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Intelligent Spectrum Control in Heterogeneous
Networks With High Security Capability

Chenxi Li∗, Zan Li∗†, Senior Member, IEEE, Jia Shi∗, Lei Guan∗ and Lei Zhang‡

Abstract—In this letter, an intelligent spectrum control (ISC)
scheme is proposed to enhance the communication security perfor-
mance in heterogeneous networks (Het-Nets), where the available
spectrum can be efficiently managed by avoiding interferences
flexibly with the aid of spectrum sensing technique. We analyze
the security performance for the Het-Nets, and derive the closed-
form expressions for the reliable transmission probability and the
secrecy probability of the authorized user. Our numerical simu-
lation results validate the accuracy of the analytical expressions,
and imply that the Het-Nets with the ISC scheme can achieve a
high security performance.

Index Terms—Intelligent spectrum control, communication se-
curity, reliable transmission probability, secrecy probability.

I. INTRODUCTION

HETEROGENEOUS networks (Het-Nets), including a va-
riety of different access networks to provide high-quality

mobile services, have emerged to meet the needs of the next-
generation communication for carrying an exponentially in-
creasing amount of data traffic and massive number of terminals
[1]. However, due to the openness of wireless channels and the
broadcast nature of the radio propagation, the security of com-
munication in Het-Nets has been widely concerned by various
industries [2], such as the Internet of Things and the Cloud
Computing. Moreover, as interferences become more compli-
cated, preventing the private information from being intercepted
by illegitimate users has further triggered public attention [3]. In
addition, the diversity of access methods in Het-Nets also makes
the means of interference or eavesdropping more flexible [4].
Therefore, it is essential to carry out theoretical researches on
improving the communication security of Het-Nets.

Recently, some researches on the communication security of
Het-Nets have been investigated in [5]–[8]. The authors in [5],
[6] introduced friendly jammers to maximize the secrecy rate of
data transmission from different perspectives. Besides, addition-
al artificial noise (AN) has been injected towards eavesdroppers
by full-duplex users in [6]. In addition, Wu et al. [7] deployed
more low-power base stations in high path-loss environments to
improve security performance. Furthermore, an artificial-noise-
aided secure beamforming strategy has been designed in [8] to
maximize the secrecy rate of the receiver.

Nevertheless, the malicious communication interference usu-
ally change randomly during the information transmission,
which has rarely been studied by most existing methods for
improving the security of Het-Nets. At the same time, since
the tremendous popularity of smart devices has spurred the
explosive growth of high-rate multimedia wireless services,
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existing methods of adding AN further increase the energy cost
and signaling overhead.

In this letter, we propose an intelligent spectrum control
(ISC) scheme, which can flexibly avoid malicious interferences
with the aid of spectrum sensing, and does not require ad-
ditional energy cost and signaling overhead for introducing
AN. In addition, we analyze the security performance of the
ISC scheme. In particular, the closed-form expressions for the
reliable transmission probability and the secrecy probability of
the authorized user are derived, so as to improve the security of
Het-Nets by adjusting the parameters of the proposed scheme.
Comprehensive simulation analyses are provided: 1) validating
the accuracy for our analysis of the security performance of
the Het-Nets; 2) revealing that the ISC scheme aided Het-Nets
can achieve a higher security performance by comparing with
existing security schemes, while obtaining reliable transmission
probability without too much secrecy loss.

II. SYSTEM MODEL
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(b) Schematic for ISC scheme.

Fig. 1. System model and ISC scheme.

