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• Catalytic cracking of polyethylene produced 80wt.-% liquid hydrocarbons  

• Liquid oil showed very high selectivity to gasoline range hydrocarbons 

• Al-substituted tungstoborates are excellent catalyst for acid catalyzed reactions 
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Abstract 

Polyoxometalates have gained considerable attention as a catalyst. Herein, we are 

reporting tungstoborate based catalysts for the conversion of waste polyethylene to liquid fuel. 

Novel cesium and potassium salts of aluminum substituted tungstoborate Keggin compounds 

were synthesized by a simple one-pot method and successfully characterized by FTIR, SEM-

EDX, thermal analysis, NMR and single-crystal XRD. Catalytic cracking of waste polyethylene 

by using our prepared aluminum substituted catalysts (CsAB) showed 97% polymer conversion 

producing80wt.% of liquid hydrocarbons with a negligible amount of solid residue (~3 wt.%), 

significantly lower compared to thermal cracking where 22 wt.% residue was produced. The oil 

collected at optimum reaction conditions (0.5 catalyst/polymer ratio and 3h reaction time) was 

subjected to GC-MS analysis. The results showed that oil produced in catalytic cracking has a 

high selectivity to gasoline range hydrocarbons while thermal cracking showed selectivity to 

higher hydrocarbons (C13-C26). Olefin selectivity was also more prominent in catalytic cracking. 

Hence cesium and potassium salts of aluminum substituted tungstoborate are excellent catalysts 

for acid-catalyzed polymer cracking reactions to produce value-added petrochemicals. 

Keywords: Polyoxometalate; Keggin structure; Pyrolysis; Polyethylene; GC-MS. 

 

 

 

 



1. Introduction 

Energy crisis and environmental pollution by waste polymers are current burning issues. 

These issues have led to propose technologies for energy recovery from waste plastic. Among 

these technologies, thermal or catalytic degradation of waste plastic to liquid fuel is the most 

attractive one [1, 2]. Catalytic degradation is preferred over thermal degradation as the use of 

catalyst not only lowers the reaction temperature[3-5] but also produces lighter oil fractions [6]. 

Liquid fuel is the most valued product in oil fraction, although gaseous hydrocarbons are also a 

rich source of energy but surplus gas production is not suitable because of their high 

transportation cost[7]. 

Catalysts that are mostly used for plastic pyrolysis include zeolites[8], silica- alumina[9], 

activated carbon[10], mesoporous silica materials[11] and heteropoly acids (HPAs)[12]. As 

zeolites have strong acidity for carbon-carbon bond breakage, HY, ZSM-5, Beta and Y 

zeolite[13-15] are widely reported for plastic degradation. However, due to the small pore size of 

these catalysts, the contact of bulky molecules to acid sites located inside the pores is hindered. 

Moreover,  carbon deposition deactivates quickly[16]. Therefore, mesoporous silica (MCM-41, 

SBA-15, SBA-16, etc.) materials with large pore sizes were developed [17] but they do not show 

appropriate catalytic activity due to unavailability of considerable acidic sites[18, 19]. This 

limitation has been overcome by the use of polyoxometalates in the field of catalysis. HPAs (also 

known as polyoxometalates, POMs) have discrete and mobile ionic structures with strong 

Brönsted acid sites which endows them outstanding catalytic abilities for acid-catalyzed 

reactions[20]. However, low thermal stability and surface area of HPAs, limit their use as a solid 

acid catalyst in reactions performed at high temperatures like polymer cracking reactions [11, 

21]. Previously, we have reported tungstophosphoric acid and kaolin clay composite with high 



thermal stability exhibiting the efficient catalytic cracking of low-density polyethylene [22]. It 

produced a higher percentage of fuel oil (liquid and gaseous hydrocarbons) with a negligible 

amount of semisolid wax. Tungstoborates are subclass of HPAs having BO4 as a central 

tetrahedral unit that is surrounded by 12 edge- and corner-sharing metal-oxygen octahedra. 

These compounds have been used as catalysts for oxidation reactions [23] and the degradation of 

dyes [24] and have exhibited good catalytic activities. However, to the best of our knowledge, 

the use of tungstoborates as solid acid catalyst in polymer degradation reactions has never been 

reported.  

