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Abstract
There has been substantial interest of late on the issue of coherence as a resource in quantum
thermodynamics. To date, however, analyses have focused on somewhat artificial theoreticalmodels.
We seek to bring these ideas closer to experimental investigation by examining the ‘catalytic’nature of
quantumoptical coherence.Here the interaction of a coherent state cavity fieldwith a sequence of two-
level atoms is considered, a state ubiquitous in quantumoptics as amodel of a stable, classical source
of light. The Jaynes–Cummings interactionHamiltonian is used, so that an exact solution for the
dynamics can be formed, and the evolution of the atomic and cavity states with each atom-field
interaction analysed. In this way, the degradation of the coherent state is examined as coherence is
transferred to the sequence of atoms. The associated degradation of the coherence in the cavitymode
is significant in the context of the use of coherence as a thermodynamic resource.

1. Introduction

The study of coherence in optics, and later quantumoptics, has a long history, fromYoung’s famous
experiments demonstrating thewave nature of light [1], to the development of the quantumoptical description
of coherence [2–5]. Indeed the description of coherence through correlation functions of the field is arguably the
central concern of quantumoptics, and has been fundamental to e.g. stellar intensity interferometry [6, 7],
understanding the ultimate noise limits to interferometricmeasurements [8, 9], and providing experimental
evidence for the particle nature of light [10].

In recent years there has been a resurgence of interest in coherence, in the nascentfield of quantum
thermodynamics [11–14]. Here, coherence is taken tomean specifically superposition in the energy eigenbasis
(ormore generally off-diagonal elements of the densitymatrix in this basis). Indeed, in the study of
thermodynamics, there are two stark differences between the classical regime of textbook statisticalmechanics
and the quantum regime of small numbers of constituent particles. One is that in this limit, the size of
fluctuations of thermodynamical quantities are comparable to theirmean values, and a thermodynamical
system is no longer well-characterized bymean properties [15–18]. The other is the existence of superpositions
in the quantum theory [19]. Just as the understanding of classical thermodynamics gave rise to the steam engine
and the industrial revolution, developing its quantum counterpart is crucial to harnessing the full power of
quantumand nano devices to develop new quantum technologies. Central to this endeavour is exploring the
role of coherence in quantum thermodynamics.

In the quantum information inspired resource theory approach, coherence is thought of as a resource
[20–26], enabling (at least approximately)non-energy conserving operations whichwould otherwise be
forbidden [27, 28]. Although coherence cannot be created under strictly energy conserving operations, under
certain circumstances itmay be shown that a coherent reservoir can enable a coherent operation on an external
systemwith an accuracy that does not degrade upon use. This paradoxical result led to the suggestion that
coherence could be used catalytically [29]. The resolution is provided by careful consideration of correlations
between systemswhich have interactedwith the reservoir [30], a point we return to later.
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In this paperwe examine the distribution of coherence amongst systems, in the sequential interaction of a
singlemode coherent state with a series of two level systems through the Jaynes–Cummings interaction. There
are two good reasons for addressing the issue of coherence as a resource in this way:firstly the Jaynes–Cummings
model is verywell understood and there are long-established techniques for analysing it [31–34], and secondly it
is possible to realise it experimentally using techniques from cavity quantum electrodynamics [35].

We consider a sequence of two-level atoms introduced, one at a time, into a cavity prepared in an initial
coherent state. The atoms are prepared in their excited states and the cavity transit time is chosen so as to prepare
the emerging atoms, at least approximately, in an equally-weighted superposition of the ground and excited
states, ñe∣ and ñg∣ . A diagramof this setup is shown infigure 1. The phase of the superposition is determined by
the phase of the coherent state of the cavitymode. Such interactions are of central importance in quantum
information [36, 37] and also in quantum thermodynamics, as it is these whichmay be used to extractmaximal
work from coherence [29, 38, 39, 19, 40, 41].We evaluate how thefidelity of thefinal state changes with
subsequent interactions, and analyse the results in the light of [29].

A quantumoptical coherent state is the canonical example of a source of coherence. This is because it forms
the closest approximation to an ideal, perfectly stable, classicalfieldwith awell-determined amplitude and
phase. Indeed afield in a coherent state is precisely equivalent to a superposition of such a classical field and the
vacuum [42]. The quantumoptical properties of coherent states have beenwell studied, and in the sense of
enabling operations, discussed above, lasers are routinely used as control fields to induce quantumoperations on
the electronic states of trapped atoms and ions [43, 44]. Indeed it is in such systems that the highest achieved
fidelities for coherent operations have been demonstrated, among all physical systems proposed for use in
quantum information processing [45]. If the coherent state amplitude is high enough, the state is essentially
classical, and the back action of thefield due to the interactionmay be neglected, a situation strongly reminiscent
of the proposed catalytic use of a source of coherence. Yet if the amplitude isfinite, then this back action cannot
be disregarded: it is this whichwe explore in this paper.

Cavity quantum electrodynamics experiments have to contendwith the inevitable effects of losses from the
cavity due to thefinite reflectivity of themirrors [35]. These losses provide a further and unavoidable loss of
coherence [46] that impacts the state of the cavity field and disrupts the Jaynes–Cummings dynamics [47]. In this
paperwe opt not to include cavity losses for the crucial reason that to do sowouldmask the effect we are seeking
to explore, namely the quantitative consumption of coherence as the field is repeatedly employed. To include the
cavity losses would add a further decoheringmechanism, andwould render it difficult to account for the loss of
coherence purely associatedwith coherence as afinite resource.

We note that the Jaynes–CummingsHamiltonian is considered as an example in [29], with thefield state in
an equal superposition over afixed range of energy eigenstates, rather than using a coherent state of thefield. For
the parameters considered it was found that increasing the average energy without any increase of the number of
terms in the superposition (ameasure of the amount of coherence in such a state) improves performancewhen
thefield is used as a reservoir of coherence. For a coherent state there is no longer a clean separation of average
energy and the spread of the superposition: both are determined by a single parameter, the average photon
number. This complicates the analysis somewhat, but is of considerable physical relevance due to the ubiquity of
experimental systems employing coherent state control fields in the Jaynes–Cummings interaction.

The paper is divided as follows. In section 2we introduce the concept of coherence and its role in quantum
thermodynamics. Section 3 provides a brief review of the Jaynes–Cummingsmodel, and the coherent
operations it performs on a sequence of two-level atoms in a coherent state field is investigated in section 4.Here,
we present both analytical and numerical analyses of the evolution of the cavity field upon this sequential
interaction. In section 5, these results are discussed alongside those of the scheme for catalytic coherence
proposed in [29], before a summary of our results is given in the final section.

Figure 1. Schematic of the interaction of the coherent state cavity fieldwith a two-level atom. Each atom is initialized in the excited
state, and leaves the cavity in a superposition state.
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2. Coherence as a resource

Let us start with a brief overview of the concept of coherence and its relevance as a (thermodynamic) resource.
The key idea is that as coherence can be used as a thermodynamic resource itmust be consumed as it is used.
Were this not the case then onemight envisage coherent free-energy, and perpetualmotionmachines or other
absurdities. In the following, by coherencewemean specifically the property of a state being in a quantum
superposition of different energy eigenstates, as opposed to a single eigenstate, or a statisticalmixture. A good
measure of howmuch coherence a state exhibits is, for example, the off-diagonal entries of its densitymatrix in
the energy eigenbasis (see for example [22, 24] for further definitions of coherencemeasures). A ‘classical’mixed
state would only have entries on the diagonal, so it is useful to think of coherence as non-classicality of a state.

