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Simple Summary: Feedstuff evaluation through animal trials is time consuming and expensive. An 

alternative, the gas production method, measures the amount of fermentation gas produced from 

incubating feedstuffs with microbes from ruminal fluid or faecal samples. Models can be applied to 

gas production profiles to determine extent of feedstuff degradation either in the rumen or in the 

hindgut. Typical gas production profiles show a monotonically increasing monophasic pattern. 

However, atypical gas production profiles exist whereby at least two consecutive phases of gas 

production are present; these profiles are much less well described. Two models are proposed to fit 

these biphasic profiles, a sum of two Mitscherlich equations, and sum of Mitscherlich + linear 

equations. Additionally, two models that describe typical monophasic gas production curves, the 

simple Mitscherlich and the generalised Mitscherlich (root-t) model, were assessed for comparison. 

Models were fitted to 25 gas production profiles resulting from incubating feedstuffs with faecal 

inocula from equines. Of these 25 profiles, 17 displayed atypical biphasic patterns, and 8 displayed 

typical monophasic patterns. The two biphasic models were found to describe both the atypical and 

typical gas production profiles accurately. These models allow for the evaluation of feedstuffs using 

cost- and time-efficient methods. 

Abstract: Two models are proposed to describe atypical biphasic gas production profiles obtained 

from in vitro digestibility studies. The models are extensions of the standard Mitscherlich equation, 

comprising either two Mitscherlich terms or one Mitscherlich and one linear term. Two models that 

describe typical monophasic gas production curves, the standard Mitscherlich and the France model 

[a generalised Mitscherlich (root-t) equation], were assessed for comparison. Models were fitted to 

25 gas production profiles resulting from incubating feedstuffs with faecal inocula from equines. 

Seventeen profiles displayed atypical biphasic patterns while the other eight displayed typical 

monophasic patterns. Models were evaluated using statistical measures of goodness-of-fit and by 

analysis of residuals. Good agreement was found between observed atypical profiles values and 

fitted values obtained with the two biphasic models, and both can revert to a simple Mitscherlich 

allowing them to describe typical monophasic profiles. The models contain kinetic fermentation 
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parameters that can be used in conjunction with substrate degradability information and digesta 

passage rate to calculate extent of substrate degradation in the rumen or hindgut. Thus, models link 

the in vitro gas production technique to nutrient supply in the animal by providing information 

relating to digestion and nutritive value of feedstuffs. 

Keywords: gas production technique; in vitro digestibility; Mitscherlich equation; feedstuff 

evaluation; fermentation kinetics; substrate degradation 

 

1. Introduction 

The in vitro gas production technique [1,2] is widely applied in animal nutrition for ranking and 

evaluating feedstuffs. This technique is based upon the assumption that the gas produced from 

incubating a feedstuff with a microbial inoculum is the consequence of the anaerobic fermentation of 

that feedstuff [3]. In ruminant nutrition, gas production profiles generated have been used in 

conjunction with the retention time of digesta (derived from the rate of passage) to determine extent 

of degradation in the rumen [3–9]. In equine nutrition, the technique has been proposed as an in vitro 

surrogate for determining the digestibility and nutritive value of feedstuffs using in vivo methods 

[10–14]. 

Typical gas production profiles are diminishing returns or sigmoidal in shape (see [5] for 

illustration), and France et al. [4] derived a purpose-built function in the form of a generalised 

Mitscherlich equation with an additional root-t term to represent a variable fractional rate of 

degradation for fitting to a wide range of curve shapes. This model is commonly referred to as the 

“France” model, and this term will be used herein. However, atypical patterns have also been 

recorded. Groot et al. [15] reported biphasic profiles and selected a function comprising two 

generalised rectangular hyperbolae to fit them, while other atypical patterns have been observed by 

research workers though not formally reported in the scientific literature. Interpretation of these 

atypical patterns include the autonomous fermentation of feed components in incubated feedstuffs, 

with these feed components representing chemical or nutritional fractions, with total gas produced 

being a summation of gas produced from each fermented feed component [16]. 

The Mitscherlich equation has a long history of application in the agricultural sciences and in 

applied biology generally, both as a response function and as a growth function [17,18]. The 

Mitscherlich, which is an expression of the principle of the Law of Diminishing Increments as 

originally applied to the effect of fertilization on crop yields, is a function that reaches an asymptotic 

maximum and represents diminishing returns behaviour in rising to the asymptote. It is a special 

case of the function proposed by France et al. [4]. In this paper, we consider four types of gas 

production profile (diminishing returns, sigmoidal, biphasic and asymptotic, biphasic but non-

asymptotic). The profiles considered were obtained from incubating feedstuffs with faecal inocula 

from equines using the gas production method of Theodorou et al. [2]. These data were taken from 

two experiments with either grazing horses or ponies fed primarily grass hay. The main objective of 

this paper was to assess the ability of the simple Mitscherlich, and three extensions of this classical 

function, to describe both typical and atypical gas production profiles. The functions were derived to 

describe gas production profiles on the basis of substrate degradation, rather than on the basis of gas 

produced, permitting the estimation of fermentation kinetic parameters. Using relatively simple 

equations, proposed herein, extent of feedstuff degradation in the hindgut of equines can be 

calculated using model parameter estimates in conjunction with information regarding substrate 

degradability and digesta passage rate. Therefore, a secondary objective was to compare how model 

fits, and by extension model derived parameters, affect extent of feedstuff degradation values when 

these models are applied to mono- and bi-phasic gas production profiles. 
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2. Materials and Methods 

2.1. Datasets 

2.1.1. Experiment 1: Inoculum from Horses 

In a study to assess the fermentative capacity of faecal inocula, Murray et al. [19] sourced inoculum 

from 14 grass-kept horses (maintained on grass 24 h a day) from the International League for the 

Protection of Horses in Norfolk, UK. Inocula were prepared from these 14 horses—7 of them 

predisposed to laminitis and the other 7 clinically normal—so that the effect of laminitis on hindgut 

fermentative activity could be evaluated. Grass hay was the substrate incubated in vitro. Due to the 

large distance to the laboratory, inoculum was stored at −20 °C for transportation on ice. Inocula were 

subsequently thawed and incubated at 38 °C. Gas production was recorded using the method of 

Theodorou et al. [2] and three replicates per inoculum were used. Standard in vitro gas production 

results were described by Murray et al. [19]. The grass hay data yielded 14 gas production profiles, 

one for each horse, as the average over the three replicates. Visual inspection of these profiles revealed 

a predominance of atypical patterns. 