A. System Description and Assumptions

We consider a Het-Net as shown in Fig. 1(a), where a
macro BS serving an authorized user is overlaid with multiple
micro BSm (m = 1, 2, · · · , N), each of which supports a
cluster of common users [1], [6]. Without loss of generality, the
macro BS located in the center of the network, and the micro
BSs are distributed following Poisson point process (PPP).
Assume that each link in the Het-Net experiences independent
Rayleigh fading. Specifically, we focus on investigating the
downlink transmission for the typical authorized user and the
eavesdropper. As shown in Fig. 1(a), the security threats to the
communication link between authorized users and the macro BS
can be divided into three parts: (1) malicious interference, (2)
inter-layer interference, (3) the existence of the eavesdropper.
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Accordingly, the signal-to-interference-plus-noise ratio (SIN-
R) of the authorized user and eavesdropper can be expressed as

SINRu =
Pu

Iex,u + Iin,u +N0
, SINRe =

Pe

Iex,e + Iin,e +N0
,

(1)
where Pu and Pe represent the received signal power of the au-
thorized user and the eavesdropper, respectively. Moreover, Iex,x
and Iin,x (x ∈ {u, e}) are the external and inter-cell interference
power. Furthermore, N0 is the background noise, which is char-
acterized by a zero-mean, complex Gaussian random variable.
In our network, the frequency reuse factor is assumed to be one,
which means all the spectrum can be used by each BS. Note that,
time slots set is T = {ti |i = 1, 2, · · · , p} and the frequency
slots set can be denoted by F = {fj |j = 1, 2, · · · , q }.
B. ISC Scheme

To design a Het-Net with high security capability, we develop
a efficient frequency hopping multiple access technique, namely
ISC scheme, which motivates to improve the security capability.
The proposed ISC scheme aims to develop a good sequence
family by finding and removing the frequency slots occupied
by interferences. The designed sequence family is able to map
the available frequency slots to the authorized users for realizing
secure communication. In particular, our proposed scheme can
exploit the advantages of efficiently avoiding malicious interfer-
ence and demanding low energy cost. The detailed principles of
our ISC scheme is summarized in Algorithm 1.
Algorithm 1 Principles of ISC scheme
Input: Frequency slots set F .

1: Determine the status of the entire frequency slots P =
{Pf1 , Pf2 , · · · , Pfq}, Pfj ∈ {0, 1}. Note, if Pfj = 1, fj
is occupied by interference, otherwise fj is available. (By
leveraging HOCs-based spectrum sensing method [9].)

2: Get the available frequency slots set FA with qA frequency
slots after removing FI = {fj

∣∣Pfj = 1} from F .
3: for ti = {t1, t2, · · · , tp}
4: Generate a sequence Y= {yti

} based on the block cryptog-
raphy [4]. Upon applying sti = (ti+yti+sti−1) mod (qA),
the ISC sequence can be derived as Sti= {sti} where
sti = {Ati,user,Ati,m1

,Ati,m2
, · · · ,Ati,mN

}.
5: end for

Output: The ISC sequence family {St1 , St2 , · · · , Stp}.

III. PERFORMANCE ANALYSIS

This section analyzes the security performance of the Het-Net
in terms of the reliable transmission probability and the secrecy
probability of the authorized user respectively.

A. Minimum Collision Probability

As introduced by [10], the collision probability has a direct
impact on the probability that the transmitted signal will be
correctly received by the receiver in our network.

Suppose that, the data transmission for each user requires
L number of time slots, which happens independently and
randomly. Once a demand occurs, the BS immediately starts
transmitting information to the user. If there is a collision
between users, they will retransmit after stepping back for a
period of time. It should be pointed out that, the arrival rate of
an initial transmission for a user and the arrival rate of a re-
transmission are subject to the Poisson distribution, which are

denoted by µ and θ, respectively. Therefore, when combining
the scenarios of initial transmission and re-transmission, the
total arrival rate G for transmitting information to a user can be
given by G = µ + θ. The probability of transferring n data in
unit time can be expressed as f(n) = (Gn · e−G)/(n!).