Thefield of thermodynamics traditionally only deals with statisticalmixtures of energy eigenstates, so that
taking coherence into the picture fundamentally changes some of its basic principles, indeed itmay fairly be
stated that the inclusion of superposition is the principal defining feature of quantum thermodynamics [11, 12].
In particular, it can be shown thatmorework can be extracted from a system that exhibits coherence than from
an incoherent system (a systemwithout any coherence)with exactly the same energy probability distribution.
Let us illustrate this with a simple example. Supposewe have two identical baths of two-level atoms at equal
temperature, as shown in figure 2(a). One atom from each bath is chosen randomly and interacts with the other
via the interaction

l s s s s= Ä - Ä+ - - +V i , 1ˆ ( ˆ ˆ ˆ ˆ ) ( )

Figure 2.Possible energy transfer protocol between two identical reservoirs using coherence. (a)The initial state, with both baths
having the same energy distributions. (b)One atom from each bath is chosen randomly, and allowed to interact via (1). (c) If the atoms
are initially in coherent superpositions, then an interaction time can be chosen such that the atom from the right reservoir ends up
withmore energy than the left, so that the average energy in the right reservoir increases while it decreases on the left. Such heat
difference could then be used to drive a heat pump, for example. If the atoms are instead described by a statisticalmixture, no energy
transfer between the reservoirs is possible: quantumcoherence enables thework extraction.
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as illustrated infigure 2(b). Here, s = ñá+ e gˆ ∣ ∣and s = ñá- g eˆ ∣ ∣are the atomic raising and lowering operators,
respectively, so that the interactionmediates an energy exchange between the atoms. If the atoms are in a
statisticalmixture, as described by the thermal densitymatrix

r =
ñá + ñá

+

bw

bw

-

-

g g e e e

1 e
, 2

∣ ∣ ∣ ∣
( )

then no energywillflowon average, as predicted by classical thermodynamics. If the atoms are returned to their
reservoirs and the process is repeated then therewill be no net energy exchanged between the reservoirs.

Now let us consider what happens if the atoms are instead described by coherent superposition states.We
replace the thermalmixture (2)with the coherent quantum state

yñ =
ñ + ñ

+

bw

bw

-

-

g e e

1 e
3

2

∣
∣ ∣

( )

for each atom (in both baths). This systemhas the same energy probability distribution as the classical thermal
states. However, under time evolution of the interactionHamiltonian V̂ , the two atoms in contact nowperform
coherent oscillations, so that the joint state of these atoms after time t is given by

y
l l

ñ =
ñ ñ + - ñ ñ - - ñ ñ + ñ ñ

+

bw p p bw

bw

- -

-
t

t tg g 2 e cos g e sin e g e e e

1 e
. 4

2
4 4( )( ) ( )

∣ ( )
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )

Knowing the phase of the initial atoms, we can choose an interaction time l = ptmax 4
tomaximize the amplitude

of ñ ñg e∣ ∣ compared to the the state ñ ñe g∣ ∣ , producing the two-atom state

y ñ =
ñ ñ + ñ ñ + ñ ñ

+

bw bw

bw

- -

-

g g 2 e g e e e e

1 e
. 5max

2

∣
∣ ∣ ∣ ∣ ∣ ∣

( )

Thus the second atom ends upwithmore energy than the other.When the atoms are returned to their respective
reservoirs, the right reservoir gains energy on average (figure 2(c)). As this process is repeated, energy is steadily
extracted from thefirst reservoir and deposited in the second. Such a setup could then be used, for example, to
drive a heat pump, and in this way, work extracted from the system. This simple example illustrates that the
presence of coherence enables operations thatwould otherwise be thermodynamically forbidden, so that
coherence can be exploited as a source of work. In a sense, this is not surprising, as coherence is just another form
of knowledge about the systemwhichwe can use to extract energy: although the coherent bath has the same
energy probability distribution as the incoherent one, it has zero entropy.

Coherence fundamentally changes howwe have to think about thermodynamics. Its function as a
thermodynamic resource fromwhich one can extract work [19, 25, 40, 39], means it is of great importance to
study how coherence can be distributed amongst systems, or generated under given constraints. These questions
of creating and transforming coherence are examined in the resource theory of coherence1. It can be shown that
coherence does not increase under strictly energy preserving operations, that is, operations that commutewith
the systemHamiltonian.However, by allowing correlations to build up, it is possible to put an arbitrary number
of systems into approximate coherent superpositionswith the help of an infinite-dimensional reference system
acting as a catalyst [29, 30, 48]2. In this work, we are interested in a variation of this coherence ‘catalysis’ inwhich
an optical coherent state acts as our reference system.We examine a realistic scheme of redistributing coherence
froma coherent state reservoir to a sequence of two-level atoms, and study how this resource becomes degraded
upon use. This is pertinent in consideration of the possible extraction of work from coherence, as discussed
above.

3. Jaynes–Cummingsmodel

The Jaynes–Cummingsmodel [31–34] describes the interaction of a two-level system, such as two levels of an
atom, resonantly coupledwith a bosonicmode, for example the electromagnetic field inside a cavity, in the
rotatingwave approximation. The interactionHamiltonian is given by

s s= - -+ -H g a ai , 6ˆ ( ˆ ˆ ˆ ˆ ) ( )†

where â and â† are the usual bosonic ladder operators and sˆ the atomic lowering and raising operators. In the
rotatingwave approximation the total number of excitations is a constant of themotion, and the effect of the

1
Onemust be careful not to confuse the resource theory of coherencewith the thermodynamic resource theory inwhich coherence is only

one type of resource.While in thermodynamics, onlyGibbs (thermal) states are considered free, in coherence resource theory all incoherent
states, including pure energy eigenstates, are free.
2
Even though the number of subsystems that exhibit coherence can be increased indefinitely, the overall coherencemust stay constant.
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interaction is to induce a unitary operationwithin subspaces of constant total energy, giving an exactly solvable
model for atom-light interaction.

3.1. Semiclassical behaviour
Before investigating the Jaynes–Cummings evolution, it is worthwhile to pause and consider the simpler,
semiclassical Rabi problem inwhich the quantized fieldmode is replaced by a classical field [5, 34]. In thismodel,
the single-mode creation and annihilation operators are replaced by a c-number amplitude so that ourmodel
Hamiltonian becomes

as a s= - -+ -H gi . 7Semiclass *ˆ ( ˆ ˆ ) ( )

Wecanwrite the atomic state in this interaction picture as a superposition of the excited and ground states in the
form

Y ñ = ñ + ñG t E tg e , 8Semiclass∣ ( )∣ ( )∣ ( )

where direct solution of the Schrödinger equation, for an atomprepared in its excited state gives

a
a

=

= a-

E t g t

G t g t

cos ,

e sin . 9i arg

( ) ( ∣ ∣ )
( ) ( ∣ ∣ ) ( )

Note that the phase of the field amplitude,α, has been imprinted onto the phase of the atomic superposition
state. If we choose the interaction time such that a p=g t 4∣ ∣ then the atom is left in the equally weighted
superposition state ñ + ña-e e g 2i arg(∣ ∣ ) . There is no back-action on the field here, as it has been treated
classically. In principle this process can be repeated at will with each new atombeing transformed into this same
superposition state. To treat the coherence as a resource, however, we need to quantize thefieldmode and keep
track of the effects of the interaction both on the atoms and also on the state of the field.