2.1.2. Experiment 2: Inoculum from Ponies 

The study comprised a total of eleven different inocula (see Table 1 for details). Garber et al. [20] 

sourced eight inocula from Welsh Section A geldings arranged in a 4 × 4 Latin square experimental 

design aiming to investigate the in vitro fermentation of high fibre/high concentrate diets 

supplemented with yeast (control diets with no yeast). Another 3 faecal inocula were obtained in an 

experiment in which ponies were fed a grass hay only diet (control), or the same grass hay 

supplemented with increasing concentrations of a fibrolytic enzyme (either 0.75 or 3.75 mL of enzyme 

solution per kg DM hay). Gas production was recorded using the ANKOM RF gas production system 

[21] and three replicates per inoculum were used. Preliminary results were reported by Garber et al. 

[20]. The data yielded 11 gas production profiles, one for each treatment, after averaging the three 

replicates for each inoculum. Visual inspection revealed both typical and atypical patterns. 

The entirety of the observed gas production values (Dataset 1−25) used in this study can be found 

in the Supplementary Information section of this paper, Table S1. 



Animals 2020, 10, 308 4 of 19 

Table 1. Details of the eleven treatments used in Experiment 2. 

Control and Enzyme Treatments 

Dataset-Substrate-Inoculum Substrate (Chopped) Inoculum from 

15-C-I1 C Grass hay untreated (same as ponies were fed). I1 Ponies fed control diet consisting of grass hay fed at 100% 

16-E1-I2 E1 Grass hay treated with enzyme 0.75 mL/kg DM hay I2 Ponies fed grass hay treated with enzyme 0.75 mL/kg DM hay 

17-E2-I3 E2 Grass hay treated with enzyme 3.75 mL/kg DM hay I3 Ponies fed grass hay treated with enzyme 3.75 mL/kg DM hay 

Other treatments 

Dataset-Substrate-Inoculum Substrate (Ground to pass 1 mm screen) Inoculum from 

18-A-I4 A Grass hay (50%) + alfalfa (50%) I4 Ponies fed 25% alfalfa and 75% grass hay (dry matter (DM) basis). 

Not supplemented with yeast. 19-A1-I4 A1 Grass hay (75%) + alfalfa (25%) 

20-B-I5 B Grass hay (50%) + alfalfa (50%) + Yeast (0.011 g) I5 Ponies fed 25% alfalfa and 75% grass hay (DM basis).  

Supplemented daily with 30 g yeast per pony was mixed with alfalfa. 21-B1-I5 B1 Grass hay (75%) + alfalfa (25%) + Yeast (0.011 g) 

22-C-I6 C Grass hay (50%) + concentrate (50%) I6 Ponies fed 25% concentrate and 75% grass hay (DM basis).  

Not supplemented with yeast. 23-C1-I6 C1 Grass hay (75%) + concentrate (25%) 

24-D-I7 D Grass hay (50%) + concentrate (50%) + Yeast (0.011 g) I7 Ponies fed 25% concentrate and 75% grass hay (DM basis). 

Supplemented daily with 30 g yeast per pony mixed with concentrate. 25-D1-I7 D1 Grass hay (75%) + concentrate (25%) + Yeast (0.011 g) 
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2.2. Models Fitted 

The classical Mitscherlich equation used in crop science has the general form: 

� = � − (� − �)e���  

where the ordinate y is crop yield, the abscissa t is fertilizer rate, and A, B and c are constants. The 

parameter A represents the asymptotic value of y (i.e., maximum yield) and B the minimum yield 

(i.e., no fertilizer application). 

For application to the gas production technique, the ordinate becomes cumulative gas 

production (mL) and the abscissa becomes time since inoculation (h). Cumulative gas production at 

zero time can be considered negligible and a lag T ≥ 0 (h) may occur before onset of fermentation, so 

the Mitscherlich equation becomes: 

� = �(1 − e��(���));   � ≥ � (1) 

In this equation, A would represent the asymptotic gas production (mL) and c (h–1) the fractional rate 

of fermentation. In this paper, we explore Equation (1) and three different extensions (Equations (2)–

(4) below) of this classical function for use in describing typical and atypical gas production profiles. 

Gas production profiles are typically monophasic, asymptotic and often sigmoidal (e.g., [5]). 

France et al. [4] derived the following equation from rate:state principles to describe such profiles: 

� = ��1 − exp�−�(� − �) − ��√� − √����;   � ≥ � (2) 

Here, A (mL) is the asymptotic value of y, and c (h–1) and d (h–0.5) are fractional rate constants. Equation 

(1) is a special case of Equation (2) (i.e., d = 0). This equation is commonly referred to as the France 

model. 

Biphasic, asymptotic gas production profiles have also been observed (e.g., [15]), and these 

would appear to lend themselves to description by the sum of two Mitscherlich terms: 

� = ��(1 − e���(����)) + ��(1 − e���(����));   � ≥ ��, � ≥ �� (3) 

The first term in Equation (3) is zero until time T1 and likewise the second term until time T2. Equation 

(1) is also a special case encompassed by Equation (3) (i.e., A2 = 0). This latter equation will be referred 

to as the double Mitscherlich model. 

As mentioned above, instances of profiles that do not exhibit typical asymptotic behaviour have 

also been observed but not formally reported. Such profile forms suggest a function resulting from 

the sum of a Mitscherlich term and a linear term might provide an appropriate description: 

� = �(1 − e��(����)) + �(� − ��);   � ≥ ��, � ≥ �� (4) 

where the parameter β (mL h–1) is the slope of an underlying linear trend. As for Equation (3), the first 

term in Equation (4) is zero until time T1 and likewise the second term until time T2. Putting β = 0 in 

Equation (4) yields Equation (1). This latter equation will be referred to as the Mitscherlich + linear 

model. 