Since each user can independently and randomly complete
the signal transmission by using asynchronous multiple access,
we first analyze the scenario that two users (i.e., user U1 and
user U2) do not conflict during the data transmission. The
transmission on the l1∼lm−1 time slot for user U1 will overlap
with that for user U2 by at least two consecutive time slots. In a
little more detail, the lm time slot of user U1 will overlap with
the last time slot of user U2. Accordingly, users U1 and U2 will
have m (m ≤ p) time slots overlapping during the transmission
process. Therefore, in the Het-Nets considered, the probability
that two users do not have frequency collision is

Pr(li, q) = Pr(f1
li ̸= f2

li , f
1
li+1

̸= f2
li ; i = 1, 2, · · · ,m). (2)

Since the frequency slots chosen for a user are independent
on different time slots, Pr(li, q) can be further denoted by

Pr(li, q) =
m∏

li=1

Pr(f1
li ̸= f2

li , f
1
li+1

̸= f2
li). (3)

Based on the conditional probability above, we can obtain
Pr(li, q(t))

=
m∏

li=1

q(t)∑
1

Pr(f1
li
̸= f2

li
, f1

li+1
̸= f2

li

∣∣f2
li
= ft ) · Pr(f2

li
= ft).

(4)
Assuming Pr(f2

l = ft) = Pt, Pr(li, q(t)) becomes

Pr(li, q(t)) =
m−1∏
li=1

q(t)∑
t=1

(1− Pt)
2Pt +

q(t)∑
t=1

(1− Pt)Pt

= (
q(t)∑
t=1

(1− Pt)
2Pt)

li−1 +
q(t)∑
t=1

(1− Pt)Pt,

(5)

where
q(t)∑
t=1

Pt = 1, and 0 ≤ Pt ≤ 1.

In order to obtain the maximum value of Pr(li, q(t)), we
apply the derivation in [10] to (5). It readily knows that the
maximum value of Pr(li, q(t)) can only be acquired when all
frequency slots can be selected with equal probability. In this
case, the maximum value of Pr(li, q(t)) can be written by

Prmax(li, q(t)) = (1− (1/q(t)))2l−1. (6)

Considering the randomness of the overlapped frequency slots
li ∈ {1, 2, · · · , L}, we have Pr(li) = 1/L. Therefore, in the
Het-Net conceived, for any given time, the probability that user
U1 and user U2 do not collide is

Pr(L, q(t)) =
L∑

l=1

Prmax(li, q(t)) Pr(li) =
L∑

l=1

(1− 1
q(t) )

2l−1 1
L .

(7)
Since the number of time slots L used for a signal is much

smaller than the number of frequency slots available q(t) in
the actual communication system, we use Taylor’s formula to
further develop (7) and approximate the high-order infinitesimal
term. Hence, we have

Pr(L, q(t)) ≈
L∑

l=1

(1− 2l − 1

q(t)
)
1

L
= 1− L/q(t). (8)
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Accordingly, the minimum collision probability for user U1

and user U2 in the Het-Net considered can be given by
Prc = 1− Pr(L, q(t)) = L/q(t). (9)

B. Reliable Transmission Probability

The reliable transmission probability of the authorized user
can be described by

P (δu) = Pr(SINRu,BS ≥ δu), (10)

which is the probability that the authorized user can decode the
received signal, i.e., the SINR of the authorized user is greater
than the SINR decoding threshold for the authorized user δu.

In the ISC scheme, let us denote the probability of the BS
using an available frequency slot by Pr(fT ), where fT ∈ FT

and T is an arbitrary number from 1 to q. Then, the desired
signal power and inter-user interference power received by the
authorized user can be expressed as

Pu =
PBS

L

L∑
l=1

q∑
T=1

Pr(fT ) |hu·fT ·l|2,

Iin,u =
Pbsi

L

L∑
l=1

q∑
T=1

n∑
i=1

Prc Pr(i1 · fT ) |hfT ·l|2,
(11)

where PBS and Pbs represent the total power transmit by the
macro BS and the micro BS respectively, and L represents the
time slots number of transmitted signal.

We assume gu,BS = |hu·fT |
2 is the channel gain between

the macro BS and authorized user, which follows exponential
distribution with parameter α, and g(u,bs) = |hi1·fT |

2 is the
channel gain between micro BSi and authorized user, which
follows exponential distribution with parameter βi.