3.2. Fully quantumbehaviour
The fully quantum Jaynes–CummingsHamiltonian (6) conserves the total number of quanta and this feature
makes it possible tofind an exact solution for the dynamics. In general a pure state of the atomand fieldmode
will be of the form

åYñ = ñ ñ + ñ ñG n E ng e . 10
n

n n∣ ∣ ∣ ∣ ∣ ( )

Evolution under the Schrödinger equationwithHamiltonian (6) gives a set of coupled, linear differential
equationswhich are readily solved to give the exact dynamics at any given time:

=

=- +
-

+

G gE n

E gG n

,

1 . 11

n n

n n

1

1 ( )





The evolution of an initially excited atom interacting with an arbitrary cavity state, Y ñ = å ñ ñc n0 en n∣ ( ) ∣ ∣ , is thus
given by

åY ñ = + ñ ñ + + + ñ ñ
=

¥

t c n gt n n gt ncos 1 e sin 1 1 g . 12
n

n
0

⎡
⎣⎢

⎤
⎦⎥∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )

Thismay be understood as the initial excitation of the atomoscillating between the cavity and the atom.Note
that the frequency of this oscillation is different in each constant energy subspace, and depends on the total
excitation number n+ 1: thus as time progresses the oscillations for different total energy drift in and out of
phase, giving rise to the famous collapses and revivals of the Jaynes–Cummingsmodel [32–35]. Our interest,
however, is in interaction times that aremuch shorter than the collapse and revival times.

A key feature of the evolution is that at any given time (after the initial time) the atom andfieldmodewill be
in an entangled state and it is this entanglement that encapsulates the back action on the state of the fieldmode.
As discussed, we are concernedwith afieldmode prepared in an initial coherent state interactingwith a sequence
of atoms, shown schematically infigure 1, each prepared in its excited state, a situation that is reminiscent of the
Scully–Lamb theory of the laser [49]. Here, however, we are interested in the combined atom field state that is
prepared and the associated effects on the coherence.

4. Coherent operations in the Jaynes–Cummingsmodel

Armedwith the exact atom-field state in equation (12), we are now ready to analyse the performancewhen a
cavity coherent state is used as a resource to induce coherent operations on a succession of atoms. By inspection
of (12) it is clear that after a quarter of the first Rabi period the atomwill be found in the coherent superposition
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state q+ ñ = ñ + ñq1 2 e e gi∣ ( ) (∣ ∣ )with high probability, provided three conditions aremet. Thefirst, and
simplest, is that we choose the initial cavity state such that the phase θ is imprinted on the atomic state.We can
achieve this by choosing a state for which q=-c carg n n1( ) . The second is that the spread in Rabi frequencies is
small compared to the central frequency, or in other words, the spread in photon number is small compared to
themean photon number, so that it is possible to choose t1 satisfying p+n gt1 41  for all nwith
appreciable amplitude in the superposition. Thefinal condition is that the distribution cn is such that the shifted
state, with one additional photon in thefield, has large overlapwith the initial state. There is a tension or
complementarity between these two conditions: a narrower distributionmeans the former condition is readily
satisfied, but requires a sharper change in the coefficients cn, making the secondmore difficult tomeet. This is a
feature of the formof the Jaynes–Cummings interaction, and for aflat distribution over a given range
( =c constn∣ ∣ )means that simply increasing the average energy improves performance, as noted in [29].

We are interested in particular in the case inwhich the field is in a coherent state
aY ñ = å ñ ña- n n0 e en

n22∣ ( ) ! ∣ ∣∣ ∣ . The phase wewish to imprint onto the atom, θ, is then simply the argument
of the complex amplitudeα. For convenience andwithout loss of generality we takeα to be real and positive
corresponding to θ=0, aiming at the creation of a target superposition state +ñ = ñ + ñ1 2 e g∣ (∣ ∣ ).
Substituting into (12), rewriting in the ñ∣ basis and shifting the second term in the sumgives

å a
a

a

Y ñ= ñ + + +ñ

+ + - -ñ

a-

=

¥

t
n

n n gt
n

n gt

n gt
n

n gt

e

2
cos 1 sin

cos 1 sin . 13

n

n2

0

2

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

∣ ( )
!

∣ ( ) ( ) ∣

( ) ( ) ∣ ( )

∣ ∣

Wewish tomaximize the fidelity of the output statewith +ñ∣ (maximize the probability of obtaining +ñ∣ ), or
equivalentlyminimize the fidelity with the state -ñ∣ (the probability offinding the atom in -ñ∣ ). After an
interaction time t1 this latter probability is:

å

å

a
a

= + -

= + D + - +
D

+ D

a

-

- ¥

- ¥

P
n

n gt
n

n gt

n

n
n n gt

n

n
n n gt

e

2
cos 1 sin

e

2
cos 1 1 sin , 14

n

n

n

n

n

2

1 1

2

1 1

2

2

!
( ) ( )

¯
!

( ¯ )
¯

( ¯ ) ( )

∣ ∣

¯

where a=n 2¯ andD = -n n n̄. Each term in the sum is positive, and for large n̄,Dn n n1 1¯ ¯  for all n
with non-negligible amplitude. Thuswe should choose +n gt n gtcos 1 sin1 1( ¯ ) ( ¯ ) .We choose an
interaction time t1 defined by

p
+ =n gt1

4
, 151¯ ( )

giving

p +
+- P

n n

2

64

1
, 16

2

2
⎜ ⎟⎛
⎝

⎞
⎠

( )
¯ ¯

( )

which tends to zero in the limit of large n̄. This was to be expected, as in the limit of large n̄ the coherent cavity
state behaves like a classical field, and the desired coherent operationmay be achieved perfectly. A detailed
analytical derivation of this approximation including second order terms can be found in appendix A 3.

4.1. Effect of the interaction on thefield
Another important effect of large butfinite n̄ concerns the back-action of the interaction on the field: how is the
resource, that is the state of the cavitymode, degraded upon use?Hadwe chosen to use atoms prepared in the
ground state, then the coherence would inevitably be consumed as the light was gradually removed from the
cavity by the sequence of atoms. By startingwith atoms in excited states, however, this elementary coherence-
removing process is avoided andwe are left only with the consequences of the fundamental degradation of the
quantum coherence.