2.3. Extent of Degradation 

The extent of degradation (E) of substrate in a specific compartment or region of the gastro-

intestinal tract may be calculated from the gas production curve, provided the inoculum used to 

generate the profile is representative of that compartment. If the profile is diminishing returns in 

shape, first-order kinetics with a constant fractional rate of degradation describes substrate 

degradation and Equation (1) can be fitted to the profile. Extent of degradation is then given by: 

� = ��e����/[(� + �)(�� + ��)] (5) 

where S0 (g) is the amount of the incubated substrate that is potentially degradable, U0 (g) the amount 

that is undegradable, T (h) the lag before commencement of degradation, c (h–1) the fractional rate of 

fermentation, and k (h–1) is the fractional rate of passage out of the compartment [4]. 
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If the profile is sigmoidal, first-order kinetics with a variable fractional degradation rate would 

account for substrate degradation and the France model (Equation (2)) can be fitted. Extent of 

degradation is then given by: 

� = ��e��� (1 − ���) (�� + ��)⁄  (6) 

= ����� (�� +⁄ ��) (7) 

where 

�� = � exp�−�(� + �)(� − �) + ��√� − √����
∞

�

d�  

�� = � e����1 − exp�−�(� − �) − ��√� − √����
∞

�

d�  

and c (h–1) is the constant portion of the fractional degradation rate and d (h–0.5) the coefficient of the 

variable portion. The integrals I1 and I2 are non-analytical and therefore have to be evaluated 

numerically [4]. 

If the profile is linear with an abrupt cut-off (i.e., a broken stick), zero-order kinetics with 

constant rate of degradation independent of substrate remaining can be assumed and a piecewise 

linear model fitted. The extent of degradation is then given by: 

� = � [ln(������ + e��) − ��] [�(�� + ��)]⁄  (8) 

where β (mL h–1) is the slope of the line fitting the ascending portion of the profile [22]. 

If the gas production profile is multiphasic, then the extent of degradation for each phase can be 

calculated by applying the appropriate equation, and the weighted extents summed to estimate 

overall extent of degradation. For example, if the profile resolves into two diminishing returns 

components (1 and 2) as in Equation (3), then Equation (5) can be independently applied to each of 

the two phases and the overall extent calculated as: 

� = (���� + ����) (�� + ��)⁄  (9) 

where w1 and w2 are the relative weights assigned to the respective phases. If the profile resolves into 

a diminishing returns and a linear (with abrupt cut-off) component as in Equation (4), then Equations 

(5) and (8) respectively can be applied to the two phases and the overall extent calculated again using 

Equation (9). As an arbitrary rule of thumb, the asymptotic gas production values for the two phases 

(abrupt cut-off value if a phase is linear), viz. A1 and A2, can be adopted as the weights w1 and w2 

respectively. 

Thus, for the equine data considered herein, the extent of degradation of substrate in the hindgut 

can be calculated using Equations (5)–(9) if we assume faecal inoculum is representative of that region 

of the gastro-intestinal tract. Herein, when calculating extent of degradation, the amount of the 

incubated substrate that is potentially degradable S0 (g), the amount that is undegradable U0 (g), and 

the fractional rate of passage out of the compartment k (h–1), were assumed to be 0.538, 0.465 and 

0.019, respectively, for all datasets [23]. 

2.4. Fitting and Evaluation of Models 

Each of the four models (Equations (1)–(4)) was fitted by non-linear regression to the 25 gas 

production profiles using the NLIN procedure in the statistical software SAS [24]. Initial estimates of 

parameter values were obtained through visual inspection of the data. 

Using various statistical tests, the models were evaluated for goodness-of-fit along with analysis 

of residuals. Mean square prediction error (MSPE) was calculated as the sum of the squared 

difference between predicted and observed values divided by the number of observations [25]. The 

accuracy factor (AF) index is a measure of the average deviation of a model’s predictions and is used 

as a simple index of the level of confidence in these predictions [26]. Agreement between model 

predictions and observations was further determined using the concordance correlation coefficient 
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(CCC), a single statistic ranging between −1 (perfect disagreement) and +1 (perfect agreement) which 

contains both accuracy and precision indicators [27,28]. The Akaike information criterion (AIC) is a 

test for model selection which accounts for goodness-of-fit while penalizing for over-fitting, with the 

model resulting in the smallest AIC being the most appropriate [29]. 

The ability of each model to predict gas production without systematically over- or under-

estimating was examined using the number of runs test and the Durbin–Watson (DW) test. The runs 

test examines a sequence of residuals for unusual groupings of positive or negative residuals and 

tests the null hypothesis that the arrangement of signs (+/−) is random, with too few runs indicating 

the presence of autocorrelation [30]. The DW test examines dependencies in the error terms by testing 

for correlations between a residual and the residuals immediately before and after it in the sequence. 

Compared to the runs test, the DW provides greater information regarding analysis of residuals by 

not only considering the sign of the residual but also its magnitude. The DW statistic (D), and upper 

(Du) and lower (Dl) critical values, were calculated according to [30]. When D is less than the lower 

critical value Dl, evidence of positive autocorrelation occurs, and when D is greater than the upper 

critical value Du, evidence of negative autocorrelation occurs. 

3. Results 

The ability of the Mitscherlich, and the other derived functions, to describe typical and atypical 

cumulative gas production profiles was assessed by fitting the four equations (Equations (1)–(4)) to 

25 datasets. The profiles examined resulted from incubating forage using faecal inoculum from 

equines following the methodology of Theodorou et al. [2]. Using parameter estimates resulting from 

fitting these models to the gas production profiles, extents of substrate degradation were calculated 

and compared. 

3.1. Fitting Behaviour 

Of the 25 gas production profiles considered, 17 displayed atypical patterns, characterized by 

more than one phase, while the remaining 8 displayed typical monophasic patterns. No convergence 

issues were encountered when fitting the simple Mitscherlich (Equation (1)), double Mitscherlich 

(Equation (3)) and the Mitscherlich + linear (Equation (4)) to any of the datasets. The use of an “if 

than” statement concerning � ≥ �� and its effect on A2 and β in SAS allowed both Equations (3) and 

(4) to revert to the simple Mitscherlich if that resulted in a better fit compared to the extended biphasic 

equations (i.e., when A2 = 0 in Equation (3) and β = 0 in Equation (4)). The France equation (Equation 

(2)) also encompasses the ability to revert to a simple Mitscherlich (Equation (1)) when d = 0. When 

fitted to the 25 gas production profiles, the France equation (Equation (2)) reverted to the simple 

Mitscherlich (Equation (1)) in four cases as the best fit for these gas production profiles was achieved 

when d = 0. Likewise, the double Mitscherlich (Equation (3)) reverted to the simple Mitscherlich 

(Equation (1)), i.e., A2 = 0, in five cases as a single Mitscherlich term described these profiles better 

than two Mitscherlich terms. 