Upon substituting (9) and (11) into (1), the SINR of the
authorized user can be rewritten as

SINRu =

PBS
L

L∑
l=1

q∑
T=1

Pr(fT )|hu·fT ·l|2

Pbsi

L∑
l=1

q∑
T=1

n∑
i=1

1
q Pr(fT )|hi1·fT ·l|2 +N0

. (12)

Based on (12), we can now derive the following theorem.

Theorem 1. The reliable transmission probability for the au-
thorized user can be given by

P (δu) = (
(PBS/L)α

2

(PBS/L)α2 + Pbsβ2δu/q
)n exp(−δuN0L

PBSα2
).

(13)
Proof. Please refer to the Appendix.

C. Secrecy Probability

The secrecy probability is defined as the probability that an
eavesdropper can not receive the valid information, expressed
as P (δe) = Pr(SINRe,BS ≤ δe). (14)

Assume that the eavesdropper does not know the sequence
S, which is also the common case for most practical systems.
Therefore, the eavesdropper accesses a random frequency slot
to intercept the transmitted signal, but also increases the chance
of the eavesdropper colliding with all micro BSs and authorized
users. Consequently, the total power of intercepted signals by the
eavesdropper and the inter-user interference to the eavesdropper
can be expressed as

Pe =
PBS

L

L∑
l=1

|he·fT ·l|2, Iin,e =
Pbsi

L

L∑
l=1

n−1∑
i=1

Prc |hi2·fT ·l|2.

(15)
Furthermore, the channel gain g(e,BS) = |he·fT |

2 between
the eavesdropper and the macro BS follows the exponential
distribution of parameter λ. Similarly, the channel gain g(e,bs) =

|hi2·fT |
2 between the eavesdropper and a micro base station BSi

obeys the exponential distribution of parameter ωi.
Substituting (9) and (15) into (1), the SINR of the eavesdrop-

per can be rewritten as

SINRe =

PBS
L

L∑
l=1

|he·fT ·l|2

Pbsi

L∑
l=1

n−1∑
i=1

1
q |he·fT ·l|2 +N0

. (16)

With (16), we can derive the following theorem.

Theorem 2. The secrecy probability can be expressed as

P (δe) = 1− (
(PBS/L)λ

2

(PBS/L)λ2 + Pbsω2δe/q
)n−1 exp(−δeN0L

PBSλ2
).

(17)

Proof. It is similar to that of Theorem 1, hence, is omitted due
to the lack of space.

IV. NUMERICAL RESULTS

This section presents the simulation results to evaluate the
security performance of the Het-Nets. In our simulation, we
assume, there are one macro BS, ten micro BSs, one jammer,
one eavesdropper. Further, we set α = 5, λ = 3, δu = δe = 3,
βi = 2 and ωi = 1, ∀i ∈ {1, 2, · · · , 10}.

Figure 2 shows the variation of the reliable transmission
probability and the secrecy probability with the signal to noise
ratio (SNR) when q is equal to 128. From this figure, we
can obtain the following observations. Firstly, the simulation
results of reliable transmission probability and secrecy proba-
bility perfectly match the theoretical results, which verifies the
correctness of the proposed scheme. Secondly, the reliable trans-
mission probability increases exponentially with the increase of
SNR, while the secrecy probability decreases approximatively
linearly. This indicates that, as communication environment
becomes better, the possibility of the authorized user receiving
complete information increases rapidly, while the probability
that eavesdropper receives effective information stays in a region
of small values. Thirdly, by comparing with the method of
adding artificial noise used in literature [6], which is one of the
typical methods for improving the security of communication
systems, the proposed ISC scheme can achieve higher security
performance of Het-Nets (i.e., the SNR gain is 0.4 dB when
the reliable transmission probability is 0.35 and the secrecy
probability is 0.065). It is worth noting that compared with
the method of adding artificial noise, the proposed ISC scheme
does not need to occupy the transmission power, nor does it
need to know the location of the receiver in advance, thus the
complexity of realizing the scheme is effectively reduced. In
addition, as the threshold δu and δe increases from 1 to 3,
the reliable transmission probability decreases while the secrecy
probability increases. This indicates that the better the channel
conditions required for transmitting signal, the more vulnerable
the entire Het-Nets is to the security threat.