After a single atomhas passed through the cavity, the joint state of cavity and atom is given by equation (13),
where for convenience we return to the ñg∣ , ñe∣ basis of the atom:

å a
a

Y ñ = + ñ ñ + ñ ña-

=

¥

t
n

n gt n
n

n gt ne cos 1 e sin g . 17
n

n
2

0
1 1

2 ⎜ ⎟⎛
⎝

⎞
⎠∣ ( )

!
( )∣ ∣ ( )∣ ∣ ( )∣ ∣

3
Rather than p+ =n gt1 41¯ , one could instead choose the interaction time defined by p=n gt 41¯ without changing the probabilities

tofirst order.
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Weconsider again the large n̄ limit, and for an interaction time t1 satisfying equation (15), itmay be shown that
the approximate atom-field state after interaction is given by:

a aY ñ » Y¢ ñ = ñ ñ + ñ ñt t
1

2
e g , 181 1 e g∣ ( ) ∣ ( ) (∣ ∣ ∣ ∣ ) ( )

where

a a
p

a a
p

ñ = -

ñ= + +

4
,

1
4

. 19

e
2

g
2

∣

∣ ( )

The approximations leading to this result are straightforward but lengthy, and the full technical details are given
in appendix B. The change in thefield thus has a clear physical interpretation: an initial coherent state añ∣ is
transformed to amixture of coherent states, one shifted down in amplitudewith probability 1/2 to a state with
average photon numberα2−π/4, and the other shifted up in amplitude with probability 1/2 to a statewith
average photon numberα2+1+π/4. It follows that the average photon number in the cavity field is increased
by (approximately) 1/2, as half an excitation is transferred from the atom to thefield:

a
p

a
p

a= á ñ » - + + + = +n n
1

2 4
1

4

1

2
. 201

2 2 2⎜ ⎟⎛
⎝

⎞
⎠¯ ( )

When the process is repeated upon introduction of a second atom to the field, the interaction time is now chosen
such that the probability of success ismaximal for a coherent state with this increased average photon number,

a= +n 1 21
2¯ . The probability of failure, that is offinding the atom in the -ñ∣ state, is the average of the

probability of failure for each of the two shifted coherent states a ñe∣ and a ñg∣ . Remarkably, this second round of
atom-field interaction results in a slight increase in fidelity with the desired +ñ∣ state in the next round, at order

n1 2¯ , due to the increased average photon number. Numerical results forα=10, corresponding to amean
photon number of =n 100¯ , are shown in table 1.

The ability of the coherent state cavity field for inducing coherent operations under the Jaynes–Cummings
interaction is therefore not degraded upon first use: remarkably, it is slightly improved. It is worthwhile pointing
out that although this resultmay be surprising, it is not unphysical.We should expect, however, that afixed
initial amount of coherencemay not be used to produce independent copies of the equal superposition state +ñ∣
indefinitely. A complete picture requires us to consider both themany copy limit, and correlations between
subsequent atoms from each interaction.

4.2. Evolution of the cavity statewith subsequent interactions
Wenowwish to derive the evolution of the field under successive interactions with subsequent atoms.We recall
that following thefirst interaction, the cavity state is amixture of two different coherent states with slightly
different amplitudes, as shown in equation (18), and for the second atomwe choose an interaction time
satisfying p+ =n gt1 41 1¯ , where a= +n 1 21

2¯ . However, for each coherent state a ñe∣ , a ñg∣ in themixture,

there is now a slightmis-match between the amplitude squared ae
2 (ag

2) and n1¯ , used to define the interaction
time. If thismis-match is too large, the chosen interaction timewill not produce the desired evolution.We begin
by considering the consequences of thismis-match on the effect of the interaction on the cavity state in
subsequent rounds.

Let us consider an element of themixture a¢ñ∣ , with

a d¢ = +n ,r
2 ¯

where nr¯ is the average photon number of thefield after r interactions, and δ is a real number, introduced to
quantify themis-match between a¢2 and nr¯ . After a single interaction, = +n n 1 21 0¯ ¯ and d p=  +1 2 4( ).
However, we assume in the following only that δ is small comparedwithα2 in order that the analysis can be

Table 1.Probabilities after two atom-field interactions forα=10with
adjustment of interaction times after the first cycle. Bold digits show the
deviation from the corresponding single-atomprobabilities for easier
comparison.

P(+1) P(+2) + +P 2 1( ∣ ) P(+2)P(+1) + Ç +P 2 1( )

0.995909 0.995915 0.995932 0.991841 0.991858

P(−1) P(−2) + -P 2 1( ∣ ) P(+2)P(−1) + Ç -P 2 1( )

0.004091 0.004085 0.991631 0.004074 0.004056
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applied to subsequent rounds.Wewish to show that under successive interactions the state of the field remains a
mixture of coherent states, parametrized by δ, and to derive the change in δ over time. In this regime, it can be
shown (see appendix C) that for an element a¢ñ∣ of themixture, after r interactions, the approximate state after
one further interaction is indeed given by:

a
p d
a

a
p d
a

a¢ñ ñ  -
¢

¢ñ ñ + +
¢

¢ ñ ñe
1

2
1

4
e

1

2
1

4
g , 21

2 e 2 g⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ ( )

where

a a
p¢ñ = ¢ -
4

, 22e
2∣ ( )

a a
p¢ ñ = ¢ + +1
4

. 23g
2∣ ( )

The change in thefield thus retains the physical interpretation given for the first round, as analysed in 4.1, but
withmodified probabilities. An initial coherent state a¢ñ∣ is transformed to amixture of coherent states: one is
again shifted down in amplitude to a state with average photon numberα′2−π/4, but nowwith probability

pd a- ¢1 2 1 4 2( ), while the other is shifted up in amplitude to a state with average photon number
α2+ 1+ π/4, but with amodified probability of pd a+ ¢1 2 1 4 2( ). At the end of each round +nr 1¯ for the
field as awhole (taking into account all components a¢ñ∣ of themixture) increases by 1/2, and δ shifts
by p +1 2 4( ).

Recall that we have been assuming throughout that δ is small comparedwithα2.Wefinally note that if δ
becomes comparable toα2, the scheme breaks down. Indeed equation (14) becomes:

å a
a

=
¢

+ D + -
¢

+ D
a

-

- ¢ ¥

P
n

n n gt
n

n n gt
e

2
cos 1 sin , 24

n

n

r r

2

1 1

22

!
( ¯ ) ( ¯ ) ( )

∣ ∣

where a dD = - = - ¢ +n n n nr
2¯ . If δ∼O(α′2) thenΔn is the same order ofmagnitude as nr¯ , and it no

longer holds that p+ D + + =n n gt n gt1 1 4r r1 1¯ ¯ . As a result this probability of failure no longer
scales as O n1 r( ¯ ), and the scheme breaks down.

Wenowhave enough information to understand the evolution of the state of thefield under sequential
interactionswithmultiple atoms. At the start of the process, thefield is in a coherent state añ∣ , with

a= =n n0
2¯ ¯ , and δ=0. After a single interaction, derived in detail in the previous subsection and in

appendix B, the field is an equalmixture of two coherent states a ñe∣ , a ñg∣ , a = + = +n n n 1 2 1 21 0
2¯ ¯ ¯ ,

and d p=  +1 2 4( ). Here, δ=α and thus in each subsequent round δ shifts up or downwith
(approximately) equal probability, in steps of p +1 2 4( ). In otherwords, δ performs a classical, unbiased
randomwalkwith step size p +1 2 4( ). After r steps, with r=α, the expectation value of δ is zero, with a
spread of r( ) [50].