In the present work, we have synthesized aluminum substituted Keggin tungstoborates and 

used them for plastic degradation reactions. Aluminum substituted tungstoborate Keggin anion is 

known to have additional Brönsted acid sites[25]. Aluminum insertion not only reduced the 

cracking temperature to 320 ºC (compared to thermal degradation at 375 ºC) but also enhanced 

the yield of liquid fuel oil to 80% with a negligible amount of residue. Hence, aluminum 

substitution into tungsoborate Keggin structure greatly enhanced the efficacy of the catalyst. Cs 

and K salts of HPAs are known to possess high surface area and thermal stability up to the 

melting point of salt [26, 27]. Therefore we have prepared the Cs and K salts of these aluminum 

substituted Keggin tungstoborates. We are also working on tungstoborate and kaolin composite 

to evaluate the synergistic effect of clay on catalytic properties of HPAs.  

2. Experimental 

2.1. Materials 

Sodium tungstate (Na2WO4.2H2O, Merck), boric acid (98.5 %, Sigma Aldrich), 

aluminum nitrate nonahydrate (98%, Sigma Aldrich) and acetic acid (99.5 %, Sigma Aldrich) 

were used for synthesis. Low-density polyethylene pellets were purchased from the local market 



(melting point range 140-150 °C). All chemicals were of analytical grade, commercially 

available and used without further purification unless otherwise stated. 

2.2. Methods 

2.2.1. Catalyst preparation 

K6[H2AlBW11O40].9H2O and Cs6[H2AlBW11O40].9H2O were synthesized as follows: 

Sodium tungstate (12.32 mmol) and boric acid (3.23 mmol) were dissolved in hot water and 

reacted for 1 hour at pH 6.8. Then, the mixture was cooled to 4 ºC for 24 h, filtered to remove 

precipitates of dodecatungstate and again heated at 80 ºC. Aluminum nitrate (1.77 mmol) 

dissolved in 5 mL of water was added into the above-mentioned filtrate. The resultant mixture 

was boiled for an hour at pH of 6.2 and after cooling to room temperature, salted out as 

potassium or cesium salt by adding their respective chlorides. For generalization, 

K6[H2AlBW11O40].9H2O was denoted as KAB and Cs6[H2AlBW11O40].9H2O as CsAB. 

Unsubstituted Keggin 12-tungstoborate (KB) was synthesized by the method reported in 

literature [28]. Briefly, sodium tungstate (17.0 mmol) and boric acid (4.04 mmol) were dissolved 

in boiling water (5 mL). 3 mL of 6 M HCl was added to the above solution and the resultant 

mixture reacted for one hour while heating. Then the precipitates (paratungstate) were separated 

through filtration and the filtrate pH was adjusted to 2.0 by 6 M HCl and reacted for half an hour 

while heating. Potassium chloride (6.04 mmol) was added to the above solution in order to 

precipitate out K5 BW12O40, the product was filtered and washed with ethanol. 

2.2.2. Acid-Base titrations 

 The presence of acidic protons in aluminum substituted Keggin anion was confirmed by 

acid-base titrations as reported previously[29]. Typically, solid CsAB and KAB (0.25 mmol) 

were placed in 50 mL of standard NaOH solution (0.1 M) and stirred for 2 hours at room 



temperature in a closed vessel. Then the solution was filtered off and the filtrate was back titrated 

against standard HCl solution (0.1 M). The number of acidic protons of CsAB (0.486 mmol/g) 

and KAB (0.465 mmol/g) was calculated from the consumed amount of NaOH. 