When fitting the France model (Equation (2)) to the atypical gas production curves, the 

convergence criteria had to be relaxed in order to reach successful convergence. When enforcing 

relaxed convergence criteria, Equation (2) was unable to converge for one of the 25 datasets. In order 

to achieve biologically meaningful parameters, lag time (T) and fractional rate constant (c) were 

constrained to be non-negative when fitting each model. Furthermore, in fitting Equation (2) a 

constraint was placed on parameter d, viz. � ≥ −2�√� to ensure the fractional rate of degradation 

remained non-negative [4]. 

3.2. Parameter Estimates and Fitted Gas Production Curves 

Initial parameter estimates of lag time (T), asymptotic value (A) and slope (β) were determined 

by visual inspection of the gas production curves, while ranges for the fractional rate constants (c and 

d) were provided. The final parameter estimates resulting from fitting Equations (1)–(4) to Dataset 1 

and 8 of Experiment 1 and Dataset 18 and 22 of Experiment 2 are presented in Tables 2 and 3, 
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respectively. The final estimates resulting from fitting Equations (1)–(4) to the remaining 21 datasets 

are given in the Supplementary Information section of this paper (Tables S2–S5). Using the parameter 

estimates in Tables 2 and 3, the gas production profiles resulting from applying Equations (1)–(4) to 

Dataset 1 and 8 are shown in Figure 1. Both Dataset 1 and 8 show clear atypical biphasic gas 

production curves which are more faithfully represented by the double Mitscherlich (Equation (3)) 

and Mitscherlich + linear (Equation (4)) equations than the monophasic simple Mitscherlich 

(Equation (1)) or the France model (Equation (2)). Examining the four lower panels of Figure 1, the 

extent to which each phase contributes to the overall gas production curve of the double Mitscherlich 

(Equation (3)) and Mitscherlich + linear (Equation (4)) are clearly distinguishable. 

Table 2. Parameter estimates obtained by fitting Equations (1)–(4) to Dataset 1 (laminitis) and 8 

(clinically normal) from Experiment 1. An asterisk (*) denotes the equation that resulted in the best 

fit, based on AIC, to a particular dataset. 

 
Simple Mitscherlich 

(Equation (1)) 

France 

(Equation (2)) 

Double Mitscherlich 

(Equation (3)) ‡ 

Mitscherlich + linear 

(Equation (4)) § 

 
Dataset 

1 

Dataset 

8 

Dataset 

1 

Dataset 

8 

Dataset 

1 

Dataset 

8 

Dataset 

1 

Dataset 

8 

A 163.5 123.7 246.8 159.5 
60.3, 

 84.3 * 

60.8, 

 66.8 * 
63.7 64.6 

c 0.014 0.025 0.005 0.008 
0.093, 

0.026 * 

0.140, 

0.027 * 
0.078 0.111 

T 0 0 0 0 
3.1, 

 43.4 * 

2.8, 

 34.6 * 

2.8, 

35.9 

2.5, 

28.7 

d   0.019 0.049     

β       0.936 0.723 
‡ The two scale parameters of this equation are entered under A in the order A1, A2 in this table. Likewise, the 

two rate parameters under c in the order c1, c2, and the two lags under T in the order T1, T2. § The two lag 

parameters of this equation are entered under T in the order T1, T2. 

Table 3. Parameter estimates obtained by fitting Equations (1)–(4) to Dataset 18 (50% grass hay + 50% 

alfalfa) and 22 (50% grass hay + 50% concentrate), from Experiment 2. An asterisk (*) denotes the 

equation that resulted in the best fit, based on AIC, to a particular dataset. 

 
Simple Mitscherlich 

(Equation (1)) 
France (Equation (2)) 

Double Mitscherlich 

(Equation (3)) ‡ 

Mitscherlich + linear 

(Equation (4)) § 

 
Dataset 

18 

Dataset 

22 

Dataset 

18 

Dataset 

22 

Dataset 

18 

Dataset 

22 

Dataset 

18 

Dataset 

22 

A 120.6 148.7 * 122.9 148.7 † 
109.7, 

38.7 
148.7 Ψ 109.6 * 147.7 

c 0.071 0.078 * 0.057 0.078 † 
0.090, 

0.016 
0.078 Ψ 0.091 * 0.079 

T 0 0.5 * 0 0.5 † 
0.3, 

37.2 
0.5 Ψ 

0.3, 

 34.8 * 

0.5, 

33.1 

d   0.037      

β       0.473 * 0.040 
‡ The two scale parameters of this equation are entered under A in the order A1, A2 in this table. Likewise, the 

two rate parameters under c in the order c1, c2, and the two lags under T in the order T1, T2. § The two lag 

parameters of this equation are entered under T in the order T1, T2. † Best fit by France, Equation (2), achieved 

with d = 0, therefore reverting to a simple Mitscherlich, viz. Equation (1). Ψ Best fit by double Mitscherlich, 

Equation (3), achieved with A2 = 0, therefore reverting to a simple Mitscherlich, viz. Equation (1).  
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Figure 1. Observed (●) atypical gas production profiles and predicted curves resulting from fi�ing 

Equations (1)–(4) to Dataset 1 and 8 of Experiment 1. 

In contrast to Dataset 1 and 8, Dataset 18 and 22 of Experiment 2 display more typical 

monophasic gas production curves as shown in Figure 2. Again, examining the bottom four panels 

of Figure 2, the second phase of the biphasic models (viz. Equations (3) and (4)) is much less evident, 

with the second phase being entirely absent when fitting the double Mitscherlich (Equation (3)) to 
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Dataset 22 as Equation (3) reverts to the simple Mitscherlich with A2 = 0. Additionally, when fitting 

the equation of France (Equation (2)) to Dataset 22, the best fit was achieved when d = 0, and thus 

Equation (2) reverted to a simple Mitscherlich (Equation (1)) when applied to this dataset. The gas 

production profiles resulting from fitting Equations (1)–(4) to the remaining datasets are shown in 

the Supplementary Information (Figures S1–S4). 