After r;α2 steps, the spread of the distribution, and typical values of δ, are therefore a( ). At this stage the
probabilities of shifting up or down in δ have become slightly asymmetric, as described in the analysis above. For
δ>0, the probability of an increase in δ is slightly bigger than the probability of a decrease. The converse is true
for δ<0. A possible evolution of δwith the number of steps r is shown infigure 3 to illustrate this result. Thus
those elements of themixture a¢ñ∣ with higher amplitude-squared than themean photon number tend to shift
up further in number, while thosewith lower amplitude-squared tend to shift down further, leading to a faster
spread in the distribution. Let us consider a coherent state a¢ñ∣ with amplitude near the upper end of the

Figure 3.Apossible evolution of themis-match d a= ¢ - nr
2 ¯ with the number of steps r.When r=α2, δ performs a classical

randomwalk, but for r;α2, the probabilities of shifting up or down in δ become asymmetric, leading to an overall increase in δ for
δ>0.
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distribution, with δu positive and d au ( ) , where the subscript u indicates we are considering the upper end
of the distribution. At the next interaction,

d d
p p d

a

d d
p p d

a

 + + +
¢

 - + -
¢

1

2 4
with probability

1

2
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2 4
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Thus the randomwalk is nowbiased and the expectation value for du increases slightly:

d d
p p

a
á ñ  + +

¢
1

4

1

2 4

1
. 25u u 2

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
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In subsequent rounds, this expectation value increases each time by amultiplicative factor, so that after a further
k interactions, we find

d d
p p

a
á ñ  + +

¢
1

4

1

2 4

1
. 26u u

k

2
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

Recalling that the exponential functionmay be defined by the limit  ¥n of + x n1 n( ) , and noting thatwe
are consideringα2?1, it is convenient to express the number of rounds k as amultiple ofα2, k=lα2. In this
case wefind4

d d
p p

a
d

p p
á ñ  + +

¢
+

¢a

1
4

1

2 4

1
exp

4

1

2 4
. 27u u

l

u

l

2

2

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥ ( )

Thus for a¢l log( ) and an initial d a¢u ( ) , then d aá ñ ¢u
2( ) , and the protocol begins to fail for

subsequent interactions.We canmake a similar argument for δl<0, for those elements a¢ñ∣ with amplitudes at
the lower end of the distribution. Thuswefind that after atmost a a¢ ¢ log2( ) interactions, the state of the field
is no longer useful for enabling coherent operations through the Jaynes–Cummings interaction.

As described above, for a¢ 2( ) interactions however, the approximations derived for the single interaction
case still hold, andwe can expect that the atom-field interactions produce a¢ 2( ) approximate copies of +ñ∣
from the initial streamof atoms, each prepared in its excited state ñe∣ .

4.3. Correlations between atoms
The ability of the cavity state to approximately induce the desired operation is, however, only part of the picture.
Correlations build up between the atom and the field as a result of the interaction, and between subsequent
atoms via the field. As shown previously [30], neglecting such correlations can lead us to conclude paradoxical
and unphysical effects. In the remainder of this section, we explore the correlations that build up between
subsequent atoms in the Jaynes–Cummings interaction.

Conditional probabilities after two rounds, given in table 1 forα=10, illustrate these correlations between
successive atoms.We see that the probabilities after the second atom-field interaction depend strongly on the
outcome of the first round: the probability of failure given that thefirst atom ended up in the state -ñ∣ ismore
than twice as large as if the first atom ended up in the state +ñ∣ .

To further understand the correlations, we begin by studying the state of the cavity conditioned on the state
of thefirst atom. Conditional on the atombeing found in state +ñ∣ or -ñ∣ , the cavity is projected to the state

å a
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a
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∣
!

( ) ( ) ∣

( )

∣ ∣

a superposition of coherent states with slightly different average photon number, the phase of which is
determined by the observed superposition state of the atom.

Recall that the performance of the scheme for an arbitrary cavity state depends both on thewidth of the
photon number distribution (a narrowdistribution implies a unique optimal interaction time) and the overlap
of the initial state with a shifted state (one that contains an additional photon in the field). Figure 4 shows the
photon number distribution of the cavity field conditional on atomic state +ñ∣ or -ñ∣ after the first round. Both
resultant states have large overlapwith the same states shifted up in average photon number, so that theymay
both be used as a coherence resource for subsequent interactions; a failed interaction does not destroy the
reservoir coherence, as found in similar scenarios [30]. Note, however, that the cavity state conditioned on

4
Note that we are neglecting the change inα′ in subsequent rounds: as δ changesα′ does also.However, it remains the same order of

magnitude throughout aswe are considering d a¢ 2( ).
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failure for thefirst atomhas awider distribution in photon number than in the case of success.Moreover, the
distribution -P n( ) has two peaks, suggesting that there is no unique optimal interaction time for the next round.
Let us return to equation (28): for the positive phase superposition there is constructive interference for photon
numbers near the centre of the distribution P(n), while for the negative superposition this interference is
destructive, and only thewings of the distribution remain, as reflected in figure 4. This leads to a larger spread in
Rabi frequencies, so that the chosen interaction time is not a good approximation to a quarter-cycle in each
constant excitation number subspace: the observed decrease in probability of success seen in table 1 is a result of
this effect.

Again considering the positive phase superposition in equation (28), we observe that the relative photon
number variance D á ñn n2( ) ˆ is decreasedwhen the first atom is successfully produced in the state +ñ∣ : for our
numerical example ofα=10, the variance of the photon number distribution +P n( ) is given by5

D = á ñ - á ñ =+ + +n n n 100.211. 292 2 2( ) ˆ ˆ ( )

An analysis of the success probabilities for squeezed cavity states shows that reducing the variance of the number
distribution can lead to higher success probabilities up to a certain squeezing strength (see appendixD for
details). Considering the effect of distributionwidth alone (rather than state overlap), the results suggest that
after successful interactions the performance of the coherent state cavityfieldwill be enhanced as the distribution
narrows, but that this effect only works up to a certain point: when the variance of the cavity state reaches

pn2 ¯ , the success probability will peak and can only decrease upon further squeezing.
So farwe have considered just two rounds; upon interactionwith a sequence of atoms, the cavity field

becomes correlatedwith each subsequent atom, thus also inducing correlations between atoms. Figure 5 shows

Figure 4.Normalized photon number distribution of the cavityfield after one successful (blue) or failed (orange) interaction for an
initial coherent state ofα=10.

Figure 5. Left: probability for the last (rth) qubit to be found in the +ñ∣ state after all previous weremeasured in +ñ∣ . The dashed line
shows the probability for obtaining the state +ñ∣ when the cavityfield starts in a new coherent state with an increased photon number
of 1/2 per each step. Right: probability for the rth qubit to end up in the state +ñ∣ after all previousweremeasured in -ñ∣ . In both cases
the initial stateα=10was used.

5
Thewidth of the distribution is increasedwith respect to the initial coherent state with average photon number =n 1000¯ , but is smaller

than that of the coherent state with updated average photon number = +n n 1 21 0¯ ¯ .
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the conditional success probabilities for preparing the atom in the state +ñ∣ for the rth atom after r−1
successful or unsuccessful attempts with the preceding r−1 atoms. In the case of success for each atom, as
shown in the left-hand plot, an increase of the success probability with the number of atoms is beyondwhat can
be expected due to the increase of themean photon number in the cavity alone. This supports the idea that the
deformation, or squeezing [5, 34], of the cavity state indeed acts to enhance the probability of success.

To confirm the squeezing of the number variance with each round, the evolution of the number and phase
uncertainty during thefirst three interactions are shown infigure 6. The phase probability distribution, given by
[5, 51–53, 34]

åf
p

y y= á ñá ñf

=

¥
-P n m

1

2
e , 30

n m

m n

, 0

i( ) ∣ ∣ ( )( )

shows an increase in variancewith each atom: this complements the decrease of the number variance, so that the
total uncertainty of the state remains unchanged. Note that when considering themixed cavity state
unconditional upon previous outcomes, both the phase and number variances increase and the total uncertainty

fD Dntot
2

tot
2( ) ( ) increases by around 2% in our example.