2.2.3. Catalyst Characterization 

The synthesized catalysts were characterized by different analytical techniques for 

structural validation. FTIR was performed using Transform Infra-Red Spectrometer from Agilent 

technology (model 41630) in ATR mode to identify different functional groups in the 

synthesized samples. Spectra were obtained at 4 cm-1 resolution, accumulating 64 number of 

scans. 27Al NMR spectra of aluminum substituted tungstoborate was recorded at Bruker 400 

MHz instrument using Al(NO3)3.9H2O as external reference material for aluminum. The sample 

solution was prepared in D2O and NMR tubes used for measurement had 5 mm outer diameter, 

spectra were recorded by accomplishing 64 numbers of scans. The morphology of samples was 

studied by using XL30 ESEM Scanning Electron Microscope. Samples were pre-coated using 

gold targets for 90 seconds using a Polaron SC7640 sputter coater. The EDX detector INCA X-

Act by Oxford Instruments Analytical Ltd. (UK) was integrated with the microscope system, 

operating at 20 kV voltage and was used for elemental analysis. Thermal analysis was performed 

on Netzsch STA 409 instrument. For TGA analysis, approximately 20 mg samples were taken in 

alumina pans and heated to 1000 ºC at a heating rate of 10 ºC min-1 under flow of argon gas. 

Liquid hydrocarbons were analyzed by GC-MS using GCMS-QP2010S system with ZB-5 MS 

column (30 m × 0.32 mm × 0.25 µm). 

2.2.3.1. X-ray Crystallography 

The crystalline structure was studied by collecting data on a Bruker D8 VENTURE 

diffractometer with microfocus sealed tube, INCOATEC Ims 3.0, using Mo Kα radiation (λ = 



0.71073 Å), 2θ = 2.4–28.3°. Oxford CryoSystems n-helix low-temperature device was used to 

cool crystals upto 100 K. The crystal structure was solved by the direct method using SHELXT 

program [30] and structural refinements were made through the full-matrix-least squares method 

on F2 using SHELXL[31]. Crystal structure was visualized by OLEX 2[32]. Details of data 

collection and refinements are given in table S2-S4 (supplementary information). 

Crystallographic data for the reported compound is deposited in the Cambridge Crystallographic 

Data Center (CCDC No. 1846238) 

2.3. Thermal and Catalytic Cracking of Polyethylene 

A pyrex glass batch reactor (280 mm x 50 mm) was used for cracking experiments. 

Polyethylene pellets (15 g) mixed with prepared tungstoborate catalyst (5 wt.%) and were loaded 

into the reactor. After setting up the reaction assembly, the reactor was heated to 120 ºC (2 

ºC/min) under the flow of nitrogen gas and temperature maintained at 120 ºC for 1 hour to 

remove adsorbed water. Then nitrogen supply was cut off and the temperature was raised to 

cracking temperature (5 ºC/min). Details of the experimental setup could be found in the 

literature [22]. Cracking products in vapor form was passed through a condenser and collected in 

a flask. The experiment was allowed to run for three hours. PE cracking products were classified 

into three groups: (i) gaseous hydrocarbons, (ii) low molecular weight hydrocarbons and (iii) 

solid residue (carbonaceous and waxy compounds left behind in the reactor after completion of 

reaction). The weight percentage of gaseous products was determined by subtracting the weight 

of liquid products and residues from the polyethylene sample feed. Liquid products were 

analyzed by GC-MS using GCMS-QP2010S system. Total polymer conversion was calculated 

by the following formula;  

                    
                      

        
       



 

3. Results and Discussion 

 3.1.     Catalyst Characterization 

The synthesized material was characterized by various spectroscopic and surface-based 

techniques. FTIR spectrum revealed Keggin structure of both unsubstituted 12-tugstoborate 

(KB)[33, 34] and aluminum substituted tungstoborate (KAB and CsAB) [35, 36].  Both CsAB 

and KAB showed W–Od, W–Ob–W and W–Oc–W vibrations at positions similar to that of KB 

i.e. at 950, 890, 810 and 740 cm-1 respectively [33, 37, 38] but B–Oa vibrations in aluminum 

substituted samples were shifted from 910 cm-1 to 890 cm-1 as shown in figure 1. This shift was 

attributed to the incorporation of Al into Keggin anion that changed the environment around 

central BO4 tetrahedron due to the exchange of one W+6 with Al+3[39, 40]. The observed shift in 

B–Oa stretching frequency is 26 cm-1 that is consistent with earlier reports for transition metal 

substituted Keggin polyoxometalates [39, 40]. Vibrational bands at 710 cm-1 are ascribed to very 

strong asymmetric vibrations of W–O–Al bonds respectively[33, 37, 38, 41]. Water molecules 

showed vibrations at 1610 cm-1. 

