxylase-1; GST, glutathione-S-transferase; GSK-3, glycogen synthase kinase 3; SASP, 

senescence associated secretory phenotype; Cul-3, cullin 3; Ub, ubiquitination; Ph-phosphorylation.   
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