The second graph infigure 5 shows that after initial failure, the success probability for the next interaction is
only slightly reduced; an effect which does not change significantly whenmore unsuccessful outcomes occur. To
observe how the probability of successive failure scales withα (or n̄) in the Jaynes–Cummingsmodel, a plot of
the numerically calculated failure probability as a function ofα is shown infigure 7, for thefirstfive interactions
which leave the atoms in the state -ñ∣ . Alongside these plots are shown trend lines, which allowus to estimate the
dependence of -P r( ) on n̄ as

Figure 6.Evolution of the number (orange) and phase (blue) uncertainties of the cavity state—initially withα=10—after several
interactions. The lines show the variance of exact coherent states when assuming an increase of half a photon per cycle, filled circles
show the variance of the cavity state after all atoms have been found in +ñ∣ , empty circles show the variance of themixed cavity state
without any information on the atomic states.

Figure 7.Double-logarithmic plot of the probability for all atoms to end up in the state -ñ∣ during one tofive rounds as a function of
α. The graphswere obtained fromnumerical calculationswith the interaction times updated to suit the increased cavity photon
numberwith each interaction. The dotted lines showpower series 0.3667α−1.954, 0.2693α−3.899, 0.3064α−5.847, 0.4884α−7.805 and
1.0225α−9.772 (top to bottom) obtained fromfitting the numerical data forα>3.
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Recalling that the probability of failure in thefirst round is n( ¯), this~ n1 r¯ dependence indicates that
probabilities ofmultiple failures scales like the product of single-round probabilities, such that subsequent atoms
are only weakly correlated.

Finally, to aid in visualizing the evolution of the cavity state upon successive interactions, figures 8–11 (video
online is available at stacks.iop.org/NJP/22/043008/mmedia) show theHusimiQ-function

a
p

a r a= + = á ñQ Q q pi
1

32( ) ( ) ∣ ˆ∣ ( )

in phase-space [34] for thefirst 9 interactions. Figures 8–10 show the distribution for successful and unsuccessful
interactions (i.e. conditioned on +ñ∣ , -ñ∣ respectively), whilefigure 11 shows the state of themixed (reduced)
densitymatrix of the cavitywhen ignoring any information about the atomic states. Each successful interaction
(figure 8)moves the centre of the distribution to higher q and therefore higher photon number, while deforming
it such that the spread in this direction is squeezed to lower photon number variance. As can be seen in figure 9,
failure to produce the state +ñ∣ leads to a complete change in the shape of the distribution, with a dip appearing
at the centre after one interaction. This is a feature of the fact that the cavity is projected into a negative

Figure 8.Phase-space representation of the cavity state before and after 3, 6 and 9 successive interactions, conditioned on finding all
involved atoms in the state +ñ∣ .

Figure 9.Phase-space representation of the cavity state before and after 3, 6 and 9 successive interactions, conditioned on finding all
involved atoms in the state -ñ∣ .

Figure 10.Phase-space representation of the cavity state after 1, 3, 6 and 9 successive interactions, conditioned on finding the first
atom in the state -ñ∣ and all subsequent atoms in the state +ñ∣ .
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superposition of two similar states when thefirst atom is found in the state -ñ∣ . Repeated failure increases the
size of this hole until the outerwing of the distribution is eliminated, and the state is pushed further towards a
(squeezed) vacuum state. Interestingly, even after finding an atom in the state -ñ∣ once, subsequent successful
interactions can still somewhat compensate for the initial breakdown, as they bring the cavity closer to a coherent
state with higher photon number again. This behaviour can be seen infigure 10: a successful outcome at any
stage in the sequence of success and failure acts to squeeze the distribution andmove it towards higher q.

5. Coherence catalysis

Our analysis in the previous sections shows that use of a quantumoptical coherent state to induce coherent
operations on a sequence of atoms under the Jaynes–Cummings interaction does not initially degrade the
resource; we have seen that there is indeed an initial improvement in performance. The cavity fieldmay be used

a 2( ) times before the coherence begins to degrade, after which performance degrades sufficiently quickly that
the protocol no longerworks.We have further found that subsequent atoms are only weakly correlated, and to a
good approximation, the procedure produces independent copies of the desired superposition state +ñ∣ . In this
final sectionwe review briefly the scheme for catalytic coherence proposed byÅberg [29], and compare the
features of this scheme to our own.

The specific resource considered in [29] is an infinite-dimensional quantum system in a coherent
superposition of energy eigenstates, given by

åh ñ = + ñq
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whichwe denote a ‘ladder’ state. For simplicity andwithout loss of generality we consider the relative phase
θ=0. The desired operation on the atom
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can be approximately realized by an interaction of the form
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where thefirst part acts on theHilbert space of the atom and the operatorD = å + ñáj k jk
j∣ ∣acts to shift the

reservoir up or down in energy according towhich atomic state has been produced. This interaction leaves the
joint atom-reservoir system in the state
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If the original state h ñL l, 0
∣ , and the shifted state h hD ñ = ñ+L l L l, , 10 0

∣ ∣ have a large overlap, then the state of the atom
is close to the desired state. The reduced densitymatrix of the atom in the ñ∣ basis is given by
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which is close to +ñ∣ for large L, the number of energy levels in the superposition state. The reservoir is left in a
mixture of the initial state and another ladder state with a shifted offset,

Figure 11.Phase-space representation of themixed cavity state (unconditioned of the atomic states) before and after 3, 6 and 9
successive interactions.
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Although not the same as the initial state, both parts of thismixture work equally well for a subsequent
interaction, leading to the suggestion that the coherence can be used catalytically [29]. The analogy in the
coherent state Jaynes–Cummingsmodel that we have analysed here is that after a single interaction the cavity is
left in amixture of the states a ñe∣ , a ñg∣ , with equal probabilities, where a ñe∣ and a ñg∣ are given in equation (19).
The former has slightly worse performance than the initial cavity state; the latter has slightly improved
performance, and themixture performs better overall. Thus, the ability of the reservoir to enable coherent
operations is not left unchanged, as in theÅbergmodel, but is actually improved.Onemight be tempted to say
that using the resource has, paradoxically, not used up the resource at all, but has added to it! This of course is not
the case, and just as in theÅberg scheme, the resolution lies in careful consideration of the effect of repeated use,
as we have shown.

5.1. Comparison of performance
Returning now to theÅberg scheme; the reservoir-induced operationworks identically on each atom, so that the
copies produced after each interaction are identical. They are not, however, independent: through the
interactionwith the reservoir, all of the atoms become correlated, and correlated toowith the reservoir itself.
Conditional on just one atombeing found in state -ñ∣ , the reservoir collapses into the two-level state

h hñ - + ñ = ñ - + + ñ
-P

l l l l L
1 1

2
, , 1

1

2
1 , 39

L
L o L 0 0 0(∣ ∣ ) (∣ ∣ ) ( )

such that the coherence of the reservoir is almost completely destroyed.Here, -P L is the probability for this to
happen, which is very small for ladder states of large L, but crucially never zero. This is reflected in the success
probabilities ofmultiple interactions, where it is seen that the probability ofmultiple failures does not decrease
exponentially in the number of systems, but remains proportional to L−1 [30].