 

Figure 2. Observed (●) typical gas production profiles and predicted curves resulting from fitting 

Equations (1)–(4) to Dataset 18 and 22 of Experiment 2. 
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3.3. Model Evaluation 

Goodness-of-fit was assessed using four criteria, namely AIC, MSPE, CCC and AF. The 

goodness-of-fit values resulting from fitting each of the four models to the 25 datasets were averaged 

and the models ranked from 1 to 4 based upon their comparative performance with the other models 

for a given criterion. Individual models averaged goodness-of-fit values, along with their mean rank 

and the number of times the model ranked first or second under a given criterion, are presented in 

Table 4. 

Table 4. Goodness-of-fit and analysis of residuals from fitting the four equations to the 25 datasets of 

Experiments 1 and 2. 

Criteria 

Model 

Simple 

Mitscherlich 

(Equation (1)) 

France 

(Equation (2)) 

Double 

Mitscherlich 

(Equation (3)) 

Mitscherlich + 

Linear 

(Equation (4)) 

Akaike information criterion 

(AIC) 
    

Average (±SE) 73.1 (2.5) 66.6 (2.6) 46.7 (2.7) 47.6 (5.2) 

Mean rank 3.4 2.9 1.4 1.7 

Number of times a model ranked 

1st or 2nd 
2 5 22 25 

Mean square prediction error 

(MSPE) 
    

Average (±SE) 31.6 (5.4) 20.9 (3.2) 5.1 (0.5) 10.7 (1.7) 

Mean rank 3.4 2.6 1.3 1.6 

Number of times a model ranked 

1st or 2nd 
2 5 22 25 

Concordance correlation 

coefficient (CCC) 
    

Average (±SE) 0.979 (0.004) 0.985 (0.003) 0.996 (0.001) 0.994 (0.001) 

Mean rank 3.5 2.6 1.4 1.7 

Number of times a model ranked 

1st or 2nd 
5 9 22 25 

Accuracy factor (AF)     

Average 1.32 (0.04) 1.32 (0.04) 1.18 (0.03) 1.17 (0.03) 

Mean rank 2.8 3.2 1.4 1.5 

Number of times a model ranked 

1st or 2nd 
7 3 25 25 

Number of runs test     

Too few runs 25 24 7 19 

Runs are random 0 0 18 6 

Durbin–Watson (DW) test     

Positive correlation 25 23 7 10 

No evidence 0 1 2 4 

Negative correlation 0 0 16 11 

When fitted to the 25 datasets, the double Mitscherlich resulted in the smallest averaged AIC 

value (46.7 ± 2.7), followed by the Mitscherlich + linear (47.6 ± 5.2) and the France equation (66.6 ± 

2.6), with the simple Mitscherlich (73.1 ± 2.5) resulting in the highest average AIC. Based upon AIC, 

the mean rank of the double Mitscherlich, Mitscherlich + linear, France and the simple Mitscherlich 

was 1.4, 1.7, 2.9 and 3.4, respectively, with the Mitscherlich + linear being ranked 1st or 2nd 25 times 

followed by the double Mitscherlich (23), France (5), and the simple Mitscherlich (2). The double 

Mitscherlich resulted in the lowest average MSPE (5.1 ± 0.5) followed by the Mitscherlich + linear 

(10.7 ± 1.7), France (20.9 ± 3.2), and the simple Mitscherlich (31.6 ± 5.4). In agreement with AIC, the 

double Mitscherlich resulted in the highest mean rank (1.3), followed by the Mitscherlich + linear 

(1.6), France (2.6) and simple Mitscherlich (3.4) with the Mitscherlich + linear ranking 1st or 2nd 25 

times compared to the double Mitscherlich (22), France (5), and simple Mitscherlich (2). 

Following the same trend as AIC and MSPE, the double Mitscherlich resulted in the highest CCC 

(0.996 ± 0.001), followed by the Mitscherlich + linear (0.994 ± 0.001), France (0.985 ± 0.003) and simple 
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Mitscherlich (0.979 ± 0.004). Again, the double Mitscherlich yielded the best average rank of 1.4, 

followed by the Mitscherlich + linear (1.7), France (2.6) and simple Mitscherlich (3.5). The simple 

Mitscherlich was ranked 1st or 2nd in 5 of the 25 datasets and France in 9 of the 25, whilst the 

Mitscherlich + linear and double Mitscherlich were ranked 1st or 2nd in 25 and 22 datasets, 

respectively. On the basis of AF, the Mitscherlich + linear (1.17 ± 0.03) and double Mitscherlich (1.18 

± 0.03) outperformed both the France and simple Mitscherlich (with an averaged AF of 1.32 ± 0.04). 

The double Mitscherlich was ranked higher than the Mitscherlich + linear, 1.4 vs. 1.5, with both 

models being ranked 1st or 2nd 25 times. The simple Mitscherlich had a higher rank compared to the 

France, 2.8 vs. 3.2, with the simple Mitscherlich ranking 1st or 2nd 7 times compared to 3 times for 

the France equation. 

In addition to goodness-of-fit, the runs test and DW test were used for the analysis of residuals. 

The results of these analyses are presented in Table 4. The runs test determined that too few runs 

occurred for all datasets when fitting the simple Mitscherlich and France equations. In comparison, 

runs of residuals were determined to be random in 18 and 6 of the 25 datasets when fitting the double 

Mitscherlich and Mitscherlich + linear, respectively. Using the DW test there was evidence of positive 

correlation of the residuals in all of the datasets that the simple Mitscherlich fitted successfully, and 

in all but one for the France model. In contrast, positive correlation was only found in 7 and 10 of the 

25 datasets when fitting the double Mitscherlich and Mitscherlich + linear, with negative correlation 

being found in 16 and 11 of the 25 datasets, respectively. 