 Raman spectra of both cesium and potassium salts of Al substituted tungstoborate 

showed Raman shift at 968 cm-1 (vs), 890 cm-1 (m), 525 cm-1 (m), 230 cm-1 (s) and 212 cm-1 (s) 

[34] as shown in figure 2. Prominent vibration at 968 cm-1 was corresponded to symmetric 

stretching of W–Od, while B–Oa vibrations at 910 cm-1 were shifted to 890 cm-1 due to lowered 

symmetry by the exchange of one tungsten with aluminum [33, 40]. All other vibration bands are 

located at approximately the same wavenumbers as that of unsubstituted 12-tungstoborate (KB), 

although there are some differences in relative intensities that might ensue from the influence of 



large cation on the tertiary structure of Keggin polyanion [42]. However, the rest of the vibration 

bands were located at similar positions. 

SEM and EDX analysis were performed to determine the morphology and elemental 

composition of both Al substituted and unsubstituted tungstoborate salts. These materials showed 

a regular crystalline morphology (figure 3) that is consistent with the previous reports where the 

regular crystal structure of parent acid H3PW12O40.6H2O was maintained with cations located at 

H+(H2O)2 sites[43]. Atomic percentages obtained from the EDX analysis explained that all major 

elements were present in close agreement to the theoretical values as shown in table S1 

(supplementary information). Mono-aluminum substitution into Keggin polyanion was also 

confirmed by EDX analysis. W/Al atomic ratio was found to be 11:1 for both Cs and K salt of 

aluminum substituted Keggin tungstoborate.  

The aluminum substitution was further confirmed by 27Al NMR spectroscopy. The 27Al 

NMR spectrum of CsAB and KAB solutions showed a sharp resonance peak at 7.6 ppm (figure 

4) corresponding to AlO6 octahedral environment [44]. This peak was located at slightly greater 

chemical shift values from 0 ppm due to the bridging of AlO6 octahedron with neighboring WO6 

octahedra and central BO4 tertrahedron. D. Müller et al. have also reported a variation of 27Al 

chemical shift depending on the type of neighbouring tetrahedra XO4 (X =P, Si) and MO6 

octahedra [45]. 

Thermal analysis of both aluminum substituted and unsubstituted Keggin tungstoborate 

showed weight loss in a single step from 70 to 300 °C (figure 5) corresponded to water 

molecules of crystallization (9 .0 for CsAB and KAB, 12.0 for KB). For CsAB and KAB, a small 

mass loss of ~0.4% between 400 and 500°C was also seen that was ascribed to the dehydration 

of a water molecule formed from free protons and oxygen atoms from Keggin anion. This 



dehydration step may be used for measurement of the H+ content in the Keggin polyoxometalate 

that is considered very important for acid-catalyzed reactions[21, 42]. After this step, there is no 

weight loss observed upto 1000°C. These results confirmed that the incorporation of heavy alkali 

metal ions potassium or cesium cations, stabilize the Keggin structure. This enhanced thermal 

stability is considered as a primary requisite for catalytic reactions performed at high 

temperatures [21]. 

CsAB crystals were studied through single-crystal XRD. It was shown that an asymmetric 

unit in CsAB crystals contains a Keggin anion and counter cesium cations (figure 6). BO4 

tetrahedral unit is present in the center of heteropoly Keggin anion [H2AlBW11O40]-6 that is 

surrounded by one AlO6 and eleven WO6 octahedra [46]. B–O bond lengths range from 1.51(2) –

1.56(3)Å show a slight distortion of BO4 tetrahedron. A similar distortion of central SiO4 

tetrahedron has been reported for Keggin tungstosilicate polyanion [47]. Likewise, an outward 

displacement of tungsten atoms in each WO6 octahedron was observed as reflected by W–O 

distances ranging from 1.761(19)–2.341(16)Å, consistent with earlier reports for [SiW12O40]-4 

and [PW12O40]-3 polyanions [47, 48]. This elongation of WO6 octahedron was also revealed by 

bond angles at W atoms that range from 92.2(7)° to 73.9(6)°, deviating from 90° (selected 

geometric parameters are provided in Table S5 (supplementary information). 