By contrast, in the Jaynes–Cummings scheme, the states of subsequent atoms are not identical, however they
are (approximately) independent of each other.We have seen that over successive uses themany-copy
probability of failure decreases exponentially, scaling like the product of individual failures. Only after a 2( )
uses does the protocol begin to fail and performance rapidly declines for subsequent uses. Part of the story of the
difference between the two schemes is thus the effect of failure on the reservoir of coherence.

In both schemes, after an atom interacts with the cavity the composite state is of the form

Yñ = ñ ñ + ñ ñF F
1

2
g e , 40g e∣ (∣ ∣ ∣ ∣ ) ( )

where ñFg∣ and ñFe∣ are the states of the field that couple with the atomic ground and excited states. After a single
use, for theÅbergmodel these are hD ñL l, 0

∣ and h ñL l, 0
∣ , while for the Jaynes–Cummingsmodel these are a ñe∣ and

a ñ;g∣ for subsequent uses the general expression has the same form. From equation (40), the densitymatrix of the
atomafter an interaction is straightforwardly given by

r = á ñ ñá +á ñ ñá + á ñ ñá +á ñ ñáF F F F F F F F
1

2
g g g e e g e e . 41a g g e g g e e e[ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣] ( )

It follows that the probability of the atombeing found in the state +ñ∣ after an interaction largely depends upon
the inner product á ñF Fe g∣ : if á ñ >F FRe 0e g[ ∣ ] , then this probability is greater than 1/2. The closer it gets to zero,
themore the atom is entangledwith the cavity, and therefore its individual state is less well defined.Once it
reaches á ñ <F FRe 0e g[ ∣ ] , the state -ñ∣ ismore likely to be obtained, where now a larger negative value increases
the probability of this outcome. The overlap between the state ñFg∣ and ñFe∣ for the Jaynes–Cummings andÅberg
models are shown infigure 12. The coefficient distributions,Cn of the state vectors in the energy basis

ñ = å ñF C nn ng e∣ ∣ for the Jaynes–Cummingsmodel are given in thefirst columnof thefigure, while those for the
Åbergmodel are displayed in the graphs in the second column. The first row represents ñFg∣ and ñFe∣ in thefirst
interaction. In each case there is a large overlap between these two distributions, leading to a high probability of
success for the protocol. The second row shows ñFg∣ and ñFe∣ after a failure in the first round: there is still a large
area overlap between these two states in the Jaynes–Cummings case, while in theÅberg scheme the graphs do
not overlap at all, and the qubit is found in either state +ñ∣ or -ñ∣ with equal probability. Finally, the coefficient
distributions upon two consecutive failures in the first two interactions are given in the third row. For theÅberg
scheme, the overlap of the states ñFg∣ and ñFe∣ is a negative number, corresponding to a higher probability of
obtaining the state -ñ∣ for the third atom following two failures. By contrast, even in the case ofmultiple
consecutive failures, areas of overlap for the Jaynes–Cummingsmodel are nonzero, but decreasing: the coherent
statefieldmay yet be used as a coherent resource, butwith slightly decreased efficiency.

The effect on the cavity state ismirrored in the correlations introduced between subsequent systems,
discussed previously. Analytical expressions for the joint probabilities for two consecutive interactions are given
in table 2 for the Jaynes–Cummings interaction and theÅberg scheme [29, 30], in terms of n̄ and L respectively.
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The state of the two atomic qubits after the interaction is non-separable in each case, since the joint probabilities
show correlations. However, for the Jaynes–Cummings interaction these enter at second order only, such that
the probabilities are independent to second order. The single-atomprobabilities scale linearly n1 ¯ in the Jaynes–
Cummings case and 1/L in theÅberg scheme.However, the joint probabilities demonstrate the greater
robustness of the Jaynes–Cummingsmodel using coherent states againstmultiple failures: the probability for
ending up in the state -ñ∣ for two consecutive atoms in this case scales as n1 2¯ compared to 1/L inÅberg’s
scheme. This is in agreementwith the numerical results offigure 5.

We concludewith a plausability argument for howmany copies onemight reasonably expect to be able to
extract from a reservoir of coherence. Consider r copies of the equal superposition state +ñ∣ :

å+ñ = ñ + ñ = ñÄ Ä

=

r

k
r k

1

2
0 1

1

2
, , 42r

r
r

r
k

r

0

⎜ ⎟⎛
⎝

⎞
⎠∣ (∣ ∣ ) ∣ ( )

where ñr k,∣ denotes the permutation invariant, symmetric r-qubit state containing k zeroes and r− k ones.Note
that each term in the superposition corresponds to a different total energy. The binomial distribution hasmean
k=r/2 and variation r/4. Thus thewidth of the distribution, the standard deviation, is r( ). For large r, the
distribution in this range is approximately flat with a steep fall off to zero outside [54], andwe find an
approximately equal superposition of energy eigenstates containing r terms, corresponding to those values of
kwithin r( ) of r/2.

Figure 12.Comparison of the distributions of the coefficients of ñFg∣ and ñFe∣ between two schemes. The results for the coherent state
cavity field in the Jaynes–Cummingsmodel are shown on the left-hand column for a coherent state withα=5, while those on the
right show those of theÅberg scheme using a ladder state where L=5. The coefficients of the state ñFg∣ and ñFe∣ are denoted by the
solid orange and blue lines respectively. The first row shows the distributions of the coefficients after thefirst atom-field interaction.
The second row is the distributions followingmeasurement of the atomafter thefirst interaction in the undesired state. Analogously,
the third row indicates the results supposing that -ñ∣ is again obtained after the second interaction.
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For the ladder state h ñL l, 0
∣ in theÅberg scheme, the reservoir state contains exactly L energy eigenstates in

equal superposition. Thus, in terms of the coherence properties in the energy basis, r copies of +ñ∣ is
approximately equivalent to a ladder state of size r . In other words, the ladder state h ñL l, 0

∣ is aproximately

equivalent to L2 copies of +ñ∣ . The scheme as given in [29]may be used to produce an indefinite number of
identicalmixed-state copies. However, as pointed out above, these are not independent, but rather are in a
highly correlated joint state, with the initial coherence of the reservoir distributed across the joint state.

For the quantumoptical coherent state the coefficients in the energy eigenbasis ñn∣ are Poisson distributed
with amean and variance both equal to n̄. Again in the limit of large n̄ this corresponds to an approximately
equal superposition of n̄ terms, where each term in the superposition has a different total energy. Thus, in
terms of the coherence properties in the energy basis, r copies of +ñ∣ is approximately equivalent to a coherent
state with average photon number n r¯  . Thuswe expect a coherent state añ∣ to be able to create a 2( )
independent copies of +ñ∣ before the protocol starts to break down. The Jaynes–Cummings interaction thus
seems to be close to optimal for extracting coherence.

As a final note, if we therefore identify the ‘size’ of the state in the coherent state case as n̄ and in theÅberg
case as L, thenwe see that the error in the Jaynes–Cummingsmodel scales as the inverse square of the size of the
state, n1 ¯, while in theÅberg state the error scales as the inverse of the size of the resource 1/L. Thus for
equivalent resources, the Jaynes–Cummingsmodel produces better copies which are less correlated, and
moreover repeated use improves the quality of the copies, for amoderate number of uses.