3.4. Extent of Degradation 

Extent of substrate degradation, calculated from the parameter estimates resulting from fitting 

the four models to the 25 gas production profiles, is presented in Table 5. When calculating extent of 

degradation using the biphasic equations, viz. Equations (3) and (4), the relative weights in which 

each phase contributed to the overall extent of substrate degradation need to be incorporated. Using 

the double Mitscherlich (Equation (3)) the weights of each phase were simply assumed to be their 

respective asymptotic gas production values for each phase, A1 and A2. For the Mitscherlich + linear, 

the weight of the first phase was its respective asymptotic value (A1), while the weight of the second 

(linear) phase was calculated as the amount of gas produced over the course of this linear segment 

(i.e., multiplying its slope by the duration of the linear segment). The duration of the linear segment 

was the difference between time at which the abrupt cut-off value occurred and time at which the 

linear portion commenced (i.e., T2, the lag time). The abrupt cut-off was determined in two ways. In 

Experiment 1, Dataset 1–14, abrupt cut-off values were assumed to occur at the intersection between 

the linear segment of the equation and the apparent plateau in gas production, which visually 

occurred between the last two data points. In Experiment 2, Dataset 15–17, a plateau in the observed 

data was not evident, therefore the abrupt cut-off value was set to the end of incubation. Finally, in 

Experiment 2, Dataset 18–25, a plateau was eventually reached with the linear segments being 

horizontal or near horizontal, and abrupt cut-off values were again set to the end of incubation. 

Table 5. Calculated extent of degradation (%) from the 14 datasets of Experiment 1 displaying atypical 

gas production profiles and the 11 datasets of Experiment 2 displaying both typical and atypical 

profiles. An asterisk (*) denotes the equation that resulted in the best fit, based on AIC, to a particular 

dataset. 

Dataset 

Visual 

Curve 

Pattern 

Simple 

Mitscherlich 

(Equation (1)) 

France 

(Equation (2)) 

Double 

Mitscherlich 

(Equation (3)) 

Mitscherlich + 

Linear 

(Equation (4)) 

1 Atypical 22.7 15.5 25.5 * 33.9 

2 Atypical 34.3 28.5 35.1 * 40.0 

3 Atypical 25.4 12.7 25.1 * 37.5 

4 Atypical 26.7 - 25.0 * 35.6 

5 Atypical 31.1 21.8 29.1 * 42.0 

6 Atypical 30.3 21.7 30.0 * 38.0 
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7 Atypical 34.9 28.6 32.7 * 39.7 

8 Atypical 30.4 24.4 30.0 * 38.0 

9 Atypical 23.4 16.0 33.2 * 36.8 

10 Atypical 22.4 19.0 24.2 * 34.9 

11 Atypical 36.3 32.9 29.1 * 39.6 

12 Atypical 33.4 32.6 30.2 * 38.2 

13 Atypical 25.9 22.0 28.1 * 34.5 

14 Atypical 33.3 31.3 25.1 * 37.3 

15 Atypical 31.6 31.6 31.6 Ψ 38.4 * 

16 Atypical 34.2 23.5 34.2 Ψ 38.9 * 

17 Atypical 35.5 19.5 35.5 Ψ 42.0 * 

18 Typical 42.4 41.6 35.9 41.9 * 

19 Typical 42.1 40.5 36.8 * 42.8 

20 Typical 43.3 * 43.3 † 43.3 Ψ 43.0 

21 Typical 43.2 43.2 † 41.2 42.9 * 

22 Typical 42.9 * 42.9 † 42.9 Ψ 42.8 

23 Typical 42.5 42.3 41.9 43.0 * 

24 Typical 44.2 44.2 † 43.1 43.8 * 

25 Typical 43.0 43.1 41.2 42.8 * 
† Best fit by France, Equation (2), achieved when d = 0, therefore reverting to a simple Mitscherlich, viz. Equation 

(1). Ψ Best fit by double Mitscherlich, Equation (3), achieved with A2 = 0, therefore reverting to a simple 

Mitscherlich, viz. Equation (1).  

Although substrate was primarily grass hay, or a grass hay mix, the range of calculated extent 

of degradation varied widely, from a minimum of 12.7% to a maximum of 44.2%. The wide range in 

extent of degradation values can be attributed to the use of parameter estimates from a model that 

fits a given gas production profile poorly. Therefore, Table 5 includes an indicator of which model 

fitted the particular dataset values best, based upon AIC. Fitting these four models to 25 datasets that 

encompass both typical and atypical gas production curves resulted in the double Mitscherlich being 

the best fitting in 15 of these datasets, the Mitscherlich + linear 8, simple Mitscherlich 2 and France 0. 

Given that extent of degradation is determined using parameter estimates obtained by fitting these 

models to a dataset, the importance of model fit in calculating extent of degradation is apparent. 

4. Discussion 

Gas production profiles generated from incubating a substrate with either ruminal or faecal 

inocula have been widely used to provide information regarding the degradability of forages and 

supplementary feeds in both ruminants and non-ruminants [3,5,6,10–14]. Typical shapes of these 

profiles range from diminishing returns to strongly sigmoidal [3]. Various models, e.g., Mitscherlich, 

Michaelis-Menten, Gompertz and logistic, have been proposed to describe these curves, including 

generalised models such as Richards and that of France which are able to accommodate both 

diminishing returns and sigmoidal behaviour [4,31–33]. Deriving these models on the basis of 

substrate degradation rather than amount of gas produced permits the generation of fermentation 

kinetic parameters [3]. By fitting these models to gas production profiles, such parameters (e.g., 

fractional rate of degradation and lag time) can be estimated. These model-derived parameters have 

been used in conjunction with information regarding substrate degradability and digesta passage 

rate to calculate extent of substrate degradation in the rumen [3–6,34]. This method has been 

successfully applied to typical monophasic sigmoidal and diminishing returns gas profiles to 

evaluate substrates based upon the extent of their degradability [3,5,6,8–14,34]. 

In addition to the typical sigmoidal and diminishing return patterns displayed by gas 

production profiles, atypical multiphasic curves have been reported [15,16,19,20,35]. Although 

multiphasic gas production curves have been described by both Groot et al. [15] and Wang et al. [36], 

proposed models are based upon the amount of gas produced, rather than the amount of substrate 
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degraded, resulting in the model being unable to link the gas production technique to animal 

performance [3]. 