In contrast to earlier reports where the aluminum substituted site could not be identified in 

tunstophosphate polyanion because of almost twelve-fold disorder overall positions in the 

substituted site[49], the present study reports the identification of mono-aluminum substituted 

site in tungstoborate Keggin polyanion with full occupancy. In the present study, unambiguous 

identification of aluminum substituted could be ascribed to the large size of cesium cations[50]. 

It is reported that the disorder of substituted metal site in the polyanion can be eliminated by 



bulky counter cations [51]. AlO6 octahedron is also slightly distorted as inferred by Al–O bond 

lengths ranging from 1.832 (19)–2.023 (16) Å. Overall bond lengths of tungstoborate Keggin 

polyanion were greatly influenced by aluminum substitution. B–O bond lengths in the central 

BO4 tetrahedron are longer (1.51(2)–1.56 (3)Å) than estimated for unsubstituted 12-

tungstoborate Keggin anion (1.43–1.55)[52] whereas, the bridging oxygen atoms between WO6 

and AlO6 octahedra have shorter bond lengths than expected for 12-tungstoborate that is 

consistent with the previous literature for [PAlW11O40]-3 polyanion[49].  

 Water molecules of crystallization were estimated by thermogravimetric analysis that 

confirmed the presence of 9 water molecules per Keggin unit (weight loss ≤300°C: cald. 4.40%, 

observed 4.21%) (figure 5) that is consistent with the crystallographic data. Another significant 

feature of heteropoly Keggin anion is that it should be protonated for charge balancing. Although 

no proton sites could be observed by XRD, as expected for lighter atoms (hydrogen) in the 

presence of heavier ones (tungsten, cesium), that is a common limitation for heteropoly anions 

[29]. However, the presence of two protons per Keggin unit was confirmed by acid-base 

titrations.  On the basis of X-ray crystallography combined with elemental analysis, TGA and 

titrations, the proposed chemical formula of CsAB is thus Cs6[H2AlBW11O40].9H2O. 

3.2. Catalytic cracking of polyethylene  

Non-catalytic cracking of polyethylene took place at a much higher temperature (375 °C), 

as compared to pyrolysis in the presence of aluminum substituted catalyst (CsAB and KAB) i.e. 

320 °C, furthermore the liquid hydrocarbons yield was also increased. Polyethylene cracking 

temperature is dependent on the type of catalyst and more specifically, the availability of acidic 

sites[53-55]. Acidic catalysts are known to decrease the cracking temperature and enhance the 

yield of liquid hydrocarbons[54, 55]. 



 

3.2.1. Percentage yield of cracking products 

The percentage yield of different products obtained by catalytic and non-catalytic 

cracking of polyethylene are summarized in figure 7 and table S6 (supporting information). 

Thermal pyrolysis produced only 68 wt.% oil with 22 wt.% solid residue. The catalyst without 

aluminum also showed a similar yield. The percentage yield of liquid and gaseous products in 

case of catalytic cracking with Aluminum substituted HPA was higher (almost 80 wt.% with a 

residue of about 3 wt.%) compared to the non-catalytic and unsubstituted HPA based cracking. 

The better catalytic efficiency of aluminum substituted HPA could be attributed to the additional 

 r nsted acid sites created by aluminum incorporation in tungstoborate framework. Increasing 

the catalyst acidity reduces the cracking temperature and leads to the degradation of heavier 

hydrocarbons into lighter ones [56]. 

The percentage yield of gaseous hydrocarbons (C1-C4) was also higher for all catalysts 

compared to the non-catalytic cracking of polyethylene that is also consistent to earlier reports 

[56]. Both oil and gas fractions obtained by catalytic cracking are useful fuel products. Thus use 

of our prepared catalysts not only lowered the PE decomposition temperature but also improved 

the percentage yield of useful fuel products. 