6. Conclusion

The study of coherence, a central concern of quantumoptics for several decades, has taken on a newmeaning in
recent years with the advent of quantum thermodynamics. In particular it is nowwell-established that coherence
can be used as a thermodynamic resource, one that allows tasks to be performed that are strictly prohibited in the
absence of coherence. Our study has explored the nature of coherence as a resourcewhithin the coherent state
Jaynes–Cummingsmodel, familiar fromquantumoptics [31–35].We explored the extent towhich a sequence
of two-level atoms, prepared initially in their excited state, could be prepared in a state close to a desired coherent
superposition by interactionwith a single cavitymode prepared, initially, in a coherent state.

Ourmain results are: the fidelity withwhich initially excited atomic statesmay be transformed to the equal
superposition state +ñ = ñ + ñ1 2 e g∣ (∣ ∣ )with the help of a quantumoptical coherent state with average
photon number a=n 2¯ scales as -  n1 1( ¯), and actually improves (at order n1 2¯ )with subsequent uses, at
least initially. The probability offinding r atoms in the orthogonal state ñ - ñ1 2 e g(∣ ∣ ) scales as n1 r( ¯ ),
indicating that subsequent copies are almost independent after interactionwith the cavity. The effect of
successive interactions on the cavity statemay be understood as causing the coherent state amplitude to undergo

Table 2.Comparison of probabilities and joint probabilities obtained to n1 2( ¯ ) using coherent states in
the Jaynes–Cummings interaction, and ladder states in the scheme proposed byÅberg [29]. The
interaction time has been set such that m p+ =gt n 4¯ , whereμ is an arbitrary real number
and m n̄ .

Coherent states in the Jaynes–Cummingsmodel Åberg scheme
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a classical randomwalk, andwe showed that it is possible to create n( ¯) approximate copies of +ñ∣ before the
effectiveness of the cavity state as a resource begins to degrade.Wefind aweak correlation between subsequent
copies, and further find that the conditional improvement in performance given success in earlier rounds can be
partially understood as due to squeezing of the resulting cavity state. Finally, we have compared the performance
of the scheme considered herewith an earlier scheme proposed byÅberg, dubbed catalytic coherence.Wefind
that for the same size of resource state, the Jaynes–Cummingsmodel performs better, both in terms offidelity
with the desired state and independence of the produced copies.

We note that throughout we have used the fidelity of the produced state with the intended state as ameasure
of performance. Analysing the evolution of this figure ofmerit with subsequent interactions, as well as
considering correlations betweenmultiple copies, allows us to assess the performance of the scheme, in the
single copy andmulti-copy cases. Although a plethora of information-theoreticmeasures of coherence exist in
the literature [25, 55–58], our analysis based on the fidelity has a straight-forward operational interpretation, is
conceptually simple, and is sufficient for our purposes.

We concludewith the observation that the coherent state in the Jaynes–Cummingsmodel ismarkedly
robust against the consumption of coherence. A coherent state añ∣ produces approximately a 2( ) copies before
the performance of the scheme begins to rapidly deteriorate. A simple Shannon theory argument shows that the
coherence contained in such a state is equivalent to that in aroundα2 copies of +ñ∣ , andwe conclude that the
Jaynes–Cummings interaction is close to optimal for extracting coherence. These results are reassuring in light
of the extensive use of coherent states in theoretical and experimental quantumoptics, and also illustrative of the
limitations of using coherence as a thermodynamic resource.
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AppendixA. Analytic derivation of success probability

Weevaluate the analytical expressions of the probability P(−) up to the order of n1 2( ¯ ), setting the optimal
interaction time to satisfy m p+ =gt n 41 ¯ .We approximate the Poisson distribution of a coherent state with
aGaussian [5]
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Appendix B.Derivation of the approximate atom-field state after one interaction

Referring to the atom-field state amplitudes in equation (17): usingDn n n1¯ ¯ for large n̄, and an
interaction time t1 satisfying equation (15):
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Wehave additionally used the trigonometric identity + = -a b a b a bcos cos cos sin sin( ) and the small angle
formulae -a acos 1 1 2 2 , a asin  . Substituting a=n 2¯ , and againworking to n1( ¯), a little algebraic
manipulation gives:
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wherewe have used the approximation - - -x x x1 1 2 exp 2( )  , valid for small x. A similar
treatment on the sine term in equation (17) produces
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Putting these results back into equation (17) and taking into account normalization, the approximate state after
interaction is thus given by equation (18).

AppendixC.Derivation of evolution of the cavity statewith subsequent interactions

Wefirst note
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where, for δ=α′, the second termmay be neglected, while for d a~ ¢( ) both remaining terms are a¢ 1( ).
In each case it remains true that aD ¢n n 1r¯ ( ) , and the analysis up to equation (B.1), used tofind the atom-
field state in equation (18), is unchanged. Note that for d a> ¢( ), the second term in equation (C.1)dominates,
but as long as δ is small compared toα2,Dn nr¯ may still be considered to be small. Finally, note that for δ;α2

thenD n n 1r¯ ( ) , and the approximations leading to equation (B.1) break down.
Assuming again for themoment therefore thatDn nr¯ may be considered small, the atom-field state

amplitudes following r interactions are found by repeating the analysis leading to equation (B.2), this time
substituting a d= ¢ -nr

2¯ as in equation (C.1):
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where use has again beenmade of the approximation - - -x x x1 1 2 exp 2( )  , valid for small x. As
previously, a similar treatment produces
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The approximate state after r interactions is then given by equation (21).

AppendixD. Squeezed initial states

As briefly discussed in section 5.1,figure 5 indicates that the increase in success probabilities is greater than that
expected from the increased photon number alone. An analysis of the distributionwidths suggests that
amplitude squeezingmay account for this further discrepancy.We indeedfind that the success probability of a
squeezed state can be higher than that of a coherent statewith equalmean photon number. Consider a
quadrature squeezed state

a z a zñ = ñD S, 0 D.1∣ ( ) ( )∣ ( )

with

a z= =a a- -z
D Se , e . D.2a a a a2

2 2*( ) ( ) ( )ˆ ˆ ( ˆ ˆ )† †

For a state with a z Î , , the positivity of the squeezing parameter ζ corresponds to a reduction in the number
uncertainty. FigureD1 shows the probability of the atom ending in the state +ñ∣ when using such a cavity state as
a function of the squeezing parameter ζ. For amean photon number of 100.5, themaximal success probability
with such a squeezed state is =+P 0.99613,max : this is far above the value obtainedwhen the the cavity field is re-
used in the second interaction step. The effect of squeezing, together with growing photon numbers, therefore
suffices to explain the observed increase of success probabilities as discussed in 5.1.

At the limit of small squeezing parameter ζ, we can approximate the photon distribution of an amplitude
squeezed state by aGaussian number distributionwith reducedwidth [59]:
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Following this, the analytic approximation of the success probability is given by
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at p=z-e 22 when omitting higher order terms.

FigureD1.Probability ofmeasuring the atom in the state +ñ∣ after one atom-field interactionwith the cavity initially being in a q-
quadrature squeezed state withmean photon number =n 100.5¯ , as a function of the squeezing parameter ζ. The dashed line shows
the probability without squeezing.
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