4.1. Profile Shapes and Associated Parameters 

The diminishing returns behaviour described by the simple Mitscherlich is a result of the 

interaction between the constant fractional degradation rate (c) and the amount of degradable 

substrate (S) available for fermentation. The amount of degradable substrate available is time 

dependent with the maximal value occurring at time zero (S0). The instantaneous rate of degradation 

is calculated by multiplying the constant fractional degradation rate (c) by the amount of degradable 

substrate (S) at time t [3]. As the fractional degradation rate is constant, and S is maximal at the 

commencement of the incubation, instantaneous rate of degradation is maximal at the start of 

incubation, following a lag period if present. As fermentation progresses, the amount of degradable 

substrate decreases while the fractional rate of degradation remains constant. Therefore, the 

instantaneous rate of degradation declines continuously, from its maximum at the start of the 

incubation until it finally reaches zero due to available fermentable material being exhausted. When 

fermentation ceases, due to a lack of degradable substrate, the instantaneous rate of degradation 

becomes zero, with no additional gas production occurring, having reached an upper asymptote. 

Therefore, the characteristic diminishing returns pattern of the simple Mitscherlich describes a 

scenario whereby rate of fermentation, and thus gas production, is initially at a maximum and 

continuously decreases, as a function of time, until an asymptote is reached. 

Unlike the simple Mitscherlich, the France model is capable of describing both diminishing 

returns and sigmoidal behaviour. This is achieved by assuming that fractional rate of degradation 

can vary with time. Depending on the values of the fractional rate constants, viz. c and d in this 

manuscript, the fractional rate of degradation can remain constant, decrease or increase with time [4]. 

In the France model, when the fractional rate of degradation is constant diminishing return type 

behaviour is described (as in the simple Mitscherlich). None of the gas production profiles examined 

in this study showed clear sigmodal behaviour and therefore the flexibility of the France model in its 

ability to describe both diminishing returns and sigmoidal shapes was not demonstrated. When 

describing sigmoidal behaviour, initially the rate of degradation increases resulting in exponential-

type behaviour. As it continues to increase, a point of inflexion occurs whereby the rate reaches its 

maximal value. Following inflexion, the rate of degradation decreases resulting in diminishing 

returns behaviour with an asymptote being approached. 

Of the 25 datasets examined in this study, in all but three the substrate was ground and passed 

through a 1 mm screen prior to incubation, with the remaining three being chopped (length not 

reported). A clear increase in gas production, and associated increase in extent of substrate 

degradation, is observed when comparing the ground (Dataset 18–25) with the chopped substrates 

(Dataset 15–17) of Experiment 2 (see Supplementary Information Figure S3 vs. Figure S4 and Table 5 

for associated gas production profiles and extent of degradation values, respectively). However, 17 

of these datasets, including both ground and chopped substrates, are atypical in nature and exhibit a 

second phase of gas production. In these 17 datasets the first phase is well described by the simple 

Mitscherlich whereby following a lag, rate of degradation and thus gas production are initially at 

their maximum and continuously decrease until an asymptote is approached. Following this first 

phase, a second phase occurs. This second phase can show either diminishing returns or a linear 

pattern. These phases might be attributed to differences in chemical or nutritional fractions of the 

feedstuffs [16]. Phase 1 may represent the gas produced from the fermentation of sugars or a soluble 

readily fermentable fraction, while the second phase consists of gas produced from the fermentation 

of structural carbohydrates or an insoluble potentially fermentable fraction [35,37]. Alternatively, the 

occurrence of the second gas production phase can potentially be attributed to chemical or structural 

barriers implicit in the substrate that must be overcome in order to continue degradation [15]. 

Furthermore, the possibility of microbial turnover in batch cultures, and the small amount of gas 

produced from ‘self-fermentation’ may add to the second phase of gas production [35,38]. Many other 

factors may influence the profile shape including: inter-animal variability, ration of the donor of the 
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microbial inoculum, length of time the donor animal was adapted to the ration, time of day the 

inoculum was collected, ruminal vs. faecal sources of inoculum and frozen vs. fresh inoculum [5,19,35]. 

This leads to the conclusion that these factors may have the potential to influence microbial diversity 

and abundance in the inoculum, which in turn influences fermentative ability and by extension 

influences gas production. 

4.2. Extent of Degradation 

The ability to describe typical diminishing returns and sigmoidal gas production profiles using 

a variety of models (e.g., Mitscherlich, Michaelis-Menten, logistic, Gompertz and France) is well 

established [3,34,36]. However, the description of atypical multiphasic gas production curves is much 

less established, particularly how to link the in vitro gas production technique to the extent of 

degradation in the animal. Groot et al. [15] proposed a model that fitted multiphasic profiles using 

two or more generalised rectangular hyperbolae. Applying this model, some authors have estimated 

the amount of gas produced and rate of gas production of various feedstuffs [35,39]. Likewise, Wang 

et al. [36] described single- and multi-phase gas production curves using logistic-exponential 

equations. However, in these studies differences in feedstuffs were identified on the basis of the 

amount of gas produced rather than on criteria linked to animal performance. 

Two biphasic models are presented in this paper that make use of a simple Mitscherlich term 

when describing the first phase of gas production and a second phase comprising either an additional 

Mitscherlich or a simple linear term with abrupt cut-off. Depending on the nature of the profile, both 

the double Mitscherlich (Equation (3)) and Mitscherlich + linear (Equation (4)) fitted the atypical 

datasets well, resulting in parameter values that can be used to calculate and compare the extent of 

degradation of respective substrates and substrate treatments. For example, three of the datasets 

examined in this study (Dataset 15–17) encompass chopped hay treated with increasing levels of an 

enzyme (0, 0.75 or 3.7 mL enzyme per kg DM hay, respectively). The Mitscherlich + linear fitted these 

datasets the best and using the associated parameter values, extent of substrate degradation was 

demonstrated to increase with increasing levels of enzymatic treatment, viz. 38.4%, 38.9% and 42.0% 

for Dataset 15–17, respectively. When fitting the Mitscherlich + linear to these datasets, it was 

assumed that following the linear trend an abrupt cut-off is reached (i.e., an asymptote is reached) 

and gas production ceases. This can be observed by inspecting Dataset 1 and 8 in Figure 1 whereby 

gas production ceases to increase between the last two data points. In comparison, examining Dataset 

15–17 (see Supplementary Information, Figure S3), visually there appears to be potential for further 

gas production as an asymptote, in the form of an abrupt cut-off following the linear segment, has 

yet to be reached. If the linear trend continues after the 76 h incubation period, there is potential for 

continued substrate degradation and associated gas production. Therefore, extent of substrate 

degradation calculated using the Mitscherlich + linear would be an underestimate if fermentation 

continued beyond the 76 h incubation period used to generate these gas production profiles. 