3.2.2. Liquid Products 

The oil obtained by thermal and catalytic degradation was analyzed by GC-MS. Every 

peak in gas chromatogram relates to a specific compound present in oil samples (identified by 

comparing with NIST/EPA/NIH Mass spectral library). The relative abundance of each 

compound was calculated in terms of mol.%. About 50 major peaks were selected and quantified 

Carbon number distribution and the relative abundance of each compound in oil samples 



obtained by both catalytic and non-catalytic PE cracking are given in figure(8 a). It can be 

observed that non-catalytic cracking produced 65 mol.% of heavier hydrocarbons (C13–C26) and 

only 35 mol.% gasoline hydrocarbons (C6–C12) while in the presence of aluminum substituted 

catalysts, percentage contribution of gasoline hydrocarbons (C5–C12) was increased to 60 mol.% 

and heavier hydrocarbons (C13 –C21) were formed in much lesser amount. In case of CsAB and 

KAB catalytic oil, C5 showed a large relative abundance which was totally absent in non-

catalytic oil. Moreover, C6 and C7 hydrocarbons selectivity was very high in oil produced by 

catalytic cracking as compared to non-catalytic cracking (Figure8b). By contrast, C22 and C23, 

produced in significant amount during thermal pyrolysis, were not found in catalytic pyrolysis. 

However, product distribution in the case of unsubstituted HPA (KB) based cracking was similar 

to that of thermal pyrolysis owing to the absence of acidic sites in KB.  

The catalytic efficiency of HPAs depend on availability of acidic sites, structure and 

composition of Keggin anion, and nature of countercations [57]. The substituent metals having 

strong Lewis acidity, such as Al and Ti, have been reported to enhance  r nsted acidity of the 

tungstophosphates [58]. Ayedemir et al. have reported the aluminum substituted mesoporous 

material for efficient cracking of polyethylene [56]. Furthermore, BO4 unit coordinated to AlO6 

octahedron could also have a synergistic effect on  r nsted acidic sites of tungstoborate based 

catalyst. Sato et al. have reported that introduction of BO4 unit in alumina-boria catalyst creates 

 r nsted acid sites on alumina surface that considerably enhanced 1-Butene isomerization [59]. 

Another factor responsible for catalyst acidity is presence of residual protons which are always 

present in Keggin structure for charge balancing of molecule (even though salt is synthesized in 

stoichiometric amounts). Acid-Base titration also confirmed the presence of acidic protons in 

aluminum substituted tungstoborate. These acidic protons could further enhance the catalytic 



efficiency of the prepared catalyst [60]. Increasing the catalyst acidity by all these factors is 

expected to enhance the degradation of heavier hydrocarbons into lighter ones due to PE 

degradation reaction proceeding over  r nsted acidic sites, which is consistent with earlier 

reports [56]. Due to the above-mentioned reasons, both CsAB and KAB showed good oil 

selectivity. However, CsAB showed slightly higher oil selectivity (80 wt.%) than KAB (78.6 

wt.%) which could be attributed to the large size of cesium cations. Jan et al., have also reported 

that the use of BaCO3 as a catalyst for HDPE cracking exhibited higher oil selectivity (36.36%) 

compared to CaCO3 (35.58%). They proposed that moving down a group in the periodic table 

could enhance the oil selectivity of metal cation [61]. 

GC-MS analysis showed that the majority of hydrocarbons present in oil produced by 

both catalytic and non-catalytic cracking were aliphatic in nature (mainly paraffin and olefins). 

Oil formed by non-catalytic cracking contained paraffin and olefins in almost equal amounts 

(figure 9). Moreover, the olefins formed by thermal cracking were mainly 1-alkenes, no dienes 

or alkynes were observed. In contrast, the formation of dienes and a small amount of alkynes in 

addition to 1-alkenes was favored by catalytic cracking that indicated the enhanced protonation 

of hydrocarbon chains at protonic acidic sites, forming carbonium ions that eventually undergoes 

β-scission reactions[62]. The augmented β-scission and rearrangement reactions significantly 

increased the weight percentage of lower hydrocarbons that were reflected in CsAB and KAB 

catalytic oil as light olefins and branched-chain alkenes. Sui et al. have also reported that 

polyethylene cracking by aluminum substituted SBA-16 catalyst produced the highest amount of 

olefins due to an increased number of acid sites by aluminum insertion into mesoporous silica 

material [63]. However, the catalysts minimized the residence time leading to the elimination of 

the secondary reactions that produce aromatic compounds[64]. Subsequently, the yield of 



aromatic compounds is negligible, which is highly significant for obtaining the C5–C12 gasoline 

fraction and also important from an environmental point of view. 