4

-5 0 5 10 15 20 25
SNR,dB

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
R

el
ia

bl
e 

T
ra

ns
m

is
si

on
 P

ro
ba

bi
lit

y

Theoretical result (Reliable Transmission)
Simulation result (Reliable Transmission)
Artificial Noise (Reliable Transmission)
Theoretical result (Secrecy)
Simulation result (Secrecy)
Artificial Noise (Secrecy)

-3.4 -3 -2.6
0.35

0.4
10 10.5

0.06

0.07

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Se
cr

ec
y 

pr
ob

ab
ili

ty

L=2 L=8L=4

L=2

L=4

L=8

δ
e
=3dB

δ
u
=3dB

L=2,
δ

u
=1dB

L=2,
δ

e
=1dB
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Moreover, Fig. 2 and Fig. 3 show the relationship between
reliable transmission probability and secrecy probability when
varying L and q, respectively. It can be clearly seen that with the
increase of L and the decrease of q, the reliable transmission
probability decreases while the secrecy probability increases.
This is because the use of more time slots or less frequency
slots will increase the user collision probability and decrease
the security of the entire Het-Nets. Hence, it is better to choose
small L and large q to enhance the network security.

Figure 4 shows the reliable transmission probability and
the secrecy probability against interference-to-noise ratio (INR)
under different SNRs. When the SNR is fixed, the reliable trans-
mission probability decreases as the INR increases, while the
secrecy probability increases. Since the power of the jamming
signal is increased, the transmission of the signal is blocked.
In that case, it becomes more difficult for the authorized user
to receive the complete information, and the network becomes
less secure.

V. CONCLUSION

In this paper, we have proposed the ISC scheme in a Het-
Net for achieving high security capability. By leveraging spec-
trum sensing technique, our proposed scheme flexibly avoid
malicious interferences with the aid of spectrum sensing. Fur-
thermore, we have analyzed the security performance of the
ISC scheme assisted Het-Nets. Specifically, the closed-form
expressions for the reliable transmission probability and the
secrecy probability of the authorized user have been derived.
Simulation results have validated the accuracy of the theoretical
expressions for the security performance, and have revealed that
the proposed ISC scheme can be a promising candidate for
future Het-Nets to achieve high security performance.

APPENDIX
To simplify the calculation, we denote that

X=
L∑

l=1

q∑
T=1

Pr(fT )|hu·l|2, Y=
n∑

i=1

Pbsi

L∑
l=1

q∑
T=1

Pr(fT )|hi1·l|
2
.

(18)
Since |hu·l|2 ∼ E(α) and |hi1·l|

2∼E(βi), the probability
density function (PDF) of X and Y can be obtained, as follows:

fX(x) =
1

α2
e−

1
α2 , fY (y) =

yn−1

Γ(n)(Pbsiβ
2
i )

n exp(− y

Pbsiβ
2
i

).

(19)

When assuming Pbsi = Pbs (i = 1, 2, · · · , n), the reliable
transmission probability for the authorized user becomes

P (δu) =Pr(SINRu ≥ δu)

= Pr

(
1

(1/q)Y +N0
min((PBS/L)X) ≥ δu

)
=

∫ ∞

0

∫ ∞

δu((1/q)y+N0)L
PBS

fX(x)fY (y)dxdy

=

∫ ∞

0

exp

(
−δu((1/q)y +N0)L

PBSα2

)
fY (y)dy

=
exp(−δuN0L

PBSα2
)

Γ(n)(Pbsβ2)
n

∫ ∞

0

yn−1 exp

(
−(

δu · (L/q)
PBSα2

) +
y

Pbsβ2

)
dy

=

(
(PBS/L)α

2

(PBS/L)α2 + Pbsβ2δu/q

)n

exp(−δuN0L

PBSα2
).

(20)
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