As previously mentioned, the extent of degradation calculated using the fermentation kinetic 

parameters generated from applying the four proposed models to 25 datasets ranged widely from a 

minimum of 12.7% to a maximum of 44.2%. This wide range in values can partially be attributed to 

the use of parameter values from a model that fits a particular gas production profile poorly. Even in 

a given dataset, large variation in calculated extent of degradation values existed. For example, in 

Dataset 3, extent of degradation using the France model was 12.7% compared to 37.5% with the 

Mitscherlich + linear. These findings are in contrast with those of Dhanoa et al. [34] whereby the 

model being applied (generalised Mitscherlich, simple Mitscherlich, generalised Michaelis-Menten, 

simple Michaelis-Menten, Gompertz and logistic) had very little effect on extent of degradation 

values. However, the gas production profiles of Dhanoa et al. [34] using mixed rumen 

microorganisms as the inoculum were all monophasic in nature and therefore reasonably well 

described by the aforementioned models. Indeed, when examining the eight typical gas production 

profiles of this manuscript, Dataset 18–25, there was very little difference in extent of degradation in 

a given dataset regardless of model applied. When comparing the standard deviation of extent of 

degradation determined by the four models when applied to the same typical gas production dataset, 



Animals 2020, 10, 308 16 of 19 

Dataset 22 had the lowest value of 0.1% while Dataset 18 had the highest deviation at 3.1%. Examining 

Dataset 22, the simple Mitscherlich fitted the dataset best with an associated extent of degradation of 

42.9%. Both the double Mitscherlich and France models reverted to the simple Mitscherlich, as the 

simple Mitscherlich fitted this dataset better than their generalized forms, and therefore were in 

agreement with an extent of degradation of 42.9%. The Mitscherlich + linear was also in agreement 

with this value, 42.8%. In contrast, examining the 17 atypical biphasic gas production profiles, the 

model applied had considerable ramifications on calculated extent of degradation. In these datasets, 

the lowest standard deviation of extent of degradation between the four models when applied to a 

single dataset occurred in Dataset 12 at 3.4% while the largest deviation occurred in Dataset 3 at 

10.1%. In the atypical profile of Dataset 12, the double Mitscherlich fitted the gas production profile 

the best with a calculated extent of degradation of 30.2%, the simple Mitscherlich, France and 

Mitscherlich + linear overestimated the extent of degradation, viz. 33.4%, 32.6% and 38.2%, 

respectively. Overall, this discrepancy in extent of degradation values for a given dataset can be 

attributed to fitting a monophasic equation (viz. Equations (1) and (2)) to a distinctly biphasic profile, 

or fitting a linear term to a non-linear segment, resulting in poor kinetic parameter estimates and by 

extension extent of degradation values. 

It is important to note that when calculating extent of degradation, the value of S0, the amount 

of incubated substrate that is potentially degradable, was taken from the literature. This value was 

set to 0.538 regardless of dataset and the associated substrate represented by that dataset. The value 

of 0.538 is the apparent in vivo dry matter digestibility, using ponies, of ground and pelleted hay 

consisting of a 50:50 mix of Lucerne hay and Cocksfoot hay [23]. When performing the gas production 

technique of Theodorou et al. [2], the potentially undegradable fraction of the substrate (U0) can be 

obtained by weighing the residual matter after gas production has ceased. Likewise, the potentially 

degradable value (S0) can be calculated by subtracting U0 from the quantity of substrate initially 

incubated. However, these values were not available at the time of this current study and a constant 

value was assumed. Therefore, greater differences in calculated values of extent of degradation 

should be expected as S0 and U0 will vary between substrates, substrate composition and the 

treatment received. 

5. Conclusions 

Two models, a double Mitscherlich and Mitscherlich + linear with abrupt cut-off, were proposed 

and derived to describe atypical gas production patterns characterized by two distinct phases of gas 

production. The models fitted these atypical curves well and due to their hybrid nature are also able 

to describe typical monophasic gas production profiles through their ability to revert to a simple 

Mitscherlich. These models contain kinetic parameters that can be used to calculate extent of substrate 

degradation using relatively simple equations. Given that extent of degradation is linked to nutrient 

supply, these models provide useful information regarding the evaluation of feedstuffs using in vitro 

methods [34,40]. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Observed 

Gas Production Values of Datasets 1– 25 from Experiment 1 and 2; Table S2: Final parameter estimates from 

fitting the simple Mitscherlich (Eqn. 1) to Dataset 1−25; Table S3: Final parameter estimates from fitting the 

France model (Eqn. 2) to Dataset 1−25; Table S4: Final parameter estimates from fitting the double Mitscherlich 

model (Eqn. 3) to Dataset 1−25; Table S5: Final parameter estimates from fitting the Mitscherlich + linear (Eqn. 

4) to Dataset 1−25.Figure S1: Observed (●) and predicted gas production profiles resulting from fi�ing 

Equations (1) – (4) to Dataset 1 – 7, horses displaying clinical signs of laminitis, from Experiment 1; Figure S2: 

Observed (●) and predicted gas production profiles resulting from fitting Equations (1) – (4) to Datasets 8 – 14, 

clinically normal horses, from Experiment 1; Figure S3: Observed (●) and predicted gas production profiles 

resulting from fitting Equations (1) – (4) to Dataset 15 – 17, datasets exhibiting atypical dual-phase gas 

production curves, from Experiment 2 Figure S4: Observed (●) and predicted gas production profiles resulting 

from fitting Equations (1) – (4) to Dataset 18 – 25, datasets exhibiting typical single-phase gas production curves, 

from Experiment 2. 
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