4. Catalyst Recycling  

At the end of the experiment, the reusability of the catalyst was tested for a couple of 

cycles. CsAB catalyst was easily separated from residue through n-hexane washing, dried in an 

oven at 100 °C and FT-IR spectra for recycled and fresh catalysts were compared in order to 

investigate the structural integrity of recycled CsAB catalyst. It was found that the spectrum of 

recycled catalyst is quite analogous to that of fresh catalyst (figure 10). Thus, the maintenance of 

Keggin structure in the recycled catalyst was confirmed. The regenerated catalyst was also 

employed for polyethylene cracking and its cracking efficiency was compared with the fresh one 

and it was observed that the regenerated catalyst cracked polyethylene without considerable 

activity loss. (Table S5, supplementary information). 

5. Mechanism of polyethylene cracking 

Catalytic cracking of polyethylene using solid catalysts occurs through carbonium ion 

mechanism[62]. According to Buekens and Haung, polymer chains are protonated at acid sites of 

catalyst forming carbonium ions, which undergo β-scission reactions at the end of the polymer 

chain to produce light olefins and carbonium ion intermediate [65]. Carbonium intermediates 

also undergo hydrogen or carbon rearrangements to form branched-chain hydrocarbons as shown 

in Scheme 1. Large amounts of branched-chain hydrocarbons observed in oil obtained by PE 

catalytic cracking are consistent to above-mentioned consequences. However, no aromatic 

hydrocarbons were produced that could be attributed to the short reaction time, which increases 

the positive environmental credentials of the aluminum substituted catalytic cracking process.  

 



 

 

 

 

Scheme 1: Proposed mechanism of PE degradation that occurs at aluminum substituted catalyst 

(CsAB and KAB). 

6. Conclusion 

Synthesis of novel cesium and potassium salts of mono-aluminum substituted Keggin 

tungstoborate and their application in polyethylene cracking is reported in this study. Aluminum 

substituted tungstoborate based catalysts degraded polyethylene with a high fuel oil selectivity. 

GC-MS analysis showed that in the presence of CsAB and KAB catalysts, larger fractions of 

lower hydrocarbons were obtained. Significantly enhanced catalytic efficacy of these catalysts 

was a consequence of aluminum incorporation into tungstoborate framework that creates 

additional  r nsted acid sites that have a synergistic effect on PE cracking reactions. 80 wt.% of 

fuel oil was obtained by catalytic cracking with high selectivity for C5–C12 range hydrocarbons. 

Thus value-added petrochemicals could be recovered from waste polyethylene using aluminum 



substituted tungstoborate based catalyst. We believe these complexes and others similarly 

designed, will expose new horizons in the field of catalysis. 

Supplementary Information:  X-ray data collection, refinement details, bond lengths and bond 

angles, EDX analysis, GC-MS graphs, and peak identification are provided in the supplementary 

information.  
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Figure Captions 

 
Figure 1: FTIR spectra of (a) KB, (b) CsAB and (c) KAB. 

Figure 2: Raman spectra of (a) CsAB, (b) KAB and (c) KB.  

Figure 3: SEM micrographs of CsAB (a), KAB (b) and KB (c).  

Figure 4: 27Al NMR spectra for (a) CsAB and (b) KAB. 

Figure 5: Thermogravimetric analysis of (a) CsAB, (b) KAB and (c) KB. 

Figure 6: Aluminum substituted tungstoborate Keggin polyanion [H2AlBW11O40]-6 structure 

visualized by OLEX 2. B, W, Al and atoms are represented by yellow, blue, green and red 

ellipsoids respectively at 50% probability. 

Figure 7: PXRD patterns for (a) KAB and (b) CsAB. 

Figure 8: Product distribution in catalytic and non-catalytic cracking reactions.  

Figure 9: (a) Carbon number distribution and (b) carbon number selectivity in oil produced by 

catalytic and thermal cracking. 

Figure 10: Comparison between alkenes (a) and alkanes (b) obtained by catalytic and thermal 

degradation of PE.           

Figure 11:  FTIR spectra of (a) fresh and (b) regenerated CsAB catalyst. 
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